WO2016000421A1 - 一种太阳能ups系统 - Google Patents

一种太阳能ups系统 Download PDF

Info

Publication number
WO2016000421A1
WO2016000421A1 PCT/CN2014/094019 CN2014094019W WO2016000421A1 WO 2016000421 A1 WO2016000421 A1 WO 2016000421A1 CN 2014094019 W CN2014094019 W CN 2014094019W WO 2016000421 A1 WO2016000421 A1 WO 2016000421A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
terminal
input
inverter
output
Prior art date
Application number
PCT/CN2014/094019
Other languages
English (en)
French (fr)
Inventor
黄敏
潘世高
Original Assignee
佛山市柏克新能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市柏克新能科技股份有限公司 filed Critical 佛山市柏克新能科技股份有限公司
Publication of WO2016000421A1 publication Critical patent/WO2016000421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the invention relates to a UPS system, in particular to a solar UPS system.
  • UPS uninterruptible power supply devices. In the prior art, there are generally three ways to use solar energy through UPS:
  • Grid-connected type The output of the solar panel is connected to a grid-connected inverter, the output of the grid-connected inverter is connected to the grid, and the grid-connected inverter feeds the electricity generated by the solar panel to the grid.
  • the disadvantage is that it cannot work without mains power, and the power supply to users is always the power grid, which cannot provide users with stable and pure power, that is, power with suppressed voltage fluctuations and suppressed voltage or current harmonics of the power grid. .
  • the output of the solar panel is connected to the inverter and the battery.
  • the inverter When there is sunlight, the inverter provides stable AC power to the load and charges the battery; when there is no sunlight, the battery supplies power to the load through the inverter.
  • the disadvantage is that it cannot provide users with a continuous power supply when it is continuously cloudy.
  • the output of the solar panel is connected to the inverter and the battery, and the output of the inverter is connected to the grid.
  • the inverter works in grid-connected mode and charges the battery; when the mains power fails, the inverter switches to off-grid mode, and the battery supplies power to the load through the inverter.
  • the disadvantage is that the inverter will have a conversion time when the mode is switched, and when the mains power is normal, the load is supplied by the mains. At this time, it is impossible to provide stable and pure power to the user, that is, the voltage fluctuation is suppressed, and the power To A power source in which the voltage or current harmonics of the network are suppressed.
  • the above three solar energy utilization methods have their application limitations, and the conventional online double conversion UPS usually only has one AC input and one DC (battery) input. If the system needs to have multiple AC and DC input power supply (such as multiple solar panels and generator input), because conventional online double conversion UPS can not perform power distribution and management of these input power sources, so solar panels cannot be effectively used .
  • the purpose of the present invention is to provide a solar UPS system that can automatically select and distribute the power of each power input static switch according to the load demand, so as to achieve the optimal power output.
  • a solar UPS system including mains input, AC output, generator power, solar battery components, battery pack, main controller, strobe controller, inverter, first rectifier, static switch and multiple strobe switches ,
  • the mains input is divided into a bypass input and a rectification input, the bypass input is connected to the input end of the static switch, the rectification input is connected to the AC input end of the first rectifier, and the output end of the first rectifier Connected to the battery pack, the DC output end of the generator power supply is connected to the DC input end of the inverter, the AC output end of the inverter is connected to the input end of the static switch, and the output end of the static switch is connected to the AC
  • the output is connected;
  • the main controller has a voltage and current sampling terminal, a rectification control terminal, a static switch control terminal, an inverter control terminal, and a first communication terminal.
  • the gating controller has a gate control terminal, a current sampling terminal, and a voltage The sampling terminal and the second communication terminal; the voltage and current sampling terminals are respectively connected to the battery pack and the AC output, and the rectification control terminal
  • the static switch control terminal is connected to the static switch
  • the inverter control terminal is connected to the inverter
  • the first communication terminal is connected to the second communication terminal for communication
  • one end of each of the strobe switches is connected to The power output terminal of each solar panel in the solar cell module
  • the other end of each gate switch is connected to the battery pack
  • the gate control terminal controls and connects each gate switch
  • the current sampling terminal is connected to each gate switch.
  • the other end of the battery pack is connected, and the voltage sampling end is connected between the other end of each gate switch and the connection point of the battery pack.
  • the generator power supply includes a plurality of generators and a plurality of second rectifiers.
  • the output terminals of each generator are connected to the AC input terminals of the second rectifiers in a one-to-one correspondence.
  • the DC input terminal of the converter is connected.
  • the solar UPS system further includes a first diode, and the DC output terminal of each second rectifier is connected to the DC input terminal of the inverter after passing through the first diode.
