WO2015198567A1 - Sulfur-removing material, and purification column and organic-matter-analysis pretreatment method using said sulfur-removing material - Google Patents

Sulfur-removing material, and purification column and organic-matter-analysis pretreatment method using said sulfur-removing material Download PDF

Info

Publication number
WO2015198567A1
WO2015198567A1 PCT/JP2015/003060 JP2015003060W WO2015198567A1 WO 2015198567 A1 WO2015198567 A1 WO 2015198567A1 JP 2015003060 W JP2015003060 W JP 2015003060W WO 2015198567 A1 WO2015198567 A1 WO 2015198567A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
removing material
inorganic particles
silica gel
material according
Prior art date
Application number
PCT/JP2015/003060
Other languages
French (fr)
Japanese (ja)
Inventor
恒彦 寺田
勉 村尾
雄真 高野
Original Assignee
タツタ電線株式会社
株式会社タツタ環境分析センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社, 株式会社タツタ環境分析センター filed Critical タツタ電線株式会社
Priority to JP2016529059A priority Critical patent/JP6063095B2/en
Priority to CN201580022459.4A priority patent/CN106461620B/en
Publication of WO2015198567A1 publication Critical patent/WO2015198567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a sulfur removing material that can be suitably used for pretreatment of organic substance analysis such as residual organic pollutants, a purification column using the same, and a pretreatment method of organic substance analysis.
  • POPs Persistent Organic Pollutants
  • PCB polychlorinated biphenyl
  • the sample is extracted with toluene, hexane or the like, and the extract is purified using, for example, a multilayer silica gel column.
  • a column filler for removing sulfur in the sample JIS K0311 ( Silver nitrate silica gel described in (Measurement method of dioxins in exhaust gas) is generally used (for example, Patent Documents 1 and 2).
  • Silver nitrate silica gel is effective in removing sulfur by forming a complex with sulfur, but has a problem that it is troublesome to manufacture and is expensive. On the other hand, there is a demand for a sulfur removal material that is cheaper and has a high sulfur removal effect, but the present situation is that a sulfur removal material that satisfies these requirements has not yet been obtained.
  • US Pat. No. 6,057,049 uses chromatographic columns such as silica, organic polymers, siliceous polymers, graphite, etc., for selective absorption of specific components of the sample mixture in chromatographic separation and preliminary stages of analysis.
  • the separation medium described in Patent Document 3 is mainly intended to improve the separation efficiency by increasing the thermal conductivity of the separation medium in chromatographic separation performed at a very high pressure.
  • unrelated to sulfur removal as a pretreatment for analysis unrelated to sulfur removal as a pretreatment for analysis.
  • the selection range of the first and second substances constituting each of the above particles is extremely wide, and the blending amount of the second particles is small.
  • the total amount of both is preferably 1 to 25%, and most preferably about 10%. ing.
  • the present invention has been made in view of the above, and an object thereof is to provide a sulfur removing material that is cheaper than silver nitrate silica gel and has a high sulfur removing effect. It is another object of the present invention to provide a purification column using the sulfur removing material and a pretreatment method for organic substance analysis.
  • the sulfur removing material of the present invention is a sulfur removing material for removing sulfur in a liquid, and is composed of a mixture of inorganic particles having a metal having reactivity with sulfur on at least a part of the surface and an inorganic filler. Shall.
  • one or more selected from copper, silver and iron can be used as the metal having reactivity with sulfur.
  • inorganic particles copper particles having at least a part of the surface coated with silver can be used.
  • the specific surface area of the inorganic particles is preferably 0.2 m 2 / g or more.
  • the inorganic particles are preferably in a dendritic shape or a lump having irregularities on the surface.
  • the size of the inorganic particles is preferably an average particle size of 1 to 200 ⁇ m.
  • the inorganic filler one or more selected from silica gel, alumina, sea sand, and glass beads can be used.
  • the size of the inorganic filler is preferably an average particle size of 60 to 200 ⁇ m.
  • the blending ratio of the inorganic particles is preferably in the range of 0.1 to 50% by mass.
  • the purification column of the present invention includes the sulfur removing material of the present invention.
  • the pretreatment method for organic substance analysis of the present invention is a method for removing sulfur using the sulfur removing material of the present invention.
  • the sulfur removing material of the present invention can be manufactured at a lower cost than silver nitrate silica gel and has a high sulfur removing ability. Therefore, by using this, it is possible to further improve the accuracy and efficiency of analysis while reducing the cost of pretreatment for the analysis of organic substances such as residual organic pollutants.
  • the sulfur removing material of the present invention has the ability to remove not only sulfur but also analysis interfering components such as polycyclic aromatic hydrocarbons (PAHs) and unsaturated hydrocarbons to the same level or more as silver nitrate silica gel.
  • PAHs polycyclic aromatic hydrocarbons
  • unsaturated hydrocarbons to the same level or more as silver nitrate silica gel.
  • the sulfur removing material of the present invention and the sulfur removing method using the same, the analysis of residual organic pollutants such as dioxins and PCBs contained in waste water, exhaust gas, soil, etc. is cheaper and more expensive than before. It becomes possible to carry out with accuracy.
  • the sulfur removing material of the present invention comprises a mixture of inorganic particles having a metal reactive with sulfur on at least a part of the surface and an inorganic filler.
  • the inorganic particles are not particularly limited as long as they have a metal having reactivity with sulfur in at least a part of the surface. Therefore, for example, metal particles consisting of only one kind of metal having reactivity with sulfur can be used as a whole, or a metal having reactivity with sulfur or other inorganic substance forms a nucleus, and the surface of the nucleus Inorganic particles partially or wholly covered with a metal having reactivity with sulfur can also be used.
  • the type of metal having reactivity with sulfur is not particularly limited, but examples include copper, silver, iron, lead, zinc, magnesium, sodium, potassium, and the like. From the viewpoint of balance, copper and silver are particularly preferable.
  • the method for coating a part or all of the surface of the inorganic substance as a core with a metal having reactivity with sulfur is not particularly limited, and examples thereof include a method by electroless plating, a method by electroplating, vacuum deposition, ion Examples of the method include plating, ion sputtering, and mechanochemical method. From the viewpoint of ease of manufacturing the metal coating, a method using electroless plating is preferable.
  • the shape of the inorganic particles is not particularly limited, but a shape having a larger surface area is desirable for improving the sulfur removal ability. Therefore, a dendrid shape, a lump shape having irregularities on the surface generally called a “potato shape”, and a scale shape are preferable to a spherical shape close to a true sphere.
  • the inorganic particles include silver-coated copper particles in which copper particles form a nucleus and at least a part of the surface thereof is coated with silver. Particularly preferred. By covering with silver, the oxidation resistance of the copper particles can be improved.
