WO2015197885A1 - Thermochemical method for the transfer and storage of concentrated solar energy - Google Patents

Thermochemical method for the transfer and storage of concentrated solar energy Download PDF

Info

Publication number
WO2015197885A1
WO2015197885A1 PCT/ES2015/000084 ES2015000084W WO2015197885A1 WO 2015197885 A1 WO2015197885 A1 WO 2015197885A1 ES 2015000084 W ES2015000084 W ES 2015000084W WO 2015197885 A1 WO2015197885 A1 WO 2015197885A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
csp
energy
transfer
cao
Prior art date
Application number
PCT/ES2015/000084
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel VALVERDE MILLÁN
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2015197885A1 publication Critical patent/WO2015197885A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the object of the present invention is the chemical transfer and storage of concentrated solar thermal energy through the use of a bed of granulated solids consisting of a mixture of inert solids, preferably sand, and CaCCVCaO fluidized by a controlled gas flow consisting of a mixture of inert gas, preferably air, and C0 2 in controlled proportion.
  • the area to which the invention corresponds is that of Energy and Environmental Technology, being the application sector in which the Renewable Energys would be applied.
  • the technique described in the present invention aims to improve the transfer and storage of concentrated solar energy (CSP).
  • CSP concentrated solar energy
  • thermal power plants (1), being its main advantage the possibility of generating electricity even in the absence of solar radiation during a certain period of autonomy compared to nature flashing of other types of renewable energy plants such as wind or photovoltaic solar.
  • conventional fossil thermal plants water vapor produced in a high pressure boiler is expanded in a turbine to generate mechanical work on its axis according to the Rankine cycle to be subsequently transformed into electrical energy by means of a generator.
  • the boiler is replaced by a concentrated solar radiation collector, the rest of the process (power cycle) being a thermal to electrical energy transformation similar to that of a fossil thermal.
  • HTF thermal transfer fluids
  • the first CSP with tower receiver technology (in operation since 2011) and thermal storage in HTF (molten salts) is the Gemasolar plant (19.9 MWe) located in Fuentes de Andaluc ⁇ a (Seville).
  • the molten salts heated in the tower are stored in a large capacity hot salt tank and conducted to a heat exchanger. Once they give heat to the power cycle they are transported to a tank of cold salts to be recirculated back to the tower.
  • the storage of heat in the hot salt tank allows an autonomy of electricity generation of up to 15 hours without solar input.
  • CSP technology has enormous potential for short-term growth, especially in countries in North Africa and the Middle East, as well as in the US, South Africa, Australia, Chile, India and China where they have been successfully completed or several commercial scale projects are underway (2). Spain has been a pioneer country in the development of this type of power plants and as of January 2014 it continues to be a world leader in CSP with an installed capacity of 2,204 MWt.
  • the development of efficient and low-cost HTFs is a key point for the commercial success of CSPs since the storage of solar thermal energy during long periods of low solar radiation would allow the generation of electric current continuously and on demand.
  • the CSP-HTF is integrated in a hybrid system with a fossil thermal power plant, whose energy is used to raise the temperature of the HTF in the case of prolonged periods of reduced solar radiation.
  • this temperature is limited by the degradation of the molten salts currently used as HTF and which decompose around 600 ° C.
  • Another drawback of the use of molten salts such as HTF is that they have freezing points at relatively high temperatures (between 120 ° C and 220 ° C) with the consequent risk of freezing and large heat losses during night hours in desert areas and / or of high altitude that have a very high insolation that make them ideal for the installation of CSP power plants.
  • This makes efficient thermal insulation necessary, limiting the flow of the fluid and eventually using energy to heat the salts in the cold tank in order to avoid freezing (in Gemasolar the temperature of the "cold" tank is maintained at 290 ° C).
  • the object of the present invention is the transfer and storage of concentrated solar thermal energy through the use of gas fluidized beds of granulated solids (FB): "Fluidized Beds".
  • FB granulated solids
  • the SOLTESS project (Solar Thermal Energy Solid Storage” carried out in Italy) has just demonstrated with the installation of a 0.1 MWt CSP-FB demonstration plant, the solid / gas fluidized bed system is very suitable for transfer and concentrated solar energy storage.
  • This bed uses a bed of fine siliceous sand fluidized with air (at speeds of the order of cm / s) as a means of reception, exchange and transfer of concentrated solar energy allowing to reach steam temperatures in the range 530-730 ° C With an autonomy of 10-15 h, that is, it can generate electricity efficiently during 24 hours (5).
  • the gas fluidized bed has a high coefficient of thermal transfer and diffusion that are adjustable through the control of the gas flow, while it is possible to achieve a high degree of storage in the granulated solids due to its high heat capacity.
  • the FB technology allows the gas combustion in the fluidized bed to be integrated into a hybrid system in order to heat it if necessary in long periods of absence of intense solar radiation.
  • the CSP-FB technology would also allow the avoidance of corrosion and contamination problems associated with the use of molten salts or mineral oils.
  • the sand is an inert material, abundant and readily available (especially in desert areas where the installation of CSP plants is indicated) which would contribute to the commercial expansion of the technology.
  • Figure 1 Scheme of the integration of concentrated solar thermal energy technologies with transfer and storage of thermal and chemical energy in a fluidized bed of granulated solids (mixture of inert materials with high heat capacity and thermal conductivity and CaC03 / CaO) by means of a controlled flow of gas containing C02 in a certain percentage.
  • This invention proposes the use of a bed of granulated solids consisting of a mixture of inert solids (for example sand) and CaCCyCaO (derived for example from natural limestone) fluidized by a controlled gas flow consisting of a mixture of inert gas (for example air) and C0 2 in order to transfer and store thermochemically concentrated solar energy.
  • the novelty of the invention is the use of CaC0 3 / CaO in the fluidized bed and C0 2 in the fluidization gas, which makes it possible to complement the storage of solar energy thermally in the sand with chemical storage by means of the endothermic decarbonation reaction of CaC0 3 .
  • CaC0 3 has a high energy density (1.7 MJ / kg of latent heat and 0.87 MJ / kg of sensible heat much higher than the typical values that have molten salts) and is a raw material that can be obtained from natural materials available in abundance and low cost (for example natural limestone).
  • both CaC0 3 and CaO can be stored for long periods of time in atmospheric conditions and without thermal losses as occurs with HTFs used in CSP technologies with storage in molten salts or mineral oils (CSP-HTF) or with the sand used in technology with solid fluidized bed / gas storage (CSP-FB).
  • CSP-HTF molten salts or mineral oils
  • CSP-FB solid fluidized bed / gas storage
  • the conversion values of CaO in the reaction of Carbonation in a fluidized bed exclusively of CaO oscillates in a very wide range of values (between 80% and 7%) depending significantly on the calcination / carbonation conditions (basically temperature, concentration of C0 2 and residence time of the gas in the bed) and the number of previous cycles.