  • the solar UPS system further includes a plurality of second diodes, the other end of each strobe switch is connected to the anode of the second diode in a one-to-one correspondence, and the cathode of each second diode is connected to the battery after being converged. Group connection; the voltage sampling terminal is connected to the cathode junction of each second diode.
  • the solar UPS system further includes a solar UPS cabinet and a plurality of solar power distribution and combiner cabinets, the first rectifier, static switch, inverter, and main controller are all located in the solar UPS cabinet; the solar battery There are multiple groups of modules, each group of solar cell modules is equipped with one gating controller, and each solar power distribution and combiner cabinet carries a group of said solar cell modules and one said gating controller.
  • the first communication terminal of the main controller is connected with a first communication module
  • the second communication terminal of each of the strobe controllers is respectively connected with a second communication module
  • the first communication module communicates with each second communication module.
  • the module is connected via RS485 bus communication; the first communication module is located in solar To In the UPS cabinet, the second communication module is respectively located in each solar power distribution and combiner cabinet.
  • main controller is also connected to a first display module
  • each of the gate controllers is also connected to a second display module
  • the first display module is located in the solar UPS cabinet
  • the second display module is located in each solar In the power distribution junction cabinet.
  • the present invention has the following beneficial effects:
  • the main controller of the present invention can control the first rectifier, the static switch and the inverter, and detect the AC output and the voltage and current of the battery pack in real time, and at the same time obtain the solar cell components through the first communication terminal and the second communication terminal
  • the output current can then be converted by the main controller according to the needs of the load and the actual working conditions to control the gate controller to switch the gate switch, control the operation of the first rectifier and the inverter, and feedback the static switch In the working state, the power of each power input static switch is finally realized, and the optimal power output can be realized according to the power output of the solar battery module, the power output of the battery pack, the power output of the mains input, and the power output of the generator.
  • the sequence of power output is optimized to make the most reasonable and effective use of each power source. Under various work adjustments, it can continue to provide users with the most stable and pure power source distributed by the main controller, that is, voltage fluctuations. A power supply that is suppressed and the voltage or current harmonics of the grid are suppressed.
  • FIG. 1 is a schematic block diagram of the connection of the solar UPS system of the present invention.
  • a solar UPS system as shown in Figure 1 including mains input, AC output, generator power, solar cell components, battery pack, main controller, strobe controller, inverter, first rectifier, static switch And multiple strobe switches, the mains input is divided into bypass input and rectifier output To
  • the bypass input is connected to the input of the static switch
  • the rectifier input is connected to the AC input of the first rectifier
  • the output of the first rectifier is connected to the battery pack
  • the DC output of the generator power supply is connected to the DC input of the inverter.
  • the AC output terminal of the inverter is connected with the input terminal of the static switch
  • the output terminal of the static switch is connected with the AC output.
  • the main controller has a voltage and current sampling terminal, a rectifier control terminal, a static switch control terminal, an inverter control terminal and a first communication terminal (these ports are not shown in Figure 1), and the gate controller has a gate control terminal and a current sampling terminal.
  • the voltage and current sampling terminals are respectively connected to the battery pack and the AC output, the rectification control terminal is connected to the first rectifier, and the static switch control terminal is connected to the static switch ,
  • the inverter control terminal is connected to the inverter, the first communication terminal is connected to the second communication terminal for communication; one end of each strobe switch is connected to the power output terminal of each solar panel in the solar cell module, and each option
  • the other end of the switch is connected to the battery pack, the gate control terminal is connected to each gate switch respectively, the current sampling terminal is connected to the other end of each gate switch, and the voltage sampling terminal is connected to the other end of each gate switch.
  • the generator power supply in this example includes multiple generators and multiple second rectifiers.
  • the output terminals of each generator are connected to the AC input terminals of each second rectifier in a one-to-one correspondence.
  • the DC output terminals of each second rectifier are connected to the inverter. Connected to the DC input terminal.
  • the second rectifier is used to convert the alternating current generated by the generator into direct current.
  • the solar UPS system of this example also includes a first diode and a plurality of second diodes, both of which are used to prevent current reversal.
