WO2015199218A1 - High voltage device - Google Patents

High voltage device Download PDF

Info

Publication number
WO2015199218A1
WO2015199218A1 PCT/JP2015/068506 JP2015068506W WO2015199218A1 WO 2015199218 A1 WO2015199218 A1 WO 2015199218A1 JP 2015068506 W JP2015068506 W JP 2015068506W WO 2015199218 A1 WO2015199218 A1 WO 2015199218A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
mode
high voltage
voltage device
voltage
Prior art date
Application number
PCT/JP2015/068506
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 河口
庄司 浩幸
浩和 飯嶋
美奈 チャホン小川
堂本 拓也
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Publication of WO2015199218A1 publication Critical patent/WO2015199218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube

Definitions

  • the present invention relates to an X-ray apparatus such as an X-ray CT apparatus and a general X-ray imaging apparatus, and a high voltage apparatus that supplies a high DC voltage to a load.
  • a converter that inputs a commercial power supply and outputs a DC voltage
  • an inverter that inputs a DC voltage and generates a high-frequency AC voltage
  • a rectifier circuit for example, a multi-stage voltage doubler rectifier circuit or a Cockcroft-Walton circuit
  • It is configured to supply.
  • the drive frequency of the inverter As a means for solving this problem, it is known to increase the drive frequency of the inverter. By increasing the drive frequency of the inverter, the AC voltage supplied to the rectifier circuit can be increased, so that the capacitor capacity can be reduced while suppressing the pulsation of the tube voltage. By reducing the capacitor capacity, the rise and fall of the tube voltage can be speeded up. Further, the response speed of the output voltage can be improved by increasing the drive frequency of the inverter. However, if the drive frequency of the inverter is simply increased, the switching loss increases. Therefore, there is a problem that it becomes difficult to cool the switching element, particularly when shooting with a constant tube voltage maintained for a long time.
  • Non-Patent Document 3 is disclosed as means for speeding up the start-up of the X-ray high-voltage device.
  • the output power supplied from the inverter to the rectifier circuit is increased as compared with the steady period, so that the rising speed of the tube voltage is increased.
  • Non-Patent Document 3 when the smoothing capacitor capacity is the same, it is necessary to increase the output current of the inverter in proportion to the increase in the rising speed of the tube voltage. There are challenges that will be difficult. Moreover, since the fall of the tube voltage depends on the equivalent resistance value of the X-ray tube and the time constant of the capacitance of the smoothing capacitor, the technique described in Non-Patent Document 3 speeds up the fall of the tube voltage. Is difficult.
  • the present invention is connected between a DC power source and a resonance circuit, and is connected between an inverter that converts a DC voltage into an AC voltage, the resonance circuit, and the resonance circuit and a load.
  • a high voltage apparatus comprising: a rectifier circuit that rectifies an AC voltage and supplies a DC voltage to a load; and a control unit that controls the inverter, wherein the control unit resonates from the inverter to the resonance circuit.
  • the first mode in which the frequency of the current operates to be substantially equal to the frequency for driving the inverter, and the frequency of the resonance current supplied from the inverter to the resonance circuit is the (natural number + 1) of the frequency for driving the inverter. )
  • a second mode that operates so as to be doubled, and a switching unit that switches between the first mode and the second mode.
  • the smoothing capacitor capacity while suppressing an increase in switching loss of the inverter in a steady period. Furthermore, since the drive frequency of the inverter can be increased only during the rising period of the output voltage, a high voltage device that achieves both low inverter loss during the steady period and high speed of rising and falling of the output voltage. Can be provided.
  • FIG. 1 is a circuit configuration diagram of a high voltage device according to Embodiment 1.
  • FIG. 3 is a flowchart for explaining the operation of the high-voltage device according to the first embodiment.
  • FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment.
  • FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment.
  • FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment.
  • FIG. 3 is a circuit configuration diagram of a high voltage device according to a second embodiment. The wave form diagram explaining operation
  • FIG. FIG. 6 is a circuit configuration diagram of a high voltage device according to a third embodiment.
  • FIG. 6 is a waveform diagram for explaining the operation of the high voltage device according to the third embodiment.
  • FIG. 6 is a circuit configuration diagram of a high voltage device according to a fourth embodiment.
  • 10 is a flowchart for explaining the operation of the high voltage device according to the fourth embodiment.
  • FIG. 1 is a circuit configuration diagram of a high-voltage device according to Embodiment 1 of the present invention.
  • This high-voltage device includes a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 3, a rectifier circuit 4, a control unit 5, and a voltage detection unit 6.
  • a DC voltage is supplied to an X-ray tube 7 as a load. Supply high voltage.
  • the inverter 2 receives the DC power source 1 and outputs an AC voltage having an arbitrary frequency to the resonance circuit 3, and is composed of switching elements Q1 to Q4 connected in a bridge, and each of the switching elements Q1 to Q4 has a reverse polarity. Parallel diodes D1 to D4 are connected.
  • the resonant circuit 3 includes a transformer 31 and a parallel resonant capacitor Cp connected in parallel to both ends of the secondary winding N2, and supplies high-frequency AC power to the rectifier circuit 4.
  • the transformer 31 includes a resonant inductor Lr connected in series with the primary winding N1, a primary winding N1, a magnetic core T1, and a secondary winding N2.
  • the rectifier circuit 4 includes bridge-connected rectifier diodes Dr1 to Dr4 and a smoothing capacitor Cm.
  • the rectifier circuit 4 rectifies and smoothes the AC voltage output between the terminals of the parallel resonant capacitor Cp and supplies the DC voltage to the load 7. .
  • a high voltage of about several tens to one hundred kV is applied to the rectifier diodes Dr1 to Dr4
  • a configuration in which a plurality of elements are connected in series is used.
  • a balancing capacitor for equalizing the voltage applied to the elements may be connected in parallel with the elements.
  • the control means 5 controls the switching elements Q1 to Q4, and includes a gate signal generation means 51 for generating gate signals of the switching elements Q1 to Q4, a basic resonance mode 53, an N-fold resonance mode 54, and a switching means. 52.
  • the control means 5 is connected to the voltage detection means 6 and can detect the voltage of the X-ray tube 7 (hereinafter referred to as tube voltage).
  • the switching unit 52 switches between the basic resonance mode 53 and the N-fold resonance mode 54 based on the tube voltage detected from the voltage detection unit 6.
  • the inverter 2 operates as a resonant inverter in which the inverter output current I1 (hereinafter referred to as the resonant current I1) supplied to the resonant circuit 3 is sinusoidal.
  • the inverter 2 is operated so that the frequency of the resonance current I1 supplied from the inverter 2 to the resonance circuit 3 is substantially equal to the drive frequency of the inverter 2.
  • being approximately equal means that the relationship between the drive frequency fsw of the inverter 2 and the frequency fr of the resonance current I1 operates as a general resonance inverter that satisfies the equation (1).
  • the inverter 2 is operated so that the frequency of the resonance current I1 supplied from the inverter 2 to the resonance circuit 3 is N times the drive frequency of the inverter 2.
  • N hereinafter referred to as a multiple
  • N represents (natural number + 1).
  • FIG. 2 is a flowchart showing the logic of the operation from the rising period of the high voltage device of FIG. 1 to the transition to the steady period.
  • S100 to S105 in FIG. 2 indicate Step 100 to Step 105.
  • FIG. 3 shows changes of the output voltage V1, the resonance current I1, and the tube voltage Vx of the inverter 2 with time t.
  • FIG. 4 shows an enlarged operation waveform in the vicinity of time t1 in FIG. 3, depending on the time t of the gate signals G1 to G4 for controlling the switching elements Q1 to Q4, the output voltage V1 of the inverter 2, the resonance current I1, and the tube voltage Vx. It shows a change.
  • the currents in all the operation waveform diagrams including FIG. 3 are positive in the current flowing from the left to the right in each element in the circuit diagram of FIG.
  • the drive frequency fsw of the inverter and the constants of the resonance circuit 3 are set so that the frequency of the resonance current I1 in the basic resonance mode 53 and the frequency of the resonance current I1 in the N-fold resonance mode 54 shown in FIG. Set.
  • the constant of the resonance circuit 3 is the same in the basic resonance mode 53 and the N-fold resonance mode 54.
  • the target value Vx1 and the switching command value Vx2 may be set to different values.
  • the switching means 52 sets the inverter 2 to the basic resonance mode 53 and starts the operation (period t0 to t1 in FIG. 3). .
  • the drive frequency fsw of the inverter 2 operates at a predetermined constant value fsw1.
  • the voltage detection means 6 compares the tube voltage Vx and the switching command value Vx2, and determines the switching of the operation mode of the inverter 2.
  • Step 103 If it is determined in step 102 that the tube voltage Vx has reached the switching command value Vx2 (time t1 in FIG. 3), the switching means 52 switches the inverter 2 to the N-fold resonance mode 54 (from time t1 to time t1 in FIG. 3). timing of t3). At this time, as shown in FIG. 4, the switching means 52 is synchronized with the operation period of the basic resonance mode 53 (the H signal or L signal of the gate signals G1, G4 and the H signal or L signal of the gate signals G2, G3). The operation mode is shifted at the timing of switching.
  • the drive frequency fsw of the inverter 2 operates at a value set in advance according to the tube voltage target value Vx1.
  • the pulsation ⁇ Vx of the tube voltage Vx occurs at the operation mode switching timing, it is considered that there is no problem because it is a rising period.
  • Step 104 the inverter 2 is operated in the N-fold resonance mode 54, the tube voltage Vx detected by the voltage detection means 6 is compared with the target value Vx1, and the transition to the steady period is determined.
  • step 105 In step 104, when the tube voltage Vx reaches the target value Vx1 (time t2 in FIG. 3), it is determined that the tube voltage has shifted to the steady period, and the flow proceeds to step 105.
  • step 105 although not shown in FIG. 1, an instruction to start photographing is transmitted from the control means 5 to the host system. At this time, the inverter 2 continues to operate in the N-fold resonance mode 54.
  • the high voltage device of this embodiment suppresses the pulsation of the tube voltage without increasing the drive frequency fsw of the inverter 2 by setting the operation mode of the inverter 2 in the steady period to the N-fold resonance mode 54.
  • the smoothing capacitor capacity of the rectifier circuit 4 can be reduced.
  • the driving frequency fsw1 in the rising period is changed to the driving frequency fsw2 in the steady period by switching the operation mode of the inverter 2 to the basic resonance mode 53 and the N-fold resonance mode 54 according to the tube voltage condition. Compared with this, the frequency can be increased.
  • the response speed of the output voltage can be improved.
  • FIG. 5 shows an example in which the tube voltage target value Vx1 at the time of photographing instructed by the host system and the tube voltage target value Vx2 for determining the timing for switching the operation mode of the inverter 2 are different conditions (Vx1 ⁇ Vx2). Show.
  • the tube voltage switching command value Vx2 is set to a value lower than the target value Vx1.
  • the pulsation width ⁇ Vx of the tube voltage Vx generated at the switching timing of the operation mode can be suppressed to a small value.
  • the rise of the tube voltage can be further increased.
  • the operation mode of the inverter by switching the operation mode of the inverter to the basic resonance mode and the N-fold resonance mode according to the tube voltage condition, the rise of the tube voltage is suppressed while suppressing the loss of the inverter in the steady period.
  • the speed can be increased.
  • the switching timing between the basic resonance mode and the N-fold resonance mode is determined based on the value of the tube voltage, but is not limited thereto.
  • a counter may be provided inside the control means, and the operation mode may be changed based on the elapsed time from the start of each operation mode.
  • FIG. 6 is a circuit configuration diagram of a high voltage device according to the second embodiment of the present invention.
  • FIG. 7 shows operation waveforms of the high voltage device of FIG. Similar to the high voltage device of the first embodiment, this high voltage device uses a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 203, a rectifier circuit 204, a control means 205, and a voltage detection means 6.
  • the high voltage of direct current is supplied to the X-ray tube 7 which is a load.
  • the difference from the first embodiment is that a series resonant capacitor Cs connected in series with the primary winding N11 is connected to the resonance circuit 203, a point that the cock croft circuit is connected in multiple stages in the rectifier circuit 204, and control.
  • the N-fold resonance mode 54 in the means 205 is provided with a feedback loop of the tube voltage Vx.
  • PI control may be used as a method for calculating the drive frequency fsw, or it is derived from a table showing the relationship between the prepared difference between the tube voltage Vx and the command value Vx1 and the drive frequency fsw of the inverter 2. Also good.
  • the resonance current I1a in the rising period may be larger than the resonance current I1b in the steady period. In this regard, there is no problem because the time is shorter than the entire operation period. (Mode 3) Times t22 to t23 in FIG.
  • the control unit 205 determines that the tube voltage has reached the steady period, and transmits a command to start imaging to the host system. At this time, the inverter 2 is continuously operated in the N-fold resonance mode 54.
  • the N-fold resonance mode 54 of the control unit 205 is provided with a feedback loop of the tube voltage Vx. As a result, it is possible to shorten the period (the period from time t21 to t22 in FIG. 7) until the tube voltage reaches the target value Vx1 after the operation mode of the inverter 2 is switched to the N-fold resonance mode 54. Compared to 1, the rise of the tube voltage Vx can be further increased.
  • FIG. 8 is a circuit configuration diagram of the high voltage device according to the third embodiment of the present invention.
  • FIG. 9 shows operation waveforms of the high voltage device of FIG. Similar to the high voltage device of the second embodiment, this high voltage device uses a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 303, a rectifier circuit 304, a control means 305, and a voltage detection means 6.
  • the high voltage of direct current is supplied to the X-ray tube 7 which is a load.
  • the difference from the second embodiment is that the secondary winding of the transformer in the resonance circuit 303 is divided into the secondary winding N21 and the secondary winding N22, and the secondary winding N21 and the secondary winding are configured.
  • the current detection means 8 for detecting the current I1 is provided, and the basic resonance mode 53 in the control means 305 is provided with a feedback loop for the resonance current I1 and a feedback loop for the tube voltage Vx.
  • the current detection means 8 detects the average value or peak value of the resonance current I 1 and inputs it to the control means 305.
  • Mode 1 Period from Time t0 to t32
  • the inverter 2 operates in the basic resonance mode 53.
  • the basic resonance mode 53 is based on the difference between the resonance current I1 detected by the current detector 8 and the target value I1ref so that the resonance current I1 approaches the target value I1ref by using a feedback loop of the resonance current I1.
  • the drive frequency fsw of the inverter 2 is determined. In the operation of FIG.
  • the target value I1ref is set so that the resonance current I1a in the rising period becomes a value (I1a> I1b) larger than the resonance current I1b in the steady period. This period is continued until the tube voltage Vx reaches the command value Vx22.
  • (Mode 2) Period from Time t32 to t33
  • the basic resonance mode 53 is switched to a feedback loop of the tube voltage Vx.
  • the drive frequency fsw of the inverter 2 is determined based on the difference between the tube voltage value Vx detected by the voltage detection means 6 and the switching command value Vx2. This period is continued until the tube voltage Vx reaches the switching command value Vx2.
  • the basic resonance mode 53 is provided with the feedback loop of the resonance current I1 and the feedback loop of the tube voltage Vx.
  • the basic resonance mode period can be shortened by setting the target value of the resonance current so that the resonance current during the rising period becomes larger than the steady period. It is possible to further increase the speed of the rise.
  • the current detection means 8 detects the average value or peak value of the resonance current I1, but the zero cross point of the resonance current I1 may be detected. By detecting the zero-cross point of the resonance current, it is possible to determine whether the drive frequency fsw of the inverter 2 and the resonance current frequency have a predetermined relationship. Further, in the high voltage device of the present embodiment, the operation mode of the inverter 2 is switched by detecting the tube voltage Vx, but the present invention is not limited to this. For example, the voltage across the smoothing capacitor Cm1 of the rectifier circuit 204 may be detected, and the operation mode of the inverter 2 may be switched according to the value of the voltage across the smoothing capacitor Cm1.
  • the basic resonance mode 53 is provided with the feedback loop for the resonance current I1
  • the N-fold resonance mode 54 may also be provided with a feedback loop for the resonance current I1.
  • FIG. 10 is a circuit configuration diagram of a high voltage device according to the fourth embodiment of the present invention.
  • FIG. 11 is a flowchart of the operation logic until the operation pattern of the high voltage device shown in FIG. 10 is determined.
  • S400 to S408 in FIG. 11 indicate Step 400 to Step 408.
  • FIGS. 12 to 14 are diagrams showing operation patterns 1 to 3 of the high-voltage device of FIG. 10 and show changes of the inverter drive frequency fsw, inverter output voltage V1, inverter output current I1, and tube voltage Vx with time t. ing.
  • this high voltage device uses a DC voltage 1 as a power source, and includes an inverter 2, a resonance circuit 303, a rectifier circuit 304, a control means 405, and a voltage detection means 6.
  • the high voltage of direct current is supplied to the X-ray tube 7 which is a load.
  • an operation mode switching unit 455 and an operation pattern determination unit 456 are provided in the switching unit 452 and a photographing pattern selection unit 9 is provided.
  • Step 400 arbitrary shooting pattern information corresponding to the shooting location and the condition of the subject is input to the shooting pattern selection unit 9 from the outside.
  • the shooting pattern selection means 9 extracts the pattern of the tube voltage Vx from the start to the stop of the high voltage device based on the input shooting pattern information.
  • Step 401 the tube voltage pattern extracted in step 400 is transmitted to the operation pattern determining means 456 inside the switching means 452. Then, the process proceeds to step 402.
  • Step 402 the operation pattern determination means 456 determines whether or not the tube voltage Vx is switched based on the tube voltage Vx pattern transmitted from the imaging pattern selection means 9. If it is necessary to switch the tube voltage Vx (S401: YES), the process proceeds to step 404. If it is not necessary to switch the tube voltage (S401: NO), the process proceeds to step 403. (Step 403) In step 403, the operation pattern 1 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455. When the transmission of the operation pattern is completed, the process proceeds to step 407. (Step 404) In step 404, the tube voltage switching period T and the determination value Tb are compared based on the pulse pattern of the tube voltage Vx transmitted from the imaging pattern selection means 9.
  • Step 405 a value determined in advance based on the output voltage characteristics of the high-voltage device acquired in advance is used.
  • the process proceeds to step 405.
  • step 405 the operation pattern 2 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455.
  • the process proceeds to step 407.
  • step 406 If it is determined in step 404 that the tube voltage switching period T is T ⁇ Tb (S403: YES), the process proceeds to step 406.
  • the operation pattern 3 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455.
  • step 407 it is detected that an operation pattern has been transmitted to the operation mode switching means 455, and an operation mode at the time of activation is set based on the designated operation pattern.
  • Step 408 When the setting of the operation mode is completed in step 407, the operation of the high voltage device is started.
  • the operation pattern of the high voltage device is set based on the information of the preset shooting pattern.
  • the operation pattern 1 is an example of the operation of the high voltage device in the general imaging mode in which imaging is performed with the tube voltage being constant, and the operation pattern 2 and the operation pattern 3 are multi-energy imaging in which imaging is performed by switching a plurality of tube voltage values.
  • 2 shows an example of the operation of a high voltage device in mode.
  • the constants of the resonance circuit 303 are the same.
  • the inverter 2 is operated in the N-fold resonance mode 54 in the period from the start of the high voltage device to the end of photographing (period from time 0 to time t42 in FIG. 12).
  • the inverter 2 enters a stop mode in which the switching operation is stopped, and continues until the tube voltage becomes zero.
  • the falling period depends on the capacitances of the smoothing capacitors Cm1 and Cm2 of the rectifier circuit 304 and the time constant of the equivalent resistance value of the X-ray tube.
  • the drive frequency fsw of the inverter 2 is set to 1 / N of the basic resonance mode 53. Therefore, the response speed of the tube voltage is lower than that in the basic resonance mode 53.
  • the switching loss of the inverter 2 can be suppressed, it can be said that it is suitable for long-term imaging with a constant tube voltage.
  • the entire period from the start to the end of imaging is operated in the N-fold resonance mode 54, but the present invention is not limited to this.
  • the inverter 2 may be operated in the basic resonance mode 53 when it is necessary to rapidly increase the tube voltage, such as when the tube voltage sharply decreases during imaging due to abnormal discharge of the X-ray tube.
  • the operation pattern 2 shows the operation of the high voltage device when the tube voltage is switched during the photographing period.
  • the tube voltage rising period (time t0 to t51 in FIG. 13 and time t55 to 56) is operated in the basic resonance mode 53, and the steady period (time t51 in FIG. 13).
  • the falling period of the tube voltage periods t53 to t54, times t58 to t59, and times t60 to 61 in FIG.
  • the inverter 2 is set to the stop mode.
  • the inverter 2 is operated in the basic resonance mode 53 only during the rising period of the tube voltage. For this reason, compared with the operation pattern 1, the rise of the tube voltage can be speeded up. Further, the switching loss can be suppressed by operating the inverter 2 in the N-fold resonance mode during the steady period.
  • the operation pattern 2 is an operation pattern in which both the rise of the tube voltage is accelerated and the loss of the inverter is reduced, and it can be said that the operation pattern 2 is suitable for an imaging mode in which the tube voltage is switched at a relatively long cycle. (Operation pattern 3)
  • the operation pattern 3 will be described with reference to FIG.
  • the operation pattern 3 shows the operation of the high-voltage device when the tube voltage is switched during the photographing period as in the operation pattern 2.
  • the tube voltage switching width ⁇ Vx14 is larger ( ⁇ Vx14> ⁇ Vx13), and the tube voltage switching period Tm43 is shorter (Tm43 ⁇ Tm42).
  • the operation pattern 3 requires a faster rise in tube voltage than the operation pattern 2. Therefore, in the operation pattern 3 in FIG. 14, the tube voltage rise period (time t600 to t601 and time t604 to t605 in FIG. 14) and steady period (time t601 to t602, time t603 to t604 in FIG.
  • the inverter 2 is operated in the basic resonance mode 53 that can increase the response speed of the tube voltage compared to the N-fold resonance mode 54.
  • the tube voltage falling period (time t602 to t603 and time t606 to 607 in FIG. 14) is set to a stop mode in which the switching operation of the inverter 2 is stopped, similarly to the operation patterns 1 and 2.
  • the switching loss increases.
  • the operation pattern 3 is suitable for the imaging mode in which the switching range of the tube voltage is large and the tube voltage is switched at high speed in a short cycle.
  • the operation pattern of the high voltage device suitable for the set load condition can be selected by switching the operation mode of the inverter based on the preset load condition.
  • the constants of the resonance circuit 303 are the same in the basic resonance mode 53 and the N-fold resonance mode 54, but different constants may be used in the basic resonance mode 53 and the N-fold resonance mode 54.
  • a switch and a capacitor may be connected in parallel with the series resonance capacitor Cs, and the resonance circuit may be changed by switching the switch on / off depending on the operation mode of the inverter 2.
  • the present invention can be applied even to a high voltage device including two or more inverters and a rectifier circuit, for example. Is possible. In all the embodiments, the present invention can also be applied to a DC power supply as an output of an AC-DC converter or a DC-DC converter.
  • the high voltage device of the present invention can be applied to a power supply device that supplies a high DC voltage to a load, such as an X-ray diagnostic imaging device or a vacuum deposition electron gun.

