WO2015199359A1 - 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법 - Google Patents

소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법 Download PDF

Info

Publication number
WO2015199359A1
WO2015199359A1 PCT/KR2015/005817 KR2015005817W WO2015199359A1 WO 2015199359 A1 WO2015199359 A1 WO 2015199359A1 KR 2015005817 W KR2015005817 W KR 2015005817W WO 2015199359 A1 WO2015199359 A1 WO 2015199359A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
temperature
heat medium
heat
stirling engine
Prior art date
Application number
PCT/KR2015/005817
Other languages
English (en)
French (fr)
Inventor
박대웅
장덕표
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to CN201580035085.XA priority Critical patent/CN106662039B/zh
Priority to US15/322,057 priority patent/US10180116B2/en
Priority to EP15810998.3A priority patent/EP3163061B1/en
Publication of WO2015199359A1 publication Critical patent/WO2015199359A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/186Water-storage heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/80Electric generators driven by external combustion engines, e.g. Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0026Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion engines, e.g. for gas turbines or for Stirling engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to a heat medium circulation structure and a method of controlling hot water temperature of a small cogeneration generator, and more particularly, a return line at one side of a direct water line so as to be primarily heat exchanged with a heat medium return line without directly connecting a direct water line to a hot water tank.
  • the present invention relates to a thermal medium circulation structure and a hot water temperature control method of a small cogeneration generator equipped with a heat exchanger.
  • stirling engine When converting low-temperature heat energy into high-grade axial power, a stirling engine is used. Each component of the power cycle is assembled into one engine and a gas such as air is used as a working fluid. Because of the use, the device offers the advantages of being very simple and easy to operate.
  • the Stirling engine has the highest thermal efficiency during the power cycle, the conversion of low and low temperature thermal energy into power provides a much simpler structure compared to conventional organic Rankine systems, while providing high energy efficiency. do.
  • Micro CHP Combined Heat and Power
  • the small cogeneration generator of this power generation method includes a Stirling engine 110.
  • the auxiliary boiler 200 may be adopted to produce electricity through the Stirling engine 110, and the auxiliary boiler 200 may be regarded as a kind of household boiler facility configured to produce hot water for heating.
  • the high temperature heat medium supplied through the sensible heat exchanger 210 and the latent heat exchanger 220 provided in the auxiliary boiler 200 is used to produce and store hot water through heat exchange in the hot water tank 300.
  • the low-temperature heat medium exchanged in the hot water tank 300 is returned through the heat medium return pipe 130 to pass through the Stirling engine 110 and then the latent heat heat exchanger ( 220 and the sensible heat exchanger 210 is configured to pass through sequentially.
  • the working fluid hydrogen gas or helium gas sealed therein is operated while expanding / contracting due to a temperature difference to produce an alternating current. 120)
  • the hot water tank 300 is always equipped with a temperature sensor 310 to operate a small cogeneration generator when the temperature of the hot water is low, in order to store the hot water of 50 °C to 60 °C, the direct use of the low temperature hot water Replenish and maintain a constant water level.
  • the temperature of the heat medium returned through the heat medium return line 130 is usually 60 Can reach up to 70 ° C.
  • the Stirling engine 110 is generally limited to the whole or part of the operation when the return temperature is 60 °C or more to protect the interior from the thermal shock caused by the high temperature of the heat transfer medium, the Stirling engine (by Frequent operation / interruption of 110) may be repeated to reduce durability, it was difficult to expect a smooth operation.
  • the present invention was made in view of the above-mentioned problems in the prior art, and was created to solve this problem.
  • the heat medium after the heat exchange of the low temperature direct heat introduced from the hot water tank through the direct water line and the return line heat exchanger was heated.
  • the object of the present invention is to provide a heat medium circulation structure of a small cogeneration generator which is returned to a Stirling engine through a return line to lower the temperature of the low temperature part of the Stirling engine and thus maintain a high power generation efficiency.
  • Another object of the present invention is to provide a hot water temperature control method for a small cogeneration generator which can be expected to operate smoothly.
  • the heat medium circulation structure of the compact cogeneration generator of the present invention for achieving the above technical problem is to produce electricity by the temperature difference of the low temperature heat medium returned through the heat medium return line in the hot engine head and hot water tank due to the heating of the engine burner.
  • the apparatus may further include a latent heat exchanger installed at one side of the Stirling engine, wherein the hot water tank is provided with a high temperature heat medium passing through the Stirling engine, a sensible heat exchanger, and a latent heat exchanger through a heat medium supply line to exchange heat with water. It is done.
  • the circulation pump for controlling the circulation flow rate (M) of the heat medium heat exchanged with the direct water in the return line heat exchanger, so that the supply temperature of the heat medium supplied from the Stirling engine is further controlled. Characterized in that it comprises a.
  • Hot water temperature control method of the compact cogeneration generator of the present invention for achieving the above technical problem is a step of determining whether the user uses hot water by sensing the flow rate of the direct water flowing into the hot water tank to the flow sensor during operation of the small cogeneration generator Determining whether the hot water temperature (T) stored in the hot water tank is lower than a preset set temperature (B, Stirling engine operation set temperature by using hot water) when the user determines that the user is using hot water, and the user uses hot water.
  • T hot water temperature
  • B Stirling engine operation set temperature by using hot water
  • the hot water temperature (T) is the set temperature ( A, B) is determined to be lower than the step of operating the Stirling engine, by controlling the heat medium circulation flow rate (M) by the circulation pump in the Stirling engine Adjusting the supply temperature of the heating medium to be supplied, determining whether the hot water temperature T is lower than a set temperature C for stopping operation of the Stirling engine, and the hot water temperature T is higher than the set temperature C. Or if it is determined to be the same, characterized in that it comprises a step of stopping the operation of the operating Stirling engine.
  • the low temperature of the Stirling engine is lowered.
  • FIG. 1 is a schematic diagram showing an exhaust structure and a heat medium circulation structure of a conventional compact cogeneration generator.
