WO2015198643A1 - Engine unit - Google Patents

Engine unit Download PDF

Info

Publication number
WO2015198643A1
WO2015198643A1 PCT/JP2015/056882 JP2015056882W WO2015198643A1 WO 2015198643 A1 WO2015198643 A1 WO 2015198643A1 JP 2015056882 W JP2015056882 W JP 2015056882W WO 2015198643 A1 WO2015198643 A1 WO 2015198643A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen sensor
sensor
oxygen
downstream
exhaust
Prior art date
Application number
PCT/JP2015/056882
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 久保
幸博 谷川
恭弘 樋口
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to JP2016529106A priority Critical patent/JPWO2015198643A1/en
Publication of WO2015198643A1 publication Critical patent/WO2015198643A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine unit.
  • Patent Document 1 there is known a gas engine that operates by mixing a combustible gas such as natural gas or city gas with air and burning it (see Patent Document 1).
  • an engine unit that includes an oil tank so that it is not necessary to replace the lubricating oil over a long period of time (see Patent Document 2).
  • Such an engine employs an exhaust gas purification catalyst (for example, a three-way catalyst) for the purpose of reducing exhaust emissions (reducing CO, NOx, and THC in exhaust gas).
  • Patent Document 3 discloses an internal combustion engine having a three-way catalyst in an exhaust passage, an oxygen sensor provided in an exhaust passage upstream of the three-way catalyst, and an oxygen sensor provided in a downstream exhaust passage.
  • the upstream oxygen sensor is used for air-fuel ratio control, and the downstream oxygen sensor is upstream. This is used for correcting and controlling the deviation of the sensor output due to the deterioration of the oxygen sensor. Since the upstream oxygen sensor is arranged on the upstream side of the three-way catalyst, it is easily affected by the components of exhaust gas before purification and the heat, and is easily deteriorated.
  • the deviation control of the sensor output due to the deterioration of the upstream oxygen sensor is corrected by the downstream oxygen sensor.
  • the downstream oxygen sensor fails, the upstream oxygen sensor cannot be corrected and controlled.
  • the downstream oxygen sensor is disposed on the downstream side of the three-way catalyst, it is exposed to exhaust gas that has become hot due to passing through the three-way catalyst, so that the heat load becomes severe and the output deteriorates. There is a fear.
  • the output deterioration of the downstream oxygen sensor itself cannot be detected, it is necessary to maintain the detection accuracy of the downstream oxygen sensor. Therefore, in consideration of the output degradation of the upstream oxygen sensor and downstream oxygen sensor of the catalyst provided in the exhaust passage (exhaust path) in this way, the detection accuracy of the upstream and downstream oxygen sensors is long-term. It is hoped that it can be maintained.
  • the detection accuracy of the upstream and downstream oxygen sensors is maintained for a long time in consideration of output deterioration of the upstream oxygen sensor and downstream oxygen sensor of the catalyst provided in the exhaust path in the engine unit. It aims to provide a technology that can do.
  • the present invention Engine A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows; A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas; An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
  • the plurality of oxygen sensors includes: A first oxygen sensor disposed in an exhaust path upstream of the catalyst; A second oxygen sensor disposed in an exhaust path downstream of the catalyst;
  • the exhaust path on the downstream side of the catalyst includes a third oxygen sensor disposed on the downstream side of the second oxygen sensor.
  • the present invention provides the engine unit,
  • the control means acquires the sensor output of the second oxygen sensor and / or the third oxygen sensor, and corrects and controls the deviation of the sensor output of the first oxygen sensor compared with the sensor output of the first oxygen sensor. It is supposed to be.
  • the present invention provides the engine unit,
  • the exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas,
  • the third oxygen sensor is provided in the vicinity of the heat exchanger.
  • the present invention provides the engine unit,
  • the control means acquires sensor output by periodically energizing the third oxygen sensor.
  • the present invention provides the engine unit,
  • the control means acquires the sensor output by periodically energizing the second oxygen sensor, and the interval for energizing the third oxygen sensor is longer than the interval for energizing the second oxygen sensor. It is a thing.
  • the present invention also provides: Engine, A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows; A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas; An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
  • the plurality of oxygen sensors includes: An upstream oxygen sensor disposed in an exhaust path upstream of the catalyst; A downstream oxygen sensor disposed in the exhaust path downstream of the catalyst, The exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas, The downstream oxygen sensor is arranged in the heat exchanger, and the downstream oxygen sensor is cooled by water flowing in the heat exchanger.
  • the present invention provides the engine unit, A temperature sensor disposed near the downstream side of the catalyst and electrically connected to the control means for detecting the exhaust gas temperature;
  • the downstream oxygen sensor has a heater,
  • the control means includes The energization timing of the heater of the downstream oxygen sensor is controlled based on the temperature of the exhaust gas detected by the temperature sensor.
  • the first oxygen sensor is disposed in the exhaust path upstream of the catalyst, and the second oxygen sensor and the third oxygen sensor are sequentially disposed in the exhaust path downstream of the catalyst.
  • the first oxygen sensor is easily deteriorated by the influence of exhaust gas components and heat before the catalyst purification, but the second oxygen is sequentially arranged on the downstream side of the catalyst that is less affected by exhaust gas components and heat.
  • the sensor and the third oxygen sensor are unlikely to deteriorate. Therefore, even if output deterioration (sensor output deviation) occurs in the first oxygen sensor, the sensor output deviation of the first oxygen sensor can be corrected by the second oxygen sensor and the third oxygen sensor. That is, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the third oxygen sensor is disposed downstream of the second oxygen sensor in the exhaust path and the most downstream of the plurality of oxygen sensors, the third oxygen sensor is least affected by the components contained in the exhaust gas and heat. Even if output degradation occurs in the first oxygen sensor or the second oxygen sensor, the third oxygen sensor can correct the deviation of the sensor output of the first oxygen sensor or the second oxygen sensor.
  • control means acquires the sensor output of the second oxygen sensor and / or the third oxygen sensor, and compares the sensor output of the first oxygen sensor with the sensor output of the first oxygen sensor. Control correction. Thereby, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the third oxygen sensor is provided in the vicinity of the heat exchanger in the exhaust path downstream of the catalyst.
  • the third oxygen sensor is less susceptible to heat than the second oxygen sensor and can extend its life. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the control means acquires the sensor output by periodically energizing the third oxygen sensor. Therefore, deterioration due to energization of the third oxygen sensor can be suppressed, and the life of the third oxygen sensor can be extended. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the control means acquires the sensor output by periodically energizing the second oxygen sensor, and makes the interval for energizing the third oxygen sensor longer than the interval for energizing the second oxygen sensor. .
  • the 3rd oxygen sensor can suppress degradation by energization rather than the 2nd oxygen sensor, and can extend the lifetime of both the 2nd oxygen sensor and the 3rd oxygen sensor. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the downstream oxygen sensor is disposed in the heat exchanger and is cooled by water flowing in the heat exchanger.
  • the thermal load with respect to a downstream oxygen sensor can be reduced, and the proof stress improvement of a downstream oxygen sensor can be aimed at. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the energization timing of the heater of the downstream oxygen sensor is controlled by the temperature of the exhaust gas.
  • the exhaust temperature on the downstream side of the catalyst rises.
  • the heater of the downstream oxygen sensor is energized to start air-fuel ratio control. As a result, the time during which the air-fuel ratio control is not effective can be shortened.
  • the figure which shows an engine unit The figure which shows the structure of an engine.
  • the schematic diagram which shows the attachment position of the downstream oxygen sensor in the conventional heat exchanger The schematic diagram which shows the attachment position of the downstream oxygen sensor in the heat exchanger which concerns on embodiment of this invention.
  • FIG. 1 It is a figure which similarly shows the internal structure of the one end side of a heat exchanger, (a) is a side view of a conventional product, (b) is a perspective view of a conventional product, (c) is a side view of a second embodiment, (d ) Is a perspective view of the second embodiment.
  • Sectional drawing which similarly shows the one end side of a heat exchanger.
  • the figure which shows the electricity supply timing of the heater of the conventional downstream oxygen sensor.
  • the side view and rear view showing the state where the refrigeration container provided with the engine unit concerning the embodiment of the present invention was loaded on the truck.
  • the engine unit 100 according to the first embodiment of the present invention will be described.
  • FIG. 1 shows the engine unit 100.
  • the engine unit 100 is used as a power source for the gas heat pump.
  • the engine unit 100 includes an engine 1.
  • the engine unit 100 includes an oil tank 2.
  • FIG. 2 shows the structure of the engine 1.
  • the engine 1 is a so-called gas engine that operates by mixing a combustible gas such as natural gas or city gas with air to generate an air-fuel mixture and burning the air-fuel mixture.
  • the engine 1 mainly includes a main body 11, an intake passage 12, an exhaust passage 13, and a control means (controller) 40 (see FIG. 3).
  • the main body 11 converts the energy obtained by burning the fuel into a rotational motion.
  • the main body 11 mainly includes a cylinder block 111, a cylinder head 112, a piston 113, a crankshaft 114, a head cover 115, and an oil pan 116.
  • the main body 11 is combusted by a cylinder 111c provided in the cylinder block 111, a piston 113 slidably housed in the cylinder 111c, and a cylinder head 112 disposed so as to face the piston 113.
  • Chamber C is configured. That is, the combustion chamber C refers to an internal space whose volume changes due to the sliding motion of the piston 113.
  • the piston 113 is connected to the crankshaft 114 by a connecting rod, and the crankshaft 114 is rotated by the sliding motion of the piston 113.
  • a head cover 115 is provided above the cylinder head 112.
  • an oil pan 116 is provided below the cylinder block 111. Lubricating oil L is accumulated in the oil pan 116.
  • a water jacket 117 is provided around the cylinder block 111, and the cylinder block 111 is cooled by circulating cooling water inside the water jacket 117.
  • the water jacket 117 is provided with cooling water temperature detecting means 118 for detecting the temperature of the cooling water, and is connected to the control means 40 described later.
  • the control means 40 can acquire the temperature of the cooling water in the water jacket 117 detected by the cooling water temperature detection means 118.
  • the intake passage section 12 mixes combustible gas and air and guides them to the combustion chamber C.
  • the intake passage portion 12 is mainly composed of a mixer 121 (see FIG. 1), a fuel adjustment valve (also referred to as GVM) 123, and an intake manifold 122.
  • the mixer 121 and the fuel adjustment valve 123 constitute an air-fuel mixture supply device that supplies an air-fuel mixture composed of combustible gas and air to the combustion chamber C via the intake manifold 122.
  • the mixer 121 is a Venturi mixer.
  • the mixer 121 supplies a combustible gas to air sucked from the outside to generate an air-fuel mixture.
  • the mixer 121 is attached to one end of the intake manifold 122.
  • the fuel adjustment valve 123 adjusts the amount of flammable gas supplied to the mixer 121.
  • the air-fuel mixture supply apparatus including the mixer 121 and the fuel adjustment valve 123 performs fuel increase or fuel decrease within a predetermined range by changing the opening of the fuel adjustment valve 123.
  • the fuel adjustment valve 123 is electrically connected to the control means 40.
  • the control means 40 controls the opening degree of the fuel adjustment valve 123.
  • the intake manifold 122 guides the air-fuel mixture generated by the mixer 121 to each combustion chamber C.
  • the intake manifold 122 is formed to branch to each combustion chamber C so as to guide the air-fuel mixture to the four combustion chambers C.
  • the intake manifold 122 is connected to the head cover 115 by a pipe. This is to prevent the internal pressure of the cylinder block 111 and the head cover 115 from increasing.
  • the exhaust passage unit 13 guides the exhaust discharged from the combustion chamber C to the outside.
  • the exhaust passage section 13 mainly includes an exhaust manifold 131, an upstream side exhaust pipe 137, a three-way catalytic converter 132, a downstream side exhaust pipe 138, a first oxygen sensor 134, a second oxygen sensor 135, and a third And an oxygen sensor 136.
  • the exhaust manifold 131 guides the exhaust discharged from each combustion chamber C to the three-way catalytic converter 132 (hereinafter simply referred to as the catalytic converter 132) via the upstream side exhaust pipe 137.
  • the exhaust manifold 131 is formed so as to merge from each combustion chamber C so as to guide the exhaust from the four combustion chambers C.
  • the catalytic converter 132 removes off-flavors caused by aldehydes.
  • the catalytic converter 132 oxidizes aldehydes using a catalytic reaction with platinum or the like.
  • a heat exchanger 133 that heats water using exhaust gas is attached to the downstream exhaust pipe 138 on the downstream side of the catalytic converter 132 (see FIGS. 1 and 3).
  • a three-way catalyst is described as a catalyst for purifying exhaust gas, but is not particularly limited.
  • the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 detect the oxygen concentration in the exhaust gas discharged from the exhaust manifold 131 and output a detection signal corresponding to the oxygen concentration in the exhaust gas. It is a sensor. As shown in FIG. 3, the first oxygen sensor 134 is disposed in the exhaust manifold 131 upstream of the catalytic converter 132. Second oxygen sensor 135 is arranged in downstream exhaust pipe 138 on the downstream side of catalytic converter 132. The second oxygen sensor 135 is disposed on one end side of the downstream side exhaust pipe 138 and in the vicinity of the front end of the catalytic converter 132.
  • the third oxygen sensor 136 is disposed downstream of the second oxygen sensor 135 in the downstream exhaust pipe 138 downstream of the catalytic converter 132.
  • the third oxygen sensor 136 is disposed on the other end side (downstream end side) of the downstream side exhaust pipe 138 and in the vicinity of the heat exchanger 133.
  • the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are electrically connected to the control means 40. Based on the measurement results of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, and data and programs stored in advance, the control means 40 opens the throttle valve, the fuel adjustment valve 123, and the like.
  • a known oxygen sensor capable of detecting the oxygen concentration in the exhaust gas can be used, for example, a UEGO (Universal Exhaust Gas Oxygen) sensor. May be used.
  • the UEGO sensor can perform atmospheric calibration. When a UEGO sensor is used as the second oxygen sensor 135 and the third oxygen sensor 136, detection accuracy can be improved by periodically calibrating the air.
  • the control means 40 calculates the air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, and controls the opening of the fuel adjustment valve 123. To do.
  • the control means 40 has a storage unit.
  • the storage unit includes measurement results of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, data stored in advance (for example, a map, etc.), and opening of a throttle valve, a fuel adjustment valve 123, and the like.
  • a program for controlling the degree via the actuator is stored.
  • control unit 40 constantly energizes the first oxygen sensor 134 and the second oxygen sensor 135 to acquire each sensor output in time series, and energizes the third oxygen sensor 136 every predetermined time to generate the third oxygen sensor 136.
  • the sensor output of the oxygen sensor 136 every predetermined time can be acquired.
  • the predetermined time for energizing the third oxygen sensor 136 can be arbitrarily set based on a predetermined program stored in the control means 40.
  • the control means 40 appropriately controls the energization state (always energization or energization every predetermined time) of each oxygen sensor independently of each of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136. can do.
  • control means 40 constantly energizes the first oxygen sensor 134 to acquire sensor outputs in time series, and independently energizes the second oxygen sensor 135 and the third oxygen sensor 136 at predetermined time intervals. Each sensor output for every predetermined time can be acquired.
  • the predetermined time for energizing each of the second oxygen sensor 135 and the third oxygen sensor 136 can be arbitrarily set based on a predetermined program stored in the control means 40.
  • FIG. 4 shows a flow of the correction control method of the first oxygen sensor in the engine 1.
  • the control means 40 first acquires the sensor outputs (output voltages) of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 (step S10). Next, the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are compared (step S20), and compared with the sensor output from the second oxygen sensor 135, the first oxygen sensor 134 is compared. If there is no deviation in the sensor output due to (when the deviation is within a predetermined allowable range) (YES in step S30), the sensor output from the first oxygen sensor 134 is adopted, and the air-fuel ratio is calculated from the sensor output. (Step S40).
  • step S30 If it is determined in step S30 that the sensor output of the first oxygen sensor 134 is deviated from the sensor output of the second oxygen sensor 135, that is, if it is determined that the output of the first oxygen sensor 134 has deteriorated ( In step S30, the control unit 40 compares the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (step S50). When there is no deviation between the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (when the deviation is within a predetermined allowable range) (YES in step S60), the sensor output from the second oxygen sensor 135 is adopted. Then, the air-fuel ratio is calculated from the sensor output (step S70).
  • step S60 If it is determined in step S60 that the sensor output of the second oxygen sensor 135 is different from the sensor output of the third oxygen sensor 136, that is, if it is determined that the output of the second oxygen sensor has deteriorated (step S60).
  • the control means 40 employs the sensor output from the third oxygen sensor 136 and calculates the air-fuel ratio based on the sensor output (step S80).
  • step S10 the sensor output from the third oxygen sensor 136 is acquired.
  • the third oxygen sensor 136 does not need to be always in the energized state (ON state).
  • the third oxygen sensor 136 is in an energized state (ON state) when correcting and controlling the first oxygen sensor 134 periodically (for example, about once every several tens of hours to several hundred hours) instead of always. Should be set. That is, the third oxygen sensor 136 only needs to be energized periodically when the control means 40 performs the correction control of the first oxygen sensor 134, and in this way, the third oxygen sensor 136 is energized. Deterioration can be suppressed.
  • step S10 the sensor output from the second oxygen sensor 135 is acquired.
  • the second oxygen sensor 135 does not have to be in a normally energized state (ON state).
  • the second oxygen sensor 135 can be set to be in an energized state (ON state) when correcting and controlling the first oxygen sensor 134 periodically instead of constantly. That is, the second oxygen sensor 135 may be energized only periodically when the control means 40 performs the correction control of the first oxygen sensor 134. In this way, the second oxygen sensor 135 is energized. Deterioration can be suppressed.
  • the third oxygen sensor 136 is less likely to be deteriorated by energization than the second oxygen sensor 135. May be.
  • FIG. 5 is a flowchart showing another embodiment of the correction control method for the first oxygen sensor.
  • step S10 first, after obtaining the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 simultaneously (at the same time) (step S10), the first oxygen sensor 134 and The second oxygen sensor 135 is always energized and constantly acquires (acquires in time series) each sensor output.
  • the third oxygen sensor 136 is energized at a predetermined time interval to acquire the sensor output of the third oxygen sensor 136.
  • the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are acquired at the predetermined time interval (step S100).
  • step S200 the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are compared.
  • the sensor output from the first oxygen sensor 134 is adopted, and the air-fuel ratio is calculated from the sensor output (step S400).
  • the second oxygen sensor 135 is always energized, but is not particularly limited.
  • the second oxygen sensor 135 may be energized at a predetermined time interval.
  • the predetermined time interval at which the third oxygen sensor 136 is energized is set longer than the predetermined time interval at which the second oxygen sensor 135 is energized, and the second oxygen sensor 135 and the third oxygen sensor 136 are predetermined. It is preferable to set in advance in the control means 40 so as to acquire each sensor output in synchronization (synchronization) at time intervals. By doing in this way, the 2nd oxygen sensor 135 can suppress deterioration by electricity supply rather than the 3rd oxygen sensor 136, and can prolong a lifetime.
  • step S300 If it is determined in step S300 that the sensor output of the first oxygen sensor 134 is deviated from the sensor output of the second oxygen sensor 135, that is, if it is determined that the output of the first oxygen sensor 134 has deteriorated ( In step S300, the control unit 40 compares the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (step S500). When there is no deviation between the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (when the deviation is within a predetermined allowable range) (YES in step S600), the sensor output from the second oxygen sensor 135 is adopted. Then, the air-fuel ratio is calculated from the sensor output (step S700).
  • step S600 If it is determined in step S600 that the sensor output of the second oxygen sensor 135 is different from the sensor output of the third oxygen sensor 136, that is, if it is determined that the output of the second oxygen sensor has deteriorated (step S600).
  • the control means 40 employs the sensor output from the third oxygen sensor 136 and calculates the air-fuel ratio based on the sensor output (step S800).
  • the exhaust path of the engine 1 of the present embodiment includes three oxygen sensors (a first oxygen sensor 134, a second oxygen sensor 135, and a third oxygen sensor 136), but all three oxygen sensors are used. It does not have to be.
  • the control unit 40 alternately energizes the second oxygen sensor 135 and the third oxygen sensor 136 to acquire the sensor output, and compares the sensor output with the first oxygen sensor 134 with the first oxygen sensor 134.
  • the correction control may be performed. This is because deterioration due to energization in the second oxygen sensor 135 and the third oxygen sensor 136 can be suppressed by energizing the second oxygen sensor 135 and the third oxygen sensor 136 alternately.
  • a sensor output correction control method (deterioration detection method) of the first oxygen sensor 134 using the amount of change in the opening of the fuel adjustment valve 123 will be described.
  • the deterioration with time of the air-fuel ratio measured by one oxygen sensor (for example, the first oxygen sensor 134) after the initial and long-time operation is estimated, and the change amount of the sensor output of the oxygen sensor is controlled beforehand.
  • the change amount of the sensor output of the oxygen sensor is set in advance as a threshold value, and the control means 40 detects the deterioration of the sensor output of the first oxygen sensor 134.
  • FIG. 6 is at a predetermined engine speed
  • the vertical axis is the sensor output of the oxygen sensor
  • the horizontal axis is the oxygen concentration by the first oxygen sensor 134.
  • the sensor output at a predetermined engine speed is shifted above or below a reference value (for example, a sensor output value obtained from the second oxygen sensor 135 or the third oxygen sensor 136).
  • a reference value for example, a sensor output value obtained from the second oxygen sensor 135 or the third oxygen sensor 136.
  • the control means 40 determines that output degradation has occurred in the first oxygen sensor 134.
  • not only one oxygen sensor for example, the first oxygen sensor 134) but also three oxygen sensors (the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136) are not described above. In this way, the presence or absence of output deterioration can also be determined.
  • FIG. 7 is for a predetermined engine speed
  • the vertical axis is the sensor output (output voltage) of the downstream oxygen sensor
  • the horizontal axis is the opening of the fuel adjustment valve 123.
  • control means 40 monitors the change in the correction amount of the first oxygen sensor 134 by the downstream oxygen sensor from the reference value of the sensor output in real time, and when the predetermined value exceeds the normal value, the downstream side It is determined that output degradation has occurred in the oxygen sensors (for example, the second oxygen sensor 135 and the third oxygen sensor 136).
  • the first technical feature of the engine unit 100 is that, as a plurality of oxygen sensors, a first oxygen sensor 134 disposed in the exhaust path upstream of the catalytic converter 132 and an exhaust path downstream of the catalytic converter 132 are disposed. And the third oxygen sensor 136 disposed downstream of the second oxygen sensor 135 in the exhaust path downstream of the catalytic converter 132.
  • the first oxygen sensor 134 is easily deteriorated due to the influence of exhaust gas components and heat before the catalyst purification, but is sequentially arranged downstream of the catalytic converter 132 where the exhaust gas contents and heat are less affected.
  • the second oxygen sensor 135 and the third oxygen sensor 136 are not easily deteriorated.
  • the sensor output deviation of the first oxygen sensor 134 can be corrected by the second oxygen sensor 135 and the third oxygen sensor 136. That is, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time. Further, since the third oxygen sensor 136 is disposed downstream of the second oxygen sensor 135 in the exhaust path and the most downstream of the plurality of oxygen sensors, the third oxygen sensor 136 is least susceptible to the components contained in the exhaust gas and heat. Even if output degradation occurs in the first oxygen sensor 134 or the second oxygen sensor 135, the third oxygen sensor 136 can correct the deviation of the sensor output of the first oxygen sensor 134 or the second oxygen sensor 135.
  • the second technical feature of the engine unit 100 is that the control means 40 acquires the sensor output of the second oxygen sensor 135 and / or the third oxygen sensor 136 and compares it with the sensor output of the first oxygen sensor 134. This is a point of correcting and controlling the deviation of the sensor output of the first oxygen sensor 134. Thereby, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the third technical feature of the engine unit 100 is that the third oxygen sensor 136 is provided in the vicinity of the heat exchanger 133 in the downstream side exhaust pipe 138. As described above, the third oxygen sensor 136 is disposed at a low heat load position on the heat exchanger 133 side (near the heat exchanger 133) in the downstream exhaust pipe 138, so that the heat load on the third oxygen sensor 136 is low. Thus, the third oxygen sensor 136 is less susceptible to heat than the second oxygen sensor 135 and can extend its life. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the fourth technical feature of the engine unit 100 is that the control means 40 acquires the sensor output by periodically energizing the third oxygen sensor 136. Thereby, deterioration due to energization of the third oxygen sensor 136 can be suppressed, and the life of the third oxygen sensor 136 can be extended. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the fifth technical feature of the engine unit 100 is that the control means 40 acquires the sensor output by periodically energizing the second oxygen sensor 135 and sets the interval of energizing the third oxygen sensor 136 to the second. This is a point that is longer than the interval at which the oxygen sensor 135 is energized. Thereby, the third oxygen sensor 136 can suppress deterioration due to energization more than the second oxygen sensor 135, and can extend the lifetime of both the second oxygen sensor 135 and the third oxygen sensor 136. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
  • the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time. Therefore, it is possible to suppress deterioration of exhaust emission during operation due to oxygen sensor failure. Furthermore, it is possible to lengthen the interval between periodic inspections of the oxygen sensor, and to save the labor of maintenance of the oxygen sensor. In addition, since the detection accuracy is maintained by the three oxygen sensors, the reliability of the detection accuracy by the fail-safe function can be ensured.
  • the engine unit 200 (engine 2) is a gas engine unit in which a part of the configuration of the oxygen sensor or the like of the engine unit 100 (engine 1) according to the first embodiment is changed, and the other configurations are related to the first embodiment. It is the same as engine unit 100 (engine 1).
  • the same components as those of the engine unit 100 according to the first embodiment are denoted by the same reference numerals, and the description of the components is omitted.
  • the engine unit 200 of the second embodiment includes an upstream oxygen sensor 134 (first oxygen of the first embodiment) arranged in the exhaust path upstream of the catalytic converter 132 as a plurality of oxygen sensors.
  • the downstream oxygen sensor 140 (see FIG. 12) disposed in the exhaust path downstream of the catalytic converter 132.
  • the exhaust path downstream of the catalytic converter 132 is provided with a heat exchanger 133 that heats water with the exhaust gas.
  • the downstream oxygen sensor 140 is disposed in the heat exchanger 133 and is cooled by water flowing in the heat exchanger 133.
  • a heat exchanger 133 shown in FIG. 12 is a shell-and-tube heat exchanger, and includes a number of gas pipes 139, 139 (see FIG. 15) through which exhaust gas passes and gas pipes 139, 139,. And a heat exchanger main body 145 for cooling the exhaust gas passing through the gas pipes 139, 139.
  • the heat exchanger main body 145 is provided with a cooling water inlet 145a and a cooling water outlet 145b, and the cooling water circulates in the heat exchanger main body 145. That is, the cooling water flows into the cooling water flow path 133b that is a space between the inner peripheral surface of the heat exchanger main body 145 and the outer peripheral surface of the gas pipes 139, 139.
  • the shape of the heat exchanger body 145 is cylindrical, and has an exhaust gas introduction part 146 and an exhaust gas exhaust part 147 which are two spaces partitioned by a partition plate 133c at the front end.
  • the downstream end 138a of the downstream side exhaust pipe 138 is communicated with the upper part of the front end portion of the heat exchanger body 145, and the exhaust gas is introduced into the exhaust gas introduction unit 146.
  • the introduced exhaust gas is cooled by cooling water that passes through the gas pipes 139, 139... And circulates in the heat exchanger body 145, and is provided at the lower part of the front end of the heat exchanger body 145.
  • Exhaust gas outlet 148 is exhausted.
  • the third oxygen sensor 136 is provided in the vicinity of the heat exchanger 133 in the downstream exhaust pipe 138.
  • the third oxygen sensor is provided.
  • the downstream oxygen sensor 140 is provided at one end of the heat exchanger 133 communicating with the downstream end 138 a of the downstream exhaust pipe 138.
  • the second oxygen sensor 135 is provided at the upstream end of the downstream exhaust pipe 138 of the catalytic converter 132 (immediately after the catalytic converter 132), as in the first embodiment.
  • the correction control of the first oxygen sensor 134 can be performed according to the flow of the correction control method of the first oxygen sensor 134 described as the first embodiment.
  • the second oxygen sensor 135 is not an essential configuration.
  • FIG. 11 is a schematic diagram showing the mounting position of the downstream oxygen sensor 140 in the heat exchanger 133 according to the second embodiment of the present invention, and the cooling water of the heat exchanger 133 is guided to the vicinity of the downstream oxygen sensor 140. The configuration is shown.
  • the heat exchanger 133 has a sensor cooling water flow path 133a (see FIGS. 13, 14, and 15) that is a substantially cylindrical space for cooling the downstream oxygen sensor 140 inside the heat exchanger main body 145, and A cooling water flow path 133b for exchanging heat with the exhaust gas and a partition plate 133c for partitioning the exhaust gas introduction part 146 and the exhaust gas exhaust part 147 are provided.
  • the sensor cooling water channel 133a communicates with the cooling water channel 133b.
  • the downstream oxygen sensor 140 is a sensor that detects the oxygen concentration in the exhaust gas discharged from the exhaust manifold 131 and outputs a detection signal corresponding to the oxygen concentration in the exhaust gas.
  • the downstream oxygen sensor 140 includes a heater 140 a that can be controlled by the control means 40.
  • the control means 40 can turn on or off the heater 140a with or without application of a predetermined voltage value (in the modified example of the second embodiment described later, rated voltage 11V).
  • the downstream oxygen sensor 140 is disposed on one end (front end) side of the heat exchanger 133.
  • the downstream oxygen sensor 140 is electrically connected to the control means 40.
  • the control means 40 controls the opening degree of the throttle valve, the fuel adjustment valve 123, and the like via an actuator based on the measurement results of the upstream oxygen sensor 134 and the downstream oxygen sensor 140 and data and programs stored in advance.
  • a known oxygen sensor capable of detecting the oxygen concentration in the exhaust gas can be used.
  • a UEGO Universal Exhaust Gas Oxygen
  • the UEGO sensor can perform atmospheric calibration. When a UEGO sensor is used as the upstream oxygen sensor 134 and the downstream oxygen sensor 140, detection accuracy can be improved by periodically performing atmospheric calibration.
  • a downstream side oxygen sensor from one end of the cooling water flow path 133b is used as the sensor cooling water flow path 133a. It extends to 140 attachment parts. 13 and 14 show the differences between the downstream oxygen sensor arranged in the conventional heat exchanger and the downstream oxygen sensor 140 arranged in the heat exchanger 133 according to the second embodiment.
  • the base A of the downstream oxygen sensor is not good if the temperature rises too much. It is not good if the temperature of the tip B serving as the detection part is lowered.
  • the cooling water flow path is extended forward from one end of the cooling water flow path 133b, A substantially cylindrical sensor cooling water flow path 133a (see FIG. 14) is provided so that the cooling water flows around the base A of the downstream oxygen sensor 140.
  • the cooling water flows around the base A of the downstream oxygen sensor 140, and the cooling water does not pass through the base A.
  • the engine unit 200 of the second embodiment includes an upstream oxygen sensor 134 (first oxygen of the first embodiment) arranged in the exhaust path upstream of the catalytic converter 132 as a plurality of oxygen sensors. And the downstream oxygen sensor 140 disposed in the vicinity of the downstream side of the catalytic converter 132. Further, a temperature sensor 141 that is electrically connected to the control means 40 and detects the exhaust gas temperature is provided in the vicinity of the downstream side of the catalytic converter 132. In the modification of the second embodiment, the control means 40 is configured to control the energization timing of the heater 140a of the downstream oxygen sensor 140 based on the temperature of the exhaust gas detected by the temperature sensor 141.
  • the temperature sensor 141 is electrically connected to the control means 40, and can detect the temperature of the exhaust gas flowing through the exhaust path downstream of the catalytic converter 132.
  • the control means 40 can detect the exhaust temperature by the temperature sensor 141 and can control the energization timing of the heater 140a of the downstream oxygen sensor 140 based on the exhaust temperature.
  • downstream oxygen sensor 140 and the like described above include those using a solid electrolyte that generates an electromotive force according to the principle of an oxygen concentration cell, such as ceramics such as zirconia.
  • a downstream oxygen sensor 140 has a temperature range in which the oxygen concentration in the exhaust gas can be accurately detected due to its nature.
  • the heater 140a inside the downstream oxygen sensor 140 ( The temperature is adjusted to increase the accuracy of detecting the oxygen concentration by performing rated energization with respect to (see FIG. 8).
  • control means 40 stores data such as a predetermined time during which the heater 140a in the downstream oxygen sensor 140 is energized, and the exhaust gas based on the oxygen concentration of the exhaust gas detected by the downstream oxygen sensor 140.
  • the air-fuel ratio of the mixed gas that is the source of the above is calculated.
  • control method is achieved by a program and data stored in the control means 40.
  • step S11 when the operation of the engine 2 is started, the process proceeds to step S11.
  • step S11 the control means 40 detects the exhaust gas temperature by the temperature sensor 141.
  • step S12 the control means 40 determines whether or not the exhaust gas temperature detected by the temperature sensor 141 is equal to or higher than a preset exhaust gas temperature threshold. If the exhaust gas temperature is equal to or higher than the exhaust gas temperature threshold, the process proceeds to step S13. If the exhaust gas temperature is lower than the exhaust gas temperature threshold, the process of S11 is continued.
  • step S13 rated energization (11V in FIG. 17) is started in the heater 140a included in the downstream oxygen sensor 140.
  • step S14 the oxygen concentration is detected by the downstream oxygen sensor 140, the oxygen concentration (sensor output) is adopted, the air-fuel ratio is calculated by the control means 40 as described above, and the air-fuel ratio control is performed.
  • oxygen sensors are assembled on the upstream side and the downstream side of the exhaust manifold.
  • An exhaust temperature sensor is attached to the three-way catalyst outlet.
  • Some conventional downstream oxygen sensors have a built-in heater to increase the temperature inside the sensor.
  • the energization timing to the heater of the downstream oxygen sensor is controlled by the engine cooling water temperature (for example, when the engine cooling water temperature becomes 40 ° C. or higher in warm-up operation). Therefore, air-fuel ratio control cannot be executed during warm-up.
  • the exhaust gas temperature at which the temperature sensor 141 detects the energization timing of the heater 140a of the downstream oxygen sensor 140 by the control means 40 based on the control flow of the heater 140a of the downstream oxygen sensor 140 described above.
  • the downstream exhaust temperature of the catalytic converter 132 increases.
  • the heater of the downstream oxygen sensor 140 is energized at the time when the exhaust gas temperature rises (threshold value reaching the predetermined exhaust gas temperature), and the air-fuel ratio control is started. As a result, as indicated by the dotted arrow in FIG. 17, the time during which the air-fuel ratio is not effective is reduced.
  • the configuration of the modification of the second embodiment suppresses the deterioration of exhaust characteristics. Moreover, the engine performance in warm air can be maintained.
  • the present invention is not limited to an engine device such as a diesel engine mounted on a stationary generator or a refrigerator, but can be applied to a device or a moving body including various internal combustion engines.
  • FIG. 19 shows the refrigeration container 10 loaded on the truck 2, but such a refrigeration container 10 includes a container 3 and a refrigeration unit 4.
  • the engine unit according to the present invention can be applied as an engine unit that drives a generator constituting the refrigeration unit 4.

