WO2015199372A1 - Method for preparing isotopes using heavy water nuclear reactor - Google Patents

Method for preparing isotopes using heavy water nuclear reactor Download PDF

Info

Publication number
WO2015199372A1
WO2015199372A1 PCT/KR2015/006134 KR2015006134W WO2015199372A1 WO 2015199372 A1 WO2015199372 A1 WO 2015199372A1 KR 2015006134 W KR2015006134 W KR 2015006134W WO 2015199372 A1 WO2015199372 A1 WO 2015199372A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
heavy water
bundles
reactor
nuclear
Prior art date
Application number
PCT/KR2015/006134
Other languages
French (fr)
Korean (ko)
Inventor
박윤원
Original Assignee
박윤원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박윤원 filed Critical 박윤원
Priority to CA2950762A priority Critical patent/CA2950762C/en
Publication of WO2015199372A1 publication Critical patent/WO2015199372A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for producing radioisotopes in deuterium reactors.
  • Nuclear power plant reactors are divided into light and heavy water reactors depending on whether they are cooled by ordinary light or heavy water. Most of them are light water reactors in Korea, but Wolsong Units 1, 2, 3, and 4 are heavy water reactors built on Canadian technology. Unlike the light reactor, which loads the fuel bundles vertically at once in the reactor, there are 380 fuel channels and 12 fuel bundles are charged in each fuel channel (FIGS. 1 and 2).
  • the fuel in the heavy water reactor is made of natural uranium, and the fuel called pallet is filled in Zr Fuel Sheath made of Zircaloy alloy, sealed and bundled into 36 bundles. (FIG. 3).
  • the output coefficient is determined by the combination of three fuel temperature coefficients, coolant temperature coefficients, and moderator temperature coefficients. If you need to lower the output part of the heavy water reactor, you have to inject negative reactivity to absorb some of the neutrons coming out of the output.In the current method, you can insert an adjuster rod, a small amount of coolant. Boric acid is added, and the level of the liquid zone controller is increased. However, in all three cases, from the point of view of nuclear fuel combustion, it is true that the output is lost as much as it is lost.
  • the present invention proposes a method for mass-producing a useful radioisotope by irradiating a radioisotope target with these neutrons, rather than the conventional method of capturing surplus neutrons by inserting (-) reactivity to reduce the output. I would like to.
  • the existing method of producing Co-60 in the heavy water reactor is to use 21 adjuster rods installed in the Callandria for the purpose of controlling the reactivity of the heavy water reactor (see FIG. 7).
  • This control rod is made of stainless steel (Fig. 10), and it is necessary to work on the calandaria bolt as shown in Fig. 7 for installation and withdrawal. At this time, in order to withdraw and charge the control rod, all work must be done by man opening the gate at the upper part of the calandaria bolt, removing the control rod, and then inserting the heavy transport container into the manual crane to avoid exposure. It is necessary to put the adjusting rod drawn out of the water in the calandaria bolt by hanging it so that it is submerged in the calandaria bolt.
  • the present invention has been made to solve the above problems, the object of the present invention, when the operation is to lower the output of a certain portion in the heavy water reactor, it is necessary to absorb a portion of the neutron coming out of the output by injecting a negative (-) reactivity
  • Current methods include inserting an adjuster rod, adding a small amount of boric acid to the coolant, and raising the level of the liquid zone controller.
  • the output is lost as much as it is lost.
  • the present invention proposes a method for mass-producing a useful radioisotope by irradiating a radioisotope target with these neutrons, rather than the conventional method of capturing surplus neutrons by inserting (-) reactivity to reduce the output. I would like to.
  • the present invention is a means for solving the above problems, by producing a bundle of a target bundle inserted with a radio target including Co-59 in place of the nuclear fuel pellets in the heavy fuel cell fuel rods, and the same co-59 in some fuel channels
  • a radio target including Co-59 in place of the nuclear fuel pellets in the heavy fuel cell fuel rods
  • co-59 in some fuel channels
  • the target bundle containing Co-59 is to insert (-) reactivity in the core instead of the three conventional methods described above.
  • the quantity of nuclear fuel channel (Ne) corresponding to the output reduction can be determined proportionally, such as 38 channels if the output is reduced by 10%. This can be done by preventing output from the fuel channel or by absorbing 10% of the neutrons throughout the core. Therefore, in the present invention, some of the nuclear fuel channels Ne (e.g., Ne / 2) are charged with the normal fuel, and the remaining (e.g., Ne / 2) are charged with the surplus output part by charging the bundle containing the Co-59 target.
  • Ne nuclear fuel channels
  • Ne / 2 channels absorbs neutrons from Ne / 2 channels into other Ne / 2 channels, lowers the output as much as necessary and operates only in safe area, satisfies safety, and absorbs neutrons with excess output (Ne / 2).
  • Co-60 a useful radioisotope, it is possible to compensate for economic losses.
  • the co-target bundle proposed in the present invention is charged and withdrawn using the same procedures and methods as the handling of fuel bundles when replacing fuels, so it may cause problems such as overexposure, damage to other equipment, and the like. There is no possibility of problems such as foreign matter entering into the calandaria bolt.
  • the loading and withdrawal of Co targets is possible at any time as needed, so that Co can be supplied in a timely manner when Co supply is required, and loading the extracted Co target bundles into a transport container is also possible. Since it is possible to work in the tank, it can be freed from the time constraints such as waiting for the planned preventive maintenance period as in the conventional method.
  • radioisotopes are widely used for nondestructive testing in the industry, and are widely used for radiotherapy, sterilization and disinfection, and diagnostic tests in the pharmaceutical industry.
  • Co-60 accounts for more than 45% of the total market, and the half-life is about 5.2 years, which is sufficiently long, transformed into stable beta-decomposed Ni-60. Emit gamma rays of 1.17 MeV and 1.33 MeV, respectively.
  • Co-60 emits 44 TBq (1100 Ci) of radiation through its half-life decay.
  • the Co-60 can be produced in heavy water reactors, providing 83% of the world's supply in Canada, where heavy water reactors are located. In Canada, however, the closure of G-2 reactors, which accounted for a large portion of Co-60 production, is expected to cause serious disruptions to Co-60 supply worldwide.
  • FIG. 1 is an internal structural diagram of an embodiment showing the structure of a CANDU reactor.
  • FIG. 2 is a structural diagram of an embodiment showing the structure and fuel channel of the CANDU reactor.
  • FIG 3 is a perspective view of one embodiment showing a CANDU reactor fuel and fuel bundles.
  • FIG. 4 is a cross-sectional view of one embodiment of a cross section of a CANDU fuel bundle.
  • FIG. 5 is an illustration of one example showing a CANDU reactor fuel replacement and a fuel loader.
  • Figure 6 is a block diagram of an embodiment showing the CANDU fuel loading and withdrawal path.
  • Figure 7 is an internal perspective view of one embodiment showing the CANDU reactor structure and adjuster rod position.
  • FIG. 8 shows decay and gamma emission, CANDU core fission reaction and neutron balance (from CNSC Training Manual for CANDU Reactor Physics) of Co-60.
  • FIG. 9 is a diagram illustrating an embodiment showing the heavy water reactor fuel channel Index and adjuster rod position.
  • FIG. 10 is an internal perspective view of one embodiment showing an adjuster rod of a heavy water reactor.
  • the present invention has the following features to achieve the above object.
  • the isotope is prepared by inserting the target bundle consisting of a plurality of radioisotope targets in a predetermined region of the mounting hole of the nuclear reactor nuclear reactor fuel rods.
  • the target bundle is inserted into the nuclear reactor reactor, by irradiating the neutron during the operation of the reactor, the internal radioisotope Co-59 is converted to Co-60, the target bundle containing the changed Co-60 periodically It is characterized in that to be discharged to produce Co-60.
  • the reactor when the reactor has to operate at a lower output, the reactor is injected with a negative reactivity corresponding to the lowered output so that the surplus neutrons emitted during the output can be irradiated to the radioisotope target. It is characterized in that the production of can be increased.
  • the radioisotope target is characterized in that the pallet having a cobalt material.
  • an isotope manufacturing method using a heavy reactor reactor by producing a target bundle containing a radio-target including Co-59 in place of the nuclear fuel pellet in the nuclear fuel rod of the heavy reactor reactor, the Co in the fuel channel
  • the Co-59 is converted to Co-60 and periodically removed from the converted isotopic target bundles containing Co-60. Allow Co-60 to be produced.
  • the target bundle containing Co-59 is to insert (-) reactivity in the core instead of the three conventional methods.
  • the quantity of nuclear fuel channel (Ne) corresponding to the output reduction can be determined proportionally, such as 38 channels if the output is reduced by 10%. This can be done by preventing output from the fuel channel or by absorbing 10% of the neutrons throughout the core. Therefore, in the present invention, some of the nuclear fuel channels Ne (e.g., Ne / 2) are charged with the normal fuel, and the remaining (e.g., Ne / 2) are charged with the surplus output part by charging the bundle containing the Co-59 target.
  • Ne / 2 channels absorbs neutrons from Ne / 2 channels into other Ne / 2 channels, lowers the output as much as necessary and operates only in safe area, satisfies safety, and absorbs neutrons with excess output (Ne / 2).
  • Co-60 a useful radioisotope, it is possible to compensate for economic losses.
  • the existing way of producing Co-60 in heavy water reactors is to use 21 adjuster rods installed in Callandia to control the reactivity of the heavy water reactors (see Figure 7).
  • This control rod is made of stainless steel, and in order to install and withdraw it, it is necessary to work on the calandaria bolt as shown in FIG. At this time, in order to withdraw and charge the control rod, all work must be done by opening the gate at the upper part of the calandaria bolt, removing the control rod, and inserting the heavy transport container into the manual crane to avoid exposure. It is necessary to put the adjusting rod drawn out of the water in the calandaria bolt by hanging it so that it is submerged in the calandaria bolt.
  • the fuel In heavy water reactors, the fuel is replaced using a fueling machine (Refueling Machine) for about 2 channels (about 23 ⁇ 24 fuel bundles) every day.
  • Refueling Machine Refueling Machine
  • the charge and withdrawal of fuel bundles Since there is little possibility of exposure because it is not touched directly, the extracted spent fuel with very high radiation level can be moved in the fuel magazine's internal magazine, making handling very easy.
  • the spent fuel contained in the magazine of the nuclear fuel loader is safely discharged while submerged in the spent fuel discharge tank as shown in FIG. 6 and finally transferred to the spent fuel storage tank located outside the containment building along the transfer route in the water. .
  • damaged fuel which is a problem in the extracted fuel
  • Co target bundle proposed in the present invention is charged and withdrawn using the same procedures and methods as the handling of such fuel bundles, so the problem of overexposure, damage to other facilities, and calandria bolts, as with the conventional control rods. There is no possibility of problems such as foreign matter inflow.
  • the loading and withdrawal of Co targets is possible at any time as needed, so that Co can be supplied in a timely manner when Co supply is required, and loading the extracted Co target bundles into a transport container is also possible. Since it is possible to work in the tank, it can be freed from the time constraints such as waiting for the planned preventive maintenance period as in the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Particle Accelerators (AREA)