  • FIG. 2 is a schematic view showing the exhaust structure and the heat medium circulation structure of the small cogeneration generator according to the present invention.
  • Figure 3 is a perspective view of the main opening portion of the auxiliary boiler according to the present invention.
  • FIG. 4 is a front view and a sectional view showing main parts of the exhaust passage of the auxiliary boiler according to the present invention.
  • FIG. 5 is a flowchart illustrating a method for controlling hot water temperature of a small cogeneration generator according to the present invention.
  • the small cogeneration generator according to the present invention includes a housing 100, and a sterling engine 110 is installed inside the housing 100, and the sterling engine 110 of the The auxiliary boiler 200 is installed at the top.
  • the auxiliary boiler 200 has a latent heat exchanger 220 embedded in the case 230, and an sensible heat exchanger 210 is assembled to the upper portion of the case 230.
  • the front of the case 230 is partially opened, the open portion is sealed by a cover 240 forming a flow path of the engine exhaust gas.
  • a hole (not shown) is formed in the lower surface of the case 230 so that the communication tube 250 is connected, and the communication tube 250 is connected to the engine head of the Stirling engine 110 to burn from the engine burner 120.
  • the sterling engine 110 is heated and then induces and discharges the exhaust gas, which is configured in the form of a flange to ensure ease of assembly.
  • the Stirling engine 110 is operated by a main boiler (not shown).
  • a main boiler not shown
  • the engine burner 120 provided in the main boiler heats the engine head (not shown) of the Stirling engine 110, a working fluid sealed therein is provided. Operates while expanding / contracting by the temperature difference to produce alternating current.
  • the hot heat medium supplied through the sensible heat exchanger 210 and the latent heat exchanger 220 provided in the auxiliary boiler 200 produces hot water through heat exchange with water stored in the hot water tank 300.
  • the heat medium circulation structure of the small cogeneration generator according to the present invention is the low temperature heat medium heat exchanged in the hot water tank 300 to cool the Stirling engine 110 is returned through the heat medium return line 130, the direct line After the heat exchange by the low-temperature direct water flowing through the 140 and the return line heat exchanger 150, it is via the Stirling engine 110, after which the latent heat exchanger 220 and the sensible heat exchanger 210 ) Is a structure configured to circulate repeatedly.
  • the hot water tank 300 is provided with a temperature sensor 310 for detecting a low water temperature on one side, when the temperature of the hot water is low to operate a small cogeneration generator to generate hot water of 50 °C to 60 °C always, In a situation where the amount of hot water used is small, equilibrium is achieved at 50 ° C to 60 ° C. In addition, when using the hot water of the user to maintain the water level by supplementing the direct water to the direct water line 140 as much as the amount of hot water used.
  • the return line heat exchanger 150 is provided on one side of the direct line line 140 so that the heat exchange line 130 may be primarily heat exchanged without directly connecting the direct line 140 to the hot water tank 300. do.
  • the heat exchange in the return line heat exchanger 150 can be introduced into the hot water tank 300 at a relatively high temperature, it is easy to control the temperature of the hot water tank 300 to store hot water of 50 °C to 60 °C always Lose.
  • the heat medium which is returned through the heat medium return line 130 and introduced into the Stirling engine 100 is lowered by the low temperature of the Stirling engine 110 due to heat exchange with the low temperature direct water of the direct water line 140. High power generation efficiency can be maintained.
  • the temperature of the heat medium supplied to the hot water tank 300 to the heat medium supply line 160 should be at least 65 °C higher than the set temperature usually 5 °C.
  • the temperature of the heat medium supplied to the hot water tank 300 to the heat medium supply line 160 cannot be sufficiently high. There is.
  • the total heat quantity Q that the Stirling engine 110 can transfer to the heat medium is constant but proportional to the product of the heat medium M and the temperature difference dT.
  • the temperature of the heat medium supplied to the hot water tank 300 may be lower than the preset water storage temperature of the hot water tank 300.
  • the thermal efficiency may be rather lowered, such as the need to additionally drive the auxiliary boiler 200 in order to meet the low temperature set temperature of the hot water tank 300.
  • the heat medium circulation flow rate M is adjusted by the circulation pump 170 provided between the return line heat exchanger 150 and the Stirling engine 110 to sufficiently supply the temperature of the heat medium supplied from the Stirling engine 110. It can be adjusted high.
  • One side of the direct water line 140 is provided with a flow sensor 180 to detect the flow of direct water flowing into the hot water tank 300 to detect the user's use of hot water.
  • the temperature sensor 310 provided in the hot water tank 300 senses the temperature of the hot water stored in the hot water tank 300 and determines that it is lower than a preset temperature, the Stirling engine Operation of the 110 or the stirling engine 110 and the auxiliary boiler 220 may be operated at the same time.
  • the flow rate of the direct water flowing into the hot water tank 300 by the flow sensor 180 is determined by the flow sensor 180 during the operation of the small cogeneration generator (S10).
  • the set temperature (A) means a temperature at which the Stirling engine 110 should be operated when the hot water temperature T stored in the hot water tank 300 is lowered by natural heat dissipation when no hot water is used.
  • the set temperature (B) is a temperature at which the Stirling engine 110 should operate when the low temperature direct water is introduced by the user's use of hot water and the hot water temperature (T) stored in the hot water tank 300 is lowered. It needs to be set higher than the set temperature A to provide a temperature.
  • the set temperature (A, B) when the hot water is used and by natural heat dissipation can be set.
  • the set temperature (A) due to natural heat does not need hot water urgently by the user, so it is not necessary to maintain a high hot water temperature in the hot water tank in an efficient aspect, so that the set temperature (A) can be set low.
  • step S12 and S14 If it is determined in step S12 and S14 that the hot water temperature (T) is lower than the set temperature (A, B), the Stirling engine 100 is operated (S20).
  • the supply temperature of the heat medium supplied from the Stirling engine 110 is adjusted to be high (S30).
  • the hot water temperature (T) is determined to be higher than or equal to the set temperature (C) for stopping the operation of the Stirling engine 110 (S40)
  • the operation of the Stirling engine 100 operated in the step S20 is stopped ( S50).
  • the set temperature (C) is sufficiently higher than the set temperature (B) to suppress frequent repetitive movements of the Stirling engine 110 to enhance durability.
  • housing 110 Stirling engine