Abstract

An engine unit according to the present invention is capable of maintaining, over the long-term, the detection accuracy of oxygen sensors on the upstream side and the downstream side of a three-way catalyst, taking into account the output deterioration of the oxygen sensor on the upstream side and the oxygen sensor on the downstream side. An engine unit (100) comprises: an engine (1); a catalytic converter (132) provided in the exhaust passage; a plurality of oxygen sensors disposed in the exhaust path of the catalytic converter (132); and a control means (40) that calculates the air-fuel ratio based on the concentration of oxygen in the exhaust gas detected by the oxygen sensors. The plurality of oxygen sensors of the engine unit (100) comprise: a first oxygen sensor (134) disposed on the upstream side of the catalytic converter (132), a second oxygen sensor (135) disposed on the downstream side of the catalytic converter (132), and a third oxygen sensor (136) disposed on the downstream side of the second oxygen sensor (135) in the exhaust path on the downstream side of the catalytic converter (132).

Description

エンジンユニットEngine unit
 本発明は、エンジンユニットに関する。 The present invention relates to an engine unit.
 従来より、天然ガスや都市ガス等の可燃性ガスを空気と混合し、燃焼させることによって稼働するガスエンジンが知られている(特許文献1参照)。また、オイルタンクを備えることにより、長期にわたって潤滑油の交換を不要としたエンジンユニットが存在している(特許文献2参照)。このようなエンジンには、排気エミッション低減(排気ガス中のCO、NOx、THC低減)を目的として排ガス浄化用の触媒(例えば、3元触媒)が採用されている。また、このようなエンジンでは、ストイキ状態(理想空燃比である空気過剰率λ=1)の混合気で燃焼させる、いわゆるストイキ燃焼が採用されている。ストイキ燃焼が採用されるエンジンでは、ストイキ状態を維持するために、排気経路における高精度な空燃比の制御が必要となる。空燃比は排気ガス中の酸素濃度に基づいて算出されるため3元触媒の上流側及び下流側の排気経路に2個の酸素センサを設置する構成のものが知られている(特許文献3参照)。 Conventionally, there is known a gas engine that operates by mixing a combustible gas such as natural gas or city gas with air and burning it (see Patent Document 1). In addition, there is an engine unit that includes an oil tank so that it is not necessary to replace the lubricating oil over a long period of time (see Patent Document 2). Such an engine employs an exhaust gas purification catalyst (for example, a three-way catalyst) for the purpose of reducing exhaust emissions (reducing CO, NOx, and THC in exhaust gas). In such an engine, so-called stoichiometric combustion is employed in which combustion is performed with an air-fuel mixture in a stoichiometric state (the air excess ratio λ = 1 which is an ideal air-fuel ratio). In an engine that employs stoichiometric combustion, in order to maintain the stoichiometric state, it is necessary to control the air-fuel ratio with high accuracy in the exhaust path. Since the air-fuel ratio is calculated based on the oxygen concentration in the exhaust gas, there is known a configuration in which two oxygen sensors are installed in the exhaust path upstream and downstream of the three-way catalyst (see Patent Document 3). ).
 特許文献3には、排気通路に三元触媒を備え、該三元触媒の上流側の排気通路内に酸素センサを設けるとともに、下流側の排気通路内にも酸素センサを設けた内燃機関が開示されている。このような三元触媒の上流側及び下流側の排気通路にそれぞれひとつずつ酸素センサを備えるエンジンの場合、上流側の酸素センサが空燃比制御のために用いられ、下流側の酸素センサは上流側の酸素センサの劣化によるセンサ出力のズレを補正制御するために用いられる。上流側の酸素センサは、三元触媒の上流側に配置されることから浄化前の排気ガスの含有成分や熱の影響を受けやすく、劣化がすすみやすい。そのため、上流側の酸素センサの劣化によるセンサ出力のズレを下流側の酸素センサで補正制御を行うが、下流側の酸素センサが故障した場合は上流側の酸素センサを補正制御することができない。また、下流側の酸素センサは、三元触媒の下流側に配置されることから当該三元触媒を通過することで高熱となった排気ガスにさらされるため、熱負荷が過酷となり、出力劣化するおそれがある。加えて、下流側の酸素センサ自身の出力劣化を検知することができないため、下流側の酸素センサの検知精度を維持する必要がある。そのため、このように排気通路(排気経路)に設けられる触媒の上流側の酸素センサや下流側の酸素センサの出力劣化を考慮して、上流側及び下流側の酸素センサの検知精度を長期的に維持できることが望まれている。 Patent Document 3 discloses an internal combustion engine having a three-way catalyst in an exhaust passage, an oxygen sensor provided in an exhaust passage upstream of the three-way catalyst, and an oxygen sensor provided in a downstream exhaust passage. Has been. In the case of an engine having one oxygen sensor in each of the upstream and downstream exhaust passages of such a three-way catalyst, the upstream oxygen sensor is used for air-fuel ratio control, and the downstream oxygen sensor is upstream. This is used for correcting and controlling the deviation of the sensor output due to the deterioration of the oxygen sensor. Since the upstream oxygen sensor is arranged on the upstream side of the three-way catalyst, it is easily affected by the components of exhaust gas before purification and the heat, and is easily deteriorated. For this reason, the deviation control of the sensor output due to the deterioration of the upstream oxygen sensor is corrected by the downstream oxygen sensor. However, if the downstream oxygen sensor fails, the upstream oxygen sensor cannot be corrected and controlled. Further, since the downstream oxygen sensor is disposed on the downstream side of the three-way catalyst, it is exposed to exhaust gas that has become hot due to passing through the three-way catalyst, so that the heat load becomes severe and the output deteriorates. There is a fear. In addition, since the output deterioration of the downstream oxygen sensor itself cannot be detected, it is necessary to maintain the detection accuracy of the downstream oxygen sensor. Therefore, in consideration of the output degradation of the upstream oxygen sensor and downstream oxygen sensor of the catalyst provided in the exhaust passage (exhaust path) in this way, the detection accuracy of the upstream and downstream oxygen sensors is long-term. It is hoped that it can be maintained.
特開2007-132281号公報JP 2007-132281 A 特開2008-38781号公報JP 2008-38781 A 特開2009-264389号公報JP 2009-264389 A
 本発明は、エンジンユニットにおいて、排気経路に設けられる触媒の上流側の酸素センサや下流側の酸素センサの出力劣化を考慮して、上流側及び下流側の酸素センサの検知精度を長期的に維持することができる技術を提供することを目的としている。 In the engine unit, the detection accuracy of the upstream and downstream oxygen sensors is maintained for a long time in consideration of output deterioration of the upstream oxygen sensor and downstream oxygen sensor of the catalyst provided in the exhaust path in the engine unit. It aims to provide a technology that can do.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明は、
 エンジンと、
 前記エンジンからの排気ガスが流れる前記エンジンの排気経路に設けられる触媒と、
 前記排気経路に配置され、前記排気ガスの酸素濃度を検出する複数の酸素センサと、
 前記酸素センサにより検出された排気ガスの酸素濃度に基づいて空燃比を算出する制御手段と、を備えたエンジンユニットにおいて、
 前記複数の酸素センサは、
 前記触媒の上流側の排気経路に配置される第1酸素センサと、
 前記触媒の下流側の排気経路に配置される第2酸素センサと、
 前記触媒の下流側の排気経路において、前記第2酸素センサの下流側に配置される第3酸素センサと、から構成される、としたものである。
That is, the present invention
Engine,
A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows;
A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas;
An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
The plurality of oxygen sensors includes:
A first oxygen sensor disposed in an exhaust path upstream of the catalyst;
A second oxygen sensor disposed in an exhaust path downstream of the catalyst;
The exhaust path on the downstream side of the catalyst includes a third oxygen sensor disposed on the downstream side of the second oxygen sensor.
 本発明は、前記エンジンユニットにおいて、
 前記制御手段は、前記第2酸素センサ及び/又は前記第3酸素センサのセンサ出力を取得し、前記第1酸素センサのセンサ出力と比較して該第1酸素センサのセンサ出力のズレを補正制御する、としたものである。
The present invention provides the engine unit,
The control means acquires the sensor output of the second oxygen sensor and / or the third oxygen sensor, and corrects and controls the deviation of the sensor output of the first oxygen sensor compared with the sensor output of the first oxygen sensor. It is supposed to be.
 本発明は、前記エンジンユニットにおいて、
 前記触媒の下流側の排気経路には、前記排気ガスにより水を熱する熱交換器を備え、
 前記第3酸素センサは、前記熱交換器近傍に設けられる、としたものである。
The present invention provides the engine unit,
The exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas,
The third oxygen sensor is provided in the vicinity of the heat exchanger.
 本発明は、前記エンジンユニットにおいて、
 前記制御手段は、前記第3酸素センサに定期的に通電することでセンサ出力を取得する、としたものである。
The present invention provides the engine unit,
The control means acquires sensor output by periodically energizing the third oxygen sensor.
 本発明は、前記エンジンユニットにおいて、
 前記制御手段は、前記第2酸素センサに定期的に通電することでセンサ出力を取得するとともに、前記第3酸素センサに通電する間隔を前記第2酸素センサに通電する間隔よりも長くした、としたものである。
The present invention provides the engine unit,
The control means acquires the sensor output by periodically energizing the second oxygen sensor, and the interval for energizing the third oxygen sensor is longer than the interval for energizing the second oxygen sensor. It is a thing.
 また、本発明は、
 エンジンと、
 前記エンジンからの排気ガスが流れる前記エンジンの排気経路に設けられる触媒と、
 前記排気経路に配置され、前記排気ガスの酸素濃度を検出する複数の酸素センサと、
 前記酸素センサにより検出された排気ガスの酸素濃度に基づいて空燃比を算出する制御手段と、を備えたエンジンユニットにおいて、
 前記複数の酸素センサは、
 前記触媒の上流側の排気経路に配置される上流側酸素センサと、
 前記触媒の下流側の排気経路に配置される下流側酸素センサと、から構成され、
 前記触媒の下流側の排気経路には、前記排気ガスにより水を熱する熱交換器を備え、
 前記下流側酸素センサは、前記熱交換器に配置されるとともに、該熱交換器内を流れる水により前記下流側酸素センサが冷却される、としたものである。
The present invention also provides:
Engine,
A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows;
A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas;
An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
The plurality of oxygen sensors includes:
An upstream oxygen sensor disposed in an exhaust path upstream of the catalyst;
A downstream oxygen sensor disposed in the exhaust path downstream of the catalyst,
The exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas,
The downstream oxygen sensor is arranged in the heat exchanger, and the downstream oxygen sensor is cooled by water flowing in the heat exchanger.
 本発明は、前記エンジンユニットにおいて、
 前記触媒の下流側近傍に配置されるとともに前記制御手段に電気的に接続され、前記排気ガス温度を検出する温度センサをさらに備え、
 前記下流側酸素センサは、ヒータを有し、
 前記制御手段は、
 前記温度センサにより検出される排気ガスの温度に基づいて前記下流側酸素センサのヒータの通電タイミングを制御する、としたものである。
The present invention provides the engine unit,
A temperature sensor disposed near the downstream side of the catalyst and electrically connected to the control means for detecting the exhaust gas temperature;
The downstream oxygen sensor has a heater,
The control means includes
The energization timing of the heater of the downstream oxygen sensor is controlled based on the temperature of the exhaust gas detected by the temperature sensor.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明によれば、触媒の上流側の排気経路に第1酸素センサ、触媒の下流側の排気経路に第2酸素センサ及び第3酸素センサを順に配置している。触媒浄化前の排気ガスの含有成分や熱の影響を受けて第1酸素センサは劣化しやすいが、排気ガスの含有成分や熱の影響が少ない触媒の下流側に順に配置された、第2酸素センサ及び第3酸素センサは劣化しにくい。そのため、第1酸素センサに出力劣化(センサ出力のズレ)が生じても、第2酸素センサ及び第3酸素センサにより第1酸素センサのセンサ出力のズレを補正することができる。すなわち、排気経路における酸素センサの検知精度を長期的に維持することができる。また、第3酸素センサは、排気経路において第2酸素センサよりも下流側であって複数の酸素センサのうち最も下流に配置されるため排気ガスの含有成分や熱の影響を最も受けにくく、第1酸素センサや第2酸素センサに出力劣化が生じても、第3酸素センサにより第1酸素センサや第2酸素センサのセンサ出力のズレを補正することができる。 According to the present invention, the first oxygen sensor is disposed in the exhaust path upstream of the catalyst, and the second oxygen sensor and the third oxygen sensor are sequentially disposed in the exhaust path downstream of the catalyst. The first oxygen sensor is easily deteriorated by the influence of exhaust gas components and heat before the catalyst purification, but the second oxygen is sequentially arranged on the downstream side of the catalyst that is less affected by exhaust gas components and heat. The sensor and the third oxygen sensor are unlikely to deteriorate. Therefore, even if output deterioration (sensor output deviation) occurs in the first oxygen sensor, the sensor output deviation of the first oxygen sensor can be corrected by the second oxygen sensor and the third oxygen sensor. That is, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time. Further, since the third oxygen sensor is disposed downstream of the second oxygen sensor in the exhaust path and the most downstream of the plurality of oxygen sensors, the third oxygen sensor is least affected by the components contained in the exhaust gas and heat. Even if output degradation occurs in the first oxygen sensor or the second oxygen sensor, the third oxygen sensor can correct the deviation of the sensor output of the first oxygen sensor or the second oxygen sensor.
 本発明によれば、制御手段は、第2酸素センサ及び/又は第3酸素センサのセンサ出力を取得し、第1酸素センサのセンサ出力と比較して該第1酸素センサのセンサ出力のズレを補正制御する。これにより、排気経路における酸素センサの検知精度を長期的に維持することができる。 According to the present invention, the control means acquires the sensor output of the second oxygen sensor and / or the third oxygen sensor, and compares the sensor output of the first oxygen sensor with the sensor output of the first oxygen sensor. Control correction. Thereby, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本発明によれば、第3酸素センサは、触媒の下流側の排気経路において、熱交換器近傍に設けられる。このように第3酸素センサを熱交換器近傍に配置することで、第3酸素センサは、第2酸素センサに比べて熱の影響をより受けにくく、寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 According to the present invention, the third oxygen sensor is provided in the vicinity of the heat exchanger in the exhaust path downstream of the catalyst. By disposing the third oxygen sensor in the vicinity of the heat exchanger in this manner, the third oxygen sensor is less susceptible to heat than the second oxygen sensor and can extend its life. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本発明によれば、制御手段は、第3酸素センサに定期的に通電することでセンサ出力を取得する。これにより、第3酸素センサの通電による劣化を抑えることができ、第3酸素センサの寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 According to the present invention, the control means acquires the sensor output by periodically energizing the third oxygen sensor. Thereby, deterioration due to energization of the third oxygen sensor can be suppressed, and the life of the third oxygen sensor can be extended. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本発明によれば、制御手段は、第2酸素センサに定期的に通電することでセンサ出力を取得するとともに、第3酸素センサに通電する間隔を第2酸素センサに通電する間隔よりも長くした。これにより、第3酸素センサは、第2酸素センサよりも通電による劣化を抑えることができ、第2酸素センサ及び第3酸素センサの両方の寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 According to the present invention, the control means acquires the sensor output by periodically energizing the second oxygen sensor, and makes the interval for energizing the third oxygen sensor longer than the interval for energizing the second oxygen sensor. . Thereby, the 3rd oxygen sensor can suppress degradation by energization rather than the 2nd oxygen sensor, and can extend the lifetime of both the 2nd oxygen sensor and the 3rd oxygen sensor. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本発明によれば、下流側酸素センサは、熱交換器に配置されるとともに、熱交換器内を流れる水により冷却される。これにより、下流側酸素センサに対する熱負荷を低減し、下流側酸素センサの耐力向上を図ることができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 According to the present invention, the downstream oxygen sensor is disposed in the heat exchanger and is cooled by water flowing in the heat exchanger. Thereby, the thermal load with respect to a downstream oxygen sensor can be reduced, and the proof stress improvement of a downstream oxygen sensor can be aimed at. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本発明によれば、下流側酸素センサは、排気ガスの温度により前記下流側酸素センサのヒータの通電タイミングが制御される。排気ガス中にCO、THC等が多い場合、触媒下流側の排気温度は上昇する。この特性を利用し、排気温度が上昇した時点で下流側酸素センサのヒータに通電し、空燃比制御をスタートする。これにより、空燃比制御が効かない時間の短縮を図ることができる。 According to the present invention, in the downstream oxygen sensor, the energization timing of the heater of the downstream oxygen sensor is controlled by the temperature of the exhaust gas. When there are a lot of CO, THC, etc. in the exhaust gas, the exhaust temperature on the downstream side of the catalyst rises. Using this characteristic, when the exhaust gas temperature rises, the heater of the downstream oxygen sensor is energized to start air-fuel ratio control. As a result, the time during which the air-fuel ratio control is not effective can be shortened.