  • Experimental results show that high temperature calcination causes the residual conversion (the one obtained after a high number of cycles) of CaO to fall below 10%, which would make it unfeasible to use CaL technology as the only storage method of concentrated solar energy.
  • CSP-FB-CaL In the present invention, the integration of CaL technology with CSP-FB fluidized bed storage technology is proposed in order to increase the storage autonomy and efficiency of the latter.
  • CSP-FB concentrated solar energy is stored exclusively in thermal form.
  • CSP integration -FB-CaL would allow the storage of energy in chemical form and therefore permanent to be used when the heat was necessary. This integration would therefore have the advantages of high thermal transfer and diffusion provided by the fluidized bed of sand with thermal storage on the one hand and, on the other, permanent storage in chemical form by means of CaL technology.
  • the transfer and storage of concentrated solar energy would be carried out in a fluidized bed formed by a mixture of inert granulated solids which is the thermal transfer medium (for example sand) with CaC0 3 / CaO, which is the medium where energy will be chemically stored.
  • the relative proportion of CaCOs / CaO can vary from 100% to 0%.
  • the fluidization gas velocities would be small (of the order of cm / s as in the current CSP-FB technology) so that the residence times of the gas in the bed are prolonged, which allows the calcination / carbonation reactions in around equilibrium reach advanced states.
  • the energy required to fluidize the material can be a limiting factor if very high volumes are required since the pressure drop across the bed of the applied gas flow must necessarily compensate for the total weight per unit area of the bed.
  • this integration proposed in the present invention could provide an advantage in a relevant aspect. in the commercial development of technology such as the energy needed to fluidize large volumes of material.
  • the CSP-FB technology offers the possibility of varying control parameters that regulate the thermal transfer such as the speed of the gas in order to counteract the effect of the variability of the intensity of solar radiation on the bed temperature of storage.
  • the present invention would have a new strategic control parameter (% C0 2 in the fluidization gas) in order to cause decarbonation or carbonation reactions as desired to reduce or increase the temperature of the bed depending on the intensity of solar radiation .
  • % C0 2 in the fluidization gas a new strategic control parameter in order to cause decarbonation or carbonation reactions as desired to reduce or increase the temperature of the bed depending on the intensity of solar radiation .
  • the carbonation during periods of low radiation using gas flows with high% C0 2 would allow the temperature to rise thus increasing the performance of the technology.
  • an optimum proportion of CaC0 3 can be chosen in the granular solids mixture.
  • the fluidizing gas may circulate in a closed circuit so that C0 2 emissions to the atmosphere are prevented.
  • CSP-FB it is necessary to divide the fluidized bed into compartments for receiving, exchanging and storing solar thermal energy for the selective control of the gas velocity in each of them in order to avoid minimizing the inevitable thermal losses.
  • the gas supply to the receiving compartment is cut off (to avoid heat leaks to the solar radiation receiving cavity) and to the storage compartment if its temperature falls below a critical value.
  • the absorption / release of chemical energy in the integrated CSP-FB-CaL technology proposed in the present invention can be selectively controlled along the fluidized bed by regulating the% C0 2 in the fluidization gas through each compartment which would contribute to reduce heat losses.
  • the possibility of adding a compartment for a fluidized bed exclusively of chemical energy storage CaC0 3 is considered .
  • the high thermal transfer in solid fluidized bed / gas would allow efficient transfer of excess heat to this compartment.
  • the CaO generated by calcination in this compartment can be used in the same plant if necessary to generate heat and increase the steam temperature or be transported if produced in excess for heat generation in other industrial applications.
  • FIG. 1 An exemplary embodiment of the invention based on the integration of CSP-FB-CaL technologies (thermochemical transfer and storage of concentrated solar energy in a fluidized bed of inert granulated solids and CaC0 3 / CaO) is shown in Figure 1.
  • Solar radiation (a) is collected by the fluidized bed (c) by a cavity in the same way as is done in the proven CSP-FB technology.
  • the bed of granulated solids is formed by a mixture of inert solids (for example fine siliceous sand) of high heat capacity and thermal conductivity and CaC0 3 / CaO (derived for example from natural limestone).
  • the bed is in a fluidized state by the application of a gas flow (b) consisting of a mixture of inert gas (for example air) and C0 2 at a rate and in an adjustable proportion in the control unit (d) .
  • a gas flow consisting of a mixture of inert gas (for example air) and C0 2 at a rate and in an adjustable proportion in the control unit (d) .
  • the possibility of introducing steam is contemplated in order to intensify the reactivity of the CaO if necessary.
  • the heat stored in the fluidized bed is transferred to the power cycle (f) for the generation of electric energy following the conventional procedure carried out in fossil plants. It is possible to divide the fluidized bed into different compartments (receiver, exchanger and energy storage) as in the CSP-FB technology.
  • the modification introduced in the present invention consists in the integration of CaL technology.
  • the CaO generated in this compartment can be used in the same plant to release heat by carbonation or be transported for use in other applications that require hot.
  • This CaO can be stored without energy losses for use when and where necessary.
  • fluidization allows a high degree of thermal transfer to be obtained, there is the possibility of applying techniques that intensify the transfer of heat and mass to enhance the carbonation of CaO.
  • One of these techniques of proven efficiency to enhance the carbonation of CaO in other applications in a high temperature fluidized bed reactor is the application of high intensity and low frequency sound that could be implemented in this invention.
  • the control of the% C0 2 used in the fluidization gas can be carried out in accordance with the equilibrium of the decarbonation / carbonation reaction of CaC0 3 represented in Fig. 2 and depending on the temperature distribution in the fluidized bed.
  • This diagram allows to anticipate the direction in which the reaction will move according to the% C0 2 in the fluidization gas and the temperature.
  • the system will release heat (carbonation of CaO) where and when the temperature drops below 750 ° C and absorb heat when the temperature rises above this value. (decarbonation of CaC0 3 ).
  • the regulation of% C0 2 in the fluidizing gas in the gas control unit would be used as a temperature control mechanism in the fluidized bed so that it is transferred with few oscillations to the power cycle.
  • the total amount of heat absorbed and released in the fluidized bed depends on the proportion of CaC0 3 and CaO used in the mixture of granulated solids that can also be variable depending on the incident solar radiation characteristic of the region where the plant is installed .
  • excess heat will be stored chemically permanently and stably in the form of CaO to be used when necessary.
  • This heat can come from the combustion of gas in the same fluidized bed as proposed in the CSP-FB technology in a hybrid system.
  • heat can only be stored temporarily in CSP-FB since the bed of inert solids (sand) will always have thermal losses.
  • the only possible solution in CSP-FB to prolong the transitory storage period is to increase the volume of the fluidized storage bed with the consequent loss of technology efficiency.
  • excess heat can be permanently stored chemically until it is necessary to recover it, so it is expected that this innovation will result in improved storage with respect to CSP technology.