  • the coating amount with silver is not particularly limited, but may be, for example, 1 to 20% by mass.
  • the above inorganic particles can be used alone or in a mixture of two or more.
  • the size of the inorganic particles is not limited, the average particle size is preferably 1 to 200 ⁇ m and more preferably 2 to 30 ⁇ m in view of sulfur removal ability and ease of handling.
  • the specific surface area of the inorganic particles is not limited, it is preferably 0.2 m 2 / g or more, and more preferably 0.3 m 2 / g or more in consideration of sulfur removal ability and the like.
  • the inorganic filler used in the present invention is a particle that plays a role of holding the inorganic particles at an appropriate interval inside a space such as a column, and itself does not need to have a sulfur removing ability.
  • the inorganic filler when the inorganic filler is mixed with the inorganic particles and packed in a column or the like under atmospheric pressure, the mixed state with the inorganic particles is stably maintained, and an organic solvent such as hexane is appropriately used. It is preferable that the particles can be transmitted at a high speed.
  • the type of inorganic filler is not particularly limited, and examples include silica gel, alumina, sea sand, glass beads and the like.
  • One of these inorganic fillers can be used alone, or a mixture of two or more can be used.
  • the size of the inorganic filler is preferably an average particle size of 5 to 600 ⁇ m, more preferably 60 to 200 ⁇ m from the viewpoint of sulfur removal ability and ease of handling.
  • the sulfur removing material of the present invention can be obtained by mixing the inorganic particles and the inorganic filler.
  • the mixing means is not particularly limited, and known stirring means can be appropriately used.
  • the mixing ratio of the inorganic particles is preferably in the range of 0.1 to 50% by mass from the viewpoint of excellent sulfur removal capability, and in the range of 5 to 10% by mass. It is more preferable that
  • the purification column of the present invention is a column containing the sulfur removing material of the present invention.
  • the specific configuration is not particularly limited, for example, as will be described later, in a multilayer silica gel column that has conventionally been composed of a silica gel layer and a silver nitrate silica gel layer, a layer filled with the sulfur removing material of the present invention instead of the silver nitrate silica gel layer As a use, it can be used as a pretreatment column for organic substance analysis such as dioxin.
  • the pretreatment method for organic substance analysis of the present invention is a method for removing sulfur using the sulfur removing material of the present invention.
  • the specific method is not limited, for example, using a multilayer silica gel column packed with the sulfur removing material of the present invention instead of silver nitrate silica gel as described above, in order to improve the analysis accuracy of organic substance analysis such as dioxin, toluene
  • a purification method for removing sulfur from a sample extracted with an organic solvent such as
  • FIG. 1 is a schematic diagram showing an example of a multilayer silica gel column used for pretreatment of organic substance analysis.
  • the multilayer silica gel column is formed by laminating silica gel and other fillers.
  • reference numeral 1 is copper powder or copper chip
  • reference numeral 2 is sodium sulfate
  • reference numerals 4, 7, and 9 are silica gel
  • Reference numeral 5 denotes 22% sulfuric acid silica gel
  • reference numeral 6 denotes 44% sulfuric acid silica gel
  • reference numeral 8 denotes 2% potassium hydroxide silica gel
  • reference numeral 10 denotes sodium sulfate
  • reference numeral 11 denotes a layer filled with quartz wool.
  • the layer denoted by reference numeral 3 is filled with the sulfur-removing material of the present invention instead of the conventionally used silver nitrate silica gel, and the sample solution is passed through this column in the same manner as before (atmospheric pressure and room temperature). By doing so, sulfur can be removed.
  • the amount of the sulfur removing material of the present invention is not particularly limited, but in order to obtain a sufficient sulfur removing effect, for example, when flowing down at a flow rate of about 2.5 ml / min using a column having an inner diameter of 10 to 15 mm,
  • the thickness of the sulfur-removing material layer of the invention is preferably 20 mm or more, and more preferably 20 to 30 mm in view of processing capability, cost, and the like.
  • silica gel 60N (Cat. No. 37565-79) manufactured by Kanto Chemical Co., Ltd. and 1.4 g of various inorganic particles (silver-coated copper powder) shown in Table 1 were mixed with an AUTOMATIC MIXER manufactured by Taitec. S-100) was used for vibration mixing. Moreover, the silver nitrate silica gel (silver content 6.5 mass%) was used as a comparative example.
  • the average particle size and specific surface area of the silver-coated copper powder were measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT3300EXII).
  • the sulfur removal materials of Examples 1 to 4 exhibited a higher sulfur treatment capacity than the silver nitrate silica gel of the comparative example.
  • the cleanup spike recovery rate of dioxins sufficiently satisfies 50 to 120% defined in JIS K0311, while the sulfur removal material of the present invention is relatively inexpensive. It can be seen that the sulfur removal effect is equivalent to or better than that of silver nitrate silica gel.
  • GC-MS ⁇ Gas chromatograph mass spectrometry (GC-MS) apparatus> GC: 7890A manufactured by Agilent Technologies MS: JMS-Q1050GC made by JEOL ⁇ GC measurement conditions> Carrier gas: He Inlet condition: Splitless mode Inlet temperature condition: 280 ° C Oven temperature condition: Initially held at 150 ° C. for 1 minute, then heated at a rate of temperature increase of 20 ° C./min and held at 320 ° C. for 10 minutes. The maximum temperature was 320 ° C. and the stabilization time was 0.1 minute. ⁇ MS measurement conditions> Ionization method: EI method Ionization current: 70 ⁇ A Ionization energy: 70 eV Detector voltage: -1000V Ion source temperature: 280 ° C GCITF temperature: 280 ° C
  • the column (inner diameter: 13 mm) was filled with the sulfur removal material of Example 1 or the silver nitrate silica gel of Comparative Example (packing height: 3 cm), and the crude extract sample of the exhaust gas sample was allowed to flow down for purification treatment. Later, GC-MS analysis was performed under the same conditions as described above.
  • the result of the treatment with the sulfur removing material of Example 1 is shown in FIG. 2 (3), and the result of the treatment with the silver nitrate silica gel of the comparative example is shown in (2).
  • the sulfur removing material of the present invention is equivalent to or better than silver nitrate silica gel in the ability to remove analysis interfering components such as polycyclic aromatic hydrocarbons and monocyclic aromatic hydrocarbons.
  • Multilayer silica gel column 1 Copper powder or copper chip 2 ; Sodium sulfate 3 — Sulfur removal material 4,7,9 ; Silica gel 5 ?? 22% sulfuric acid silica gel 6 ?? 44% sulfuric acid silica gel 8 ?? 2% potassium hydroxide silica gel 10 ... Sodium sulfate 11 ... Quartz wool a ... Peak due to polycyclic aromatic hydrocarbon b ... Peak due to unsaturated hydrocarbon

Abstract

A mixture of an inorganic filler and inorganic particles that have a metal that reacts with sulfur on at least parts of the surfaces thereof is used as a sulfur-removing material that is less expensive than silver-nitrate silica gel and exhibits high sulfur-removal effectiveness. A pretreatment for organic-matter analysis is performed in a purification column using said sulfur-removing material.