エンジンユニットを示す図。The figure which shows an engine unit. エンジンの構造を示す図。The figure which shows the structure of an engine. 排気経路における触媒コンバータ及び酸素センサの配置を示す図。The figure which shows arrangement | positioning of the catalytic converter and oxygen sensor in an exhaust path. エンジンにおける第1酸素センサの補正制御方法のフローを示す図。The figure which shows the flow of the correction | amendment control method of the 1st oxygen sensor in an engine. エンジンにおける第1酸素センサの補正制御方法の別実施形態を示す図。The figure which shows another embodiment of the correction | amendment control method of the 1st oxygen sensor in an engine. センサ出力と酸素濃度との関係を示す図。The figure which shows the relationship between a sensor output and oxygen concentration. センサ出力と燃料調整弁の開度の関係を示す図。The figure which shows the relationship between a sensor output and the opening degree of a fuel adjustment valve. 排気経路における触媒コンバータ、酸素センサ及び温度センサの配置を示す図。The figure which shows arrangement | positioning of the catalytic converter, oxygen sensor, and temperature sensor in an exhaust path. 排気経路に配置されるセンサ及び該排気経路に対応する排気温度変化を示す図。The figure which shows the exhaust temperature change corresponding to the sensor arrange | positioned in an exhaust path, and this exhaust path. 従来の熱交換器における下流側酸素センサの取付位置を示す模式図。The schematic diagram which shows the attachment position of the downstream oxygen sensor in the conventional heat exchanger. 本発明の実施形態に係る熱交換器における下流側酸素センサの取付位置を示す模式図。The schematic diagram which shows the attachment position of the downstream oxygen sensor in the heat exchanger which concerns on embodiment of this invention. 熱交換器の内部構造を示す図。The figure which shows the internal structure of a heat exchanger. 従来品と第2実施形態の各々における下流側酸素センサ周辺部を示す説明図であり、(a)は従来品の下流側酸素センサ周辺部を示す図、(b)は(a)における拡大図、(c)は第2実施形態の下流側酸素センサ周辺部を示す図、(d)は(c)における拡大図。It is explanatory drawing which shows the downstream oxygen sensor periphery part in each of a conventional product and 2nd Embodiment, (a) is a figure which shows the downstream oxygen sensor periphery part of a conventional product, (b) is an enlarged view in (a). (C) is a figure which shows the downstream oxygen sensor periphery part of 2nd Embodiment, (d) is an enlarged view in (c). 同じく熱交換器の一端側の内部構造を示す図であり、(a)は従来品の側面図、(b)は従来品の斜視図、(c)は第2実施形態の側面図、(d)は第2実施形態の斜視図。It is a figure which similarly shows the internal structure of the one end side of a heat exchanger, (a) is a side view of a conventional product, (b) is a perspective view of a conventional product, (c) is a side view of a second embodiment, (d ) Is a perspective view of the second embodiment. 同じく熱交換器の一端側を示す断面図。Sectional drawing which similarly shows the one end side of a heat exchanger. 従来の下流側酸素センサのヒータの通電タイミングを示す図。The figure which shows the electricity supply timing of the heater of the conventional downstream oxygen sensor. 第2実施形態の変形例に係る下流側酸素センサのヒータの通電タイミングを示す図。The figure which shows the energization timing of the heater of the downstream oxygen sensor which concerns on the modification of 2nd Embodiment. 第2実施形態の変形例に係る下流側酸素センサの制御フローを示す図。The figure which shows the control flow of the downstream oxygen sensor which concerns on the modification of 2nd Embodiment. 本発明の実施形態に係るエンジンユニットを備えた冷凍コンテナがトラックに積載された状態を示す側面図及び背面図。The side view and rear view showing the state where the refrigeration container provided with the engine unit concerning the embodiment of the present invention was loaded on the truck.
 本願の発明に係る第1実施形態であるエンジンユニット100について説明する。 The engine unit 100 according to the first embodiment of the present invention will be described.
 図1は、エンジンユニット100を示している。 FIG. 1 shows the engine unit 100.
 本エンジンユニット100は、ガスヒートポンプの動力源として使用される。エンジンユニット100は、エンジン1を備えている。また、エンジンユニット100は、オイルタンク2を備えている。 The engine unit 100 is used as a power source for the gas heat pump. The engine unit 100 includes an engine 1. The engine unit 100 includes an oil tank 2.
 まず、エンジン1の構造について簡単に説明する。 First, the structure of the engine 1 will be briefly described.
 図2は、エンジン1の構造を示している。 FIG. 2 shows the structure of the engine 1.
 エンジン1は、天然ガスや都市ガス等の可燃性ガスを空気と混合して混合気を生成し、この混合気を燃焼させることによって稼働するエンジン、いわゆるガスエンジンである。エンジン1は、主に主体部11と、吸気経路部12と、排気経路部13と、制御手段(コントローラ)40(図3参照)で構成されている。 The engine 1 is a so-called gas engine that operates by mixing a combustible gas such as natural gas or city gas with air to generate an air-fuel mixture and burning the air-fuel mixture. The engine 1 mainly includes a main body 11, an intake passage 12, an exhaust passage 13, and a control means (controller) 40 (see FIG. 3).
 主体部11は、燃料を燃焼させて得たエネルギーを回転運動に変換する。主体部11は、主にシリンダブロック111と、シリンダヘッド112と、ピストン113と、クランクシャフト114と、ヘッドカバー115と、オイルパン116と、で構成されている。 The main body 11 converts the energy obtained by burning the fuel into a rotational motion. The main body 11 mainly includes a cylinder block 111, a cylinder head 112, a piston 113, a crankshaft 114, a head cover 115, and an oil pan 116.
 主体部11には、シリンダブロック111に設けられたシリンダ111cと、該シリンダ111cに摺動自在に収納されたピストン113と、該ピストン113に対向するように配置されたシリンダヘッド112と、で燃焼室Cが構成されている。つまり、燃焼室Cは、ピストン113の摺動運動によって容積が変化する内部空間を指す。ピストン113は、コネクティングロッドによってクランクシャフト114と連結されており、該ピストン113の摺動運動によってクランクシャフト114を回転させる。なお、シリンダヘッド112の上部には、ヘッドカバー115が設けられている。また、シリンダブロック111の下部には、オイルパン116が設けられている。オイルパン116には、潤滑油Lが溜まっている。 The main body 11 is combusted by a cylinder 111c provided in the cylinder block 111, a piston 113 slidably housed in the cylinder 111c, and a cylinder head 112 disposed so as to face the piston 113. Chamber C is configured. That is, the combustion chamber C refers to an internal space whose volume changes due to the sliding motion of the piston 113. The piston 113 is connected to the crankshaft 114 by a connecting rod, and the crankshaft 114 is rotated by the sliding motion of the piston 113. A head cover 115 is provided above the cylinder head 112. In addition, an oil pan 116 is provided below the cylinder block 111. Lubricating oil L is accumulated in the oil pan 116.
 シリンダブロック111の周囲にはウォータージャケット117が設けられ、このウォータージャケット117の内部に冷却水を循環させることでシリンダブロック111を冷却している。このウォータージャケット117には、冷却水の水温を検出する冷却水温度検知手段118が配設され、後述する制御手段40に接続される。制御手段40は、冷却水温度検知手段118により検出されるウォータージャケット117における冷却水の温度を取得することが可能である。 A water jacket 117 is provided around the cylinder block 111, and the cylinder block 111 is cooled by circulating cooling water inside the water jacket 117. The water jacket 117 is provided with cooling water temperature detecting means 118 for detecting the temperature of the cooling water, and is connected to the control means 40 described later. The control means 40 can acquire the temperature of the cooling water in the water jacket 117 detected by the cooling water temperature detection means 118.
 吸気経路部12は、可燃性ガスと空気を混合して燃焼室Cへ導く。吸気経路部12は、主にミキサ121と(図1参照)、燃料調整弁(GVMとも呼ばれる)123と、吸気マニホールド122と、で構成されている。ミキサ121及び燃料調整弁123は、吸気マニホールド122を介して燃焼室Cに可燃性ガスと空気からなる混合気を供給する混合気供給装置を構成する。 The intake passage section 12 mixes combustible gas and air and guides them to the combustion chamber C. The intake passage portion 12 is mainly composed of a mixer 121 (see FIG. 1), a fuel adjustment valve (also referred to as GVM) 123, and an intake manifold 122. The mixer 121 and the fuel adjustment valve 123 constitute an air-fuel mixture supply device that supplies an air-fuel mixture composed of combustible gas and air to the combustion chamber C via the intake manifold 122.
 ミキサ121は、ベンチュリー式のミキサである。ミキサ121は、外部から吸入された空気に可燃性ガスを供給して混合気を生成する。ミキサ121は、吸気マニホールド122の一端に取り付けられている。燃料調整弁123は、ミキサ121に供給する可燃性ガス供給量を調整する。ミキサ121及び燃料調整弁123から構成される混合気供給装置は、燃料調整弁123の開度を変更することにより、所定の範囲内で燃料増加又は燃料減少を実行する。燃料調整弁123は、制御手段40に電気的に接続されている。制御手段40は、燃料調整弁123の開度を制御する。 The mixer 121 is a Venturi mixer. The mixer 121 supplies a combustible gas to air sucked from the outside to generate an air-fuel mixture. The mixer 121 is attached to one end of the intake manifold 122. The fuel adjustment valve 123 adjusts the amount of flammable gas supplied to the mixer 121. The air-fuel mixture supply apparatus including the mixer 121 and the fuel adjustment valve 123 performs fuel increase or fuel decrease within a predetermined range by changing the opening of the fuel adjustment valve 123. The fuel adjustment valve 123 is electrically connected to the control means 40. The control means 40 controls the opening degree of the fuel adjustment valve 123.
 吸気マニホールド122は、ミキサ121によって生成された混合気を各燃焼室Cへ案内する。吸気マニホールド122は、4つの燃焼室Cへ混合気を案内すべく、各燃焼室Cへ分岐するように形成されている。なお、吸気マニホールド122は、パイプによってヘッドカバー115と接続されている。シリンダブロック111やヘッドカバー115の内部圧力が高まるのを防ぐためである。 The intake manifold 122 guides the air-fuel mixture generated by the mixer 121 to each combustion chamber C. The intake manifold 122 is formed to branch to each combustion chamber C so as to guide the air-fuel mixture to the four combustion chambers C. The intake manifold 122 is connected to the head cover 115 by a pipe. This is to prevent the internal pressure of the cylinder block 111 and the head cover 115 from increasing.
 排気経路部13は、燃焼室Cから排出された排気を外部へ導く。排気経路部13は、主に排気マニホールド131と、上流側排気管137と、三元触媒コンバータ132と、下流側排気管138と、第1酸素センサ134と、第2酸素センサ135と、第3酸素センサ136と、で構成されている。 The exhaust passage unit 13 guides the exhaust discharged from the combustion chamber C to the outside. The exhaust passage section 13 mainly includes an exhaust manifold 131, an upstream side exhaust pipe 137, a three-way catalytic converter 132, a downstream side exhaust pipe 138, a first oxygen sensor 134, a second oxygen sensor 135, and a third And an oxygen sensor 136.
 排気マニホールド131は、各燃焼室Cから排出された排気を、上流側排気管137を介して三元触媒コンバータ132(以下、単に触媒コンバータ132と呼ぶ)へ案内する。排気マニホールド131は、4つの燃焼室Cから排気を案内すべく、各燃焼室Cから合流するように形成されている。触媒コンバータ132は、アルデヒド類に起因する異臭を除去する。触媒コンバータ132は、白金等による触媒反応を利用してアルデヒド類を酸化させる。なお、触媒コンバータ132の下流側の下流側排気管138には、排気ガスを利用して水を熱する熱交換器133が取り付けられている(図1、図3参照)。
 また、本実施形態では排気ガスを浄化するための触媒として三元触媒を挙げて説明しているが、特に限定するものではない。
The exhaust manifold 131 guides the exhaust discharged from each combustion chamber C to the three-way catalytic converter 132 (hereinafter simply referred to as the catalytic converter 132) via the upstream side exhaust pipe 137. The exhaust manifold 131 is formed so as to merge from each combustion chamber C so as to guide the exhaust from the four combustion chambers C. The catalytic converter 132 removes off-flavors caused by aldehydes. The catalytic converter 132 oxidizes aldehydes using a catalytic reaction with platinum or the like. A heat exchanger 133 that heats water using exhaust gas is attached to the downstream exhaust pipe 138 on the downstream side of the catalytic converter 132 (see FIGS. 1 and 3).
In the present embodiment, a three-way catalyst is described as a catalyst for purifying exhaust gas, but is not particularly limited.
 第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136は、排気マニホールド131から排出された排気ガス中の酸素濃度を検出して排気ガス中の酸素濃度に応じた検出信号を出力するセンサである。図3に示すように、第1酸素センサ134は、触媒コンバータ132の上流側の排気マニホールド131に配置される。第2酸素センサ135は、触媒コンバータ132の下流側の下流側排気管138に配置される。第2酸素センサ135は、下流側排気管138の一端側であって触媒コンバータ132の前端近傍に配置される。第3酸素センサ136は、触媒コンバータ132の下流側の下流側排気管138において、第2酸素センサ135の下流側に配置される。第3酸素センサ136は、下流側排気管138の他端側(下流端側)であって熱交換器133近傍に配置される。第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136は、制御手段40に電気的に接続されている。制御手段40は、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の計測結果と、予め記憶されるデータやプログラムとに基づいて、スロットル弁や燃料調整弁123等の開度をアクチュエータを介して制御することによって、混合気の空燃比を適切な値(例えば、理想空燃比である空気過剰率λ=1)となるように制御している。
 なお、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136は、排気ガス中の酸素濃度を検出可能な公知の酸素センサを用いることができ、例えばUEGO(Universal Exhaust Gas Oxygen)センサを用いてもよい。UEGOセンサは、大気校正を実施することができる。第2酸素センサ135及び第3酸素センサ136として、UEGOセンサを用いた場合は、定期的に大気校正することにより検知精度を向上させることができる。
The first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 detect the oxygen concentration in the exhaust gas discharged from the exhaust manifold 131 and output a detection signal corresponding to the oxygen concentration in the exhaust gas. It is a sensor. As shown in FIG. 3, the first oxygen sensor 134 is disposed in the exhaust manifold 131 upstream of the catalytic converter 132. Second oxygen sensor 135 is arranged in downstream exhaust pipe 138 on the downstream side of catalytic converter 132. The second oxygen sensor 135 is disposed on one end side of the downstream side exhaust pipe 138 and in the vicinity of the front end of the catalytic converter 132. The third oxygen sensor 136 is disposed downstream of the second oxygen sensor 135 in the downstream exhaust pipe 138 downstream of the catalytic converter 132. The third oxygen sensor 136 is disposed on the other end side (downstream end side) of the downstream side exhaust pipe 138 and in the vicinity of the heat exchanger 133. The first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are electrically connected to the control means 40. Based on the measurement results of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, and data and programs stored in advance, the control means 40 opens the throttle valve, the fuel adjustment valve 123, and the like. Is controlled via an actuator so that the air-fuel ratio of the air-fuel mixture becomes an appropriate value (for example, the excess air ratio λ = 1 which is an ideal air-fuel ratio).
As the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, a known oxygen sensor capable of detecting the oxygen concentration in the exhaust gas can be used, for example, a UEGO (Universal Exhaust Gas Oxygen) sensor. May be used. The UEGO sensor can perform atmospheric calibration. When a UEGO sensor is used as the second oxygen sensor 135 and the third oxygen sensor 136, detection accuracy can be improved by periodically calibrating the air.
 制御手段40は、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136により検出された排気ガスの酸素濃度に基づいて空燃比を算出するとともに、燃料調整弁123の開度を制御する。制御手段40は、記憶部を有する。該記憶部には、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の計測結果と、予め記憶されるデータ(例えばマップ等)と、スロットル弁や燃料調整弁123等の開度をアクチュエータを介して制御するためのプログラム等が記憶されている。 The control means 40 calculates the air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, and controls the opening of the fuel adjustment valve 123. To do. The control means 40 has a storage unit. The storage unit includes measurement results of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136, data stored in advance (for example, a map, etc.), and opening of a throttle valve, a fuel adjustment valve 123, and the like. A program for controlling the degree via the actuator is stored.
 制御手段40は、例えば、第1酸素センサ134及び第2酸素センサ135に常時通電して各センサ出力を時系列で取得するとともに、所定の時間毎に第3酸素センサ136に通電して第3酸素センサ136の所定の時間毎のセンサ出力を取得することができる。第3酸素センサ136に通電する前記所定の時間は、制御手段40に格納される所定のプログラムに基づいて任意に設定することができる。
 なお、制御手段40は、第1酸素センサ134、第2酸素センサ135、及び第3酸素センサ136をそれぞれ独立して各酸素センサの通電状態(常時通電や所定の時間毎の通電)を適宜制御することができる。
