WO2015198970A1 - Polyimide film having pores and method for producing same - Google Patents

Polyimide film having pores and method for producing same Download PDF

Info

Publication number
WO2015198970A1
WO2015198970A1 PCT/JP2015/067656 JP2015067656W WO2015198970A1 WO 2015198970 A1 WO2015198970 A1 WO 2015198970A1 JP 2015067656 W JP2015067656 W JP 2015067656W WO 2015198970 A1 WO2015198970 A1 WO 2015198970A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide film
film
carbon atoms
resin precursor
Prior art date
Application number
PCT/JP2015/067656
Other languages
French (fr)
Japanese (ja)
Inventor
佳季 宮本
康史 飯塚
加藤 聡
隆行 金田
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to KR1020207021572A priority Critical patent/KR102305617B1/en
Priority to KR1020167035080A priority patent/KR102139455B1/en
Priority to JP2016529524A priority patent/JP6254274B2/en
Priority to CN202010966079.9A priority patent/CN112080026B/en
Priority to CN201580033079.0A priority patent/CN106414575B/en
Publication of WO2015198970A1 publication Critical patent/WO2015198970A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polyimide film having voids, for example, used for a substrate for a flexible device, and a method for producing the same.
  • the polyimide film preferably has high transparency.
  • a film made of polyimide is used as a resin film.
  • a general polyimide is prepared by solution polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine to produce a polyimide precursor (polyamic acid), followed by thermal imidization by dehydration at high temperature or using a catalyst. It is produced by chemical imidization by ring-closing dehydration.
  • Polyimide is an insoluble and infusible super heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. For this reason, polyimide is used in a wide range of fields including electronic materials such as insulating coating agents, insulating films, etc .; semiconductor protective films; TFT-LCD electrode protective films. Recently, it has been studied to adopt a polyimide film as a flexible substrate utilizing its transparency, lightness, and flexibility in place of a glass substrate conventionally used as a substrate for display. As for the polyimide film as the flexible substrate, for example, Patent Documents 1 and 2 have been reported.
  • JP 2011-74384 A International Publication No. 2012/11820 Pamphlet
  • transparent polyimides are not sufficient for use as, for example, semiconductor insulating films, TFT-LCD insulating films, electrode protective films, ITO electrode substrates for touch panels, and heat-resistant substrates for flexible displays. .
  • a polyimide film is used as a flexible display substrate, the following steps are generally performed. First, a polyimide film is formed on a support glass by applying polyamic acid, which is a polyimide precursor, on a glass substrate as a support substrate, and then thermally curing it. Next, an inorganic film is formed on the upper surface of the polyimide film. And after forming a display element on this inorganic film, a flexible display is obtained by finally peeling the polyimide film which has a TFT element and an inorganic film from the said support glass.
  • polya polyimide film having low transparency is applied to a flexible display, color correction is required. In particular, when a film with extremely low transparency is used, correction becomes difficult.
  • the film applied to the flexible display needs to have high transparency.
  • Yellowness YI is widely used as an index of film transparency.
  • Patent Document 1 discloses a polyimide with a very low yellowness.
  • a polyimide having a low yellowness tends to have a high residual stress.
  • a polyimide with low yellowness does not have absorption in the wavelength (308 nm and 355 nm) of the laser used when peeling a film from the said support glass. Therefore, when such a polyimide film is applied to a flexible display, the energy required for laser peeling increases, or wrinkles tend to occur during peeling.
  • Patent Document 2 discloses a technique for reducing the residual stress while maintaining the glass transition temperature and Young's modulus of polyimide. This patent document aims to reduce peeling marks when the polyimide film is mechanically peeled while maintaining the adhesion between the polyimide film and the glass substrate. Patent Document 2 describes that the above object is achieved by introducing a block having a structure derived from a flexible silicon-containing diamine into a polymer chain of polyimide. Paragraphs 55 and 151 of the patent document state that the residual stress is reduced by forming a microphase-separated structure in which silicone has a uniform structure with a size of about 1 nm to 1 ⁇ m.
  • the present invention has been made in view of the above-described problems. That is, the present invention Low residual stress generated between the glass substrate and the inorganic film; Excellent adhesion to glass substrate; Preferably highly transparent; An object of the present invention is to provide a polyimide film which can be satisfactorily peeled even when the irradiation energy in the laser peeling step is low, and does not cause burning and particles, and a method for producing the same.
  • a polyimide film having a low YI and having a specific structure of voids has a high Tg, exhibits high adhesion between the glass substrate and the inorganic film, and further causes burns and particles in the laser peeling process. It has been found that the film has excellent peelability, and the present invention has been made based on this finding. That is, the present invention is as follows.
  • each R 1 independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic having 6 to 10 carbon atoms.
  • a group; R 2 and R 3 are each independently a monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
  • X 1 is a tetravalent organic group having 4 to 32 carbon atoms; and
  • X 2 is a divalent organic group having 4 to 32 carbon atoms.
  • R 4 are each independently a single bond or a divalent organic group having 1 to 20 carbon atoms
  • R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms
  • R 7 is each independently a monovalent organic group having 1 to 20 carbon atoms when a plurality of R 7 are present
  • L 1 , L 2 , and L 3 are each independently an amino group, an isocyanate group, a carboxyl group
  • j is an integer from 3 to 200
  • k is an integer from 0 to 197.
  • Tetracarboxylic dianhydride is Pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 4,4′-biphenyl
  • the mass of the compound represented by the general formula (3) used when synthesizing the resin precursor is the same as that of the compound represented by the tetracarboxylic dianhydride, the diamine, and the general formula (3).
  • the resin precursor according to [9] or [10] which is 6% by mass to 25% by mass in total.
  • a resin composition comprising the resin precursor according to any one of [8] to [11] and a solvent.
  • the resin composition according to [12] is developed to form a coating film,
  • the support and the coating film are heated under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film.
  • the polyimide film according to any one of claims 1 to 7, which is produced by [14] The polyimide film according to [13], wherein an oxygen concentration during the heating is 2,000 ppm or less.
  • the support and the coating film are heated under an oxygen concentration of 2,000 ppm or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film.
  • Heating step to obtain a polyimide film having voids A peeling step of peeling the polyimide film having the voids from the support;
  • the manufacturing method of a polyimide film characterized by having.
  • a flexible display comprising the polyimide film according to any one of [1] to [7], an inorganic film, and a TFT.
  • Non-Patent Document 1 discloses a method of producing a polyimide film having voids by using a polyimide precursor in which polypropylene oxide is introduced into a main chain or a side chain.
  • a coating film of a polyimide precursor having a polypropylene oxide portion is formed, a film structure in which polypropylene oxide is microphase-separated is obtained.
  • this coating film is heat-treated, a polyimide film having voids is obtained by simultaneous imidization and thermal decomposition of polypropylene oxide.
  • the present invention provides a polyimide film that achieves the above-mentioned object and a method for producing the same by a simple method without causing deterioration of film properties.
  • the residual stress generated between the glass substrate and the inorganic film is low, the adhesiveness with the glass substrate is excellent, preferably high transparency, and the irradiation energy is low in the laser peeling process. Even in such a case, it is possible to form a polyimide film that can be peeled off and does not cause burning of the polyimide film or generation of particles.
  • Example 1 STEM image (left) and SEM image (right) of Example 1 ATR spectra of the films obtained in Examples 1 and 2 and Reference Example SEM image of Example 7
  • the polyimide film having voids is a film made of polyimide having a void structure with a size of 100 nm or less.
  • the shape of the void can be a spherical structure, a flat elliptical sphere, or the like, and is preferably a flat elliptical sphere.
  • the maximum major axis diameter is preferably 100 nm or less on average, more preferably 80 nm or less, more preferably in the range of 10 to 70 nm, and most preferably in the range of 30 to 60 nm. It is. If the gap is larger than 100 nm, haze is generated in the polyimide film. When the thickness is 1 nm or less, sufficient peelability cannot be ensured at the time of laser peeling, and the polyimide film is burnt by laser irradiation, resulting in generation of particles.
  • the porosity of the polyimide film having voids according to the present embodiment is preferably in the range of 3% by volume to 15% by volume, and more preferably in the range of 6% by volume to 12% by volume.
  • the porosity is 3% by volume or more, the easy peelability at the time of laser peeling is improved, the burning of the polyimide film is suppressed, and the generation of particles tends to be suppressed. If the volume is 15% or less, the film tends to exhibit excellent physical properties.
  • This porosity can be calculated by image analysis in scanning transmission electron microscope (STEM) or scanning electron microscope (SEM) observation.
  • the voids in the polyimide film are preferably present uniformly throughout the film.
  • a polyimide film in which voids are present uniformly is preferable because it has a high tensile elongation and a low birefringence (Rth).
  • the gap is preferably uniform in the film thickness direction of the polyimide film.
  • the uniformity in the film thickness direction of the voids can be known by image analysis in cross-sectional observation of the polyimide film performed using STEM or SEM. The details are as follows: The obtained electron microscopic image is divided into regions of 2 ⁇ m in the film thickness direction, and the porosity is obtained for each region. For these void ratios, the difference between the maximum value and the minimum value is obtained.
  • the film thickness of the void It can be evaluated that the uniformity in the direction is high, which is preferable. This value is more preferably 3% or less, still more preferably 1% or less, and particularly preferably 0.5% or less.
  • the polyimide film of the present invention preferably includes a part of a silicone structure because of excellent adhesion and adhesion between the glass substrate and the inorganic film.
  • the inorganic film include CVD films such as silicon nitride and silicon oxide, and sputtered films.
  • the content (mass ratio) of the silicone residues contained in the polyimide film is preferably in the range of 3 to 15% by mass, and more preferably 6 to 12% by mass. When the content of the silicone residue exceeds 15% by mass, sufficient peelability cannot be ensured at the time of laser peeling, and the polyimide film may be burnt by laser irradiation, resulting in generation of particles. On the other hand, if this value is 3% by mass or less, sufficient adhesion to the glass substrate cannot be secured.
  • a method for specifically producing a polyimide film having a void structure according to this embodiment will be described below.
  • each R 1 independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic having 6 to 10 carbon atoms.
  • a group; R 2 and R 3 are each independently a monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
  • X 1 is a tetravalent organic group having 4 to 32 carbon atoms; and
  • X 2 is a divalent organic group having 4 to 32 carbon atoms.
  • a resin composition comprising a resin precursor (polyamic acid) having a solvent and a solvent is spread on a substrate to form a coating film, By performing a heat treatment on the support and the coating film while controlling the oxygen concentration and the heating temperature, it is possible to form a polyimide film having voids having the structure as described above.
  • the unit structure 1 shown in the general formula (1) is a structure obtained by reacting tetracarboxylic dianhydride and diamine.
  • X 1 is derived from tetracarboxylic dianhydride and
  • X 2 is derived from diamine.
  • the unit structure 2 shown in the general formula (2) is a structure derived from a silicone monomer.
  • X 2 in the general formula (1) is 2,2′-bis (trifluoromethyl) benzidine, 4,4- (diaminodiphenyl) sulfone, 3,3- ( A residue derived from (diaminodiphenyl) sulfone is preferred. It is preferable that a part of R 2 and R 3 in the general formula (2) is a phenyl group. In the resin precursor of this invention, it is preferable that the total mass of the resin structure which consists of the said unit 1 and the said unit 2 is 30 mass% or more with respect to all the resin precursors.
  • tetracarboxylic dianhydride examples include aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms, aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms, and carbon numbers. Is preferably a compound selected from 6-36 alicyclic tetracarboxylic dianhydrides.
  • the number of carbons herein includes the number of carbons contained in the carboxyl group.
  • examples of the aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms include 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter also referred to as 6FDA), 5- ( 2,5-dioxotetrahydro-3-furanyl) -3-methyl-cyclohexene-1,2 dicarboxylic acid anhydride, pyromellitic dianhydride (hereinafter also referred to as PMDA), 1,2,3,4-benzene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA), 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA), 3, 3,4
  • Examples of the aliphatic tetracarboxylic dianhydride having 6 to 50 carbon atoms include ethylene tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride; Examples of the alicyclic tetracarboxylic dianhydride having 6 to 36 carbon atoms include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as CBDA), cyclopentanetetracarboxylic dianhydride.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • Cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride (hereinafter referred to as CHDA), 3,3 ′, 4,4 '-Bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid ) Dianhydride, 1,2-ethylene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethylidene-4,4′-bis (cyclohexane-1,2) Dicarboxylic acid) dianhydride, 2,2-propylidene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride,
  • the use of one or more selected from the group consisting of BTDA, PMDA, BPDA and TAHQ can reduce CTE, improve chemical resistance, improve glass transition temperature (Tg), and improve mechanical elongation. It is preferable from the viewpoint.
  • one or more selected from the group consisting of 6FDA, ODPA and BPADA to reduce yellowness, birefringence, and mechanical elongation. It is preferable from the viewpoint of improvement.
  • BPDA is preferable from the viewpoints of reducing residual stress, reducing yellowness, reducing birefringence, improving chemical resistance, improving Tg, and improving mechanical elongation.
  • CHDA is preferable from the viewpoints of reduction of residual stress and reduction of yellowness.
  • at least one selected from the group consisting of PMDA and BPDA having a tough structure that exhibits high chemical resistance, high Tg and low CTE, and low yellowness and birefringence, from 6FDA, ODPA and CHDA It is preferable to use in combination with at least one selected from the group consisting of high chemical resistance, residual stress reduction, yellowness reduction, birefringence reduction, and total light transmittance improvement. .
  • a component derived from biphenyltetracarboxylic acid (BPDA) is contained in an amount of 20 mol% or more of the total tetracarboxylic dianhydride-derived component of the resin precursor.
  • the resin precursor in this Embodiment is good also as a polyamideimide precursor by using dicarboxylic acid in addition to the above-mentioned tetracarboxylic dianhydride in the range which does not impair the performance.
  • dicarboxylic acids include dicarboxylic acids having an aromatic ring and alicyclic dicarboxylic acids.
  • it is preferably at least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms.
  • the number of carbons herein includes the number of carbons contained in the carboxyl group. Of these, dicarboxylic acids having an aromatic ring are preferred.
  • terephthalic acid is particularly preferable from the viewpoint of reducing the YI value and improving the Tg.
  • dicarboxylic acid is used together with tetracarboxylic dianhydride, it is obtained that the dicarboxylic acid is 50 mol% or less with respect to the total number of moles of the total of dicarboxylic acid and tetracarboxylic dianhydride. It is preferable from the viewpoint of chemical resistance in the film.
  • the resin precursor according to the present embodiment is, for example, 4,4- (diaminodiphenyl) sulfone (hereinafter also referred to as 4,4-DAS), 3,4 as diamine for deriving X 2 in unit 1.
  • 4,4-DAS 4,4- (diaminodiphenyl) sulfone
  • the structure represented by the general formula (2) is derived from a silicone monomer.
  • the amount of the silicone monomer used when synthesizing the resin precursor is preferably 6% by mass to 25% by mass based on the mass of the resin precursor. It is advantageous that the amount of the silicone monomer used is 6% by mass or more from the viewpoint of sufficiently obtaining the effect of reducing the stress generated between the resulting polyimide film and the inorganic film and the effect of reducing the yellowness. This value is more preferably 8% by mass or more, and further preferably 10% by mass or more.
  • the amount of the silicone monomer used is 25% by mass or less, which is advantageous from the viewpoint of improving the transparency and obtaining good heat resistance without causing the resulting polyimide film to become cloudy.
  • This value is more preferably 22% by mass or less, and further preferably 20% by mass or less.
  • the amount of silicone monomer used is particularly preferably 10% by mass or more and 20% by mass or less. .
  • the resin precursor coating is thermally cured under control of the oxygen concentration, a part of the silicone incorporated into the resin precursor is diluted in the form of cyclic trimer, cyclic tetramer, etc.
  • the introduction amount of the silicone monomer at the time of the resin precursor so that the mass ratio of the silicone remaining after the diffusion is in the range of 4 to 18% by mass with respect to the mass of the total polyimide film.
  • Examples of the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in the general formula (2) include an alkyl group having 1 to 20 carbon atoms and a cycloalkyl group having 3 to 20 carbon atoms; Examples of the aromatic group having 6 to 10 carbon atoms include an aryl group.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms from the viewpoint of heat resistance and residual stress.
  • a methyl group, an ethyl group, a propyl group, an isopropyl group examples thereof include a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms from the above viewpoint, and specific examples thereof include a cyclopentyl group and a cyclohexyl group.
  • Specific examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, and a naphthyl group from the above viewpoint.
  • a plurality of R 4 are each independently a single bond or a divalent organic group having 1 to 20 carbon atoms;
  • R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms;
  • R 7 is each independently a monovalent organic group having 1 to 20 carbon atoms when a plurality of R 7 are present;
  • L 1 , L 2 , and L 3 are each independently an amino group, isocyanate group, carboxyl group, acid anhydride group, acid ester group, acid halide group, hydroxy group, epoxy group, or mercapto group;
  • j is an integer from 3 to 200, and
  • k is an integer from 0 to 197.
  • ⁇ Is preferably used.
  • Examples of the divalent organic group having 1 to 20 carbon atoms in R 4 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Can be mentioned.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms from the viewpoint of heat resistance, residual stress and cost, and specifically, for example, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group. Group, hexamethylene group and the like.
  • the cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms from the above viewpoint.
  • Specific examples include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and the like.
  • divalent aliphatic hydrocarbons having 3 to 20 carbon atoms are preferred from the above viewpoint.
  • the arylene group having 6 to 20 carbon atoms is preferably an aromatic group having 3 to 20 carbon atoms from the above viewpoint, and specific examples thereof include a phenylene group and a naphthylene group.
  • R 5 and R 6 have the same meanings as R 2 and R 3 in the general formula (2), and a preferred embodiment is as described above for the general formula (2).
  • the preferred embodiment of R 7 is the same as R 2 and R 3 .
  • j is an integer of 3 to 200, preferably an integer of 10 to 200, more preferably an integer of 20 to 150, still more preferably an integer of 30 to 100, particularly preferably 35 to 80. Is an integer.
  • k is an integer of 0 to 197, preferably 0 to 100, more preferably 0 to 50, and particularly preferably 0 to 25. When k exceeds 197, when a resin composition containing a resin precursor and a solvent is prepared, problems such as clouding of the composition may occur. When k is 0, it is preferable from the viewpoint of improving the molecular weight of the resin precursor and the heat resistance of the resulting polyimide. When k is 0, it is advantageous that j is 3 to 200 from the viewpoint of improving the molecular weight of the resin precursor and the heat resistance of the resulting polyimide.
  • L 1 , L 2 and L 3 are each independently an amino group, an isocyanate group, a carboxyl group, an acid anhydride group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, Or a mercapto group.
  • the amino group may be substituted.
  • Examples of the substituted amino group include a bis (trialkylsilyl) amino group.
  • Specific examples of the compound in which L 1 , L 2 , and L 3 in the general formula (3) are amino groups include amino end-modified methylphenyl silicone (for example, X22-1660B-3 (number average, manufactured by Shin-Etsu Chemical Co., Ltd.) Molecular weight 4,400) and X22-9409 (number average molecular weight 1,300)); both-end amino-modified dimethyl silicone (for example, X22-161A (number average molecular weight 1,600), X22-161B (number manufactured by Shin-Etsu Chemical Co., Ltd.)) Average molecular weight 3,000) and KF8012 (number average molecular weight 4,400); BY16-835U (number average molecular weight 900) manufactured by Toray Dow Corning; and Silaplane FM3311 (number average molecular weight 1000 manufactured by Chi
  • L 1 , L 2 , and L 3 are carboxyl groups
  • X22-162C number average molecular weight 4,600
  • BY16-880 number average manufactured by Toray Dow Corning
  • L 1 , L 2 and L 3 are acid anhydride groups
  • L 1 , L 2 and L 3 are acid anhydride groups
  • L 1 , L 2 , and L 3 are acid anhydride groups
  • X22-168AS manufactured by Shin-Etsu Chemical, number average molecular weight 1,000
  • X22-168A manufactured by Shin-Etsu Chemical, number average.
  • Molecular weight 2,000 Molecular weight 2,000
  • X22-168B manufactured by Shin-Etsu Chemical, number average molecular weight 3,200
  • X22-168-P5-8 manufactured by Shin-Etsu Chemical, number average molecular weight 4,200
  • DMS-Z21 manufactured by Gerest, Number average molecular weight 600 to 800.
  • Specific examples of the compound in which L 1 , L 2 , and L 3 are acid ester groups include a reaction of the compound in which L 1 , L 2 , and L 3 are carboxyl groups or acid anhydride groups with an alcohol. And the like.
  • L 1 , L 2 and L 3 are acid halide groups include carboxylic acid chlorides, carboxylic acid fluorides, carboxylic acid bromides, carboxylic acid iodides and the like.
  • L 1 , L 2 , and L 3 are hydroxy groups
  • KF-6000 manufactured by Shin-Etsu Chemical, number average molecular weight 900
  • KF-6001 manufactured by Shin-Etsu Chemical, number average molecular weight 1,800
  • KF-6002 manufactured by Shin-Etsu Chemical, number average molecular weight 3,200
  • KF-6003 manufactured by Shin-Etsu Chemical, number average molecular weight 5,000
  • a compound having a hydroxy group is considered to react with a compound having a carboxyl group or an acid anhydride group.
  • L 1 , L 2 , and L 3 are epoxy groups
  • X22-163 manufactured by Shin-Etsu Chemical, number average molecular weight 400
  • KF-105 manufactured by Shin-Etsu Chemical, Number average molecular weight 980
  • X22-163A manufactured by Shin-Etsu Chemical, number average molecular weight 2,000
  • X22-163B manufactured by Shin-Etsu Chemical, number average molecular weight 3,500
  • X22-163C manufactured by Shin-Etsu Chemical, number average molecular weight 5)
  • both end alicyclic epoxy type X22-169AS (manufactured by Shin-Etsu Chemical, number average molecular weight 1,000), X22-169B (manufactured by Shin-Etsu Chemical, number average molecular weight 3,400); X22-9002 (manufactured by Shin-E
  • L 1 , L 2 , and L 3 are mercapto groups
  • L 1 , L 2 , and L 3 are mercapto groups
  • X22-167B manufactured by Shin-Etsu Chemical, number average molecular weight 3,400
  • X22-167C manufactured by Shin-Etsu Chemical, number average molecular weight 4
  • 600 A compound having a mercapto group is considered to react with a compound having a carboxyl group or an acid anhydride group.
  • L 1 , L 2 , and L 3 are each independently preferably an amino group or an acid anhydride group from the viewpoint of improving the molecular weight of the resin precursor or the heat resistance of the resulting polyimide. From the viewpoint of avoiding white turbidity of the resin composition containing the precursor and the solvent, and from the viewpoint of cost, It is preferable that all of L 1 , L 2 and L 3 are amino groups; or L 1 and L 2 are each independently an amino group or an acid anhydride group, and k is 0. . In the latter case, it is more preferable that both L 1 and L 2 are amino groups.
  • the number average molecular weight of the resin precursor according to the present embodiment is preferably 3,000 to 1,000,000, more preferably 5,000 to 500,000, still more preferably 7,000 to 300,000. 000, particularly preferably 10,000 to 250,000.
  • the molecular weight is preferably 3,000 or more from the viewpoint of obtaining good heat resistance and strength (for example, high elongation), and is 1,000,000 or less to obtain good solubility in a solvent. From the viewpoint, it is preferable from the viewpoint that coating can be performed without bleeding at a desired film thickness at the time of processing such as coating. From the viewpoint of obtaining a high mechanical elongation, the molecular weight is preferably 50,000 or more.
  • the number average molecular weight is a value determined by standard polystyrene conversion using gel permeation chromatography.
  • the resin precursor according to the present embodiment may be partially imidized.
  • the imidation of the resin precursor can be performed by known chemical amidation or thermal amidation. Of these, thermal imidization is preferred.
  • the imidization rate can be controlled by controlling the heating temperature and the heating time.
  • the range of the imidization rate is preferably 5% to 70% from the viewpoint of solubility in a solution and storage stability.
  • N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal or the like may be added to the above resin precursor and heated to esterify a part or all of the carboxylic acid.
  • the viscosity stability at the time of storage at room temperature of a resin composition can be improved.
  • the resin precursor according to the present embodiment as described above is preferably used as a resin composition (varnish) obtained by dissolving it in a solvent. With this configuration, a transparent polyimide film can be produced without requiring a special solvent combination.
  • the resin composition according to the present embodiment is an aspect of a resin precursor obtained by reacting tetracarboxylic dianhydride, diamine, and silicone monomer by dissolving them in a solvent, for example, an organic solvent. It can be produced as a polyamic acid solution containing a polyamic acid and a solvent.
  • the conditions at the time of reaction are not particularly limited, and examples thereof include a reaction temperature of ⁇ 20 to 150 ° C. and a reaction time of 2 to 48 hours. In order to sufficiently proceed the reaction with the silicone monomer, it is preferable to perform heating for about 30 minutes or more at a temperature of 120 ° C. or higher during the synthesis reaction.
  • the reaction is preferably performed in an inert atmosphere such as argon or nitrogen.
  • the solvent is not particularly limited as long as it is a solvent that dissolves polyamic acid.
  • reaction solvents include dimethylene glycol dimethyl ether (DMDG), m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone,
  • DMDG dimethylene glycol dimethyl ether
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • One or more polar solvents selected from diethyl acetate, ecamide M100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.), and ecamide B100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.) are useful.
  • a low-boiling solution such as tetrahydrofuran (THF) or chloroform, or a low-absorbing solvent such as ⁇ -butyrolactone may be used together with or in place of the above solvent.
  • THF tetrahydrofuran
  • a low-absorbing solvent such as ⁇ -butyrolactone
  • an alkoxysilane compound is added to 100% by mass of the resin precursor in order to give the obtained polyimide film sufficient adhesion to the support. It may contain.
  • the content of the alkoxysilane compound is 0.01% by mass or more with respect to 100% by mass of the resin precursor, good adhesion to the support can be obtained, and the content of the alkoxysilane compound is It is preferable that it is 2 mass% or less from a viewpoint of the storage stability of a resin composition.
  • the content of the alkoxysilane compound is more preferably 0.02 to 2% by mass, still more preferably 0.05 to 1% by mass, and more preferably 0.05 to 0.5% with respect to the resin precursor. It is particularly preferable that the content is 1% by mass, and particularly preferable is 0.1 to 0.5% by mass.
  • alkoxysilane compounds include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, and ⁇ -aminopropyl.
  • the polyimide resin film having a void structure forms the coating film by developing the above resin composition on the surface of the support, It can be produced by heating the support and the coating film under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more.
  • the unit “mass%” relating to the oxygen concentration is a percentage based on volume
  • the unit “ppm” relating to the oxygen concentration which will be described later is a percentage based on volume.
  • the support is an inorganic substrate such as a glass substrate such as a non-alkali glass substrate, but is not particularly limited.
  • the method for spreading the polyimide precursor on the substrate include known coating methods such as spin coating, slit coating, and blade coating.
  • the solvent is evaporated by heating to 80 ° C. to 200 ° C. using a hot plate, oven, or the like, and a coating film (pre-baked film) is produced.
  • the silicone portion and the polyimide portion of the resin precursor form a film forming a microphase separation structure.
  • the support and the coating film are put into an oven having an oxygen concentration of 23% by mass or less, and heated to 250 ° C. or more to dehydrate and imidize the resin precursor, and at the same time, the silicone part that is microphase-separated.
  • a polyimide film according to the present embodiment can be created by disassembling and removing a part to form a void. By heating at 250 ° C. or higher, it is considered that the silicone portion in the resin precursor is thermally decomposed to form a cyclic trimer and / or a cyclic tetramer and is evaporated and removed.
  • the coated support may be put into an oven with controlled oxygen concentration as it is and heated to 250 ° C. or higher.
  • the size and porosity of the voids can be controlled, for example, by setting the silicone content in the polymer, the curing temperature, the curing time, the oxygen concentration, etc. within appropriate ranges. Specifically, for example, when the introduction amount of the silicone moiety represented by the general formula (2) in the resin precursor is increased, the silicone domain size in the pre-baked film increases.
  • the size of the silicone domain structure is one factor that controls the void structure. If the silicone part is completely pyrolyzed, the domain size in the prebaked film will be the maximum size of the voids in the resulting polyimide film. Therefore, by controlling the silicone domain size in the pre-baked film, the void size (major axis average) in the resulting polyimide film can be controlled.
  • the mass ratio of the silicone portion represented by the general formula (2) in the resin precursor may be 25% by mass or less of the entire resin precursor.
  • the size relationship between the size of the void in the polyimide film and the domain size of the silicone in the pre-baked film is It can be adjusted to any degree.
  • the oxygen concentration during heating in the present embodiment is preferably 2,000 ppm or less.
  • the oxygen concentration at the time of heating is within this range, uniform voids tend to occur in the film. Therefore, the tensile elongation of the film is high and the birefringence (Rth) tends to be low, which is preferable.
  • the uniformity of the voids in the film thickness direction tends to be slightly impaired. This phenomenon is presumed to be caused by the fact that the thermal decomposition reaction of the silicone portion of the resin precursor hardly occurs when the oxygen concentration is 2,000 ppm or more.
  • the present inventors under conditions where a significant amount of oxygen exists, the organic group on the silicon atom of the silicone is oxidized by oxygen, for example, formaldehyde, formic acid, hydrogen, carbon dioxide, etc., It is presumed that this is because it is converted into a highly crosslinked gel-like heat-resistant polymer.
  • oxygen for example, formaldehyde, formic acid, hydrogen, carbon dioxide, etc.
  • the heating temperature is preferably in the range of 250 ° C. to 480 ° C., and more preferably in the range of 280 ° C. to 450 ° C.
  • the oxygen concentration is controlled to 100 ppm or less, and the heating temperature is controlled in the range of 280 ° C. to 450 ° C.
  • the inert gas used when controlling the oxygen concentration include nitrogen gas and Ar gas. Nitrogen gas is preferable from the economical viewpoint. In order to control the oxygen concentration, heating may be performed under reduced pressure using a vacuum oven or the like.
  • the thickness of the polyimide film according to the present embodiment is not particularly limited, and is preferably in the range of 1 to 200 ⁇ m, more preferably 5 to 50 ⁇ m. Furthermore, the polyimide film according to the present embodiment preferably has a residual stress at a thickness of 10 ⁇ m of 25 MPa or less.
  • the polyimide film according to this embodiment preferably has a yellowness (YI) at a film thickness of 20 ⁇ m of 7 or less.
  • YI value of the polyimide film at a film thickness of 20 ⁇ m is more preferably 6 or less, and particularly preferably 5 or less.
  • the yellowness degree in thickness 20 micrometers can be known by performing thickness conversion with respect to the measured value of this film.
  • the present invention also provides a laminate comprising a support and a polyimide film formed on the support.
  • the laminate is formed by spreading the above resin composition on the surface of the support to form a coating film, It can be obtained by heating the support and the coating film under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more.
  • This laminated body is used for manufacturing a flexible device, for example. More specifically, a semiconductor device is formed on a polyimide film having a relative relationship, and then the support is peeled off to obtain a flexible device composed of the polyimide film and the semiconductor device formed thereon.
  • the polyimide film according to the present embodiment has a specific void structure, so that the residual stress generated between the glass substrate or the inorganic film is low and the adhesiveness to the glass substrate is excellent. Moreover, even when the irradiation energy is low in the laser peeling process, good peeling is possible, and no burning and particles are generated. Therefore, the polyimide film according to the present embodiment is extremely suitable for application as a substrate of a flexible display.
  • a polyimide film as a flexible substrate is formed thereon using a glass substrate as a support, and a TFT or the like is further formed thereon.
  • the process of forming the TFT is typically performed at a wide range of temperatures from 150 to 650 ° C.
  • TFT-IGZO (InGaZnO) oxide semiconductors and TFTs are mainly formed at around 250 ° C. to 450 ° C. .
  • the glass substrate warps and breaks when it shrinks during normal temperature cooling after expansion in the high temperature TFT formation process, from the glass substrate of the flexible substrate. This causes problems such as peeling.
  • the thermal expansion coefficient of a glass substrate is smaller than that of a resin, a residual stress is generated between the flexible substrate and the resin film.
  • the residual stress generated between the polyimide film according to the present embodiment and the glass is 25 MPa or less on the basis of the film thickness of 10 ⁇ m.
  • the polyimide film according to the present embodiment has a tensile strength of 30% or more on the basis of a film thickness of 20 ⁇ m from the viewpoint of improving yield by being excellent in breaking strength when handled as a flexible substrate. It is preferable. In particular, when the tensile elongation is 33% or more, when an inorganic film on the polyimide film is provided, peeling or cracking of the film tends not to occur. Among these, 40% or more is particularly preferable.
  • the polyimide film according to this embodiment has at least one glass transition temperature in each of the ⁇ 150 ° C. to 0 ° C. region and the 150 ° C. to 380 ° C. region, and is greater than 0 ° C. and less than 150 ° C. It is preferred not to have a glass transition temperature in the region.
  • the polyimide film according to the present embodiment preferably has a glass transition temperature of 250 ° C. or higher in the high temperature region so as not to be softened at the TFT element forming temperature.
  • the polyimide film according to the present embodiment has chemical resistance that can withstand a photoresist stripping solution in a photolithography process used when manufacturing a TFT element.
  • the top emission method has a feature that it is easy to increase the aperture ratio because the TFT element does not get in the way.
  • the bottom emission method is characterized by easy alignment and easy manufacture. If the TFT element is transparent, it is possible to improve the aperture ratio even in the bottom emission method. Therefore, it is expected that a bottom emission method that is easy to manufacture will be adopted as a large organic EL flexible display. ing.
  • the resin substrate is disposed on the side to be visually recognized. Therefore, the resin substrate is required to have particularly low yellowness (YI value) and high total light transmittance from the viewpoint of improving the image quality.
  • the polyimide film and laminate according to the present embodiment can be suitably used particularly as a substrate, for example, in the production of semiconductor insulating films, TFT-LCD insulating films, electrode protective films, flexible devices, and the like.
  • the flexible device is, for example, a flexible display, a flexible solar cell, a flexible touch panel electrode substrate, flexible lighting, a flexible battery, or the like.
  • the polyimide film according to the present embodiment satisfying the above various physical properties can be used particularly for applications in which use is limited by the yellow color of existing polyimide films, particularly for colorless transparent substrates for flexible displays.
  • the polyimide film according to the present embodiment includes, for example, a protective film, a light-diffusing sheet and a coating film (for example, TFT-LCD interlayer, gate insulating film, liquid crystal alignment film, etc.) in TFT-LCD, It can be used in fields requiring colorless and transparent and low birefringence, such as ITO substrates for touch panels and cover glass substitute resin substrates for smartphones.
  • a coating film for example, TFT-LCD interlayer, gate insulating film, liquid crystal alignment film, etc.
  • the resin precursor composition obtained in each synthesis example was applied to a non-alkali glass substrate (thickness 0.7 mm) with a bar coater, leveled at room temperature for 5 to 10 minutes, and then subjected to a vertical curing oven (Koyo).
  • a polyimide film having a film thickness of 20 ⁇ m is formed on a glass substrate by heating (prebaking) at 140 ° C. for 60 minutes using a Lindberg company, model name VF-2000B), and further heating in a hot air oven under a nitrogen atmosphere for 60 minutes.
  • the oxygen concentration and the curing temperature in the hot air oven were set as shown in Table 1.
  • the oxygen concentration meter As the oxygen concentration meter, a zirconia LC-750L manufactured by Toray Engineering Co., Ltd. was used. After the cured laminate was immersed in water and allowed to stand for 24 hours, the polyimide film was peeled from the glass and subjected to the following evaluations. However, the evaluation of laser peelability and the measurement of adhesive strength were carried out in a state where they were not peeled off from the glass substrate, and the polyimide film was formed separately for evaluation of residual stress and infrared measurement.
  • the cured polyimide film was cut into a size of 5 mm ⁇ 50 mm, and was pulled at a speed of 100 mm / min using a tensile tester (manufactured by A & D Co., Ltd .: RTG-1210), and the tensile elongation was measured.
  • the glass transition temperature and linear expansion coefficient (CTE) in the region above room temperature were measured by thermomechanical analysis using a cured polyimide film cut to a size of 5 mm ⁇ 50 mm as a test piece. Using a thermomechanical analyzer (TMA-50) manufactured by Shimadzu Corporation as a measuring device, in a temperature range of 50 to 450 ° C. under conditions of a load of 5 g, a heating rate of 10 ° C./min and a nitrogen stream (flow rate of 20 ml / min). The test piece elongation was measured. The inflection point of the obtained chart was determined as the glass transition temperature, and the CTE of the polyimide film at 100 to 250 ° C. was determined.
  • TMA-50 thermomechanical analyzer manufactured by Shimadzu Corporation
  • ⁇ void ratio was used as an index of uniformity in the film thickness direction of the void. When this value is 5% or less, it can be evaluated that the uniformity of the voids in the film thickness direction is high. This value is more preferably 3% or less, still more preferably 1% or less, and particularly preferably 0.5% or less.
  • SAXS small angle X-ray scattering measurement
  • the polyimide film after heating at the oxygen concentration and curing temperature shown in Table 1 was also measured in the same manner as described above, and the absorbance at 1,100 cm ⁇ 1, which is the absorption of SiO bond, was obtained.
  • the residual ratio of silicone residues was estimated by comparing the value of the pre-baked film and the value of the cured polyimide film.
  • the silicone content in the obtained polyimide film was computed from the preparation amount of the silicone monomer at the time of synthesize
  • As a measuring apparatus of ATR “Nicolet Continium” manufactured by Thermo Fisher Scientific Co., Ltd. was used. In FIG. 2, the ATR spectrum of the film obtained by Example 1, 2 and the reference example was shown.
  • the chart of FIG. 2 is a spectrum of the films obtained in Reference Example 1, Example 2, and Example 1 in order from the top.
  • the polyimide film of the laminate obtained above is cut using a cutter knife with two cuts having a width of 10 mm and a length of 100 mm, the end is peeled off and sandwiched between chucks, and the tensile speed is 100 mm / min. 180 ° peel strength was measured.
  • As a tensile tester RTG-1210 manufactured by A & D Corporation was used.
  • both-end amine-modified methylphenyl silicone oil manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (number average molecular weight 4,400)
  • a silicone monomer solution obtained by dissolving in 298 g of NMP was added dropwise from a dropping funnel.
  • the oil bath was removed and the temperature was returned to room temperature to obtain an NMP solution (resin precursor composition) of a transparent resin precursor (polyamic acid). It was.
  • the number average molecular weight (Mn) of the polyamic acid obtained here was about 33,000.
  • a silicone monomer solution obtained by dissolving 113.64 g of silicone monomer X22-1660B-3 (17% by mass with respect to the whole resin precursor) in 568 g of NMP was dropped from a dropping funnel. After completion of dropping, the mixture was stirred at room temperature for 1 hour, heated to 80 ° C., stirred for 4 hours, and then returned to room temperature by removing the oil bath, thereby transparent NMP containing polyamic acid having an average molecular weight of 62,000. A solution (resin precursor composition) was obtained.
  • Synthesis Example 8 A transparent containing polyamic acid having a number average molecular weight of 58,000 was carried out in the same manner as in Synthesis Example 7 except that the amount of TFMB added was 317.02 g (0.99 mol) and no silicone monomer solution was added. NMP solution (resin precursor composition) was obtained.
  • Examples 1 to 18 and Comparative Examples 1 to 3 Using the resin precursor composition synthesized in the above synthesis example, a polyimide film was produced under the conditions of oxygen concentration and cure temperature described in Table 1 according to the above-described method, and various evaluations were performed. The evaluation results are shown in Tables 2 and 3. In FIG. 1, the STEM image (left) and SEM image (right) which image
  • Reference example 1 This reference example was carried out in order to verify that when the curing temperature was lowered, all of the silicone component remained in the film and no voids were formed.
  • a film was formed by the above-described method except that the resin precursor composition obtained in Synthesis Example 1 was used and the curing conditions were an oxygen concentration of 50 ppm and a curing temperature of 95 ° C., and ATR measurement and electron microscope observation were performed. It was. The results are shown in Table 2.
  • the difference in electron density between domain structures in the sea-island structure obtained by SAXS observation is in the examples, since the value was close to the difference in electron density between polyimide and air, voids were formed in the film; In one comparative example, since the value was close to the difference in electron density between polyimide and silicone, no voids were formed; Each was confirmed.
  • the cross-sectional STEM image of the film thickness direction of Example 1 it can confirm that an island part is white. From this, it can be determined that the island portion is a void. Similarly, from the SEM image, it can be confirmed that the island portion is recessed, so that it can be determined that the portion is a void.
  • the polyimide film obtained from the resin precursor according to the present invention has low residual stress generated between the glass substrate and the inorganic film, excellent adhesion to the glass substrate, and irradiation energy in the laser peeling process. It was confirmed that good peeling is possible even when the film thickness is low, and that no burning of the polyimide film or generation of particles occurs at the time of peeling.
  • the polyimide film of the present invention can be suitably used for, for example, semiconductor insulating films, TFT-LCD insulating films, electrode protective films, flexible display substrates, touch panel ITO electrode substrates, and the like. It is particularly useful as various substrates.