Abstract

The present invention relates to a method for preparing isotopes using a heavy water nuclear reactor, and specifically, to a method for preparing isotopes using a heavy water nuclear reactor in which bundles comprising an isotope target including Co-59 (or Mo-99), instead of nuclear fuel pallets of natural uranium, are inserted into some nuclear fuel channels of a CANDU type nuclear reactor composed of 380 nuclear fuel channels, to radiate neutrons, thereby mass-producing Co-60 through the conversion of Co-59 into Co-60.

Description

중수로 원자로를 이용한 동위원소 제조방법Isotope production method using heavy water reactor
중수로 원자로에서 방사성 동위원소를 생산할 수 있도록 하는 제조방법에 관한 것이다.The present invention relates to a method for producing radioisotopes in deuterium reactors.
원자력발전소의 원자로는 원자로내의 핵연료가 핵분열하면서 발생시키는 열을, 일반 경수로 냉각을 하느냐 중수로 냉각을 하느냐에 따라 경수로와 중수로의 두가지로 구분된다. 우리나라에는 대부분이 경수로이지만 월성 1, 2, 3, 4호기는 캐나다의 기술을 바탕으로 지어진 중수로이다. 이 중수로는 원자로내에 핵연료다발을 수직으로 한꺼번에 장입하는 경수로와는 달리, 380개의 핵연료채널이 있고 각 핵연료채널에 12개의 핵연료번들을 장입하게 되어 있다(도 1, 2). 중수로의 핵연료는 천연우라늄으로 만들어지고 팰렛이라고 하는 핵연료는 지르칼로이합금으로 만들어진 핵연료봉(Zr Fuel Sheath)에 채워진후 밀봉되고 이렇게 제작된 핵연료봉 36개를 묶어 하나의 다발로 만든 것을 핵연료번들이라고 한다(도 3). 이 핵연료번들은 핵연료채널에 12개씩 장입하는데 이 핵연료번들을 핵연료채널에 장입하고 또 사용한 핵연료번들을 꺼내는 기능을 수행하는 기계가 바로 핵연료장전기(Fueling Machine)이다. 특히, 중수로는 천연핵연료를 사용하기 때문에 핵연료를 자주 새것으로 갈아주어야 하는데 이 때마다 핵연료장전기가 핵연료채널의 양단을 열고 핵연료번들을 장입하고 인출하게 된다. 보통 하루에 2개채널에 해당되는 수(약 23~24개의 핵연료번들)의 핵연료번들을 새로장입하고 똑같은 수의 연소된 핵연료를 꺼내게 되기 때문에 380개 핵연료채널은 1년에 한번 완전히 핵연료를 교체하게 되지만, 경수로와는 달리 정상출력운전중에도 핵연료의 교체가 가능한 장점을 가지고 있다. 고준위방사성폐기물인 사용후핵연료는 핵연료장전기로부터 나와서 사용후핵연료저장조에 이르기까지 사람이 피폭되지 않도록 이송가능하게 설비가 갖추어져 있다(도 6).Nuclear power plant reactors are divided into light and heavy water reactors depending on whether they are cooled by ordinary light or heavy water. Most of them are light water reactors in Korea, but Wolsong Units 1, 2, 3, and 4 are heavy water reactors built on Canadian technology. Unlike the light reactor, which loads the fuel bundles vertically at once in the reactor, there are 380 fuel channels and 12 fuel bundles are charged in each fuel channel (FIGS. 1 and 2). The fuel in the heavy water reactor is made of natural uranium, and the fuel called pallet is filled in Zr Fuel Sheath made of Zircaloy alloy, sealed and bundled into 36 bundles. (FIG. 3). These fuel bundles are loaded into 12 fuel channels, and the fueling machine is the one that loads the fuel bundles into the fuel channel and takes out the used fuel bundles. In particular, because heavy water reactors use natural fuel, the fuel must be frequently replaced with new ones. Each time the fuel loader opens both ends of the fuel channel and charges and withdraws the fuel bundles. Usually, 380 fuel channels need to be completely replaced once a year because they will reload the same number of fuel bundles (approximately 23-24 fuel bundles) and take out the same number of burned fuels per day. Unlike light water reactors, however, nuclear fuel can be replaced during normal power operation. Spent fuel, which is a high-level radioactive waste, is equipped to be transported to prevent human exposure from the nuclear fuel loader to the spent fuel storage tank (FIG. 6).
중수로의 특성상 노심의 온도변화에 따라 핵연료온도계수, 냉각재온도계수, 감속재온도계수의 3가지가 합쳐져 출력계수가 결정된다. 중수로에서 일정부분 출력을 낮추어 운전을 해야하는 경우, 부(-)반응도를 주입하여 출력중 나오는 중성자의 일부를 흡수해야 하는데, 현재의 방식으로는 조절봉(Adjuster Rod)을 삽입하는 방법, 냉각재에 소량의 붕산을 첨가하는 방법, 액체영역제어기의 수위를 높이는 방법이 있다. 그러나 이 세가지 경우 모두 핵연료연소도 관점에서 본다면 출력을 줄인 만큼은 잃어버리는, 즉 손해를 보는 것이 사실이다. 본 발명에서는 이렇게 출력을 줄여야 하는 만큼 (-)반응도를 삽입하여 잉여중성자를 포획하여 버리는 기존의 방식이 아니라, 이들 잉여중성자를 방사성동위원소 표적에 조사시킴으로써 유용한 방사성동위원소를 대량 생산하는 방법을 제안하고자 한다.Due to the characteristics of the heavy water reactor, the output coefficient is determined by the combination of three fuel temperature coefficients, coolant temperature coefficients, and moderator temperature coefficients. If you need to lower the output part of the heavy water reactor, you have to inject negative reactivity to absorb some of the neutrons coming out of the output.In the current method, you can insert an adjuster rod, a small amount of coolant. Boric acid is added, and the level of the liquid zone controller is increased. However, in all three cases, from the point of view of nuclear fuel combustion, it is true that the output is lost as much as it is lost. The present invention proposes a method for mass-producing a useful radioisotope by irradiating a radioisotope target with these neutrons, rather than the conventional method of capturing surplus neutrons by inserting (-) reactivity to reduce the output. I would like to.
기존의 중수로에서 Co-60을 생산하는 방식은 중수로의 반응도를 제어하기 위한 목적으로 칼란드리아내부에 설치된 21개의 조절봉(Adjuster Rod)을 사용하는 것이다(도 7참조). 이 조절봉은 스테인레스강으로 만들어져 있는데(도 10), 설치하고 인출을 하기 위해서는 도 7에 보는 바와 같이 칼란드리아볼트위에서 작업을 해야한다. 이 때 조절봉 인출과 장입을 위해서는 모든 작업을 사람이 직접 칼란드리아볼트 상부에서 게이트를 열고 조절봉을 분리한 후, 수송용기에 피폭을 피할 수 있도록 집어넣어야 하는데 이를 위해서는 무거운 수송용기를 수동크레인에 매어달아 칼란드리아볼트에 잠기게 만들어 인출한 조절봉을 칼란드리아볼트의 물속에서 집어넣는 작업을 해야한다. 이는 일단 작업자가 칼란드리아볼트위에 계속 머물러있어야 하기 때문에 과도한 피폭의 가능성이 매우 높을 뿐 아니라, 무거운 수송용기를 칼란드리아볼트위에서 매달고 작업해야하며 조절봉설치와 인출시 구동케이블을 연결했다가 다시 절단하는 작업을 해야하는 등으로 이물질이 칼란드리아볼트 내로 들어갈 가능성이 매우 높은데다, 칼란드리아볼트의 상부는 조절봉 이외에도 제1정지계통의 제어봉 등 다양한 설비들이 설치되어 있어 자칫 이들을 손상시킬 수 있는 등, 위험한 고난이도의 작업을 반복적으로 수행해야하는 어려움이 있다. 