Abstract

Provided is a high voltage device in which the rise and fall times of the output voltage can be reduced while suppressing the switching loss during the normal period. The high voltage device is equipped with: an inverter connected between a DC power supply and a resonant circuit and converting DC voltage to AC voltage; said resonant circuit; a rectifier circuit connected between said resonant circuit and a load, rectifying the AC voltage, and supplying a DC voltage to the load; and a control means for controlling said inverter. In the high voltage device, said control means is equipped with: a first mode in which said inverter operates so that the frequency of resonant current supplied to said resonant circuit from said inverter becomes substantially equal to the frequency at which said inverter is driven; a second mode in which said inverter operates so that the frequency of resonant current supplied to said resonant circuit from said inverter becomes (natural number + 1) times the frequency at which said inverter is driven; and a switching means for switching between said first mode and said second mode.

Description

高電圧装置High voltage equipment
 本発明は、X線CT装置や一般X線撮影装置をはじめとしたX線装置や電子顕微鏡に搭載され、負荷へ直流の高電圧を供給する高電圧装置に関するものである。 The present invention relates to an X-ray apparatus such as an X-ray CT apparatus and a general X-ray imaging apparatus, and a high voltage apparatus that supplies a high DC voltage to a load.
 例えば、X線CT装置や一般X線撮影装置をはじめとしたX線装置では、負荷であるX線管へ数十kV~100kV程度の直流の高電圧を供給する必要がある。そのため、X線管へ高電圧を供給する高電圧装置として、例えば特許文献1や特許文献2に開示されている構成が用いられる。 For example, in an X-ray apparatus such as an X-ray CT apparatus and a general X-ray imaging apparatus, it is necessary to supply a DC high voltage of about several tens of kV to 100 kV to an X-ray tube as a load. Therefore, for example, configurations disclosed in Patent Literature 1 and Patent Literature 2 are used as a high voltage device that supplies a high voltage to the X-ray tube.
 特許文献1及び特許文献2に記載のX線高電圧装置では、商用電源を入力し直流電圧を出力するコンバータと、直流電圧を入力して高周波の交流電圧を生成するインバータと、交流電圧を昇圧して整流回路へ供給するトランスと、交流電圧を入力して直流電圧を生成する整流回路(例えば、多段倍電圧整流回路やコッククロフト・ウォルトン回路)で構成され、直流の高電圧をX線管へ供給する構成となっている。 In the X-ray high voltage apparatus described in Patent Document 1 and Patent Document 2, a converter that inputs a commercial power supply and outputs a DC voltage, an inverter that inputs a DC voltage and generates a high-frequency AC voltage, and boosts the AC voltage And a rectifier circuit (for example, a multi-stage voltage doubler rectifier circuit or a Cockcroft-Walton circuit) that generates a DC voltage by inputting an AC voltage, and supplies a DC high voltage to the X-ray tube. It is configured to supply.
 近年、X線CT装置では、被検者の低被ばく化や、撮影画像の高精度化の観点から、スキャン中にエネルギーの異なるX線ビームを照射し、X線透過データを得るマルチエネルギー撮影技術が提案されている。マルチエネルギー撮影技術では、スキャン中にX線管の電圧(以下、管電圧と記す。)を数百μs周期で高速に切り替える必要があり、高電圧装置においてもX線管へ供給する出力電圧の立ち上がり及び立ち下がりの高速化が求められている。 In recent years, in the X-ray CT apparatus, from the viewpoint of reducing the exposure of the subject and improving the accuracy of the captured image, a multi-energy imaging technique for obtaining X-ray transmission data by irradiating an X-ray beam having different energy during scanning. Has been proposed. In the multi-energy imaging technology, it is necessary to switch the voltage of the X-ray tube (hereinafter referred to as tube voltage) at a high speed in a cycle of several hundreds μs during scanning, and the output voltage supplied to the X-ray tube also in a high voltage apparatus. There is a need for faster rise and fall times.
 管電圧の立ち上がり及び立ち下がりは、概ね整流回路の平滑コンデンサ容量に依存するため、平滑コンデンサ容量の低減が有効な手段である。しかしながら、X線装置では管電圧の脈動を規定値以下に抑える必要があるため、単純に整流回路の平滑コンデンサ容量を低減することはできない。 Since the rise and fall of the tube voltage largely depends on the smoothing capacitor capacity of the rectifier circuit, reducing the smoothing capacitor capacity is an effective means. However, since the X-ray apparatus needs to suppress the pulsation of the tube voltage to a specified value or less, the smoothing capacitor capacity of the rectifier circuit cannot be simply reduced.
 この課題を解決する手段として、インバータの駆動周波数を高周波化することが知られている。インバータの駆動周波数を高周波化することで、整流回路へ供給される交流電圧を高周波化することができるため、管電圧の脈動を抑制しながら、コンデンサ容量を低減できる。コンデンサ容量を低減することで、管電圧の立ち上がり及び立ち下がりの高速化が可能となる。また、インバータの駆動周波数を高周波化することで、出力電圧の応答速度を向上することができる。しかし、単純にインバータの駆動周波数を高周波化すると、スイッチング損失が増加するため、特に一定の管電圧を長期間維持して撮影する場合、スイッチング素子の冷却が困難になる課題がある。 As a means for solving this problem, it is known to increase the drive frequency of the inverter. By increasing the drive frequency of the inverter, the AC voltage supplied to the rectifier circuit can be increased, so that the capacitor capacity can be reduced while suppressing the pulsation of the tube voltage. By reducing the capacitor capacity, the rise and fall of the tube voltage can be speeded up. Further, the response speed of the output voltage can be improved by increasing the drive frequency of the inverter. However, if the drive frequency of the inverter is simply increased, the switching loss increases. Therefore, there is a problem that it becomes difficult to cool the switching element, particularly when shooting with a constant tube voltage maintained for a long time.
 X線高電圧装置の立ち上りを高速化する手段として、非特許文献3が開示されている。非特許文献3に記載の技術では、管電圧が所定の値となるまでの立ち上がり期間において、インバータから整流回路へ供給される出力電力を定常期間と比べて増加させることで管電圧の立ち上がりの高速化を図っている。これにより、インバータの駆動周波数を高周波化することなく、管電圧の立ち上がりの高速化が可能となる。 Non-Patent Document 3 is disclosed as means for speeding up the start-up of the X-ray high-voltage device. In the technique described in Non-Patent Document 3, in the rising period until the tube voltage reaches a predetermined value, the output power supplied from the inverter to the rectifier circuit is increased as compared with the steady period, so that the rising speed of the tube voltage is increased. We are trying to make it. As a result, it is possible to increase the rise of the tube voltage without increasing the drive frequency of the inverter.
特開平10-41093号公報Japanese Patent Laid-Open No. 10-41093 特開2009-43571号公報JP 2009-43571 A
 しかしながら、非特許文献3に記載の技術では、平滑コンデンサ容量を同じ条件とした場合、管電圧の立ち上りの高速化に比例してインバータの出力電流を増加する必要があるため、スイッチング素子の冷却が困難になる課題がある。また、管電圧の立ち下がりは、X線管の等価抵抗値と、平滑コンデンサの静電容量の時定数に依存するため、非特許文献3に記載の技術では管電圧の立ち下がりを高速化することが困難である。 However, in the technique described in Non-Patent Document 3, when the smoothing capacitor capacity is the same, it is necessary to increase the output current of the inverter in proportion to the increase in the rising speed of the tube voltage. There are challenges that will be difficult. Moreover, since the fall of the tube voltage depends on the equivalent resistance value of the X-ray tube and the time constant of the capacitance of the smoothing capacitor, the technique described in Non-Patent Document 3 speeds up the fall of the tube voltage. Is difficult.
 上記課題を解決するために、本発明は、直流電源と共振回路の間に接続され、直流電圧を交流電圧に変換するインバータと、前記共振回路と、前記共振回路と負荷との間に接続され、交流電圧を整流し、負荷へ直流電圧を供給する整流回路と、前記インバータを制御する制御手段と、を備えた高電圧装置において、前記制御手段は、前記インバータから前記共振回路へ供給する共振電流の周波数が、前記インバータを駆動する周波数と概ね等しくなるように動作する第1のモードと、前記インバータから前記共振回路へ供給する共振電流の周波数が、前記インバータを駆動する周波数の(自然数+1)倍となるように動作する第2のモードと、前記第1のモードと前記第2のモードを切り替える切替手段を備えたことを特徴とするものである。 In order to solve the above problems, the present invention is connected between a DC power source and a resonance circuit, and is connected between an inverter that converts a DC voltage into an AC voltage, the resonance circuit, and the resonance circuit and a load. A high voltage apparatus comprising: a rectifier circuit that rectifies an AC voltage and supplies a DC voltage to a load; and a control unit that controls the inverter, wherein the control unit resonates from the inverter to the resonance circuit. The first mode in which the frequency of the current operates to be substantially equal to the frequency for driving the inverter, and the frequency of the resonance current supplied from the inverter to the resonance circuit is the (natural number + 1) of the frequency for driving the inverter. ) A second mode that operates so as to be doubled, and a switching unit that switches between the first mode and the second mode.
 本発明の望ましい実施態様によれば、定常期間におけるインバータのスイッチング損失の増加を抑制しながら、平滑コンデンサ容量を低減することが可能となる。さらに、出力電圧の立ち上り期間のみインバータの駆動周波数を高周波化することが可能となるため、定常期間におけるインバータの低損失化と、出力電圧の立ち上り及び立ち下がりの高速化を両立する高電圧装置を提供することができる。 According to a preferred embodiment of the present invention, it is possible to reduce the smoothing capacitor capacity while suppressing an increase in switching loss of the inverter in a steady period. Furthermore, since the drive frequency of the inverter can be increased only during the rising period of the output voltage, a high voltage device that achieves both low inverter loss during the steady period and high speed of rising and falling of the output voltage. Can be provided.
実施例1の高電圧装置の回路構成図。1 is a circuit configuration diagram of a high voltage device according to Embodiment 1. FIG. 実施例1の高電圧装置の動作を説明するフローチャート。3 is a flowchart for explaining the operation of the high-voltage device according to the first embodiment. 実施例1の高電圧装置の動作を説明する波形図。FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment. 実施例1の高電圧装置の動作を説明する波形図。FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment. 実施例1の高電圧装置の動作を説明する波形図。FIG. 4 is a waveform diagram for explaining the operation of the high voltage device according to the first embodiment. 実施例2の高電圧装置の回路構成図。FIG. 3 is a circuit configuration diagram of a high voltage device according to a second embodiment. 実施例2の高電圧装置の動作を説明する波形図。The wave form diagram explaining operation | movement of the high voltage apparatus of Example 2. FIG. 実施例3の高電圧装置の回路構成図。FIG. 6 is a circuit configuration diagram of a high voltage device according to a third embodiment. 実施例3の高電圧装置の動作を説明する波形図。FIG. 6 is a waveform diagram for explaining the operation of the high voltage device according to the third embodiment. 実施例4の高電圧装置の回路構成図。FIG. 6 is a circuit configuration diagram of a high voltage device according to a fourth embodiment. 実施例4の高電圧装置の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the high voltage device according to the fourth embodiment. 実施例4の高電圧装置の動作を説明する図。The figure explaining operation | movement of the high-voltage apparatus of Example 4. FIG. 実施例4の高電圧装置の動作を説明する図。The figure explaining operation | movement of the high-voltage apparatus of Example 4. FIG. 実施例4の高電圧装置の動作を説明する図。The figure explaining operation | movement of the high-voltage apparatus of Example 4. FIG.
 以下、本発明の望ましい実施形態について図面を参照しながら詳細に説明する。以下の実施例では、X線管を負荷としたX線画像診断装置を例に挙げて説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, an X-ray diagnostic imaging apparatus using an X-ray tube as a load will be described as an example.
 本発明の実施例1について、図1~図4を用いて説明する。図1は、本発明の実施例1による高電圧装置の回路構成図である。この高電圧装置は、直流電源1を電源とし、インバータ2と、共振回路3と、整流回路4と、制御手段5と、電圧検出手段6で構成され、負荷であるX線管7へ直流の高電圧を供給する。 Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a circuit configuration diagram of a high-voltage device according to Embodiment 1 of the present invention. This high-voltage device includes a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 3, a rectifier circuit 4, a control unit 5, and a voltage detection unit 6. A DC voltage is supplied to an X-ray tube 7 as a load. Supply high voltage.