For example, the control unit 40 constantly energizes the first oxygen sensor 134 and the second oxygen sensor 135 to acquire each sensor output in time series, and energizes the third oxygen sensor 136 every predetermined time to generate the third oxygen sensor 136. The sensor output of the oxygen sensor 136 every predetermined time can be acquired. The predetermined time for energizing the third oxygen sensor 136 can be arbitrarily set based on a predetermined program stored in the control means 40.
The control means 40 appropriately controls the energization state (always energization or energization every predetermined time) of each oxygen sensor independently of each of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136. can do.
 さらに、制御手段40は、第1酸素センサ134に常時通電してセンサ出力を時系列で取得し、所定の時間毎に第2酸素センサ135、第3酸素センサ136にそれぞれ独立して通電して所定の時間毎の各センサ出力を取得することができる。第2酸素センサ135、第3酸素センサ136のそれぞれに通電する前記所定の時間は、制御手段40に格納される所定のプログラムに基づいて任意に設定することができる。 Further, the control means 40 constantly energizes the first oxygen sensor 134 to acquire sensor outputs in time series, and independently energizes the second oxygen sensor 135 and the third oxygen sensor 136 at predetermined time intervals. Each sensor output for every predetermined time can be acquired. The predetermined time for energizing each of the second oxygen sensor 135 and the third oxygen sensor 136 can be arbitrarily set based on a predetermined program stored in the control means 40.
 以下に、エンジン1における第1酸素センサの補正制御方法について説明する。 Hereinafter, a correction control method of the first oxygen sensor in the engine 1 will be described.
 図4は、エンジン1における第1酸素センサの補正制御方法のフローを示している。 FIG. 4 shows a flow of the correction control method of the first oxygen sensor in the engine 1.
 制御手段40は、先ず、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の各センサ出力(出力電圧)を取得する(ステップS10)。次に、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の各センサ出力を比較して(ステップS20)、第2酸素センサ135によるセンサ出力と比較して第1酸素センサ134によるセンサ出力のズレが無い場合(ズレが所定の許容範囲以内である場合)は(ステップS30のYES)、第1酸素センサ134によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS40)。 The control means 40 first acquires the sensor outputs (output voltages) of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 (step S10). Next, the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are compared (step S20), and compared with the sensor output from the second oxygen sensor 135, the first oxygen sensor 134 is compared. If there is no deviation in the sensor output due to (when the deviation is within a predetermined allowable range) (YES in step S30), the sensor output from the first oxygen sensor 134 is adopted, and the air-fuel ratio is calculated from the sensor output. (Step S40).
 ステップS30において、第2酸素センサ135によるセンサ出力と比較して、第1酸素センサ134のセンサ出力にズレが有る場合、すなわち第1酸素センサ134が出力劣化していると判定された場合は(ステップS30のNO)、制御手段40は、第2酸素センサ135及び第3酸素センサ136の各センサ出力を比較する(ステップS50)。第2酸素センサ135及び第3酸素センサ136の各センサ出力のズレが無い場合(ズレが所定の許容範囲以内である場合)は(ステップS60のYES)、第2酸素センサ135によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS70)。 If it is determined in step S30 that the sensor output of the first oxygen sensor 134 is deviated from the sensor output of the second oxygen sensor 135, that is, if it is determined that the output of the first oxygen sensor 134 has deteriorated ( In step S30, the control unit 40 compares the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (step S50). When there is no deviation between the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (when the deviation is within a predetermined allowable range) (YES in step S60), the sensor output from the second oxygen sensor 135 is adopted. Then, the air-fuel ratio is calculated from the sensor output (step S70).
 ステップS60において、第3酸素センサ136によるセンサ出力と比較して、第2酸素センサ135のセンサ出力にズレが有る場合、すなわち第2酸素センサが出力劣化していると判定された場合は(ステップS60のNO)、制御手段40は、第3酸素センサ136によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS80)。 If it is determined in step S60 that the sensor output of the second oxygen sensor 135 is different from the sensor output of the third oxygen sensor 136, that is, if it is determined that the output of the second oxygen sensor has deteriorated (step S60). The control means 40 employs the sensor output from the third oxygen sensor 136 and calculates the air-fuel ratio based on the sensor output (step S80).
 なお、ステップS10において、第3酸素センサ136によるセンサ出力を取得するが、第3酸素センサ136は常時通電状態(ON状態)である必要はない。例えば、第3酸素センサ136は、常時ではなく定期的(例えば、数十時間~数百時間に1回程度)に第1酸素センサ134を補正制御する際に通電状態(ON状態)となるように設定すればよい。すなわち、第3酸素センサ136は、制御手段40により第1酸素センサ134の補正制御を実施する際に、定期的に通電するだけでよく、このようにすることで第3酸素センサ136の通電による劣化を抑制することができる。 In step S10, the sensor output from the third oxygen sensor 136 is acquired. However, the third oxygen sensor 136 does not need to be always in the energized state (ON state). For example, the third oxygen sensor 136 is in an energized state (ON state) when correcting and controlling the first oxygen sensor 134 periodically (for example, about once every several tens of hours to several hundred hours) instead of always. Should be set. That is, the third oxygen sensor 136 only needs to be energized periodically when the control means 40 performs the correction control of the first oxygen sensor 134, and in this way, the third oxygen sensor 136 is energized. Deterioration can be suppressed.
 また、ステップS10において、第2酸素センサ135によるセンサ出力を取得するが、第2酸素センサ135は常時通電状態(ON状態)である必要はない。例えば、第2酸素センサ135は、常時ではなく定期的に第1酸素センサ134を補正制御する際に通電状態(ON状態)となるように設定することもできる。すなわち、第2酸素センサ135は、制御手段40により第1酸素センサ134の補正制御を実施する際に、定期的に通電するだけでもよく、このようにすることで第2酸素センサ135の通電による劣化を抑制することができる。さらに、第3酸素センサ136に通電する間隔を第2酸素センサ135に通電する間隔よりも長くすることで、第3酸素センサ136が第2酸素センサ135よりも通電による劣化をしにくくなるようにしてもよい。 In step S10, the sensor output from the second oxygen sensor 135 is acquired. However, the second oxygen sensor 135 does not have to be in a normally energized state (ON state). For example, the second oxygen sensor 135 can be set to be in an energized state (ON state) when correcting and controlling the first oxygen sensor 134 periodically instead of constantly. That is, the second oxygen sensor 135 may be energized only periodically when the control means 40 performs the correction control of the first oxygen sensor 134. In this way, the second oxygen sensor 135 is energized. Deterioration can be suppressed. Further, by making the interval for energizing the third oxygen sensor 136 longer than the interval for energizing the second oxygen sensor 135, the third oxygen sensor 136 is less likely to be deteriorated by energization than the second oxygen sensor 135. May be.
 また、図5は、第1酸素センサの補正制御方法の別実施形態を示すフローである。図5に示すように、先ず、第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の各センサ出力を同時(同時刻)に取得後(ステップS10)、第1酸素センサ134及び第2酸素センサ135においては常時通電してそれぞれのセンサ出力を常時取得(時系列で取得)する。これに対して、第3酸素センサ136においては、所定の時間間隔で通電して第3酸素センサ136のセンサ出力を取得する。こうして、前記所定の時間間隔で第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の各センサ出力を取得する(ステップS100)。次に、所定の時間間隔が経過する毎に第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136の各センサ出力を比較する(ステップS200)。第2酸素センサ135によるセンサ出力と比較して第1酸素センサ134によるセンサ出力にズレが無い場合は、すなわち第1酸素センサ134が出力劣化していないと判定された場合(ズレが所定の許容範囲以内である場合)は(ステップS300のYES)、第1酸素センサ134によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS400)。
 なお、図5で示す第1酸素センサの補正制御方法では、第2酸素センサ135に常時通電しているが、特に限定するものではない。例えば、第2酸素センサ135に所定の時間間隔で通電しても構わない。この場合、第3酸素センサ136が通電する所定の時間間隔は、第2酸素センサ135が通電する所定の時間間隔よりも長く設定されるとともに第2酸素センサ135及び第3酸素センサ136が所定の時間間隔で同期(シンクロ)して各センサ出力を取得するように、制御手段40には予め設定することが好ましい。このようにすることで、第2酸素センサ135は、第3酸素センサ136よりも通電による劣化が抑えられ、長寿命化することができる。
FIG. 5 is a flowchart showing another embodiment of the correction control method for the first oxygen sensor. As shown in FIG. 5, first, after obtaining the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 simultaneously (at the same time) (step S10), the first oxygen sensor 134 and The second oxygen sensor 135 is always energized and constantly acquires (acquires in time series) each sensor output. On the other hand, the third oxygen sensor 136 is energized at a predetermined time interval to acquire the sensor output of the third oxygen sensor 136. Thus, the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are acquired at the predetermined time interval (step S100). Next, each time the predetermined time interval elapses, the sensor outputs of the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136 are compared (step S200). When there is no deviation in the sensor output from the first oxygen sensor 134 compared to the sensor output from the second oxygen sensor 135, that is, when it is determined that the first oxygen sensor 134 has not deteriorated in output (the deviation is a predetermined tolerance). If it is within the range (YES in step S300), the sensor output from the first oxygen sensor 134 is adopted, and the air-fuel ratio is calculated from the sensor output (step S400).
In the first oxygen sensor correction control method shown in FIG. 5, the second oxygen sensor 135 is always energized, but is not particularly limited. For example, the second oxygen sensor 135 may be energized at a predetermined time interval. In this case, the predetermined time interval at which the third oxygen sensor 136 is energized is set longer than the predetermined time interval at which the second oxygen sensor 135 is energized, and the second oxygen sensor 135 and the third oxygen sensor 136 are predetermined. It is preferable to set in advance in the control means 40 so as to acquire each sensor output in synchronization (synchronization) at time intervals. By doing in this way, the 2nd oxygen sensor 135 can suppress deterioration by electricity supply rather than the 3rd oxygen sensor 136, and can prolong a lifetime.
 ステップS300において、第2酸素センサ135によるセンサ出力と比較して、第1酸素センサ134のセンサ出力にズレが有る場合、すなわち第1酸素センサ134が出力劣化していると判定された場合は(ステップS300のNO)、制御手段40は、第2酸素センサ135及び第3酸素センサ136の各センサ出力を比較する(ステップS500)。第2酸素センサ135及び第3酸素センサ136の各センサ出力のズレが無い場合(ズレが所定の許容範囲以内である場合)は(ステップS600のYES)、第2酸素センサ135によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS700)。 If it is determined in step S300 that the sensor output of the first oxygen sensor 134 is deviated from the sensor output of the second oxygen sensor 135, that is, if it is determined that the output of the first oxygen sensor 134 has deteriorated ( In step S300, the control unit 40 compares the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (step S500). When there is no deviation between the sensor outputs of the second oxygen sensor 135 and the third oxygen sensor 136 (when the deviation is within a predetermined allowable range) (YES in step S600), the sensor output from the second oxygen sensor 135 is adopted. Then, the air-fuel ratio is calculated from the sensor output (step S700).
 ステップS600において、第3酸素センサ136によるセンサ出力と比較して、第2酸素センサ135のセンサ出力にズレが有る場合、すなわち第2酸素センサが出力劣化していると判定された場合は(ステップS600のNO)、制御手段40は、第3酸素センサ136によるセンサ出力を採用して、該センサ出力により空燃比を算出する(ステップS800)。 If it is determined in step S600 that the sensor output of the second oxygen sensor 135 is different from the sensor output of the third oxygen sensor 136, that is, if it is determined that the output of the second oxygen sensor has deteriorated (step S600). The control means 40 employs the sensor output from the third oxygen sensor 136 and calculates the air-fuel ratio based on the sensor output (step S800).
 また、本実施形態のエンジン1の排気経路は、3つの酸素センサ(第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136)備えているが、当該3つの酸素センサをすべて使用しなくてもよい。例えば、第1酸素センサ134と第2酸素センサ135の2箇所の酸素センサを使用する場合や、第1酸素センサ134と第3酸素センサ136の2箇所の酸素センサを使用する場合や、第2酸素センサ135と第3酸素センサ136の2箇所を使用する場合であってよい。さらに、例えば、制御手段40が第2酸素センサ135と第3酸素センサ136とに交互に通電してセンサ出力を取得し、第1酸素センサ134によるセンサ出力と比較して該第1酸素センサ134の補正制御を行ってもよい。このように第2酸素センサ135と第3酸素センサ136の交互に通電することで、第2酸素センサ135と第3酸素センサ136における通電による劣化を抑制することができるからである。 Further, the exhaust path of the engine 1 of the present embodiment includes three oxygen sensors (a first oxygen sensor 134, a second oxygen sensor 135, and a third oxygen sensor 136), but all three oxygen sensors are used. It does not have to be. For example, when two oxygen sensors of the first oxygen sensor 134 and the second oxygen sensor 135 are used, when two oxygen sensors of the first oxygen sensor 134 and the third oxygen sensor 136 are used, There may be a case where two locations of the oxygen sensor 135 and the third oxygen sensor 136 are used. Further, for example, the control unit 40 alternately energizes the second oxygen sensor 135 and the third oxygen sensor 136 to acquire the sensor output, and compares the sensor output with the first oxygen sensor 134 with the first oxygen sensor 134. The correction control may be performed. This is because deterioration due to energization in the second oxygen sensor 135 and the third oxygen sensor 136 can be suppressed by energizing the second oxygen sensor 135 and the third oxygen sensor 136 alternately.
 次に、エンジン1における第1酸素センサ134のセンサ出力の補正制御方法(劣化検知方法)について説明する。 Next, a sensor output correction control method (deterioration detection method) of the first oxygen sensor 134 in the engine 1 will be described.
 燃料調整弁123の開度の変化量を用いた第1酸素センサ134のセンサ出力の補正制御方法(劣化検知方法)について説明する。 A sensor output correction control method (deterioration detection method) of the first oxygen sensor 134 using the amount of change in the opening of the fuel adjustment valve 123 will be described.
 先ず、1つの酸素センサ(例えば、第1酸素センサ134)により計測される、初期と長時間運転後の空燃比の経時劣化を推定し、酸素センサのセンサ出力の変化量を事前に制御手段40に設定しておく。当該酸素センサのセンサ出力の変化量を予めしきい値として設定し、制御手段40は第1酸素センサ134のセンサ出力の劣化を検知する。ここで、図6は、所定のエンジン回転数におけるものであり、縦軸が酸素センサのセンサ出力であり、横軸が第1酸素センサ134による酸素濃度である。図6に示すように、所定のエンジン回転数におけるセンサ出力が基準値(例えば、第2酸素センサ135または第3酸素センサ136から得られるセンサ出力値)よりも上方もしく下方にズレてしきい値を越えた場合に(図6の点線よりも上側の領域や下側の領域に至る場合に)、制御手段40は第1酸素センサ134において出力劣化が生じていると判定する。
 なお、上記のように一つの酸素センサ(例えば、第1酸素センサ134)だけでなく、3つの酸素センサ(第1酸素センサ134、第2酸素センサ135及び第3酸素センサ136)について、上記のようにして出力劣化の有無を判定することもできる。
First, the deterioration with time of the air-fuel ratio measured by one oxygen sensor (for example, the first oxygen sensor 134) after the initial and long-time operation is estimated, and the change amount of the sensor output of the oxygen sensor is controlled beforehand. Set to. The change amount of the sensor output of the oxygen sensor is set in advance as a threshold value, and the control means 40 detects the deterioration of the sensor output of the first oxygen sensor 134. Here, FIG. 6 is at a predetermined engine speed, the vertical axis is the sensor output of the oxygen sensor, and the horizontal axis is the oxygen concentration by the first oxygen sensor 134. As shown in FIG. 6, the sensor output at a predetermined engine speed is shifted above or below a reference value (for example, a sensor output value obtained from the second oxygen sensor 135 or the third oxygen sensor 136). When the value is exceeded (when reaching the area above or below the dotted line in FIG. 6), the control means 40 determines that output degradation has occurred in the first oxygen sensor 134.