Abstract

본 발명은 온수탱크에서 열교환 된 저온의 열매체가 직수라인을 통해 유입되는 저온의 직수와 환수라인열교환기에 의해 열교환된 후 열매체환수라인을 통해 스털링 엔진에 환수되어 상기 스털링 엔진의 저온부 온도를 낮게 하여 전기 발전 효율을 높게 유지할 수 있는 소형 열병합발전기의 열매체 순환구조를 제공하며, 또한 직수라인의 일측에 구비된 유량센서에 의해 온수 사용을 감지할 수 있으므로, 온수 사용 시와 자연 방열에 의한 설정온도를 각각 정의하여 스털링 엔진의 잦은 운행/중단의 반복으로 인한 내구성 저하를 방지하고 원활한 작동을 기대할 수 있는 소형 열병합발전기의 온수온도 제어방법을 제공한다.

Description

소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법
본 발명은 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법에 관한 것으로, 보다 상세하게는 온수탱크에 직수라인을 바로 연결하지 않고 열매체환수라인과 1차적으로 열교환 될 수 있도록 직수라인 일측에 환수라인열교환기가 구비된 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법에 관한 것이다.
근래 새로운 에너지원의 발굴에 대한 관심이 높아지면서, 산업의 거의 모든 분야에서 발생된다고 할 수 있는 중,저온의 배기가스 또는 냉각수의 잠열을 회수 및 재이용하는 기술에 대한 중요성이 높아지고 있다.
이와 같은 중, 저온의 열에너지를 고급 에너지인 축동력으로 전환할 때 스털링 엔진(stirling Engine)을 사용하는데, 이는 동력사이클을 이루는 각 구성 요소가 하나의 엔진으로 집합되어 있고 작동유체로써 공기와 같은 기체를 사용하기 때문에, 장치가 매우 간단하고 운전이 용이한 이점을 제공한다.
또한 스털링 엔진은 동력 사이클 중 최고의 열효율을 가지기 때문에, 이를 이용하여 중저온 열에너지를 동력으로 전환할 경우 종래 유기 랭킨 시스템에 비하여 매우 구조가 간단한 반면에, 고효율적인 에너지의 전환을 가능하게 하는 이점을 제공한다.
도 1에 도시된 바와 같이, 최근에는 이를 이용하여 가정에서도 전기와 열을 동시에 생산하는 발전방식인 Micro CHP(Combined Heat and Power)가 사용되는데, 이러한 발전방식의 소형 열병합발전기는 스털링 엔진(110)과, 보조보일러(200)를 채용하여 상기 스털링 엔진(110)을 통해 전기를 생산하고, 상기 보조보일러(200)를 통해서는 난방용 온수를 생산할 수 있도록 구성된 가정용 보일러 설비의 일종이라고 볼 수 있다.
상기 보조보일러(200)에 구비된 현열 열교환기(210)와 잠열 열교환기(220)를 통해 공급되는 고온의 열매체가 온수탱크(300)에서 열교환을 통해 온수를 생산하여 저수된 후 활용되게 되는데, 이 경우 상기 스털링 엔진(110)을 냉각하기 위해 상기 온수탱크(300)에서 열교환 된 저온의 열매체가 열매체환수관(130)을 통해 환수되어 스털링 엔진(110)을 경유한 후 다시 상기 잠열 열교환기(220)와 현열 열교환기(210)를 순차 반복하여 거치도록 구성된다.
상기 스털링 엔진(110)은 엔진헤드(미도시)를 가열하면 내부에 밀봉된 작동유체(수소가스 또는 헬륨가스)가 온도차에 의해 팽창/수축하면서 작동하여 교류 전류를 생산하게 되는데, 엔진 버너에(120) 의해 가열되는 엔진헤드인 고온부와, 열매체가 환수되는 저온부의 온도차가 클수록 더 많은 전기를 발전 할 수 있게 된다.
상기 온수탱크(300)는 상시 50℃ 내지 60℃의 온수를 저수하기 위해, 온수의 온도가 낮으면 소형 열병합발전기를 가동하기 위해 온도센서(310)가 구비되어 있고, 저수 온수의 사용량만큼 직수로 보충하여 일정 수위를 유지한다.
그러나 사용자의 온수 사용으로 인한 스털링 엔진의 가동으로 상기 온수탱크(300)에 저수되는 온수 온도가 55℃ 내지 65℃까지 가열되기 때문에 상기 열매체환수라인(130)을 통해 환수되는 열매체의 온도는 보통 60℃ 내지 70℃까지 도달할 수 있다.
이 경우 상기 열매체환수라인(130)을 통해 환수되는 열매체에 의해 상기 스털링 엔진(110)의 저온부의 온도가 높아짐에 따라 전기 발전량이 감소하게 되는 문제점이 있었다.