  • the DC output terminal of each second rectifier is connected to the inverter after passing through the first diode.
  • the DC input terminal is connected.
  • the other end of each strobe switch is connected to the anode of the second diode one by one, and the cathode of each second diode is connected to the battery pack after confluence; the voltage sampling terminal is connected to each To The cathode junctions of the two diodes are connected.
  • the solar UPS system of this example also includes a solar UPS cabinet and multiple solar power distribution and combiner cabinets (the other solar power distribution and combiner cabinets in Figure 1 omit solar cell components, strobe switches and second diodes) to facilitate integration Operation control, and separate assembly and placement.
  • the first rectifier, static switch, inverter, and main controller are all located in the solar UPS cabinet; a solar cell module includes multiple solar panels.
  • there are multiple sets of solar cell modules and each set of solar cell modules is equipped with A strobe controller, each solar power distribution and combiner cabinet carries a group of solar cell components and a strobe controller.
  • the first communication terminal of the main controller is connected with a first communication module
  • the second communication terminal of each strobe controller is respectively connected with a second communication module
  • the first communication module is respectively connected with each second communication module through RS485 bus communication
  • the first communication module is located in the solar UPS cabinet
  • the second communication module is located in each solar power distribution and combiner cabinet.
  • the first communication module and the second communication module adopt the existing conventional RS485 communication module to realize real-time and timely control of the opening and closing of the strobe switch.
  • the main controller is also connected with a first display module for displaying the input and output parameters of various detection parameters and actual power.
  • Each gate controller is also connected with a second display module for displaying the output power parameters of the solar cell components.
  • the working state of each strobe switch, the first display module is located in the solar UPS cabinet, and the second display module is located in each solar power distribution and combiner cabinet.
  • the solar UPS cabinet in the solar UPS system of this example always uses the output of the inverter or the power input of the mains to supply power to the user's load through the static switch selection, and the AC output is connected to the load.
  • the main controller is set to prioritize the use of the output power of the solar cell module.
  • the strobe controller detects the total output voltage of the solar panels and the output current of each solar panel, calculates the output power, and controls the opening and closing of the strobe switch according to the output power, and then controls the switching of the solar panels Quantity.
  • each solar panel of the solar cell module makes the output power of the solar cell module exactly equal to the sum of the power charged by the load and the battery pack.
  • the output power balance of each solar power distribution combiner cabinet is adjusted to avoid the situation that some solar power distribution combiner cabinets are fully loaded and some solar power distribution combiner cabinets are empty. At this time, both the load and battery pack charging energy are provided by solar energy, and the load gets a power source that suppresses voltage fluctuations and the voltage or current harmonics of the grid.
  • the battery pack starts to discharge as the second priority energy source to provide the insufficient load power. At this time, the load energy is provided by the solar cell module and the battery pack.
  • the battery pack drops to a certain capacity, the battery pack stops discharging, and the solar UPS system starts the third priority energy, that is, the mains supplementary power supply.
  • the mains input passes through the first rectifier to provide the power difference between the solar output and the load. section. At this time, the load energy is provided by the solar cell components and the mains input.
  • the input power of the mains is smaller than the output power of the solar UPS cabinet.
  • the generator is activated to form a generator Power supply to compensate for the difference.
  • the load energy is determined by To Solar cell modules, mains input and generator power are provided together.
  • the above judgment of the power of the solar cell module is completed by sampling and acquiring the current by the current sampling terminal of the strobe controller, and through the communication between the first communication module and the second communication module, the strobe control terminal is used to realize the comparison.
  • the opening and closing control of the strobe switch realizes the switching of the solar panel.
  • the above judgment of the load power and the output power of the battery pack is completed by the voltage circuit of the main controller using terminal sampling of voltage and current, and the rectifier control terminal, inverter control terminal, and static switch control terminal are used to achieve the first A rectifier, inverter, and static switch work control to realize power distribution control for mains input, battery input, generator power input, and solar battery input.
  • Both the main controller and the strobe controller in this example can adopt a conventional MCU, or adopt an existing circuit structure composed of logic circuits, or be realized by an existing integrated circuit.