As described above, not only one oxygen sensor (for example, the first oxygen sensor 134) but also three oxygen sensors (the first oxygen sensor 134, the second oxygen sensor 135, and the third oxygen sensor 136) are not described above. In this way, the presence or absence of output deterioration can also be determined.
 次に、燃料調整弁123の開度と触媒コンバータ132の下流側の酸素センサの出力特性による、第1酸素センサ134のセンサ出力の補正制御方法(劣化検知方法)について説明する。 Next, a correction control method (deterioration detection method) of the sensor output of the first oxygen sensor 134 based on the opening degree of the fuel adjustment valve 123 and the output characteristics of the oxygen sensor downstream of the catalytic converter 132 will be described.
 先ず、予め燃料調整弁123の開度と触媒コンバータ132の下流側の酸素センサ(例えば、第2酸素センサ135や第3酸素センサ136)の出力特性の関係を図7に示すように、マップ化して制御手段40の記憶部に記憶させておく。ここで、図7は、所定のエンジン回転数におけるものであり、縦軸が下流側の酸素センサのセンサ出力(出力電圧)であり、横軸が燃料調整弁123の開度である。そして、制御手段40は、リアルタイムでセンサ出力の基準値からの下流側の酸素センサによる第1酸素センサ134の補正量の変化をモニターし、正常値に対して所定範囲を超えた場合に下流側の酸素センサ(例えば、第2酸素センサ135や第3酸素センサ136)に出力劣化が生じていると判定する。 First, the relationship between the opening degree of the fuel adjustment valve 123 and the output characteristics of the oxygen sensors (for example, the second oxygen sensor 135 and the third oxygen sensor 136) on the downstream side of the catalytic converter 132 is previously mapped as shown in FIG. And stored in the storage unit of the control means 40. Here, FIG. 7 is for a predetermined engine speed, the vertical axis is the sensor output (output voltage) of the downstream oxygen sensor, and the horizontal axis is the opening of the fuel adjustment valve 123. Then, the control means 40 monitors the change in the correction amount of the first oxygen sensor 134 by the downstream oxygen sensor from the reference value of the sensor output in real time, and when the predetermined value exceeds the normal value, the downstream side It is determined that output degradation has occurred in the oxygen sensors (for example, the second oxygen sensor 135 and the third oxygen sensor 136).
 以下に、本エンジンユニット100の技術的特徴について説明する。 The technical features of the engine unit 100 will be described below.
 本エンジンユニット100における第一の技術的特徴は、複数の酸素センサとして、触媒コンバータ132の上流側の排気経路に配置される第1酸素センサ134と、触媒コンバータ132の下流側の排気経路に配置される第2酸素センサ135と、触媒コンバータ132の下流側の排気経路において、第2酸素センサ135の下流側に配置される第3酸素センサ136と、から構成される点である。触媒浄化前の排気ガスの含有成分や熱の影響を受けて第1酸素センサ134は劣化しやすいが、排気ガスの含有成分や熱の影響が少ない触媒コンバータ132の下流側に順に配置された、第2酸素センサ135及び第3酸素センサ136は劣化しにくい。そのため、第1酸素センサ134に出力劣化(センサ出力のズレ)が生じても、第2酸素センサ135及び第3酸素センサ136により第1酸素センサ134のセンサ出力のズレを補正することができる。すなわち、排気経路における酸素センサの検知精度を長期的に維持することができる。また、第3酸素センサ136は、排気経路において第2酸素センサ135よりも下流側であって複数の酸素センサのうち最も下流に配置されるため排気ガスの含有成分や熱の影響を最も受けにくく、第1酸素センサ134や第2酸素センサ135に出力劣化が生じても、第3酸素センサ136により第1酸素センサ134や第2酸素センサ135のセンサ出力のズレを補正することができる。 The first technical feature of the engine unit 100 is that, as a plurality of oxygen sensors, a first oxygen sensor 134 disposed in the exhaust path upstream of the catalytic converter 132 and an exhaust path downstream of the catalytic converter 132 are disposed. And the third oxygen sensor 136 disposed downstream of the second oxygen sensor 135 in the exhaust path downstream of the catalytic converter 132. The first oxygen sensor 134 is easily deteriorated due to the influence of exhaust gas components and heat before the catalyst purification, but is sequentially arranged downstream of the catalytic converter 132 where the exhaust gas contents and heat are less affected. The second oxygen sensor 135 and the third oxygen sensor 136 are not easily deteriorated. Therefore, even if output deterioration (sensor output deviation) occurs in the first oxygen sensor 134, the sensor output deviation of the first oxygen sensor 134 can be corrected by the second oxygen sensor 135 and the third oxygen sensor 136. That is, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time. Further, since the third oxygen sensor 136 is disposed downstream of the second oxygen sensor 135 in the exhaust path and the most downstream of the plurality of oxygen sensors, the third oxygen sensor 136 is least susceptible to the components contained in the exhaust gas and heat. Even if output degradation occurs in the first oxygen sensor 134 or the second oxygen sensor 135, the third oxygen sensor 136 can correct the deviation of the sensor output of the first oxygen sensor 134 or the second oxygen sensor 135.
 本エンジンユニット100における第二の技術的特徴は、制御手段40が、第2酸素センサ135及び/又は第3酸素センサ136のセンサ出力を取得し、第1酸素センサ134のセンサ出力と比較して該第1酸素センサ134のセンサ出力のズレを補正制御する点である。これにより、排気経路における酸素センサの検知精度を長期的に維持することができる。 The second technical feature of the engine unit 100 is that the control means 40 acquires the sensor output of the second oxygen sensor 135 and / or the third oxygen sensor 136 and compares it with the sensor output of the first oxygen sensor 134. This is a point of correcting and controlling the deviation of the sensor output of the first oxygen sensor 134. Thereby, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本エンジンユニット100における第三の技術的特徴は、第3酸素センサ136が、下流側排気管138における熱交換器133近傍に設けられる点である。このように第3酸素センサ136を下流側排気管138における熱交換器133側(熱交換器133の近傍)の熱負荷の低い位置に配置することで、第3酸素センサ136に対する熱負荷が低くなり、第3酸素センサ136は、第2酸素センサ135に比べて熱の影響をより受けにくく、寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 The third technical feature of the engine unit 100 is that the third oxygen sensor 136 is provided in the vicinity of the heat exchanger 133 in the downstream side exhaust pipe 138. As described above, the third oxygen sensor 136 is disposed at a low heat load position on the heat exchanger 133 side (near the heat exchanger 133) in the downstream exhaust pipe 138, so that the heat load on the third oxygen sensor 136 is low. Thus, the third oxygen sensor 136 is less susceptible to heat than the second oxygen sensor 135 and can extend its life. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本エンジンユニット100における第四の技術的特徴は、制御手段40は、第3酸素センサ136に定期的に通電することで、センサ出力を取得する点である。これにより、第3酸素センサ136の通電による劣化を抑えることができ、第3酸素センサ136の寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 The fourth technical feature of the engine unit 100 is that the control means 40 acquires the sensor output by periodically energizing the third oxygen sensor 136. Thereby, deterioration due to energization of the third oxygen sensor 136 can be suppressed, and the life of the third oxygen sensor 136 can be extended. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 本エンジンユニット100における第五の技術的特徴は、制御手段40は、第2酸素センサ135に定期的に通電することでセンサ出力を取得するとともに、第3酸素センサ136に通電する間隔を第2酸素センサ135に通電する間隔よりも長くした点である。これにより、第3酸素センサ136は、第2酸素センサ135よりも通電による劣化を抑えることができ、第2酸素センサ135及び第3酸素センサ136の両方の寿命を延ばすことができる。従って、排気経路における酸素センサの検知精度を長期的に維持することができる。 The fifth technical feature of the engine unit 100 is that the control means 40 acquires the sensor output by periodically energizing the second oxygen sensor 135 and sets the interval of energizing the third oxygen sensor 136 to the second. This is a point that is longer than the interval at which the oxygen sensor 135 is energized. Thereby, the third oxygen sensor 136 can suppress deterioration due to energization more than the second oxygen sensor 135, and can extend the lifetime of both the second oxygen sensor 135 and the third oxygen sensor 136. Therefore, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time.
 また、上述したように本発明によれば、排気経路における酸素センサの検知精度を長期的に維持することができる。これにより、酸素センサ不良による運転中の排気エミッションの悪化を抑制することができる。さらに、酸素センサの定期検査の間隔を長くして、酸素センサのメンテナンスの手間を省くことができる。また、3つの酸素センサにより検知精度を保持するため、フェールセーフ機能による検知精度の信頼性を確保することができる。 Further, as described above, according to the present invention, the detection accuracy of the oxygen sensor in the exhaust path can be maintained for a long time. Thereby, it is possible to suppress deterioration of exhaust emission during operation due to oxygen sensor failure. Furthermore, it is possible to lengthen the interval between periodic inspections of the oxygen sensor, and to save the labor of maintenance of the oxygen sensor. In addition, since the detection accuracy is maintained by the three oxygen sensors, the reliability of the detection accuracy by the fail-safe function can be ensured.
 次に、本願の発明に係る第2実施形態であるエンジンユニット200(エンジン2)について説明する。エンジンユニット200(エンジン2)は、第1実施形態に係るエンジンユニット100(エンジン1)の酸素センサ等の一部の構成を変更したガスエンジンユニットであり、その他の構成は第1実施形態に係るエンジンユニット100(エンジン1)と同じである。
 なお、以下の説明において、第1実施形態に係るエンジンユニット100と同一の構成については符号を同一とし、その構成の説明は省略する。
Next, an engine unit 200 (engine 2) according to a second embodiment of the present invention will be described. The engine unit 200 (engine 2) is a gas engine unit in which a part of the configuration of the oxygen sensor or the like of the engine unit 100 (engine 1) according to the first embodiment is changed, and the other configurations are related to the first embodiment. It is the same as engine unit 100 (engine 1).
In the following description, the same components as those of the engine unit 100 according to the first embodiment are denoted by the same reference numerals, and the description of the components is omitted.
 図8に示すように、第2実施形態のエンジンユニット200は、複数の酸素センサとして、触媒コンバータ132の上流側の排気経路に配置される上流側酸素センサ134(第1実施形態の第1酸素センサ134と同じ)と、触媒コンバータ132の下流側の排気経路に配置される下流側酸素センサ140(図12参照)とを主に有している。また、触媒コンバータ132の下流側の排気経路には、排気ガスにより水を熱する熱交換器133を備える。下流側酸素センサ140は、熱交換器133に配置されるとともに、該熱交換器133内を流れる水により冷却される構成となっている。 As shown in FIG. 8, the engine unit 200 of the second embodiment includes an upstream oxygen sensor 134 (first oxygen of the first embodiment) arranged in the exhaust path upstream of the catalytic converter 132 as a plurality of oxygen sensors. And the downstream oxygen sensor 140 (see FIG. 12) disposed in the exhaust path downstream of the catalytic converter 132. Further, the exhaust path downstream of the catalytic converter 132 is provided with a heat exchanger 133 that heats water with the exhaust gas. The downstream oxygen sensor 140 is disposed in the heat exchanger 133 and is cooled by water flowing in the heat exchanger 133.
 図12に示す熱交換器133は、シェルアンドチューブ型熱交換器であり、排気ガスが通る多数のガス管139・139・・・(図15参照)と、ガス管139・139・・・を内装しガス管139・139・・・内を通る排気ガスを冷却する熱交換器本体145と、を有する。 A heat exchanger 133 shown in FIG. 12 is a shell-and-tube heat exchanger, and includes a number of gas pipes 139, 139 (see FIG. 15) through which exhaust gas passes and gas pipes 139, 139,. And a heat exchanger main body 145 for cooling the exhaust gas passing through the gas pipes 139, 139.
 熱交換器本体145には、冷却水入口145aおよび冷却水出口145bが設けられ、冷却水が熱交換器本体145内を循環する。すなわち、熱交換器本体145の内周面とガス管139・139・・・の外周面との間の空間となる冷却水流路133bに、冷却水が流れる。熱交換器本体145の形状は円筒状であり、前端部には仕切板133cによって区画された二つ空間である排気ガス導入部146及び排気ガス排気部147を有している。 The heat exchanger main body 145 is provided with a cooling water inlet 145a and a cooling water outlet 145b, and the cooling water circulates in the heat exchanger main body 145. That is, the cooling water flows into the cooling water flow path 133b that is a space between the inner peripheral surface of the heat exchanger main body 145 and the outer peripheral surface of the gas pipes 139, 139. The shape of the heat exchanger body 145 is cylindrical, and has an exhaust gas introduction part 146 and an exhaust gas exhaust part 147 which are two spaces partitioned by a partition plate 133c at the front end.
 熱交換器本体145の前端部の上部には、下流側排気管138の下流端138aが連通され、排気ガスが排気ガス導入部146に導入される。導入された排気ガスは多数のガス管139・139・・・内を通過して熱交換器本体145内を循環する冷却水により冷却され、熱交換器本体145の前端部の下部に設けられた排気ガス出口148から排出される。 The downstream end 138a of the downstream side exhaust pipe 138 is communicated with the upper part of the front end portion of the heat exchanger body 145, and the exhaust gas is introduced into the exhaust gas introduction unit 146. The introduced exhaust gas is cooled by cooling water that passes through the gas pipes 139, 139... And circulates in the heat exchanger body 145, and is provided at the lower part of the front end of the heat exchanger body 145. Exhaust gas outlet 148 is exhausted.
 上述した第1実施形態のエンジンユニット100では、第3酸素センサ136を下流側排気管138における熱交換器133近傍に設ける構成としているが、第2実施形態のエンジンユニット200では、第3酸素センサ136を下流側排気管138に設ける代わりに該下流側排気管138の下流端138aに連通される熱交換器133の一端に下流側酸素センサ140を設ける構成となっている。
 なお、第2実施形態においては、図8に示すように、第1実施形態と同様に第2酸素センサ135を触媒コンバータ132の下流側排気管138の上流端(触媒コンバータ132の直後)に設けて、第1実施形態として説明した第1酸素センサ134の補正制御方法のフローに従って第1酸素センサ134の補正制御をすることもできる。また、第2実施形態においては、第2酸素センサ135は必須の構成ではない。
In the engine unit 100 of the first embodiment described above, the third oxygen sensor 136 is provided in the vicinity of the heat exchanger 133 in the downstream exhaust pipe 138. However, in the engine unit 200 of the second embodiment, the third oxygen sensor is provided. Instead of providing 136 in the downstream exhaust pipe 138, the downstream oxygen sensor 140 is provided at one end of the heat exchanger 133 communicating with the downstream end 138 a of the downstream exhaust pipe 138.
In the second embodiment, as shown in FIG. 8, the second oxygen sensor 135 is provided at the upstream end of the downstream exhaust pipe 138 of the catalytic converter 132 (immediately after the catalytic converter 132), as in the first embodiment. Thus, the correction control of the first oxygen sensor 134 can be performed according to the flow of the correction control method of the first oxygen sensor 134 described as the first embodiment. In the second embodiment, the second oxygen sensor 135 is not an essential configuration.
 上述した特許文献3に開示される内燃機関においては、排気マニホールドの上流側と下流側に酸素センサが組み付けられている。また、三元触媒出口に排気温度センサが取り付けられている。また、従来の下流側酸素センサとしては、図9に示すように、排気ガスの熱交換器に取り付けられる場合があり、この場合の下流側酸素センサの取付位置としては、図10に示すように、熱交換器における排気ガスの導入部となる、熱交換器の一端側となっている。このような下流側酸素センサの取付位置においては、熱交換を行うための冷却水が満たされていないため、下流側酸素センサは熱負荷の厳しい環境で使用されることになる。このように、熱交換器に下流側酸素センサを設ける構成においても本発明の効果を奏する形態について以下に説明する。図11は、本発明の第2実施形態に係る熱交換器133における下流側酸素センサ140の取付位置を示す模式図であり、該下流側酸素センサ140近傍に熱交換器133の冷却水を導く構成を示している。 In the internal combustion engine disclosed in Patent Document 3 described above, oxygen sensors are assembled on the upstream side and the downstream side of the exhaust manifold. An exhaust temperature sensor is attached to the three-way catalyst outlet. Further, as shown in FIG. 9, a conventional downstream oxygen sensor may be attached to an exhaust gas heat exchanger. In this case, as shown in FIG. It is one end side of the heat exchanger that serves as an exhaust gas introduction part in the heat exchanger. At the mounting position of such a downstream oxygen sensor, the cooling water for performing heat exchange is not filled, so the downstream oxygen sensor is used in an environment with severe heat load. Thus, the form which has an effect of the present invention also in the composition which provides a downstream oxygen sensor in a heat exchanger is explained below. FIG. 11 is a schematic diagram showing the mounting position of the downstream oxygen sensor 140 in the heat exchanger 133 according to the second embodiment of the present invention, and the cooling water of the heat exchanger 133 is guided to the vicinity of the downstream oxygen sensor 140. The configuration is shown.