Abstract

 A polyimide film characterized by having pores of 100 nm or less and being used in the production of a flexible device.

Description

空隙を有するポリイミドフィルム及びその製造方法Polyimide film having voids and method for producing the same
 本発明は、例えば、フレキシブルデバイスのための基板に用いられる、空隙を有するポリイミドフィルム及びその製造方法に関する。
 前記ポリイミドフィルムは、好ましくは高い透明性を有する。
The present invention relates to a polyimide film having voids, for example, used for a substrate for a flexible device, and a method for producing the same.
The polyimide film preferably has high transparency.
 一般に、高耐熱性が要求される用途には、樹脂フィルムとしてポリイミド(PI)からなるフィルムが用いられる。一般的なポリイミドは、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを溶液重合してポリイミド前駆体(ポリアミド酸)を製造した後、高温で閉環脱水させる熱イミド化、又は、触媒を用いてで閉環脱水させる化学イミド化により、製造される。 Generally, for applications requiring high heat resistance, a film made of polyimide (PI) is used as a resin film. A general polyimide is prepared by solution polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine to produce a polyimide precursor (polyamic acid), followed by thermal imidization by dehydration at high temperature or using a catalyst. It is produced by chemical imidization by ring-closing dehydration.
 ポリイミドは、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有している。このため、ポリイミドは、絶縁性コーティング剤、絶縁膜等の他;半導体の保護膜;TFT-LCDの電極保護膜等の、電子材料を含む広範囲な分野で用いられている。最近は、ディスプレイ用の基板として従来使用されていたガラス基板に代わり、その透明性、軽さ、及び柔軟性を利用したフレキシブル基板としてポリイミドフィルムを採用することも検討されている。
 フレキシブル基板としてのポリイミドフィルムについては、例えば特許文献1及び2のような検討例が報告されている。
Polyimide is an insoluble and infusible super heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. For this reason, polyimide is used in a wide range of fields including electronic materials such as insulating coating agents, insulating films, etc .; semiconductor protective films; TFT-LCD electrode protective films. Recently, it has been studied to adopt a polyimide film as a flexible substrate utilizing its transparency, lightness, and flexibility in place of a glass substrate conventionally used as a substrate for display.
As for the polyimide film as the flexible substrate, for example, Patent Documents 1 and 2 have been reported.
特開2011-74384号公報JP 2011-74384 A 国際公開第2012/118020号パンフレットInternational Publication No. 2012/11820 Pamphlet
 しかし、公知の透明ポリイミドの物理特性は、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、タッチパネル用ITO電極基板、及びフレキシブルディスプレイ用耐熱性基板として用いるためには、十分ではなかった。 However, the physical properties of known transparent polyimides are not sufficient for use as, for example, semiconductor insulating films, TFT-LCD insulating films, electrode protective films, ITO electrode substrates for touch panels, and heat-resistant substrates for flexible displays. .
 例えば、フレキシブルディスプレイ用基板としてポリイミドフィルムを用いる時には、以下の工程を経由することが一般的である。
 先ず、サポート用基板としてのガラス基板上に、ポリイミドの前駆体であるポリアミド酸を塗布し、次いでこれを熱キュアすることにより、サポートガラス上にポリイミドフィルムを形成する。次いで、該ポリイミドフィルムの上面に無機膜を形成する。そして該無機膜上に表示素子を形成した後に、最後にTFT素子及び無機膜を有するポリイミド膜を前記サポートガラスから剥離することにより、フレキシブルディスプレイを得るのである。
 ここで、透明性の低いポリイミドフィルムをフレキシブルディスプレイに適用した場合には、色の補正が必要となる。特に、透明性が著しく低いフィルムを用いた場合には、補正が困難となる。従って、フレキシブルディスプレイに適用されるフィルムは、その透明性が高いことが必要である。
 フィルムの透明性の指標として、黄色度YIが広く用いられている。この黄色度を低減させたポリイミドとして、例えば特許文献1の報告がある。該公報には、黄色度の極めて低いポリイミドが開示されている。一般に、黄色度の低いポリイミドは、残留応力が高い傾向にある。また、黄色度の低いポリイミドは、上記サポートガラスからフィルムを剥離する場合に用いられるレーザーの波長(308nm及び355nm)に吸収を持たない。そのため、このようなポリイミドフィルムをフレキシブルディスプレイに適用すると、レーザー剥離に要するエネルギーが大きくなり、或いは剥離時に煤が発生し易い傾向にある。
 ところで、特許文献2には、ポリイミドのガラス転移温度及びヤング率を維持したまま、残留応力を低減する技術が開示されている。この特許文献は、ポリイミドフィルムとガラス基板との間の接着性を維持しつつ、ポリイミドフィルムを機械的に剥離した時の剥離痕を低減することを目的とする。特許文献2では、ポリイミドの重合体鎖に、柔軟なケイ素含有ジアミンに由来する構造を有するブロックを導入することにより、上記の目的が達成されると説明されている。該特許文献の段落55及び151には、シリコーンが1nm~1μm程度のサイズで均一な構造を有するミクロ相分離構造を形成することにより、残留応力が低減される旨の記載がある。段落31には、TEM測定によりシリコーンドメインのサイズを確認した旨の記載がある。
 本発明者等が確認したところ、シリコーンのミクロ相分離構造を有するポリイミドフィルムは、柔軟な骨格がフィルム中に存在するため、ガラス転移温度が下がる傾向があった。また、特許文献2のポリイミドフィルムは、黄色度が高いにも関わらず、これにレーザー剥離を適用すると、レーザーの照射エネルギーが小さい場合にはガラス基板から該ポリイミドフィルムを剥離出来ないことが分かった。ここで、レーザーの照射エネルギーを上げて剥離を試みると、ポリイミドフィルムが焦げてパーティクルが発生するという問題が生ずる。
For example, when a polyimide film is used as a flexible display substrate, the following steps are generally performed.
First, a polyimide film is formed on a support glass by applying polyamic acid, which is a polyimide precursor, on a glass substrate as a support substrate, and then thermally curing it. Next, an inorganic film is formed on the upper surface of the polyimide film. And after forming a display element on this inorganic film, a flexible display is obtained by finally peeling the polyimide film which has a TFT element and an inorganic film from the said support glass.
Here, when a polyimide film having low transparency is applied to a flexible display, color correction is required. In particular, when a film with extremely low transparency is used, correction becomes difficult. Therefore, the film applied to the flexible display needs to have high transparency.
Yellowness YI is widely used as an index of film transparency. As a polyimide with reduced yellowness, for example, there is a report of Patent Document 1. This publication discloses a polyimide with a very low yellowness. In general, a polyimide having a low yellowness tends to have a high residual stress. Moreover, a polyimide with low yellowness does not have absorption in the wavelength (308 nm and 355 nm) of the laser used when peeling a film from the said support glass. Therefore, when such a polyimide film is applied to a flexible display, the energy required for laser peeling increases, or wrinkles tend to occur during peeling.
By the way, Patent Document 2 discloses a technique for reducing the residual stress while maintaining the glass transition temperature and Young's modulus of polyimide. This patent document aims to reduce peeling marks when the polyimide film is mechanically peeled while maintaining the adhesion between the polyimide film and the glass substrate. Patent Document 2 describes that the above object is achieved by introducing a block having a structure derived from a flexible silicon-containing diamine into a polymer chain of polyimide. Paragraphs 55 and 151 of the patent document state that the residual stress is reduced by forming a microphase-separated structure in which silicone has a uniform structure with a size of about 1 nm to 1 μm. In paragraph 31, there is a description that the size of the silicone domain was confirmed by TEM measurement.
As a result of confirmation by the present inventors, a polyimide film having a silicone microphase-separated structure has a tendency to lower the glass transition temperature because a flexible skeleton is present in the film. Moreover, although the polyimide film of patent document 2 had high yellowness, when laser peeling was applied to this, when the irradiation energy of the laser was small, it turned out that this polyimide film cannot be peeled from a glass substrate. . Here, when peeling is attempted by increasing the laser irradiation energy, there arises a problem that the polyimide film burns and particles are generated.
 本発明は、上記説明した問題点に鑑みてなされたものである。
 即ち本発明は、
ガラス基板及び無機膜との間に発生する残留応力が低く;
ガラス基板との接着性に優れるとともに;
好ましくは高い透明性を有し;
レーザー剥離工程における照射エネルギーが低い場合でも良好な剥離が出来、焦げ及びパーティクルの発生を起こさないポリイミドフィルム、並びにその製造方法を提供することを目的とする。
The present invention has been made in view of the above-described problems.
That is, the present invention
Low residual stress generated between the glass substrate and the inorganic film;
Excellent adhesion to glass substrate;
Preferably highly transparent;
An object of the present invention is to provide a polyimide film which can be satisfactorily peeled even when the irradiation energy in the laser peeling step is low, and does not cause burning and particles, and a method for producing the same.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、YIが低く、特定構造の空隙を持つポリイミドフィルムが、高いTgを有し、ガラス基板及び無機膜との間に高い接着性を示し、更に、レーザー剥離工程において、焦げやパーティクルを生じることなしに剥離性に優れることを見出し、この知見に基づいて本発明をなすに至った。即ち、本発明は、以下の通りである。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, a polyimide film having a low YI and having a specific structure of voids has a high Tg, exhibits high adhesion between the glass substrate and the inorganic film, and further causes burns and particles in the laser peeling process. It has been found that the film has excellent peelability, and the present invention has been made based on this finding. That is, the present invention is as follows.
 [1] 100nm以下の空隙を有し、そしてフレキシブルデバイスの製造に使用されることを特徴とする、ポリイミドフィルム。
 [2] 20μm膜厚における黄色度が7以下である、[1]に記載のポリイミドフィルム。
 [3] 引張伸度が30%以上である、[1]又は[2]に記載のポリイミドフィルム。
 [4] シリコーン残基を有する、[1]~[3]のいずれか一項に記載のポリイミドフィルム。
 [5] 空隙率が3体積%~15体積%の範囲である、[1]~[4]のいずれか一項に記載のポリイミドフィルム。
 [6] 前記空隙の形状が、長軸径平均30nm~60nmの扁平楕円球体である、[1]~[5]のいずれか一項に記載のポリイミドフィルム。
 [7] 前記空隙が、前記ポリイミドフィルムの膜厚方向に均一に存在している、[1]~[6]のいずれか一項に記載のポリイミドフィルム。
[1] A polyimide film characterized by having a gap of 100 nm or less and being used for production of a flexible device.
[2] The polyimide film according to [1], wherein the yellowness in a 20 μm film thickness is 7 or less.
[3] The polyimide film according to [1] or [2], which has a tensile elongation of 30% or more.
[4] The polyimide film according to any one of [1] to [3], which has a silicone residue.
[5] The polyimide film according to any one of [1] to [4], wherein the porosity is in the range of 3% to 15% by volume.
[6] The polyimide film according to any one of [1] to [5], wherein the shape of the void is a flat ellipsoidal sphere having an average major axis diameter of 30 nm to 60 nm.
[7] The polyimide film according to any one of [1] to [6], wherein the voids are present uniformly in the film thickness direction of the polyimide film.
 [8] 樹脂骨格中に、下記一般式(1)で表されるユニット1、及び下記一般式(2)で表されるユニット2:
Figure JPOXMLDOC01-appb-C000003
{前記一般式(1)及び前記一般式(2)中、Rは、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
及びRは、それぞれ独立に、炭素数1~3の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
は炭素数4~32の4価の有機基であり;そして
は炭素数4~32の2価の有機基である。}
を有することを特徴とする、[1]~[7]のいずれか一項に記載のポリイミドフィルムを製造するための樹脂前駆体。
[8] In the resin skeleton, unit 1 represented by the following general formula (1) and unit 2 represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000003
{In the general formula (1) and the general formula (2), each R 1 independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic having 6 to 10 carbon atoms. A group;
R 2 and R 3 are each independently a monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
X 1 is a tetravalent organic group having 4 to 32 carbon atoms; and X 2 is a divalent organic group having 4 to 32 carbon atoms. }
A resin precursor for producing a polyimide film according to any one of [1] to [7], characterized by comprising:
 [9] テトラカルボン酸二無水物と、
ジアミンと、
下記一般式(3):
Figure JPOXMLDOC01-appb-C000004
{前記一般式(3)中、複数存在するRは、それぞれ独立に、単結合又は炭素数1~20の2価の有機基であり;
及びRは、それぞれ独立に、炭素数1~20の1価の有機基であり;
は、複数存在する場合にはそれぞれ独立に、炭素数1~20の1価の有機基であり;L1、L2、及びL3は、それぞれ独立に、アミノ基、イソシアネート基、カルボキシル基、酸無水物基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり;
jは3~200の整数であり;そして
kは0~197の整数である。}
で表される化合物と、
の共重合体である、[8]に記載の樹脂前駆体。
[9] tetracarboxylic dianhydride;
Diamine,
The following general formula (3):
Figure JPOXMLDOC01-appb-C000004
{In the general formula (3), a plurality of R 4 are each independently a single bond or a divalent organic group having 1 to 20 carbon atoms;
R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms;
R 7 is each independently a monovalent organic group having 1 to 20 carbon atoms when a plurality of R 7 are present; L 1 , L 2 , and L 3 are each independently an amino group, an isocyanate group, a carboxyl group; A group, an acid anhydride group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group;
j is an integer from 3 to 200; and k is an integer from 0 to 197. }
A compound represented by
The resin precursor according to [8], which is a copolymer of
 [10] テトラカルボン酸二無水物が、
ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)から成る群より選択される1種以上のテトラカルボン酸二無水物である、[9]に記載の樹脂前駆体。
 [11] 樹脂前駆体を合成する際に使用する上記一般式(3)で表される化合物の質量が、テトラカルボン酸二無水物、ジアミン、及び上記一般式(3)で表される化合物の合計の6質量%~25質量%である、[9]又は[10]に記載の樹脂前駆体。
 [12] [8]~[11]のいずれか一項に記載の樹脂前駆体と、溶媒と、を含有することを特徴とする、樹脂組成物。
[10] Tetracarboxylic dianhydride is
Pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 4,4′-biphenyl The resin precursor according to [9], which is at least one tetracarboxylic dianhydride selected from the group consisting of bis (trimellitic acid monoester anhydride).
[11] The mass of the compound represented by the general formula (3) used when synthesizing the resin precursor is the same as that of the compound represented by the tetracarboxylic dianhydride, the diamine, and the general formula (3). The resin precursor according to [9] or [10], which is 6% by mass to 25% by mass in total.
[12] A resin composition comprising the resin precursor according to any one of [8] to [11] and a solvent.
 [13] 支持体の表面上に、[12]に記載の樹脂組成物を展開して塗膜を形成し、次いで、
前記支持体及び前記塗膜を、酸素濃度23質量%以下、及び温度250℃以上の条件下で加熱して、前記塗膜中の樹脂前駆体をイミド化するとともに前記塗膜中に空隙を形成することにより製造される、請求項1~7のいずれか一項に記載のポリイミドフィルム。
 [14] 前記加熱の時の酸素濃度が2,000ppm以下である、[13]に記載のポリイミドフィルム。
[13] On the surface of the support, the resin composition according to [12] is developed to form a coating film,
The support and the coating film are heated under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film. The polyimide film according to any one of claims 1 to 7, which is produced by
[14] The polyimide film according to [13], wherein an oxygen concentration during the heating is 2,000 ppm or less.
 [15] 支持体の表面上に、[12]に記載の樹脂組成物を展開して塗膜を形成する塗膜形成工程と、
前記支持体及び前記塗膜を、酸素濃度2,000ppm以下、及び温度250℃以上の条件下で加熱して、前記塗膜中の樹脂前駆体をイミド化するとともに前記塗膜中に空隙を形成して空隙を有するポリイミドフィルムを得る加熱工程と、
前記空隙を有するポリイミドフィルムを前記支持体から剥離する剥離工程と、
を有することを特徴とする、ポリイミドフィルムの製造方法。
 [16] [1]~[7]のいずれか一項に記載のポリイミドフィルムと、無機膜と、TFTと、を有することを特徴とする、フレキシブルディスプレイ。
[15] On the surface of the support, a coating film forming step of forming the coating film by developing the resin composition according to [12];
The support and the coating film are heated under an oxygen concentration of 2,000 ppm or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film. Heating step to obtain a polyimide film having voids,
A peeling step of peeling the polyimide film having the voids from the support;
The manufacturing method of a polyimide film characterized by having.
[16] A flexible display comprising the polyimide film according to any one of [1] to [7], an inorganic film, and a TFT.
 なお、空隙を有するポリイミドフィルムを作製する方法としては、非特許文献1に記載の方法が知られている。
 非特許文献1では、主鎖又は側鎖にポリプロピレンオキシドを導入したポリイミド前駆体を利用して空隙を有するポリイミドフィルムを作製する方法が開示されている。ポリプロピレンオキシド部位を有するポリイミド前駆体の塗膜を形成すると、ポリプロピレンオキシドがミクロ相分離した膜構造となる。この塗膜を熱処理すると、イミド化及びポリプロピレンオキシドの熱分解が同時に起こることにより、空隙を有するポリイミドフィルムが得られる。しかしながら、主鎖にポリプロピレンオキシドを導入すると、透明性の低下等のフィルム物性の低下が起こる。また、側鎖にポリプロピレンオキシドを導入するには、合成の煩雑さの問題がある。
 本発明は、簡易な方法により、フィルム物性の低下を来たさずに、上述の目的を達成するポリイミドフィルム及びその製造方法を提供するものである。
In addition, as a method for producing a polyimide film having voids, a method described in Non-Patent Document 1 is known.
Non-Patent Document 1 discloses a method of producing a polyimide film having voids by using a polyimide precursor in which polypropylene oxide is introduced into a main chain or a side chain. When a coating film of a polyimide precursor having a polypropylene oxide portion is formed, a film structure in which polypropylene oxide is microphase-separated is obtained. When this coating film is heat-treated, a polyimide film having voids is obtained by simultaneous imidization and thermal decomposition of polypropylene oxide. However, when polypropylene oxide is introduced into the main chain, film physical properties such as a decrease in transparency occur. Moreover, in order to introduce polypropylene oxide into the side chain, there is a problem of complicated synthesis.
The present invention provides a polyimide film that achieves the above-mentioned object and a method for producing the same by a simple method without causing deterioration of film properties.
 本発明によれば、ガラス基板や無機膜との間に発生する残留応力が低く、ガラス基板との接着性に優れ、好ましくは高い透明性を有し、且つ、レーザー剥離工程において照射エネルギーが低い場合でも剥離が出来、ポリイミド膜の焦げやパーティクルの発生を起こさないポリイミドフィルムを形成することができる。 According to the present invention, the residual stress generated between the glass substrate and the inorganic film is low, the adhesiveness with the glass substrate is excellent, preferably high transparency, and the irradiation energy is low in the laser peeling process. Even in such a case, it is possible to form a polyimide film that can be peeled off and does not cause burning of the polyimide film or generation of particles.
実施例1のSTEM画像(左)及びSEM画像(右)STEM image (left) and SEM image (right) of Example 1 実施例1、2及び参考例で得られたフィルムのATRスペクトルATR spectra of the films obtained in Examples 1 and 2 and Reference Example 実施例7のSEM画像SEM image of Example 7
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, an embodiment of the present invention (hereinafter abbreviated as “embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
 本実施の形態に係る空隙を有するポリイミドフィルムは、100nm以下のサイズの空隙構造を持つポリイミドから成るフィルムである。空隙の形状は、球状構造、扁平楕円球体等であることができ、扁平楕円球体であることが好ましい。
 空隙が扁平楕円球体である場合、その最大長軸径は、平均100nm以下が好ましく、更に好ましくは80nm以下であり、10~70nmの範囲であることがより好ましく、最も好ましくは30nm~60nmの範囲である。空隙が100nmを超えるサイズであると、ポリイミド膜にヘイズが発生する。1nm以下であると、レーザー剥離時に十分な剥離性を確保出来ず、レーザー照射によりポリイミド膜が焦げ、結果としてパーティクルが発生する。
The polyimide film having voids according to the present embodiment is a film made of polyimide having a void structure with a size of 100 nm or less. The shape of the void can be a spherical structure, a flat elliptical sphere, or the like, and is preferably a flat elliptical sphere.
When the voids are oblate spheroids, the maximum major axis diameter is preferably 100 nm or less on average, more preferably 80 nm or less, more preferably in the range of 10 to 70 nm, and most preferably in the range of 30 to 60 nm. It is. If the gap is larger than 100 nm, haze is generated in the polyimide film. When the thickness is 1 nm or less, sufficient peelability cannot be ensured at the time of laser peeling, and the polyimide film is burnt by laser irradiation, resulting in generation of particles.
 本実施の形態に係る空隙を有するポリイミドフィルムの空隙率としては、3体積%~15体積%の範囲が好ましく、6体積%~12体積%の範囲がより好ましい。空隙率が3体積%以上であると、レーザー剥離時の易剥離性が向上し、ポリイミドフィルムの焦げが抑制され、パーティクルの発生が抑制される傾向がある。15%体積以下であると、フィルムが優れた物性を発現する傾向にある。
 この空隙率は、走査透過型電子顕微鏡(STEM)又は走査型電子顕微鏡(SEM)観察における画像解析によって算出することができる。
The porosity of the polyimide film having voids according to the present embodiment is preferably in the range of 3% by volume to 15% by volume, and more preferably in the range of 6% by volume to 12% by volume. When the porosity is 3% by volume or more, the easy peelability at the time of laser peeling is improved, the burning of the polyimide film is suppressed, and the generation of particles tends to be suppressed. If the volume is 15% or less, the film tends to exhibit excellent physical properties.
This porosity can be calculated by image analysis in scanning transmission electron microscope (STEM) or scanning electron microscope (SEM) observation.
 ポリイミドフィルムにおける空隙は、フィルム全体に均一に存在していることが好ましい。空隙が均一に存在するポリイミドフィルムは、引張伸度が高く、複屈折(Rth)が低い傾向にあり、好ましい。特に、空隙がポリイミドフィルムの膜厚方向に均一であることが好ましい。
 空隙の膜厚方向における均一性は、STEM又はSEMを用いて行ったポリイミドフィルムの断面観察における画像解析によって知ることができる。詳しくは、以下のとおりである:
 得られた電顕像を、膜厚方向に2μmごとの領域に区切り、各領域について空隙率を求める。これらの空隙率について、最大値と最小値との差を求める。そして、前記最大値と最小値との差(Δ空隙率(%)=空隙率の最大値(%)-空隙率の最小値(%))が5%以下である場合に、空隙の膜厚方向における均一性が高いと評価することができ、好ましい。この値は、3%以下であることがより好ましく、1%以下であることが更に好ましく、0.5%以下であることが特に好ましい。
The voids in the polyimide film are preferably present uniformly throughout the film. A polyimide film in which voids are present uniformly is preferable because it has a high tensile elongation and a low birefringence (Rth). In particular, the gap is preferably uniform in the film thickness direction of the polyimide film.
The uniformity in the film thickness direction of the voids can be known by image analysis in cross-sectional observation of the polyimide film performed using STEM or SEM. The details are as follows:
The obtained electron microscopic image is divided into regions of 2 μm in the film thickness direction, and the porosity is obtained for each region. For these void ratios, the difference between the maximum value and the minimum value is obtained. When the difference between the maximum value and the minimum value (Δ porosity (%) = maximum porosity (%) − minimum porosity (%)) is 5% or less, the film thickness of the void It can be evaluated that the uniformity in the direction is high, which is preferable. This value is more preferably 3% or less, still more preferably 1% or less, and particularly preferably 0.5% or less.
 本発明のポリイミドフィルムは、シリコーン構造を一部含んでいることが、ガラス基板及び無機膜と間の密着性及び接着性に優れることから好ましい。前記無機膜としては、例えば窒化ケイ素、酸化ケイ素等のCVD膜及びスパッタ膜を挙げることができる。
 ポリイミドフィルム中に含まれるシリコーン残基の含量(質量比)としては、3~15質量%の範囲が好ましく、6~12質量%が更に好ましい。シリコーン残基の含量が15質量%を超えると、レーザー剥離時に十分な剥離性を確保出来ず、レーザー照射によりポリイミド膜が焦げ、結果としてパーティクルが発生する場合がある。一方、この値が3質量%以下では、ガラス基板との接着性が十分に確保出来ない。
The polyimide film of the present invention preferably includes a part of a silicone structure because of excellent adhesion and adhesion between the glass substrate and the inorganic film. Examples of the inorganic film include CVD films such as silicon nitride and silicon oxide, and sputtered films.