Abstract

The aim of the invention is the transfer and storage of concentrated thermosolar energy using a bed of granulated solids consisting of a mixture of inert solids, preferably sand, and CaCO3/CaO, fluidised by a controlled gas flow consisting of a mixture of inert gas, preferably air, and CO2 in controlled proportions. The invention corresponds to the field of energy and environmental technology as it is the sector of application wherein that of renewable energies would be applied.

Description

Título  Title
PROCEDIMIENTO TERMOQUÍMICO DE TRANSFERENCIA Y ALMACENAMIENTO DE ENERGÍA SOLAR CONCENTRADA THERMOCHEMICAL PROCEDURE FOR CONCENTRATED SOLAR ENERGY TRANSFER AND STORAGE
Objeto de la invención Object of the invention
El objeto de la presente invención es la transferencia y almacenamiento químico de energía termosolar concentrada mediante el uso de un lecho de sólidos granulados consistente en una mezcla de sólidos inertes, preferentemente arena, y CaCCVCaO fluidizado por un flujo de gas controlado consistente en una mezcla de gas inerte, preferentemente aire, y C02 en proporción controlada. The object of the present invention is the chemical transfer and storage of concentrated solar thermal energy through the use of a bed of granulated solids consisting of a mixture of inert solids, preferably sand, and CaCCVCaO fluidized by a controlled gas flow consisting of a mixture of inert gas, preferably air, and C0 2 in controlled proportion.
El área a la que corresponde la invención es la de Tecnología Energética y Medioambiental, siendo el sector de aplicación en el que se aplicaría el de las Energías Renovables. The area to which the invention corresponds is that of Energy and Environmental Technology, being the application sector in which the Renewable Energies would be applied.
Estado de la técnica State of the art
La técnica que se describe en la presente invención tiene como objetivo mejorar la transferencia y almacenamiento de energía solar concentrada (CSP de sus siglas en inglés "Concentrated Solar Power"). En los últimos años se viene produciendo un gran crecimiento en el desarrollo comercial de este tipo de centrales térmicas (1), siendo su principal ventaja la posibilidad de generar electricidad incluso en ausencia de radiación solar durante un cierto período de autonomía en comparación con la naturaleza intermitente de otro tipo de centrales de energía renovable como la eólica o solar fotovoltaica. En plantas térmicas fósiles convencionales, el vapor de agua producido en una caldera a alta presión se expande en una turbina para generar trabajo mecánico en su eje de acuerdo con el ciclo de Rankine para ser posteriormente transformado en energía eléctrica mediante un generador. En las centrales CSP, la caldera es reemplazada por un colector de radiación solar concentrada siendo el resto del proceso (ciclo de potencia) de transformación de energía térmica a eléctrica similar al de una térmica fósil. The technique described in the present invention aims to improve the transfer and storage of concentrated solar energy (CSP). In recent years there has been a great growth in the commercial development of this type of thermal power plants (1), being its main advantage the possibility of generating electricity even in the absence of solar radiation during a certain period of autonomy compared to nature flashing of other types of renewable energy plants such as wind or photovoltaic solar. In conventional fossil thermal plants, water vapor produced in a high pressure boiler is expanded in a turbine to generate mechanical work on its axis according to the Rankine cycle to be subsequently transformed into electrical energy by means of a generator. In CSP plants, the boiler is replaced by a concentrated solar radiation collector, the rest of the process (power cycle) being a thermal to electrical energy transformation similar to that of a fossil thermal.
Principalmente, se encuentran en la actualidad 2 tipos de centrales CSP en fase de expansión comercial operando mediante tecnología de torre central y cilindro- parabólica, respectivamente. En las CSP de torre central, se usa un conjunto de espejos reflectores (heliostatos) distribuidos en una superficie extensa con el objeto de reflejar la radiación solar que reciben sobre un mismo blanco colector situado en la parte superior de una torre central con más de 100 metros de altura. En las primeras plantas CSP a escala comercial con tecnología de torre central (PS10 en 2007 y PS20 en 2009 situadas en Sanlúcar La Mayor, Sevilla, generando 11 y 20 MWe, respectivamente, de potencia eléctrica), el calor es empleado directamente para generar vapor de agua que es almacenado a alta presión y conducido al ciclo de potencia. Este diseño sólo permite un período de autonomía de generación de electricidad en torno a 1 h. Nuevos diseños ya en operación en plantas comerciales incorporan fluidos de transferencia térmica (HTF por sus siglas en inglés: "heat transfer fluids") con elevada capacidad calorífica y que transfieren el calor al agua mediante intercambiadores de calor. La primera CSP con tecnología de receptor de torre (en funcionamiento desde 2011) y almacenamiento térmico en HTF (sales fundidas) es la planta Gemasolar (19.9 MWe) situada en Fuentes de Andalucía (Sevilla). Las sales fundidas calentadas en la torre son almacenadas en un tanque de sales calientes de gran capacidad y conducidas a un intercambiador de calor. Una vez ceden calor al ciclo de potencia son transportadas a un tanque de sales frías para ser de nuevo recirculadas a la torre. El almacenamiento de calor en el tanque de sales calientes consiente una autonomía de generación eléctrica de hasta 15 horas sin aporte solar. En las CSP con tecnología cilindro-parabólica la luz solar es concentrada sobre un cilindro colector situado en el fóco de una hilera de reflectores de sección parabólica. El cilindro colector contiene un aceite mineral que actúa como HTF. Solana, la CSP de mayor tamaño (280 MWt) con tecnología cilindro-parabólica recientemente finalizada en EE.UU. posee una autonomía de 6h de almacenamiento. Mainly, there are currently 2 types of CSP power plants in commercial expansion phase operating through central tower and parabolic trough technology, respectively. In the central tower CSPs, a set of reflector mirrors (heliostats) distributed over a large surface is used in order to reflect the solar radiation they receive on the same white collector located at the top of a central tower with more than 100 meters high. In the first commercial scale CSP plants with central tower technology (PS10 in 2007 and PS20 In 2009 located in Sanlúcar La Mayor, Seville, generating 11 and 20 MWe, respectively, of electrical power), heat is used directly to generate water vapor that is stored at high pressure and conducted to the power cycle. This design only allows a period of autonomy of electricity generation around 1 h. New designs already in operation in commercial plants incorporate thermal transfer fluids (HTF) with high heat capacity and transfer heat to water through heat exchangers. The first CSP with tower receiver technology (in operation since 2011) and thermal storage in HTF (molten salts) is the Gemasolar plant (19.9 MWe) located in Fuentes de Andalucía (Seville). The molten salts heated in the tower are stored in a large capacity hot salt tank and conducted to a heat exchanger. Once they give heat to the power cycle they are transported to a tank of cold salts to be recirculated back to the tower. The storage of heat in the hot salt tank allows an autonomy of electricity generation of up to 15 hours without solar input. In CSPs with parabolic trough technology, sunlight is concentrated on a collecting cylinder located in the center of a row of parabolic section reflectors. The collecting cylinder contains a mineral oil that acts as HTF. Solana, the largest CSP (280 MWt) with parabolic trough technology recently completed in the US It has an autonomy of 6h of storage.