 熱交換器133は、熱交換器本体145の内部に、下流側酸素センサ140を冷却するための略円筒状の空間であるセンサ冷却水流路133a(図13、図14及び図15参照)と、排気ガスと熱交換を行うための冷却水流路133bと、排気ガス導入部146及び排気ガス排気部147とを仕切るための仕切板133cとを有している。センサ冷却水流路133aは、冷却水流路133bに連通している。 The heat exchanger 133 has a sensor cooling water flow path 133a (see FIGS. 13, 14, and 15) that is a substantially cylindrical space for cooling the downstream oxygen sensor 140 inside the heat exchanger main body 145, and A cooling water flow path 133b for exchanging heat with the exhaust gas and a partition plate 133c for partitioning the exhaust gas introduction part 146 and the exhaust gas exhaust part 147 are provided. The sensor cooling water channel 133a communicates with the cooling water channel 133b.
 下流側酸素センサ140は、排気マニホールド131から排出された排気ガス中の酸素濃度を検出して排気ガス中の酸素濃度に応じた検出信号を出力するセンサである。下流側酸素センサ140は、制御手段40で制御可能なヒータ140aを備える。制御手段40は、該ヒータ140aを所定の電圧値(後述する第2実施形態の変形例では、定格電圧11V)の印加の有無でヒータ140aのオンもしくはオフすることができる。下流側酸素センサ140は、熱交換器133の一端(前端)側に配置される。下流側酸素センサ140は、制御手段40に電気的に接続されている。制御手段40は、例えば、上流側酸素センサ134、下流側酸素センサ140の計測結果と、予め記憶されるデータやプログラムとに基づいて、スロットル弁や燃料調整弁123等の開度をアクチュエータを介して制御することによって、混合気の空燃比を適切な値(例えば、理想空燃比である空気過剰率λ=1)となるように空燃比制御している。
 なお、上流側酸素センサ134及び下流側酸素センサ140は、排気ガス中の酸素濃度を検出可能な公知の酸素センサを用いることができ、例えばUEGO(Universal Exhaust Gas Oxygen)センサを用いてもよい。UEGOセンサは、大気校正を実施することができる。上流側酸素センサ134及び下流側酸素センサ140として、UEGOセンサを用いた場合は、定期的に大気校正することにより検知精度を向上させることができる。
The downstream oxygen sensor 140 is a sensor that detects the oxygen concentration in the exhaust gas discharged from the exhaust manifold 131 and outputs a detection signal corresponding to the oxygen concentration in the exhaust gas. The downstream oxygen sensor 140 includes a heater 140 a that can be controlled by the control means 40. The control means 40 can turn on or off the heater 140a with or without application of a predetermined voltage value (in the modified example of the second embodiment described later, rated voltage 11V). The downstream oxygen sensor 140 is disposed on one end (front end) side of the heat exchanger 133. The downstream oxygen sensor 140 is electrically connected to the control means 40. For example, the control means 40 controls the opening degree of the throttle valve, the fuel adjustment valve 123, and the like via an actuator based on the measurement results of the upstream oxygen sensor 134 and the downstream oxygen sensor 140 and data and programs stored in advance. By controlling the air-fuel ratio, the air-fuel ratio is controlled so that the air-fuel ratio of the air-fuel mixture becomes an appropriate value (for example, the excess air ratio λ = 1 which is an ideal air-fuel ratio).
As the upstream oxygen sensor 134 and the downstream oxygen sensor 140, a known oxygen sensor capable of detecting the oxygen concentration in the exhaust gas can be used. For example, a UEGO (Universal Exhaust Gas Oxygen) sensor may be used. The UEGO sensor can perform atmospheric calibration. When a UEGO sensor is used as the upstream oxygen sensor 134 and the downstream oxygen sensor 140, detection accuracy can be improved by periodically performing atmospheric calibration.
 図13(c)(d)、図14(c)(d)、図15に示すように、熱交換器133においては、センサ冷却水流路133aとして、冷却水流路133bの一端から下流側酸素センサ140の取付部まで延設されている。図13、図14においては、従来の熱交換器に配置された下流側酸素センサと第2実施形態に係る熱交換器133に配置された下流側酸素センサ140との相違点を示している。図13(b)に示すように、熱交換器に取り付けられた下流側酸素センサの機能を発揮する使用条件として、下流側酸素センサの基部Aは温度が上がり過ぎると良くなく、下流側酸素センサの検知部となる先端部Bは温度が下がると良くない。そのため、基部Aのみを冷却する構成が望まれる。そこで、第2実施形態では、図13(c)(d)、図14(c)(d)、図15に示すように、冷却水流路として冷却水流路133bの一端から前方に延設され、下流側酸素センサ140の基部Aの周囲に冷却水が回り込むように略円筒状のセンサ冷却水流路133a(図14参照)が設けられている。これにより、下流側酸素センサ140は熱交換器133の冷却水により冷却されるので、下流側酸素センサ140に対する熱負荷を低減し、下流側酸素センサ140の耐力向上を図ることができる。すなわち、触媒コンバータ132を通過することで高温となった排気ガスによる下流側酸素センサ140の出力劣化を防ぐことができる。ひいては、エンジン性能を維持することができる。
 なお、第2実施形態では、下流側酸素センサ140の基部Aの周囲に冷却水が流れるものであって、冷却水が該基部A内を通過する構成ではない。
As shown in FIGS. 13 (c) (d), 14 (c) (d), and 15, in the heat exchanger 133, a downstream side oxygen sensor from one end of the cooling water flow path 133b is used as the sensor cooling water flow path 133a. It extends to 140 attachment parts. 13 and 14 show the differences between the downstream oxygen sensor arranged in the conventional heat exchanger and the downstream oxygen sensor 140 arranged in the heat exchanger 133 according to the second embodiment. As shown in FIG. 13 (b), as a use condition for exhibiting the function of the downstream oxygen sensor attached to the heat exchanger, the base A of the downstream oxygen sensor is not good if the temperature rises too much. It is not good if the temperature of the tip B serving as the detection part is lowered. Therefore, a configuration in which only the base A is cooled is desired. Therefore, in the second embodiment, as shown in FIGS. 13 (c) (d), 14 (c) (d), and FIG. 15, the cooling water flow path is extended forward from one end of the cooling water flow path 133b, A substantially cylindrical sensor cooling water flow path 133a (see FIG. 14) is provided so that the cooling water flows around the base A of the downstream oxygen sensor 140. Thereby, since the downstream oxygen sensor 140 is cooled by the cooling water of the heat exchanger 133, the thermal load on the downstream oxygen sensor 140 can be reduced and the proof stress of the downstream oxygen sensor 140 can be improved. That is, it is possible to prevent the output deterioration of the downstream oxygen sensor 140 due to the exhaust gas having a high temperature by passing through the catalytic converter 132. As a result, engine performance can be maintained.
In the second embodiment, the cooling water flows around the base A of the downstream oxygen sensor 140, and the cooling water does not pass through the base A.
 次に、本願の発明に係る第2実施形態の変形例について説明する。なお、以下の説明において、第1実施形態に係るエンジンユニット100及び第2実施形態に係るエンジンユニット200と同一の構成については符号を同一とし、その構成の説明は省略する。 Next, a modification of the second embodiment according to the invention of the present application will be described. In the following description, the same components as those of the engine unit 100 according to the first embodiment and the engine unit 200 according to the second embodiment are denoted by the same reference numerals, and the description of the configurations is omitted.
 図8に示すように、第2実施形態のエンジンユニット200は、複数の酸素センサとして、触媒コンバータ132の上流側の排気経路に配置される上流側酸素センサ134(第1実施形態の第1酸素センサ134と同じ)と、触媒コンバータ132の下流側近傍に配置される下流側酸素センサ140とを有している。また、触媒コンバータ132の下流側近傍には、制御手段40に電気的に接続され、排気ガス温度を検出する温度センサ141を備える。第2実施形態の変形例では、制御手段40が、温度センサ141により検出される排気ガスの温度に基づいて下流側酸素センサ140のヒータ140aの通電タイミングを制御する構成としている。 As shown in FIG. 8, the engine unit 200 of the second embodiment includes an upstream oxygen sensor 134 (first oxygen of the first embodiment) arranged in the exhaust path upstream of the catalytic converter 132 as a plurality of oxygen sensors. And the downstream oxygen sensor 140 disposed in the vicinity of the downstream side of the catalytic converter 132. Further, a temperature sensor 141 that is electrically connected to the control means 40 and detects the exhaust gas temperature is provided in the vicinity of the downstream side of the catalytic converter 132. In the modification of the second embodiment, the control means 40 is configured to control the energization timing of the heater 140a of the downstream oxygen sensor 140 based on the temperature of the exhaust gas detected by the temperature sensor 141.
 温度センサ141は、制御手段40に電気的に接続され、触媒コンバータ132の下流側の排気経路を流れる排気ガス温度を検出することができる。制御手段40は、温度センサ141により排気温度を検出し、該排気温度に基づいて下流側酸素センサ140のヒータ140aの通電タイミングを制御することができる。 The temperature sensor 141 is electrically connected to the control means 40, and can detect the temperature of the exhaust gas flowing through the exhaust path downstream of the catalytic converter 132. The control means 40 can detect the exhaust temperature by the temperature sensor 141 and can control the energization timing of the heater 140a of the downstream oxygen sensor 140 based on the exhaust temperature.
 上述した下流側酸素センサ140等の具体例としては、ジルコニア等のセラミックスのように、酸素濃淡電池の原理により起電力を発生する固体電解質を用いたものが挙げられる。このような下流側酸素センサ140には、その性質上排気ガス中の酸素濃度を精度良く検出可能な温度域が存在し、本実施形態では下流側酸素センサ140の内部に備えられたヒータ140a(図8参照)に対して定格通電を行うことで、酸素濃度の検出精度を高めるための温度調節を行っている。 Specific examples of the downstream oxygen sensor 140 and the like described above include those using a solid electrolyte that generates an electromotive force according to the principle of an oxygen concentration cell, such as ceramics such as zirconia. Such a downstream oxygen sensor 140 has a temperature range in which the oxygen concentration in the exhaust gas can be accurately detected due to its nature. In this embodiment, the heater 140a (inside the downstream oxygen sensor 140 ( The temperature is adjusted to increase the accuracy of detecting the oxygen concentration by performing rated energization with respect to (see FIG. 8).
 また、制御手段40には、下流側酸素センサ140におけるヒータ140aに通電を行う所定時間等のデータが格納され、下流側酸素センサ140により検出される排気ガスの酸素濃度に基づいて、当該排気ガスの元となる混合ガスの空燃比を算出する。 Further, the control means 40 stores data such as a predetermined time during which the heater 140a in the downstream oxygen sensor 140 is energized, and the exhaust gas based on the oxygen concentration of the exhaust gas detected by the downstream oxygen sensor 140. The air-fuel ratio of the mixed gas that is the source of the above is calculated.
 次に、図18を用いて、第2実施形態の変形例に係る下流側酸素センサ140のヒータ140aの制御方法について説明する。当該制御方法は、制御手段40に格納されたプログラム及びデータ等により達成されるものである。 Next, a method for controlling the heater 140a of the downstream oxygen sensor 140 according to a modification of the second embodiment will be described with reference to FIG. The control method is achieved by a program and data stored in the control means 40.
 まず、エンジン2の運転を開始すると、ステップS11に移行する。 First, when the operation of the engine 2 is started, the process proceeds to step S11.
 ステップS11において、制御手段40は、温度センサ141により排気ガス温度を検出する。 In step S11, the control means 40 detects the exhaust gas temperature by the temperature sensor 141.
 ステップS12において、制御手段40は、温度センサ141により検出した排気ガス温度が予め設定された排気ガス温度の閾値以上か否かを判断する。排気ガス温度が排気ガス温度の閾値以上であればステップS13に移行し、排気ガス温度の閾値未満であればS11の処理を継続して行う。 In step S12, the control means 40 determines whether or not the exhaust gas temperature detected by the temperature sensor 141 is equal to or higher than a preset exhaust gas temperature threshold. If the exhaust gas temperature is equal to or higher than the exhaust gas temperature threshold, the process proceeds to step S13. If the exhaust gas temperature is lower than the exhaust gas temperature threshold, the process of S11 is continued.
 ステップS13において、下流側酸素センサ140が有するヒータ140aに定格通電(図17では、11V)が開始される。 In step S13, rated energization (11V in FIG. 17) is started in the heater 140a included in the downstream oxygen sensor 140.
 ステップS14において、下流側酸素センサ140によって酸素濃度が検出され、該酸素濃度(センサ出力)を採用して、上述したように制御手段40により空燃比が算出され、空燃比制御が行われる。 In step S14, the oxygen concentration is detected by the downstream oxygen sensor 140, the oxygen concentration (sensor output) is adopted, the air-fuel ratio is calculated by the control means 40 as described above, and the air-fuel ratio control is performed.
 上述した特許文献3に開示される内燃機関においては、排気マニホールドの上流側と下流側に酸素センサが組み付けられている。また、三元触媒出口に排気温度センサが取り付けられている。また、従来の下流側酸素センサとして、センサ内部の温度を上昇させるため、ヒータを内蔵しているものがある。しかしながら、図16に示すように、従来の場合は下流側酸素センサのヒータへの通電タイミングはエンジン冷却水温度による制御(例えば、暖気運転としてエンジンの冷却水温度が40℃以上になったときに、ヒータがON状態となる制御)が行われているため、暖気中は空燃比制御を実行することができない。 In the internal combustion engine disclosed in Patent Document 3 described above, oxygen sensors are assembled on the upstream side and the downstream side of the exhaust manifold. An exhaust temperature sensor is attached to the three-way catalyst outlet. Some conventional downstream oxygen sensors have a built-in heater to increase the temperature inside the sensor. However, as shown in FIG. 16, in the conventional case, the energization timing to the heater of the downstream oxygen sensor is controlled by the engine cooling water temperature (for example, when the engine cooling water temperature becomes 40 ° C. or higher in warm-up operation). Therefore, air-fuel ratio control cannot be executed during warm-up.
 第2実施形態の変形例では、上述した下流側酸素センサ140のヒータ140aの制御フローに基づいて制御手段40により下流側酸素センサ140のヒータ140aの通電タイミングを温度センサ141で検出される排気温度で制御する。例えば、CO、THCが多い場合、触媒コンバータ132の下流排気温度は上昇する。この特性を利用し、排気温度が上昇した時点(所定の排気温度に達した閾値)で下流側酸素センサ140のヒータに通電し、空燃比制御をスタートする。これにより、図17の点線矢印で示すように、空燃比が効かない時間の短縮を図る。 In the modification of the second embodiment, the exhaust gas temperature at which the temperature sensor 141 detects the energization timing of the heater 140a of the downstream oxygen sensor 140 by the control means 40 based on the control flow of the heater 140a of the downstream oxygen sensor 140 described above. To control. For example, when CO and THC are large, the downstream exhaust temperature of the catalytic converter 132 increases. Using this characteristic, the heater of the downstream oxygen sensor 140 is energized at the time when the exhaust gas temperature rises (threshold value reaching the predetermined exhaust gas temperature), and the air-fuel ratio control is started. As a result, as indicated by the dotted arrow in FIG. 17, the time during which the air-fuel ratio is not effective is reduced.
 第2実施形態の変形例のように構成することで、排気特性の悪化を抑制する。また、暖気中のエンジン性能を維持することができる。 The configuration of the modification of the second embodiment suppresses the deterioration of exhaust characteristics. Moreover, the engine performance in warm air can be maintained.
 本発明は、定置型の発電機または冷凍機などに搭載するディーゼルエンジン等のエンジン装置に限定するものではなく、種々の内燃機関を備えた装置や移動体に適用することができる。 The present invention is not limited to an engine device such as a diesel engine mounted on a stationary generator or a refrigerator, but can be applied to a device or a moving body including various internal combustion engines.
 例えば、図19は、トラック2に積載された冷凍コンテナ10を示しているが、このような冷凍コンテナ10は、コンテナ3と冷凍ユニット4から構成されている。当該冷凍ユニット4を構成する発電機を駆動するエンジンユニットとして本発明に係るエンジンユニットを適用することが可能である。 For example, FIG. 19 shows the refrigeration container 10 loaded on the truck 2, but such a refrigeration container 10 includes a container 3 and a refrigeration unit 4. The engine unit according to the present invention can be applied as an engine unit that drives a generator constituting the refrigeration unit 4.
 100  エンジンユニット
 1    エンジン
 40   制御手段
 121  ミキサ
 123  燃料調整弁
 131  排気マニホールド(排気経路)
 132  触媒コンバータ(三元触媒)
 133  熱交換器
 134  第1酸素センサ
 135  第2酸素センサ
 136  第3酸素センサ
 137  上流側排気管(排気経路)
 138  下流側排気管(排気経路)
 140  下流側酸素センサ
 141  温度センサ
DESCRIPTION OF SYMBOLS 100 Engine unit 1 Engine 40 Control means 121 Mixer 123 Fuel adjustment valve 131 Exhaust manifold (exhaust path)
132 Catalytic converter (three-way catalyst)
133 Heat exchanger 134 First oxygen sensor 135 Second oxygen sensor 136 Third oxygen sensor 137 Upstream exhaust pipe (exhaust path)
138 Downstream exhaust pipe (exhaust path)
140 Downstream oxygen sensor 141 Temperature sensor