따라서, 칼란드리아볼트위로 접근이 가능한 원자로 계획예방정비기간중에만, 즉 최소한 1년이상에 한달정도의 기간에만 설치 및 인출작업이 가능하며, 이 때마다 커다란 수송용기를 격납건물내로 넣었다가 빼내야하기 때문에 기기해치(Equipment hatch)를 개폐해야하는 불편함이 있다. The existing method of producing Co-60 in the heavy water reactor is to use 21 adjuster rods installed in the Callandria for the purpose of controlling the reactivity of the heavy water reactor (see FIG. 7). This control rod is made of stainless steel (Fig. 10), and it is necessary to work on the calandaria bolt as shown in Fig. 7 for installation and withdrawal. At this time, in order to withdraw and charge the control rod, all work must be done by man opening the gate at the upper part of the calandaria bolt, removing the control rod, and then inserting the heavy transport container into the manual crane to avoid exposure. It is necessary to put the adjusting rod drawn out of the water in the calandaria bolt by hanging it so that it is submerged in the calandaria bolt. This means that once the worker has to stay on the calandria bolt, there is a very high chance of excessive exposure, and the heavy transport container must be suspended from the calandaria bolt, and the drive cable must be connected and cut again during installation and withdrawal. There is a high possibility of foreign matter entering the calandria bolt due to work, and the upper part of the calandaria bolt is equipped with various facilities such as the control rod of the first stop system in addition to the adjusting rod, which can damage them. There is a difficulty to perform the task of repeatedly. Therefore, installation and withdrawal operations are possible only during the period of preventive maintenance of the reactors accessible to the Calandaria bolts, that is, at least one year or more, and each time a large container must be put into the containment building and removed. As a result, it is inconvenient to open and close the equipment hatch.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은, 중수로에서 일정부분 출력을 낮추어 운전을 해야하는 경우, 부(-)반응도를 주입하여 출력중 나오는 중성자의 일부를 흡수해야 하는데, 현재의 방식으로는 조절봉(Adjuster Rod)을 삽입하는 방법, 냉각재에 소량의 붕산을 첨가하는 방법, 액체영역제어기의 수위를 높이는 방법이 있다. 그러나 이 세가지 경우 모두 핵연료연소도 관점에서 본다면 출력을 줄인 만큼은 잃어버리는, 즉 손해를 보는 것이 사실이다. 본 발명에서는 이렇게 출력을 줄여야 하는 만큼 (-)반응도를 삽입하여 잉여중성자를 포획하여 버리는 기존의 방식이 아니라, 이들 잉여중성자를 방사성동위원소 표적에 조사시킴으로써 유용한 방사성동위원소를 대량 생산하는 방법을 제안하고자 한다.The present invention has been made to solve the above problems, the object of the present invention, when the operation is to lower the output of a certain portion in the heavy water reactor, it is necessary to absorb a portion of the neutron coming out of the output by injecting a negative (-) reactivity Current methods include inserting an adjuster rod, adding a small amount of boric acid to the coolant, and raising the level of the liquid zone controller. However, in all three cases, from the point of view of nuclear fuel combustion, it is true that the output is lost as much as it is lost. The present invention proposes a method for mass-producing a useful radioisotope by irradiating a radioisotope target with these neutrons, rather than the conventional method of capturing surplus neutrons by inserting (-) reactivity to reduce the output. I would like to.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. Furthermore, the objects and advantages of the present invention can be realized by means and combinations indicated in the claims.
본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, 중수로 핵연료연료봉에 핵연료팰렛 대신에 Co-59를 포함한 방사성표적을 삽입한 표적번들을 제작하여, 일부 핵연료채널에 이 Co-59를 포함하는 동위원소표적번들을 장입하여 중수로 운전중 중성자 조사시킴으로서, Co-59가 Co-60으로 변환되도록 하고 주기적으로 이 변환된 Co-60이 포함된 동위원소표적번들을 빼냄으로서 대규모의 Co-60의 생산이 이루어지도록 한다. 이 때, Co-59를 포함하는 표적번들은 반응도조절 관점에서 본다면, 앞서 기술한 세가지 기존방법 대신 노심에 (-)반응도를 삽입하는 셈이 된다. 출력이 380개 채널에서 골고루 이루어진다고 할 때 출력감소에 해당되는 분량의 핵연료채널의 수량(Ne)은 출력 10%를 줄인다고 하면 38개의 채널이 되는 것과 같이 비례적으로 결정될 수 있으므로 Ne 갯수에 해당하는 핵연료채널에서 출력이 나오지 않도록 하거나 노심전체에서 10%에 해당하는 중성자를 흡수할 수 있도록 하면 되는 것이다. 따라서, 본 발명에서는 핵연료채널 Ne개 중에서 일부(예: Ne/2)는 정상적인 핵연료를 장입하고 나머지(예: Ne/2)에는 Co-59 표적을 넣은 번들을 장입해 놓음으로써 잉여출력부분에 해당되는 Ne/2개의 채널에서 나오는 중성자를 다른 Ne/2의 채널에 흡수시켜 전체적으로 필요한 만큼의 출력을 낮추어 안전한 영역에서만 운전을 하도록 하여 안전성을 만족시키고, 잉여출력(Ne/2)의 중성자를 흡수시켜 유용한 방사성동위원소인 Co-60을 생산하도록 함으로써 경제적인 손실을 보상할 수 있도록 하는 것이다.The present invention is a means for solving the above problems, by producing a bundle of a target bundle inserted with a radio target including Co-59 in place of the nuclear fuel pellets in the heavy fuel cell fuel rods, and the same co-59 in some fuel channels By loading elemental target bundles to investigate neutrons in heavy water operation, large-scale production of Co-60 is achieved by allowing Co-59 to be converted to Co-60 and periodically removing the isotopic target bundles containing the converted Co-60. To be done. In this case, from the viewpoint of reactivity control, the target bundle containing Co-59 is to insert (-) reactivity in the core instead of the three conventional methods described above. If the output is evenly distributed over 380 channels, the quantity of nuclear fuel channel (Ne) corresponding to the output reduction can be determined proportionally, such as 38 channels if the output is reduced by 10%. This can be done by preventing output from the fuel channel or by absorbing 10% of the neutrons throughout the core. Therefore, in the present invention, some of the nuclear fuel channels Ne (e.g., Ne / 2) are charged with the normal fuel, and the remaining (e.g., Ne / 2) are charged with the surplus output part by charging the bundle containing the Co-59 target. It absorbs neutrons from Ne / 2 channels into other Ne / 2 channels, lowers the output as much as necessary and operates only in safe area, satisfies safety, and absorbs neutrons with excess output (Ne / 2). By producing Co-60, a useful radioisotope, it is possible to compensate for economic losses.