Abstract

一种太阳能UPS系统,包括市电输入、交流输出、发电机电源、太阳能电池组件、蓄电池组、主控制器、选通控制器、逆变器、第一整流器、静态开关和多个选通开关。市电输入分为旁路输入和整流输入。第一整流器的输出端与蓄电池组相连,发电机电源的直流输出端与逆变器的直流输入端相连,逆变器的交流输出端与静态开关的输入端相连,静态开关的输出端与交流输出相连。各选通开关的一端一一对应连接于太阳能电池组件中每个太阳能电池板的电源输出端,另一端均与蓄电池组相连。选通控制端分别控制各选通开关。采用该系统,可根据负载需求、自动选择、分配各路电源输入的功率,实现最优电源的输出。

Description

一种太阳能UPS系统 技术领域
本发明涉及UPS系统,具体涉及一种太阳能UPS系统。
背景技术
UPS指不间断电源装置,现有技术中通过UPS对太阳能的利用方式,一般有以下三种:
(1)并网型。太阳能电池板的输出接一个并网逆变器,并网逆变器的输出接电网,并网逆变器将太阳能电池板发出的电馈送到电网上。其缺陷是:在没有市电的情况下,无法工作,且给用户供电的始终是电网,无法给用户提供稳定纯净的电源,即电压波动得到抑制、电网的电压或电流谐波得到抑制的电源。
(2)离网型。太阳能电池板的输出接逆变器和电池,有太阳光的时候逆变器给负载提供稳定的交流电源并给电池充电;没有太阳光的时候,由电池通过逆变器给负载供电。其缺陷是:在连续阴天的时候,无法给用户提供持续的电源供应。
(3)离并网一体型。太阳能电池板的输出接逆变器和电池,逆变器的输出接电网。有市电的时候逆变器工作在并网模式,并给电池充电;当市电故障时,逆变器转换到离网模式,由电池通过逆变器给负载供电。其缺陷是:逆变器在模式转换时会出现转换时间,且市电正常时,负载是由市电供电,此时无法给用户提供稳定纯净的电源,即电压波动得到抑制、电 网的电压或电流谐波得到抑制的电源。
因此,以上三种太阳能的利用方法都有其应用局限性,而常规的在线双变换UPS,通常只有一路交流输入和一路直流(电池)输入。如果系统需要有多路交直流输入供电(如多路太阳能电池板和发电机输入),因为常规在线双变换UPS不能对这些输入电源进行功率分配和管理,因此不能对太阳能电池板进行有效的利用。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种太阳能UPS系统,能够根据负载需求,自动选择、分配各路电源输入静态开关的功率,实现最优电源的输出。
本发明的目的采用如下技术方案实现:
一种太阳能UPS系统,包括市电输入、交流输出、发电机电源、太阳能电池组件、蓄电池组、主控制器、选通控制器、逆变器、第一整流器、静态开关和多个选通开关,所述市电输入分为旁路输入和整流输入,所述旁路输入与静态开关的输入端相连,所述整流输入与第一整流器的交流输入端相连,所述第一整流器的输出端与蓄电池组相连,所述发电机电源的直流输出端与逆变器的直流输入端相连,所述逆变器的交流输出端与静态开关的输入端相连,所述静态开关的输出端与交流输出相连;所述主控制器具有电压电流采样端、整流控制端、静态开关控制端、逆变控制端和第一通讯端,所述选通控制器具有选通控制端、电流采样端、电压采样端和第二通讯端;电压电流采样端分别连接蓄电池组和交流输出,整流控制端 与第一整流器相连,静态开关控制端与静态开关相连,逆变控制端与逆变器相连,第一通讯端与第二通讯端连接通讯;各个所述选通开关的一端一一对应连接于太阳能电池组件中每个太阳能电池板的电源输出端,各个选通开关的另一端均与蓄电池组相连,所述选通控制端分别控制连接各个选通开关,电流采样端分别与各个选通开关的另一端连接,电压采样端连接至各个选通开关的另一端与蓄电池组的连接点之间。
进一步地,所述发电机电源包括多个发电机和多个第二整流器,各个发电机的输出端一一对应连接各个第二整流器的交流输入端,各个第二整流器的直流输出端均与逆变器的直流输入端相连。
进一步地,所述太阳能UPS系统还包括第一二极管,各个所述第二整流器的直流输出端均经过第一二极管后与逆变器的直流输入端相连。
进一步地,所述太阳能UPS系统还包括多个第二二极管,各个选通开关的另一端一一对应连接第二二极管的阳极,各第二二极管的阴极汇流后均与蓄电池组连接;所述电压采样端与各第二二极管的阴极汇流点相连。
进一步地,所述太阳能UPS系统还包括一太阳能UPS柜和多个太阳能功率分配汇流柜,所述第一整流器、静态开关、逆变器、主控制器均位于太阳能UPS柜中;所述太阳能电池组件为多组,每组太阳能电池组件均配有一个所述选通控制器,每个太阳能功率分配汇流柜承载有一组所述太阳能电池组件和一个所述选通控制器。
进一步地,所述主控制器的第一通讯端连接有第一通讯模块,各个所述选通控制器的第二通讯端分别连接有第二通讯模块,第一通讯模块分别与各个第二通讯模块通过RS485总线通讯连接;第一通讯模块位于太阳能 UPS柜中,第二通讯模块分别位于各个太阳能功率分配汇流柜中。
进一步地,所述主控制器还连接有第一显示模块,各个所述选通控制器还分别连接有第二显示模块,第一显示模块位于太阳能UPS柜中,第二显示模块分别位于各个太阳能功率分配汇流柜中。
相比现有技术,本发明的有益效果在于:
本发明的主控制器可对第一整流器、静态开关和逆变器进行控制,并实时检测交流输出和蓄电池组的电压、电流,同时还通过第一通讯端及第二通讯端获取太阳能电池组件的输出电流,进而可通过主控制器根据负载的需要及实际工作情况换算功率,来控制选通控制器实现对选通开关的开合,控制第一整流器、逆变器的工作及反馈静态开关的工作状态,最终实现分配各路电源输入静态开关的功率,实现最优电源的输出,可按照太阳能电池组件的电源输出、蓄电池组的电源的输出、市电输入的电源输出、发电机电源的电源输出的先后顺序进行优选,使各路电源得到最合理、最有效的利用,在各种工作调节下,均可给用户持续提供经主控制器分配后的最为稳定的纯净电源,即电压波动得到抑制、电网的电压或电流谐波得到抑制的电源。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