또한 스털링 엔진(110)은 일반적으로 고온의 환수 열매체에 의한 열충격으로부터 내부를 보호하기 위해 환수온도가 60℃이상이 될 경우 일부 또는 전체로 운행이 제한하기 때문에, 저온부의 높은 온도에 의해 스털링 엔진(110)의 잦은 운행/중단이 반복되어 내구성이 저하될 수 있어, 원활한 작동을 기대하기 어려운 문제점이 있었다.
본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점을 감안하여 이를 해결하고자 창출된 것으로, 온수탱크에서 열교환 된 저온의 열매체가 직수라인을 통해 유입되는 저온의 직수와 환수라인열교환기에 의해 열교환된 후 열매체환수라인을 통해 스털링 엔진에 환수되어 상기 스털링 엔진의 저온부 온도를 낮게하여 전기 발전 효율을 높게 유지할 수 있는 소형 열병합발전기의 열매체 순환구조를 제공함에 그 목적이 있다.
또한 직수라인의 일측에 구비된 유량센서에 의해 온수 사용을 감지할 수 있으므로, 온수 사용 시와 자연 방열에 의한 설정온도를 각각 정의하여 스털링 엔진의 잦은 운행/중단의 반복으로 인한 내구성 저하를 방지하고 원활한 작동을 기대할 수 있는 소형 열병합발전기의 온수온도 제어방법을 제공함에 또 다른 목적이 있다.
상기한 기술적 과제를 달성하기 위한 본 발명의 소형 열병합발전기의 열매체 순환구조는 엔진버너의 가열로 인한 고온의 엔진헤드와 온수탱트에서 열매체환수라인을 통해 환수된 저온의 열매체의 온도차에 의해 전기를 생산하는 스털링 엔진, 상기 스털링 엔진의 일측에 설치되는 현열 열교환기, 상기 스털링 엔진와 현열 열교환기를 경유한 고온의 열매체가 열매체공급라인을 통해 공급받아 저수와 열교환되는 온수탱크, 상기 열매체환수라인의 열매체와 열교환되는 환수라인열교환기를 경유하고 상기 온수탱크의 저수에 일정 수위를 유지하도록 직수를 보충하는 직수라인을 포함하여 구성되는 것을 특징으로 한다.
또한 상기 스털링 엔진의 일측에 설치되는 잠열 열교환기를 더 포함하고, 상기 온수탱크는, 상기 스털링 엔진와 현열 열교환기 및 잠열 열교환기를 경유한 고온의 열매체가 열매체공급라인을 통해 공급받아 저수와 열교환되는 것을 특징으로 한다.
또한 상기 환수라인열교환기와 스털링 엔진 사이에 구비되어, 스털링 엔진에서 공급하는 열매체의 공급온도가 조절되도록, 상기 환수라인열교환기에서 직수와 열교환되는 열매체의 순환유량(M)을 조절하는 순환펌프를 더 포함하여 구성되는 것을 특징으로 한다.
상기한 기술적 과제를 달성하기 위한 본 발명의 소형 열병합발전기의 온수온도 제어방법은 소형 열병합발전기의 운행 동작 중에 유량센서로 온수탱크로 유입되는 직수의 유량을 센싱하여 사용자의 온수 사용 여부를 판단하는 단계, 사용자가 온수를 사용하고 있다고 판단되면 상기 온수탱크에 저장된 온수온도(T)가 기 설정된 설정온도(B, 온수 사용에 의한 스털링 엔진 작동 설정온도)보다 낮은지 판단하는 단계, 사용자가 온수를 사용하고 있지 않다고 판단되면 온수탱크에 저장된 온수온도(T)가 기 설정된 설정온도(A, 온수탱크의 방열에 의한 스털링 엔진 작동 설정온도)보다 낮은지 판단하는 단계, 온수온도(T)가 설정온도(A, B)보다 낮다고 판단되면 상기 스털링 엔진을 가동하는 단계, 순환펌프에 의해 열매체 순환유량(M)을 조절하여 스털링 엔진에서 공급하는 열매체의 공급온도를 조절하는 단계, 온수온도(T)가 상기 스털링 엔진의 가동 정지를 위한 설정온도(C) 보다 낮은지 판단하는 단계, 온수온도(T)가 설정온도(C)보다 높거나 같다고 판단되면 가동된 스털링 엔진의 가동을 정지하는 단계를 포함하여 구성되는 것을 특징으로 한다.
본 발명에 따르면, 스털링 엔진에 환수되는 열매체가 직수라인을 통해 유입되는 저온의 직수와 환수라인열교환기에 의해 열교환되어 스털링 엔진의 저온부 온도를 낮게하므로 전기 발전 효율을 높게 유지할 수 있는 효과가 있다.
또한 온수 사용 시와 자연 방열에 의한 설정온도를 각각 정의하여 스털링 엔진의 잦은 운행/중단의 반복으로 인한 내구성 저하를 방지하고 원활한 작동을 기대할 수 있는 효과가 있다.
도 1은 종래의 소형 열병합발전기의 배기구조 및 열매체 순환구조를 보인 모식도이다.
도 2는 본 발명에 따른 소형 열병합발전기의 배기구조 및 열매체 순환구조를 보인 모식도이다.
도 3은 본 발명에 따른 보조보일러의 요부 개방 사시도이다.
도 4는 본 발명에 따른 보조보일러의 배기유로를 보인 정면도 및 요부 단면도이다.