 インバータ2は、直流電源1を入力として、共振回路3へ任意の周波数の交流電圧を出力するものであり、ブリッジ接続されたスイッチング素子Q1~Q4で構成され、スイッチング素子Q1~Q4にはそれぞれ逆並列ダイオードD1~D4が接続されている。 The inverter 2 receives the DC power source 1 and outputs an AC voltage having an arbitrary frequency to the resonance circuit 3, and is composed of switching elements Q1 to Q4 connected in a bridge, and each of the switching elements Q1 to Q4 has a reverse polarity. Parallel diodes D1 to D4 are connected.
 共振回路3は、トランス31と、二次巻線N2の両端に並列接続された並列共振コンデンサCpから構成されており、整流回路4へ高周波の交流電力を供給する。トランス31は、一次巻線N1と直列接続された共振インダクタLrと、一次巻線N1、磁性体コアT1、二次巻線N2から構成される。 The resonant circuit 3 includes a transformer 31 and a parallel resonant capacitor Cp connected in parallel to both ends of the secondary winding N2, and supplies high-frequency AC power to the rectifier circuit 4. The transformer 31 includes a resonant inductor Lr connected in series with the primary winding N1, a primary winding N1, a magnetic core T1, and a secondary winding N2.
 整流回路4は、ブリッジ接続された整流ダイオードDr1~Dr4と、平滑コンデンサCmで構成され、並列共振コンデンサCpの端子間に出力される交流電圧を整流および平滑し、負荷7へ直流電圧を供給する。このとき、整流ダイオードDr1~Dr4には、数十~百kV程度の高電圧が印加されるため、複数の素子を直列に接続した構成が用いられる。このように、複数の素子を直列接続して整流回路を構成する場合には、素子に印加される電圧を均等化するバランス用コンデンサを素子と並列に接続した構成としてもよい。 The rectifier circuit 4 includes bridge-connected rectifier diodes Dr1 to Dr4 and a smoothing capacitor Cm. The rectifier circuit 4 rectifies and smoothes the AC voltage output between the terminals of the parallel resonant capacitor Cp and supplies the DC voltage to the load 7. . At this time, since a high voltage of about several tens to one hundred kV is applied to the rectifier diodes Dr1 to Dr4, a configuration in which a plurality of elements are connected in series is used. Thus, when a rectifier circuit is configured by connecting a plurality of elements in series, a balancing capacitor for equalizing the voltage applied to the elements may be connected in parallel with the elements.
 制御手段5は、スイッチング素子Q1~Q4を制御するものであり、スイッチング素子Q1~Q4のゲート信号を生成するゲート信号生成手段51と、基本共振モード53と、N倍共振モード54と、切替手段52から構成される。 The control means 5 controls the switching elements Q1 to Q4, and includes a gate signal generation means 51 for generating gate signals of the switching elements Q1 to Q4, a basic resonance mode 53, an N-fold resonance mode 54, and a switching means. 52.
 また、制御手段5は、電圧検出手段6と接続されており、X線管7の電圧(以下、管電圧と記す。)を検出することができる。切替手段52は、電圧検出手段6から検出した管
電圧に基づいて、基本共振モード53とN倍共振モード54を切り替える。
The control means 5 is connected to the voltage detection means 6 and can detect the voltage of the X-ray tube 7 (hereinafter referred to as tube voltage). The switching unit 52 switches between the basic resonance mode 53 and the N-fold resonance mode 54 based on the tube voltage detected from the voltage detection unit 6.
 このように構成することで、インバータ2は、共振回路3へ供給するインバータ出力電流I1(以下、共振電流I1と記す。)が、正弦波状となる共振型インバータとして動作する。 With this configuration, the inverter 2 operates as a resonant inverter in which the inverter output current I1 (hereinafter referred to as the resonant current I1) supplied to the resonant circuit 3 is sinusoidal.
 基本共振モード53では、インバータ2から共振回路3へ供給される共振電流I1の周波数がインバータ2の駆動周波数と概ね等しくなるようにインバータ2を動作させる。ここで、概ね等しくなるとはインバータ2の駆動周波数fswと共振電流I1の周波数frの関係が式(1)を満たす一般的な共振形インバータとして動作することを意味する。
Figure JPOXMLDOC01-appb-I000001
In the basic resonance mode 53, the inverter 2 is operated so that the frequency of the resonance current I1 supplied from the inverter 2 to the resonance circuit 3 is substantially equal to the drive frequency of the inverter 2. Here, being approximately equal means that the relationship between the drive frequency fsw of the inverter 2 and the frequency fr of the resonance current I1 operates as a general resonance inverter that satisfies the equation (1).
Figure JPOXMLDOC01-appb-I000001
 N倍共振モード54では、インバータ2から共振回路3へ供給される共振電流I1の周波数がインバータ2の駆動周波数のN倍となるようにインバータ2を動作させる。ここで、N(以下、倍数と記す。)は(自然数+1)を示す。本実施例では、N=3とした場合
について説明する。
In the N-fold resonance mode 54, the inverter 2 is operated so that the frequency of the resonance current I1 supplied from the inverter 2 to the resonance circuit 3 is N times the drive frequency of the inverter 2. Here, N (hereinafter referred to as a multiple) represents (natural number + 1). In this embodiment, a case where N = 3 will be described.
 図2は、図1の高電圧装置の立ち上り期間から定常期間に移行するまでの動作のロジックを示すフローチャートである。ただし、図2におけるS100~S105はステップ100~ステップ105を示している。図3は、インバータ2の出力電圧V1、共振電流I1、管電圧Vxの時間tによる変化を示している。図4は、図3の時刻t1付近を拡大した動作波形であり、スイッチング素子Q1~Q4を制御するゲート信号G1~G4、インバータ2の出力電圧V1、共振電流I1、管電圧Vxの時間tによる変化を示している。ここで、図3を含む以下すべての動作波形図における電流は、図1の回路図における各素子を左から右へ流れる電流を正としている。 FIG. 2 is a flowchart showing the logic of the operation from the rising period of the high voltage device of FIG. 1 to the transition to the steady period. However, S100 to S105 in FIG. 2 indicate Step 100 to Step 105. FIG. 3 shows changes of the output voltage V1, the resonance current I1, and the tube voltage Vx of the inverter 2 with time t. FIG. 4 shows an enlarged operation waveform in the vicinity of time t1 in FIG. 3, depending on the time t of the gate signals G1 to G4 for controlling the switching elements Q1 to Q4, the output voltage V1 of the inverter 2, the resonance current I1, and the tube voltage Vx. It shows a change. Here, the currents in all the operation waveform diagrams including FIG. 3 are positive in the current flowing from the left to the right in each element in the circuit diagram of FIG.
 以下、図2~図4を用いて本発明の実施例1における高電圧装置の動作について説明する。
<実施例1の動作の説明>
 上位システムから指示される撮影時の管電圧目標値Vx1と、動作モードを切り替えるタイミングを決定する管電圧の切替指令値Vx2を同じとした場合(Vx1=Vx2)について説明する。
Hereinafter, the operation of the high voltage apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
<Description of Operation of Example 1>
A case where the tube voltage target value Vx1 at the time of photographing instructed from the host system and the tube voltage switching command value Vx2 for determining the timing for switching the operation mode are the same (Vx1 = Vx2) will be described.
 このとき、図1に示される基本共振モード53における共振電流I1の周波数と、N倍共振モード54における共振電流I1の周波数が概ね等しくなるように、インバータの駆動周波数fswと共振回路3の定数を設定する。なお、本実施の形態では、共振回路3の定数は、基本共振モード53とN倍共振モード54で同一とする。
(ステップ100)
 ここでは、撮影時の管電圧目標値Vx1が入力されると、動作モードを切り替えるタイミングを決定する管電圧の切替指令値Vx2が設定される。本実施例では、目標値Vx1と切替指令値Vx2を同じ電圧値(Vx1=Vx2)に設定しているが、目標値Vx1と切替指令値Vx2で異なる値に設定してもよい。
(ステップ101)
 ステップ100で、管電圧の目標値Vx1と切替指令値Vx2が決定されると、切替手段52は、インバータ2を基本共振モード53に設定し動作を開始する(図3のt0~t1の期間)。このとき、インバータ2の駆動周波数fswはあらかじめ設定された一定の値fsw1で動作する。
(ステップ102)
 ここでは、電圧検出手段6で管電圧Vxと切替指令値Vx2を比較し、インバータ2の動作モードの切り替えを判定する。管電圧Vxが切替指令値Vx2に到達していない場合 (Vx<Vx2)は、基本共振モード53での動作を継続する。
(ステップ103)
 ステップ102において、管電圧Vxが切替指令値Vx2に到達した(図3の時刻t1)と判断されると、切替手段52によって、インバータ2をN倍共振モード54へ切り替える(図3の時刻t1~t3のタイミング)。このとき、切替手段52は図4に示すように、基本共振モード53の動作周期と同期したタイミング(ゲート信号G1、G4のH信号又はL信号と、ゲート信号G2、G3のH信号又はL信号が切り替わるタイミング)で動作モードを移行させる。
At this time, the drive frequency fsw of the inverter and the constants of the resonance circuit 3 are set so that the frequency of the resonance current I1 in the basic resonance mode 53 and the frequency of the resonance current I1 in the N-fold resonance mode 54 shown in FIG. Set. In the present embodiment, the constant of the resonance circuit 3 is the same in the basic resonance mode 53 and the N-fold resonance mode 54.
(Step 100)
Here, when the tube voltage target value Vx1 at the time of photographing is input, a tube voltage switching command value Vx2 that determines the timing for switching the operation mode is set. In this embodiment, the target value Vx1 and the switching command value Vx2 are set to the same voltage value (Vx1 = Vx2). However, the target value Vx1 and the switching command value Vx2 may be set to different values.
(Step 101)
When the tube voltage target value Vx1 and the switching command value Vx2 are determined in step 100, the switching means 52 sets the inverter 2 to the basic resonance mode 53 and starts the operation (period t0 to t1 in FIG. 3). . At this time, the drive frequency fsw of the inverter 2 operates at a predetermined constant value fsw1.
(Step 102)
Here, the voltage detection means 6 compares the tube voltage Vx and the switching command value Vx2, and determines the switching of the operation mode of the inverter 2. When the tube voltage Vx has not reached the switching command value Vx2 (Vx <Vx2), the operation in the basic resonance mode 53 is continued.
(Step 103)
If it is determined in step 102 that the tube voltage Vx has reached the switching command value Vx2 (time t1 in FIG. 3), the switching means 52 switches the inverter 2 to the N-fold resonance mode 54 (from time t1 to time t1 in FIG. 3). timing of t3). At this time, as shown in FIG. 4, the switching means 52 is synchronized with the operation period of the basic resonance mode 53 (the H signal or L signal of the gate signals G1, G4 and the H signal or L signal of the gate signals G2, G3). The operation mode is shifted at the timing of switching.
 このようにゲート信号G1~G4を制御することで、動作モードの切り替えタイミングに生じる管電圧Vxの脈動を抑制できるため、スムーズな立ち上りが可能となる。このとき、インバータ2の駆動周波数fswは、管電圧の目標値Vx1に応じてあらかじめ設定された値で動作する。図3に示すように、動作モードの切り替えタイミングで管電圧Vxの脈動ΔVxが生じるが、立ち上り期間であるため問題はないと考えられる。
(ステップ104)
 ここでは、インバータ2をN倍共振モード54で動作させており、電圧検出手段6で検出した管電圧Vxと目標値Vx1を比較し、定常期間への移行を判定する。
(ステップ105)
 ステップ104において、管電圧Vxが目標値Vx1に到達すると(図3の時刻t2)、管電圧が定常期間に移行したと判定されステップ105へ移行する。ステップ105では、図1には記載されていないが、制御手段5から上位システムへ撮影開始の指令を送信する。このとき、インバータ2はN倍共振モード54での動作を継続する。
By controlling the gate signals G1 to G4 in this way, the pulsation of the tube voltage Vx that occurs at the operation mode switching timing can be suppressed, so that a smooth rise is possible. At this time, the drive frequency fsw of the inverter 2 operates at a value set in advance according to the tube voltage target value Vx1. As shown in FIG. 3, although the pulsation ΔVx of the tube voltage Vx occurs at the operation mode switching timing, it is considered that there is no problem because it is a rising period.
(Step 104)
Here, the inverter 2 is operated in the N-fold resonance mode 54, the tube voltage Vx detected by the voltage detection means 6 is compared with the target value Vx1, and the transition to the steady period is determined.
(Step 105)
In step 104, when the tube voltage Vx reaches the target value Vx1 (time t2 in FIG. 3), it is determined that the tube voltage has shifted to the steady period, and the flow proceeds to step 105. In step 105, although not shown in FIG. 1, an instruction to start photographing is transmitted from the control means 5 to the host system. At this time, the inverter 2 continues to operate in the N-fold resonance mode 54.
 このように、本実施形態の高電圧装置は、定常期間におけるインバータ2の動作モードをN倍共振モード54とすることでインバータ2の駆動周波数fswを高周波化することなく、管電圧の脈動を抑制しながら、整流回路4の平滑コンデンサ容量を低減することができる。さらに、立ち上り期間においては、管電圧の条件に応じて、インバータ2の動作モードを基本共振モード53とN倍共振モード54に切り替えることで、立ち上り期間の駆動周波数fsw1を定常期間の駆動周波数fsw2と比べて高周波化することができる。インバータ2の駆動周波数fswを高周波化することで、出力電圧の応答速度を向上することができる。
<実施例1の変形例>