图1为本发明太阳能UPS系统的连接示意框图。
具体实施方式
如图1所示的一种太阳能UPS系统,包括市电输入、交流输出、发电机电源、太阳能电池组件、蓄电池组、主控制器、选通控制器、逆变器、第一整流器、静态开关和多个选通开关,市电输入分为旁路输入和整流输 入,旁路输入与静态开关的输入端相连,整流输入与第一整流器的交流输入端相连,第一整流器的输出端与蓄电池组相连,发电机电源的直流输出端与逆变器的直流输入端相连,逆变器的交流输出端与静态开关的输入端相连,静态开关的输出端与交流输出相连。
主控制器具有电压电流采样端、整流控制端、静态开关控制端、逆变控制端和第一通讯端(图1中未示出这些端口),选通控制器具有选通控制端、电流采样端、电压采样端和第二通讯端(图1中未示出这些端口);电压电流采样端分别连接蓄电池组和交流输出,整流控制端与第一整流器相连,静态开关控制端与静态开关相连,逆变控制端与逆变器相连,第一通讯端与第二通讯端连接通讯;各个选通开关的一端一一对应连接于太阳能电池组件中每个太阳能电池板的电源输出端,各个选通开关的另一端均与蓄电池组相连,选通控制端分别控制连接各个选通开关,电流采样端分别与各个选通开关的另一端连接,电压采样端连接至各个选通开关的另一端与蓄电池组的连接点之间。
本例的发电机电源包括多个发电机和多个第二整流器,各个发电机的输出端一一对应连接各个第二整流器的交流输入端,各个第二整流器的直流输出端均与逆变器的直流输入端相连。第二整流器用于将发电机发出的交流电转换为直流电。
本例的太阳能UPS系统还包括第一二极管和多个第二二极管,均用于防止电流逆反,各个第二整流器的直流输出端均经过第一二极管后与逆变器的直流输入端相连。各个选通开关的另一端一一对应连接第二二极管的阳极,各第二二极管的阴极汇流后均与蓄电池组连接;电压采样端与各第 二二极管的阴极汇流点相连。
本例的太阳能UPS系统还包括一太阳能UPS柜和多个太阳能功率分配汇流柜(图1中其它太阳能功率分配汇流柜省略了太阳能电池组件、选通开关和第二二极管),以便于综合操作控制,并进行分别组装摆放。第一整流器、静态开关、逆变器、主控制器均位于太阳能UPS柜中;一个太阳能电池组件包括多个太阳能电池板,本例的太阳能电池组件为多组,每组太阳能电池组件均配有一个选通控制器,每个太阳能功率分配汇流柜承载有一组太阳能电池组件和一个选通控制器。
主控制器的第一通讯端连接有第一通讯模块,各个选通控制器的第二通讯端分别连接有第二通讯模块,第一通讯模块分别与各个第二通讯模块通过RS485总线通讯连接;第一通讯模块位于太阳能UPS柜中,第二通讯模块分别位于各个太阳能功率分配汇流柜中。第一通讯模块和第二通讯模块采用现有常规的RS485通讯模块,实现对选通开关开合的实时、及时控制。
主控制器还连接有第一显示模块,用于显示各项检测参数和实际功率的输入输出参数,各个选通控制器还分别连接有第二显示模块,用于显示太阳能电池组件的输出功率参数和各个选通开关的工作状态,第一显示模块位于太阳能UPS柜中,第二显示模块分别位于各个太阳能功率分配汇流柜中。
正常工作时,本例太阳能UPS系统中的太阳能UPS柜始终通过静态开关选择来使用逆变器的输出或市电输入的电源给用户负载供电,交流输出接至负载。本例设置主控制器控制优先使用太阳能电池组件的输出电源。 选通控制器检测太阳能电池板汇流后总的输出电压和每路太阳能电池板的输出电流,计算出输出功率,根据该输出功率来控制选通开关的开合,进而控制太阳能电池板的投切数量。
当太阳能充足时,通过对第一整流器和逆变器的直流输入端的输入控制,关闭市电输入的第一整流器和发电机电源的输入,通过控制选通开关,实现调整太阳能功率分配汇流柜内太阳能电池组件各太阳能电池板的投切数量,使得太阳能电池组件输出电源的功率恰好等于负载和蓄电池组充电的功率之和。本例通过RS485通讯总线,调节每个太阳能功率分配汇流柜的输出功率均衡,以避免有的太阳能功率分配汇流柜满载,有的太阳能功率分配汇流柜空载的情况。此时,负载和蓄电池组充电能量都由太阳能提供,负载得到了电压波动得到抑制、电网的电压或电流谐波得到抑制的电源。
当太阳能电池组件提供的功率不足时,蓄电池组作为第二优先级的能源开始放电,提供不足部分的负载功率。此时,负载能量由太阳能电池组件和蓄电池组共同提供。
当蓄电池组下降到一定容量时,蓄电池组停止放电,本太阳能UPS系统启动第三优先级的能源,即市电补充供电,市电输入通过第一整流器,提供太阳能输出和负载之间的功率差额部分。此时,负载能量由太阳能电池组件和市电输入共同提供。
在部分应用场合,市电输入的功率比太阳能UPS柜的输出功率还小,在这种情况下如果太阳能与市电输入的总功率比负载还小的情况下,则启用发电机,形成发电机电源,补偿差额部分。在这种情况下,负载能量由 太阳能电池组件、市电输入和发电机电源共同提供。
其中,以上对太阳能电池组件的功率判断,通过选通控制器的电流采样端对电流的采样获取来完成,并通过第一通讯模块和第二通讯模块的通讯,来用选通控制端实现对选通开关的开合控制,进而实现太阳能电池板的投切。以上对负载功率、蓄电池组输出功率的判断,由主控制器的电压电路采用端对电压、电流的采样获取来完成,并通过整流控制端、逆变器控制端、静态开关控制端来实现第一整流器、逆变器、静态开关的工作控制,实现对市电输入、蓄电池组的输入、发电机电源的输入和太阳能电池组的输入进行功率分配控制。本例的主控制器、选通控制器均可采用常规MCU、或者采用由逻辑电路组成的现有电路结构、或者由现有集成电路实现。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (7)