도 5는 본 발명에 따른 소형 열병합발전기의 온수온도 제어방법을 도시한 흐름도이다.
이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.
도 2 내지 도 4에 도시된 바와 같이, 본 발명에 따른 소형 열병합발전기는 하우징(100)을 포함하며, 상기 하우징(100) 내부에는 스털링 엔진(110)이 설치되고, 상기 스털링 엔진(110)의 상부에는 보조보일러(200)가 설치된다.
상기 보조보일러(200)는 케이스(230) 내부에 잠열 열교환기(220)가 내장되고, 상기 케이스(230)의 상부에는 현열 열교환기(210)가 조립된다.
아울러, 상기 케이스(230)의 전방은 일부 개방되고, 개방된 부분에는 엔진 배기가스의 유로를 형성하는 커버(240)로 밀폐된다.
이때, 상기 케이스(230)의 하면에는 구멍(미도시)이 형성되어 연통관(250)이 연결되며, 상기 연통관(250)은 스털링 엔진(110)의 엔진헤드에 접속되어 엔진버너(120)로부터 연소된 후 스털링 엔진(110)을 가열한 다음 배기되는 배기가스를 유도배출하는 기능을 수행하며, 플랜지 형태로 구성되어 조립의 용이성을 확보하도록 한다.
상기 연통관(250)의 상단을 통해 배출되는 배기가스는 잠열 열교환기(220) 상부로 유도한 다음 잠열 열교환기(220)를 거쳐 하부로 이동된 후 배기되도록 구성된다.
상기 스털링 엔진(110)은 주보일러(미도시)에 의해 가동되는데, 주보일러에 구비된 엔진버너(120)가 스털링 엔진(110)의 엔진헤드(미도시)를 가열하면 내부에 밀봉된 작동유체가 온도차에 의해 팽창/수축하면서 작동하여 교류 전류를 생산하게 된다.
상기 보조보일러(200)에 구비된 현열 열교환기(210)와 잠열 열교환기(220)를 통해 공급되는 고온의 열매체가 온수탱크(300)에 저수되어 있는 물과 열교환을 통해 온수를 생산하게 한다.
이 경우 본 발명에 의한 소형 열병합발전기의 열매체 순환구조는 상기 스털링 엔진(110)을 냉각하기 위해 상기 온수탱크(300)에서 열교환 된 저온의 열매체가 열매체환수라인(130)을 통해 환수되되, 직수라인(140)을 통해 유입되는 저온의 직수와 환수라인열교환기(150)에 의해 열교환된 후, 스털링 엔진(110)을 경유하게 되고, 이 후 다시 상기 잠열 열교환기(220)와 현열 열교환기(210)를 순차 반복하여 순환하도록 구성되는 구조이다.
상기 온수탱크(300)는 일측에 저수온도를 감지하는 온도센서(310)가 구비되어 있어, 온수의 온도가 낮으면 소형 열병합발전기의 가동을 하여 상시 50℃ 내지 60℃의 온수를 생성하도록 하고, 온수의 사용량이 적은 상황에서는 50℃ 내지 60℃에서 평형상태를 이루게 된다. 또한 사용자의 온수 사용 시 온수 사용량 만큼 상기 직수라인(140)으로 직수를 보충하여 일정 수위를 유지하게 된다.
즉 상기 온수탱크(300)에 상기 직수라인(140)을 바로 연결하지 않고 상기 열매체환수라인(130)과 1차적으로 열교환 될 수 있도록 직수라인(140) 일측에 환수라인열교환기(150)가 구비된다.
따라서 상기 환수라인열교환기(150)에서 열교환되어 비교적 높은 온도로 상기 온수탱크(300)에 유입이 될 수 있어, 상시 50℃ 내지 60℃의 온수를 저수하는 온수탱크(300)의 온도제어가 수월해진다.
또한 상기 열매체환수라인(130)을 통해 환수되어 상기 스털링 엔진(100)으로 유입되는 열매체는 상기 직수라인(140)의 저온의 직수와 열교환으로 인해 상기 스털링 엔진(110)의 저온부 온도를 낮게하여 전기 발전 효율을 높게 유지할 수 있다.
상기 온수탱크(300)에 저수되는 온수는 고온을 유지해야 하기에, 열매체공급라인(160)으로 온수탱크(300)에 공급되는 열매체의 온도는 설정온도보다 통상 5℃ 정도 높은 65℃ 이상이 되어야 하지만, 상기 열매체환수라인(130)을 통해 환수되는 열매체의 온도가 낮고 유량이 큰 경우, 상기 열매체공급라인(160)으로 온수탱크(300)에 공급되는 열매체의 온도를 충분히 높게 제공할 수 없는 경우가 있다.
자세하게는 상기 스털링 엔진(110)이 열매체에 전달할 수 있는 총 열량(Q)은 일정하되 열매체의 유량(M)과 온도차이(dT)의 곱에 비례하는데, 열매체의 온도가 낮고 유량이 큰 경우 결국 온수탱크(300)에 공급되는 열매체의 온도는 온수탱크(300)의 저수 설정온도보다 낮아질 수 있다.