Description

硫黄除去材料、並びにこれを用いた精製カラム及び有機物質分析の前処理方法Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis
 本発明は、残留性有機汚染物質等の有機物質分析の前処理等に好適に用いることのできる硫黄除去材料、並びにこれを用いた精製カラム及び有機物質分析の前処理方法に関するものである。 The present invention relates to a sulfur removing material that can be suitably used for pretreatment of organic substance analysis such as residual organic pollutants, a purification column using the same, and a pretreatment method of organic substance analysis.
 排水、排ガス、土壌等に含まれるダイオキシン類やポリ塩化ビフェニル(PCB)等の残留性有機汚染物質(Persistent Organic Pollutants、POPs)の定性・定量分析を行う際には、分析精度向上のための前処理として、試料中の分析妨害成分を予め除去する操作が通常行われる。 Before conducting qualitative and quantitative analysis of persistent organic pollutants (Persistent Organic Pollutants, POPs) such as dioxins and polychlorinated biphenyl (PCB) contained in wastewater, exhaust gas, soil, etc. As the treatment, an operation of previously removing an analysis interfering component in the sample is usually performed.
 具体的には、試料をトルエン、ヘキサン等で抽出し、例えば多層シリカゲルカラム等を用いてその抽出物の精製を行っており、試料中の硫黄除去のためのカラム充填材としては、JIS K0311(排ガス中のダイオキシン類の測定方法)に記載されている硝酸銀シリカゲルが一般に使用されている(例えば、特許文献1,2)。 Specifically, the sample is extracted with toluene, hexane or the like, and the extract is purified using, for example, a multilayer silica gel column. As a column filler for removing sulfur in the sample, JIS K0311 ( Silver nitrate silica gel described in (Measurement method of dioxins in exhaust gas) is generally used (for example, Patent Documents 1 and 2).
 硝酸銀シリカゲルは硫黄と錯体を形成することにより硫黄除去に効果を奏するが、製造に手間が掛かり、高価であるという問題を有する。これに対し、より安価で、硫黄除去効果も高い硫黄除去材料が求められているが、これらの要求を満たす硫黄除去材料は未だ得られていないのが現状である。 Silver nitrate silica gel is effective in removing sulfur by forming a complex with sulfur, but has a problem that it is troublesome to manufacture and is expensive. On the other hand, there is a demand for a sulfur removal material that is cheaper and has a high sulfur removal effect, but the present situation is that a sulfur removal material that satisfies these requirements has not yet been obtained.
 これに関連し、特許文献3には、クロマトグラフィー分離や分析の予備段階でサンプル混合物の特定の成分の選択的吸収のために、シリカ、有機ポリマー、ケイ質ポリマー、グラファイト等のクロマトグラフィーカラムで従来から用いられている第1物質からなる第1の粒子と、この第1物質より高い熱伝導率を有する銀、銅、アルミニウムその他の金属、ダイヤモンド等の炭素同素体、アルミナ等のセラミックス等の第2物質からなる第2の粒子との混合物を分離媒体として用いることが開示されている。 In this connection, US Pat. No. 6,057,049 uses chromatographic columns such as silica, organic polymers, siliceous polymers, graphite, etc., for selective absorption of specific components of the sample mixture in chromatographic separation and preliminary stages of analysis. First particles made of a first substance used in the past, silver, copper, aluminum and other metals having higher thermal conductivity than the first substance, carbon allotropes such as diamond, ceramics such as alumina, etc. It is disclosed that a mixture with second particles composed of two substances is used as a separation medium.
 しかしながら、特許文献3に記載された分離媒体は、非常に高い圧力で実施されるクロマトグラフィー分離等において、分離媒体の熱伝導率の増加により分離効率を向上させることを主な目的とするものであり、分析前処理としての硫黄除去とは無関係である。上記各粒子を構成する第1及び第2の物質の選択範囲は極めて広く、第2の粒子の配合量は少なく、両者の合計量中1~25%が好ましく、約10%が最も好ましいとされている。 However, the separation medium described in Patent Document 3 is mainly intended to improve the separation efficiency by increasing the thermal conductivity of the separation medium in chromatographic separation performed at a very high pressure. Yes, unrelated to sulfur removal as a pretreatment for analysis. The selection range of the first and second substances constituting each of the above particles is extremely wide, and the blending amount of the second particles is small. The total amount of both is preferably 1 to 25%, and most preferably about 10%. ing.
特開2002-40007号公報Japanese Patent Laid-Open No. 2002-40007 特開2002-122577号公報JP 2002-122577 A 特表2010-527003号公報Special table 2010-527003
 本発明は上記に鑑みてなされたものであり、硝酸銀シリカゲルよりも安価であり、かつ硫黄除去効果の高い硫黄除去材料を提供することを目的とする。また、その硫黄除去材料を用いた精製カラム及び有機物質分析の前処理方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a sulfur removing material that is cheaper than silver nitrate silica gel and has a high sulfur removing effect. It is another object of the present invention to provide a purification column using the sulfur removing material and a pretreatment method for organic substance analysis.
 本発明の硫黄除去材料は、液体中の硫黄を除去する硫黄除去材料であって、硫黄との反応性を有する金属を表面の少なくとも一部に有する無機粒子と、無機充填材との混合物からなるものとする。 The sulfur removing material of the present invention is a sulfur removing material for removing sulfur in a liquid, and is composed of a mixture of inorganic particles having a metal having reactivity with sulfur on at least a part of the surface and an inorganic filler. Shall.
 上記硫黄除去材料において、硫黄との反応性を有する金属としては、銅、銀及び鉄の中から選択された1種又は2種以上を用いることができる。 In the sulfur removing material, one or more selected from copper, silver and iron can be used as the metal having reactivity with sulfur.
 上記無機粒子としては、表面の少なくとも一部が銀で被覆された銅粒子を用いることができる。 As the inorganic particles, copper particles having at least a part of the surface coated with silver can be used.
 無機粒子の比表面積は、0.2m2/g以上であることが好ましい。 The specific surface area of the inorganic particles is preferably 0.2 m 2 / g or more.
 また、無機粒子は、デンドライド形状又は表面に凹凸を有する塊状であることが好ましい。 In addition, the inorganic particles are preferably in a dendritic shape or a lump having irregularities on the surface.
 無機粒子の大きさは、平均粒径1~200μmであることが好ましい。 The size of the inorganic particles is preferably an average particle size of 1 to 200 μm.
 上記無機充填材としては、シリカゲル、アルミナ、海砂、及びガラスビーズの中から選択された1種又は2種以上を用いることができる。 As the inorganic filler, one or more selected from silica gel, alumina, sea sand, and glass beads can be used.
 無機充填材の大きさは、平均粒径60~200μmであることが好ましい。 The size of the inorganic filler is preferably an average particle size of 60 to 200 μm.
 上記無機粒子と無機充填材との混合物中、無機粒子の配合割合は0.1~50質量%の範囲内であることが好ましい。 In the mixture of the inorganic particles and the inorganic filler, the blending ratio of the inorganic particles is preferably in the range of 0.1 to 50% by mass.
 本発明の精製カラムは、上記本発明の硫黄除去材料を含むものとする。 The purification column of the present invention includes the sulfur removing material of the present invention.