The content (mass ratio) of the silicone residues contained in the polyimide film is preferably in the range of 3 to 15% by mass, and more preferably 6 to 12% by mass. When the content of the silicone residue exceeds 15% by mass, sufficient peelability cannot be ensured at the time of laser peeling, and the polyimide film may be burnt by laser irradiation, resulting in generation of particles. On the other hand, if this value is 3% by mass or less, sufficient adhesion to the glass substrate cannot be secured.
 本実施の形態に係る空隙構造を有するポリイミドフィルムを具体的に作製する方法について以下に述べる。
 具体的には、樹脂骨格に、下記一般式(1)で表されるユニット1、及び下記一般式(2)で表されるユニット2: 
A method for specifically producing a polyimide film having a void structure according to this embodiment will be described below.
Specifically, on the resin skeleton, a unit 1 represented by the following general formula (1) and a unit 2 represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
{前記一般式(1)及び前記一般式(2)中、Rは、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
及びRは、それぞれ独立に、炭素数1~3の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
は炭素数4~32の4価の有機基であり;そして
は炭素数4~32の2価の有機基である。}
を有する樹脂前駆体(ポリアミド酸)と溶媒とからなる樹脂組成物を基板上に展開して塗膜を形成し、次いで、
前記支持体及び前記塗膜に対して、酸素濃度及び加熱温度をコントロールして加熱処理を行うことにより、前記のような構造の空隙を有するポリイミドフィルムを形成することができる。
{In the general formula (1) and the general formula (2), each R 1 independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic having 6 to 10 carbon atoms. A group;
R 2 and R 3 are each independently a monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
X 1 is a tetravalent organic group having 4 to 32 carbon atoms; and X 2 is a divalent organic group having 4 to 32 carbon atoms. }
A resin composition comprising a resin precursor (polyamic acid) having a solvent and a solvent is spread on a substrate to form a coating film,
By performing a heat treatment on the support and the coating film while controlling the oxygen concentration and the heating temperature, it is possible to form a polyimide film having voids having the structure as described above.
 上記、樹脂前駆体において、一般式(1)に示すユニット構造1は、テトラカルボン酸二無水物とジアミンとを反応させることにより得られる構造である。Xはテトラカルボン酸二無水物に由来し、Xはジアミンに由来する。
 一般式(2)に示すユニット構造2は、シリコーンモノマーに由来する構造である。
In the above resin precursor, the unit structure 1 shown in the general formula (1) is a structure obtained by reacting tetracarboxylic dianhydride and diamine. X 1 is derived from tetracarboxylic dianhydride and X 2 is derived from diamine.
The unit structure 2 shown in the general formula (2) is a structure derived from a silicone monomer.
 本実施の形態に係る樹脂前駆体においては、一般式(1)におけるXが、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4-(ジアミノジフェニル)スルホン、3,3-(ジアミノジフェニル)スルホンに由来する残基であることが好ましい。
 一般式(2)におけるR及びRの一部がフェニル基であることが好ましい。
 本発明の樹脂前駆体においては、前記ユニット1及び前記ユニット2からなる樹脂構造の合計質量が、全樹脂前駆体に対して30質量%以上であることが好ましい。
In the resin precursor according to the present embodiment, X 2 in the general formula (1) is 2,2′-bis (trifluoromethyl) benzidine, 4,4- (diaminodiphenyl) sulfone, 3,3- ( A residue derived from (diaminodiphenyl) sulfone is preferred.
It is preferable that a part of R 2 and R 3 in the general formula (2) is a phenyl group.
In the resin precursor of this invention, it is preferable that the total mass of the resin structure which consists of the said unit 1 and the said unit 2 is 30 mass% or more with respect to all the resin precursors.
<テトラカルボン酸二無水物>
 次に、ユニット1に含まれる4価の有機基Xを導くテトラカルボン酸二無水物について説明する。
<Tetracarboxylic dianhydride>
Next, a tetracarboxylic dianhydride that leads to a tetravalent organic group X 1 contained in the unit 1 will be described.
 上記テトラカルボン酸二無水物としては、具体的には、炭素数が8~36の芳香族テトラカルボン酸二無水物、炭素数が6~50の脂肪族テトラカルボン酸二無水物、及び炭素数が6~36の脂環式テトラカルボン酸二無水物から選択される化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。 Specific examples of the tetracarboxylic dianhydride include aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms, aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms, and carbon numbers. Is preferably a compound selected from 6-36 alicyclic tetracarboxylic dianhydrides. The number of carbons herein includes the number of carbons contained in the carboxyl group.
 さらに具体的には、炭素数が8~36の芳香族テトラカルボン酸二無水物として、例えば4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも記す)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物(以下、PMDAとも記す)、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAとも記す)、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAととも記す)、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物(以下、DSDAとも記す)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物(以下、ODPAとも記す)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(以下、BPADAとも記す)、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等を; More specifically, examples of the aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms include 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter also referred to as 6FDA), 5- ( 2,5-dioxotetrahydro-3-furanyl) -3-methyl-cyclohexene-1,2 dicarboxylic acid anhydride, pyromellitic dianhydride (hereinafter also referred to as PMDA), 1,2,3,4-benzene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA), 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (Hereinafter also referred to as DSDA), 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, methylene-4,4′-diphthalic dianhydride, 1,1-ethylidene-4,4′- Diphthalic dianhydride, 2,2-propylidene-4,4′-diphthalic dianhydride, 1,2-ethylene-4,4′-diphthalic dianhydride, 1,3-trimethylene-4,4 ′ -Diphthalic dianhydride, 1,4-tetramethylene-4,4'-diphthalic dianhydride, 1,5-pentamethylene-4,4'-diphthalic dianhydride, 4,4'-oxydiphthalic acid Dianhydride (hereinafter also referred to as ODPA), thio-4,4′-diphthalic dianhydride, sulfonyl-4,4′-diphthalic dianhydride, 1,3-bis (3,4-dicarboxyphenyl) ) Benzene dianhydride, 1,3-bis (3,4-dical) Xylphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,3-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene Dianhydride, 1,4-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, bis [3- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride Bis [4- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride (hereinafter also referred to as BPADA), bis (3,4-dicarboxyphenoxy) dimethylsilane dianhydride, 1,3-bi (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8 -Naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracene Tetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride and the like;
炭素数が6~50の脂肪族テトラカルボン酸二無水物として、例えばエチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等を;
炭素数が6~36の脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAとも記す)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物(以下、CHDAと記す)、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテル、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(以下、TAHQとも言う)等が、それぞれ挙げられる。
Examples of the aliphatic tetracarboxylic dianhydride having 6 to 50 carbon atoms include ethylene tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride;
Examples of the alicyclic tetracarboxylic dianhydride having 6 to 36 carbon atoms include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as CBDA), cyclopentanetetracarboxylic dianhydride. , Cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride (hereinafter referred to as CHDA), 3,3 ′, 4,4 '-Bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid ) Dianhydride, 1,2-ethylene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethylidene-4,4′-bis (cyclohexane-1,2) Dicarboxylic acid) dianhydride, 2,2-propylidene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, oxy-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) ) Dianhydride, thio-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, sulfonyl-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, rel- [1S, 5R, 6R] -3-oxabicyclo [3,2,1] octane -2,4-dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 Tetrahydronaphthalene-1,2-dicarboxylic acid Water, ethylene glycol-bis- (3,4-dicarboxylic anhydride phenyl) ether, 4,4′-biphenylbis (trimellitic acid monoester anhydride) (hereinafter also referred to as TAHQ), etc. It is done.
 その中でも、BTDA、PMDA、BPDA及びTAHQから成る群より選択される1種以上を使用することが、CTEの低減、耐薬品性の向上、ガラス転移温度(Tg)向上、及び機械伸度向上の観点で好ましい。また、透明性のより高いフィルムを得たい場合は、6FDA、ODPA及びBPADAから成る群より選択される1種以上を使用することが、黄色度の低下、複屈折率の低下、及び機械伸度向上の観点で好ましい。また、BPDAが、残留応力の低減、黄色度の低下、複屈折率の低下、耐薬品性の向上、Tg向上、及び機械伸度向上の観点で好ましい。また、CHDAが、残留応力の低減、及び黄色度の低下の観点で好ましい。これらの中でも、高耐薬品性、高Tg及び低CTEを発現する強直構造のPMDA及びBPDAから成る群より選択される1種以上と、黄色度及び複屈折率が低い、6FDA、ODPA及びCHDAからなる群から選択される1種以上と、を組み合わせて使用することが、高耐薬品性、残留応力低下、黄色度低下、複屈折率の低下、及び、全光線透過率の向上の観点から好ましい。 Among them, the use of one or more selected from the group consisting of BTDA, PMDA, BPDA and TAHQ can reduce CTE, improve chemical resistance, improve glass transition temperature (Tg), and improve mechanical elongation. It is preferable from the viewpoint. In addition, when it is desired to obtain a film with higher transparency, it is possible to use one or more selected from the group consisting of 6FDA, ODPA and BPADA to reduce yellowness, birefringence, and mechanical elongation. It is preferable from the viewpoint of improvement. BPDA is preferable from the viewpoints of reducing residual stress, reducing yellowness, reducing birefringence, improving chemical resistance, improving Tg, and improving mechanical elongation. Further, CHDA is preferable from the viewpoints of reduction of residual stress and reduction of yellowness. Among these, at least one selected from the group consisting of PMDA and BPDA having a tough structure that exhibits high chemical resistance, high Tg and low CTE, and low yellowness and birefringence, from 6FDA, ODPA and CHDA It is preferable to use in combination with at least one selected from the group consisting of high chemical resistance, residual stress reduction, yellowness reduction, birefringence reduction, and total light transmittance improvement. .
 本発明の樹脂前駆体においては、ビフェニルテトラカルボン酸(BPDA)由来の成分を、前記樹脂前駆体の全テトラカルボン酸二無水物由来成分の20モル%以上含むことが好ましい。 In the resin precursor of the present invention, it is preferable that a component derived from biphenyltetracarboxylic acid (BPDA) is contained in an amount of 20 mol% or more of the total tetracarboxylic dianhydride-derived component of the resin precursor.
 本実施の形態における樹脂前駆体は、その性能を損なわない範囲で、上述のテトラカルボン酸二無水物に加えてジカルボン酸を使用することにより、ポリアミドイミド前駆体としてもよい。このような前駆体を使用することにより、得られるフィルムにおいて、機械伸度の向上、ガラス転移温度の向上、黄色度の低減等の諸性能を調整することができる。そのようなジカルボン酸として、芳香環を有するジカルボン酸及び脂環式ジカルボン酸が挙げられる。特に炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸からなる群から選択される少なくとも1つの化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 これらのうち、芳香環を有するジカルボン酸が好ましい。
The resin precursor in this Embodiment is good also as a polyamideimide precursor by using dicarboxylic acid in addition to the above-mentioned tetracarboxylic dianhydride in the range which does not impair the performance. By using such a precursor, various performances such as improvement of mechanical elongation, improvement of glass transition temperature, reduction of yellowness, etc. can be adjusted in the obtained film. Examples of such dicarboxylic acids include dicarboxylic acids having an aromatic ring and alicyclic dicarboxylic acids. In particular, it is preferably at least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms. The number of carbons herein includes the number of carbons contained in the carboxyl group.
Of these, dicarboxylic acids having an aromatic ring are preferred.
 具体的には、例えばイソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3―カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸等;及び
国際公開第2005/068535号パンフレットに記載の5-アミノイソフタル酸誘導体等が挙げられる。これらジカルボン酸をポリマーに実際に共重合させる場合には、塩化チオニル等から誘導される酸クロリド体、活性エステル体等の形で使用してもよい。
Specifically, for example, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid, 3,3′-biphenyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,3 -Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-sulfonylbisbenzoic acid, 3,4'-sulfonylbisbenzoic acid, 3,3'-sulfonylbisbenzoic acid 4,4′-oxybisbenzoic acid, 3,4′-oxybisbenzoic acid, 3,3′-oxybisbenzoic acid, 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (3-carboxy Phenyl) propane, 2,2′-dimethyl-4,4′-biphenyldicarboxylic acid, 3,3′-dimethyl-4,4′-biphenyldicarboxylic acid, 2,2′-di Til-3,3′-biphenyldicarboxylic acid, 9,9-bis (4- (4-carboxyphenoxy) phenyl) fluorene, 9,9-bis (4- (3-carboxyphenoxy) phenyl) fluorene, 4,4 '-Bis (4-carboxyphenoxy) biphenyl, 4,4'-bis (3-carboxyphenoxy) biphenyl, 3,4'-bis (4-carboxyphenoxy) biphenyl, 3,4'-bis (3-carboxyphenoxy) ) Biphenyl, 3,3′-bis (4-carboxyphenoxy) biphenyl, 3,3′-bis (3-carboxyphenoxy) biphenyl, 4,4′-bis (4-carboxyphenoxy) -p-terphenyl, 4 , 4′-bis (4-carboxyphenoxy) -m-terphenyl, 3,4′-bis (4-carboxyphenoxy) -p-turf Nyl, 3,3′-bis (4-carboxyphenoxy) -p-terphenyl, 3,4′-bis (4-carboxyphenoxy) -m-terphenyl, 3,3′-bis (4-carboxyphenoxy) -M-terphenyl, 4,4'-bis (3-carboxyphenoxy) -p-terphenyl, 4,4'-bis (3-carboxyphenoxy) -m-terphenyl, 3,4'-bis (3 -Carboxyphenoxy) -p-terphenyl, 3,3'-bis (3-carboxyphenoxy) -p-terphenyl, 3,4'-bis (3-carboxyphenoxy) -m-terphenyl, 3,3 ' -Bis (3-carboxyphenoxy) -m-terphenyl, 1,1-cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4,4 ′ Benzophenone dicarboxylic acid, 1,3-phenylene diacetic acid, 1,4-phenylene diacetic acid and the like; and 5-amino isophthalic acid derivative according to and WO 2005/068535 pamphlet can be mentioned. When these dicarboxylic acids are actually copolymerized with a polymer, they may be used in the form of an acid chloride form, an active ester form or the like derived from thionyl chloride or the like.
 これらの中でも、テレフタル酸が、YI値の低減、及びTgの向上の観点から特に好ましい。ジカルボン酸をテトラカルボン酸二無水物とともに使用する場合は、ジカルボン酸とテトラカルボン酸二無水物とを合わせた全体のモル数に対して、ジカルボン酸が50モル%以下であることが、得られるフィルムにおける耐薬品性の観点から好ましい。 Among these, terephthalic acid is particularly preferable from the viewpoint of reducing the YI value and improving the Tg. When dicarboxylic acid is used together with tetracarboxylic dianhydride, it is obtained that the dicarboxylic acid is 50 mol% or less with respect to the total number of moles of the total of dicarboxylic acid and tetracarboxylic dianhydride. It is preferable from the viewpoint of chemical resistance in the film.
<ジアミン>
 本実施の形態に係る樹脂前駆体は、ユニット1におけるXを導くジアミンとして、具体的には、例えば4,4-(ジアミノジフェニル)スルホン(以下、4,4-DASとも記す)、3,4-(ジアミノジフェニル)スルホン及び3,3-(ジアミノジフェニル)スルホン(以下、3,3-DASとも記す)、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBとも記す)、2,2’-ジメチル4,4’-ジアミノビフェニル(以下、m-TBとも記す)、1,4-ジアミノベンゼン(以下p-PDとも記す)、1,3-ジアミノベンゼン(以下m-PDとも記す)、4-アミノフェニル4’-アミノベンゾエート(以下、APABとも言う)、4,4’-ジアミノベンゾエート(以下、DABAとも言う)、4,4’-(又は3,4’-、3,3’-、2,4’-)ジアミノジフェニルエーテル、4,4’-(又は3,3’-)ジアミノジフェニルスルフォン、4,4’-(又は3,3’-)ジアミノジフェニルスルフィド、4,4’-ベンゾフェノンジアミン、3,3’-ベンゾフェノンジアミン、4,4’-ジ(4-アミノフェノキシ)フェニルスルフォン、4,4’-ジ(3-アミノフェノキシ)フェニルスルフォン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’,6,6’-テトラメチル-4,4’-ジアミノビフェニル、2,2’,6,6’-テトラトリフルオロメチル-4,4’-ジアミノビフェニル、ビス{(4-アミノフェニル)-2-プロピル}1,4-ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、3,3’-ジメチルベンチジン、3,3’-ジメトキシベンチジン及び3,5-ジアミノ安息香酸、2,6-ジアミノピリジン、2,4-ジアミノピリジン、ビス(4-アミノフェニル-2-プロピル)-1,4-ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(3,3’-TFDB)、2,2’-ビス[3(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3-BDAF)、2,2’-ビス[4(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4-BDAF)、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン(3,3’-6F)、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン(4,4’-6F)等の芳香族ジアミンを挙げることができる。これらのうち、4,4-DAS,3,3-DAS、1,4-シクロヘキサンジアミン、TFMB、及びAPABから成る群より選択される1種以上を使用することが、黄色度の低下、CTEの低下、高いTgの観点から好ましい。
<Diamine>
The resin precursor according to the present embodiment is, for example, 4,4- (diaminodiphenyl) sulfone (hereinafter also referred to as 4,4-DAS), 3,4 as diamine for deriving X 2 in unit 1. 4- (diaminodiphenyl) sulfone and 3,3- (diaminodiphenyl) sulfone (hereinafter also referred to as 3,3-DAS), 2,2′-bis (trifluoromethyl) benzidine (hereinafter also referred to as TFMB), 2 2,2'-dimethyl 4,4'-diaminobiphenyl (hereinafter also referred to as m-TB), 1,4-diaminobenzene (hereinafter also referred to as p-PD), 1,3-diaminobenzene (hereinafter also referred to as m-PD) ), 4-aminophenyl 4′-aminobenzoate (hereinafter also referred to as APAB), 4,4′-diaminobenzoate (hereinafter also referred to as DABA), 4,4 ′-(or 3) , 4'-, 3,3'-, 2,4 '-) diaminodiphenyl ether, 4,4'-(or 3,3 '-) diaminodiphenyl sulfone, 4,4'-(or 3,3'-) Diaminodiphenyl sulfide, 4,4′-benzophenonediamine, 3,3′-benzophenonediamine, 4,4′-di (4-aminophenoxy) phenylsulfone, 4,4′-di (3-aminophenoxy) phenylsulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis {4- (4 -Aminophenoxy) phenyl} propane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 2,2′-bis (4-aminophenyl) propane, 2,2 ′, , 6'-tetramethyl-4,4'-diaminobiphenyl, 2,2 ', 6,6'-tetratrifluoromethyl-4,4'-diaminobiphenyl, bis {(4-aminophenyl) -2-propyl } 1,4-benzene, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-aminophenoxyphenyl) fluorene, 3,3′-dimethylbenzidine, 3,3′-dimethoxybench Gin and 3,5-diaminobenzoic acid, 2,6-diaminopyridine, 2,4-diaminopyridine, bis (4-aminophenyl-2-propyl) -1,4-benzene, 3,3′-bis (tri Fluoromethyl) -4,4′-diaminobiphenyl (3,3′-TFDB), 2,2′-bis [3 (3-aminophenoxy) phenyl] hexafluoropropane (3-BDAF), 2, '-Bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF), 2,2'-bis (3-aminophenyl) hexafluoropropane (3,3'-6F), 2,2' An aromatic diamine such as -bis (4-aminophenyl) hexafluoropropane (4,4'-6F) can be mentioned. Of these, the use of one or more selected from the group consisting of 4,4-DAS, 3,3-DAS, 1,4-cyclohexanediamine, TFMB, and APAB reduces yellowness, CTE It is preferable from the viewpoint of reduction and high Tg.
<ケイ素化合物の導入>
 上記一般式(2)で表される構造は、シリコーンモノマーに由来する。樹脂前駆体を合成する時に使用するシリコーンモノマーの量は、樹脂前駆体の質量を基準として、6質量%~25質量%であることが好ましい。シリコーンモノマーの使用量が6質量%以上であることが、得られるポリイミドフィルムと無機膜との間に発生する応力の低下効果、及び黄色度の低下効果を充分に得る観点から有利である。この値は、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。一方シリコーンモノマーの使用量が25質量%以下であることにより、得られるポリイミドフィルムが白濁することなく、透明性向上、及び良好な耐熱性を得る観点から有利である。この値は、22質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。耐薬品性、全光線透過率、残留応力、ガラス基板との接着性、及びレーザー剥離の容易性の観点から、シリコーンモノマーの使用量は、10質量%以上20質量%以下であることが特に好ましい。後述するように、樹脂前駆体の塗膜を酸素濃度のコントロール下に熱キュアする時に、樹脂前駆体に取り込まれたシリコーンの一部は、環状三量体、環状四量体等の形で希散すると考えられる。この希散した後のシリコーン残部の質量比が、全ポリイミドフィルムの質量に対して、4~18質量%の範囲になるように、樹脂前駆体時のシリコーンモノマーの導入量を調整することが好ましい。
<Introduction of silicon compounds>
The structure represented by the general formula (2) is derived from a silicone monomer. The amount of the silicone monomer used when synthesizing the resin precursor is preferably 6% by mass to 25% by mass based on the mass of the resin precursor. It is advantageous that the amount of the silicone monomer used is 6% by mass or more from the viewpoint of sufficiently obtaining the effect of reducing the stress generated between the resulting polyimide film and the inorganic film and the effect of reducing the yellowness. This value is more preferably 8% by mass or more, and further preferably 10% by mass or more. On the other hand, the amount of the silicone monomer used is 25% by mass or less, which is advantageous from the viewpoint of improving the transparency and obtaining good heat resistance without causing the resulting polyimide film to become cloudy. This value is more preferably 22% by mass or less, and further preferably 20% by mass or less. From the viewpoint of chemical resistance, total light transmittance, residual stress, adhesion to a glass substrate, and ease of laser peeling, the amount of silicone monomer used is particularly preferably 10% by mass or more and 20% by mass or less. . As will be described later, when the resin precursor coating is thermally cured under control of the oxygen concentration, a part of the silicone incorporated into the resin precursor is diluted in the form of cyclic trimer, cyclic tetramer, etc. It is thought to be scattered. It is preferable to adjust the introduction amount of the silicone monomer at the time of the resin precursor so that the mass ratio of the silicone remaining after the diffusion is in the range of 4 to 18% by mass with respect to the mass of the total polyimide film. .
 前記一般式(2)における炭素数1~20の1価の脂肪族炭化水素基としては、例えば炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基等を;
炭素数6~10の芳香族基としては、例えばアリール基等が、それぞれ挙げられる。前記炭素数1~20のアルキル基としては、耐熱性及び残留応力の観点から、炭素数1~10のアルキル基が好ましく、具体的には、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。該炭素数3~20のシクロアルキル基としては、上記観点から炭素数3~10のシクロアルキル基が好ましく、具体的には、例えばシクロペンチル基、シクロヘキシル基等が挙げられる。該炭素数6~10のアリール基としては、上記観点から具体的には、例えばフェニル基、トリル基、ナフチル基等が挙げられる。
Examples of the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in the general formula (2) include an alkyl group having 1 to 20 carbon atoms and a cycloalkyl group having 3 to 20 carbon atoms;
Examples of the aromatic group having 6 to 10 carbon atoms include an aryl group. The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms from the viewpoint of heat resistance and residual stress. Specifically, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples thereof include a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group. The cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms from the above viewpoint, and specific examples thereof include a cyclopentyl group and a cyclohexyl group. Specific examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, and a naphthyl group from the above viewpoint.