 実施例1の変形例について図5を用いて説明する。図5は、上位システムから指示される撮影時の管電圧の目標値Vx1と、インバータ2の動作モードを切り替えるタイミングを決定する管電圧の目標値Vx2を異なる条件(Vx1≠Vx2)とした例を示している。
As described above, the high voltage device of this embodiment suppresses the pulsation of the tube voltage without increasing the drive frequency fsw of the inverter 2 by setting the operation mode of the inverter 2 in the steady period to the N-fold resonance mode 54. However, the smoothing capacitor capacity of the rectifier circuit 4 can be reduced. Further, in the rising period, the driving frequency fsw1 in the rising period is changed to the driving frequency fsw2 in the steady period by switching the operation mode of the inverter 2 to the basic resonance mode 53 and the N-fold resonance mode 54 according to the tube voltage condition. Compared with this, the frequency can be increased. By increasing the drive frequency fsw of the inverter 2, the response speed of the output voltage can be improved.
<Modification of Example 1>
A modification of the first embodiment will be described with reference to FIG. FIG. 5 shows an example in which the tube voltage target value Vx1 at the time of photographing instructed by the host system and the tube voltage target value Vx2 for determining the timing for switching the operation mode of the inverter 2 are different conditions (Vx1 ≠ Vx2). Show.
 図5では、管電圧の切替指令値Vx2を目標値Vx1よりも低い値に設定している。図5に示すように、切替指令値Vx2を目標値Vx1よりも低く設定することで、動作モードの切り替えタイミングで生じる管電圧Vxの脈動幅ΔVxを小さく抑えることができるため、目標値Vx1と切替指令値Vx2を同じとした図3の条件と比べて、管電圧の立ち上りをさらに高速化することができる。 In FIG. 5, the tube voltage switching command value Vx2 is set to a value lower than the target value Vx1. As shown in FIG. 5, by setting the switching command value Vx2 to be lower than the target value Vx1, the pulsation width ΔVx of the tube voltage Vx generated at the switching timing of the operation mode can be suppressed to a small value. Compared with the condition of FIG. 3 in which the command value Vx2 is the same, the rise of the tube voltage can be further increased.
 以上、本実施の形態では、管電圧の条件に応じて、インバータの動作モードを基本共振モードとN倍共振モードに切り替えることで、定常期間におけるインバータの損失を抑制しながら、管電圧の立ち上りを高速化することができる。 As described above, in the present embodiment, by switching the operation mode of the inverter to the basic resonance mode and the N-fold resonance mode according to the tube voltage condition, the rise of the tube voltage is suppressed while suppressing the loss of the inverter in the steady period. The speed can be increased.
 なお、本実施の形態では、立ち上り期間のインバータの駆動周波数を定常期間と比べて高周波化しているため、スイッチング損失が増加するが、立ち上り期間は定常期間と比較して十分に短いため問題はない。なお、本実施の形態では、基本共振モードとN倍共振モードの切り替えのタイミングを、管電圧の値に基づいて決定したがこれに限らない。例えば、制御手段の内部にカウンタを備え、各動作モードがスタートしてからの経過時間に基づいて動作モードを変更してもよい。また、本実施例ではN倍共振モードの倍数をN=3としたが、管電圧の目標値Vx1に応じてN=4やN=5としてもよい。 In this embodiment, since the drive frequency of the inverter in the rising period is higher than that in the steady period, the switching loss increases. However, there is no problem because the rising period is sufficiently shorter than the steady period. . In the present embodiment, the switching timing between the basic resonance mode and the N-fold resonance mode is determined based on the value of the tube voltage, but is not limited thereto. For example, a counter may be provided inside the control means, and the operation mode may be changed based on the elapsed time from the start of each operation mode. In this embodiment, the multiple of the N-fold resonance mode is set to N = 3. However, N = 4 or N = 5 may be set according to the tube voltage target value Vx1.
 次に、本発明の第2の実施形態について、図6、7を用いて説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS.
 図6は、本発明の実施例2による高電圧装置の回路構成図である。図7は、図6の高電圧装置の動作波形を示したものである。この高電圧装置は、実施例1の高電圧装置と同様に、直流電源1を電源とし、インバータ2と、共振回路203と、整流回路204と、制御手段205と、電圧検出手段6で構成され、負荷であるX線管7へ直流の高電圧を供給する。 FIG. 6 is a circuit configuration diagram of a high voltage device according to the second embodiment of the present invention. FIG. 7 shows operation waveforms of the high voltage device of FIG. Similar to the high voltage device of the first embodiment, this high voltage device uses a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 203, a rectifier circuit 204, a control means 205, and a voltage detection means 6. The high voltage of direct current is supplied to the X-ray tube 7 which is a load.
 第1の実施形態と異なる点は、共振回路203に一次巻線N11と直列接続した直列共振コンデンサCsを接続した点と、整流回路204においてコッククロフト回路を多段に接続して構成した点と、制御手段205中のN倍共振モード54に管電圧Vxのフィードバックループを備えた点である。 The difference from the first embodiment is that a series resonant capacitor Cs connected in series with the primary winding N11 is connected to the resonance circuit 203, a point that the cock croft circuit is connected in multiple stages in the rectifier circuit 204, and control. The N-fold resonance mode 54 in the means 205 is provided with a feedback loop of the tube voltage Vx.
 以下、図7を用いて本発明の実施例2における高電圧装置の動作を説明する。
<動作の説明>
(Mode1)図7中の時刻t0~t21
 図7中の時刻t0~t21の期間は、実施例1の図3中の時刻t0~t1の期間と同様に、インバータ2は基本共振モード53で動作する。このとき、インバータ2の駆動周波数fswはあらかじめ設定した一定の値で動作する。
(Mode2)図7中の時刻t21~t22
 時刻t21において、管電圧Vxが切替指令値Vx2に到達すると、切替手段52によりインバータ2はN倍共振モード54へ移行する。ここで、インバータ2の駆動周波数fswは、検出した管電圧Vxと指令値Vx1の差分に基づいて算出された値に設定される。
Hereinafter, the operation of the high voltage apparatus according to the second embodiment of the present invention will be described with reference to FIG.
<Description of operation>
(Mode 1) Times t0 to t21 in FIG.
In the period from time t0 to t21 in FIG. 7, the inverter 2 operates in the basic resonance mode 53 as in the period from time t0 to t1 in FIG. At this time, the drive frequency fsw of the inverter 2 operates at a predetermined constant value.
(Mode 2) Times t21 to t22 in FIG.
When the tube voltage Vx reaches the switching command value Vx2 at time t21, the switching means 52 causes the inverter 2 to shift to the N-fold resonance mode 54. Here, the drive frequency fsw of the inverter 2 is set to a value calculated based on the difference between the detected tube voltage Vx and the command value Vx1.
 この場合、駆動周波数fswの算出手法として、PI制御を用いてもよいし、あらかじめ準備した管電圧Vxと指令値Vx1の差分とインバータ2の駆動周波数fswの関係をテーブル化したものから導出してもよい。なお、本実施の形態では、図7に示すように立ち上り期間の共振電流I1aが、定常期間の共振電流I1bよりも大きくなる場合がある。これに関しては、全体の動作期間に比べて短時間であるため問題はない。
(Mode3)図7中の時刻t22~t23
 時刻t22において、管電圧Vxが目標値Vx1に到達すると、制御手段205は、管電圧が定常期間に到達したと判断し、上位システムへ撮影開始の指令を送信する。このとき、インバータ2は引き続きN倍共振モード54で動作させる。
In this case, PI control may be used as a method for calculating the drive frequency fsw, or it is derived from a table showing the relationship between the prepared difference between the tube voltage Vx and the command value Vx1 and the drive frequency fsw of the inverter 2. Also good. In the present embodiment, as shown in FIG. 7, the resonance current I1a in the rising period may be larger than the resonance current I1b in the steady period. In this regard, there is no problem because the time is shorter than the entire operation period.
(Mode 3) Times t22 to t23 in FIG.
When the tube voltage Vx reaches the target value Vx1 at time t22, the control unit 205 determines that the tube voltage has reached the steady period, and transmits a command to start imaging to the host system. At this time, the inverter 2 is continuously operated in the N-fold resonance mode 54.
 以上、本実施の形態では、制御手段205のN倍共振モード54に管電圧Vxのフィードバックループを備えた構成とした。これにより、インバータ2の動作モードがN倍共振モード54に切り替わった後に管電圧が目標値Vx1に到達するまでの期間(図7中の時刻t21~t22の期間)の短縮が可能となり、実施例1と比べて管電圧Vxの立ち上りをさらに高速化できる。 As described above, in this embodiment, the N-fold resonance mode 54 of the control unit 205 is provided with a feedback loop of the tube voltage Vx. As a result, it is possible to shorten the period (the period from time t21 to t22 in FIG. 7) until the tube voltage reaches the target value Vx1 after the operation mode of the inverter 2 is switched to the N-fold resonance mode 54. Compared to 1, the rise of the tube voltage Vx can be further increased.
 次に、本発明の第3の実施形態について、図8、9を用いて説明する。 Next, a third embodiment of the present invention will be described with reference to FIGS.
 図8は、本発明の実施例3による高電圧装置の回路構成図である。図9は、図8の高電圧装置の動作波形を示したものである。この高電圧装置は、実施例2の高電圧装置と同様に、直流電源1を電源とし、インバータ2と、共振回路303と、整流回路304と、制御手段305と、電圧検出手段6で構成され、負荷であるX線管7へ直流の高電圧を供給する。 FIG. 8 is a circuit configuration diagram of the high voltage device according to the third embodiment of the present invention. FIG. 9 shows operation waveforms of the high voltage device of FIG. Similar to the high voltage device of the second embodiment, this high voltage device uses a DC power source 1 as a power source, and includes an inverter 2, a resonance circuit 303, a rectifier circuit 304, a control means 305, and a voltage detection means 6. The high voltage of direct current is supplied to the X-ray tube 7 which is a load.
 第2の実施形態と異なる点は、共振回路303中のトランスの二次巻線を二次巻線N21と二次巻線N22に分割して構成し、二次巻線N21と二次巻線N22の端子間にそれぞれ並列に並列共振コンデンサCp21、Cp22を接続した点と、整流回路304において倍電圧整流回路を多段に接続して構成した点と、インバータ2から共振回路303へ供給される共振電流I1を検出する電流検出手段8を備えた点と、制御手段305中の基本共振モード53に共振電流I1のフィードバックループと管電圧Vxのフィードバックループを備えた点である。電流検出手段8は、共振電流I1の平均値又は波高値を検出し、制御手段305へ入力される。 The difference from the second embodiment is that the secondary winding of the transformer in the resonance circuit 303 is divided into the secondary winding N21 and the secondary winding N22, and the secondary winding N21 and the secondary winding are configured. A point in which parallel resonant capacitors Cp21 and Cp22 are connected in parallel between the terminals of N22, a point in which the voltage doubler rectifier circuit is connected in multiple stages in the rectifier circuit 304, and a resonance supplied from the inverter 2 to the resonance circuit 303 The current detection means 8 for detecting the current I1 is provided, and the basic resonance mode 53 in the control means 305 is provided with a feedback loop for the resonance current I1 and a feedback loop for the tube voltage Vx. The current detection means 8 detects the average value or peak value of the resonance current I 1 and inputs it to the control means 305.
 以下、図9を用いて本発明の実施例3における高電圧装置の動作を説明する。
(Mode1)時刻t0~t32の期間
 図9中の時刻t0~t32の期間では、インバータ2は基本共振モード53で動作する。このとき、基本共振モード53は、共振電流I1のフィードバックループを用いることで、共振電流I1が目標値I1refに近づくように電流検出手段8で検出した共振電流I1と目標値I1refの差分に基づいてインバータ2の駆動周波数fswを決定する。図9の動作では、立ち上り期間の共振電流I1aが定常期間の共振電流I1bよりも大き
な値(I1a>I1b)となるように目標値I1refを設定している。この期間は、管電圧Vxが指令値Vx22に到達するまで継続される。
(Mode2)時刻t32~t33の期間
 時刻t32のタイミングで管電圧Vxが指令値Vx22に到達すると、基本共振モード53は、管電圧Vxのフィードバックループに切り替わる。この期間では、電圧検出手段6で検出した管電圧の値Vxと切替指令値Vx2の差分に基づいて、インバータ2の駆動周波数fswを決定する。この期間は、管電圧Vxが切替指令値Vx2に到達するまで継続される。
(Mode3)時刻t33~t34
 時刻t33のタイミングで、管電圧Vxが切替指令値Vx2に到達すると、切替手段52はインバータ2の動作モードを、基本共振モード53からN倍共振モード54に切り替える。このとき、N倍共振モード54は、管電圧Vxのフィードバックループとなり、インバータ2の駆動周波数fswは、管電圧Vxが目標値Vx1に近づくように、管電圧の検出値Vxと目標値Vx1の差分に基づいて決定される。
(Mode4)時刻t34~t35
 時刻t34のタイミングで、管電圧Vxが目標値Vx1に到達すると、制御手段305は、管電圧Vxが定常期間に移行したと判断し、上位システムへ撮影開始の指示を出す。このとき、インバータ2は引き続きN倍共振モード54で動作させる。
Hereinafter, the operation of the high voltage device according to the third embodiment of the present invention will be described with reference to FIG.