  1. 一种太阳能UPS系统,其特征在于:包括市电输入、交流输出、发电机电源、太阳能电池组件、蓄电池组、主控制器、选通控制器、逆变器、第一整流器、静态开关和多个选通开关,所述市电输入分为旁路输入和整流输入,所述旁路输入与静态开关的输入端相连,所述整流输入与第一整流器的交流输入端相连,所述第一整流器的输出端与蓄电池组相连,所述发电机电源的直流输出端与逆变器的直流输入端相连,所述逆变器的交流输出端与静态开关的输入端相连,所述静态开关的输出端与交流输出相连;所述主控制器具有电压电流采样端、整流控制端、静态开关控制端、逆变控制端和第一通讯端,所述选通控制器具有选通控制端、电流采样端、电压采样端和第二通讯端;电压电流采样端分别连接蓄电池组和交流输出,整流控制端与第一整流器相连,静态开关控制端与静态开关相连,逆变控制端与逆变器相连,第一通讯端与第二通讯端连接通讯;各个所述选通开关的一端一一对应连接于太阳能电池组件中每个太阳能电池板的电源输出端,各个选通开关的另一端均与蓄电池组相连,所述选通控制端分别控制连接各个选通开关,电流采样端分别与各个选通开关的另一端连接,电压采样端连接至各个选通开关的另一端与蓄电池组的连接点之间。
  2. 根据权利要求1所述的太阳能UPS系统,其特征在于:所述发电机电源包括多个发电机和多个第二整流器,各个发电机的输出端一一对应连接各个第二整流器的交流输入端,各个第二整流器的直流输出端均与逆变器的直流输入端相连。
  3. 根据权利要求2所述的太阳能UPS系统,其特征在于:所述太阳能UPS系统还包括第一二极管,各个所述第二整流器的直流输出端均经过第一二极管后与逆变器的直流输入端相连。
  4. 根据权利要求1所述的太阳能UPS系统,其特征在于:所述太阳能UPS系统还包括多个第二二极管,各个选通开关的另一端一一对应连接第二二极管的阳极,各第二二极管的阴极汇流后均与蓄电池组连接;所述电压采样端与各第二二极管的阴极汇流点相连。
  5. 根据权利要求1~4任一项所述的太阳能UPS系统,其特征在于:所述太阳能UPS系统还包括一太阳能UPS柜和多个太阳能功率分配汇流柜,所述第一整流器、静态开关、逆变器、主控制器均位于太阳能UPS柜中;所述太阳能电池组件为多组,每组太阳能电池组件均配有一个所述选通控制器,每个太阳能功率分配汇流柜承载有一组所述太阳能电池组件和一个所述选通控制器。
  6. 根据权利要求5所述的太阳能UPS系统,其特征在于:所述主控制器的第一通讯端连接有第一通讯模块,各个所述选通控制器的第二通讯端分别连接有第二通讯模块,第一通讯模块分别与各个第二通讯模块通过RS485总线通讯连接;第一通讯模块位于太阳能UPS柜中,第二通讯模块分别位于各个太阳能功率分配汇流柜中。
  7. 根据权利要求5所述的太阳能UPS系统,其特征在于:所述主控制器还连接有第一显示模块,各个所述选通控制器还分别连接有第二显示模块,第一显示模块位于太阳能UPS柜中,第二显示模块分别位于各个太阳能功率分配汇流柜中。
PCT/CN2014/094019 2014-07-02 2014-12-17 一种太阳能ups系统 WO2016000421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410314208.0A CN104113087B (zh) 2014-07-02 2014-07-02 一种太阳能ups系统
CN201410314208.0 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016000421A1 true WO2016000421A1 (zh) 2016-01-07