Claims (7)

  1.  エンジンと、
     前記エンジンからの排気ガスが流れる前記エンジンの排気経路に設けられる触媒と、
     前記排気経路に配置され、前記排気ガスの酸素濃度を検出する複数の酸素センサと、
     前記酸素センサにより検出された排気ガスの酸素濃度に基づいて空燃比を算出する制御手段と、を備えたエンジンユニットにおいて、
     前記複数の酸素センサは、
     前記触媒の上流側の排気経路に配置される第1酸素センサと、
     前記触媒の下流側の排気経路に配置される第2酸素センサと、
     前記触媒の下流側の排気経路において、前記第2酸素センサの下流側に配置される第3酸素センサと、から構成される、ことを特徴とするエンジンユニット。
    Engine,
    A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows;
    A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas;
    An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
    The plurality of oxygen sensors includes:
    A first oxygen sensor disposed in an exhaust path upstream of the catalyst;
    A second oxygen sensor disposed in an exhaust path downstream of the catalyst;
    An engine unit comprising: a third oxygen sensor disposed downstream of the second oxygen sensor in an exhaust path downstream of the catalyst.
  2.  前記制御手段は、前記第2酸素センサ及び/又は前記第3酸素センサのセンサ出力を取得し、前記第1酸素センサのセンサ出力と比較して該第1酸素センサのセンサ出力のズレを補正制御する、ことを特徴とする請求項1に記載のエンジンユニット。 The control means acquires the sensor output of the second oxygen sensor and / or the third oxygen sensor, and corrects and controls the deviation of the sensor output of the first oxygen sensor compared with the sensor output of the first oxygen sensor. The engine unit according to claim 1, wherein:
  3.  前記触媒の下流側の排気経路には、前記排気ガスにより水を熱する熱交換器を備え、
     前記第3酸素センサは、前記熱交換器近傍に設けられる、ことを特徴とする請求項1又は請求項2に記載のエンジンユニット。
    The exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas,
    The engine unit according to claim 1 or 2, wherein the third oxygen sensor is provided in the vicinity of the heat exchanger.
  4.  前記制御手段は、前記第3酸素センサに定期的に通電することでセンサ出力を取得する、ことを特徴とする請求項1から請求項3のいずれか一項に記載のエンジンユニット。 The engine unit according to any one of claims 1 to 3, wherein the control means acquires sensor output by periodically energizing the third oxygen sensor.
  5.  前記制御手段は、前記第2酸素センサに定期的に通電することでセンサ出力を取得するとともに、前記第3酸素センサに通電する間隔を前記第2酸素センサに通電する間隔よりも長くした、ことを特徴とする請求項4に記載のエンジンユニット。 The control means acquires the sensor output by periodically energizing the second oxygen sensor, and makes the interval of energizing the third oxygen sensor longer than the interval of energizing the second oxygen sensor. The engine unit according to claim 4.
  6.  エンジンと、
     前記エンジンからの排気ガスが流れる前記エンジンの排気経路に設けられる触媒と、
     前記排気経路に配置され、前記排気ガスの酸素濃度を検出する複数の酸素センサと、
     前記酸素センサにより検出された排気ガスの酸素濃度に基づいて空燃比を算出する制御手段と、を備えたエンジンユニットにおいて、
     前記複数の酸素センサは、
     前記触媒の上流側の排気経路に配置される上流側酸素センサと、
     前記触媒の下流側の排気経路に配置される下流側酸素センサと、から構成され、
     前記触媒の下流側の排気経路には、前記排気ガスにより水を熱する熱交換器を備え、
     前記下流側酸素センサは、前記熱交換器に配置されるとともに、該熱交換器内を流れる水により前記下流側酸素センサが冷却される、ことを特徴とするエンジンユニット。
    Engine,
    A catalyst provided in an exhaust path of the engine through which exhaust gas from the engine flows;
    A plurality of oxygen sensors arranged in the exhaust path for detecting the oxygen concentration of the exhaust gas;
    An engine unit comprising: control means for calculating an air-fuel ratio based on the oxygen concentration of the exhaust gas detected by the oxygen sensor;
    The plurality of oxygen sensors includes:
    An upstream oxygen sensor disposed in an exhaust path upstream of the catalyst;
    A downstream oxygen sensor disposed in the exhaust path downstream of the catalyst,
    The exhaust path on the downstream side of the catalyst includes a heat exchanger that heats water with the exhaust gas,
    The downstream oxygen sensor is disposed in the heat exchanger, and the downstream oxygen sensor is cooled by water flowing through the heat exchanger.
  7.  前記触媒の下流側近傍に配置されるとともに前記制御手段に電気的に接続され、前記排気ガス温度を検出する温度センサをさらに備え、
     前記下流側酸素センサは、ヒータを有し、
     前記制御手段は、
     前記温度センサにより検出される排気ガスの温度に基づいて前記下流側酸素センサのヒータの通電タイミングを制御する、ことを特徴とする請求項6に記載のエンジンユニット。
    A temperature sensor disposed near the downstream side of the catalyst and electrically connected to the control means for detecting the exhaust gas temperature;
    The downstream oxygen sensor has a heater,
    The control means includes
    The engine unit according to claim 6, wherein energization timing of a heater of the downstream oxygen sensor is controlled based on a temperature of exhaust gas detected by the temperature sensor.
PCT/JP2015/056882 2014-06-27 2015-03-09 Engine unit WO2015198643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529106A JPWO2015198643A1 (en) 2014-06-27 2015-03-09 Engine unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014133253 2014-06-27
JP2014-133253 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198643A1 true WO2015198643A1 (en) 2015-12-30