또한, 본 발명에서 제안한 Co표적 번들은 핵연료교체시 핵연료번들의 취급과 동일한 절차와 방법을 사용하여 장입 및 인출되기 때문에 기존의 조절봉을 이용한 방법처럼 과다피폭의 문제, 다른 설비를 손상시킬 가능성, 칼란드리아볼트내로 이물질 유입 등의 문제가 발생할 가능성이 전혀 없다는 것이다. 또한, 매일 핵연료교체작업이 수행되므로 필요에 따라서 언제든지 Co 표적의 장입 및 인출이 가능하여 Co 공급이 필요한 때에 적시에 공급이 가능할 뿐 아니라, 인출된 Co표적번들을 수송용기에 적재하는 것도 손상핵연료저장수조에서 작업이 가능하기 때문에 기존의 방법처럼 계획예방정비기간까지 기다리는 등의 시간적 제약에서 벗어날 수가 있다.In addition, the co-target bundle proposed in the present invention is charged and withdrawn using the same procedures and methods as the handling of fuel bundles when replacing fuels, so it may cause problems such as overexposure, damage to other equipment, and the like. There is no possibility of problems such as foreign matter entering into the calandaria bolt. In addition, since fuel replacement is performed every day, the loading and withdrawal of Co targets is possible at any time as needed, so that Co can be supplied in a timely manner when Co supply is required, and loading the extracted Co target bundles into a transport container is also possible. Since it is possible to work in the tank, it can be freed from the time constraints such as waiting for the planned preventive maintenance period as in the conventional method.
이상에서 살펴본 바와 같이, 방사성동위원소는 산업계에서는 비파괴검사를 위해 많이 사용되고 있고, 의약계에서는 방사선치료, 멸균 및 소독, 진단검사 등에 다양하게 활용되고 있다. 이러한 방사성동위원소중 전체 시장에서 약 45%이상을 차지하고 있는 것이 Co-60이며, 이는 반감기가 약 5.2년으로 충분히 길고 베타붕괴하면서 안정된 Ni-60으로 변환되는데 이 때 방사화된 Ni-60에서는 에너지가 각각 1.17MeV, 1.33MeV인 감마선을 방출하게 된다. As described above, radioisotopes are widely used for nondestructive testing in the industry, and are widely used for radiotherapy, sterilization and disinfection, and diagnostic tests in the pharmaceutical industry. Among these radioisotopes, Co-60 accounts for more than 45% of the total market, and the half-life is about 5.2 years, which is sufficiently long, transformed into stable beta-decomposed Ni-60. Emit gamma rays of 1.17 MeV and 1.33 MeV, respectively.
Figure PCTKR2015006134-appb-I000001
Figure PCTKR2015006134-appb-I000001
1그램의 Co-60은 반감기에 해당하는 붕괴를 통해 44TBq (1100Ci)의 방사능을 낸다. 이 Co-60은 중수형원자로에서 생산이 가능하기 때문에 중수로가 많은 캐나다에서 세계 전체의 83%정도를 공급하고 있다. 그러나 캐나다에서는 Co-60생산의 큰 부분을 차지하던 G-2등의 원자로를 폐쇄하게 됨에 따라 향후 전세계적으로 Co-60의 공급에 심각한 차질이 유발될 것으로 예상하고 있다. 우리나라에도 중수로가 4기나 있으나 Co-60을 생산하고 있지 않아 필요로하는 Co-60은 전량 수입에 의존하고 있는 상태이다. 따라서, 본 발명은 우리나라에서도 월성의 중수로 1, 2, 3, 4호기를 이용하여 Co-60의 대량생산이 가능하며, 국내수요는 물론 해외수출 물량도 충분히 생산할 수 있게 되는 효과가 있다.One gram of Co-60 emits 44 TBq (1100 Ci) of radiation through its half-life decay. The Co-60 can be produced in heavy water reactors, providing 83% of the world's supply in Canada, where heavy water reactors are located. In Canada, however, the closure of G-2 reactors, which accounted for a large portion of Co-60 production, is expected to cause serious disruptions to Co-60 supply worldwide. There are 4 heavy water reactors in Korea, but they do not produce Co-60, so they need to rely on imports. Therefore, the present invention is capable of mass production of Co-60 by using No. 1, 2, 3, and 4 as Wolseong Heavy Water in Korea, and has the effect of sufficiently producing domestic exports as well as domestic demand.
도 1은 CANDU 원자로의 구조를 나타낸 일실시에의 내부 구조도.1 is an internal structural diagram of an embodiment showing the structure of a CANDU reactor.
도 2는 CANDU 원자로의 구조 및 핵연료채널을 나타낸 일실시예의 구조도.2 is a structural diagram of an embodiment showing the structure and fuel channel of the CANDU reactor.
도 3은 CANDU 원자로 핵연료 및 핵연료번들을 나타낸 일실시예의 사시도.3 is a perspective view of one embodiment showing a CANDU reactor fuel and fuel bundles.
도 4는 CANDU 핵연료번들의 단면을 일실시예의 단면도.4 is a cross-sectional view of one embodiment of a cross section of a CANDU fuel bundle.
도 5는 CANDU 원자로 핵연료교체 및 핵연료장전기를 나타낸 일실예의 도면.FIG. 5 is an illustration of one example showing a CANDU reactor fuel replacement and a fuel loader. FIG.
도 6은 CANDU 핵연료 장전 및 인출 경로를 나타낸 일실시예의 구성도.Figure 6 is a block diagram of an embodiment showing the CANDU fuel loading and withdrawal path.
도 7은 CANDU 원자로구조 및 Adjuster Rod 위치를 나타낸 일실시예의 내부 사시도.Figure 7 is an internal perspective view of one embodiment showing the CANDU reactor structure and adjuster rod position.
도 8은 Co-60의 붕괴 및 감마선방출, CANDU 노심내 핵분열반응 및 중성자밸런스(from CNSC Training Manual for CANDU Reactor Physics)를 나타낸 도면.FIG. 8 shows decay and gamma emission, CANDU core fission reaction and neutron balance (from CNSC Training Manual for CANDU Reactor Physics) of Co-60.
도 9는 중수로 핵연료채널 Index 및 조절봉(Adjuster Rod) 위치를 나타낸 일실시예의 도면.FIG. 9 is a diagram illustrating an embodiment showing the heavy water reactor fuel channel Index and adjuster rod position. FIG.
도 10은 중수로의 조절봉(Adjuster Rod)을 나타낸 일실시예의 내부 사시도.FIG. 10 is an internal perspective view of one embodiment showing an adjuster rod of a heavy water reactor. FIG.