Family

ID=51709773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094019 WO2016000421A1 (zh) 2014-07-02 2014-12-17 一种太阳能ups系统

Country Status (2)

Country Link
CN (1) CN104113087B (zh)
WO (1) WO2016000421A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505728A (zh) * 2016-12-26 2017-03-15 天津瑞能电气有限公司 风电双馈变流器在并网中的供电控制回路
CN106787148A (zh) * 2017-01-20 2017-05-31 合肥聚能新能源科技有限公司 一种光伏储能逆变器辅助开关电源系统
CN109687573A (zh) * 2019-01-09 2019-04-26 孙志华 双电源无闪断切换控制系统
CN112721837A (zh) * 2021-01-29 2021-04-30 武汉法拉唯汽车科技有限公司 一种车辆配电系统
CN116111714A (zh) * 2023-04-11 2023-05-12 浙江德塔森特数据技术有限公司 一种不间断电源及其控制方法、装置和可读介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113087B (zh) * 2014-07-02 2017-02-01 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
EP3455169A1 (en) * 2016-05-11 2019-03-20 Havi, Moshe Modular water provision system for rural housing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284006A (ja) * 1999-01-27 2000-10-13 Canon Inc 発電システムに用いられる情報表示装置、太陽光発電システム、情報中継装置、情報表示方法、情報中継方法、コンピュータプロダクト、および情報伝送方法
CN101951014A (zh) * 2010-10-29 2011-01-19 上海致远绿色能源有限公司 风光柴市电一体化供电系统
CN102104263A (zh) * 2009-12-17 2011-06-22 台达电子工业股份有限公司 具有多重输入电源的高压直流不断电供电系统
CN102810902A (zh) * 2012-09-04 2012-12-05 山东力诺太阳能电力工程有限公司 一种家庭用混合型供电管理系统及供电管理方法
CN103066677A (zh) * 2013-02-04 2013-04-24 广州市竣达智能软件技术有限公司 一种自适应性混合供电系统
CN203674793U (zh) * 2014-01-09 2014-06-25 广东易事特电源股份有限公司 在线式工频不间断电源
CN104113087A (zh) * 2014-07-02 2014-10-22 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
CN204089221U (zh) * 2014-07-02 2015-01-07 佛山市柏克新能科技股份有限公司 一种太阳能ups系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183577A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 電力制御システム、電力制御装置、及び電力制御方法
CN103378624B (zh) * 2012-04-25 2015-08-19 大有能源科技有限公司 多重备援太阳能供电系统
CN102856977B (zh) * 2012-09-25 2015-05-20 广东易事特电源股份有限公司 一种基于spi的太阳能不间断电源系统
CN103166250B (zh) * 2013-01-31 2015-03-04 东南大学 一种多能源供电系统能量智能管理装置
CN103779956A (zh) * 2014-01-24 2014-05-07 佛山市新光宏锐电源设备有限公司 一种太阳能不间断电源系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284006A (ja) * 1999-01-27 2000-10-13 Canon Inc 発電システムに用いられる情報表示装置、太陽光発電システム、情報中継装置、情報表示方法、情報中継方法、コンピュータプロダクト、および情報伝送方法
CN102104263A (zh) * 2009-12-17 2011-06-22 台达电子工业股份有限公司 具有多重输入电源的高压直流不断电供电系统
CN101951014A (zh) * 2010-10-29 2011-01-19 上海致远绿色能源有限公司 风光柴市电一体化供电系统
CN102810902A (zh) * 2012-09-04 2012-12-05 山东力诺太阳能电力工程有限公司 一种家庭用混合型供电管理系统及供电管理方法
CN103066677A (zh) * 2013-02-04 2013-04-24 广州市竣达智能软件技术有限公司 一种自适应性混合供电系统
CN203674793U (zh) * 2014-01-09 2014-06-25 广东易事特电源股份有限公司 在线式工频不间断电源
CN104113087A (zh) * 2014-07-02 2014-10-22 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
CN204089221U (zh) * 2014-07-02 2015-01-07 佛山市柏克新能科技股份有限公司 一种太阳能ups系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505728A (zh) * 2016-12-26 2017-03-15 天津瑞能电气有限公司 风电双馈变流器在并网中的供电控制回路
CN106505728B (zh) * 2016-12-26 2023-08-04 天津瑞源电气有限公司 风电双馈变流器在并网中的供电控制回路
CN106787148A (zh) * 2017-01-20 2017-05-31 合肥聚能新能源科技有限公司 一种光伏储能逆变器辅助开关电源系统
CN109687573A (zh) * 2019-01-09 2019-04-26 孙志华 双电源无闪断切换控制系统
CN112721837A (zh) * 2021-01-29 2021-04-30 武汉法拉唯汽车科技有限公司 一种车辆配电系统
CN112721837B (zh) * 2021-01-29 2023-08-15 武汉法拉唯汽车科技有限公司 一种车辆配电系统
CN116111714A (zh) * 2023-04-11 2023-05-12 浙江德塔森特数据技术有限公司 一种不间断电源及其控制方法、装置和可读介质
CN116111714B (zh) * 2023-04-11 2023-07-07 浙江德塔森特数据技术有限公司 一种不间断电源及其控制方法、装置和可读介质