 本発明の有機物質分析の前処理方法は、上記本発明の硫黄除去材料を用いて硫黄除去を行う方法とする。 The pretreatment method for organic substance analysis of the present invention is a method for removing sulfur using the sulfur removing material of the present invention.
 本発明の硫黄除去材料は、硝酸銀シリカゲルより安価で製造でき、かつ硫黄除去能力も高い。従って、これを用いることにより、残留性有機汚染物質等の有機物質の分析の前処理のコストを下げつつ、分析の精度や効率をより向上させることが可能となる。 The sulfur removing material of the present invention can be manufactured at a lower cost than silver nitrate silica gel and has a high sulfur removing ability. Therefore, by using this, it is possible to further improve the accuracy and efficiency of analysis while reducing the cost of pretreatment for the analysis of organic substances such as residual organic pollutants.
 また、本発明の硫黄除去材料は、硫黄のみならず、多環芳香族炭化水素(PAHs)や不飽和炭化水素等の分析妨害成分を除去する能力も硝酸銀シリカゲルと同程度以上に有する。 Further, the sulfur removing material of the present invention has the ability to remove not only sulfur but also analysis interfering components such as polycyclic aromatic hydrocarbons (PAHs) and unsaturated hydrocarbons to the same level or more as silver nitrate silica gel.
 従って、本発明の硫黄除去材料及びこれを用いる硫黄除去方法を用いることにより、排水、排ガス、土壌等に含まれるダイオキシン類やPCB等の残留性有機汚染物質の分析を、従来よりも安価かつ高精度で行うことが可能となる。 Therefore, by using the sulfur removing material of the present invention and the sulfur removing method using the same, the analysis of residual organic pollutants such as dioxins and PCBs contained in waste water, exhaust gas, soil, etc. is cheaper and more expensive than before. It becomes possible to carry out with accuracy.
多層シリカゲルカラムの概略を示す模式断面図である。It is a schematic cross section which shows the outline of a multilayer silica gel column. (1)排ガス試料の粗抽出液(精製処理前)、(2)排ガス試料の粗抽出液を硝酸銀シリカゲルにより精製した処理液、及び(3)排ガス試料の粗抽出液を実施例1の硫黄除去材料により精製した処理液の各試料につき、ガスクロマトグラフ質量分析(GC-MS)を行った結果を示すクロマトグラムである。(1) Crude extract of exhaust gas sample (before purification treatment), (2) Treatment solution of crude exhaust gas sample purified with silver nitrate silica gel, and (3) Sulfur removal of crude extract of exhaust gas sample of Example 1 2 is a chromatogram showing the results of performing gas chromatograph mass spectrometry (GC-MS) for each sample of the treatment liquid purified by the material.
 以下、本発明の実施の形態を、より具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically.
 本発明の硫黄除去材料は、上記のとおり、硫黄との反応性を有する金属を表面の少なくとも一部に有する無機粒子と、無機充填材との混合物からなる。 As described above, the sulfur removing material of the present invention comprises a mixture of inorganic particles having a metal reactive with sulfur on at least a part of the surface and an inorganic filler.
 まず、無機粒子は硫黄との反応性を有する金属を表面の少なくとも一部に有するものであれば特に限定されない。従って、例えば粒子全体が硫黄との反応性を有する金属1種類のみからなる金属粒子も使用でき、あるいは硫黄との反応性を有する金属又はそれ以外の無機物質が核をなし、その核の表面の一部又は全部が硫黄との反応性を有する金属によって被覆されている無機粒子も使用できる。 First, the inorganic particles are not particularly limited as long as they have a metal having reactivity with sulfur in at least a part of the surface. Therefore, for example, metal particles consisting of only one kind of metal having reactivity with sulfur can be used as a whole, or a metal having reactivity with sulfur or other inorganic substance forms a nucleus, and the surface of the nucleus Inorganic particles partially or wholly covered with a metal having reactivity with sulfur can also be used.
 上記硫黄との反応性を有する金属の種類は特に限定されないが、例としては、銅、銀、鉄、鉛、亜鉛、マグネシウム、ナトリウム、カリウム等が挙げられ、硫黄との反応性とコストとのバランスの観点から、銅、銀が特に好ましい。 The type of metal having reactivity with sulfur is not particularly limited, but examples include copper, silver, iron, lead, zinc, magnesium, sodium, potassium, and the like. From the viewpoint of balance, copper and silver are particularly preferable.
 核となる無機物質の表面の一部又は全部を硫黄との反応性を有する金属によって被覆する方法も特に限定されず、例としては、無電解メッキによる方法、電気メッキによる方法、真空蒸着、イオンプレーティング、イオンスパッタリング、メカノケミカル法等の方法が挙げられるが、金属被覆の製造容易性の点から無電解メッキによる方法が好ましい。 The method for coating a part or all of the surface of the inorganic substance as a core with a metal having reactivity with sulfur is not particularly limited, and examples thereof include a method by electroless plating, a method by electroplating, vacuum deposition, ion Examples of the method include plating, ion sputtering, and mechanochemical method. From the viewpoint of ease of manufacturing the metal coating, a method using electroless plating is preferable.
 上記無機粒子の形状も特に限定されないが、硫黄除去能力の向上のためには表面積がより大きい形状が望ましい。従って、真球に近い球状よりも、デンドライド形状や、一般に「ジャガイモ形状」と称される表面に凹凸を有する塊状や、鱗片形状が好ましい。 The shape of the inorganic particles is not particularly limited, but a shape having a larger surface area is desirable for improving the sulfur removal ability. Therefore, a dendrid shape, a lump shape having irregularities on the surface generally called a “potato shape”, and a scale shape are preferable to a spherical shape close to a true sphere.
 上記のような表面積の大きい形状とし易い点やコスト等を総合的に考慮すると、無機粒子としては、銅粒子が核をなし、その表面の少なくとも一部が銀で被覆された銀コート銅粒子が特に好ましい。銀で被覆することにより銅粒子の耐酸化性を向上させることができる。その銀による被覆量は特に限定されないが、例えば1~20質量%とすることができる。 Considering comprehensively the point and cost, etc., which are easy to form with a large surface area as described above, the inorganic particles include silver-coated copper particles in which copper particles form a nucleus and at least a part of the surface thereof is coated with silver. Particularly preferred. By covering with silver, the oxidation resistance of the copper particles can be improved. The coating amount with silver is not particularly limited, but may be, for example, 1 to 20% by mass.
 上記無機粒子は1種を単独で用いることもでき、2種以上の混合物を用いることもできる。 The above inorganic particles can be used alone or in a mixture of two or more.
 上記無機粒子の大きさは限定されないが、硫黄除去能力や取扱いの容易さ等を考慮すると、平均粒径1~200μmであることが好ましく、2~30μmであることがより好ましい。 Although the size of the inorganic particles is not limited, the average particle size is preferably 1 to 200 μm and more preferably 2 to 30 μm in view of sulfur removal ability and ease of handling.
 上記無機粒子の比表面積は限定されないが、硫黄除去能力等を考慮すると、0.2m2/g以上であることが好ましく、0.3m2/g以上であることがより好ましい。 Although the specific surface area of the inorganic particles is not limited, it is preferably 0.2 m 2 / g or more, and more preferably 0.3 m 2 / g or more in consideration of sulfur removal ability and the like.