 上記のようなユニット2を導くシリコーンモノマーとしては、例えば下記一般式(3): As the silicone monomer that leads to the unit 2 as described above, for example, the following general formula (3):
Figure JPOXMLDOC01-appb-C000006
{前記一般式(3)中、複数存在するRは、それぞれ独立に、単結合又は炭素数1~20の2価の有機基であり;
及びRは、それぞれ独立に、炭素数1~20の1価の有機基であり;
は、複数存在する場合にはそれぞれ独立に、炭素数1~20の1価の有機基であり;
1、L2、及びL3は、それぞれ独立に、アミノ基、イソシアネート基、カルボキシル基、酸無水物基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり;
jは3~200の整数であり、そして
kは0~197の整数である。}で
表されるシリコーン化合物を使用することが好ましい。
Figure JPOXMLDOC01-appb-C000006
{In the general formula (3), a plurality of R 4 are each independently a single bond or a divalent organic group having 1 to 20 carbon atoms;
R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms;
R 7 is each independently a monovalent organic group having 1 to 20 carbon atoms when a plurality of R 7 are present;
L 1 , L 2 , and L 3 are each independently an amino group, isocyanate group, carboxyl group, acid anhydride group, acid ester group, acid halide group, hydroxy group, epoxy group, or mercapto group;
j is an integer from 3 to 200, and k is an integer from 0 to 197. } Is preferably used.
 Rにおける炭素数1~20の2価の有機基としては、例えばメチレン基、炭素数2~20のアルキレン基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。該炭素数2~20のアルキレン基としては、耐熱性、残留応力及びコストの観点から炭素数2~10のアルキレン基が好ましく、具体的には例えばジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。該炭素数3~20のシクロアルキレン基としては、上記観点から炭素数3~10のシクロアルキレン基が好ましい。具体的には、例えば、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。その中でも上記観点から炭素数3~20の2価の脂肪族炭化水素が好ましい。該炭素数6~20のアリーレン基としては、上記観点から炭素数3~20の芳香族基が好ましく、具体的には例えばフェニレン基、ナフチレン基等が挙げられる。 Examples of the divalent organic group having 1 to 20 carbon atoms in R 4 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Can be mentioned. The alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms from the viewpoint of heat resistance, residual stress and cost, and specifically, for example, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group. Group, hexamethylene group and the like. The cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms from the above viewpoint. Specific examples include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and the like. Of these, divalent aliphatic hydrocarbons having 3 to 20 carbon atoms are preferred from the above viewpoint. The arylene group having 6 to 20 carbon atoms is preferably an aromatic group having 3 to 20 carbon atoms from the above viewpoint, and specific examples thereof include a phenylene group and a naphthylene group.
 一般式(3)において、R及びRは一般式(2)中のR及びRと同義であり、好ましい態様は一般式(2)について前述したとおりである。またRの好ましい態様は、R及びRと同様である。 In the general formula (3), R 5 and R 6 have the same meanings as R 2 and R 3 in the general formula (2), and a preferred embodiment is as described above for the general formula (2). The preferred embodiment of R 7 is the same as R 2 and R 3 .
 一般式(3)において、jは、3~200の整数であり、好ましくは10~200の整数、より好ましくは20~150の整数、さらに好ましくは30~100の整数、特に好ましくは35~80の整数である。一般式(3)において、kは、0~197の整数であり、好ましくは0~100、さらに好ましくは0~50、特に好ましくは0~25である。kが197を超えると、樹脂前駆体と溶媒とを含む樹脂組成物を調製した際に、該組成物が白濁する等の問題が生じる場合がある。kが0である場合、樹脂前駆体の分子量向上の観点、及び得られるポリイミドの耐熱性の観点から好ましい。kが0である場合、樹脂前駆体の分子量向上の観点、及び得られるポリイミドの耐熱性の観点から、jが3~200であることは有利である。 In the general formula (3), j is an integer of 3 to 200, preferably an integer of 10 to 200, more preferably an integer of 20 to 150, still more preferably an integer of 30 to 100, particularly preferably 35 to 80. Is an integer. In the general formula (3), k is an integer of 0 to 197, preferably 0 to 100, more preferably 0 to 50, and particularly preferably 0 to 25. When k exceeds 197, when a resin composition containing a resin precursor and a solvent is prepared, problems such as clouding of the composition may occur. When k is 0, it is preferable from the viewpoint of improving the molecular weight of the resin precursor and the heat resistance of the resulting polyimide. When k is 0, it is advantageous that j is 3 to 200 from the viewpoint of improving the molecular weight of the resin precursor and the heat resistance of the resulting polyimide.
 一般式(3)において、L1、L2、及びL3は、それぞれ独立に、アミノ基、イソシアネート基、カルボキシル基、酸無水物基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基である。 In the general formula (3), L 1 , L 2 and L 3 are each independently an amino group, an isocyanate group, a carboxyl group, an acid anhydride group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, Or a mercapto group.
 アミノ基は、置換されてもよい。置換されたアミノ基としては、例えばビス(トリアルキルシリル)アミノ基等が挙げられる。一般式(3)においてL1、L2、及びL3がアミノ基である化合物の具体例としては、両末端アミノ変性メチルフェニルシリコーン(例えば信越化学社製の、X22-1660B-3(数平均分子量4,400)及びX22-9409(数平均分子量1,300));両末端アミノ変性ジメチルシリコーン(例えば信越化学社製の、X22-161A(数平均分子量1,600)、X22-161B(数平均分子量3,000)及びKF8012(数平均分子量4,400);東レダウコーニング製のBY16-835U(数平均分子量900);並びにチッソ社製のサイラプレーンFM3311(数平均分子量1000))等が挙げられる。
 L1、L2、及びL3がイソシアネート基である化合物の具体例としては、前記、両末端アミノ変性シリコーンとホスゲン化合物を反応して得られるイソシアネート変性シリコーン等が挙げられる。
The amino group may be substituted. Examples of the substituted amino group include a bis (trialkylsilyl) amino group. Specific examples of the compound in which L 1 , L 2 , and L 3 in the general formula (3) are amino groups include amino end-modified methylphenyl silicone (for example, X22-1660B-3 (number average, manufactured by Shin-Etsu Chemical Co., Ltd.) Molecular weight 4,400) and X22-9409 (number average molecular weight 1,300)); both-end amino-modified dimethyl silicone (for example, X22-161A (number average molecular weight 1,600), X22-161B (number manufactured by Shin-Etsu Chemical Co., Ltd.)) Average molecular weight 3,000) and KF8012 (number average molecular weight 4,400); BY16-835U (number average molecular weight 900) manufactured by Toray Dow Corning; and Silaplane FM3311 (number average molecular weight 1000 manufactured by Chisso) It is done.
Specific examples of the compound in which L 1 , L 2 , and L 3 are isocyanate groups include the above-mentioned isocyanate-modified silicones obtained by reacting both terminal amino-modified silicones with phosgene compounds.
 L1、L2、及びL3がカルボキシル基である化合物の具体例としては、例えば信越化学社の、X22-162C(数平均分子量4,600)、東レダウコーニング製のBY16-880(数平均分子量6,600)等が挙げられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are carboxyl groups include, for example, X22-162C (number average molecular weight 4,600) manufactured by Shin-Etsu Chemical Co., Ltd. and BY16-880 (number average manufactured by Toray Dow Corning). Molecular weight 6,600) and the like.
 L1、L2、及びL3が酸無水物基である場合の例としては、例えば下記式群 Examples of the case where L 1 , L 2 and L 3 are acid anhydride groups include, for example, the following formula group
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
のそれぞれで表される基の少なくとも1つを有するアシル化合物等が挙げられる。 And acyl compounds having at least one group represented by each of the above.
 L1、L2、及びL3が酸無水物基である化合物の具体例としては、例えばX22-168AS(信越化学製、数平均分子量1,000)、X22-168A(信越化学製、数平均分子量2,000)、X22-168B(信越化学製、数平均分子量3,200)、X22-168-P5-8(信越化学製、数平均分子量4,200)、DMS-Z21(ゲレスト社製、数平均分子量600~800)等が挙げられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are acid anhydride groups include, for example, X22-168AS (manufactured by Shin-Etsu Chemical, number average molecular weight 1,000), X22-168A (manufactured by Shin-Etsu Chemical, number average). Molecular weight 2,000), X22-168B (manufactured by Shin-Etsu Chemical, number average molecular weight 3,200), X22-168-P5-8 (manufactured by Shin-Etsu Chemical, number average molecular weight 4,200), DMS-Z21 (manufactured by Gerest, Number average molecular weight 600 to 800).
 L1、L2、及びL3が酸エステル基である化合物の具体例としては、前記、L1、L2、及びL3がカルボキシル基又は酸無水物基である化合物とアルコールとを反応させて得られる化合物等が挙げられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are acid ester groups include a reaction of the compound in which L 1 , L 2 , and L 3 are carboxyl groups or acid anhydride groups with an alcohol. And the like.
 L1、L2、及びL3が酸ハライド基である場合の例としては、例えばカルボン酸塩化物、カルボン酸フッ化物、カルボン酸臭化物、カルボン酸ヨウ化物等が挙げられる。 Examples of the case where L 1 , L 2 and L 3 are acid halide groups include carboxylic acid chlorides, carboxylic acid fluorides, carboxylic acid bromides, carboxylic acid iodides and the like.
 L1、L2、及びL3がヒドロキシ基である化合物の具体例としては、例えばKF-6000(信越化学製、数平均分子量900)、KF-6001(信越化学製、数平均分子量1,800)、KF-6002(信越化学製、数平均分子量3,200)、KF-6003(信越化学製、数平均分子量5,000)等が挙げられる。ヒドロキシ基を有する化合物は、カルボキシル基又は酸無水物基を有する化合物と反応すると考えられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are hydroxy groups include, for example, KF-6000 (manufactured by Shin-Etsu Chemical, number average molecular weight 900), KF-6001 (manufactured by Shin-Etsu Chemical, number average molecular weight 1,800) ), KF-6002 (manufactured by Shin-Etsu Chemical, number average molecular weight 3,200), KF-6003 (manufactured by Shin-Etsu Chemical, number average molecular weight 5,000), and the like. A compound having a hydroxy group is considered to react with a compound having a carboxyl group or an acid anhydride group.
 L1、L2、及びL3がエポキシ基である化合物の具体例としては、両末端エポキシタイプである、X22-163(信越化学製、数平均分子量400)、KF-105(信越化学製、数平均分子量980)、X22-163A(信越化学製、数平均分子量2,000)、X22-163B(信越化学製、数平均分子量3,500)、X22-163C(信越化学製、数平均分子量5,400);両末端脂環式エポキシタイプである、X22-169AS(信越化学製、数平均分子量1,000)、X22-169B(信越化学製、数平均分子量3,400);側鎖両末端エポキシタイプである、X22-9002(信越化学製、官能基当量5,000g/mol);等が挙げられる。エポキシ基を有する化合物は、ジアミンと反応すると考えられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are epoxy groups include X22-163 (manufactured by Shin-Etsu Chemical, number average molecular weight 400), KF-105 (manufactured by Shin-Etsu Chemical, Number average molecular weight 980), X22-163A (manufactured by Shin-Etsu Chemical, number average molecular weight 2,000), X22-163B (manufactured by Shin-Etsu Chemical, number average molecular weight 3,500), X22-163C (manufactured by Shin-Etsu Chemical, number average molecular weight 5) , 400); both end alicyclic epoxy type, X22-169AS (manufactured by Shin-Etsu Chemical, number average molecular weight 1,000), X22-169B (manufactured by Shin-Etsu Chemical, number average molecular weight 3,400); X22-9002 (manufactured by Shin-Etsu Chemical Co., Ltd., functional group equivalent: 5,000 g / mol); The compound having an epoxy group is considered to react with diamine.
 L1、L2、及びL3がメルカプト基である化合物の具体例としては、例えばX22-167B(信越化学製、数平均分子量3,400)、X22-167C(信越化学製、数平均分子量4,600)等が挙げられる。メルカプト基を有する化合物は、カルボキシル基又は酸無水物基を有する化合物と反応すると考えられる。 Specific examples of the compound in which L 1 , L 2 , and L 3 are mercapto groups include, for example, X22-167B (manufactured by Shin-Etsu Chemical, number average molecular weight 3,400), X22-167C (manufactured by Shin-Etsu Chemical, number average molecular weight 4). , 600). A compound having a mercapto group is considered to react with a compound having a carboxyl group or an acid anhydride group.
 L1、L2、及びL3は、樹脂前駆体の分子量向上の観点、又は得られるポリイミドの耐熱性の観点から、それぞれ独立に、アミノ基又は酸無水物基であることが好ましく、更に樹脂前駆体と溶媒とを含む樹脂組成物の白濁回避の観点、及びコストの観点から、
1、L2、及びL3のいずれもがアミノ基であるか;或いは
1及びL2が、それぞれ独立に、アミノ基又は酸無水物基であり、そしてkが0であることが好ましい。後者の場合、L1及びL2が共にアミノ基であることがより好ましい。
L 1 , L 2 , and L 3 are each independently preferably an amino group or an acid anhydride group from the viewpoint of improving the molecular weight of the resin precursor or the heat resistance of the resulting polyimide. From the viewpoint of avoiding white turbidity of the resin composition containing the precursor and the solvent, and from the viewpoint of cost,
It is preferable that all of L 1 , L 2 and L 3 are amino groups; or L 1 and L 2 are each independently an amino group or an acid anhydride group, and k is 0. . In the latter case, it is more preferable that both L 1 and L 2 are amino groups.
 本実施の形態に係る樹脂前駆体の数平均分子量は、3,000~1,000,000であることが好ましく、より好ましくは5,000~500,000、更に好ましくは7,000~300,000、特に好ましくは10,000~250,000である。該分子量が3,000以上であることが、耐熱性及び強度(例えば強伸度)を良好に得る観点で好ましく、1,000,000以下であることが、溶媒への溶解性を良好に得る観点、塗工等の加工の際に所望する膜厚にて滲み無く塗工できる観点で好ましい。高い機械伸度を得る観点からは、分子量は50,000以上であることが好ましい。本開示において、前記の数平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて標準ポリスチレン換算により求められる値である。 The number average molecular weight of the resin precursor according to the present embodiment is preferably 3,000 to 1,000,000, more preferably 5,000 to 500,000, still more preferably 7,000 to 300,000. 000, particularly preferably 10,000 to 250,000. The molecular weight is preferably 3,000 or more from the viewpoint of obtaining good heat resistance and strength (for example, high elongation), and is 1,000,000 or less to obtain good solubility in a solvent. From the viewpoint, it is preferable from the viewpoint that coating can be performed without bleeding at a desired film thickness at the time of processing such as coating. From the viewpoint of obtaining a high mechanical elongation, the molecular weight is preferably 50,000 or more. In the present disclosure, the number average molecular weight is a value determined by standard polystyrene conversion using gel permeation chromatography.
 本実施の形態に係る樹脂前駆体は、その一部がイミド化されていてもよい。樹脂前駆体のイミド化は、公知の化学アミド化又は熱アミド化により、行うことができる。これらのうち熱イミド化が好ましい。具体的な手法としては、後述の方法によって樹脂組成物を作製した後、溶液を130~200℃で5分~2時間加熱する方法が好ましい。この方法により、樹脂前駆体が析出を起こさない程度にポリマーの一部を脱水イミド化することができる。ここで、加熱温度及び加熱時間をコントロールすることにより、イミド化率を制御することができる。部分イミド化をすることにより、樹脂組成物の室温保管時の粘度安定性を向上することができる。イミド化率の範囲としては、5%~70%が、溶液への溶解性及び保存安定性の観点から好ましい。 The resin precursor according to the present embodiment may be partially imidized. The imidation of the resin precursor can be performed by known chemical amidation or thermal amidation. Of these, thermal imidization is preferred. As a specific method, it is preferable to prepare a resin composition by a method described later and then heat the solution at 130 to 200 ° C. for 5 minutes to 2 hours. By this method, a part of the polymer can be dehydrated and imidized to such an extent that the resin precursor does not precipitate. Here, the imidization rate can be controlled by controlling the heating temperature and the heating time. By performing partial imidization, the viscosity stability of the resin composition when stored at room temperature can be improved. The range of the imidization rate is preferably 5% to 70% from the viewpoint of solubility in a solution and storage stability.
 また、上述の樹脂前駆体に、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール等を加えて加熱し、カルボン酸の一部、又は全部をエステル化してもよい。こうすることにより、樹脂組成物の、室温保管時の粘度安定性を向上することができる。 Further, N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal or the like may be added to the above resin precursor and heated to esterify a part or all of the carboxylic acid. By carrying out like this, the viscosity stability at the time of storage at room temperature of a resin composition can be improved.
<樹脂組成物>
 上述のような本実施の形態に係る樹脂前駆体は、好ましくはこれを溶媒に溶解した樹脂組成物(ワニス)として用いられる。
 この構成により、特殊な溶媒の組み合わせを必要とすることなく、透明なポリイミドフィルムを作製できる。
<Resin composition>
The resin precursor according to the present embodiment as described above is preferably used as a resin composition (varnish) obtained by dissolving it in a solvent.
With this configuration, a transparent polyimide film can be produced without requiring a special solvent combination.
 より好ましい態様において、本実施の形態に係る樹脂組成物は、テトラカルボン酸二無水物、ジアミン、及びシリコーンモノマーを、溶媒、例えば有機溶媒に溶解して反応させ、樹脂前駆体の一態様であるポリアミド酸及び溶媒を含有するポリアミド酸溶液として製造することができる。ここで、反応時の条件は、特に限定されないが、例えば、反応温度-20~150℃、反応時間2~48時間の条件を例示することができる。シリコーンモノマーとの反応を十分に進めるために、合成反応中に、120℃以上の温度において30分程度以上の加熱を行うことが好ましい。また、反応は、アルゴン、窒素等の不活性雰囲気下で行うことが好ましい。 In a more preferred aspect, the resin composition according to the present embodiment is an aspect of a resin precursor obtained by reacting tetracarboxylic dianhydride, diamine, and silicone monomer by dissolving them in a solvent, for example, an organic solvent. It can be produced as a polyamic acid solution containing a polyamic acid and a solvent. Here, the conditions at the time of reaction are not particularly limited, and examples thereof include a reaction temperature of −20 to 150 ° C. and a reaction time of 2 to 48 hours. In order to sufficiently proceed the reaction with the silicone monomer, it is preferable to perform heating for about 30 minutes or more at a temperature of 120 ° C. or higher during the synthesis reaction. The reaction is preferably performed in an inert atmosphere such as argon or nitrogen.
 前記の溶媒は、ポリアミド酸を溶解する溶媒であれば、特に限定されない。公知の反応溶媒として、例えばジメチレングリコールジメチルエーテル(DMDG)、m-クレゾール、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトン、ジエチルアセテート、エクアミドM100(商品名:出光興産社製)、及びエクアミドB100(商品名:出光興産社製)から選ばれる1種以上の極性溶媒が有用である。このうち、好ましくは、NMP、DMAc、エクアミドM100、及びエクアミドB100から選ばれる1種以上である。その他、テトラヒドロフラン(THF)、クロロホルムのような低沸点溶液、又はγ-ブチロラクトンのような低吸収性溶媒を、上記の溶媒とともに、又は上記の溶媒に代えて、用いてもよい。 The solvent is not particularly limited as long as it is a solvent that dissolves polyamic acid. Examples of known reaction solvents include dimethylene glycol dimethyl ether (DMDG), m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, One or more polar solvents selected from diethyl acetate, ecamide M100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.), and ecamide B100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.) are useful. Among these, Preferably, it is 1 or more types chosen from NMP, DMAc, Ecamide M100, and Ecamide B100. In addition, a low-boiling solution such as tetrahydrofuran (THF) or chloroform, or a low-absorbing solvent such as γ-butyrolactone may be used together with or in place of the above solvent.
 本実施の形態に係る樹脂組成物においては、得られるポリイミドフィルムに、支持体と十分な密着性を与えるために、樹脂前駆体100質量%に対してアルコキシシラン化合物を0.01~2質量%を含有してもよい。 In the resin composition according to the present embodiment, 0.01 to 2% by mass of an alkoxysilane compound is added to 100% by mass of the resin precursor in order to give the obtained polyimide film sufficient adhesion to the support. It may contain.
 樹脂前駆体100質量%に対して、アルコキシシラン化合物の含有量が0.01質量%以上であることで、支持体との良好な密着性を得ることができ、またアルコキシシラン化合物の含有量が2質量%以下であることが、樹脂組成物の保存安定性の観点から好ましい。アルコキシシラン化合物の含有量は、樹脂前駆体に対して、0.02~2質量%であることがより好ましく、0.05~1質量%であることが更に好ましく、0.05~0.5質量%であることが特に好ましく、0.1~0.5質量%であることがとりわけ好ましい。 When the content of the alkoxysilane compound is 0.01% by mass or more with respect to 100% by mass of the resin precursor, good adhesion to the support can be obtained, and the content of the alkoxysilane compound is It is preferable that it is 2 mass% or less from a viewpoint of the storage stability of a resin composition. The content of the alkoxysilane compound is more preferably 0.02 to 2% by mass, still more preferably 0.05 to 1% by mass, and more preferably 0.05 to 0.5% with respect to the resin precursor. It is particularly preferable that the content is 1% by mass, and particularly preferable is 0.1 to 0.5% by mass.
 アルコキシシラン化合物としては、例えば3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリメトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン等が挙げられる。これらは2種以上を併用して用いてもよい。 Examples of alkoxysilane compounds include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltripropoxysilane, γ-aminopropyltributoxysilane, γ-aminoethyltriethoxysilane, γ-aminoethyltrimethoxysilane, γ-aminoethyltripropoxy Silane, γ-aminoethyltributoxysilane, γ-aminobutyltriethoxysilane, γ-aminobutyltrimethoxysilane, γ-aminobutyltripropoxysilane, γ-aminobutyltributoxysilane, etc. That. Two or more of these may be used in combination.
<空隙を有するポリイミドフィルムの作製>
 本実施の形態に係る空隙構造を有するポリイミド樹脂フィルムは、上述の樹脂組成物を、支持体の表面上に展開して塗膜を形成し、次いで、
前記支持体及び前記塗膜を酸素濃度23質量%以下、及び温度250℃以上の条件下で加熱することにより、作製することができる。
 本明細書において、酸素濃度に関する単位「質量%」は体積基準の百分率であり、後出する酸素濃度に関する単位「ppm」は体積基準の百万分率である。
<Production of polyimide film having voids>
The polyimide resin film having a void structure according to the present embodiment forms the coating film by developing the above resin composition on the surface of the support,
It can be produced by heating the support and the coating film under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more.
In the present specification, the unit “mass%” relating to the oxygen concentration is a percentage based on volume, and the unit “ppm” relating to the oxygen concentration which will be described later is a percentage based on volume.
 ここで、前記支持体としては、例えば、無アルカリガラス基板等のガラス基板のような無機基板であるが、特に限定されるものではない。
 ポリイミド前駆体の基材への展開方法としては、例えば、スピンコート、スリットコート及びブレードコートの公知の塗工方法が挙げられる。
 次いで、ホットプレート、オーブン等を用いて80℃~200℃に加熱することによって溶媒を蒸散させて、塗膜(プリベーク膜)を作製する。この時、樹脂前駆体のシリコーン部分とポリイミド部分とがミクロ相分離構造を形成する膜となる。
Here, the support is an inorganic substrate such as a glass substrate such as a non-alkali glass substrate, but is not particularly limited.
Examples of the method for spreading the polyimide precursor on the substrate include known coating methods such as spin coating, slit coating, and blade coating.
Next, the solvent is evaporated by heating to 80 ° C. to 200 ° C. using a hot plate, oven, or the like, and a coating film (pre-baked film) is produced. At this time, the silicone portion and the polyimide portion of the resin precursor form a film forming a microphase separation structure.