본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. Before describing the various embodiments of the present invention in detail, it will be appreciated that the application is not limited to the details of construction and arrangement of components described in the following detailed description or illustrated in the drawings. The invention can be implemented and carried out in other embodiments and can be carried out in various ways. In addition, device or element orientation (e.g., "front", "back", "up", "down", "top", "bottom" The expressions and predicates used herein with respect to terms such as "," "left", "right", "lateral", etc. are used merely to simplify the description of the present invention, and related apparatus. Or it will be appreciated that the element does not simply indicate or mean that it should have a particular direction.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.The present invention has the following features to achieve the above object.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이러한 본 발명에 따른 일실시예를 살펴보면, 중수로 원자로 핵연료봉의 장착홀 중 사전설정구역에, 다수의 방사성 동위원소 표적으로 이루어지는 표적번들을 삽입장착하여 동위원소를 제조하는 것을 특징으로 한다.Looking at one embodiment according to the present invention, characterized in that the isotope is prepared by inserting the target bundle consisting of a plurality of radioisotope targets in a predetermined region of the mounting hole of the nuclear reactor nuclear reactor fuel rods.
또한, 상기 표적번들은 중수로 원자로 내에 장착삽입되어, 중수로 운전중 중성자를 조사함으로써, 내부의 방사선 동위원소 Co-59가 Co-60으로 변환되며, 변화된 Co-60이 포함된 표적번들은 주기적으로 외부로 배출되어 Co-60를 생산할 수 있도록 하는 것을 특징으로 한다.In addition, the target bundle is inserted into the nuclear reactor reactor, by irradiating the neutron during the operation of the reactor, the internal radioisotope Co-59 is converted to Co-60, the target bundle containing the changed Co-60 periodically It is characterized in that to be discharged to produce Co-60.
또한, 상기 중수로 원자로가 출력을 낮추어 운전을 해야 하는 경우, 출력을 낮춘만큼에 상응하는 (-)반응도를 주입하여, 출력중 나오는 잉여 중성자가 방사성 동위원소 표적에 조사될 수 있도록 함으로써, 방사성 동위원소의 생산량이 증가될 수 있도록 하는 것을 특징으로 한다.In addition, when the reactor has to operate at a lower output, the reactor is injected with a negative reactivity corresponding to the lowered output so that the surplus neutrons emitted during the output can be irradiated to the radioisotope target. It is characterized in that the production of can be increased.
또한, 상기 방사성 동위원소 표적은 코발트재질을 가지는 팰렛인 것을 특징으로 한다.In addition, the radioisotope target is characterized in that the pallet having a cobalt material.
이하, 도 1 내지 도 10을 참조하여 본 발명의 바람직한 실시예에 따른 중수로 원자로를 이용한 동위원소 제조방법을 상세히 설명하도록 한다. Hereinafter, a method for producing isotopes using a deuterium reactor according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 10.
도시한 바와 같이, 본 발명에 따른 중수로 원자로를 이용한 동위원소 제조방법은 중수로원자로의 핵연료연료봉에 핵연료팰렛 대신에 Co-59를 포함한 방사성표적을 삽입한 표적번들을 제작하여, 일부 핵연료채널에 이 Co-59를 포함하는 동위원소표적번들을 장입하여 중수로 운전중 중성자 조사시킴으로서, Co-59가 Co-60으로 변환되도록 하고 주기적으로 이 변환된 Co-60이 포함된 동위원소표적번들을 빼냄으로서 대규모의 Co-60의 생산이 이루어지도록 한다.As shown, an isotope manufacturing method using a heavy reactor reactor according to the present invention by producing a target bundle containing a radio-target including Co-59 in place of the nuclear fuel pellet in the nuclear fuel rod of the heavy reactor reactor, the Co in the fuel channel By charging isotope target bundles containing -59 and investigating the neutrons in heavy water operation, the Co-59 is converted to Co-60 and periodically removed from the converted isotopic target bundles containing Co-60. Allow Co-60 to be produced.
이 때, Co-59를 포함하는 표적번들은 반응도조절 관점에서 본다면, 상기의 세가지 기존방법 대신 노심에 (-)반응도를 삽입하는 셈이 된다. 출력이 380개 채널에서 골고루 이루어진다고 할 때 출력감소에 해당되는 분량의 핵연료채널의 수량(Ne)은 출력 10%를 줄인다고 하면 38개의 채널이 되는 것과 같이 비례적으로 결정될 수 있으므로 Ne 갯수에 해당하는 핵연료채널에서 출력이 나오지 않도록 하거나 노심전체에서 10%에 해당하는 중성자를 흡수할 수 있도록 하면 되는 것이다. 따라서, 본 발명에서는 핵연료채널 Ne개 중에서 일부(예: Ne/2)는 정상적인 핵연료를 장입하고 나머지(예: Ne/2)에는 Co-59 표적을 넣은 번들을 장입해 놓음으로써 잉여출력부분에 해당되는 Ne/2개의 채널에서 나오는 중성자를 다른 Ne/2의 채널에 흡수시켜 전체적으로 필요한 만큼의 출력을 낮추어 안전한 영역에서만 운전을 하도록 하여 안전성을 만족시키고, 잉여출력(Ne/2)의 중성자를 흡수시켜 유용한 방사성동위원소인 Co-60을 생산하도록 함으로써 경제적인 손실을 보상할 수 있도록 하는 것이다. At this time, from the viewpoint of reactivity control, the target bundle containing Co-59 is to insert (-) reactivity in the core instead of the three conventional methods. If the output is evenly distributed over 380 channels, the quantity of nuclear fuel channel (Ne) corresponding to the output reduction can be determined proportionally, such as 38 channels if the output is reduced by 10%. This can be done by preventing output from the fuel channel or by absorbing 10% of the neutrons throughout the core. Therefore, in the present invention, some of the nuclear fuel channels Ne (e.g., Ne / 2) are charged with the normal fuel, and the remaining (e.g., Ne / 2) are charged with the surplus output part by charging the bundle containing the Co-59 target. It absorbs neutrons from Ne / 2 channels into other Ne / 2 channels, lowers the output as much as necessary and operates only in safe area, satisfies safety, and absorbs neutrons with excess output (Ne / 2). By producing Co-60, a useful radioisotope, it is possible to compensate for economic losses.