La tecnología CSP presenta un enorme potencial de crecimiento a corto plazo, especialmente en países del Norte de África y el Medio Oriente, así como en EE.UU., Sudáfrica, Australia, Chile, India y China donde se han concluido con éxito o se encuentran en marcha varios proyectos a escala comercial (2). España ha sido un país pionero en el desarrollo de este tipo de centrales y a fecha de enero de 2014 continúa siendo líder mundial en CSP con una capacidad instalada de 2,204 MWt. El desarrollo de HTF eficientes y de bajo coste es un punto clave para el éxito comercial de las CSP ya que el almacenamiento de energía termosolar durante largos períodos de escasa radiación solar permitiría generar corriente eléctrica de manera continua y en función de la demanda. Alternativamente, existen proyectos en los que la central CSP-HTF es integrada en un sistema híbrido con una central térmica fósil, cuya energía se emplea para elevar la temperatura del HTF en el caso de períodos prolongados de radiación solar reducida.  CSP technology has enormous potential for short-term growth, especially in countries in North Africa and the Middle East, as well as in the US, South Africa, Australia, Chile, India and China where they have been successfully completed or several commercial scale projects are underway (2). Spain has been a pioneer country in the development of this type of power plants and as of January 2014 it continues to be a world leader in CSP with an installed capacity of 2,204 MWt. The development of efficient and low-cost HTFs is a key point for the commercial success of CSPs since the storage of solar thermal energy during long periods of low solar radiation would allow the generation of electric current continuously and on demand. Alternatively, there are projects in which the CSP-HTF is integrated in a hybrid system with a fossil thermal power plant, whose energy is used to raise the temperature of the HTF in the case of prolonged periods of reduced solar radiation.
De acuerdo con el ciclo de Rankine (proceso termodinámico que tiene lugar en el ciclo de potencia en una central térmica de vapor), la eficiencia de conversión de calor en energía mecánica aumenta con la temperatura del vapor de agua producido. En centrales fósiles, esta temperatura se encuentra limitada por la resistencia de los materiales empleados en el sistema de conducción de vapor. Las turbinas de vapor estandarizadas pueden operar a temperaturas de vapor en torno a 550°C. Un importante campo de investigación se centra en el desarrollo de materiales con muy alta resistencia de cara a incrementar la eficiencia de producción de energía eléctrica y reducir así las emisiones de CO2 por centrales fósiles. Recientemente, la American Society of Mechanical Engineers (ASME) ha aprobado el empleo de una aleación Ni- Cr-Co (Inconel® 740) para la fabricación de materiales de conducción de vapor capaces de soportar temperaturas de hasta 700°C (2). En CSP-HTF con tecnología cilindro-parabólica, las temperaturas que se alcanzan en el colector están limitadas a valores en torno a los 400°C por lo que no es posible obtener un alto rendimiento termoeléctrico. Los aceites minerales usados como HTF se descomponen a temperaturas superiores y poseen un punto de congelación alrededor de 12-20°C. Por otra parte, la planta Gemasolar (Fuentes de Andalucía, Sevilla) con tecnología de torre central opera a temperaturas de vapor cercanas a 550°C, lo cual hace posible el uso de turbinas de vapor estandarizadas comúnmente usadas en centrales térmicas fósiles si bien las temperaturas potencialmente alcanzables en el colector de este tipo de centrales CSP podrían llegar hasta los 900°C. En principio, la posibilidad de llegar a mayores temperaturas incrementaría el rendimiento de conversión de energía solar concentrada en electricidad (2). Sin embargo, esta temperatura se encuentra limitada por la degradación de las sales fundidas actualmente usadas como HTF y que se descomponen en torno a 600°C. Otro inconveniente del uso de sales fundidas como HTF es que éstas poseen puntos de congelación a temperaturas relativamente altas (entre 120°C y 220°C) con el consiguiente riesgo de congelación y grandes pérdidas de calor durante horas nocturnas en zonas desérticas y/o de elevada altitud que poseen una muy alta insolación que las hacen ideales para la instalación de centrales CSP. Ello hace necesario un aislamiento térmico eficiente, limitar el recorrido del fluido y eventualmente emplear energía en calentar las sales en el tanque frío con el objeto de evitar su congelación (en Gemasolar la temperatura del tanque "frió" se mantiene a 290°C). Un problema añadido asociado al uso de aceites minerales o sales fundidas como HTF es generalmente su alto poder corrosivo y contaminante. Las válvulas, tuberías, instrumentos, juntas y sistemas de seguimiento estándar no son apropiados para la conducción de tales HTF, lo cual supone un coste adicional que encarece la tecnología CSP-HTF. According to the Rankine cycle (thermodynamic process that takes place in the power cycle in a steam power plant), the efficiency of heat conversion into mechanical energy increases with the temperature of the water vapor produced. In fossil plants, this temperature is limited by the resistance of materials used in the steam conduction system. Standardized steam turbines can operate at steam temperatures around 550 ° C. An important field of research focuses on the development of materials with very high resistance in order to increase the efficiency of electric power production and thus reduce CO2 emissions by fossil power plants. Recently, the American Society of Mechanical Engineers (ASME) has approved the use of a Ni-Cr-Co alloy (Inconel® 740) for the manufacture of steam conduction materials capable of withstanding temperatures up to 700 ° C (2). In CSP-HTF with parabolic trough technology, the temperatures reached in the collector are limited to values around 400 ° C, so it is not possible to obtain a high thermoelectric efficiency. Mineral oils used as HTF decompose at higher temperatures and have a freezing point around 12-20 ° C. On the other hand, the Gemasolar plant (Fuentes de Andalucía, Sevilla) with central tower technology operates at steam temperatures close to 550 ° C, which makes it possible to use standardized steam turbines commonly used in fossil thermal plants although potentially attainable temperatures in the collector of this type of CSP power plants could reach 900 ° C. In principle, the possibility of reaching higher temperatures would increase the conversion efficiency of solar energy concentrated in electricity (2). However, this temperature is limited by the degradation of the molten salts currently used as HTF and which decompose around 600 ° C. Another drawback of the use of molten salts such as HTF is that they have freezing points at relatively high temperatures (between 120 ° C and 220 ° C) with the consequent risk of freezing and large heat losses during night hours in desert areas and / or of high altitude that have a very high insolation that make them ideal for the installation of CSP power plants. This makes efficient thermal insulation necessary, limiting the flow of the fluid and eventually using energy to heat the salts in the cold tank in order to avoid freezing (in Gemasolar the temperature of the "cold" tank is maintained at 290 ° C). An additional problem associated with the use of mineral oils or molten salts such as HTF is generally its high corrosive and contaminating power. Valves, pipes, instruments, joints and standard monitoring systems are not suitable for the conduction of such HTFs, which implies an additional cost that makes CSP-HTF technology more expensive.