이 경우 온수탱크(300)의 저수 설정온도를 맞추기 위해 보조보일러(200)를 추가적으로 구동해야 하는 등 열효율이 오히려 낮아질 수 있게 된다.
따라서 상기 환수라인열교환기(150)와 스털링 엔진(110) 사이에 구비된 순환펌프(170)에 의해 열매체 순환유량(M)을 작게 조절하여 스털링 엔진(110)에서 공급하는 열매체의 공급온도를 충분히 높게 조절할 수 있게 된다.
또한 상기 순환펌프(170)에서 순환 유량을 일정 수준까지 적게 유지하더라도 상기 스털링 엔진(110)에서 과열 교환된 열매체의 상당부분은 보조보일러(200)의 현열 및 잠열 열교환기에서 그 열을 일정량을 회수하기 때문에 상기 온수탱크(300)에 공급되는 열매체의 온도가 급격하게 높아지는 것을 완충시킬 수 있어서, 온수 사용자에게 불편함을 제공하지 않는다.
상기 직수라인(140)의 일측에는 유량센서(180)가 구비되어 상기 온수탱크(300)로 유입되는 직수의 유량을 감지하여 사용자의 온수 사용을 감지할 수 있다. 또한 사용자의 온수 사용을 감지하면, 상기 온수탱크(300)에 구비된 온도센서(310)는 상기 온수탱크(300)에 저수된 온수의 온도를 센싱하여 기 설정온도보다 낮다고 판단되면, 상기 스털링 엔진(110)의 가동 또는 상기 스털링 엔진(110)과 보조보일러(220)를 동시에 가동시킬 수 있다.
이 경우 본 발명에 의한 소형 열병합발전기의 온수온도 제어방법에 대하여 설명하기로 한다.
도 5에 도시된 바와 같이, 소형 열병합발전기의 운행 동작 중에 유량센서(180)로 온수탱크(300)로 유입되는 직수의 유량을 감지하여 사용자의 온수 사용 여부를 판단한다(S10).
설정온도(A)는 온수를 사용하지 않을 때 자연 방열에 의해 온수탱크(300)에 저장된 온수온도(T)가 낮아질 경우, 상기 스털링 엔진(110)을 가동해야 할 온도를 의미한다.
또한 설정온도(B)는 사용자의 온수 사용에 의해 저온의 직수가 유입되어 온수탱크(300)에 저장된 온수온도(T)가 낮아질 경우 상기 스털링 엔진(110)이 가동해야 할 온도로서, 사용자에게 안정적인 온도를 제공하기 위해 상기 설정온도(A) 보다 높게 설정될 필요가 있다.
자세하게는 상기 유량센서(180)에 의해 온수 사용을 감지할 수 있으므로, 온수 사용 시와 자연 방열에 의한 설정온도(A, B)를 각각 설정할 수 있다. 일반적으로 자연방열에 의한 설정온도(A)는 사용자에 의해 급히 온수를 필요로 하는 것이 아니기에 효율적인 측면에서 온수탱크에 높은 온수온도를 유지할 필요가 없으므로 그 설정온도(A)를 낮게 설정할 수 있다.
따라서 상기 유량센서(180)에 의해 온수를 사용하고 있다고 판단되면, 상기 온수탱크(300)에 저장된 온수온도(T)가 기 설정된 설정온도(B)보다 낮은지를 판단(S12)한다.
또한 상기 유량센서(180)에 의해 온수를 사용하고 있지 않다고 판단되면, 상기 온수탱크(300)에 저장된 온수온도(T)가 기 설정된 설정온도(A)보다 낮은지를 판단(S14)한다.
상기 S12와 S14단계에서 온수온도(T)가 설정온도(A, B)보다 낮다고 판단되면, 상기 스털링 엔진(100)을 가동시킨다(S20).
이 경우 상기 순환펌프(170)에 의해 열매체 순환유량(M)을 조절하여 스털링 엔진(110)에서 공급하는 열매체의 공급온도를 높게 조절한다(S30).
이후 온수온도(T)가 상기 스털링 엔진(110)의 가동 정지를 위한 설정온도(C) 보다 높거나 같다고 판단(S40)되면, 상기 S20단계에서 가동된 스털링 엔진(100)의 가동을 정지한다(S50).
상기 설정온도(C)는 설정온도(B) 보다 충분히 높게 두어 상기 스털링 엔진(110)의 잦은 반복 운동을 억제하여 내구성을 증진시킨다.
이상에서 설명된 본 발명의 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
[부호의 설명]
100 : 하우징 110 : 스털링 엔진
120 : 엔진버너 130 : 열매체환수관
140 : 직수라인 150 : 환수라인열교환기
160 : 열매체공급라인 170 : 순환펌프
180 : 유량센서 200 : 보조보일러
210 : 현열 열교환기 215 : 보조버너
220 : 잠열 열교환기 230 : 케이스
250 : 연통관 300 : 온수탱크
310 : 온도센서