기존의 중수로에서 Co-60을 생산하는 방식은 중수로의 반응도를 제어하기 위한 목적으로 칼란드리아내부에 설치된 21개의 조절봉(Adjuster Rod)을 사용하는 것이다(그림 7참조). 이 조절봉은 스테인레스강으로 만들어져 있는데, 설치하고 인출을 하기 위해서는 도 7에 보는 바와 같이 칼란드리아볼트위에서 작업을 해야한다. 이 때 조절봉인출과 장입을 위해서는 모든 작업을 사람이 직접 칼란드리아볼트 상부에서 게이트를 열고 조절봉을 분리한 후, 수송용기에 피폭을 피할 수 있도록 집어넣어야 하는데 이를 위해서는 무거운 수송용기를 수동크레인에 매어달아 칼란드리아볼트에 잠기게 만들어 인출한 조절봉을 칼란드리아볼트의 물속에서 집어넣는 작업을 해야한다. 이는 일단 작업자가 칼란드리아볼트위에 계속 머물러있어야 하기 때문에 과도한 피폭의 가능성이 매우 높을 뿐 아니라, 무거운 수송용기를 칼란드리아볼트위에서 매달고 작업해야하며 조절봉설치와 인출시 구동케이블을 연결했다가 다시 절단하는 작업을 해야하는 등으로 이물질이 칼란드리아볼트 내로 들어갈 가능성이 매우 높은데다, 칼란드리아볼트의 상부는 조절봉이외에도 제1정지계통의 제어봉 등 다양한 설비들이 설치되어 있어 자칫 이들을 손상시킬 수 있는 등, 위험한 고 난이도의 작업을 반복적으로 수행해야하는 어려움이 있다. 따라서, 칼란드리아볼트위로 접근이 가능한 원자로 계획예방정비기간중에만, 즉 최소한 1년이상에 한달정도의 기간에만 설치 및 인출작업이 가능하며, 이 때마다 커다란 수송용기를 격납건물내로 넣었다가 빼내야하기 때문에 기기해치(Equipment hatch)를 개폐해야하는 불편함이 있다. The existing way of producing Co-60 in heavy water reactors is to use 21 adjuster rods installed in Callandia to control the reactivity of the heavy water reactors (see Figure 7). This control rod is made of stainless steel, and in order to install and withdraw it, it is necessary to work on the calandaria bolt as shown in FIG. At this time, in order to withdraw and charge the control rod, all work must be done by opening the gate at the upper part of the calandaria bolt, removing the control rod, and inserting the heavy transport container into the manual crane to avoid exposure. It is necessary to put the adjusting rod drawn out of the water in the calandaria bolt by hanging it so that it is submerged in the calandaria bolt. This means that once the worker has to stay on the calandria bolt, there is a very high chance of excessive exposure, and the heavy transport container must be suspended from the calandaria bolt, and the drive cable must be connected and cut again during installation and withdrawal. There is a high possibility of foreign matter entering the calandria bolt due to work, and the upper part of the calandaria bolt is equipped with various facilities such as the control rod of the first stop system in addition to the adjusting rod, which can damage them. There is a difficulty to repeatedly perform the task of difficulty. Therefore, installation and withdrawal operations are possible only during the period of preventive maintenance of the reactors accessible to the Calandaria bolts, that is, at least one year or more, and each time a large container must be put into the containment building and removed. As a result, it is inconvenient to open and close the equipment hatch.
중수로에서는 날마다 약 2개채널(약 23~24개의 핵연료번들)에 대해서 핵연료장전기(Refueling Machine)을 사용하여 핵연료를 교체하고 있는데, 핵연료장전기를 사용하게 되면 핵연료번들의 장입 및 인출은 사람이 직접 손을 대지 않기 때문에 피폭의 가능성이 거의 없는 것은 물론, 방사능준위가 매우 높은 인출된 사용후 핵연료도 핵연료장전기의 내부 매거진에 들어있는 채로 이동시킬 수 있어 취급이 매우 간편해진다. 핵연료장전기의 매거진에 들어있는 사용후핵연료는 도 6에서 보는 것처럼 사용후핵연료 방출수조에서 물속에 잠긴채로 안전하게 방출되고 물속의 이송루트를 따라 최종적으로 격납건물 밖에 위치한 사용후핵연료저장조까지 이송하게 된다. 특히, 인출된 핵연료중에서 문제가 있는 손상된 핵연료는 사용후 핵연료 방출수조에서 깡통에 넣어 밀봉한 후 격납건물 밖의 사용후핵연료저장조 옆에 있는 손상핵연료저장조까지 안전하게 이송시킬 수 있다. 이러한 작업은 핵연료교체시에 항상 하는 작업이고 모든 공정이 자동설비 그리고 물속에서 이루어져 작업자가 피폭될 가능성이 거의 없으며 다른 작업에 방해가 될 일도 거의 없다. In heavy water reactors, the fuel is replaced using a fueling machine (Refueling Machine) for about 2 channels (about 23 ~ 24 fuel bundles) every day. When the fuel loader is used, the charge and withdrawal of fuel bundles Since there is little possibility of exposure because it is not touched directly, the extracted spent fuel with very high radiation level can be moved in the fuel magazine's internal magazine, making handling very easy. The spent fuel contained in the magazine of the nuclear fuel loader is safely discharged while submerged in the spent fuel discharge tank as shown in FIG. 6 and finally transferred to the spent fuel storage tank located outside the containment building along the transfer route in the water. . In particular, damaged fuel, which is a problem in the extracted fuel, can be sealed in a can in a spent fuel discharge tank and safely transported to a damaged fuel storage tank next to the spent fuel storage tank outside the containment building. This work is always done at the time of nuclear fuel replacement, and all processes are automated and under water, with little chance of an operator being exposed and rarely disturbing other work.
본 발명에서 제안한 Co표적 번들은 이러한 핵연료번들의 취급과 동일한 절차와 방법을 사용하여 장입 및 인출되기 때문에 기존의 조절봉을 이용한 방법처럼 과다피폭의 문제, 다른 설비를 손상시킬 가능성, 칼란드리아볼트내로 이물질 유입 등의 문제가 발생할 가능성이 전혀 없다는 것이다. 또한, 매일 핵연료교체작업이 수행되므로 필요에 따라서 언제든지 Co 표적의 장입 및 인출이 가능하여 Co 공급이 필요한 때에 적시에 공급이 가능할 뿐 아니라, 인출된 Co표적번들을 수송용기에 적재하는 것도 손상핵연료저장수조에서 작업이 가능하기 때문에 기존의 방법처럼 계획예방정비기간까지 기다리는 등의 시간적 제약에서 벗어날 수가 있다. Co target bundle proposed in the present invention is charged and withdrawn using the same procedures and methods as the handling of such fuel bundles, so the problem of overexposure, damage to other facilities, and calandria bolts, as with the conventional control rods. There is no possibility of problems such as foreign matter inflow. In addition, since fuel replacement is performed every day, the loading and withdrawal of Co targets is possible at any time as needed, so that Co can be supplied in a timely manner when Co supply is required, and loading the extracted Co target bundles into a transport container is also possible. Since it is possible to work in the tank, it can be freed from the time constraints such as waiting for the planned preventive maintenance period as in the conventional method.
이론적인 Co-60의 생산성(1g Co-59를 의 중성자속에 조사할 경우)Theoretical Co-60 productivity (when irradiated with 1g Co-59 in the neutron flux)
Figure PCTKR2015006134-appb-I000002
Figure PCTKR2015006134-appb-I000002
(from PRODUCTION OF COBALT-60 IN PARR-1/KANUPP (CANDU), Mushtaq Ahmad(from PRODUCTION OF COBALT-60 IN PARR-1 / KANUPP (CANDU), Mushtaq Ahmad
Isotope Production Division, PINSTECH, Islamabad)Isotope Production Division, PINSTECH, Islamabad)
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited Example and drawing, this invention is not limited by this and is described below by the person of ordinary skill in the art, and the following. Various modifications and changes may be made without departing from the scope of the appended claims.