El desarrollo de materiales compatibles con las limitaciones impuestas por el uso de sales fundidas o aceites minerales así como la síntesis de nuevos HTF con propiedades térmicas mejoradas (aumento de la capacidad calorífica, reducción del punto congelación y aumento de la temperatura de descomposición) (3,4) constituyen temas de investigación actual de gran interés. En el proyecto CSP EOS (Chipre) se prevé construir una planta a escala comercial (50 MW) en la que el medio de almacenamiento y transferencia de calor está formado por bloques sólidos de grafito con elevados punto de fusión y calor específico. La expansión comercial de la tecnología CSP pasa necesariamente por potenciar su competitividad aún muy inferior en comparación con centrales térmicas fósiles (2). El reto de mayor urgencia para llegar a conseguir esta meta es mejorar la eficacia de almacenamiento y transferencia de la energía solar concentrada. Se trata pues de un campo completamente abierto y en gran desarrollo. The development of materials compatible with the limitations imposed by the use of molten salts or mineral oils as well as the synthesis of new HTFs with improved thermal properties (increased heat capacity, reduced freezing point and increased decomposition temperature) (3 , 4) constitute Current research topics of great interest. In the CSP EOS project (Cyprus) it is planned to build a commercial scale plant (50 MW) in which the storage and heat transfer medium consists of solid graphite blocks with high melting point and specific heat. The commercial expansion of CSP technology necessarily involves enhancing its competitiveness even lower compared to fossil thermal power plants (2). The most urgent challenge to achieve this goal is to improve the efficiency of storage and transfer of concentrated solar energy. It is therefore a completely open field and in great development.
El objeto de la presente invención es la transferencia y almacenamiento de energía termosolar concentrada mediante el uso de lechos fluidizados por gas de sólidos granulados (FB por sus siglas en inglés: "Fluidized Beds"). Como acaba de demostrar el proyecto SOLTESS ("Solar Thermal Energy Solid Storage" llevado a cabo en Italia) con la instalación de una planta de demostración CSP-FB de 0.1 MWt, el sistema lecho fluidizado sólido/gas es muy apropiado para la transferencia y almacenamiento de energía solar concentrada. En esta central se utiliza un lecho de arena fina silícea fluidizado con aire (a velocidades del orden de cm/s) como medio de recepción, intercambio y transferencia de energía solar concentrada permitiendo llegar a temperaturas de vapor en el rango 530-730°C con una autonomía de 10-15 h, es decir puede generar electricidad eficientemente durante las 24h (5). El lecho fluidizado por gas presenta un elevado coeficiente de transferencia térmica y de difusión que son regulables mediante el control del flujo de gas, mientras que es posible lograr un alto grado de almacenamiento en los sólidos granulados por su alta capacidad calorífica. Como ventaja añadida, la tecnología FB permite fácilmente integrar en un sistema híbrido la combustión de gas en el lecho fluidizado al objeto de calentarlo si fuera necesario en períodos largos de ausencia de radiación solar intensa. La tecnología CSP-FB consentiría además evitar los problemas de corrosión y contaminación asociados al uso de sales fundidas o aceites minerales. La arena es un material inerte, abundante y fácilmente disponible (especialmente en zonas desérticas donde es indicada la instalación de centrales CSP) lo que contribuiría a la expansión comercial de la tecnología. El elevado rendimiento de la planta de demostración construida en Italia sugiere que las centrales CSP-FB podrían ser comercializadas en módulos de pequeño tamaño en función de la demanda de la región donde sean instaladas. Esta característica facilitará el desarrollo comercial de la tecnología CSP pues se supera la necesidad que tienen las CSP-HTF basadas en tecnología de torre central y cilindro- parabólica de poseer un tamaño mínimo relativamente grande (en torno a los 10MWe) para lograr un rendimiento aceptable lo cual hace que el coste de la instalación sea excesivamente elevado. Actualmente, el grupo que ha ejecutado el proyecto SOLTESS proyecta la construcción de un modulo comercial CSP-FB de 1 ,85MWt y que suministrará 0.65MWe. Este año 2014 se han iniciado otros 2 proyectos industriales en Estados Unidos (US Solar Holdings) y Emiratos Árabes (SANDSTOCK) en los que también se analizará la tecnología de lecho fluidizado arena/gas con el objetivo final de construir una planta CSP-FB a escala comercial. Estos estudios demuestran que la integración CSP-FB posee un importante potencial para el desarrollo de la energía solar concentrada a escala comercial. El objeto de la presente invención es un método que previsiblemente mejorará la capacidad de almacenamiento de energía mediante esta tecnología innovadora. The object of the present invention is the transfer and storage of concentrated solar thermal energy through the use of gas fluidized beds of granulated solids (FB): "Fluidized Beds". As the SOLTESS project ("Solar Thermal Energy Solid Storage" carried out in Italy) has just demonstrated with the installation of a 0.1 MWt CSP-FB demonstration plant, the solid / gas fluidized bed system is very suitable for transfer and concentrated solar energy storage. This bed uses a bed of fine siliceous sand fluidized with air (at speeds of the order of cm / s) as a means of reception, exchange and transfer of concentrated solar energy allowing to reach steam temperatures in the range 530-730 ° C With an autonomy of 10-15 h, that is, it can generate electricity efficiently during 24 hours (5). The gas fluidized bed has a high coefficient of thermal transfer and diffusion that are adjustable through the control of the gas flow, while it is possible to achieve a high degree of storage in the granulated solids due to its high heat capacity. As an added advantage, the FB technology allows the gas combustion in the fluidized bed to be integrated into a hybrid system in order to heat it if necessary in long periods of absence of intense solar radiation. The CSP-FB technology would also allow the avoidance of corrosion and contamination problems associated with the use of molten salts or mineral oils. The sand is an inert material, abundant and readily available (especially in desert areas where the installation of CSP plants is indicated) which would contribute to the commercial expansion of the technology. The high performance of the demonstration plant built in Italy suggests that CSP-FB power plants could be sold in small modules depending on the demand of the region where they are installed. This feature will facilitate the commercial development of CSP technology because the need for CSP-HTF based on central tower and parabolic trough technology to have a relatively large minimum size (around 10MWe) to achieve acceptable performance is exceeded. which makes the cost of the installation excessively high Currently, the group that has executed the SOLTESS project projects the construction of a commercial module CSP-FB of 1, 85MWt and that will supply 0.65MWe. This year 2014, another 2 industrial projects have been initiated in the United States (US Solar Holdings) and United Arab Emirates (SANDSTOCK) in which the sand / gas fluidized bed technology will also be analyzed with the final objective of building a CSP-FB plant to commercial scale These studies demonstrate that CSP-FB integration has significant potential for the development of concentrated solar energy on a commercial scale. The object of the present invention is a method that will foreseeably improve the energy storage capacity by means of this innovative technology.
Referencias References
(1) V. S. Reddy, S. Kaushik, K. Ranjan, and S. Tyagi, "State-of-the-art of solar thermal power plants: a review, " Renewable and Sustainable Energy Reviews, vol. 27, pp. 258 - 273, 2013.  (1) V. S. Reddy, S. Kaushik, K. Ranjan, and S. Tyagi, "State-of-the-art of solar thermal power plants: a review," Renewable and Sustainable Energy Reviews, vol. 27, pp. 258-273, 2013.
H.L. Zhang, J. Baeyens, J. Degreve, G. Caceres, "Concentrated solar power plants: Review and design methodology", Renewable and Sustainable Energy Reviews, vol. 22, pp. 466 - 481, 2013.  H.L. Zhang, J. Baeyens, J. Degreve, G. Caceres, "Concentrated solar power plants: Review and design methodology", Renewable and Sustainable Energy Reviews, vol. 22, pp. 466-481, 2013.
(2) J. T. Hinkley, J. A. Hayward, B. Curtin, A. Wonhas, R. Boyd, C. Grima, A.  (2) J. T. Hinkley, J. A. Hayward, B. Curtin, A. Wonhas, R. Boyd, C. Grima, A.
Tadros, R. Hall, and K. Naicker, "An analysis of the costs and opportunities for concentrating solar power in Australia, " Renewable Energy, vol. 57, pp. 653 - 661, 2013.  Tadros, R. Hall, and K. Naicker, "An analysis of the costs and opportunities for concentrating solar power in Australia," Renewable Energy, vol. 57, pp. 653-661, 2013.
(3) D. Shin and D. Banerjee, "Enhanced specific heat of silica nanofluid, " Journal of Heat Transfer, vol. 133, p. 024501, 2011.  (3) D. Shin and D. Banerjee, "Enhanced specific heat of silica nanofluid," Journal of Heat Transfer, vol. 133, p. 024501, 2011.
(4) Andy. Skumanich, "Csp: Developments in heat transfer and storage materíals, " Renewable energy focus, pp. 40 - 43, September/October 2010.  (4) Andy. Skumanich, "Csp: Developments in heat transfer and storage materíals," Renewable energy focus, pp. 40-43, September / October 2010.
(5) R. Chirone, P. Salatino, P. Ammendola, R. Solimene, M. Magaldi, R. Sorrenti, G. D. Michele, and F. Donatini, "Development of a novel concept of solar receiverAhermal energy storage system based on compartmented dense gas fluidized beds, " in The 14th International Conference on Fluidization From Fundamentáis to Products, Engineering Conferences International, 2013.  (5) R. Chirone, P. Salatino, P. Ammendola, R. Solimene, M. Magaldi, R. Sorrenti, GD Michele, and F. Donatini, "Development of a novel concept of solar receiverAhermal energy storage system based on compartmented dense gas fluidized beds, "in The 14th International Conference on Fluidization From Fundamentalis to Products, Engineering Conferences International, 2013.
Descripción de las figuras Description of the figures
Figura 1.- Esquema de la integración de las tecnologías de energía termosolar concentrada con transferencia y almacenamiento de energía térmica y química en un lecho fluidizado de sólidos granulados (mezcla de materiales inertes con alta capacidad calorífica y conductividad térmica y CaC03/CaO) mediante un flujo controlado de gas que contiene C02 en un cierto porcentaje. Figure 1.- Scheme of the integration of concentrated solar thermal energy technologies with transfer and storage of thermal and chemical energy in a fluidized bed of granulated solids (mixture of inert materials with high heat capacity and thermal conductivity and CaC03 / CaO) by means of a controlled flow of gas containing C02 in a certain percentage.
(a) Radiación solar incidente. (b) Flujo de gas controlado conteniendo C02. (a) Solar radiation incident. (b) Controlled gas flow containing C02.
(c) Mezcla de sólidos granulados inertes y CaC03/CaO.  (c) Mixture of inert granulated solids and CaC03 / CaO.
(d) Unidad de control de la composición y flujo gas.  (d) Control unit of gas composition and flow.
(e) Intercambiador de calor.  (e) Heat exchanger.
(f) Ciclo de potencia.  (f) Power cycle.
Figura 2 - Valores de la concentración (% en volumen) de C02 en el gas y temperatura que determinan el desplazamiento de la reacción CaC03 = CaO + C02 con el objeto de almacenar u obtener energía mediante esta reacción en lecho fluidizado. Figure 2 - Concentration values (% by volume) of C02 in the gas and temperature that determine the displacement of the reaction CaC03 = CaO + C02 in order to store or obtain energy by means of this fluidized bed reaction.
Descripción de la invención Description of the invention
En esta invención se propone el empleo de un lecho de sólidos granulados consistente en una mezcla de sólidos inertes (por ejemplo arena) y CaCCyCaO (derivados por ejemplo de la caliza natural) fluidizado por un flujo de gas controlado consistente en una mezcla de gas inerte (por ejemplo aire) y C02 con el objeto de transferir y almacenar termoquímicamente energía solar concentrada. La novedad de la invención es el empleo de CaC03/CaO en el lecho fluidizado y C02 en el gas de fluidización, lo que permite complementar el almacenamiento de energía solar térmicamente en la arena con almacenamiento químico mediante la reacción de descarbonatación endotérmica del CaC03. Cuando la temperatura alcanzada en ciertos puntos del lecho es excesivamente elevada y no puede ser aprovechada en el ciclo de potencia, el control de la proporción de C02 en el flujo de gas permitiría provocar la descarbonatación endotérmica del CaC03. Inversamente, cuando esta temperatura descendiera por debajo de un valor deseado debido a períodos largos de baja radiación solar, sería posible carbonatar el CaO mediante reacción exotérmica que proporcionaría el calor anteriormente empleado en la descarbonatación para transferirlo al ciclo de potencia. De esta forma sería posible incrementar la autonomía y el rendimiento termoeléctrico. Asimismo, el almacenamiento químico permitiría reducir el volumen de lecho fluidizado sólido/gas que puede llegar a ser excesivamente elevado si únicamente se opera con almacenamiento térmico. El almacenamiento químico de la energía solar no presentaría pérdidas como ocurre con el almacenamiento térmico. En este procedimiento novedoso son integradas en una misma tecnología las ventajas del uso de lecho fluidizado asociadas a valores altos de transferencia térmica y difusión con la alta capacidad calorífica de sólidos inertes para almacenamiento térmico y los altos valores de calor latente y sensible del CaC03 para el almacenamiento químico de la energía de manera estable. La mezcla de CaC03 con un material inerte como la sílice incrementaría además la reversibilidad de las reacciones de descarbonatación/carbonatación pues el sílice favorece la estabilidad térmica del CaC03/CaO. Asimismo, si se opta por un sistema híbrido incluyendo la combustión de gas en el lecho fluidizado, la descarbonatación/carbonatación del CaC03 permitirá almacenar el calor en exceso químicamente para posteriormente ser usado en función de la demanda. Finalmente, el empleo de lechos fluidizados adicionales exclusivamente de CaC03 permitiría no sólo almacenar sino también transportar sin pérdidas la energía solar concentrada (en forma de CaO) para su uso en otras aplicaciones lo que ampliaría el abanico de posibilidades de uso de las plantas CSP y ayudaría pues a su desarrollo comercial. This invention proposes the use of a bed of granulated solids consisting of a mixture of inert solids (for example sand) and CaCCyCaO (derived for example from natural limestone) fluidized by a controlled gas flow consisting of a mixture of inert gas (for example air) and C0 2 in order to transfer and store thermochemically concentrated solar energy. The novelty of the invention is the use of CaC0 3 / CaO in the fluidized bed and C0 2 in the fluidization gas, which makes it possible to complement the storage of solar energy thermally in the sand with chemical storage by means of the endothermic decarbonation reaction of CaC0 3 . When the temperature reached at certain points of the bed is excessively high and cannot be exploited in the power cycle, controlling the proportion of C0 2 in the gas flow would allow the endothermic decarbonation of CaC0 3 . Conversely, when this temperature dropped below a desired value due to long periods of low solar radiation, it would be possible to carbonate the CaO by exothermic reaction that would provide the heat previously used in decarbonation to transfer it to the power cycle. In this way it would be possible to increase autonomy and thermoelectric efficiency. Likewise, chemical storage would reduce the volume of solid fluidized bed / gas that may become excessively high if only thermal storage is operated. The chemical storage of solar energy would not present losses as occurs with thermal storage. In this novel procedure, the advantages of the use of fluidized beds associated with high values of thermal transfer and diffusion with the high heat capacity of inert solids for thermal storage and the high latent and sensitive heat values of CaC0 3 are integrated in the same technology Chemical storage of energy stably. The mixture of CaC0 3 with an inert material such as silica would also increase the reversibility of the decarbonation / carbonation reactions because silica favors the thermal stability of CaC0 3 / CaO. Likewise, if a hybrid system is included, including the combustion of gas in the fluidized bed, the decarbonation / carbonation of CaC0 3 will allow the excess heat to be chemically stored for later use according to demand. Finally, the use of additional fluidized beds exclusively of CaC0 3 would allow not only storing but also transporting concentrated solar energy (in the form of CaO) without loss for use in other applications, which would expand the range of possibilities of use of CSP plants and thus help its commercial development.
El uso de la energía solar concentrada para calcinar CaC03 a alta temperatura, pudiendo ser este calor recuperado cuando sea necesario mediante la carbonatación del CaO, ha sido ya propuesto como método de almacenamiento de energía solar. El CaC03 posee una gran densidad energética (1.7 MJ/kg de calor latente y 0.87 MJ/kg de calor sensible muy superiores a los valores típicos que presentan sales fundidas) y es una materia prima que puede ser obtenida de materiales naturales disponibles en abundancia y de bajo coste (por ejemplo caliza natural). Además, tanto el CaC03 como el CaO pueden ser almacenados durante largos períodos de tiempo en condiciones atmosféricas y sin pérdidas térmicas como ocurre con los HTF usados en las tecnologías CSP con almacenamiento en sales fundidas o aceites minerales (CSP-HTF) o con la arena usada en la tecnología con almacenamiento en lecho fluidizado sólido/gas (CSP-FB). The use of concentrated solar energy to calcine CaC0 3 at high temperature, this heat being able to be recovered when necessary by carbonation of CaO, has already been proposed as a method of storing solar energy. CaC0 3 has a high energy density (1.7 MJ / kg of latent heat and 0.87 MJ / kg of sensible heat much higher than the typical values that have molten salts) and is a raw material that can be obtained from natural materials available in abundance and low cost (for example natural limestone). In addition, both CaC0 3 and CaO can be stored for long periods of time in atmospheric conditions and without thermal losses as occurs with HTFs used in CSP technologies with storage in molten salts or mineral oils (CSP-HTF) or with the sand used in technology with solid fluidized bed / gas storage (CSP-FB).
Así, el ciclo de descarbonatación (o calcinación) y carbonatación del CaC03/CaO (CaL por sus siglas en inglés: "Ca-looping") ha sido propuesto recientemente en un concepto integrado (CSP-CaL) con el objeto de almacenar y transferir energía solar concentrada. De acuerdo con este concepto, el CaO y C02 generados por la calcinación del CaC03 serían transportados por separado, y cuando la demanda lo hiciera necesario la carbonatación del CaO serviría para transferir calor a una corriente de gas usada para la producción de electricidad mediante una turbina a gas. No obstante, los resultados sugieren que la integración CSP-CaL sólo sería ventajosa con respecto a la tecnología CSP-HTF en un rango limitado de valores de conversión del CaO entre el 20% y 30% (porcentaje de CaO convertido a CaC03 en la reacción de carbonatación), lo cual constituye un importante límite práctico para la posible puesta en marcha de la tecnología CSP-CaL, la cual no ha sido aún demostrada en la práctica. Normalmente, los valores de la conversión de CaO en la reacción de carbonatación en un lecho fluidizado exclusivamente de CaO oscilan en un rango de valores muy amplio (entre el 80% y el 7%) dependiendo sensiblemente de las condiciones de calcinación/carbonatación (básicamente temperatura, concentración de C02 y tiempo de residencia del gas en el lecho) y del número de ciclos previos. Resultados experimentales demuestran que la calcinación a altas temperaturas hace que la conversión residual (aquella que se obtiene tras un número elevado de ciclos) del CaO decaiga por debajo del 10%, lo cual haría inviable el empleo de la tecnología CaL como único método de almacenamiento de energía solar concentrada. Por otra parte, aunque existen materiales sintéticos basados en CaO/CaC03, y métodos de tratamiento que pueden reactivar el CaO derivado de la caliza natural, el empleo de tales técnicas encarecería una tecnología cuya mayor ventaja potencial debiera radicar en su bajo coste y abundancia de una materia prima no contaminante. Thus, the decarbonation (or calcination) and carbonation cycle of CaC0 3 / CaO (CaL) has recently been proposed in an integrated concept (CSP-CaL) in order to store and transfer concentrated solar energy. According to this concept, the CaO and C0 2 generated by the calcination of CaC0 3 would be transported separately, and when the demand made it necessary, the carbonation of the CaO would serve to transfer heat to a gas stream used for the production of electricity by A gas turbine However, the results suggest that CSP-CaL integration would only be advantageous with respect to CSP-HTF technology in a limited range of CaO conversion values between 20% and 30% (percentage of CaO converted to CaC0 3 in the carbonation reaction), which constitutes an important practical limit for the possible start-up of CSP-CaL technology, which has not yet been proven in practice. Normally, the conversion values of CaO in the reaction of Carbonation in a fluidized bed exclusively of CaO oscillates in a very wide range of values (between 80% and 7%) depending significantly on the calcination / carbonation conditions (basically temperature, concentration of C0 2 and residence time of the gas in the bed) and the number of previous cycles. Experimental results show that high temperature calcination causes the residual conversion (the one obtained after a high number of cycles) of CaO to fall below 10%, which would make it unfeasible to use CaL technology as the only storage method of concentrated solar energy. On the other hand, although there are synthetic materials based on CaO / CaC0 3 , and treatment methods that can reactivate the CaO derived from natural limestone, the use of such techniques would cost more a technology whose greatest potential advantage should lie in its low cost and abundance of a non-polluting raw material.