Claims (4)

  1. 엔진버너(120)의 가열로 인한 고온의 엔진헤드와, 온수탱트(300)에서 열매체환수라인(130)을 통해 환수된 저온의 열매체의 온도차에 의해 전기를 생산하는 스털링 엔진(110);
    상기 스털링 엔진(110)의 일측에 설치되는 현열 열교환기(210);
    상기 스털링 엔진(110)와 현열 열교환기(210)를 경유한 고온의 열매체가 열매체공급라인(160)을 통해 공급받아 저수와 열교환되는 온수탱크(300); 및
    상기 열매체환수라인(130)의 열매체와 열교환되는 환수라인열교환기(150)를 경유하고, 상기 온수탱크(300)의 저수에 일정 수위를 유지하도록 직수를 보충하는 직수라인(140);
    을 포함하여 구성되는 것을 특징으로 하는 소형 열병합발전기의 열매체 순환구조.
  2. 청구항 1에 있어서,
    상기 스털링 엔진(110)의 일측에 설치되는 잠열 열교환기(220);를 더 포함하고,
    상기 온수탱크(300)는,
    상기 스털링 엔진(110)와 현열 열교환기(210) 및 잠열 열교환기(220)를 경유한 고온의 열매체가 열매체공급라인(160)을 통해 공급받아 저수와 열교환되는 것을 특징으로 하는 소형 열병합발전기의 열매체 순환구조.
  3. 청구항 1에 있어서,
    상기 환수라인열교환기(150)와 스털링 엔진(110) 사이에 구비되어, 스털링 엔진(110)에서 공급하는 열매체의 공급온도가 조절되도록, 상기 환수라인열교환기(150)에서 직수와 열교환되는 열매체의 순환유량(M)을 조절하는 순환펌프(170);
    를 더 포함하여 구성되는 것을 특징으로 하는 소형 열병합발전기의 열매체 순환구조.
  4. 소형 열병합발전기의 운행 동작 중에 유량센서(180)로 온수탱크(300)로 유입되는 직수의 유량을 센싱하여 사용자의 온수 사용 여부를 판단하는 단계(S10);
    상기 S10 단계에서 사용자가 온수를 사용하고 있다고 판단되면, 상기 온수탱크(300)에 저장된 온수온도(T)가 기 설정된 설정온도(B)보다 낮은지 판단하는 단계(S12);
    상기 S10 단계에서 사용자가 온수를 사용하고 있지 않다고 판단되면, 온수탱크(300)에 저장된 온수온도(T)가 기 설정된 설정온도(A)보다 낮은지 판단하는 단계(S14);
    상기 S12와 S14단계에서 온수온도(T)가 설정온도(A, B)보다 낮다고 판단되면, 상기 스털링 엔진(100)을 가동하는 단계(S20);
    순환펌프(170)에 의해 열매체 순환유량(M)을 조절하여 스털링 엔진(110)에서 공급하는 열매체의 공급온도를 조절하는 단계(S30);
    온수온도(T)가 상기 스털링 엔진(110)의 가동 정지를 위한 설정온도(C) 보다 낮은지 판단하는 단계(S40);
    상기 S40단계에서 온수온도(T)가 설정온도(C)보다 높거나 같다고 판단되면, 상기 S20단계에서 가동된 스털링 엔진(100)의 가동을 정지하는 단계(S50);
    를 포함하여 구성되는 것을 특징으로 하는 소형 열병합발전기의 온수온도 제어방법.
PCT/KR2015/005817 2014-06-27 2015-06-10 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법 WO2015199359A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580035085.XA CN106662039B (zh) 2014-06-27 2015-06-10 用于热电联供发电机的热媒循环结构和热水温度控制方法
US15/322,057 US10180116B2 (en) 2014-06-27 2015-06-10 Heat medium circulation structure and hot water temperature control method for micro combined heat and power generator
EP15810998.3A EP3163061B1 (en) 2014-06-27 2015-06-10 Heat medium circulation structure and hot water temperature control method for micro combined heat and power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0080292 2014-06-27
KR1020140080292A KR101601264B1 (ko) 2014-06-27 2014-06-27 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법

Publications (1)

Publication Number Publication Date
WO2015199359A1 true WO2015199359A1 (ko) 2015-12-30

Family

ID=54938394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005817 WO2015199359A1 (ko) 2014-06-27 2015-06-10 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법

Country Status (5)

Country Link
US (1) US10180116B2 (ko)
EP (1) EP3163061B1 (ko)
KR (1) KR101601264B1 (ko)
CN (1) CN106662039B (ko)
WO (1) WO2015199359A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101953152B1 (ko) * 2017-06-07 2019-05-17 강환국 온수 공급 장치
KR20190034368A (ko) * 2017-09-22 2019-04-02 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
KR102303790B1 (ko) * 2018-12-28 2021-09-23 주식회사 경동나비엔 전열핀 및 이를 이용한 핀튜브 타입의 열교환기 유닛
CN111864994B (zh) * 2019-04-30 2023-01-24 新疆金风科技股份有限公司 换热系统及电机
US11859834B2 (en) 2020-10-07 2024-01-02 Axiom Energy Group, LLC Micro-combined heat and power system with exterior generator and heating system compatibility and method of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013811A (ja) * 2000-06-30 2002-01-18 Tokyo Gas Co Ltd 貯湯給湯器
KR200307728Y1 (ko) * 2002-12-09 2003-03-20 윤차주 히트펌프식 열회수 보일러
JP3902984B2 (ja) * 2002-06-19 2007-04-11 東京瓦斯株式会社 貯湯式給湯器
KR101183815B1 (ko) * 2010-08-17 2012-09-17 주식회사 경동나비엔 소형 열병합발전기에서 엔진 배기유로의 배출구조