 次いで、この支持体及び塗膜を、酸素濃度23質量%以下のオーブンに投入し、250℃以上に加熱することにより、樹脂前駆体を脱水イミド化すると同時に、ミクロ相分離しているシリコーン部分の一部を分解除去して空隙を形成することにより、本実施の形態に係るポリイミド膜を作成することができる。250℃以上の加熱により、樹脂前駆体中のシリコーン部分は、熱分解して環状三量体及び/又は環状四量体を生成して蒸発除去されるものと考えられる。プリベーク膜を作製することなしに、塗工後の支持体をそのまま酸素濃度がコントロールされたオーブンに投入し、250℃以上に加熱しても良い。 Next, the support and the coating film are put into an oven having an oxygen concentration of 23% by mass or less, and heated to 250 ° C. or more to dehydrate and imidize the resin precursor, and at the same time, the silicone part that is microphase-separated. A polyimide film according to the present embodiment can be created by disassembling and removing a part to form a void. By heating at 250 ° C. or higher, it is considered that the silicone portion in the resin precursor is thermally decomposed to form a cyclic trimer and / or a cyclic tetramer and is evaporated and removed. Without preparing the pre-baked film, the coated support may be put into an oven with controlled oxygen concentration as it is and heated to 250 ° C. or higher.
 空隙のサイズ及び空隙率は、例えば、ポリマー中のシリコーン含量、キュア温度、キュア時間、酸素濃度等を適宜の範囲に設定することにより、制御することができる。
 具体的には、例えば、樹脂前駆体における上記一般式(2)で表されるシリコーン部分の導入量を増やすと、プリベーク膜におけるシリコーンのドメインサイズが大きくなる。このシリコーンのドメイン構造のサイズが、空隙構造を制御する一つの要因となる。シリコーン部分が完全に熱分解するとすれば、プリベーク膜におけるドメインサイズが、得られるポリイミド膜における空隙の最大サイズになることになる。従って、プリベーク膜におけるシリコーンのドメインサイズを制御することにより、得られるポリイミド膜における空隙サイズ(長軸径平均)を制御できることになる。プリベーク膜におけるシリコーンのドメインサイズを100nm以下にコントロールするには、樹脂前駆体における上記一般式(2)で表されるシリコーン部分の質量比を、樹脂前駆体全体の25質量%以下にすればよい。ここで、キュア温度、キュア時間、及びキュア時の酸素濃度のうちの1つ以上の要因を制御することにより、ポリイミド膜における空隙のサイズと、プリベーク膜におけるシリコーンのドメインサイズとの大小関係を、任意の程度に調整することができる。
The size and porosity of the voids can be controlled, for example, by setting the silicone content in the polymer, the curing temperature, the curing time, the oxygen concentration, etc. within appropriate ranges.
Specifically, for example, when the introduction amount of the silicone moiety represented by the general formula (2) in the resin precursor is increased, the silicone domain size in the pre-baked film increases. The size of the silicone domain structure is one factor that controls the void structure. If the silicone part is completely pyrolyzed, the domain size in the prebaked film will be the maximum size of the voids in the resulting polyimide film. Therefore, by controlling the silicone domain size in the pre-baked film, the void size (major axis average) in the resulting polyimide film can be controlled. In order to control the silicone domain size in the pre-baked film to 100 nm or less, the mass ratio of the silicone portion represented by the general formula (2) in the resin precursor may be 25% by mass or less of the entire resin precursor. . Here, by controlling one or more factors of the curing temperature, the curing time, and the oxygen concentration during curing, the size relationship between the size of the void in the polyimide film and the domain size of the silicone in the pre-baked film is It can be adjusted to any degree.
 本実施の形態における加熱時の酸素濃度は、2,000ppm以下であることが好ましい。加熱時の酸素濃度がこの範囲にあることにより、フィルム内に均一な空隙が生じる傾向にある。そのため、フィルムの引張伸度が高く、複屈折(Rth)も低い傾向となるため、好ましい。一方、2,000ppmを超え23質量%以下の酸素濃度で加熱すると、空隙の膜厚方向における均一性が、やや損なわれる傾向にある。
 この現象は、酸素濃度が2,000ppm以上である場合には、樹脂前駆体のシリコーン部分の熱分解反応が生じ難いことに起因すると推測される。その原因は不明だが、本発明者等は、有意量の酸素が存在する条件下では、シリコーンのケイ素原子上の有機基が酸素により酸化され、例えばホルムアルデヒド、ギ酸、水素、二酸化炭素等を生じ、高度に架橋されたゲル状耐熱性ポリマーに変換されるためであると推察している。
The oxygen concentration during heating in the present embodiment is preferably 2,000 ppm or less. When the oxygen concentration at the time of heating is within this range, uniform voids tend to occur in the film. Therefore, the tensile elongation of the film is high and the birefringence (Rth) tends to be low, which is preferable. On the other hand, when heating is performed at an oxygen concentration exceeding 2,000 ppm and not more than 23% by mass, the uniformity of the voids in the film thickness direction tends to be slightly impaired.
This phenomenon is presumed to be caused by the fact that the thermal decomposition reaction of the silicone portion of the resin precursor hardly occurs when the oxygen concentration is 2,000 ppm or more. Although the cause is unknown, the present inventors, under conditions where a significant amount of oxygen exists, the organic group on the silicon atom of the silicone is oxidized by oxygen, for example, formaldehyde, formic acid, hydrogen, carbon dioxide, etc., It is presumed that this is because it is converted into a highly crosslinked gel-like heat-resistant polymer.
 しかし、酸素濃度を2,000ppm以下にコントロールすることにより、ポリイミドフィルムに均一に空隙構造が生じ始める。同じ加熱温度で比較すると、酸素濃度が低いほど、空隙のサイズが大きくなることが確認された。
 また、酸素濃度が2,000ppm以下の場合、酸素濃度が同じであれば、加熱温度が高いほどポリイミドフィルムの空隙のサイズを大きくすることができる。
 本発明者が確認したところ、加熱処理時の酸素濃度は1,000ppm以下に抑えることが、空隙のサイズコントロールの観点から好ましい。加熱温度は、250℃~480℃の範囲が好ましく、280℃~450℃の範囲が、空隙のサイズコントロールの観点から更に好ましい。
 特に好ましくは、酸素濃度を100ppm以下にコントロールし、加熱温度を280℃~450℃の範囲にコントロールすることである。
 酸素濃度をコントロールする際に使用する不活性ガスとしては、例えば窒素ガス、Arガス等が挙げられるが、経済的観点から窒素ガスが好ましい。また、酸素濃度をコントロールするために、真空オーブン等を利用して減圧下に加熱を行ってもよい。
However, by controlling the oxygen concentration to 2,000 ppm or less, a uniform void structure starts to occur in the polyimide film. When compared at the same heating temperature, it was confirmed that the void size increases as the oxygen concentration decreases.
Further, when the oxygen concentration is 2,000 ppm or less, if the oxygen concentration is the same, the void size of the polyimide film can be increased as the heating temperature is increased.
As a result of confirmation by the present inventor, it is preferable from the viewpoint of controlling the size of the voids that the oxygen concentration during the heat treatment is suppressed to 1,000 ppm or less. The heating temperature is preferably in the range of 250 ° C. to 480 ° C., and more preferably in the range of 280 ° C. to 450 ° C. from the viewpoint of controlling the size of the voids.
Particularly preferably, the oxygen concentration is controlled to 100 ppm or less, and the heating temperature is controlled in the range of 280 ° C. to 450 ° C.
Examples of the inert gas used when controlling the oxygen concentration include nitrogen gas and Ar gas. Nitrogen gas is preferable from the economical viewpoint. In order to control the oxygen concentration, heating may be performed under reduced pressure using a vacuum oven or the like.
 本実施の形態に係るポリイミドフィルムの厚さは、特に限定されず、1~200μmの範囲であることが好ましく、より好ましくは5~50μmである。
 更に、本実施の形態に係るポリイミドフィルムは、10μm膜厚における残留応力が25MPa以下であることが好ましい。
 本実施形態の形態に係るポリイミドフィルムは、20μm膜厚における黄色度(YI)が、7以下であることが好ましい。YI値がこの範囲にあるポリイミドフィルムは、これをフレキシブルディスプレイ用基板に適用する場合に、色補正をせずに使用することができる。ポリイミドフィルムの20μm膜厚におけるYI値は、より好ましくは6以下、特に好ましくは5以下である。
 なお、樹脂フィルムの厚みが20μmではない場合には、該フィルムの測定値に対して厚み換算を行うことにより、厚み20μmにおける黄色度を知ることができる。
The thickness of the polyimide film according to the present embodiment is not particularly limited, and is preferably in the range of 1 to 200 μm, more preferably 5 to 50 μm.
Furthermore, the polyimide film according to the present embodiment preferably has a residual stress at a thickness of 10 μm of 25 MPa or less.
The polyimide film according to this embodiment preferably has a yellowness (YI) at a film thickness of 20 μm of 7 or less. A polyimide film having a YI value in this range can be used without color correction when applied to a flexible display substrate. The YI value of the polyimide film at a film thickness of 20 μm is more preferably 6 or less, and particularly preferably 5 or less.
In addition, when the thickness of a resin film is not 20 micrometers, the yellowness degree in thickness 20 micrometers can be known by performing thickness conversion with respect to the measured value of this film.
<積層体>
 本発明は、支持体と、該支持体上に形成されたポリイミド膜と、から成る積層体も提供するものである。該積層体は、上述の樹脂組成物を、支持体の表面上に展開して塗膜を形成し、次いで、
前記支持体及び前記塗膜を酸素濃度23質量%以下、及び温度250℃以上の条件下で加熱することにより、得ることができる。
<Laminate>
The present invention also provides a laminate comprising a support and a polyimide film formed on the support. The laminate is formed by spreading the above resin composition on the surface of the support to form a coating film,
It can be obtained by heating the support and the coating film under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more.
 この積層体は、例えば、フレキシブルデバイスの製造に用いられる。
 より具体的には、関相対の有するポリイミドフィルムの上に半導体デバイスを形成し、その後、支持体を剥離してポリイミドフィルム及びその上に形成された半導体デバイスからなるフレキシブルデバイスを得ることができる。
This laminated body is used for manufacturing a flexible device, for example.
More specifically, a semiconductor device is formed on a polyimide film having a relative relationship, and then the support is peeled off to obtain a flexible device composed of the polyimide film and the semiconductor device formed thereon.
 上記に説明したように、本実施の形態に係るポリイミドフィルムは、特定の空隙構造を有することにより、ガラス基板又は無機膜との間に発生する残留応力が低く、ガラス基板との接着性に優れ、且つレーザー剥離工程において照射エネルギーが低い場合でも良好な剥離が可能であり、焦げ及びパーティクルの発生を起こさない。そのため、本実施の形態に係るポリイミドフィルムは、フレキシブルディスプレイの基板としての適用に、極めて好適である。 As described above, the polyimide film according to the present embodiment has a specific void structure, so that the residual stress generated between the glass substrate or the inorganic film is low and the adhesiveness to the glass substrate is excellent. Moreover, even when the irradiation energy is low in the laser peeling process, good peeling is possible, and no burning and particles are generated. Therefore, the polyimide film according to the present embodiment is extremely suitable for application as a substrate of a flexible display.
 以下に、本実施の態様に係るポリイミドフィルムを、フレキシブルディスプレイの基板として適用する場合の、更に好ましい態様について説明する。 Hereinafter, a further preferable aspect when the polyimide film according to the present embodiment is applied as a substrate of a flexible display will be described.
 フレキシブルディスプレイを形成する場合、ガラス基板を支持体として用いてその上にフレキシブル基板としてのポリイミドフィルムを形成し、更にその上にTFT等の形成を行う。TFTを形成する工程は、典型的には、150~650℃の広い範囲の温度で実施される。実際に所望する性能を具現するためには、主に250℃~450℃付近で、TFT-IGZO(InGaZnO)酸化物半導体やTFT(a-Si-TFT、LTPS-TFT)を形成することになる。 When forming a flexible display, a polyimide film as a flexible substrate is formed thereon using a glass substrate as a support, and a TFT or the like is further formed thereon. The process of forming the TFT is typically performed at a wide range of temperatures from 150 to 650 ° C. In order to actually realize the desired performance, TFT-IGZO (InGaZnO) oxide semiconductors and TFTs (a-Si-TFTs, LTPS-TFTs) are mainly formed at around 250 ° C. to 450 ° C. .
 この時に、フレキシブル基板とポリイミドフィルムとの間に生じる残留応力が高ければ、高温のTFT形成工程で膨張した後、常温冷却時に収縮する際に、ガラス基板の反り及び破損、フレキシブル基板のガラス基板からの剥離等の問題が生じる。一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、フレキシブル基板と樹脂フィルムとの間には残留応力が発生する。本実施の形態に係るポリイミドフィルムは、この点を考慮して、フィルムの厚さ10μmを基準として、ガラスとの間に生じる残留応力が25MPa以下であることが好ましい。 At this time, if the residual stress generated between the flexible substrate and the polyimide film is high, the glass substrate warps and breaks when it shrinks during normal temperature cooling after expansion in the high temperature TFT formation process, from the glass substrate of the flexible substrate. This causes problems such as peeling. Generally, since the thermal expansion coefficient of a glass substrate is smaller than that of a resin, a residual stress is generated between the flexible substrate and the resin film. In consideration of this point, it is preferable that the residual stress generated between the polyimide film according to the present embodiment and the glass is 25 MPa or less on the basis of the film thickness of 10 μm.
 また、本実施の形態に係るポリイミドフィルムは、フレキシブル基板として取り扱う時の破断強度に優れることにより、歩留まりを向上させる観点から、フィルムの厚さ20μmを基準として、引張伸度が30%以上であることが好ましい。特に、引張伸度が33%以上であると、ポリイミドフィルム上の無機膜を配した時に、剥がれやフィルムのひびが入りにくい傾向にある。その中でも40%以上が特に好ましい。 In addition, the polyimide film according to the present embodiment has a tensile strength of 30% or more on the basis of a film thickness of 20 μm from the viewpoint of improving yield by being excellent in breaking strength when handled as a flexible substrate. It is preferable. In particular, when the tensile elongation is 33% or more, when an inorganic film on the polyimide film is provided, peeling or cracking of the film tends not to occur. Among these, 40% or more is particularly preferable.
 本実施の態様に係るポリイミドフィルムは、-150℃~0℃の領域と150℃~380℃の領域とのそれぞれに少なくとも1つずつのガラス転移温度を有し、0℃より大きく150℃より小さい領域においてガラス転移温度を有しないことが好ましい。
 また、本実施の形態に係るポリイミドフィルムは、TFT素子形成温度における軟化を生じないために、上記高温領域におけるガラス転移温度は250℃以上に存在することが好ましい。
The polyimide film according to this embodiment has at least one glass transition temperature in each of the −150 ° C. to 0 ° C. region and the 150 ° C. to 380 ° C. region, and is greater than 0 ° C. and less than 150 ° C. It is preferred not to have a glass transition temperature in the region.
In addition, the polyimide film according to the present embodiment preferably has a glass transition temperature of 250 ° C. or higher in the high temperature region so as not to be softened at the TFT element forming temperature.
 更に、本実施の形態に係るポリイミドフィルムは、TFT素子を作製する際に使用するフォトリソグラフィ工程における、フォトレジスト剥離液に耐え得る耐薬品性を具備することが好ましい。 Furthermore, it is preferable that the polyimide film according to the present embodiment has chemical resistance that can withstand a photoresist stripping solution in a photolithography process used when manufacturing a TFT element.
 フレキシブルディスプレイの光取り出し方式には、TFT素子の表面側から光を取り出すトップ・エミッション方式と、裏面側から光を取り出すボトム・エミッション方式と、の2種類が知られている。トップ・エミッション方式では、TFT素子が邪魔にならないため、開口率を上げやすいという特徴がある。一方のボトム・エミッション方式は、位置合わせが容易で製造し易いという特徴がある。TFT素子が透明であればボトム・エミッション方式においても、開口率を向上することが可能となるため、大型有機ELフレキシブルディスプレイとしては、製造が容易なボトム・エミッション方式が採用されることが期待されている。ボトム・エミッション方式に使用する無色透明樹脂基板に樹脂基板を用いる場合には、視認する側に樹脂基板が配置される。そのため、樹脂基板としては、特に黄色度(YI値)が低く、全光線透過率が高いことが、画質の向上の観点から求められる。 There are two known types of light extraction methods for flexible displays: a top emission method for extracting light from the front surface side of the TFT element and a bottom emission method for extracting light from the back surface side. The top emission method has a feature that it is easy to increase the aperture ratio because the TFT element does not get in the way. On the other hand, the bottom emission method is characterized by easy alignment and easy manufacture. If the TFT element is transparent, it is possible to improve the aperture ratio even in the bottom emission method. Therefore, it is expected that a bottom emission method that is easy to manufacture will be adopted as a large organic EL flexible display. ing. When a resin substrate is used for the colorless and transparent resin substrate used in the bottom emission method, the resin substrate is disposed on the side to be visually recognized. Therefore, the resin substrate is required to have particularly low yellowness (YI value) and high total light transmittance from the viewpoint of improving the image quality.
 本実施の形態に係るポリイミドフィルム及び積層体は、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、フレキシブルデバイス等の製造において、特に基板として好適に利用することができる。ここで、フレキシブルデバイスとは、例えば、フレキシブルディスプレイ、フレキシブル太陽電池、フレキシブルタッチパネル電極基板、フレキシブル照明、フレキシブルバッテリー等である。上記の諸物性を満たす本実施の形態に係るポリイミドフィルムは、特に、既存のポリイミドフィルムが有する黄色により使用が制限されていた用途、特にフレキシブルディスプレイ用無色透明基板用途に使用することができる。 The polyimide film and laminate according to the present embodiment can be suitably used particularly as a substrate, for example, in the production of semiconductor insulating films, TFT-LCD insulating films, electrode protective films, flexible devices, and the like. Here, the flexible device is, for example, a flexible display, a flexible solar cell, a flexible touch panel electrode substrate, flexible lighting, a flexible battery, or the like. The polyimide film according to the present embodiment satisfying the above various physical properties can be used particularly for applications in which use is limited by the yellow color of existing polyimide films, particularly for colorless transparent substrates for flexible displays.
 本実施の形態に係るポリイミドフィルムは、これ以外にも、例えば、保護膜、TFT-LCD等における散光シート及び塗膜(例えば、TFT-LCDのインターレイヤー、ゲイト絶縁膜、液晶配向膜等)、タッチパネル用ITO基板、スマートフォン用カバーガラス代替樹脂基板等の、無色透明性、且つ、低複屈折が要求される分野に使用可能である。本実施の形態に係るポリイミドを液晶配向膜として適用すると、開口率の増加に寄与し、高コントラスト比のTFT-LCDの製造が可能となる。 In addition to this, the polyimide film according to the present embodiment includes, for example, a protective film, a light-diffusing sheet and a coating film (for example, TFT-LCD interlayer, gate insulating film, liquid crystal alignment film, etc.) in TFT-LCD, It can be used in fields requiring colorless and transparent and low birefringence, such as ITO substrates for touch panels and cover glass substitute resin substrates for smartphones. When the polyimide according to this embodiment is applied as a liquid crystal alignment film, it contributes to an increase in the aperture ratio, and a TFT-LCD with a high contrast ratio can be manufactured.
 以下、本発明について、実施例に基づき更に詳述する。しかし、これらは説明のために記述されるものであって、本発明の範囲が下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, these are described for illustrative purposes, and the scope of the present invention is not limited to the following examples.
 実施例及び比較例における各種評価は次の通り行った。
(数平均分子量の測定)
 数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、下記の条件により測定した。
  溶媒:N,N-ジメチルホルムアミド(和光純薬工業社製、高速液体クロマトグラフ用)に対して、測定直前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)、及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えたもの
  検量線:スタンダードポリスチレン(東ソー社製)を用いて作成
  カラム:Shodex KD-806M(昭和電工社製)
  流速:1.0mL/分
  カラム温度:40℃
  ポンプ:PU-2080Plus(JASCO社製)
  検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)及びUV-2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
Various evaluations in Examples and Comparative Examples were performed as follows.
(Measurement of number average molecular weight)
The number average molecular weight (Mn) was measured using gel permeation chromatography (GPC) under the following conditions.
Solvent: 24.8 mmol / L lithium bromide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) immediately before the measurement with respect to N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) Purity 99.5%) and 63.2 mmol / L phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) Calibration curve: prepared using standard polystyrene (manufactured by Tosoh Corporation) Column: Shodex KD-806M (Showa Denko)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Pump: PU-2080 Plus (manufactured by JASCO)
Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: UV-visible absorptiometer, manufactured by JASCO)
(積層体及び単離フィルムの作製)
 各合成例で得た樹脂前駆体組成物をバーコーターで無アルカリガラス基板(厚さ0.7mm)に塗工し、室温で5分間~10分間レベリングを行った後、縦型キュアオーブン(光洋リンドバーグ社製、型式名VF-2000B)を用いて140℃において60分間加熱(プリベーク)し、更に窒素雰囲気下熱風オーブン内で60分間加熱することにより、ガラス基板上に膜厚20μmのポリイミドフィルムを有する積層体を作製した。
 ここで、熱風オーブン内の酸素濃度及びキュア温度は、表1に記載の通りに設定した。酸素濃度計は、東レエンジニアリング社製 ジルコニア式 LC-750Lを使用した。キュア後の積層体を水中に浸漬し、24時間静置した後に、ポリイミドフィルムをガラスから剥離し、以下の各評価に供した。ただし、レーザー剥離性の評価及び接着強度の測定についてはガラス基板から剥離しない状態で評価に供し、残留応力の評価及び赤外測定については、各別にポリイミド膜の形成を行った。
(Production of laminate and isolated film)
The resin precursor composition obtained in each synthesis example was applied to a non-alkali glass substrate (thickness 0.7 mm) with a bar coater, leveled at room temperature for 5 to 10 minutes, and then subjected to a vertical curing oven (Koyo). A polyimide film having a film thickness of 20 μm is formed on a glass substrate by heating (prebaking) at 140 ° C. for 60 minutes using a Lindberg company, model name VF-2000B), and further heating in a hot air oven under a nitrogen atmosphere for 60 minutes. The laminated body which has was produced.
Here, the oxygen concentration and the curing temperature in the hot air oven were set as shown in Table 1. As the oxygen concentration meter, a zirconia LC-750L manufactured by Toray Engineering Co., Ltd. was used. After the cured laminate was immersed in water and allowed to stand for 24 hours, the polyimide film was peeled from the glass and subjected to the following evaluations. However, the evaluation of laser peelability and the measurement of adhesive strength were carried out in a state where they were not peeled off from the glass substrate, and the polyimide film was formed separately for evaluation of residual stress and infrared measurement.
(引張伸度の評価)
 キュア後のポリイミドフィルムを、5mm×50mmの大きさにカットし、引張り試験機(株式会社エーアンドディ製:RTG-1210)を用いて、速度100mm/minで引張り、引張伸度を測定した。
(Evaluation of tensile elongation)
The cured polyimide film was cut into a size of 5 mm × 50 mm, and was pulled at a speed of 100 mm / min using a tensile tester (manufactured by A & D Co., Ltd .: RTG-1210), and the tensile elongation was measured.
(ガラス転移温度及び線膨張係数の評価)
 室温以上の領域におけるガラス転移温度、及び線膨張係数(CTE)の測定は、キュア後のポリイミドフィルムを5mm×50mmの大きさにカットしたものを試験片として、熱機械分析により行った。測定装置として島津製作所製熱機械分析装置(TMA-50)を用い、荷重5g、昇温速度10℃/分及び窒素気流下(流量20ml/分)の条件で、温度50~450℃の範囲における試験片伸びの測定を行った。得られたチャートの変曲点をガラス転移温度として求め、100~250℃におけるポリイミドフィルムのCTEを求めた。
(Evaluation of glass transition temperature and linear expansion coefficient)
The glass transition temperature and linear expansion coefficient (CTE) in the region above room temperature were measured by thermomechanical analysis using a cured polyimide film cut to a size of 5 mm × 50 mm as a test piece. Using a thermomechanical analyzer (TMA-50) manufactured by Shimadzu Corporation as a measuring device, in a temperature range of 50 to 450 ° C. under conditions of a load of 5 g, a heating rate of 10 ° C./min and a nitrogen stream (flow rate of 20 ml / min). The test piece elongation was measured. The inflection point of the obtained chart was determined as the glass transition temperature, and the CTE of the polyimide film at 100 to 250 ° C. was determined.
(レーザー剥離性の評価)