Also Published As

Publication number Publication date
CN104113087B (zh) 2017-02-01
CN104113087A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2016000421A1 (zh) 一种太阳能ups系统
US10033190B2 (en) Inverter with at least two DC inputs, photovoltaic system comprising such an inverter and method for controlling an inverter
Zhang et al. Power control of DC microgrid using DC bus signaling
EP2528181B1 (en) POWER SUPPLY SYSTEM WITH INTEGRATION OF WIND POWER, SOLAR ENERGY, DIESEL fuel generator AND MAINS SUPPLY
CN102361328B (zh) 一种利用风能、光能互补并与市电综合利用的分布式微网系统
US20160226254A1 (en) Smart Renewable Power Generation System With Grid and DC Source Flexibility
CN110556856B (zh) 不依赖通信的多模式电能路由器及其无缝切换控制方法
CN106253268A (zh) 基于多电源‑多电压等级负荷家用智能能量路由器装置
CN101826821B (zh) 光网混合供电不间断逆变电源的电能控制方法
CN105743127A (zh) 一种户用新能源发电智能控制系统及控制方法
US20200144956A1 (en) Photovoltaic system
CN107516893B (zh) 能量路由器及基于该能量路由器的发电控制方法
CN205724930U (zh) 一种混合逆变器系统
WO2017024642A1 (zh) 三相整流升压电路及其控制方法以及不间断电源
CN103178553A (zh) 一种家用混合供电系统
US20160181809A1 (en) Grid system conducive to enhancement of power supply performance
AU2017371964A1 (en) Control device and control method for direct-current micro-grid, and direct current micro-grid system
US9130404B2 (en) Multiple redundant solar power system
WO2012100538A1 (zh) 一种多能源供电的通信电源及其控制方法
CN105811458A (zh) 微电网储能系统及其能量管理方法
Lotfjou et al. Hourly scheduling of DC transmission lines in SCUC with voltage source converters
Shavolkin et al. Improvement of the multifunctional converter of the photoelectric system with a storage battery for a local object with connection to a grid
CN204089221U (zh) 一种太阳能ups系统
Li et al. Energy management strategy of AC/DC hybrid microgrid based on power electronic transformer
CN103427443A (zh) 一种基于多电力智能调配器的新能源发电供电系统及构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896679

Country of ref document: EP

Kind code of ref document: A1