(Mode 1) Period from Time t0 to t32 In the period from Time t0 to t32 in FIG. 9, the inverter 2 operates in the basic resonance mode 53. At this time, the basic resonance mode 53 is based on the difference between the resonance current I1 detected by the current detector 8 and the target value I1ref so that the resonance current I1 approaches the target value I1ref by using a feedback loop of the resonance current I1. The drive frequency fsw of the inverter 2 is determined. In the operation of FIG. 9, the target value I1ref is set so that the resonance current I1a in the rising period becomes a value (I1a> I1b) larger than the resonance current I1b in the steady period. This period is continued until the tube voltage Vx reaches the command value Vx22.
(Mode 2) Period from Time t32 to t33 When the tube voltage Vx reaches the command value Vx22 at the timing of time t32, the basic resonance mode 53 is switched to a feedback loop of the tube voltage Vx. During this period, the drive frequency fsw of the inverter 2 is determined based on the difference between the tube voltage value Vx detected by the voltage detection means 6 and the switching command value Vx2. This period is continued until the tube voltage Vx reaches the switching command value Vx2.
(Mode 3) Time t33 to t34
When the tube voltage Vx reaches the switching command value Vx2 at the timing of time t33, the switching unit 52 switches the operation mode of the inverter 2 from the basic resonance mode 53 to the N-fold resonance mode 54. At this time, the N-fold resonance mode 54 becomes a feedback loop of the tube voltage Vx, and the drive frequency fsw of the inverter 2 is the difference between the tube voltage detection value Vx and the target value Vx1 so that the tube voltage Vx approaches the target value Vx1. To be determined.
(Mode 4) Time t34 to t35
When the tube voltage Vx reaches the target value Vx1 at the timing of time t34, the control unit 305 determines that the tube voltage Vx has shifted to the steady period and issues an instruction to start photographing to the host system. At this time, the inverter 2 is continuously operated in the N-fold resonance mode 54.
 以上、本実施の形態では、基本共振モード53に共振電流I1のフィードバックループと、管電圧Vxのフィードバックループを備えた構成とした。これにより、立ち上り期間中の共振電流が、定常期間よりも大きくなるように共振電流の目標値を設定することで基本共振モードの期間を短縮することができるため、実施例2と比べて管電圧の立ち上りをさらに高速化することが可能となる。 As described above, in this embodiment, the basic resonance mode 53 is provided with the feedback loop of the resonance current I1 and the feedback loop of the tube voltage Vx. Thus, the basic resonance mode period can be shortened by setting the target value of the resonance current so that the resonance current during the rising period becomes larger than the steady period. It is possible to further increase the speed of the rise.
 なお、本実施の形態では、電流検出手段8により、共振電流I1の平均値又は波高値を検出しているが、共振電流I1のゼロクロス点を検出してもよい。共振電流のゼロクロス点を検出することで、インバータ2の駆動周波数fswと共振電流の周波数が所定の関係となっているか判定することが可能となる。また、本実施形態の高電圧装置では、管電圧Vxを検出することで、インバータ2の動作モードを切り替えているが、これに限らない。例えば、整流回路204の平滑コンデンサCm1の両端電圧を検出し、平滑コンデンサCm1の両端電圧の値に応じてインバータ2の動作モードを切り替えてもよい。また、本実施の形態では、基本共振モード53のみに、共振電流I1のフィードバックループを備えた構成としたが、N倍共振モード54にも共振電流I1のフィードバックループを備えた構成としてもよい。N倍共振モード54に共振電流I1のフィードバックループを備えることで、インバータ2の駆動周波数fswと共振電流I1の周波数の関係がN倍となっているか判定することが可能となる。 In the present embodiment, the current detection means 8 detects the average value or peak value of the resonance current I1, but the zero cross point of the resonance current I1 may be detected. By detecting the zero-cross point of the resonance current, it is possible to determine whether the drive frequency fsw of the inverter 2 and the resonance current frequency have a predetermined relationship. Further, in the high voltage device of the present embodiment, the operation mode of the inverter 2 is switched by detecting the tube voltage Vx, but the present invention is not limited to this. For example, the voltage across the smoothing capacitor Cm1 of the rectifier circuit 204 may be detected, and the operation mode of the inverter 2 may be switched according to the value of the voltage across the smoothing capacitor Cm1. In this embodiment, only the basic resonance mode 53 is provided with the feedback loop for the resonance current I1, but the N-fold resonance mode 54 may also be provided with a feedback loop for the resonance current I1. By providing the feedback loop of the resonance current I1 in the N-fold resonance mode 54, it is possible to determine whether the relationship between the drive frequency fsw of the inverter 2 and the frequency of the resonance current I1 is N times.
 次に、本発明の第4の実施形態について、図10~14を用いて説明する。 Next, a fourth embodiment of the present invention will be described with reference to FIGS.
 図10は、本発明の実施例4による高電圧装置の回路構成図である。図11は、図10に示す高電圧装置の動作パターンを決定するまでの動作ロジックについてのフローチャートである。ただし、図11におけるS400~S408はステップ400~ステップ408を示している。図12~14は、図10の高電圧装置の動作パターン1~3を示す図であり、インバータの駆動周波数fsw、インバータ出力電圧V1、インバータ出力電流I1、管電圧Vxの時間tによる変化を示している。 FIG. 10 is a circuit configuration diagram of a high voltage device according to the fourth embodiment of the present invention. FIG. 11 is a flowchart of the operation logic until the operation pattern of the high voltage device shown in FIG. 10 is determined. However, S400 to S408 in FIG. 11 indicate Step 400 to Step 408. FIGS. 12 to 14 are diagrams showing operation patterns 1 to 3 of the high-voltage device of FIG. 10 and show changes of the inverter drive frequency fsw, inverter output voltage V1, inverter output current I1, and tube voltage Vx with time t. ing.
 この高電圧装置は、実施例3の高電圧装置と同様に、直流電圧1を電源とし、インバータ2と、共振回路303と、整流回路304と、制御手段405と、電圧検出手段6で構成され、負荷であるX線管7へ直流の高電圧を供給する。 Similar to the high voltage device of the third embodiment, this high voltage device uses a DC voltage 1 as a power source, and includes an inverter 2, a resonance circuit 303, a rectifier circuit 304, a control means 405, and a voltage detection means 6. The high voltage of direct current is supplied to the X-ray tube 7 which is a load.
  第3の実施例と異なる点は、切替手段452内に動作モード切替手段455と動作パターン決定手段456を備えた点と、撮影パターン選択手段9を備えた点である。 The differences from the third embodiment are that an operation mode switching unit 455 and an operation pattern determination unit 456 are provided in the switching unit 452 and a photographing pattern selection unit 9 is provided.
 以下、図11~14を用いて本発明の実施例4における高電圧装置の動作を説明する。(ステップ400)
 ステップ400では、撮影パターン選択手段9に、外部より撮影箇所や被撮影体の条件に応じた任意の撮影パターン情報が入力される。撮影パターン選択手段9では、入力された撮影パターン情報に基づいて、高電圧装置の起動から停止までの管電圧Vxのパターンを抽出する。
(ステップ401)
ステップ401では、ステップ400で抽出した管電圧のパターンを、切替手段452の内部にある動作パターン決定手段456へ送信する。そして、ステップ402へ移行する。
(ステップ402)
 ステップ402では、動作パターン決定手段456において、撮影パターン選択手段9より送信された管電圧Vxのパターンに基づいて、管電圧Vxの切り替えの有無を判定する。管電圧Vxの切り替えが必要な場合(S401:YES)はステップ404へ、管電圧の切り替えが不要な場合(S401:NO)はステップ403へ移行する。
(ステップ403)
 ステップ403では、動作パターン決定手段456によって決定された動作パターン1を動作モード切替手段455に送信する。動作パターンの送信が完了すると、ステップ407へ移行する。
(ステップ404)
ステップ404では、撮影パターン選択手段9より送信された管電圧Vxのパルスパターンに基づいて、管電圧の切り替え周期Tと判定値Tbを比較する。判定値Tbは、あらかじめ取得した高電圧装置の出力電圧特性を基に、事前に決められた値が用いられる。
(ステップ405)
 ステップ404において、管電圧の切り替え周期Tが判定値Tbより長い(T>Tb)と判定されると(S403:NO)、ステップ405へ移行する。ステップ405では、動作パターン決定手段456によって決定された動作パターン2を動作モード切替手段455へ送信する。動作パターンの送信が完了するとステップ407へ移行する。
(ステップ406)
 ステップ404で、管電圧の切り替え周期TがT<Tbと判定されると(S403:YES)、ステップ406へ移行する。ここでは、動作パターン決定手段456によって決められた動作パターン3を動作モード切替手段455へ送信する。動作パターンの送信が完了すると、ステップ407へ移行する。
(ステップ407)
 ステップ407では、動作モード切替手段455へ動作パターンが送信されたことを検出し、指定された動作パターンに基づいて起動時の動作モードを設定する。
(ステップ408)
 ステップ407において動作モードの設定が完了すると、高電圧装置の動作を開始する。
Hereinafter, the operation of the high voltage apparatus according to the fourth embodiment of the present invention will be described with reference to FIGS. (Step 400)
In step 400, arbitrary shooting pattern information corresponding to the shooting location and the condition of the subject is input to the shooting pattern selection unit 9 from the outside. The shooting pattern selection means 9 extracts the pattern of the tube voltage Vx from the start to the stop of the high voltage device based on the input shooting pattern information.
(Step 401)
In step 401, the tube voltage pattern extracted in step 400 is transmitted to the operation pattern determining means 456 inside the switching means 452. Then, the process proceeds to step 402.
(Step 402)
In step 402, the operation pattern determination means 456 determines whether or not the tube voltage Vx is switched based on the tube voltage Vx pattern transmitted from the imaging pattern selection means 9. If it is necessary to switch the tube voltage Vx (S401: YES), the process proceeds to step 404. If it is not necessary to switch the tube voltage (S401: NO), the process proceeds to step 403.
(Step 403)
In step 403, the operation pattern 1 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455. When the transmission of the operation pattern is completed, the process proceeds to step 407.
(Step 404)
In step 404, the tube voltage switching period T and the determination value Tb are compared based on the pulse pattern of the tube voltage Vx transmitted from the imaging pattern selection means 9. As the determination value Tb, a value determined in advance based on the output voltage characteristics of the high-voltage device acquired in advance is used.
(Step 405)
If it is determined in step 404 that the tube voltage switching period T is longer than the determination value Tb (T> Tb) (S403: NO), the process proceeds to step 405. In step 405, the operation pattern 2 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455. When the transmission of the operation pattern is completed, the process proceeds to step 407.
(Step 406)
If it is determined in step 404 that the tube voltage switching period T is T <Tb (S403: YES), the process proceeds to step 406. Here, the operation pattern 3 determined by the operation pattern determination unit 456 is transmitted to the operation mode switching unit 455. When the transmission of the operation pattern is completed, the process proceeds to step 407.
(Step 407)
In step 407, it is detected that an operation pattern has been transmitted to the operation mode switching means 455, and an operation mode at the time of activation is set based on the designated operation pattern.
(Step 408)
When the setting of the operation mode is completed in step 407, the operation of the high voltage device is started.
 このように、本実施の形態では、あらかじめ設定された撮影パターンの情報に基づいて高電圧装置の動作パターンを設定する。 As described above, in the present embodiment, the operation pattern of the high voltage device is set based on the information of the preset shooting pattern.
 以下に、図12~14を用いて図10の高電圧装置の動作パターン1~3を説明する。動作パターン1は、管電圧を一定として撮影を行う一般撮影モードでの高電圧装置の動作の一例を、動作パターン2及び動作パターン3は、複数の管電圧値を切り替えて撮影を行うマルチエネルギー撮影モードでの高電圧装置の動作の一例を示している。ここでは、動作パターン1~3において、共振回路303の定数は同一とする。
(動作パターン1)
 ここでは、図12を用いて動作パターン1を説明する。動作パターン1は、撮影期間中の管電圧Vx1を一定とした場合の高電圧装置の動作パターンを示している。動作パターン1では、高電圧装置の起動から撮影終了までの期間(図12中の時刻0~時刻t42の期間)において、インバータ2をN倍共振モード54で動作させている。時刻t42のタイミングで所定の撮影期間が終了すると、インバータ2はスイッチング動作を停止する停止モードとなり、管電圧がゼロになるまで継続する。この停止モードでは、インバータ2のスイッチング動作を停止しているため、立ち下がり期間は整流回路304の平滑コンデンサCm1、Cm2の静電容量と、X線管の等価抵抗値の時定数に依存する。N倍共振モード54は、インバータ2の駆動周波数fswを基本共振モード53の1/Nとしているため、管電圧の応答速度は基本共振モード53と比較して低下する。しかし、インバータ2のスイッチング損失を抑制できるため、一定の管電圧で長期間撮影を行う場合に適していると言える。なお、本実施形態の動作パターン1では、立ち上りから撮影終了までの全ての期間をN倍共振モード54で動作させているがこれに限らない。例えば、X線管の異常放電により撮影中に管電圧が急峻に低下した場合など、管電圧を急速に立ち上げる必要がある場合にはインバータ2を基本共振モード53で動作させることもある。