 Nd:Yagレーザーの第3高調波(355nm)により、上記で得た積層体のガラス基板側から照射エネルギーを段階的に増やしつつ照射を行い、ポリイミドを剥離した。
 ここで、剥離が可能となった最少照射エネルギーにて剥離を行ったポリイミド表面を光学顕微鏡により観察し、ポリイミド表面における、焦げ及びパーティクル発生の有無を調べた。これらがフィルムのほぼ全面に発生した場合を剥離性「不良」、これらがフィルムのごく一部にのみ発生した場合を剥離性「可」、そして、これらの発生が無い場合を剥離性「良好」として評価した。
(Evaluation of laser peelability)
With the third harmonic (355 nm) of the Nd: Yag laser, irradiation was performed while gradually increasing the irradiation energy from the glass substrate side of the laminate obtained above, and the polyimide was peeled off.
Here, the polyimide surface that was peeled with the minimum irradiation energy at which peeling was possible was observed with an optical microscope, and the presence or absence of scorching and particle generation on the polyimide surface was examined. When these occur on almost the entire surface of the film, the releasability is “bad”, when these occur only on a small part of the film, the releasability is “good”, and when these are not generated, the releasability is “good” As evaluated.
(残留応力の評価)
 残留応力測定装置(テンコール社製、型式名FLX-2320)を用いて、厚み625μm±25μmの6インチシリコンウェハの「反り量」を測定した。このシリコンウェハ上に、各合成例で得た樹脂前駆体組成物をバーコーターにより塗布し、140℃において60分間プリベークした後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)内で、表1に記載の酸素濃度及びキュア温度にて加熱処理を施し、膜厚10μmのポリイミド膜を有するシリコンウェハを作製した。
 このポリイミド付きウェハの反り量を前述の残留応力測定装置を用いて測定し、前記シリコンウェハの反り量との比較により、シリコンウェハと樹脂膜の間に生じた残留応力を評価した。
(Evaluation of residual stress)
Using a residual stress measuring device (model name FLX-2320, manufactured by Tencor Corporation), the “warping amount” of a 6-inch silicon wafer having a thickness of 625 μm ± 25 μm was measured. On this silicon wafer, the resin precursor composition obtained in each synthesis example was applied by a bar coater, pre-baked at 140 ° C. for 60 minutes, and then in a vertical curing furnace (manufactured by Koyo Lindberg Co., model name VF-2000B). Then, a heat treatment was performed at an oxygen concentration and a curing temperature shown in Table 1, and a silicon wafer having a polyimide film with a thickness of 10 μm was produced.
The amount of warpage of the wafer with polyimide was measured using the above-described residual stress measuring device, and the residual stress generated between the silicon wafer and the resin film was evaluated by comparison with the amount of warpage of the silicon wafer.
(電子顕微鏡による空隙の観察)
 ポリイミドフィルムをエポキシ樹脂に包埋し、ミクロトーム(LEICA EM UC6)を用いて作製した超薄切片を検鏡用試料とした。透過型電子顕微鏡(日立製作所製:S-5500)を用いて、加速電圧30kVにて、SEM及びSTEMモードにてフィルム断面方向からの観察を行った。
 STEM画像により観察した空隙構造の状態から、画像処理ソフトを使用して空隙率及び最大長軸長さの平均値をそれぞれ求めた。
 更に、ポリイミドフィルムにおける空隙の膜厚方向における均一性を以下のようにして求めた。各ポリイミドフィルムの電顕像を、膜厚方向に2μmごとの領域に区切り、各領域について画像処理したうえ、空隙率を求めた。次いで、これらの空隙率について、最大値と最小値との差(Δ空隙率(%)=空隙率の最大値(%)-空隙率の最小値(%))を求めた。そして、このΔ空隙率の値を、空隙の膜厚方向における均一性の指標とした。
 この値が5%以下である場合に、空隙の膜厚方向における均一性が高いと評価することができる。この値は、3%以下であることがより好ましく、1%以下であることが更に好ましく、0.5%以下であることが特に好ましい。
(Observation of voids with an electron microscope)
An ultra-thin section prepared by embedding a polyimide film in an epoxy resin and using a microtome (LEICA EM UC6) was used as a sample for microscopy. Using a transmission electron microscope (manufactured by Hitachi, Ltd .: S-5500), observation was performed from the film cross-sectional direction in SEM and STEM modes at an acceleration voltage of 30 kV.
From the state of the void structure observed by the STEM image, the average values of the void ratio and the maximum long axis length were obtained using image processing software.
Furthermore, the uniformity in the film thickness direction of the voids in the polyimide film was determined as follows. The electron microscopic image of each polyimide film was divided into regions of 2 μm in the film thickness direction, image processing was performed for each region, and the porosity was determined. Next, for these void ratios, the difference between the maximum value and the minimum value (Δ void ratio (%) = maximum void ratio (%) − minimum void ratio (%)) was determined. The value of Δ void ratio was used as an index of uniformity in the film thickness direction of the void.
When this value is 5% or less, it can be evaluated that the uniformity of the voids in the film thickness direction is high. This value is more preferably 3% or less, still more preferably 1% or less, and particularly preferably 0.5% or less.
(小角X線散乱測定(SAXS)による空隙構造のドメイン間距離、及び電子密度の測定)
 以下の条件にて小角X線散乱(SAXS)測定を行い、空隙構造のドメイン間距離、及び海島構造の電子密度を見積もった。
  装置:リガク製NanoViewer
  光学系:ポイントコリメーション(1st slit:0.4mmφ、2nd slit:0.2mmφ、guard slit:0.8mmφ)
  入射X線波長λ:0.154nm
  X線入射方向:フィルム面に対して垂直方向(though view)
  検出器:PILATUS100K
  カメラ長:842mm
  測定時間:900秒
  試料:各フィルムを10枚重ねて測定
 電子密度に関しては、下記数式(1)によりインバリアントQを算出し、電子密度差Δρを見積もり、海島構造における島状ドメインがシリコーンなのか空隙なのかを、ポリイミドとの電子密度差より判断した。
(Measurement of inter-domain distance and electron density of void structure by small angle X-ray scattering measurement (SAXS))
Small angle X-ray scattering (SAXS) measurement was performed under the following conditions to estimate the inter-domain distance of the void structure and the electron density of the sea-island structure.
Device: Rigaku NanoViewer
Optical system: Point collimation (1st slit: 0.4 mmφ, 2nd slit: 0.2 mmφ, guard slit: 0.8 mmφ)
Incident X-ray wavelength λ: 0.154 nm
X-ray incident direction: perpendicular to the film surface (two view)
Detector: PILATUS100K
Camera length: 842mm
Measurement time: 900 seconds Sample: Measured with 10 layers of each film. For electron density, invariant Q is calculated by the following formula (1), the electron density difference Δρ is estimated, and is the island domain in the sea-island structure silicon? Whether it was a void was judged from the difference in electron density from polyimide.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
{上記数式(1)中、Qはインバリアントであり;
qは散乱波数ベクトルであり;
I(q)は散乱強度であり;
Vは照射体積であり;
ρは電子密度であり;そして
φは相分離構造の島部分の体積分率である。}
 ここで、散乱波数ベクトルqが、0.1<q<2.0(nm-1)の範囲で計算を行った。散乱強度I(q)は絶対強度補正を行っているので、体積Vは考慮していない。体積分率については、φ=0.1と仮定した。また、Q/2π=13,580(0.1<2θ<2.7°)と計算した。
{In the above formula (1), Q is an invariant;
q is the scattered wave vector;
I (q) is the scattering intensity;
V is the irradiation volume;
ρ is the electron density; and φ is the volume fraction of the island portion of the phase separation structure. }
Here, the scattering wave vector q was calculated in the range of 0.1 <q <2.0 (nm −1 ). Since the scattering intensity I (q) is subjected to absolute intensity correction, the volume V is not considered. The volume fraction was assumed to be φ = 0.1. Further, Q / 2π 2 = 13,580 (0.1 <2θ <2.7 °) was calculated.
(赤外吸収スペクトル法(ATR)によるポリイミドフィルム中のシリコーン含量の見積もり)
 樹脂前駆体組成物をバーコーターで無アルカリガラス基板(厚さ0.7mm)に塗工し、室温で5分間~10分間レベリングを行った後、縦型キュアオーブン(光洋リンドバーグ社製、型式名VF-2000B)を用いて95℃において60分間加熱(プリベーク)した。このプリベーク膜についてATRスペクトルを取得し、ベンゼン環の吸収である1,500cm-1におけるピークの面積を1と規格化し、SiO結合の吸収である1,100cm-1における吸光度を求めた。
 表1に記載の酸素濃度及びキュア温度で加熱した後のポリイミドフィルムに関しても前記と同様の測定を行い、SiO結合の吸収である1,100cm-1における吸光度を求めた。
 1,100cm-1における吸光度について、プリベーク膜の値とキュア後ポリイミドフィルムの値とを比較することにより、シリコーン残基の残存率を見積もった。そして、ポリイミド前駆体を合成する時のシリコーンモノマーの仕込み量と、キュア後のポリイミド膜のシリコーン残基の残存率とから、得られたポリイミドフィルム中のシリコーン含量を算出した。
 ATRの測定装置としては、サーモフィッシャーサイエンティフィック社製:「Nicolet Continium」を使用した。
 図2に、実施例1、2及び参考例で得られたフィルムのATRスペクトルを示した。図2のチャートは、上から順に、参考例1、実施例2及び実施例1で得られたフィルムのスペクトルである。
(Estimation of silicone content in polyimide film by infrared absorption spectroscopy (ATR))
The resin precursor composition was applied to a non-alkali glass substrate (thickness 0.7 mm) with a bar coater, leveled at room temperature for 5 to 10 minutes, and then a vertical curing oven (manufactured by Koyo Lindberg, model name) VF-2000B) was heated (prebaked) at 95 ° C. for 60 minutes. An ATR spectrum was obtained for this pre-baked film, the peak area at 1,500 cm −1, which is the absorption of the benzene ring, was normalized to 1, and the absorbance at 1,100 cm −1 , which was the absorption of SiO bond, was obtained.
The polyimide film after heating at the oxygen concentration and curing temperature shown in Table 1 was also measured in the same manner as described above, and the absorbance at 1,100 cm −1, which is the absorption of SiO bond, was obtained.
For the absorbance at 1,100 cm −1 , the residual ratio of silicone residues was estimated by comparing the value of the pre-baked film and the value of the cured polyimide film. And the silicone content in the obtained polyimide film was computed from the preparation amount of the silicone monomer at the time of synthesize | combining a polyimide precursor, and the residual rate of the silicone residue of the polyimide film after hardening.
As a measuring apparatus of ATR, “Nicolet Continium” manufactured by Thermo Fisher Scientific Co., Ltd. was used.
In FIG. 2, the ATR spectrum of the film obtained by Example 1, 2 and the reference example was shown. The chart of FIG. 2 is a spectrum of the films obtained in Reference Example 1, Example 2, and Example 1 in order from the top.
(ガラス基板との接着強度)
 上記で得た積層体の有するポリイミドフィルムに対して、カッターナイフを用いて、幅10mm、長さ100mmの2本の切り込みを入れ、端部を剥離してチャックに挟み、引張り速度100mm/minにて180°ピール強度の測定を行った。
 引張り試験機としては、株式会社エーアンドディ製:RTG-1210を用いた。
(Adhesive strength with glass substrate)
The polyimide film of the laminate obtained above is cut using a cutter knife with two cuts having a width of 10 mm and a length of 100 mm, the end is peeled off and sandwiched between chucks, and the tensile speed is 100 mm / min. 180 ° peel strength was measured.
As a tensile tester, RTG-1210 manufactured by A & D Corporation was used.
(複屈折(Rth)の測定)
 膜厚15μmのポリイミドフィルムを試料として、位相差複屈折測定装置(王子計測機器社製、KOBRA-WR)を用いて測定した。測定光の波長は589nmとした。
(黄色度(YI)の測定方法)
 膜厚20μmのポリイミドフィルムを試料として、日本電色工業(株)製(Spectrophotometer:SE600)を用いて測定した。光源にはD65光源を用いた。
(Measurement of birefringence (Rth))
A polyimide film having a film thickness of 15 μm was used as a sample, and measurement was performed using a phase difference birefringence measuring apparatus (manufactured by Oji Scientific Instruments, KOBRA-WR). The wavelength of the measurement light was 589 nm.
(Measurement method of yellowness (YI))
Using a polyimide film having a thickness of 20 μm as a sample, measurement was performed using Nippon Denshoku Industries Co., Ltd. (Spectrophotometer: SE600). A D65 light source was used as the light source.
<樹脂前駆体組成物の調製及び評価>
[合成例1]
 オイルバスを備えた撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、NMP1、000gを仕込み、ジアミンとして4,4-(ジアミノジフェニル)スルホン239.6g(0.965モル)を撹拌しながら加え、続いてテトラカルボン酸二無水物として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物294.22g(1.0モル)を加えて、室温で30分撹拌した。これを50℃に昇温し、12時間撹拌した。その後、シリコーンモノマーである両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製:X22-1660B-3(数平均分子量4,400))109.3g(樹脂前駆体全体に対して17質量%)をNMP298gに溶解して得たシリコーンモノマー溶液を、滴下漏斗から滴下して加えた。続いて反応系を80℃に昇温し、1時間撹拌した後、オイルバスを外して室温に戻すことにより、透明な樹脂前駆体(ポリアミド酸)のNMP溶液(樹脂前駆体組成物)を得た。ここで得られたポリアミド酸の数平均分子量(Mn)は、約33,000であった。
<Preparation and Evaluation of Resin Precursor Composition>
[Synthesis Example 1]
While introducing nitrogen gas into a 3 L separable flask equipped with a stir bar equipped with an oil bath, 1,000 g of NMP was charged, and 239.6 g (0.965 mol) of 4,4- (diaminodiphenyl) sulfone as a diamine was stirred. Then, 294.22 g (1.0 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added as a tetracarboxylic dianhydride, and the mixture was stirred at room temperature for 30 minutes. This was heated to 50 ° C. and stirred for 12 hours. Thereafter, 109.3 g (17% by mass with respect to the entire resin precursor) of both-end amine-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (number average molecular weight 4,400)), which is a silicone monomer, was added. A silicone monomer solution obtained by dissolving in 298 g of NMP was added dropwise from a dropping funnel. Subsequently, after raising the temperature of the reaction system to 80 ° C. and stirring for 1 hour, the oil bath was removed and the temperature was returned to room temperature to obtain an NMP solution (resin precursor composition) of a transparent resin precursor (polyamic acid). It was. The number average molecular weight (Mn) of the polyamic acid obtained here was about 33,000.
[合成例2~6及び9]
 上記合成例1において、ジアミン及びテトラカルボン酸二無水物の種類及び量、並びにシリコーンモノマー溶液の内容を、それぞれ、表1に記載のとおりに変更した他は合成例1と同様にして、透明な樹脂前駆体(ポリアミド酸)のNMP溶液(樹脂前駆体組成物)をそれぞれ得た。
 得られたポリアミド酸の数平均分子量(Mn)を、表1に合わせて示した。
[Synthesis Examples 2 to 6 and 9]
In the above Synthesis Example 1, the type and amount of diamine and tetracarboxylic dianhydride, and the content of the silicone monomer solution, respectively, were changed as described in Table 1, respectively. An NMP solution (resin precursor composition) of a resin precursor (polyamic acid) was obtained.
Table 1 shows the number average molecular weight (Mn) of the obtained polyamic acid.
[合成例7]
 オイルバスを備えた撹拌棒付き10Lセパラブルフラスコに、窒素ガスを導入しながら、NMP5,502gを仕込み、ジアミンとして2,2’-ビス(トリフルオロメチル)ベンジジン308.8g(0.96モル)を撹拌しながら加え、続いてテトラカルボン酸二無水物としてピロメリット酸二無水物185.4g(0.85モル)及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物66.64g(0.15モル)を順次に加えた。更にこれを撹拌しながら、シリコーンモノマーX22-1660B-3の113.64g(樹脂前駆体全体に対して17質量%)をNMP568gに溶解して得たシリコーンモノマー溶液を滴下漏斗から滴下した。滴下終了後、室温において1時間撹拌した後、80℃に昇温し、4時間撹拌した後、オイルバスを外して室温に戻すことにより、平均分子量62,000のポリアミド酸を含有する透明なNMP溶液(樹脂前駆体組成物)を得た。
[Synthesis Example 7]
While introducing nitrogen gas into a 10 L separable flask equipped with a stir bar equipped with an oil bath, NMP 5,502 g was charged, and 308.8 g (0.96 mol) of 2,2′-bis (trifluoromethyl) benzidine as a diamine. With stirring, followed by 185.4 g (0.85 mol) of pyromellitic dianhydride as tetracarboxylic dianhydride and 66.64 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride ( 0.15 mol) was added sequentially. Further, while stirring this, a silicone monomer solution obtained by dissolving 113.64 g of silicone monomer X22-1660B-3 (17% by mass with respect to the whole resin precursor) in 568 g of NMP was dropped from a dropping funnel. After completion of dropping, the mixture was stirred at room temperature for 1 hour, heated to 80 ° C., stirred for 4 hours, and then returned to room temperature by removing the oil bath, thereby transparent NMP containing polyamic acid having an average molecular weight of 62,000. A solution (resin precursor composition) was obtained.
[合成例8]
 TFMBの添加量を317.02g(0.99モル)とし、シリコーンモノマー溶液を添加しない以外は、合成例7と同様に操作を行うことにより、数平均分子量58,000のポリアミド酸を含有する透明なNMP溶液(樹脂前駆体組成物)を得た。
[Synthesis Example 8]
A transparent containing polyamic acid having a number average molecular weight of 58,000 was carried out in the same manner as in Synthesis Example 7 except that the amount of TFMB added was 317.02 g (0.99 mol) and no silicone monomer solution was added. NMP solution (resin precursor composition) was obtained.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1における各成分の略称は、それぞれ、以下の意味である。
(ジアミン)
  4,4-DAS:4,4-(ジアミノジフェニル)スルホン
  TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
(テトラカルボン酸二無水物)
  BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
  PMDA:ピロメリット酸二無水物
  6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
(シリコーンモノマー)
  1660B:信越化学社製、品名「X22-1660B-3」両末端アミン変性メチルフェニルシリコーンオイル、数平均分子量4,400
  FM3311:チッソ社製、品三重「サイラプレーンFM3311」:、両末端アミン変性ジメチルシリコーンオイル、数平均分子量1,000
Abbreviations of each component in Table 1 have the following meanings.
(Diamine)
4,4-DAS: 4,4- (diaminodiphenyl) sulfone TFMB: 2,2′-bis (trifluoromethyl) benzidine (tetracarboxylic dianhydride)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride 6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (silicone monomer)
1660B: manufactured by Shin-Etsu Chemical Co., Ltd., product name “X22-1660B-3”, both-end amine-modified methyl phenyl silicone oil, number average molecular weight 4,400
FM3311: manufactured by Chisso Corporation, product Mie “Shiraplane FM3311”: amine-modified dimethyl silicone oil at both ends, number average molecular weight 1,000
[実施例1~18及び比較例1~3]
 前記の合成例で合成した樹脂前駆体組成物を使用して、上述の方法に従って、表1に記載した酸素濃度及びキュア温度の条件下でポリイミドフィルムを製造し、各種の評価を行った。
 評価結果は表2及び3に示した。
 図1に、実施例1で得られたポリイミドフィルムについて撮影したSTEM画像(左)及びSEM画像(右)を;
図3に、実施例7で得られたポリイミドフィルムのSEM画像を;
それぞれ示した。
[Examples 1 to 18 and Comparative Examples 1 to 3]
Using the resin precursor composition synthesized in the above synthesis example, a polyimide film was produced under the conditions of oxygen concentration and cure temperature described in Table 1 according to the above-described method, and various evaluations were performed.
The evaluation results are shown in Tables 2 and 3.
In FIG. 1, the STEM image (left) and SEM image (right) which image | photographed about the polyimide film obtained in Example 1;
In FIG. 3, the SEM image of the polyimide film obtained in Example 7;
Shown respectively.
参考例1
 本参考例は、キュア温度を低くした場合には、シリコーン成分がフィルム中にすべて残存し、空隙が形成されないことを検証するために行った。
 前記の合成例1で得た樹脂前駆体組成物を使用し、キュア条件を酸素濃度50ppm及びキュア温度95℃とした以外は、前述の方法によってフィルムを形成し、ATR測定及び電子顕微鏡観察を行った。
 結果は、表2に示した。
Reference example 1
This reference example was carried out in order to verify that when the curing temperature was lowered, all of the silicone component remained in the film and no voids were formed.
A film was formed by the above-described method except that the resin precursor composition obtained in Synthesis Example 1 was used and the curing conditions were an oxygen concentration of 50 ppm and a curing temperature of 95 ° C., and ATR measurement and electron microscope observation were performed. It was.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 SAXS観察によって得られた海島構造におけるドメイン構造間の電子密度の差が、
実施例においては、ポリイミドと空気との電子密度の差に近い値となったことから、フィルム中に空隙が形成されていることが;
一方の比較例においては、ポリイミドとシリコーンとの電子密度の差に近い値となったことから、空隙が形成されていないことが;
それぞれ確認された。また、実施例1の膜厚方向の断面STEM画像を参照すると、島部分が白いことが確認できる。このことからも、島部分が空隙であると判別できる。SEM画像からも、同様に島部分が凹んでいることが確認できるから、当該部分が空隙であることが判別できる。
 表2に示したように、実施例1~18は、フィルム物性において、以下の条件を同時に満たすことが確認された。
 (1)残留応力が25MPa以下であること、
 (2)レーザー剥離後にポリイミドフィルムに焦げが生じないこと
 (3)レーザー剥離後にパーティクルが発生しないこと、
 (4)ガラス転移温度がシリコーンを導入したポリマーと比較して、下がらないこと、
 (5)引張伸度が30%以上であること、及び
 (6)ガラス基板との接着性に優れること。
 表3の結果から、キュア時の酸素濃度が2,000ppm以下であった実施例1、4、5、及び6においては、形成された空隙の膜厚方向における均一性が極めて高く、且つ複屈折(Rth)の値が極めて小さいことが分かった。
The difference in electron density between domain structures in the sea-island structure obtained by SAXS observation is
In the examples, since the value was close to the difference in electron density between polyimide and air, voids were formed in the film;
In one comparative example, since the value was close to the difference in electron density between polyimide and silicone, no voids were formed;
Each was confirmed. Moreover, when the cross-sectional STEM image of the film thickness direction of Example 1 is referred, it can confirm that an island part is white. From this, it can be determined that the island portion is a void. Similarly, from the SEM image, it can be confirmed that the island portion is recessed, so that it can be determined that the portion is a void.
As shown in Table 2, it was confirmed that Examples 1 to 18 simultaneously satisfy the following conditions in film physical properties.
(1) The residual stress is 25 MPa or less,
(2) No burning of the polyimide film after laser peeling (3) No generation of particles after laser peeling,
(4) The glass transition temperature does not decrease compared to a polymer introduced with silicone,
(5) Tensile elongation is 30% or more, and (6) Excellent adhesion to a glass substrate.
From the results of Table 3, in Examples 1, 4, 5, and 6 in which the oxygen concentration during curing was 2,000 ppm or less, the uniformity of the formed voids in the film thickness direction was extremely high, and birefringence was observed. It was found that the value of (Rth) was extremely small.
 従って、これらの実施例で得られたポリイミドフィルムは、いずれも、フレキシブルディスプレー用基板に適用するための性能を満足するものであった。 Therefore, all of the polyimide films obtained in these examples satisfied the performance for application to a flexible display substrate.
 これに対して、比較例1~3で得られたポリイミドフィルムは、レーザー剥離時にポリイミドが焦げて着色し、結果としてパーティクルが発生した。 In contrast, in the polyimide films obtained in Comparative Examples 1 to 3, the polyimide was burnt and colored during laser peeling, and as a result, particles were generated.
 以上の結果から、本発明に係る樹脂前駆体から得られるポリイミドフィルムは、ガラス基板及び無機膜との間に発生する残留応力が低く、ガラス基板との接着性に優れ、レーザー剥離工程において照射エネルギーが低い場合でも良好な剥離が可能であり、そして剥離時にポリイミドフィルムの焦げやパーティクルの発生を起こさないことが確認された。 From the above results, the polyimide film obtained from the resin precursor according to the present invention has low residual stress generated between the glass substrate and the inorganic film, excellent adhesion to the glass substrate, and irradiation energy in the laser peeling process. It was confirmed that good peeling is possible even when the film thickness is low, and that no burning of the polyimide film or generation of particles occurs at the time of peeling.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 本発明のポリイミドフィルムは、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、フレキシブルディスプレイ用基板、タッチパネルITO電極用基板等に、好適に利用することができる。特に各種の基板として有用である。 The polyimide film of the present invention can be suitably used for, for example, semiconductor insulating films, TFT-LCD insulating films, electrode protective films, flexible display substrates, touch panel ITO electrode substrates, and the like. It is particularly useful as various substrates.