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688048B2 (en) * 1998-04-24 2004-02-10 Udo I. Staschik Utilities container
US6393775B1 (en) * 1998-04-24 2002-05-28 Udo Ingmar Staschik Utilities container
DE19936591C1 (de) * 1999-08-04 2001-02-15 Bosch Gmbh Robert Gasbetriebene Generator-Therme
FR2805410B1 (fr) * 2000-02-23 2002-09-06 Andre Rene Georges Gennesseaux Systeme autonome de cogeneration d'electricite et de chaleur comportant un stockage d'energie par volant d'inertie
NL1015319C2 (nl) 2000-05-26 2001-11-27 Enatec Micro Cogen B V Inrichting en werkwijze voor het gekoppeld opwekken van warmte en elektriciteit.
DE10244343A1 (de) * 2002-09-24 2004-04-01 Robert Bosch Gmbh Anlage zur Kraft-Wärme-Kopplung mit Nutzung der Abwärme von Peripherieaggregaten
US7040544B2 (en) * 2003-11-07 2006-05-09 Climate Energy, Llc System and method for warm air space heating with electrical power generation
US20100038441A1 (en) * 2006-08-31 2010-02-18 Troels Pedersen Energy system with a heat pump
GB2444944A (en) * 2006-12-20 2008-06-25 Microgen Energy Ltd Storage combination boiler
KR101458511B1 (ko) * 2008-08-26 2014-11-07 엘지전자 주식회사 열병합 발전 시스템 및 그의 제어 방법
RU2473847C1 (ru) * 2010-08-17 2013-01-27 Кюндон Навиен Ко., Лтд. Выпускное устройство вторичного котла малого когенератора и узел кожуха, образующий выпускной канал вторичного котла малого когенератора
CN102878037B (zh) * 2012-10-30 2014-09-10 浙江大学 热源互补型斯特林发动机热电联供系统及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013811A (ja) * 2000-06-30 2002-01-18 Tokyo Gas Co Ltd 貯湯給湯器
JP3902984B2 (ja) * 2002-06-19 2007-04-11 東京瓦斯株式会社 貯湯式給湯器
KR200307728Y1 (ko) * 2002-12-09 2003-03-20 윤차주 히트펌프식 열회수 보일러
KR101183815B1 (ko) * 2010-08-17 2012-09-17 주식회사 경동나비엔 소형 열병합발전기에서 엔진 배기유로의 배출구조

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163061A4 *

Also Published As

Publication number Publication date
US10180116B2 (en) 2019-01-15
EP3163061B1 (en) 2019-08-21
KR20160001927A (ko) 2016-01-07
US20170138300A1 (en) 2017-05-18
CN106662039A (zh) 2017-05-10
CN106662039B (zh) 2019-05-10
KR101601264B1 (ko) 2016-03-09
EP3163061A4 (en) 2018-07-25
EP3163061A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2015199359A1 (ko) 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법
WO2015026063A1 (ko) 믹싱밸브를 이용한 배열환수온도 제어시스템 및 그 방법
CN107575929B (zh) 一种燃气供暖蓄热采暖设备
WO2013115500A1 (ko) 냉각라인이 형성되는 잠열 열교환기 커버
WO2014051268A1 (ko) 삼방밸브 또는 믹싱밸브를 이용한 배열회수시스템의 급탕온도 제어구조 및 온수탱크 열교환기를 이용한 배열회수시스템의 급탕온도 제어구조
WO2014014321A1 (ko) 증기 생산용 고주파 유도가열 보일러
KR101173746B1 (ko) 소형 열병합 발전 시스템 및 그 제어방법
WO2012023678A1 (ko) 소형 열병합발전기의 보조보일러 배기구조 및 소형 열병합발전기의 보조보일러 배기유로 형성용 커버조립체
CN103512080B (zh) 一种烟囱锅炉余热半导体温差发电取暖热水器系统
EP2593717A2 (en) Steam generation device for automatic water supply using self vapor pressure
WO2017065423A1 (ko) 전기를 이용한 보일러
CN107769617B (zh) 温差发电系统及燃气灶
CN106679178A (zh) 一种加热辊电加热系统
WO2018105841A1 (ko) 직렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2011040714A2 (ko) 소형 열병합 발전 시스템의 운전방법
WO2017007198A1 (ko) 연료전지 시스템
CN103017234B (zh) 太阳能锅炉供热系统
CN206449864U (zh) 一种加热辊电加热系统
CN207407417U (zh) 一种燃气供暖蓄热采暖设备
CN220039210U (zh) 一种便于对换热机组热量回收的余热回收器
CN220793101U (zh) 一种燃煤发电机组蒸汽再热设备
KR101544440B1 (ko) 버퍼탱크를 구비한 소형 열병합발전기의 열매체 순환구조
CN218846441U (zh) 一种用于电驱锅炉的热效率转换系统
WO2011040712A2 (ko) 소형 열병합 발전 시스템
WO2011040713A2 (ko) 소형 열병합 발전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810998

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015810998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15322057

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE