WO2015198393A1 - Power restricting device for imitation gun - Google Patents

Power restricting device for imitation gun Download PDF

Info

Publication number
WO2015198393A1
WO2015198393A1 PCT/JP2014/066674 JP2014066674W WO2015198393A1 WO 2015198393 A1 WO2015198393 A1 WO 2015198393A1 JP 2014066674 W JP2014066674 W JP 2014066674W WO 2015198393 A1 WO2015198393 A1 WO 2015198393A1
Authority
WO
WIPO (PCT)
Prior art keywords
bullet
airflow
gun
compressed
injection path
Prior art date
Application number
PCT/JP2014/066674
Other languages
French (fr)
Japanese (ja)
Inventor
巌 岩澤
Original Assignee
株式会社東京マルイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京マルイ filed Critical 株式会社東京マルイ
Priority to EP14895617.0A priority Critical patent/EP3163246B1/en
Priority to CN201480078838.0A priority patent/CN106471327B/en
Priority to PCT/JP2014/066674 priority patent/WO2015198393A1/en
Priority to JP2016528785A priority patent/JP6203955B2/en
Priority to TW103127998A priority patent/TWI555963B/en
Publication of WO2015198393A1 publication Critical patent/WO2015198393A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/50Magazines for compressed-gas guns; Arrangements for feeding or loading projectiles from magazines
    • F41B11/55Magazines for compressed-gas guns; Arrangements for feeding or loading projectiles from magazines the projectiles being stored in stacked order in a removable box magazine, rack or tubular magazine
    • F41B11/56Magazines for compressed-gas guns; Arrangements for feeding or loading projectiles from magazines the projectiles being stored in stacked order in a removable box magazine, rack or tubular magazine the magazine also housing a gas cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/70Details not provided for in F41B11/50 or F41B11/60
    • F41B11/73Sealing arrangements; Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/62Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas with pressure supplied by a gas cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/64Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas having a piston effecting a compressor stroke during the firing of each shot
    • F41B11/642Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas having a piston effecting a compressor stroke during the firing of each shot the piston being spring operated
    • F41B11/643Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas having a piston effecting a compressor stroke during the firing of each shot the piston being spring operated the piston being arranged concentrically with the barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/70Details not provided for in F41B11/50 or F41B11/60