Claims (16)

  1.  100nm以下の空隙を有し、そしてフレキシブルデバイスの製造に使用されることを特徴とする、ポリイミドフィルム。 A polyimide film characterized by having a void of 100 nm or less and being used for production of a flexible device.
  2.  20μm膜厚における黄色度が7以下である、請求項1に記載のポリイミドフィルム。 The polyimide film according to claim 1, wherein the yellowness in a 20 μm film thickness is 7 or less.
  3.  引張伸度が30%以上である、請求項1又は2に記載のポリイミドフィルム。 The polyimide film according to claim 1 or 2, wherein the tensile elongation is 30% or more.
  4.  シリコーン残基を有する、請求項1~3のいずれか一項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 3, which has a silicone residue.
  5.  空隙率が3体積%~15体積%の範囲である、請求項1~4のいずれか一項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 4, wherein the porosity is in the range of 3% to 15% by volume.
  6.  前記空隙の形状が、長軸径平均30nm~60nmの扁平楕円球体である、請求項1~5のいずれか一項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 5, wherein the shape of the void is a flat ellipsoidal sphere having an average major axis diameter of 30 nm to 60 nm.
  7.  前記空隙が、前記ポリイミドフィルムの膜厚方向に均一に存在している、請求項1~6のいずれか一項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 6, wherein the voids are present uniformly in the film thickness direction of the polyimide film.
  8.  樹脂骨格中に、下記一般式(1)で表されるユニット1、及び下記一般式(2)で表されるユニット2:
    Figure JPOXMLDOC01-appb-C000001
    {前記一般式(1)及び前記一般式(2)中、Rは、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
    及びRは、それぞれ独立に、炭素数1~3の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
    は炭素数4~32の4価の有機基であり;そして
    は炭素数4~32の2価の有機基である。}
    を有することを特徴とする、請求項1~7のいずれか一項に記載のポリイミドフィルムを製造するための樹脂前駆体。
    In the resin skeleton, unit 1 represented by the following general formula (1) and unit 2 represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000001
    {In the general formula (1) and the general formula (2), each R 1 independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic having 6 to 10 carbon atoms. A group;
    R 2 and R 3 are each independently a monovalent aliphatic hydrocarbon having 1 to 3 carbon atoms or an aromatic group having 6 to 10 carbon atoms;
    X 1 is a tetravalent organic group having 4 to 32 carbon atoms; and X 2 is a divalent organic group having 4 to 32 carbon atoms. }
    The resin precursor for producing a polyimide film according to any one of claims 1 to 7, characterized by comprising:
  9.  テトラカルボン酸二無水物と、
    ジアミンと、
    下記一般式(3):
    Figure JPOXMLDOC01-appb-C000002
    {前記一般式(3)中、複数存在するRは、それぞれ独立に、単結合又は炭素数1~20の2価の有機基であり;
    及びRは、それぞれ独立に、炭素数1~20の1価の有機基であり;
    は、複数存在する場合にはそれぞれ独立に、炭素数1~20の1価の有機基であり;L1、L2、及びL3は、それぞれ独立に、アミノ基、イソシアネート基、カルボキシル基、酸無水物基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり;
    jは3~200の整数であり;そして
    kは0~197の整数である。}
    で表される化合物と、
    の共重合体である、請求項8に記載の樹脂前駆体。
    Tetracarboxylic dianhydride;
    Diamine,
    The following general formula (3):
    Figure JPOXMLDOC01-appb-C000002
    {In the general formula (3), a plurality of R 4 are each independently a single bond or a divalent organic group having 1 to 20 carbon atoms;
    R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms;
    R 7, each independently in the presence of a plurality, a monovalent organic group of 1 to 20 carbon atoms; L 1, L 2, and L 3 each independently, an amino group, isocyanate group, carboxyl A group, an acid anhydride group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group;
    j is an integer from 3 to 200; and k is an integer from 0 to 197. }
    A compound represented by
    The resin precursor according to claim 8, which is a copolymer of
  10.  テトラカルボン酸二無水物が、
    ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)から成る群より選択される1種以上のテトラカルボン酸二無水物である、請求項9に記載の樹脂前駆体。
    Tetracarboxylic dianhydride is
    Pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 4,4′-biphenyl The resin precursor according to claim 9, wherein the resin precursor is one or more tetracarboxylic dianhydrides selected from the group consisting of bis (trimellitic acid monoester anhydride).
  11.  樹脂前駆体を合成する際に使用する上記一般式(3)で表される化合物の質量が、テトラカルボン酸二無水物、ジアミン、及び上記一般式(3)で表される化合物の合計の6質量%~25質量%である、請求項9又は10に記載の樹脂前駆体。 The mass of the compound represented by the general formula (3) used when synthesizing the resin precursor is 6 in total of the compounds represented by the tetracarboxylic dianhydride, the diamine, and the general formula (3). The resin precursor according to claim 9 or 10, wherein the content is from 25% by mass to 25% by mass.
  12.  請求項8~11のいずれか一項に記載の樹脂前駆体と、溶媒と、を含有することを特徴とする、樹脂組成物。 A resin composition comprising the resin precursor according to any one of claims 8 to 11 and a solvent.
  13.  支持体の表面上に、請求項12に記載の樹脂組成物を展開して塗膜を形成し、次いで、
    前記支持体及び前記塗膜を、酸素濃度23質量%以下、及び温度250℃以上の条件下で加熱して、前記塗膜中の樹脂前駆体をイミド化するとともに前記塗膜中に空隙を形成することにより製造される、請求項1~7のいずれか一項に記載のポリイミドフィルム。
    On the surface of the support, the resin composition according to claim 12 is developed to form a coating film,
    The support and the coating film are heated under conditions of an oxygen concentration of 23% by mass or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film. The polyimide film according to any one of claims 1 to 7, which is produced by
  14.  前記加熱の時の酸素濃度が2,000ppm以下である、請求項13に記載のポリイミドフィルム。 The polyimide film according to claim 13, wherein the oxygen concentration during the heating is 2,000 ppm or less.
  15.  支持体の表面上に、請求項12に記載の樹脂組成物を展開して塗膜を形成する塗膜形成工程と、
    前記支持体及び前記塗膜を、酸素濃度2,000ppm以下、及び温度250℃以上の条件下で加熱して、前記塗膜中の樹脂前駆体をイミド化するとともに前記塗膜中に空隙を形成して空隙を有するポリイミドフィルムを得る加熱工程と、
    前記空隙を有するポリイミドフィルムを前記支持体から剥離する剥離工程と、
    を有することを特徴とする、ポリイミドフィルムの製造方法。
    On the surface of the support, a coating film forming step of developing the resin composition according to claim 12 to form a coating film;
    The support and the coating film are heated under an oxygen concentration of 2,000 ppm or less and a temperature of 250 ° C. or more to imidize the resin precursor in the coating film and form voids in the coating film. Heating step to obtain a polyimide film having voids,
    A peeling step of peeling the polyimide film having the voids from the support;
    The manufacturing method of a polyimide film characterized by having.
  16.  請求項1~7のいずれか一項に記載のポリイミドフィルムと、無機膜と、TFTと、を有することを特徴とする、フレキシブルディスプレイ。 A flexible display comprising the polyimide film according to any one of claims 1 to 7, an inorganic film, and a TFT.
PCT/JP2015/067656 2014-06-25 2015-06-18 Polyimide film having pores and method for producing same WO2015198970A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207021572A KR102305617B1 (en) 2014-06-25 2015-06-18 Polyimide film having pores and method for producing same
KR1020167035080A KR102139455B1 (en) 2014-06-25 2015-06-18 Polyimide film having pores and method for producing same
JP2016529524A JP6254274B2 (en) 2014-06-25 2015-06-18 Polyimide film having voids and method for producing the same
CN202010966079.9A CN112080026B (en) 2014-06-25 2015-06-18 Polyimide film having voids and method for producing same
CN201580033079.0A CN106414575B (en) 2014-06-25 2015-06-18 Polyimide film having voids and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130377 2014-06-25
JP2014-130377 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198970A1 true WO2015198970A1 (en) 2015-12-30