Claims (1)

  1. 중수형 원자로 핵연료번들과 동일한 절차 및 방법으로 교체하면서도 방사선동위원소의 대량생산이 가능하도록 하기 위하여,In order to enable mass production of radioisotopes, while replacing them with the same procedures and methods as for heavy water reactor fuel bundles,
    중수형원자로 핵연료번들이 장착되는 핵연료채널중 일부에, 핵연료번들을 구성하는 핵연료봉내의 핵연료팰렛을 생산하고자하는 방사선표적으로 대체한 핵연료번들을 장착하여, 중수형 원자로내에서 중성자조사시켜 동위원소를 제조하고, Some of the fuel channels equipped with heavy fuel reactors are equipped with nuclear fuel bundles replaced with radio targets to produce fuel pellets in the fuel rods constituting the fuel bundles. Manufacturing,
    상기 방사선표적이 들어있는 핵연료번들은 중수로 원자로 내에 장착삽입되어, 중수로 운전중 중성자를 조사함으로써, 내부의 방사선 동위원소 Co-59가 Co-60으로 변환되며, 변환된 Co-60이 포함된 핵연료번들은 주기적으로 외부로 배출되어 Co-60을 생산할 수 있도록 하는 것을 특징으로 하는 중수로 원자로를 이용한 동위원소 제조방법.The nuclear fuel bundles containing the radiation targets are inserted into the reactors and irradiated with neutrons, thereby converting the internal radioisotope Co-59 to Co-60, and the fuel bundles containing the converted Co-60. Isotope production method using a heavy water reactor, characterized in that to be periodically discharged to the outside to produce Co-60.
PCT/KR2015/006134 2014-06-24 2015-06-17 Method for preparing isotopes using heavy water nuclear reactor WO2015199372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2950762A CA2950762C (en) 2014-06-24 2015-06-17 Method for preparing isotopes using heavy water nuclear reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0077353 2014-06-24
KR20140077353A KR101502414B1 (en) 2014-06-24 2014-06-24 Manufacturing method of isotope using candu type reactor

Publications (1)

Publication Number Publication Date
WO2015199372A1 true WO2015199372A1 (en) 2015-12-30

Family

ID=53027513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006134 WO2015199372A1 (en) 2014-06-24 2015-06-17 Method for preparing isotopes using heavy water nuclear reactor

Country Status (3)

Country Link
KR (1) KR101502414B1 (en)
CA (1) CA2950762C (en)
WO (1) WO2015199372A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962417A (en) * 2018-06-22 2018-12-07 中核核电运行管理有限公司 heavy water reactor cobalt isotope production method
WO2019028252A3 (en) * 2017-08-02 2019-03-21 BWXT Isotope Technology Group, Inc. Fuel channel isotope irradiation at full operating power
CN111373486A (en) * 2017-11-28 2020-07-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor
CN114639499A (en) * 2021-10-14 2022-06-17 中核核电运行管理有限公司 Carrier-free heavy water reactor production99Method for Mo
WO2023018176A1 (en) * 2021-08-10 2023-02-16 한국수력원자력 주식회사 Radioactive isotope production method using light-water reactor type nuclear reactor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887782B1 (en) * 2016-11-29 2018-08-13 한국수력원자력 주식회사 Loading pattern of Cobalt Bundle
KR101955926B1 (en) 2017-04-13 2019-03-12 비즈 주식회사 Method of manufacturing co-60 by replacing fuel in center pin with co-59 target
KR20210041275A (en) 2019-10-07 2021-04-15 한전원자력연료 주식회사 Co-60 generating method, and target device used thereof
KR102572103B1 (en) 2021-05-18 2023-08-30 한전원자력연료 주식회사 Frictional locking type component inserted in guide tubes of a nuclear fuel assembly
KR102571218B1 (en) 2021-05-18 2023-08-28 한전원자력연료 주식회사 Cantilever locking type component inserted in guide tubes of a nuclear fuel assembly
KR20220156286A (en) 2021-05-18 2022-11-25 한전원자력연료 주식회사 Protrusion locking type component inserted in guide tubes of a nuclear fuel assembly
KR102571222B1 (en) 2021-05-18 2023-08-28 한전원자력연료 주식회사 Twist quick release type component inserted in guide tubes of a nuclear fuel assembly
KR102592757B1 (en) 2021-07-21 2023-10-24 한국수력원자력 주식회사 Target device for irradiation of heavy water nuclear power plant that can be frequently insertfd and exposed to heavy water nuclear power plant and method of producing radioactive isotopes using the devices
KR102546534B1 (en) 2021-09-01 2023-06-23 한전원자력연료 주식회사 Slopes Application Locking Type Component Inserted in Guide Tubes of a Nuclear Fuel Assembly
KR102579265B1 (en) 2021-09-01 2023-09-18 한국수력원자력 주식회사 Push/Pull Quick Release Pin type Component inserted in Guide Tubes of a Nuclear Fuel Assembly
KR20230072608A (en) 2021-11-18 2023-05-25 한전원자력연료 주식회사 Satgat type Component inserted in Guide Tubes of a Nuclear Fuel Assembly
KR102564516B1 (en) 2021-11-18 2023-08-07 한전원자력연료 주식회사 Component inserted in Guide Tubes with forced disengagement mechanism of a Nuclear Fuel Assembly
CN115064295B (en) * 2022-06-07 2024-05-10 上海核工程研究设计院股份有限公司 System and method for producing radioisotope by using heavy water reactor nuclear power station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015176A1 (en) * 1999-08-25 2001-03-01 Hitachi, Ltd. Method and apparatus for manufacturing radioisotopes
JP2009150881A (en) * 2007-12-18 2009-07-09 Ge-Hitachi Nuclear Energy Americas Llc Fuel rod with end piece of irradiation target material
JP2010223935A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and apparatus for producing radioisotope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728703B1 (en) * 2004-12-21 2007-06-15 한국원자력연구원 Internal Circulating Irradiation Capsule for I-125 Production and Method of I-125 Production Using This Capsule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015176A1 (en) * 1999-08-25 2001-03-01 Hitachi, Ltd. Method and apparatus for manufacturing radioisotopes
JP2009150881A (en) * 2007-12-18 2009-07-09 Ge-Hitachi Nuclear Energy Americas Llc Fuel rod with end piece of irradiation target material
JP2010223935A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and apparatus for producing radioisotope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, GI GONG ET AL.: "Design Optimization of Co-60 production Rig in HANARO", 2000 AUTUMN CONFERENCE, 2000 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028252A3 (en) * 2017-08-02 2019-03-21 BWXT Isotope Technology Group, Inc. Fuel channel isotope irradiation at full operating power
CN111066095A (en) * 2017-08-02 2020-04-24 Bwxt同位素技术集团有限公司 Fuel channel isotope irradiation at full operating power
US11342086B2 (en) 2017-08-02 2022-05-24 BWXT Isotope Technology Group, Inc. Fuel channel isotope irradiation at full operating power
US11848116B2 (en) 2017-08-02 2023-12-19 BWXT Isotope Technology Group, Inc. Irradiating target material located in a surrogate fuel bundle in a CANDU reactor for isotope production
CN111373486A (en) * 2017-11-28 2020-07-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor
CN111373486B (en) * 2017-11-28 2023-11-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor
CN108962417A (en) * 2018-06-22 2018-12-07 中核核电运行管理有限公司 heavy water reactor cobalt isotope production method
WO2023018176A1 (en) * 2021-08-10 2023-02-16 한국수력원자력 주식회사 Radioactive isotope production method using light-water reactor type nuclear reactor
CN114639499A (en) * 2021-10-14 2022-06-17 中核核电运行管理有限公司 Carrier-free heavy water reactor production99Method for Mo

Also Published As

Publication number Publication date
KR101502414B1 (en) 2015-03-13
CA2950762A1 (en) 2015-12-30
CA2950762C (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2015199372A1 (en) Method for preparing isotopes using heavy water nuclear reactor
Zrodnikov et al. Innovative nuclear technology based on modular multi-purpose lead–bismuth cooled fast reactors
CN114093548A (en) Carrier-free heavy water reactor production99Method for Mo
Gehin et al. Issues in the Use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels
CN114639499B (en) Heavy water reactor production carrier-free body99Mo method
Hadad et al. Fuel burnup and fuel pool shielding analysis for Bushehr nuclear reactor VVER-1000
Pathak et al. The status of nuclear power development in India
Morreale et al. The reactor physics characteristics of a transuranic mixed oxide fuel in a heavy water moderated reactor
Constantin Source Term Calculations for Loss of Cooling Accident at CANDU Spent Fuel Pool
Hiraiwa et al. Development of High Burnup Fuel for Next Generation Light Water Reactor (Total Performance of 5wt%-10wt% Enrichment High Burnup Fuel)
Binford Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1
KR101887782B1 (en) Loading pattern of Cobalt Bundle
Kloosterman et al. Preliminary proliferation study of the molten salt fast reactor.
Díaz et al. Argentinean experience in spent fuel transfer verification
Dwijayanto et al. Transmutation of Transuranic Elements as Solid Coating in Molten Salt Reactor Fuel Channel
Tran et al. Study on transmutation efficiency of the VVER-1000 fuel assembly with different minor actinide compositions
Alvarez et al. Spent fuel management of NPPs in Argentina
Grahn et al. Spent nuclear fuel for disposal in the KBS-3 repository
Nasta et al. Spent fuel transport using cask loaded outside pool
Lee et al. Analysis of transmutation rates of long-lived radionuclides in the Korean multi-purpose research reactor
Anantharaman et al. A case study for INPRO methodology based on Indian advanced heavy water reactor
KR101341354B1 (en) Criticality control method of of nuclear spent nuclear fuel using rare earth waste from pyroprocessing
Maldague et al. Impact of plutonium and americium recycling in PWR on Mox fuel fabrication
Kuenel Normal and compact spent fuel storage in light water reactor power plants
Chebeskov et al. The US-Russian Joint Studies on Using Power Reactors to Disposition Surplus Weapons Plutonium as Spent Fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950762

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15811652

Country of ref document: EP

Kind code of ref document: A1