(動作パターン2)
 ここでは、図13を用いて動作パターン2を説明する。動作パターン2は、撮影期間中に管電圧を切り替える場合の高電圧装置の動作を示している。動作パターン2では、基本的に、管電圧の立ち上り期間(図13中の時刻t0~t51及び、時刻t55~56の期間)を基本共振モード53で動作させ、定常期間(図13中の時刻t51~t53、時刻t54~t55、時刻t56~t58及び時刻t59~t60の期間)をN倍共振モード54で動作させている。管電圧の立ち下がり期間(図13中の時刻t53~t54、時刻t58~t59及び時刻t60~61の期間)は、インバータ2を停止モードとする。動作パターン2では、管電圧の立ち上り期間のみインバータ2を基本共振モード53で動作させている。このため、動作パターン1と比較して、管電圧の立ち上りを高速化できる。また、定常期間はインバータ2をN倍共振モードで動作させることで、スイッチング損失を抑制できる。このように、動作パターン2は、管電圧の立ち上りの高速化とインバータの低損失化を両立した動作パターンであり、比較的長い周期で管電圧を切り替える撮影モードに適していると言える。
(動作パターン3)
 図14を用いて動作パターン3を説明する。動作パターン3は、動作パターン2と同様に撮影期間中に管電圧を切り替える場合の高電圧装置の動作を示している。動作パターン3では、動作パターン2と比較して、管電圧の切り替え幅ΔVx14が大きく(ΔVx14>ΔVx13)、また、管電圧の切替周期Tm43が短くなっている(Tm43<Tm42)。このため、動作パターン3では動作パターン2と比較してより管電圧の立ち上がりの高速化が求められる。そのため、図14の動作パターン3では、管電圧の立ち上がり期間(図14中の時刻t600~t601及び時刻t604~t605の期間)及び定常期間(図14中の時刻t601~t602、時刻t603~t604、時刻t605~t606及び時刻t607~608の期間)は、インバータ2をN倍共振モード54と比べて、管電圧の応答速度を高速化できる基本共振モード53で動作させている。管電圧の立ち下がり期間(図14中の時刻t602~t603及び時刻t606~607の期間)は、動作パターン1、2と同様にインバータ2のスイッチング動作を停止する停止モードとしている。動作パターン3では、立ち上り期間及び定常期間のインバータ2を基本共振モード53で動作させているためスイッチング損失が増加する。しかし、撮影期間中にインバータ2のスイッチング動作を停止させる停止モードと、低管電圧条件での動作期間(図14中の時刻t603~t604及び時刻t607~608の期間)を周期的に切り替えるため、動作モード1及び動作モード2と比較してスイッチング素子の冷却が困難になるといった問題は生じないと考えられる。このように、動作パターン3は、管電圧の切り替え幅が大きく、かつ短い周期で高速に管電圧を切り替える撮影モードに適していると言える。
Hereinafter, the operation patterns 1 to 3 of the high voltage device of FIG. 10 will be described with reference to FIGS. The operation pattern 1 is an example of the operation of the high voltage device in the general imaging mode in which imaging is performed with the tube voltage being constant, and the operation pattern 2 and the operation pattern 3 are multi-energy imaging in which imaging is performed by switching a plurality of tube voltage values. 2 shows an example of the operation of a high voltage device in mode. Here, in the operation patterns 1 to 3, the constants of the resonance circuit 303 are the same.
(Operation pattern 1)
Here, the operation pattern 1 will be described with reference to FIG. An operation pattern 1 shows an operation pattern of the high voltage device when the tube voltage Vx1 during the photographing period is constant. In the operation pattern 1, the inverter 2 is operated in the N-fold resonance mode 54 in the period from the start of the high voltage device to the end of photographing (period from time 0 to time t42 in FIG. 12). When the predetermined shooting period ends at the timing of time t42, the inverter 2 enters a stop mode in which the switching operation is stopped, and continues until the tube voltage becomes zero. In this stop mode, since the switching operation of the inverter 2 is stopped, the falling period depends on the capacitances of the smoothing capacitors Cm1 and Cm2 of the rectifier circuit 304 and the time constant of the equivalent resistance value of the X-ray tube. In the N-fold resonance mode 54, the drive frequency fsw of the inverter 2 is set to 1 / N of the basic resonance mode 53. Therefore, the response speed of the tube voltage is lower than that in the basic resonance mode 53. However, since the switching loss of the inverter 2 can be suppressed, it can be said that it is suitable for long-term imaging with a constant tube voltage. In the operation pattern 1 of the present embodiment, the entire period from the start to the end of imaging is operated in the N-fold resonance mode 54, but the present invention is not limited to this. For example, the inverter 2 may be operated in the basic resonance mode 53 when it is necessary to rapidly increase the tube voltage, such as when the tube voltage sharply decreases during imaging due to abnormal discharge of the X-ray tube.
(Operation pattern 2)
Here, the operation pattern 2 will be described with reference to FIG. The operation pattern 2 shows the operation of the high voltage device when the tube voltage is switched during the photographing period. In the operation pattern 2, basically, the tube voltage rising period (time t0 to t51 in FIG. 13 and time t55 to 56) is operated in the basic resonance mode 53, and the steady period (time t51 in FIG. 13). To t53, time t54 to t55, time t56 to t58, and time t59 to t60) in the N-fold resonance mode 54. During the falling period of the tube voltage (periods t53 to t54, times t58 to t59, and times t60 to 61 in FIG. 13), the inverter 2 is set to the stop mode. In the operation pattern 2, the inverter 2 is operated in the basic resonance mode 53 only during the rising period of the tube voltage. For this reason, compared with the operation pattern 1, the rise of the tube voltage can be speeded up. Further, the switching loss can be suppressed by operating the inverter 2 in the N-fold resonance mode during the steady period. As described above, the operation pattern 2 is an operation pattern in which both the rise of the tube voltage is accelerated and the loss of the inverter is reduced, and it can be said that the operation pattern 2 is suitable for an imaging mode in which the tube voltage is switched at a relatively long cycle.
(Operation pattern 3)
The operation pattern 3 will be described with reference to FIG. The operation pattern 3 shows the operation of the high-voltage device when the tube voltage is switched during the photographing period as in the operation pattern 2. In the operation pattern 3, compared with the operation pattern 2, the tube voltage switching width ΔVx14 is larger (ΔVx14> ΔVx13), and the tube voltage switching period Tm43 is shorter (Tm43 <Tm42). For this reason, the operation pattern 3 requires a faster rise in tube voltage than the operation pattern 2. Therefore, in the operation pattern 3 in FIG. 14, the tube voltage rise period (time t600 to t601 and time t604 to t605 in FIG. 14) and steady period (time t601 to t602, time t603 to t604 in FIG. During the period from time t605 to t606 and from time t607 to 608), the inverter 2 is operated in the basic resonance mode 53 that can increase the response speed of the tube voltage compared to the N-fold resonance mode 54. The tube voltage falling period (time t602 to t603 and time t606 to 607 in FIG. 14) is set to a stop mode in which the switching operation of the inverter 2 is stopped, similarly to the operation patterns 1 and 2. In the operation pattern 3, since the inverter 2 in the rising period and the steady period is operated in the basic resonance mode 53, the switching loss increases. However, in order to periodically switch between the stop mode in which the switching operation of the inverter 2 is stopped during the photographing period and the operation period under the low tube voltage condition (periods from time t603 to t604 and time t607 to 608 in FIG. 14), It is considered that there is no problem that it becomes difficult to cool the switching element as compared with the operation mode 1 and the operation mode 2. Thus, it can be said that the operation pattern 3 is suitable for the imaging mode in which the switching range of the tube voltage is large and the tube voltage is switched at high speed in a short cycle.
 以上、本実施の形態では、あらかじめ設定された負荷条件に基づいてインバータの動作モードを切り替えることで、設定された負荷条件に適した高電圧装置の動作パターンを選定することができる。これにより、長期間一定の電圧を出力する負荷パターンや、出力電圧を短い周期で高速に切り替える負荷パターンなど様々な負荷パターンに対応可能な高電圧装置を提供することが可能となる。なお、本実施の形態では、基本共振モード53とN倍共振モード54で共振回路303の定数を同じとしたが、基本共振モード53とN倍共振モード54で異なる定数としてもよい。例えば、直列共振コンデンサCsと並列にスイッチとコンデンサを接続した構成とし、インバータ2の動作モードによってスイッチのオン/オフを切り替えることで共振回路を変化させてもよい。 As described above, in the present embodiment, the operation pattern of the high voltage device suitable for the set load condition can be selected by switching the operation mode of the inverter based on the preset load condition. As a result, it is possible to provide a high voltage device that can cope with various load patterns such as a load pattern that outputs a constant voltage for a long period of time and a load pattern that switches the output voltage at high speed in a short cycle. In the present embodiment, the constants of the resonance circuit 303 are the same in the basic resonance mode 53 and the N-fold resonance mode 54, but different constants may be used in the basic resonance mode 53 and the N-fold resonance mode 54. For example, a switch and a capacitor may be connected in parallel with the series resonance capacitor Cs, and the resonance circuit may be changed by switching the switch on / off depending on the operation mode of the inverter 2.
 以上、本発明の実施形態を述べたが、本発明はこれらに限定されるものではない。例えば、全ての実施形態では、1つのインバータ及び整流回路で構成した高電圧装置について述べたが、例えば2つ以上のインバータ及び整流回路を備えた高電圧装置であっても本発明を適用することは可能である。また、全ての実施形態において、直流電源をAC―DCコンバータ又はDC-DCコンバータの出力としても本発明を適用することは可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these. For example, in all the embodiments, the high voltage device configured with one inverter and the rectifier circuit has been described. However, the present invention can be applied even to a high voltage device including two or more inverters and a rectifier circuit, for example. Is possible. In all the embodiments, the present invention can also be applied to a DC power supply as an output of an AC-DC converter or a DC-DC converter.
 本発明の高電圧装置は、X線画像診断装置や真空蒸着用電子銃など負荷へ直流の高電圧を供給する電源装置に適用できる。 The high voltage device of the present invention can be applied to a power supply device that supplies a high DC voltage to a load, such as an X-ray diagnostic imaging device or a vacuum deposition electron gun.
1・・・電源、2・・・インバータ、3,3,203,303・・・共振回路、4,204,304,整流回路、5,205,305,405・・・制御手段、6・・・電圧検出手段、7・・・X線管、8・・・電流検出手段、9・・・撮影パターン選択手段、51・・・ゲート信号生成手段、52,452・・・切替手段,53・・・基本共振モード、54・・・N倍共振モード、455・・・動作モード切替手段、456・・・動作パターン決定手段、Q1~Q4・・・スイッチング素子、D1~D4・・・ダイオード、Dr1~Dr4,Dr11~Dr18・・・整流ダイオード、Lr・・・直列共振インダクタ、N1,N11・・・一次巻線、N2,N21,N22・・・二次巻線、T1,T2・・・コア、Cm,Cm1,Cm2・・・平滑コンデンサ、Cp,Cp1,Cp2・・・並列共振コンデンサ、Cs・・・直列共振コンデンサ、Cd1~Cd4・・・整流コンデンサ DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... Inverter, 3, 3, 203, 303 ... Resonance circuit, 4, 204, 304, Rectifier circuit, 5, 205, 305, 405 ... Control means, 6 ... Voltage detection means, 7 ... X-ray tube, 8 ... Current detection means, 9 ... Imaging pattern selection means, 51 ... Gate signal generation means, 52, 452 ... Switching means, 53 ..Basic resonance mode, 54 ... N-fold resonance mode, 455 ... operation mode switching means, 456 ... operation pattern determination means, Q1 to Q4 ... switching elements, D1 to D4 ... diodes, Dr1 to Dr4, Dr11 to Dr18 ... rectifier diode, Lr ... series resonant inductor, N1, N11 ... primary winding, N2, N21, N22 ... secondary winding, T1, T2 ... Core, Cm, Cm1, Cm2, And smoothing capacitor, Cp, Cp1, Cp2 ··· parallel resonant capacitor, Cs ··· series resonant capacitor, Cd1 ~ Cd4 ··· rectification capacitor