 次に、本発明で用いる無機充填材は、カラム等の空間内部で上記無機粒子どうしを適当な間隔で保持する役割をする粒子であり、それ自体は硫黄除去能力を有する必要はない。上記目的のために、無機充填材は、上記無機粒子と混合して大気圧下でカラム等に充填した場合に、無機粒子との混合状態が安定に保持され、かつヘキサン等の有機溶媒を適度な速度で透過させ得る粒子であることが好ましい。 Next, the inorganic filler used in the present invention is a particle that plays a role of holding the inorganic particles at an appropriate interval inside a space such as a column, and itself does not need to have a sulfur removing ability. For the above purpose, when the inorganic filler is mixed with the inorganic particles and packed in a column or the like under atmospheric pressure, the mixed state with the inorganic particles is stably maintained, and an organic solvent such as hexane is appropriately used. It is preferable that the particles can be transmitted at a high speed.
 無機充填材の種類は特に限定されず、例としては、シリカゲル、アルミナ、海砂、ガラスビーズ等が挙げられる。無機充填材はこれらのうちの1種を単独で使用することもでき、2種以上の混合物を使用することもできる。 The type of inorganic filler is not particularly limited, and examples include silica gel, alumina, sea sand, glass beads and the like. One of these inorganic fillers can be used alone, or a mixture of two or more can be used.
 無機充填材の大きさは、硫黄除去能力と取扱いの容易さ等の点から平均粒径5~600μmであることが好ましく、60~200μmであることがより好ましい。 The size of the inorganic filler is preferably an average particle size of 5 to 600 μm, more preferably 60 to 200 μm from the viewpoint of sulfur removal ability and ease of handling.
 本発明の硫黄除去材料は、上記無機粒子と無機充填材とを混合することにより得られる。混合の手段は特に限定されず、公知の撹拌手段を適宜用いることができる。 The sulfur removing material of the present invention can be obtained by mixing the inorganic particles and the inorganic filler. The mixing means is not particularly limited, and known stirring means can be appropriately used.
 上記無機粒子と無機充填材との混合物中、無機粒子の混合割合は、硫黄除去能力が優れる点から0.1~50質量%の範囲内であることが好ましく、5~10質量%の範囲内であることがより好ましい。 In the mixture of the inorganic particles and the inorganic filler, the mixing ratio of the inorganic particles is preferably in the range of 0.1 to 50% by mass from the viewpoint of excellent sulfur removal capability, and in the range of 5 to 10% by mass. It is more preferable that
 本発明の精製カラムは、上記本発明の硫黄除去材料を含むカラムである。具体的構成は特に限定されないが、例えば後述するように、従来はシリカゲル層と硝酸銀シリカゲル層等から構成されていた多層シリカゲルカラムにおいて、硝酸銀シリカゲル層に代えて本発明の硫黄除去材料を充填した層を有するカラムとすることができ、用途としては例えばダイオキシン等の有機物質分析の前処理用カラムとして使用することができる。 The purification column of the present invention is a column containing the sulfur removing material of the present invention. Although the specific configuration is not particularly limited, for example, as will be described later, in a multilayer silica gel column that has conventionally been composed of a silica gel layer and a silver nitrate silica gel layer, a layer filled with the sulfur removing material of the present invention instead of the silver nitrate silica gel layer As a use, it can be used as a pretreatment column for organic substance analysis such as dioxin.
 本発明の有機物質分析の前処理方法は、上記本発明の硫黄除去材料を用いて硫黄除去を行う方法である。具体的方法は限定されないが、例えば上記のように硝酸銀シリカゲルに代えて本発明の硫黄除去材料を充填した多層シリカゲルカラムを使用して、ダイオキシン等の有機物質分析の分析精度向上のために、トルエン等の有機溶媒で抽出した試料から硫黄を除去する精製方法とすることができる。 The pretreatment method for organic substance analysis of the present invention is a method for removing sulfur using the sulfur removing material of the present invention. Although the specific method is not limited, for example, using a multilayer silica gel column packed with the sulfur removing material of the present invention instead of silver nitrate silica gel as described above, in order to improve the analysis accuracy of organic substance analysis such as dioxin, toluene A purification method for removing sulfur from a sample extracted with an organic solvent such as
 図1は、有機物質分析の前処理に使用される多層シリカゲルカラムの一例を示す模式図である。本図に示すように多層シリカゲルカラムはシリカゲルその他の充填材が積層されてなり、本例において、符号1は銅粉又は銅チップ、符号2は硫酸ナトリウム、符号4,7,9はシリカゲル、符号5は22%硫酸シリカゲル、符号6は44%硫酸シリカゲル、符号8は2%水酸化カリウムシリカゲル、符号10は硫酸ナトリウム、符号11は石英ウールがそれぞれ充填された層を示す。符号3で示す層には、従来使用されてきた硝酸銀シリカゲルに代えて、本発明の硫黄除去材料を充填して、従来と同様の方法(大気圧下、室温)で試料液をこのカラムに透過させることにより硫黄を除去することができる。 FIG. 1 is a schematic diagram showing an example of a multilayer silica gel column used for pretreatment of organic substance analysis. As shown in this figure, the multilayer silica gel column is formed by laminating silica gel and other fillers. In this example, reference numeral 1 is copper powder or copper chip, reference numeral 2 is sodium sulfate, reference numerals 4, 7, and 9 are silica gel, Reference numeral 5 denotes 22% sulfuric acid silica gel, reference numeral 6 denotes 44% sulfuric acid silica gel, reference numeral 8 denotes 2% potassium hydroxide silica gel, reference numeral 10 denotes sodium sulfate, and reference numeral 11 denotes a layer filled with quartz wool. The layer denoted by reference numeral 3 is filled with the sulfur-removing material of the present invention instead of the conventionally used silver nitrate silica gel, and the sample solution is passed through this column in the same manner as before (atmospheric pressure and room temperature). By doing so, sulfur can be removed.
 本発明の硫黄除去材料の使用量は特に限定されないが、十分な硫黄除去効果を得るためには、例えば内径10~15mmのカラムを用いて約2.5ml/分の流量で流下させる場合、本発明の硫黄除去材料の層の厚さが20mm以上であることが好ましく、処理能力、コスト等を考慮すると20~30mmであることがより好ましい。 The amount of the sulfur removing material of the present invention is not particularly limited, but in order to obtain a sufficient sulfur removing effect, for example, when flowing down at a flow rate of about 2.5 ml / min using a column having an inner diameter of 10 to 15 mm, The thickness of the sulfur-removing material layer of the invention is preferably 20 mm or more, and more preferably 20 to 30 mm in view of processing capability, cost, and the like.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following, the blending ratio and the like are based on mass unless otherwise specified.
1.硫黄除去材料の製造
 実施例として、関東化学製シリカゲル60N(Cat.No.37565-79)20gと、表1に示す各種無機粒子(銀コート銅粉)1.4gを混合機(タイテック製AUTOMATIC MIXER S-100)を用いて振動混合した。また、比較例として硝酸銀シリカゲル(銀含有量6.5質量%)を用いた。