Family

ID=54937746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056882 WO2015198643A1 (en) 2014-06-27 2015-03-09 Engine unit

Country Status (2)

Country Link
JP (1) JPWO2015198643A1 (en)
WO (1) WO2015198643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061336A (en) * 2018-10-12 2020-04-16 日本碍子株式会社 Fuel cell device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244242A (en) * 1988-08-03 1990-02-14 Ngk Insulators Ltd Fault detection type oxygen sensor
JPH06294342A (en) * 1993-04-12 1994-10-21 Unisia Jecs Corp Air-fuel ratio feedback controller of internal combustion engine
JPH08312427A (en) * 1995-05-19 1996-11-26 Yamaha Motor Co Ltd Lean combustion control method and device of internal combustion engine
JP2003201888A (en) * 2002-01-09 2003-07-18 Toyota Motor Corp Method and device for reducing exhaust emission purifying catalyst of internal combustion engine
JP2006170044A (en) * 2004-12-15 2006-06-29 Yanmar Co Ltd Air-fuel ratio control system for gas engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267349A (en) * 2007-04-24 2008-11-06 Yanmar Co Ltd Engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244242A (en) * 1988-08-03 1990-02-14 Ngk Insulators Ltd Fault detection type oxygen sensor
JPH06294342A (en) * 1993-04-12 1994-10-21 Unisia Jecs Corp Air-fuel ratio feedback controller of internal combustion engine
JPH08312427A (en) * 1995-05-19 1996-11-26 Yamaha Motor Co Ltd Lean combustion control method and device of internal combustion engine
JP2003201888A (en) * 2002-01-09 2003-07-18 Toyota Motor Corp Method and device for reducing exhaust emission purifying catalyst of internal combustion engine
JP2006170044A (en) * 2004-12-15 2006-06-29 Yanmar Co Ltd Air-fuel ratio control system for gas engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061336A (en) * 2018-10-12 2020-04-16 日本碍子株式会社 Fuel cell device

Also Published As

Publication number Publication date
JPWO2015198643A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US8024105B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
CN107076045B (en) Control device and control method for internal combustion engine
US9291112B2 (en) Method and control unit for detecting a voltage offset of a voltage-lambda characteristic curve
JP5024676B2 (en) Catalyst deterioration suppressor
JP5402903B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP2008208837A (en) Engine control method
US20120215427A1 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
US8515650B2 (en) Control system of internal combustion engine
JP2009024613A (en) Device for acquiring degree of deterioration of catalyst of internal combustion engine
US20120174900A1 (en) Apparatus and method for detecting variation abnormality in air-fuel ratio between cylinders
US6865879B2 (en) Method and device for determining the fuel quantity for a burner in the exhaust-gas system of an internal combustion engine
JP2010174790A (en) Control device of air-fuel ratio sensor
WO2015198643A1 (en) Engine unit
CN106414968B (en) Method for correcting a voltage-lambda characteristic curve
US20130133400A1 (en) Device for measuring at least one exhaust gas component in an exhaust gas duct of a combustion process
JP4844587B2 (en) Catalyst deterioration diagnosis device
JP2009250086A (en) Abnormality diagnostic system of air-fuel ratio sensor
JP5337140B2 (en) Air-fuel ratio control device for internal combustion engine
JP5057240B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2005351153A (en) Catalytic deterioration determining device
JP4789011B2 (en) Failure diagnosis device for exhaust gas sensor
JP2006307716A (en) Air-fuel ratio control device for internal combustion engine
JP2010025024A (en) Abnormality detector of temperature sensor
US8560170B2 (en) Method for estimating amount of heat received by refrigerant and controller
WO2017065159A1 (en) Engine unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810842

Country of ref document: EP

Kind code of ref document: A1