Claims (14)

  1.  共振回路と、
     直流電源と前記共振回路の間に接続されかつ直流電圧を交流電圧に変換するインバータと、
     前記共振回路と負荷との間に接続され、前記交流電圧を整流し、負荷へ直流電圧を供給する整流回路と、
     前記インバータを制御する制御手段と、を備えた高電圧装置において、
     前記制御手段は、
     前記インバータから前記共振回路へ供給する共振電流の周波数が前記インバータの駆動周波数と概ね等しくなるように動作する第1のモードと、
     前記インバータから前記共振回路へ供給する共振電流の周波数が、前記インバータの駆動周波数の(自然数+1)倍となるように動作する第2のモードと、
     前記第1のモードと前記第2のモードを切り替える切替手段と、を備えたことを特徴とする高電圧装置。
    A resonant circuit;
    An inverter connected between a DC power source and the resonance circuit and converting a DC voltage into an AC voltage;
    A rectifier circuit connected between the resonant circuit and a load, rectifying the AC voltage, and supplying a DC voltage to the load;
    In a high voltage device comprising a control means for controlling the inverter,
    The control means includes
    A first mode that operates so that a frequency of a resonance current supplied from the inverter to the resonance circuit is substantially equal to a drive frequency of the inverter;
    A second mode in which a frequency of a resonance current supplied from the inverter to the resonance circuit is (natural number + 1) times a drive frequency of the inverter;
    A high voltage apparatus comprising: switching means for switching between the first mode and the second mode.
  2.  請求項1に記載の高電圧装置であって、
     前記制御手段は、前記整流回路から出力され前記負荷へ供給される出力電圧が所定の値に到達するまでの期間は、前記第1のモードで動作し、前記出力電圧が前記所定の値に到達した以降の期間は、前記第2のモードで動作するように前記切替手段を制御することを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The control means operates in the first mode until the output voltage output from the rectifier circuit and supplied to the load reaches a predetermined value, and the output voltage reaches the predetermined value. In the subsequent period, the switching means is controlled to operate in the second mode.
  3.  請求項2に記載の高電圧装置であって、
     前記出力電圧を検出する出力電圧検出手段を備え、
     前記切替手段は、前記出力電圧検出手段により検出した電圧値に基づいて前記第1のモードと前記第2のモードを切り替えることを特徴とする高電圧装置。
    The high voltage device according to claim 2,
    An output voltage detecting means for detecting the output voltage;
    The high-voltage device, wherein the switching unit switches between the first mode and the second mode based on a voltage value detected by the output voltage detection unit.
  4.  請求項1に記載のいずれかの高電圧装置であって、
     前記インバータは、少なくとも1つ以上のスイッチング素子で構成され、
     前記切替手段は、前記スイッチング素子のスイッチング周期中のオン又はオフが切り替わるタイミングで前記第1の動作モードと前記第2の動作モードを切り替えることを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The inverter is composed of at least one switching element,
    The high voltage apparatus, wherein the switching unit switches the first operation mode and the second operation mode at a timing at which the switching element is turned on or off during a switching cycle.
  5.  請求項1に記載の高電圧装置であって、
     前記切替手段は、あらかじめ決められた前記整流回路の出力電圧のパターンに基づいて、前記第1のモードと前記第2のモードを切り替えることを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The switching means switches between the first mode and the second mode based on a predetermined output voltage pattern of the rectifier circuit.
  6.  請求項5に記載の高電圧装置であって、
     前記制御手段は、
     前記出力電圧を複数の値に切り替えて動作する場合は、前記インバータは前記第1のモードで動作し、
     前記出力電圧を概ね一定として動作する場合は、前記インバータは前記第2のモードで動作することを特徴とする高電圧装置。
    The high voltage device according to claim 5,
    The control means includes
    When the output voltage is switched to a plurality of values to operate, the inverter operates in the first mode,
    When operating with the output voltage being substantially constant, the inverter operates in the second mode.
  7.  請求項1に記載のいずれかの高電圧装置であって、
     前記第1のモードの共振電流の周波数と、前記第2のモードの共振電流の周波数が概ね等しいことを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The high-voltage device according to claim 1, wherein a frequency of the resonance current in the first mode is substantially equal to a frequency of the resonance current in the second mode.
  8.  請求項1に記載のいずれかの高電圧装置であって、
     前記インバータから出力される前記共振電流を検出する電流検出手段を備え、
     前記電流検出手段は前記共振電流のゼロクロス点を検出することを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    Current detection means for detecting the resonance current output from the inverter;
    The high voltage device according to claim 1, wherein the current detection means detects a zero cross point of the resonance current.
  9.  請求項1に記載のいずれかの高電圧装置であって、
     前記第1の動作モード又は前記第2の動作モードにおいて、前記インバータの駆動周波数が変化することを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The high voltage device according to claim 1, wherein a driving frequency of the inverter changes in the first operation mode or the second operation mode.
  10.  請求項1に記載のいずれかの高電圧装置であって、
     前記共振回路は、トランスと、前記トランスの一次巻線に直列接続された直列共振インダクタと、前記トランスの二次側巻線の両端と並列接続された並列共振コンデンサとを備えたことを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The resonance circuit includes a transformer, a series resonance inductor connected in series to the primary winding of the transformer, and a parallel resonance capacitor connected in parallel to both ends of the secondary winding of the transformer. High voltage device to do.
  11.  請求項1に記載のいずれかの高電圧装置であって、
     前記共振回路は、トランスと、前記トランスの一次巻線と直列接続された直列共振コンデンサ及び直列共振インダクタと、前記トランスの二次巻線の端子間に並列接続された並列共振コンデンサとを備えたことを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The resonant circuit includes a transformer, a series resonant capacitor and a series resonant inductor connected in series with a primary winding of the transformer, and a parallel resonant capacitor connected in parallel between terminals of the secondary winding of the transformer. A high voltage device characterized by that.
  12.  請求項1に記載のいずれかの高電圧装置であって、
     前記整流回路はコッククロフト回路であることを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The rectifier circuit is a cockcroft circuit.
  13.  請求項1に記載のいずれかの高電圧装置であって、
     前記整流回路は倍電圧整流回路であることを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The rectifier circuit is a voltage doubler rectifier circuit.
  14.  請求項1に記載のいずれかの高電圧装置であって、
     前記負荷はX線管であることを特徴とする高電圧装置。
    The high voltage device according to claim 1,
    The high voltage apparatus according to claim 1, wherein the load is an X-ray tube.
PCT/JP2015/068506 2014-06-27 2015-06-26 High voltage device WO2015199218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-132013 2014-06-27
JP2014132013A JP6463913B2 (en) 2014-06-27 2014-06-27 High voltage equipment