1. Production of Sulfur Removal Material As an example, 20 g of silica gel 60N (Cat. No. 37565-79) manufactured by Kanto Chemical Co., Ltd. and 1.4 g of various inorganic particles (silver-coated copper powder) shown in Table 1 were mixed with an AUTOMATIC MIXER manufactured by Taitec. S-100) was used for vibration mixing. Moreover, the silver nitrate silica gel (silver content 6.5 mass%) was used as a comparative example.
 なお、銀コート銅粉の平均粒径および比表面積は、レーザー回折・散乱式粒子径分布測定装置(日機装株式会社製、MT3300EXII)を用いて測定を行った。 The average particle size and specific surface area of the silver-coated copper powder were measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT3300EXII).
2.ヘキサン溶液中の硫黄除去能力の評価
 実施例の混合物0.8g及び比較例の硝酸銀シリカゲル0.8gに硫黄のヘキサン溶液3mg/mlをそれぞれ20ml混合し、15分間撹拌した。その後、蛍光X線分析(ファンダメンタルパラメータ法)によりヘキサン溶液中の未反応の硫黄を定量し、実施例の混合物及び比較例の硝酸銀シリカゲル1gあたりの硫黄の処理能力(mg/g)を算出した。結果を表1に示す。
2. Evaluation of Sulfur Removal Capability in Hexane Solution 0.8 g of the mixture of Example and 0.8 g of silver nitrate silica gel of Comparative Example were mixed with 20 ml of 3 mg / ml of sulfur in hexane and stirred for 15 minutes. Thereafter, unreacted sulfur in the hexane solution was quantified by fluorescent X-ray analysis (fundamental parameter method), and the throughput (mg / g) of sulfur per 1 g of the mixture of the examples and the silver nitrate silica gel of the comparative example was calculated. The results are shown in Table 1.
3.ダイオキシン類のクリーンアップスパイク回収率の評価
 実施例1の硫黄除去材料を用いて、JIS K0311(「7.6.1 クリーアップスパイク回収率の算出」)によりダイオキシン類のクリーンアップスパイク回収率を評価した。結果を表2に示す。
3. Evaluation of cleanup spike recovery rate of dioxins Using the sulfur removal material of Example 1, the cleanup spike recovery rate of dioxins was evaluated according to JIS K0311 ("7.6.1 Calculation of cleanup spike recovery rate"). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す通り、実施例1~4の硫黄除去材料は、比較例の硝酸銀シリカゲルよりも高い硫黄処理能力を示した。また、表2の通り、ダイオキシン類のクリーンアップスパイク回収率においても、JIS K0311で規定されている50~120%を十分に満足しており、本発明の硫黄除去材料が比較的安価でありながら、硝酸銀シリカゲルと同等以上の硫黄除去効果を有することがわかる。 As shown in Table 1, the sulfur removal materials of Examples 1 to 4 exhibited a higher sulfur treatment capacity than the silver nitrate silica gel of the comparative example. In addition, as shown in Table 2, the cleanup spike recovery rate of dioxins sufficiently satisfies 50 to 120% defined in JIS K0311, while the sulfur removal material of the present invention is relatively inexpensive. It can be seen that the sulfur removal effect is equivalent to or better than that of silver nitrate silica gel.
4.排ガス中の多環芳香族炭化水素及び不飽和炭化水素の除去能力の評価
 焼却炉からの排出ガス15検体をJIS K0311に準拠して採取、抽出したものから無作為に分取し、混合したものを排ガス試料の粗抽出液試料とし、以下の装置及び条件を用いてガスクロマトグラフ質量分析(GC-MS)を行った。得られたクロマトグラムを図2の(1)に示す。クロマトグラムの横軸は保持時間(RT、分)を示し、(a)に示した部分のピークは多環芳香族炭化水素によるものであり、(b)に示した部分のピークは不飽和炭化水素によるものである。
4). Evaluation of the ability to remove polycyclic aromatic hydrocarbons and unsaturated hydrocarbons in exhaust gas 15 samples of exhaust gas from incinerators collected and extracted in accordance with JIS K0311, randomly collected and mixed Was subjected to gas chromatograph mass spectrometry (GC-MS) using the following apparatus and conditions. The obtained chromatogram is shown in FIG. The horizontal axis of the chromatogram indicates the retention time (RT, minutes), the peak of the part shown in (a) is due to polycyclic aromatic hydrocarbons, and the peak of the part shown in (b) is unsaturated carbonization. This is due to hydrogen.
<ガスクロマトグラフ質量分析(GC-MS)装置>
 GC:Agilent Technologies製 7890A
 MS:JEOL製 JMS-Q1050GC
<GC測定条件>
 キャリアーガス:He
 注入口条件:Splitlessモード
 注入口温度条件:280℃
 オーブン温度条件:初期150℃で1分間保持した後、昇温速度20℃/分にて昇温し、320℃で10分間保持した。最高温度は320℃で安定時間0.1分間であった。
<MS測定条件>
 イオン化法:EI法
 イオン化電流:70μA
 イオン化エネルギー:70eV
 検出器電圧:-1000V
 イオン源温度:280℃
 GCITF温度:280℃
<Gas chromatograph mass spectrometry (GC-MS) apparatus>
GC: 7890A manufactured by Agilent Technologies
MS: JMS-Q1050GC made by JEOL
<GC measurement conditions>
Carrier gas: He
Inlet condition: Splitless mode Inlet temperature condition: 280 ° C
Oven temperature condition: Initially held at 150 ° C. for 1 minute, then heated at a rate of temperature increase of 20 ° C./min and held at 320 ° C. for 10 minutes. The maximum temperature was 320 ° C. and the stabilization time was 0.1 minute.
<MS measurement conditions>
Ionization method: EI method Ionization current: 70 μA
Ionization energy: 70 eV
Detector voltage: -1000V
Ion source temperature: 280 ° C
GCITF temperature: 280 ° C
 カラム(内径:13mm)に上記実施例1の硫黄除去材料又は比較例の硝酸銀シリカゲルをそれぞれ充填し(充填高さ:3cm)、上記排ガス試料の粗抽出液試料を流下させて精製処理し、処理後に上記と同じ条件でGC-MS分析を行った。実施例1の硫黄除去材料による処理の結果を図2の(3)に示し、比較例の硝酸銀シリカゲルによる処理の結果を(2)に示す。 The column (inner diameter: 13 mm) was filled with the sulfur removal material of Example 1 or the silver nitrate silica gel of Comparative Example (packing height: 3 cm), and the crude extract sample of the exhaust gas sample was allowed to flow down for purification treatment. Later, GC-MS analysis was performed under the same conditions as described above. The result of the treatment with the sulfur removing material of Example 1 is shown in FIG. 2 (3), and the result of the treatment with the silver nitrate silica gel of the comparative example is shown in (2).
 これらのクロマトグラムの比較から、本発明の硫黄除去材料は多環芳香族炭化水素や単環芳香族炭化水素等の分析妨害成分の除去能力においても硝酸銀シリカゲルと同等以上であることが分かる。 From the comparison of these chromatograms, it can be seen that the sulfur removing material of the present invention is equivalent to or better than silver nitrate silica gel in the ability to remove analysis interfering components such as polycyclic aromatic hydrocarbons and monocyclic aromatic hydrocarbons.
 A ……多層シリカゲルカラム
 1 ……銅粉又は銅チップ
 2 ……硫酸ナトリウム
 3 ……硫黄除去材料
 4,7,9……シリカゲル
 5 ……22%硫酸シリカゲル
 6 ……44%硫酸シリカゲル
 8 ……2%水酸化カリウムシリカゲル
 10 ……硫酸ナトリウム
 11 ……石英ウール
 a  ……多環芳香族炭化水素によるピーク
 b  ……不飽和炭化水素によるピーク
A …… Multilayer silica gel column 1 …… Copper powder or copper chip 2 …… Sodium sulfate 3 …… Sulfur removal material 4,7,9 …… Silica gel 5 …… 22% sulfuric acid silica gel 6 …… 44% sulfuric acid silica gel 8 …… 2% potassium hydroxide silica gel 10 ... Sodium sulfate 11 ... Quartz wool a ... Peak due to polycyclic aromatic hydrocarbon b ... Peak due to unsaturated hydrocarbon

Claims (11)

  1.  液体中の硫黄を除去する硫黄除去材料であって、
     硫黄との反応性を有する金属を表面の少なくとも一部に有する無機粒子と、無機充填材との混合物からなることを特徴とする硫黄除去材料。
    A sulfur removal material for removing sulfur in a liquid,
    A sulfur removing material comprising a mixture of inorganic particles having a metal having reactivity with sulfur on at least a part of a surface thereof and an inorganic filler.
  2.  前記硫黄との反応性を有する金属が、銅、銀及び鉄の中から選択された1種又は2種以上であることを特徴とする、請求項1に記載の硫黄除去材料。 2. The sulfur removing material according to claim 1, wherein the metal having reactivity with sulfur is one or more selected from copper, silver and iron.
  3.  前記無機粒子が、表面の少なくとも一部が銀で被覆された銅粒子であることを特徴とする、請求項1に記載の硫黄除去材料。 The sulfur removing material according to claim 1, wherein the inorganic particles are copper particles having at least a part of the surface coated with silver.
  4.  前記無機粒子の比表面積が、0.2m2/g以上であることを特徴とする、請求項1に記載の硫黄除去材料。 The sulfur removing material according to claim 1, wherein the specific surface area of the inorganic particles is 0.2 m 2 / g or more.
  5.  前記無機粒子が、デンドライド形状又は表面に凹凸を有する塊状であることを特徴とする、請求項1~4のいずれか1項に記載の硫黄除去材料。 The sulfur-removing material according to any one of claims 1 to 4, wherein the inorganic particles have a dendritic shape or a lump having irregularities on the surface.
  6.  前記無機粒子が、平均粒径1~200μmであることを特徴とする、請求項1~5のいずれか1項に記載の硫黄除去材料。 The sulfur removing material according to any one of claims 1 to 5, wherein the inorganic particles have an average particle diameter of 1 to 200 µm.
  7.  前記無機充填材が、シリカゲル、アルミナ、海砂、及びガラスビーズの中から選択された1種又は2種以上であることを特徴とする、請求項1~6のいずれか1項に記載の硫黄除去材料。 The sulfur according to any one of claims 1 to 6, wherein the inorganic filler is one or more selected from silica gel, alumina, sea sand, and glass beads. Removal material.
  8.  前記無機充填材が、平均粒径60~200μmであることを特徴とする、請求項1~7のいずれか1項に記載の硫黄除去材料。 The sulfur removing material according to any one of claims 1 to 7, wherein the inorganic filler has an average particle diameter of 60 to 200 µm.
  9.  前記無機粒子と無機充填材との混合物中、無機粒子の配合割合が0.1~50質量%の範囲内であることを特徴とする、請求項1~8のいずれか1項に記載の硫黄除去材料。 The sulfur according to any one of claims 1 to 8, wherein the mixture ratio of the inorganic particles and the inorganic filler is within a range of 0.1 to 50% by mass of the inorganic particles. Removal material.
  10.  請求項1~9のいずれか1項に記載の硫黄除去材料を含む精製カラム。 A purification column containing the sulfur removing material according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に硫黄除去材料を用いて硫黄除去を行うことを特徴とする、有機物質分析の前処理方法。 10. A pretreatment method for organic substance analysis, wherein sulfur removal is performed using a sulfur removal material according to any one of claims 1 to 9.
PCT/JP2015/003060 2014-06-25 2015-06-18 Sulfur-removing material, and purification column and organic-matter-analysis pretreatment method using said sulfur-removing material WO2015198567A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016529059A JP6063095B2 (en) 2014-06-25 2015-06-18 Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis
CN201580022459.4A CN106461620B (en) 2014-06-25 2015-06-18 Sulfur-removing material, purification column using same, and pretreatment method for organic substance analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130504 2014-06-25
JP2014-130504 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198567A1 true WO2015198567A1 (en) 2015-12-30