Definitions

  • the present invention relates to a device that suppresses the launching power of a simulated gun in which a bullet is disposed on the jetting path of the airflow and is fired by a compressed airflow.
  • BB bullet a bullet having a diameter of 6 mm is used as described above and is called a BB bullet.
  • BB bullet a plastic molded product is sold by each manufacturer, but an example in which a metal ball having a ball bearing diameter of 6 mm is used for a bullet has also been reported.
  • CO 2 high-power power sources
  • the invention of the same number is provided in the gas discharge flow path, and automatically moves from the gas discharge flow path to the inner barrel when the pressure and flow rate of the compressed gas discharged from the gas accumulator chamber to the inner barrel reach a certain value or more.
  • the automatic valve has a configuration in which the pressure and flow rate of the compressed gas discharged from the gas accumulator chamber to the inner barrel are adjusted by closing the flow path of the automatic valve while narrowing.
  • an automatic valve there is also a problem of complication due to the addition of a member called an automatic valve, and there is a question in practical use that it cannot be said that the automatic valve does not close the gas discharge port before the bullet is fired.
  • the present invention has been made in view of the above points, and the problem is that even when a bullet having a mass larger than that of a plastic BB bullet is used, the kinetic energy of the fired bullet does not exceed a specified value.
  • Another object of the present invention is to provide a power suppression device for a simulated gun that hardly reduces the kinetic energy of a BB bullet when a plastic BB bullet and a bullet with a mass larger than that are mixed. It is to be.
  • the present invention provides a simulated gun in which a bullet is disposed on an airflow injection path and fired by a compressed airflow. Means is provided in which the airflow leakage portion to be leaked is formed in the above-described injection path or a portion communicating with the injection path.
  • the simulation gun to which the present invention can be applied is a simulation gun using a compressed air flow, and mainly an air gun using air and a so-called gas gun using a gas other than air. Therefore, in the present invention, the compressed air flow is a general term for compressed air and a flow of gas other than compressed air.
  • the apparatus of the present invention is characterized by having an airflow leakage portion that leaks a compressed airflow.
  • the compressed air current is injected into the BB bullet and the metal bullet with the same applied pressure, but the acceleration acting on the bullet follows the Newton equation of motion that is proportional to the acting force and inversely proportional to the mass of the bullet.
  • lighter (smaller mass) bullets start moving with less kinetic energy
  • heavier (higher mass) bullets can only start moving with higher kinetic energy.
  • the lighter BB bullet is fired with a short airflow leakage time, it takes a long airflow leakage time before a heavy metal bullet is fired.
  • the amount of compressed airflow used to fire one bullet is constant, and the power is suppressed by the amount of leakage.
  • a mode in which the airflow leakage portion is configured by a small hole or a gap that is always open and formed in a portion that directly communicates with the injection path or the injection path through which the compressed airflow can pass is preferable. is there. If the airflow leaking portion is always open, the configuration is further simplified, and the time difference until the bullet is fired is smaller than the method in which the airflow is not leaked.
  • the airflow leakage portion is located upstream from the position on the injection path where the bullets are arranged and is a constantly open flow path through which the compressed airflow can pass is one aspect of the present invention.
  • the airflow leakage portion may be formed in a portion from upstream to downstream of the position on the injection path where the bullet is arranged.
  • the present invention is configured and operates as described above, even when a bullet such as a metal having a larger mass is used in comparison with a plastic BB bullet, Suppressing the power so that the kinetic energy does not exceed the specified value has an effect that it can be achieved by the simplest configuration of a constantly open flow path. Further, according to the present invention, when a plastic BB bullet and a metal bullet having a mass larger than that of the plastic BB bullet are mixed and used, the power suppression device for the simulated gun that hardly reduces the kinetic energy due to the BB bullet. Can be provided.
  • FIG. 1 shows a simulated gun 10 to which a power suppression device according to the present invention is applied.
  • the simulated gun 10 is mainly an air gun using compressed air and a gas gun using a gas other than air.
  • the example shown in FIGS. 1 to 6 is a gas gun.
  • the gas gun uses a compressed gas as a compressed air flow, and its outline will be described, but the specific configuration may be the same as a known one.
  • the compressed gas is filled in the gas source 11, and is discharged from the discharge valve 13 that controls the gas discharge to the injection path 14 in accordance with the operation of the trigger 12, and is applied to the bullet 15 disposed in the rear loading portion of the barrel 16. Be injected.
  • a slide cylinder 17 is provided in the injection path 14 through which the compressed gas discharged flows, and the bullet 15 supplied from the magazine 19 is configured to be placed in the loading portion by sliding in the front-rear direction.
  • valve device 18 provided inside the slide cylinder 17 will be described.
  • the valve device 18 temporarily blocks the flow of the compressed air flow to the barrel side after the bullet is fired, and keeps the piston 27 located behind the cylinder 27 and the slide integrated therewith to move back the simulated blowback. It is something that will happen.
  • the valve device 18 is urged in the upstream direction of the gas flow by a coil spring of an urging means 18a disposed therein, and the area of the side opening 18b is changed by sliding.
  • the airflow leaking portion 20 is located upstream of the position on the injection path where the bullet 15 is disposed, and is a constantly open flow path through which the compressed airflow can pass. It is configured as.
  • the position on the injection path where the bullet 15 is disposed is a bullet loading portion at the rear of the barrel 16.
  • An embodiment of a power suppression device applied to such a gas gun will be described with reference to FIGS.
  • the arrow in each figure has shown roughly the flow direction of the compressed airflow in each example.
  • the airflow leakage portion 20 is a constantly open flow passage opened at the rear end of the barrel that is a part of the injection path 14 through which the compressed airflow can pass.
  • the small hole 21 is configured.
  • the hop-up device 26 is provided in the bullet loading portion. Therefore, the small hole 21 has a structure that penetrates both the barrel 16 and the tubular material of the hop-up device, and leaks the compressed airflow outside the injection path. It is something to be made.
  • the airflow leakage portion 20 makes the diameter of the barrel 16, which is a part of the injection path 14 through which the compressed airflow can pass, slightly larger than the diameter of the bullet 15.
  • the gap 22 can be formed around the bullet 15. Since it is the gap 22, it can be said that the channel is always open.
  • the hop-up device 26 provided in the loading section is formed slightly longer. The gap 22 in Example 2 leaks the compressed airflow around the bullet 15.
  • the airflow leaking portion 20 is a constantly open flow path opened in the nozzle 17a of the slide cylinder 17 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 23.
  • a small hole 23 is provided as a structure penetrating the slide cylinder nozzle 17a at a position rearward of the bullet loading portion, and it is the simplest structurally for leaking a compressed airflow outside the injection path. is there.
  • the airflow leakage portion 20 is a constantly open flow passage provided in the main body portion of the slide cylinder 17 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 24.
  • a small hole 24 is provided as a structure penetrating the slide cylinder nozzle 17 a at a position behind the loading portion and ahead of the piston 27. Therefore, this is also structurally simple as a compressed air flow is leaked outside the injection path.
  • the airflow leakage portion 20 is provided between the barrel rear end portion that is a part of the injection path 14 through which the compressed airflow can pass and the slide cylinder nozzle 17a.
  • the gap 25 is configured. Since this is also the gap 25, it can be said that the airflow leakage portion is always open.
  • the gap 25 in Example 5 can be set by adjusting the advance position of the slide cylinder 17.
  • FIG. 7 shows a basic configuration of an air gun, and a piston cylinder device 30 for compressing air is provided instead of a gas source of the gas gun.
  • the piston / cylinder device 30 includes a piston 28 and a cylinder 29, and uses compressed air as compressed air by the operation of the piston 28.
  • the cocking method of the piston 28 can be selected manually or electrically.
  • Example 1 of the air gun power suppression device shown in FIG. 8 the airflow leakage portion 20 is a constantly open flow passage opened at the rear end of the barrel that is a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 31. This is provided with the hop-up device 26 in the same manner as in the case of the gas gun power suppression device example 1. Therefore, the small hole 31 has a structure that penetrates both the barrel 16 and the cylinder of the hop-up device, and the injection path. The compressed airflow is leaked outside. In addition, this example 1 respond
  • the airflow leakage portion 20 makes the diameter of the barrel 16, which is a part of the injection path 14 through which the compressed airflow can pass, slightly larger than the diameter of the bullet 15.
  • it is configured as a gap 32. Since it is the gap 32, it can be said that this is also a constantly open channel.
  • the hop-up device 26 provided in the loading section is formed slightly longer.
  • the gap 32 in Example 2 leaks the compressed airflow around the bullet 15.
  • the second example corresponds to the second example (FIG. 3) for the gas gun.
  • the airflow leakage portion 20 is a flow path that is always open and is opened in the nozzle 29a of the airgun cylinder 29 as a part of the injection path 14 through which the compressed airflow can pass. It is comprised as the small hole 33 which is.
  • the small hole 33 which is.
  • this example 3 respond
  • Example 4 of the air gun power suppression device shown in FIG. 11, the airflow leakage portion 20 is a constantly open flow path provided in the main body portion of the slide cylinder 29 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 34.
  • a small hole 34 is provided as a structure penetrating the slide cylinder nozzle 29 a at a position behind the loading portion and ahead of the advance limit of the piston 28. Therefore, this is also structurally simple as a compressed air flow is leaked outside the injection path.
  • the airflow leakage portion 20 is provided between the barrel rear end portion that is a part of the injection path 14 through which the compressed airflow can pass and the slide cylinder nozzle 17a.
  • the gap 35 is configured. Since this is also the gap 25, it can be said that the airflow leakage portion is always open. Note that the gap 35 in Example 5 can be set by adjusting the advance position of the slide cylinder 17.
  • the present example 5 corresponds to the gas gun example 5 (FIG. 6).
  • Example 6 of the air gun power suppression device shown in FIG. 13 the airflow leakage portion 20 is located on the outer periphery of the piston 28 rather than the inner peripheral surface of the airgun cylinder 29, which is a portion communicating with the injection path 14 through which the compressed airflow can pass.
  • a gap 36 is formed by providing the diameter slightly smaller. Since it is the gap 36, it can be said that this is also a constantly open channel. In the case of Example 6, the compression capability of air is intentionally reduced.
  • the airflow leakage portion 20 is formed on the piston 28 that slides on the inner peripheral surface of the airgun cylinder 29, which is a portion communicating with the injection path 14 through which the compressed airflow can pass. It is configured by providing a small hole 37 penetrating therethrough. Since this is the small hole 37, this is also a constantly open channel.
  • Example 7 is the same as Example 5 in that the air compression capacity is reduced intentionally.
  • the kinetic energy of the fired bullet has a specified value. Since the power can be suppressed so as not to exceed, there is no risk of causing an unexpected power to cause a situation that would harm safety. Moreover, even if a plastic BB bullet and a metal bullet with a larger mass are used in combination, the power of the BB bullet can be hardly reduced, so that the simulated gun has almost the same power as the conventional one. And there is no fear of frustrating the user.
  • FIG. 5 is a cross-sectional explanatory view showing Example 2 in the same manner.
  • FIG. 10 is a cross-sectional explanatory view showing Example 3 in the same manner.
  • FIG. 6 is a cross-sectional explanatory view showing Example 4 in the same manner.
  • 9 is a cross-sectional explanatory view showing Example 5 in the same manner.
  • FIG. FIG. 6 is a cross-sectional explanatory view showing the main part of the structure of an air gun as another example of the power suppression device in the simulated gun according to the present invention.
  • FIG. 5 is a cross-sectional explanatory view showing Example 2 in the same manner.
  • FIG. 10 is a cross-sectional explanatory view showing Example 3 in the same manner.
  • FIG. 6 is a cross-sectional explanatory view showing Example 4 in the same manner.
  • 9 is a cross-sectional explanatory view showing Example 5 in the same manner.
  • FIG. 12 is a cross-sectional explanatory view showing Example 6 in the same manner.
  • FIG. 10 is a cross-sectional explanatory view showing Example 7 in the same manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)

Abstract

[Problem] To limit the kinetic energy of a fired bullet to a specified value, even when a bullet that has a larger mass than a plastic BB pellet is used. [Solution] In an imitation gun wherein a bullet is arranged in an airstream injection channel and is fired by means of a compressed airstream, an airstream leakage part (20) that leaks the compressed airstream is formed in the injection channel or in a section that leads into the injection channel as a means for restricting the firing power of the bullet (15) in accordance with the mass of the bullet.

Description

模擬銃における威力抑制装置Power control device for simulated gun
 本発明は気流の噴射径路上に弾丸を配置し、圧縮気流により発射する模擬銃において、発射威力を抑制する装置に関するものである。 The present invention relates to a device that suppresses the launching power of a simulated gun in which a bullet is disposed on the jetting path of the airflow and is fired by a compressed airflow.
 エアガン又はガスガンなどの模擬銃については、銃砲刀剣類所持等取締法第1条の2等において発射された弾丸の運動エネルギーについて規定されており、それによれば6mmの弾丸を使用した場合、特定された測定点におけるエネルギーが3.5J/cmよりも大きくなると準空気銃の扱いとなると理解される。従って、上記の規定値を超えるガスガンは製造されていない。しかし、幾つかの条件が重なった場合には、一時的に規定値を超えることも考えられる。例えば、真夏の高温下での使用は上記の問題を生じさせる可能性がある。 For simulated guns such as air guns and gas guns, the kinetic energy of bullets fired in Article 1 of Article 1 of the Law on Possession of Guns, Swords, etc. is stipulated. According to this, it is specified when a 6 mm bullet is used. It is understood that if the energy at the measurement point is greater than 3.5 J / cm 2, it is handled as a quasi-air gun. Therefore, no gas gun exceeding the specified value is manufactured. However, when several conditions overlap, it may be considered that the specified value is temporarily exceeded. For example, use at high temperatures in midsummer can cause the above problems.
 温度条件とは別に、メーカーの意図していない弾丸を用いたときには、それも問題になり得る。この種の模擬銃では上記のとおり直径6mmの弾丸が使用され、BB弾と呼ばれている。そのBB弾として、各メーカーから販売されているのはプラスチック成形品であるが、ボールベアリングの直径6mmの金属球を弾丸に流用した例も報告されている。このため、通常使用されるプラスチック製BB弾以外の重量弾の使用、真夏の高温下での使用及び通常使用される134aなどのガス以外のハイパワーなパワーソース(CO)の使用等の条件が組み合わされると、予測不能な弾速の上昇現象が発生し得る。 Apart from temperature conditions, it can also be a problem when using bullets not intended by the manufacturer. In this type of simulated gun, a bullet having a diameter of 6 mm is used as described above and is called a BB bullet. As the BB bullet, a plastic molded product is sold by each manufacturer, but an example in which a metal ball having a ball bearing diameter of 6 mm is used for a bullet has also been reported. For this reason, conditions such as the use of heavy bullets other than plastic BB bullets that are normally used, use under high temperatures in midsummer, and use of high-power power sources (CO 2 ) other than gas such as 134a that are normally used When combined, an unpredictable increase in bullet speed may occur.
 このように、プラスチック製BB弾よりも質量の大きい、金属製ボールベアリングなどが弾丸として使用されることは、メーカー各社にとって見過ごしにできない事態である。何らかの対策を講じなければ、期せずして違法行為が見逃される恐れもあり、当業界にとっても好ましいことではないからである。しかしながら、予想していなかった事態であるので金属製弾丸を区別したり、排除したりする技術も知られていない。 As described above, the use of a metal ball bearing or the like having a mass larger than that of a plastic BB bullet as a bullet is a situation that cannot be overlooked by manufacturers. If no measures are taken, there is a risk that illegal activities will be missed unexpectedly, which is not preferable for the industry. However, since this is an unexpected situation, there is no known technique for distinguishing or eliminating metal bullets.
 先行技術を調査すると、特開2009-14327号のエアガンに関する発明が見出された。同号の発明は、ガス放出流路内に設けられ、ガス蓄圧室からインナーバレルへ放出される圧縮ガスの圧力および流量が一定以上の値になると自動的にガス放出流路内からインナーバレルへの流路を自動バルブが、狭めつつ閉鎖することによりガス蓄圧室からインナーバレルへ放出される圧縮ガスの圧力および流量を調整するという構成を有する。しかしながら、自動バルブという部材の追加による複雑化の問題もあり、また、弾丸が発射される前に自動バルブがガス放出口を閉じないとはいえないなど、実用化には疑問が残る。 When the prior art was investigated, an invention related to an air gun disclosed in Japanese Patent Application Laid-Open No. 2009-14327 was found. The invention of the same number is provided in the gas discharge flow path, and automatically moves from the gas discharge flow path to the inner barrel when the pressure and flow rate of the compressed gas discharged from the gas accumulator chamber to the inner barrel reach a certain value or more. The automatic valve has a configuration in which the pressure and flow rate of the compressed gas discharged from the gas accumulator chamber to the inner barrel are adjusted by closing the flow path of the automatic valve while narrowing. However, there is also a problem of complication due to the addition of a member called an automatic valve, and there is a question in practical use that it cannot be said that the automatic valve does not close the gas discharge port before the bullet is fired.
特開2009-14327号JP 2009-14327 A
 本発明は前記の点に鑑みなされたもので、その課題は、プラスチック製のBB弾よりも質量の大きい弾丸が使用された場合でも、発射された弾丸の運動エネルギーが規定値を超えないようにするもので、特に、最も簡便な模擬銃における威力抑制装置を提供することである。また、本発明の他の課題は、プラスチック製のBB弾とそれよりも質量の大きい弾丸を混合使用した場合において、BB弾による運動エネルギーをほとんど低下させずに済む模擬銃における威力抑制装置を提供することである。 The present invention has been made in view of the above points, and the problem is that even when a bullet having a mass larger than that of a plastic BB bullet is used, the kinetic energy of the fired bullet does not exceed a specified value. In particular, it is an object of the present invention to provide a power control device for the simplest simulated gun. Another object of the present invention is to provide a power suppression device for a simulated gun that hardly reduces the kinetic energy of a BB bullet when a plastic BB bullet and a bullet with a mass larger than that are mixed. It is to be.
 前記の課題を解決するため、本発明は気流の噴射径路上に弾丸を配置し、圧縮気流により発射する模擬銃において、弾丸の発射威力を弾丸の質量に応じて抑制する手段として、圧縮気流を漏洩させる気流漏洩部を、上記噴射径路又は噴射径路に通じる部分に形成するという手段を講じたものである。本発明の適用が可能な模擬銃は、圧縮気流を使用する模擬銃であり、空気を使用するエアガンと空気以外の気体を使用するいわゆるガスガンが主なものである。従って、本発明において、圧縮気流は、圧縮空気と、圧縮された空気以外の気体の流れを総称するものである。 In order to solve the above-described problems, the present invention provides a simulated gun in which a bullet is disposed on an airflow injection path and fired by a compressed airflow. Means is provided in which the airflow leakage portion to be leaked is formed in the above-described injection path or a portion communicating with the injection path. The simulation gun to which the present invention can be applied is a simulation gun using a compressed air flow, and mainly an air gun using air and a so-called gas gun using a gas other than air. Therefore, in the present invention, the compressed air flow is a general term for compressed air and a flow of gas other than compressed air.
 その模擬銃の構成において、本発明の装置は、圧縮気流を漏洩させる気流漏洩部を有することを特徴とする。圧縮気流は、BB弾にも金属製の弾丸にも同等の加圧力で噴射されるが、弾丸に作用する加速度は、作用力に比例し、弾丸の質量に反比例するというニュートンの運動方程式に従う。 In the construction of the simulated gun, the apparatus of the present invention is characterized by having an airflow leakage portion that leaks a compressed airflow. The compressed air current is injected into the BB bullet and the metal bullet with the same applied pressure, but the acceleration acting on the bullet follows the Newton equation of motion that is proportional to the acting force and inversely proportional to the mass of the bullet.
 すなわち、より軽量な(質量の小さい)弾丸はより小さい運動エネルギーで移動を開始するのに対し、より重量物(質量の大きい)の弾丸はより大きい運動エネルギーでなければ移動を開始することができない。つまり、より軽量であるBB弾は気流の漏洩時間が短くして発射されるのに対して、より重量物である金属製の弾丸が発射されるまでには気流の漏洩時間も長くかかる。一方、1発の弾丸発射に使われる圧縮気流の量は一定であり、漏洩分だけ威力が抑制されることになる。 That is, lighter (smaller mass) bullets start moving with less kinetic energy, whereas heavier (higher mass) bullets can only start moving with higher kinetic energy. . That is, while the lighter BB bullet is fired with a short airflow leakage time, it takes a long airflow leakage time before a heavy metal bullet is fired. On the other hand, the amount of compressed airflow used to fire one bullet is constant, and the power is suppressed by the amount of leakage.
 本発明の装置として、気流漏洩部が、圧縮気流が通過し得る噴射径路又は噴射径路に、直接通じる部分に形成された、常時開口の小孔又は隙間によって構成されている形態は、好ましいものである。常時開口の気流漏洩部であれば、構成がより単純化され、また、気流を漏洩させない方式と比較して弾丸発射までの時間差もより少なくて済む。 As an apparatus of the present invention, a mode in which the airflow leakage portion is configured by a small hole or a gap that is always open and formed in a portion that directly communicates with the injection path or the injection path through which the compressed airflow can pass is preferable. is there. If the airflow leaking portion is always open, the configuration is further simplified, and the time difference until the bullet is fired is smaller than the method in which the airflow is not leaked.
 気流漏洩部は、弾丸の配置されている噴射径路上の位置よりも上流に位置しており、かつまた、圧縮気流が通過し得る常時開口の流路であるという構成は、本発明にとって一つの好ましい形態である。しかし、気流漏洩部は、弾丸の配置されている噴射径路上の位置の上流から下流にかけての部分に形成されるという形態も取り得る。 The configuration in which the airflow leakage portion is located upstream from the position on the injection path where the bullets are arranged and is a constantly open flow path through which the compressed airflow can pass is one aspect of the present invention. This is a preferred form. However, the airflow leakage portion may be formed in a portion from upstream to downstream of the position on the injection path where the bullet is arranged.
 本発明は以上のように構成され、かつ、作用するものであるから、プラスチック製のBB弾との比較において、より質量の大きい金属製などの弾丸が使用された場合でも、発射された弾丸の運動エネルギーが規定値を超えないように威力を抑制することが、常時開口の流路という最も簡便な構成によって達成できるという効果を奏する。また、本発明によれば、プラスチック製のBB弾とそれよりも質量の大きい金属製などの弾丸を混合使用した場合において、BB弾による運動エネルギーをほとんど低下させずに済む模擬銃における威力抑制装置を提供することができる。 Since the present invention is configured and operates as described above, even when a bullet such as a metal having a larger mass is used in comparison with a plastic BB bullet, Suppressing the power so that the kinetic energy does not exceed the specified value has an effect that it can be achieved by the simplest configuration of a constantly open flow path. Further, according to the present invention, when a plastic BB bullet and a metal bullet having a mass larger than that of the plastic BB bullet are mixed and used, the power suppression device for the simulated gun that hardly reduces the kinetic energy due to the BB bullet. Can be provided.
 以下図示の実施形態を参照して本発明をより詳細に説明する。図1は本発明に係る威力抑制装置を適用する模擬銃10を示しており、模擬銃10としては、圧縮空気を使用するエアガンと空気以外の気体を使用するガスガンが主なものである。図1ないし図6に示す例はガスガンの場合である。 Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments. FIG. 1 shows a simulated gun 10 to which a power suppression device according to the present invention is applied. The simulated gun 10 is mainly an air gun using compressed air and a gas gun using a gas other than air. The example shown in FIGS. 1 to 6 is a gas gun.
 ガスガンは圧縮気流として圧縮ガスを使用するもので、その概略について説明するが、具体的な構成は公知のものと同様で良い。圧縮ガスはガス源11に充填されており、トリガー12の操作に伴ってガス放出を制御する放出弁13から噴射径路14に放出され、バレル16の後部の装弾部に配置されている弾丸15に噴射される。放出された圧縮ガスが流れる噴射径路14にはスライドシリンダー17が装備されており、マガジン19から供給される弾丸15を、前後方向へのスライドにより装弾部に配置するように構成されている。 The gas gun uses a compressed gas as a compressed air flow, and its outline will be described, but the specific configuration may be the same as a known one. The compressed gas is filled in the gas source 11, and is discharged from the discharge valve 13 that controls the gas discharge to the injection path 14 in accordance with the operation of the trigger 12, and is applied to the bullet 15 disposed in the rear loading portion of the barrel 16. Be injected. A slide cylinder 17 is provided in the injection path 14 through which the compressed gas discharged flows, and the bullet 15 supplied from the magazine 19 is configured to be placed in the loading portion by sliding in the front-rear direction.
 本発明に係る威力抑制装置と直接関係するものではないが、スライドシリンダー17の内部に設けられている弁装置18について説明しておく。弁装置18は弾丸発射の後にバレル側への圧縮気流の流出を一時的に閉塞し、シリンダー内部に留めて後方に位置するピストン27、及びそれと一体のスライドを後退させ、模擬的なブローバックを起させるものである。弁装置18は内部に配置された付勢手段18aのコイルばねによってガス流の上流方向に付勢され、スライドにより側面の開口部18bの面積が変化するように構成されている。 Although not directly related to the power control device according to the present invention, the valve device 18 provided inside the slide cylinder 17 will be described. The valve device 18 temporarily blocks the flow of the compressed air flow to the barrel side after the bullet is fired, and keeps the piston 27 located behind the cylinder 27 and the slide integrated therewith to move back the simulated blowback. It is something that will happen. The valve device 18 is urged in the upstream direction of the gas flow by a coil spring of an urging means 18a disposed therein, and the area of the side opening 18b is changed by sliding.
 本発明に係る威力抑制装置において、気流漏洩部20は、弾丸15の配置されている噴射径路上の位置よりも上流に位置しており、かつまた、圧縮気流が通過し得る常時開口の流路として構成されている。上記弾丸15の配置されている噴射径路上の位置とは、バレル16の後部の装弾部である。このようなガスガンに適用される威力抑制装置の実施形態について、図2ないし図6を参照して説明する。なお、各図中の矢印は、各例における圧縮気流の流れ方向を概略的に示している。 In the power suppression device according to the present invention, the airflow leaking portion 20 is located upstream of the position on the injection path where the bullet 15 is disposed, and is a constantly open flow path through which the compressed airflow can pass. It is configured as. The position on the injection path where the bullet 15 is disposed is a bullet loading portion at the rear of the barrel 16. An embodiment of a power suppression device applied to such a gas gun will be described with reference to FIGS. In addition, the arrow in each figure has shown roughly the flow direction of the compressed airflow in each example.
 図2に示すガスガン用威力抑制装置の例1において、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル後端部に開けられた、常時開口の流路である小孔21として構成されている。実施形態の各例では装弾部にホップアップ装置26が設けられており、このため小孔21はバレル16とホップアップ装置の筒材の両方を貫通する構造として、噴射径路外に圧縮気流を漏洩させるものである。 In the first example of the power suppression device for gas gun shown in FIG. 2, the airflow leakage portion 20 is a constantly open flow passage opened at the rear end of the barrel that is a part of the injection path 14 through which the compressed airflow can pass. The small hole 21 is configured. In each example of the embodiment, the hop-up device 26 is provided in the bullet loading portion. Therefore, the small hole 21 has a structure that penetrates both the barrel 16 and the tubular material of the hop-up device, and leaks the compressed airflow outside the injection path. It is something to be made.
 図3に示すガスガン用威力抑制装置の例2では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル16の口径を弾丸15の直径よりも一回り大径に設けることで、隙間22が弾丸15の周囲に出来るように構成されている。隙間22であるから常時開口の流路であると言える。例2の場合、装弾部に設けたホップアップ装置26は、やや長めに形成されている。例2の隙間22は弾丸15の周囲にて圧縮気流を漏洩させる。 In the example 2 of the power suppressor for a gas gun shown in FIG. 3, the airflow leakage portion 20 makes the diameter of the barrel 16, which is a part of the injection path 14 through which the compressed airflow can pass, slightly larger than the diameter of the bullet 15. By providing, the gap 22 can be formed around the bullet 15. Since it is the gap 22, it can be said that the channel is always open. In the case of Example 2, the hop-up device 26 provided in the loading section is formed slightly longer. The gap 22 in Example 2 leaks the compressed airflow around the bullet 15.
 図4に示すガスガン用威力抑制装置の例3において、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部としてスライドシリンダー17のノズル17aに開けられた、常時開口の流路である小孔23として構成されている。例3の場合には装弾部よりも後方の位置に、スライドシリンダーノズル17aを貫通する構造として小孔23が設けられており、噴射径路外に圧縮気流を漏洩させるものとして構造的に最も簡単である。 In the third example of the power suppressor for gas gun shown in FIG. 4, the airflow leaking portion 20 is a constantly open flow path opened in the nozzle 17a of the slide cylinder 17 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 23. In the case of Example 3, a small hole 23 is provided as a structure penetrating the slide cylinder nozzle 17a at a position rearward of the bullet loading portion, and it is the simplest structurally for leaking a compressed airflow outside the injection path. is there.
 図5に示すガスガン用威力抑制装置の例4では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部としてスライドシリンダー17の本体部分に設けられた、常時開口の流路である小孔24として構成されている。例4の場合には装弾部よりも後方、かつ、ピストン27よりも前方の位置に、スライドシリンダーノズル17aを貫通する構造として小孔24が設けられている。よって、これも噴射径路外に圧縮気流を漏洩させるものとして構造的に簡単である。 In the fourth example of the power suppression device for gas gun shown in FIG. 5, the airflow leakage portion 20 is a constantly open flow passage provided in the main body portion of the slide cylinder 17 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 24. In the case of Example 4, a small hole 24 is provided as a structure penetrating the slide cylinder nozzle 17 a at a position behind the loading portion and ahead of the piston 27. Therefore, this is also structurally simple as a compressed air flow is leaked outside the injection path.
 図6に示すガスガン用威力抑制装置の例5では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル後端部とスライドシリンダーノズル17aとの間に設けた、隙間25として構成されている。これも隙間25であるから常時開口の気流漏洩部といえる。例5の隙間25は、スライドシリンダー17の前進位置の調整によって設定することができる。 In the example 5 of the gas gun power suppression device shown in FIG. 6, the airflow leakage portion 20 is provided between the barrel rear end portion that is a part of the injection path 14 through which the compressed airflow can pass and the slide cylinder nozzle 17a. The gap 25 is configured. Since this is also the gap 25, it can be said that the airflow leakage portion is always open. The gap 25 in Example 5 can be set by adjusting the advance position of the slide cylinder 17.
 さらに本発明に係る威力抑制装置として、圧縮空気を使用するエアガンに適用した例について説明する。図7はエアガンの基本的構成を示しており、ガスガンのガス源の代わりとして空気を圧縮するピストンシリンダー装置30を装備している。このピストンシリンダー装置30はピストン28とシリンダー29とから成り、ピストン28の作動により圧縮された空気を圧縮気流とするもので、ピストン28のコッキング方式は手動又は電動を選択することができる。 Further, an example in which the present invention is applied to an air gun using compressed air will be described as a power suppression device according to the present invention. FIG. 7 shows a basic configuration of an air gun, and a piston cylinder device 30 for compressing air is provided instead of a gas source of the gas gun. The piston / cylinder device 30 includes a piston 28 and a cylinder 29, and uses compressed air as compressed air by the operation of the piston 28. The cocking method of the piston 28 can be selected manually or electrically.
 上記のエアガンに本発明に係る威力抑制装置を適用する場合においても、共通するバレル16、ホップアップ装置26などについては符号を援用し、詳細な説明を省略する。以下、さらにエアガンに適用される威力抑制装置の実施形態について、図8ないし図13を参照して説明する。 Even when the power suppression device according to the present invention is applied to the above air gun, the common barrel 16, the hop-up device 26 and the like are referred to by reference numerals, and detailed description thereof is omitted. Hereinafter, an embodiment of a power control device applied to an air gun will be described with reference to FIGS. 8 to 13.
 図8に示すエアガン用威力抑制装置の例1において、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル後端部に開けられた、常時開口の流路である小孔31として構成されている。これはガスガン用威力抑制装置の例1の場合と同様にホップアップ装置26が設けられており、このため小孔31はバレル16とホップアップ装置の筒材の両方を貫通する構造として、噴射径路外に圧縮気流を漏洩させるものである。なお、本例1はガスガン用の例1(図2)と対応する。 In Example 1 of the air gun power suppression device shown in FIG. 8, the airflow leakage portion 20 is a constantly open flow passage opened at the rear end of the barrel that is a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 31. This is provided with the hop-up device 26 in the same manner as in the case of the gas gun power suppression device example 1. Therefore, the small hole 31 has a structure that penetrates both the barrel 16 and the cylinder of the hop-up device, and the injection path. The compressed airflow is leaked outside. In addition, this example 1 respond | corresponds to the example 1 (FIG. 2) for gas guns.
 図9に示すエアガン用威力抑制装置の例2では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル16の口径を弾丸15の直径よりも一回り大径に設けることで、隙間32として構成されている。隙間32であるからこれも常時開口の流路であると言える。例2の場合、装弾部に設けたホップアップ装置26は、やや長めに形成されることになる。例2の隙間32は弾丸15の周囲にて圧縮気流を漏洩させる。なお、本例2はガスガン用の例2(図3)と対応する。 In the example 2 of the air gun power suppression device shown in FIG. 9, the airflow leakage portion 20 makes the diameter of the barrel 16, which is a part of the injection path 14 through which the compressed airflow can pass, slightly larger than the diameter of the bullet 15. By providing, it is configured as a gap 32. Since it is the gap 32, it can be said that this is also a constantly open channel. In the case of Example 2, the hop-up device 26 provided in the loading section is formed slightly longer. The gap 32 in Example 2 leaks the compressed airflow around the bullet 15. The second example corresponds to the second example (FIG. 3) for the gas gun.
 図10に示すエアガン用威力抑制装置の例3において、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部としてエアガン用シリンダー29のノズル29aに開けられた、常時開口の流路である小孔33として構成されている。例3の場合には装弾部よりも後方の位置に、スライドシリンダーノズル29aを貫通する構造として小孔33が設ければ良いので、噴射径路外に圧縮気流を漏洩させるものとして構造的に最も簡単である。なお、本例3はガスガン用の例3(図4)と対応する。 In the third example of the air gun power suppression device shown in FIG. 10, the airflow leakage portion 20 is a flow path that is always open and is opened in the nozzle 29a of the airgun cylinder 29 as a part of the injection path 14 through which the compressed airflow can pass. It is comprised as the small hole 33 which is. In the case of Example 3, since it is only necessary to provide a small hole 33 as a structure penetrating the slide cylinder nozzle 29a at a position behind the loading portion, it is the simplest structurally as one that leaks a compressed airflow outside the injection path. It is. In addition, this example 3 respond | corresponds to the example 3 (FIG. 4) for gas guns.
 図11に示すエアガン用威力抑制装置の例4では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部としてスライドシリンダー29の本体部分に設けられた、常時開口の流路である小孔34として構成されている。例4の場合には装弾部よりも後方、かつ、ピストン28の前進限界よりも前方の位置に、スライドシリンダーノズル29aを貫通する構造として小孔34が設けられている。よって、これも噴射径路外に圧縮気流を漏洩させるものとして構造的に簡単である。なお、本例4はガスガン用の例4(図5)と対応する。 In Example 4 of the air gun power suppression device shown in FIG. 11, the airflow leakage portion 20 is a constantly open flow path provided in the main body portion of the slide cylinder 29 as a part of the injection path 14 through which the compressed airflow can pass. It is configured as a small hole 34. In the case of Example 4, a small hole 34 is provided as a structure penetrating the slide cylinder nozzle 29 a at a position behind the loading portion and ahead of the advance limit of the piston 28. Therefore, this is also structurally simple as a compressed air flow is leaked outside the injection path. In addition, this example 4 respond | corresponds to the example 4 (FIG. 5) for gas guns.
 図12に示すガスガン用威力抑制装置の例5では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14の一部であるバレル後端部とスライドシリンダーノズル17aとの間に設けた、隙間35として構成されている。これも隙間25であるから常時開口の気流漏洩部といえる。なお、例5の隙間35は、スライドシリンダー17の前進位置の調整によって設定することができる。本例5はガスガン用の例5(図6)と対応する。 In the example 5 of the power suppressor for a gas gun shown in FIG. 12, the airflow leakage portion 20 is provided between the barrel rear end portion that is a part of the injection path 14 through which the compressed airflow can pass and the slide cylinder nozzle 17a. The gap 35 is configured. Since this is also the gap 25, it can be said that the airflow leakage portion is always open. Note that the gap 35 in Example 5 can be set by adjusting the advance position of the slide cylinder 17. The present example 5 corresponds to the gas gun example 5 (FIG. 6).
 図13に示すエアガン用威力抑制装置の例6では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14に通じる部分である、エアガン用シリンダー29の内周面よりもピストン28の外周の直径を一回り小径に設けることで、隙間36として構成されている。隙間36であるからこれも常時開口の流路であるといえる。例6の場合は、空気の圧縮能力を意図して低下させることになる。 In Example 6 of the air gun power suppression device shown in FIG. 13, the airflow leakage portion 20 is located on the outer periphery of the piston 28 rather than the inner peripheral surface of the airgun cylinder 29, which is a portion communicating with the injection path 14 through which the compressed airflow can pass. A gap 36 is formed by providing the diameter slightly smaller. Since it is the gap 36, it can be said that this is also a constantly open channel. In the case of Example 6, the compression capability of air is intentionally reduced.
 図14に示すエアガン用威力抑制装置の例7では、気流漏洩部20は、圧縮気流が通過し得る噴射径路14に通じる部分である、エアガン用シリンダー29の内周面を摺動するピストン28にこれを貫通する小孔37を設けることで構成されている。小孔37であるから、これも常時開口の流路である。例7の場合も、空気の圧縮能力を意図して低下させる点、例5と同様である。 In the example 7 of the air gun power control device shown in FIG. 14, the airflow leakage portion 20 is formed on the piston 28 that slides on the inner peripheral surface of the airgun cylinder 29, which is a portion communicating with the injection path 14 through which the compressed airflow can pass. It is configured by providing a small hole 37 penetrating therethrough. Since this is the small hole 37, this is also a constantly open channel. The case of Example 7 is the same as Example 5 in that the air compression capacity is reduced intentionally.
 このように構成されている本発明によれば、プラスチック製のBB弾との比較上、より質量の大きい金属製などの弾丸が使用された場合でも、発射された弾丸の運動エネルギーが規定値を超えないように威力を抑制することができるので、想定外の威力を発揮して安全性を害するような事態を起こす危険がない。しかも、プラスチック製のBB弾とそれよりも質量の大きい金属製などの弾丸を混合使用しても、BB弾の威力をほとんど低下させずに済むので、従来の威力とほぼ同等の威力の模擬銃として扱うことができ、ユーザーに不満を抱かせる恐れもない。 According to the present invention configured as described above, even when a bullet such as a metal having a larger mass is used in comparison with a plastic BB bullet, the kinetic energy of the fired bullet has a specified value. Since the power can be suppressed so as not to exceed, there is no risk of causing an unexpected power to cause a situation that would harm safety. Moreover, even if a plastic BB bullet and a metal bullet with a larger mass are used in combination, the power of the BB bullet can be hardly reduced, so that the simulated gun has almost the same power as the conventional one. And there is no fear of frustrating the user.
本発明に係る模擬銃における威力抑制装置の一例として、ガスガンの内部構造を示した断面説明図である。It is a section explanatory view showing the internal structure of a gas gun as an example of the power control device in the simulation gun concerning the present invention. 同上の装置をガスガンに適用した例1を示す断面説明図である。It is sectional explanatory drawing which shows Example 1 which applied the apparatus same as the above to the gas gun. 同じく例2を示す断面説明図である。FIG. 5 is a cross-sectional explanatory view showing Example 2 in the same manner. 同じく例3を示す断面説明図である。FIG. 10 is a cross-sectional explanatory view showing Example 3 in the same manner. 同じく例4を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing Example 4 in the same manner. 同じく例5を示す断面説明図である。9 is a cross-sectional explanatory view showing Example 5 in the same manner. FIG. 本発明に係る模擬銃における威力抑制装置の他の例として、エアガンの構造の要部を示した断面説明図である。FIG. 6 is a cross-sectional explanatory view showing the main part of the structure of an air gun as another example of the power suppression device in the simulated gun according to the present invention. 同上の装置をエアガンに適用した例1を示す断面説明図である。It is sectional explanatory drawing which shows Example 1 which applied the apparatus same as the above to an air gun. 同じく例2を示す断面説明図である。FIG. 5 is a cross-sectional explanatory view showing Example 2 in the same manner. 同じく例3を示す断面説明図である。FIG. 10 is a cross-sectional explanatory view showing Example 3 in the same manner. 同じく例4を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing Example 4 in the same manner. 同じく例5を示す断面説明図である。9 is a cross-sectional explanatory view showing Example 5 in the same manner. FIG. 同じく例6を示す断面説明図である。12 is a cross-sectional explanatory view showing Example 6 in the same manner. FIG. 同じく例7を示す断面説明図である。10 is a cross-sectional explanatory view showing Example 7 in the same manner. FIG.
 10 模擬銃
 11 ガス源
 12 トリガー
 13 放出弁
 14 噴射径路
 15 弾丸
 16 バレル
 17 スライドシリンダー
 18 弁装置
 19 マガジン
 20 気流漏洩部
 21、23、24 小孔
 22、25 隙間
 26 ホップアップ装置
 27 ガスガンのピストン
 28 エアガンのピストン
 29 エアガンのシリンダー
 30 ピストンシリンダー装置
 31、33、34、37 小孔
 32、35、36 隙間
DESCRIPTION OF SYMBOLS 10 Simulated gun 11 Gas source 12 Trigger 13 Release valve 14 Injection path 15 Bullet 16 Barrel 17 Slide cylinder 18 Valve device 19 Magazine 20 Airflow leakage part 21, 23, 24 Small hole 22, 25 Clearance 26 Hop-up device 27 Gas gun piston 28 Air gun piston 29 Air gun cylinder 30 Piston cylinder device 31, 33, 34, 37 Small hole 32, 35, 36 Clearance

Claims (4)

  1. 気流の噴射径路上に弾丸を配置し、圧縮気流により発射する模擬銃において、
    弾丸の発射威力を弾丸の質量に応じて抑制する手段として、圧縮気流を漏洩させる気流漏洩部を、上記噴射径路又は噴射径路に通じる部分に形成したことを特徴とする
    模擬銃における威力抑制装置。
    In a simulated gun that places bullets on the jet path of airflow and fires with compressed airflow,
    A power suppression device for a simulated gun, characterized in that, as means for suppressing the bullet firing power in accordance with the mass of the bullet, an airflow leakage portion for leaking a compressed airflow is formed in the injection path or a portion communicating with the injection path.
  2. 気流漏洩部は、弾丸の配置されている噴射径路上の位置よりも上流に位置しており、かつまた、圧縮気流が通過し得る常時開口の流路である
    請求項1記載の模擬銃における威力抑制装置。
    The power of the simulated gun according to claim 1, wherein the airflow leakage portion is located upstream of the position on the injection path where the bullet is arranged, and is a constantly open flow path through which the compressed airflow can pass. Suppression device.
  3. 気流漏洩部は、圧縮気流が通過し得る噴射径路又は噴射径路に、直接通じる部分に形成された、常時開口の小孔又は隙間によって構成されている
    請求項1又は2記載の模擬銃における威力抑制装置。
    3. The power suppression in the simulated gun according to claim 1, wherein the airflow leakage portion is configured by a small hole or a gap that is always open and is formed in a portion that directly communicates with an injection path through which a compressed airflow can pass or an injection path. apparatus.
  4. 気流漏洩部は、弾丸の配置されている噴射径路上の位置の上流から下流にかけての部分に形成されている
    請求項1記載の模擬銃における威力抑制装置。
    2. The power suppression device for a simulated gun according to claim 1, wherein the airflow leakage portion is formed in a portion from upstream to downstream of a position on the injection path where the bullet is disposed.
PCT/JP2014/066674 2014-06-24 2014-06-24 Power restricting device for imitation gun WO2015198393A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14895617.0A EP3163246B1 (en) 2014-06-24 2014-06-24 Power restricting device for imitation gun
CN201480078838.0A CN106471327B (en) 2014-06-24 2014-06-24 The power of model gun inhibits device
PCT/JP2014/066674 WO2015198393A1 (en) 2014-06-24 2014-06-24 Power restricting device for imitation gun
JP2016528785A JP6203955B2 (en) 2014-06-24 2014-06-24 Power control device for simulated gun
TW103127998A TWI555963B (en) 2014-06-24 2014-08-15 Simulation of the power of the gun suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066674 WO2015198393A1 (en) 2014-06-24 2014-06-24 Power restricting device for imitation gun

Publications (1)

Publication Number Publication Date
WO2015198393A1 true WO2015198393A1 (en) 2015-12-30

Family

ID=54937531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066674 WO2015198393A1 (en) 2014-06-24 2014-06-24 Power restricting device for imitation gun

Country Status (5)

Country Link
EP (1) EP3163246B1 (en)
JP (1) JP6203955B2 (en)
CN (1) CN106471327B (en)
TW (1) TWI555963B (en)
WO (1) WO2015198393A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177506A1 (en) * 2021-02-22 2022-08-25 Easebon Services Limited Launcher of short projectiles with detachable barrel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103694A (en) * 1993-10-08 1995-04-18 Western Aamusu:Kk Toy gun with automatic bullet supplying mechanism
JP2006284139A (en) * 2005-04-04 2006-10-19 Sunamiya:Kk Soft spherical identifying ball shooting device, loading cylinder loading soft spherical identifying ball to be supplied thereto and soft spherical identifying ball
JP2008039371A (en) * 2006-07-10 2008-02-21 Marushin Kogyo Kk Firing barrel for air gun

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823173A (en) * 1995-05-04 1998-10-20 Slonaker; Robert M. Paintball gun
FR2761148B1 (en) * 1997-03-18 2003-01-10 Multipropulseurs HYPODERMAL PROJECTOR
JP3708936B2 (en) * 2003-07-29 2005-10-19 株式会社ウエスタン・アームス Toy gun using gas pressure
TWM295243U (en) * 2005-12-06 2006-08-01 Hung-Jang Chiu Fixed pressure valve of toy gun
JP4719808B2 (en) * 2007-03-19 2011-07-06 株式会社東京マルイ Side feed device for simulated gun
TW200940942A (en) * 2008-03-21 2009-10-01 Maruzen Co Ltd Air gun and magazine for air gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103694A (en) * 1993-10-08 1995-04-18 Western Aamusu:Kk Toy gun with automatic bullet supplying mechanism
JP2006284139A (en) * 2005-04-04 2006-10-19 Sunamiya:Kk Soft spherical identifying ball shooting device, loading cylinder loading soft spherical identifying ball to be supplied thereto and soft spherical identifying ball
JP2008039371A (en) * 2006-07-10 2008-02-21 Marushin Kogyo Kk Firing barrel for air gun

Also Published As

Publication number Publication date
JPWO2015198393A1 (en) 2017-04-20
CN106471327B (en) 2019-01-08
TWI555963B (en) 2016-11-01
EP3163246A1 (en) 2017-05-03
JP6203955B2 (en) 2017-09-27
EP3163246B1 (en) 2020-07-15
TW201600824A (en) 2016-01-01
EP3163246A4 (en) 2018-02-21
CN106471327A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US7610843B2 (en) Individual firearm with improved recock device
US7931018B1 (en) Structure of paintball gun
US7654256B2 (en) Apparatus for rapid loading and firing paintballs
US20090206111A1 (en) Tank having a piston pressurized by hot gas
US9903684B2 (en) High pressure air system for airsoft gun
US20150300771A1 (en) Firing mechanism of airsoft gun
EP3296681A1 (en) Shock-absorption device for piston mechanism of imitation gun
JP6203955B2 (en) Power control device for simulated gun
JP5593292B2 (en) Control valve device in gas gun
JP6203956B2 (en) Power control device for simulated gun
US9423196B2 (en) Gap seal for projectile launching device
JP5164892B2 (en) Autonomous control device for launching power in a compressed gas simulation gun
GB2520038A (en) Mechanism for rapid discharge of compressed gas
AU2013202099B2 (en) Device for igniting a pyrotechnic active material
US11199374B2 (en) Firing mechanism of a firearm
US9121657B2 (en) Manoeuvres cartridge device and self-loading firearm suitable therefor
KR20170039957A (en) Cylinder assembly for automatic loading device of play gun
CN104930916A (en) Mortar launching device
GB2527743A (en) A residual pressure indexing pin assembly
ITVI20120077A1 (en) DEVICE FOR CONTROLLING THE DISTRIBUTION OF A FLUID IN PRESSURE AND AIR COMPRESSED WEAPON INCLUDING SUCH A DEVICE
JP6214918B2 (en) Simulated gun cartridge
JP5433800B1 (en) Blowback gas gun
JPH0252999A (en) Shot firing device for gas rifle
WO2015102592A1 (en) Gap seal for projectile launching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895617

Country of ref document: EP