Publications (1)

Publication Number Publication Date
WO2015199218A1 true WO2015199218A1 (en) 2015-12-30

Family

ID=54938295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068506 WO2015199218A1 (en) 2014-06-27 2015-06-26 High voltage device

Country Status (2)

Country Link
JP (1) JP6463913B2 (en)
WO (1) WO2015199218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137862A1 (en) * 2018-10-26 2020-04-30 Hitachi, Ltd. High voltage generating device and x-ray image diagnosis apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6890978B2 (en) * 2017-01-11 2021-06-18 日本電波株式会社 High voltage power supply for electrostatic coating equipment
JP2022540165A (en) * 2019-07-09 2022-09-14 ヴァレックス イメージング コーポレイション electron gun driver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289093A (en) * 1996-04-23 1997-11-04 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2006210267A (en) * 2005-01-31 2006-08-10 Toshiba Lighting & Technology Corp Discharge lamp lighting device and luminaire
JP2010283998A (en) * 2007-12-06 2010-12-16 Universal Lighting Technologies Inc Resonance inverter driving method using zero-current switching and pulse width modulation of arbitrary frequency
JP2011139618A (en) * 2010-01-04 2011-07-14 Origin Electric Co Ltd Device for generating dc high voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289093A (en) * 1996-04-23 1997-11-04 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2006210267A (en) * 2005-01-31 2006-08-10 Toshiba Lighting & Technology Corp Discharge lamp lighting device and luminaire
JP2010283998A (en) * 2007-12-06 2010-12-16 Universal Lighting Technologies Inc Resonance inverter driving method using zero-current switching and pulse width modulation of arbitrary frequency
JP2011139618A (en) * 2010-01-04 2011-07-14 Origin Electric Co Ltd Device for generating dc high voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137862A1 (en) * 2018-10-26 2020-04-30 Hitachi, Ltd. High voltage generating device and x-ray image diagnosis apparatus

Also Published As

Publication number Publication date
JP2016012397A (en) 2016-01-21
JP6463913B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP4958052B2 (en) System power leveling apparatus and diagnostic imaging system
US8385504B2 (en) DC/AC power inverter control unit of a resonant power converter circuit, in particular a DC/DC converter for use in a high-voltage generator circuitry of a modern computed tomography device or X-ray radiographic system
TWI506939B (en) Ac/dc power converter, power supply and system that converts an ac input voltage into a dc output voltage
JP6341386B2 (en) Switching power supply
JP6289618B2 (en) Power converter
JP6335889B2 (en) Control mode for resonant DC-DC converter
WO2015199218A1 (en) High voltage device
JP6830381B2 (en) High voltage generator and X-ray diagnostic imaging system equipped with it
WO2018025526A1 (en) High-voltage generation device and x-ray diagnostic imaging device mounted with same
JP7133436B2 (en) High voltage equipment and X-ray diagnostic imaging equipment
JP2007207585A (en) Inverter type x-ray high voltage device
JP2016173961A (en) Power conversion device
JP4891176B2 (en) Capacitor charger
JP2016226134A (en) Electric power conversion device and electric power conversion control method
JP5309422B2 (en) X-ray high voltage device
JP6575462B2 (en) Voltage converter
JP2010081697A (en) Resonance type power conversion device
JP6598874B2 (en) Power converter
KR102629718B1 (en) Apparatus for supplying power to output high voltage
JP7034230B1 (en) Power converter
JPH0279399A (en) Resonance-type and inverter-system x-ray device
JP6575461B2 (en) Voltage converter
JP3053920B2 (en) High voltage generator
JP2022115528A (en) X-ray high voltage device and x-ray imaging apparatus
JP2020009623A (en) High voltage generator and x-ray diagnostic imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811377

Country of ref document: EP

Kind code of ref document: A1