Family

ID=54938054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067656 WO2015198970A1 (en) 2014-06-25 2015-06-18 Polyimide film having pores and method for producing same

Country Status (5)

Country Link
JP (4) JP6254274B2 (en)
KR (2) KR102305617B1 (en)
CN (3) CN112961382A (en)
TW (2) TWI689532B (en)
WO (1) WO2015198970A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018392A (en) * 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
JP2018028053A (en) * 2016-08-10 2018-02-22 新日鉄住金化学株式会社 Method for producing transparent polyimide film
CN107799668A (en) * 2016-08-31 2018-03-13 株式会社半导体能源研究所 The manufacture method of semiconductor device
JP2019059927A (en) * 2017-09-27 2019-04-18 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
WO2019188380A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Polyamide acid and method for producing same, polyamide acid solution, polyimide, polyimide film, multilayer body and method for producing same, and flexible device and method for producing same
JP2020504198A (en) * 2017-09-14 2020-02-06 エルジー・ケム・リミテッド Polyimide precursor composition and polyimide film using the same
JP2020506081A (en) * 2017-05-24 2020-02-27 エルジー・ケム・リミテッド Polyimide laminated film roll and method for producing the same
JP2020508365A (en) * 2017-09-29 2020-03-19 エルジー・ケム・リミテッド Polyimide precursor solution and polyimide film produced using the same
JP2020128522A (en) * 2014-06-25 2020-08-27 旭化成株式会社 Polyimide film having void, and method for producing the same
WO2023286809A1 (en) * 2021-07-13 2023-01-19 旭化成株式会社 Porous polyimide having highly uniform nano structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724141B (en) * 2016-03-23 2021-04-11 法商液態空氣喬治斯克勞帝方法硏究開發股份有限公司 Si-containing film forming compositions and methods of making and using the same
KR102358122B1 (en) * 2016-03-31 2022-02-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Manufacturing method of flexible substrate
TWI728107B (en) * 2016-05-10 2021-05-21 日商住友化學股份有限公司 Optical film and optical member using the optical film
KR101989028B1 (en) 2017-01-31 2019-06-14 주식회사 엘지화학 Polyimide and polyimide film for flexible display prepared therefrom
CN107195252A (en) * 2017-07-13 2017-09-22 武汉天马微电子有限公司 A kind of preparation method of flexible display panels, display device and flexible display panels
KR102281613B1 (en) 2017-11-21 2021-07-23 주식회사 엘지화학 Polyimide film for display substrates
CN108586780B (en) * 2018-05-09 2021-05-07 无锡创彩光学材料有限公司 Porous polyimide film and preparation method thereof
CN109163442A (en) * 2018-08-01 2019-01-08 江阴市博豪电热电器制造有限公司 A kind of rubber flexible heater and preparation method thereof
CN115386134A (en) * 2018-10-31 2022-11-25 株式会社理光 Porous layer and electrode
JP7392660B2 (en) * 2018-12-28 2023-12-06 三菱瓦斯化学株式会社 Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
CN113555554B (en) * 2021-06-03 2023-04-07 浙江中科玖源新材料有限公司 Binder, silicon-carbon negative plate and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535099A (en) * 1984-04-03 1985-08-13 Imi-Tech Corporation Polyimide foam from mixture of silicon containing diamine and different aromatic diamine
JPH05205526A (en) * 1991-09-13 1993-08-13 Internatl Business Mach Corp <Ibm> Foamed polymer for usage as dielectric material
JPH1121369A (en) * 1997-07-04 1999-01-26 Nippon Telegr & Teleph Corp <Ntt> Production of porous polymer film
JP2001237241A (en) * 2000-02-24 2001-08-31 Hitachi Ltd Low dielectric constant film and semiconductor device
JP2001329096A (en) * 2000-03-17 2001-11-27 Toray Ind Inc Low dielectric constant polymer
JP2002008468A (en) * 2000-06-22 2002-01-11 Sumitomo Bakelite Co Ltd Insulating material
JP2002528561A (en) * 1998-07-22 2002-09-03 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method for producing porous fired polyimide
JP2004335995A (en) * 2003-04-17 2004-11-25 Sumitomo Bakelite Co Ltd Porous resin film, its manufacturing method and semiconductor device
JP2010202679A (en) * 2009-02-27 2010-09-16 Lintec Corp Block copolymer for forming porous polyimide, porous polyimide, and insulating material
JP2011132390A (en) * 2009-12-25 2011-07-07 Sumitomo Electric Ind Ltd Resin composition for forming porous polyimide
JP2012107121A (en) * 2010-11-17 2012-06-07 Mitsui Chemicals Inc Resin/metal laminate excellent in dielectric property and circuit board

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414479B2 (en) * 1993-02-10 2003-06-09 ユニチカ株式会社 Film forming solution and porous film obtained therefrom or coating of porous film
JP4453252B2 (en) * 2002-12-26 2010-04-21 コニカミノルタホールディングス株式会社 Organic thin film transistor element and organic thin film transistor element sheet
US20100196683A1 (en) * 2006-10-27 2010-08-05 Konnklijke Philips Electronics N.V. Electronic device having a plastic substrate
JP4948211B2 (en) * 2007-03-12 2012-06-06 古河電気工業株式会社 Foam, circuit board using foam, and manufacturing method thereof
KR20100125252A (en) * 2008-02-25 2010-11-30 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 Polyimide precursor composition, polyimide film and transparent flexible film
JP2010202729A (en) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
KR101292886B1 (en) 2009-09-29 2013-08-02 코오롱인더스트리 주식회사 Transparent Polyimide film with improved Solvent Resistance
JP5725017B2 (en) * 2010-03-31 2015-05-27 Jsr株式会社 Substrate manufacturing method and composition used therefor
JP2012102216A (en) * 2010-11-09 2012-05-31 Kaneka Corp Method for producing polyimide film, and polyimide film
WO2012118020A1 (en) 2011-02-28 2012-09-07 Jsr株式会社 Resin composition and film formation method using same
KR101946092B1 (en) * 2011-09-29 2019-02-08 제이에스알 가부시끼가이샤 Resin composition, and film formation method using same
JP5891693B2 (en) * 2011-10-05 2016-03-23 Jsr株式会社 Substrate manufacturing method and substrate
KR101896271B1 (en) * 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
CN112961382A (en) * 2014-06-25 2021-06-15 旭化成株式会社 Polyimide film having voids and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535099A (en) * 1984-04-03 1985-08-13 Imi-Tech Corporation Polyimide foam from mixture of silicon containing diamine and different aromatic diamine
JPH05205526A (en) * 1991-09-13 1993-08-13 Internatl Business Mach Corp <Ibm> Foamed polymer for usage as dielectric material
JPH1121369A (en) * 1997-07-04 1999-01-26 Nippon Telegr & Teleph Corp <Ntt> Production of porous polymer film
JP2002528561A (en) * 1998-07-22 2002-09-03 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method for producing porous fired polyimide
JP2001237241A (en) * 2000-02-24 2001-08-31 Hitachi Ltd Low dielectric constant film and semiconductor device
JP2001329096A (en) * 2000-03-17 2001-11-27 Toray Ind Inc Low dielectric constant polymer
JP2002008468A (en) * 2000-06-22 2002-01-11 Sumitomo Bakelite Co Ltd Insulating material
JP2004335995A (en) * 2003-04-17 2004-11-25 Sumitomo Bakelite Co Ltd Porous resin film, its manufacturing method and semiconductor device
JP2010202679A (en) * 2009-02-27 2010-09-16 Lintec Corp Block copolymer for forming porous polyimide, porous polyimide, and insulating material
JP2011132390A (en) * 2009-12-25 2011-07-07 Sumitomo Electric Ind Ltd Resin composition for forming porous polyimide
JP2012107121A (en) * 2010-11-17 2012-06-07 Mitsui Chemicals Inc Resin/metal laminate excellent in dielectric property and circuit board

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128522A (en) * 2014-06-25 2020-08-27 旭化成株式会社 Polyimide film having void, and method for producing the same
JP7037534B2 (en) 2014-06-25 2022-03-16 旭化成株式会社 Polyimide film with voids and its manufacturing method
JP7033171B2 (en) 2014-06-25 2022-03-09 旭化成株式会社 Polyimide film with voids and its manufacturing method
JP2020183539A (en) * 2014-06-25 2020-11-12 旭化成株式会社 Polyimide film having gap and method for producing the same
KR102394341B1 (en) 2016-08-10 2022-05-03 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
KR20180018392A (en) * 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
JP2018028053A (en) * 2016-08-10 2018-02-22 新日鉄住金化学株式会社 Method for producing transparent polyimide film
CN107799668A (en) * 2016-08-31 2018-03-13 株式会社半导体能源研究所 The manufacture method of semiconductor device
JP2018064088A (en) * 2016-08-31 2018-04-19 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
JP2020506081A (en) * 2017-05-24 2020-02-27 エルジー・ケム・リミテッド Polyimide laminated film roll and method for producing the same
US11248098B2 (en) 2017-05-24 2022-02-15 Lg Chem, Ltd. Polyimide laminated film roll body and method for manufacturing same
JP2020504198A (en) * 2017-09-14 2020-02-06 エルジー・ケム・リミテッド Polyimide precursor composition and polyimide film using the same
US11466124B2 (en) 2017-09-14 2022-10-11 Lg Chem, Ltd. Polyimide precursor composition and polyimide film using same
JP2019059927A (en) * 2017-09-27 2019-04-18 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP7363019B2 (en) 2017-09-27 2023-10-18 大日本印刷株式会社 Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
JP2020508365A (en) * 2017-09-29 2020-03-19 エルジー・ケム・リミテッド Polyimide precursor solution and polyimide film produced using the same
US11479643B2 (en) 2017-09-29 2022-10-25 Lg Chem, Ltd. Polyimide precursor solution and polyimide film produced using same
JPWO2019188380A1 (en) * 2018-03-30 2021-04-01 株式会社カネカ Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, and flexible device and its manufacturing method
WO2019188380A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Polyamide acid and method for producing same, polyamide acid solution, polyimide, polyimide film, multilayer body and method for producing same, and flexible device and method for producing same
JP7292260B2 (en) 2018-03-30 2023-06-16 株式会社カネカ Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
WO2023286809A1 (en) * 2021-07-13 2023-01-19 旭化成株式会社 Porous polyimide having highly uniform nano structure

Also Published As

Publication number Publication date
CN106414575B (en) 2021-03-02
JP2018048344A (en) 2018-03-29
TW201605978A (en) 2016-02-16
KR102305617B1 (en) 2021-09-27
CN112080026B (en) 2024-01-23
TW201835165A (en) 2018-10-01
CN106414575A (en) 2017-02-15
JP6254274B2 (en) 2017-12-27
TWI689532B (en) 2020-04-01
JP7033171B2 (en) 2022-03-09
KR20200091953A (en) 2020-07-31
KR20170010383A (en) 2017-01-31
JP7037534B2 (en) 2022-03-16
JP6820827B2 (en) 2021-01-27
JPWO2015198970A1 (en) 2017-04-20
CN112080026A (en) 2020-12-15
TWI670327B (en) 2019-09-01
KR102139455B1 (en) 2020-07-30
JP2020128522A (en) 2020-08-27
JP2020183539A (en) 2020-11-12
CN112961382A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP7033171B2 (en) Polyimide film with voids and its manufacturing method
JP6883640B2 (en) A resin precursor and a resin composition containing the same, a resin film and a method for producing the same, and a laminate and a method for producing the same.
JP5948545B2 (en) Polyimide precursor and resin composition containing the same
WO2016010003A1 (en) Resin precursor, resin composition containing same, polyimide resin membrane, resin film, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529524

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812696

Country of ref document: EP

Kind code of ref document: A1