Family

ID=54937675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003060 WO2015198567A1 (en) 2014-06-25 2015-06-18 Sulfur-removing material, and purification column and organic-matter-analysis pretreatment method using said sulfur-removing material

Country Status (4)

Country Link
JP (1) JP6063095B2 (en)
CN (1) CN106461620B (en)
TW (1) TWI648087B (en)
WO (1) WO2015198567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730202A1 (en) 2019-04-26 2020-10-28 Covestro Deutschland AG Method for purification of sulphur-containing corrosive process gases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221002A (en) * 2019-07-15 2019-09-10 山东拜尔检测股份有限公司 The measuring method of Polychlorinated biphenyls in a kind of aquatic products
CN112730651B (en) * 2020-12-15 2022-08-05 湖北微谱技术有限公司 Rapid pretreatment method for dioxin sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003897A (en) * 2002-06-03 2004-01-08 Shinwa Kako Kk Carrier for chromatography, carrier for pretreatment, and kit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282935A (en) * 1996-04-09 1997-10-31 Hitachi Chem Co Ltd Silver-plated copper powder
JP4168108B2 (en) * 1999-03-03 2008-10-22 Dowaエレクトロニクス株式会社 Production method of silver-coated copper powder
US6271173B1 (en) * 1999-11-01 2001-08-07 Phillips Petroleum Company Process for producing a desulfurization sorbent
US6274533B1 (en) * 1999-12-14 2001-08-14 Phillips Petroleum Company Desulfurization process and novel bimetallic sorbent systems for same
JP2001311083A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Apparatus and method for removing sulfur compound in insulating oil
JP3656527B2 (en) * 2000-07-28 2005-06-08 Jfeスチール株式会社 Analytical pretreatment method for chromatographic column and dioxin extract
JP2002122577A (en) * 2000-10-17 2002-04-26 Miura Co Ltd Pretreatment method when determining concentration of dioxins, and sampling device and refining device used for pretreatment
JP4744270B2 (en) * 2005-11-04 2011-08-10 株式会社Snt Sulfur compound removing agent, method for producing the same, and sulfur compound removing filter
WO2008140996A1 (en) * 2007-05-08 2008-11-20 Waters Investments Limited Chromatographic and electrophoretic separation media and apparatus
CN101569853B (en) * 2008-04-29 2011-06-15 中国石油化工股份有限公司 Fuel oil adsorption-desulfurization sorbent and preparation method thereof
US9157899B2 (en) * 2008-12-25 2015-10-13 Ehime University Purifying agent for oily liquid containing polychlorinated biphenyls
TWI469826B (en) * 2009-06-24 2015-01-21 China Petrochemical Technology Co Ltd Desulfurization adsorbent and its preparation method and application
CN102617281A (en) * 2011-01-28 2012-08-01 株式会社大赛璐 Method for removing sulfur compound from alcohol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003897A (en) * 2002-06-03 2004-01-08 Shinwa Kako Kk Carrier for chromatography, carrier for pretreatment, and kit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIOXIN-RUI NI KAKARU TEISHITSU CHOSA SOKUTEI MANUAL, March 2009 (2009-03-01), pages 19, [retrieved on 20150814] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730202A1 (en) 2019-04-26 2020-10-28 Covestro Deutschland AG Method for purification of sulphur-containing corrosive process gases
WO2020216837A1 (en) 2019-04-26 2020-10-29 Covestro Intellectual Property Gmbh & Co. Kg Method for cleaning sulfurous corrosive process gases

Also Published As

Publication number Publication date
TWI648087B (en) 2019-01-21
CN106461620A (en) 2017-02-22
CN106461620B (en) 2020-02-18
JP6063095B2 (en) 2017-01-18
JPWO2015198567A1 (en) 2017-04-20
TW201615257A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
Hameed et al. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material
Chen et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes
Xie et al. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism
Liu et al. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments
Huang et al. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts
Lin et al. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: kinetics, influencing factors, and pathways
JP6063095B2 (en) Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis
Pourrezaei et al. Impact of petroleum coke characteristics on the adsorption of the organic fractions from oil sands process-affected water
Hu et al. Adsorption of perrhenate ion by bio-char produced from Acidosasa edulis shoot shell in aqueous solution
TWI626092B (en) New powder, powder composition, method for use thereof and use of the powder and powder composition
Ifelebuegu Removal of steriod hormones by activated carbon adsorption—kinetic and thermodynamic studies
Kumar et al. Adsorption of fluoride from aqueous solution using biochar prepared from waste peanut hull
Wang et al. Photodebromination behaviors of polybrominated diphenyl ethers in methanol/water systems: Mechanisms and predicting descriptors
JP5560239B2 (en) Gas chromatography separation method for silane / chlorosilanes and column for gas chromatography
Liu et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating
Sui et al. Sol–gel-derived thiocyanato-functionalized silica gel sorbents for adsorption of Fe (III) ions from aqueous solution: Kinetics, isotherms and thermodynamics
Yeo et al. Fixed-bed column method for removing arsenate from groundwater using aluminium-modified kapok fibres
Kuo et al. Chemical composition of nanoparticles released from thermal cutting of polystyrene foams and the associated isomerization of hexabromocyclododecane (HBCD) diastereomers
Radu et al. ADSORPTION OF ENDOCRINE DISRUPTORS ON EXFOLIATED GRAPHENE NANOPLATELETS.
Morcali et al. Platinum adsorption from chloride media using carbonized biomass and commercial sorbent
Tokarčíková et al. Biochar from maize hybrid fermentation residuelow cost and efficient heavy metals sorbent
Murthy et al. Study of biosorption of Cu (II) from aqueous solutions by coconut shell powder
Moustafa et al. Mercury removing capacity of multiwall carbon nanotubes as detected by cold vapor atomic absorption spectroscopy: kinetic and equilibrium studies
Ignatov et al. Physical-Chemical Properties of Mountain Water From Bulgaria Influenced by a Fullerene Containing Mineral Shungite and Aluminosilicate Mineral Zeolite
Liu et al. Use of manganese/silicon tailing waste for coking wastewater treatment: evaluation of phenol and phenylamine removal efficiencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811531

Country of ref document: EP

Kind code of ref document: A1