En la presente invención, se propone la integración de la tecnología CaL con la tecnología CSP-FB de almacenamiento en lecho fluidizado de arena con el objeto de incrementar la autonomía de almacenamiento y eficiencia de esta última. En CSP-FB la energía solar concentrada es almacenada exclusivamente en forma térmica. Aunque el empleo de volúmenes grandes de material inerte como la arena (lo cual puede representar un problema por el tamaño que ha de tener el lecho en relación a la potencia generada) puede ser una solución para alargar el período transitorio de almacenamiento, la integración CSP-FB-CaL permitiría el almacenamiento de energía en forma química y por tanto permanente para ser empleada cuando el calor fuera necesario. Esta integración presentaría pues las ventajas de alta transferencia térmica y difusión que proporciona el lecho fluidizado de arena con almacenamiento térmico por una parte y, por otra, el almacenamiento permanente en forma química mediante la tecnología CaL. In the present invention, the integration of CaL technology with CSP-FB fluidized bed storage technology is proposed in order to increase the storage autonomy and efficiency of the latter. In CSP-FB concentrated solar energy is stored exclusively in thermal form. Although the use of large volumes of inert material such as sand (which can be a problem due to the size of the bed in relation to the power generated) can be a solution to extend the transitory period of storage, CSP integration -FB-CaL would allow the storage of energy in chemical form and therefore permanent to be used when the heat was necessary. This integration would therefore have the advantages of high thermal transfer and diffusion provided by the fluidized bed of sand with thermal storage on the one hand and, on the other, permanent storage in chemical form by means of CaL technology.
En la integración CSP-FB-CaL propuesta en la presente invención, la transferencia y almacenamiento de energía solar concentrada se llevaría a cabo en un lecho fluidizado formado por una mezcla de sólidos granulados inertes que es el medio de transferencia térmico (por ejemplo arena) con CaC03/CaO, que es el medio donde se almacenará químicamente la energía. La proporción relativa de CaCOs/CaO puede variar del 100% al 0%. Las velocidades del gas de fluidización serían pequeñas (del orden del cm/s como en la actual tecnología CSP-FB) por lo que los tiempos de residencia del gas en el lecho son prolongados, lo que permite que las reacciones de calcinación/carbonatación en torno al equilibrio alcancen estados avanzados. Puesto que la calcinación se produciría de manera lenta a temperaturas cercanas a la de equilibrio apenas ésta sea superada la reactividad del CaO regenerado no se verá disminuida ostensiblemente como ocurre en la tecnología CaL donde el CaC03 se calienta súbitamente a temperaturas muy por encima de la de equilibrio. Asimismo la mezcla del CaC03 con sólidos granulados inertes como la sílice (arena) contribuye a estabilizar térmicamente la caliza de acuerdo con observaciones experimentales. In the CSP-FB-CaL integration proposed in the present invention, the transfer and storage of concentrated solar energy would be carried out in a fluidized bed formed by a mixture of inert granulated solids which is the thermal transfer medium (for example sand) with CaC0 3 / CaO, which is the medium where energy will be chemically stored. The relative proportion of CaCOs / CaO can vary from 100% to 0%. The fluidization gas velocities would be small (of the order of cm / s as in the current CSP-FB technology) so that the residence times of the gas in the bed are prolonged, which allows the calcination / carbonation reactions in around equilibrium reach advanced states. Since calcination would occur slowly at temperatures close to equilibrium as soon as it is exceeded, the reactivity of the regenerated CaO will not be seen. significantly diminished as in CaL technology where CaC0 3 suddenly heats up to temperatures well above equilibrium. Likewise, mixing CaC0 3 with inert granulated solids such as silica (sand) contributes to thermally stabilize the limestone according to experimental observations.
La fluidización de arena/CaCCVCaO en contacto con el colector solar usando una mezcla C02/aire en porcentajes que pueden variar del 0% (si se quiere calcinar a temperaturas por debajo de 700°C aproximadamente) hasta el 100% (si se quisiera carbonatar a temperaturas elevadas), daría lugar a la calcinación del CaC03 a temperaturas superiores a un valor crítico deseado y a la carbonatación exotérmica del CaO cuando la temperatura descendiese por debajo de un cierto valor lo cual permitiría incrementar la autonomía de este método de almacenamiento y homogeneizar la entrega de calor al ciclo de potencia. Además, podría reducirse el volumen de material que sería necesario utilizar para mantener una temperatura del lecho de almacenamiento suficientemente alta. En el dispositivo piloto CSP-FB de 0.1 MWt en actual funcionamiento (proyecto SOLTESS) se emplean alrededor de 15000 kg en el lecho de almacenamiento para mantener su temperatura entre aproximadamente 530°C y 780°C en ciclos de noche/día y permitir así un funcionamiento continuo de la unidad de potencia con una eficiencia global de transformación de energía solar a la unidad de potencia en torno al 70% (bastante mayor que en CSP con tecnología cilindro-parabólica y de torre central que se establece alrededor del 20%). Con 15000 kg de arena se consigue una autonomía de funcionamiento en torno a las 10/15 h. Cabe esperar no obstante que la necesidad de usar volúmenes de arena demasiado elevados represente un problema en el escalado a mayor nivel de la tecnología CSP-FB. Además, la energía necesaria para fluidizar el material puede ser un factor limitante si se requieren volúmenes muy elevados pues la caída de presión a través del lecho del flujo de gas aplicado ha de compensar necesariamente el peso total por unidad de área del lecho. Teniendo en cuenta el elevado calor latente y sensible del CaC03 es previsible que la masa total de material necesario en la tecnología CSP-FB-CaL pueda ser reducida por lo que esta integración propuesta en la presente invención podría aportar una ventaja en un aspecto relevante en el desarrollo comercial de la tecnología como puede ser la energía necesaria para fluidizar grandes volúmenes de material. Por otra parte, la tecnología CSP-FB ofrece la posibilidad de variar parámetros de control que regulan la transferencia térmica como es la velocidad del gas con el objeto de contrarrestar el efecto de la variabilidad de la intensidad de radiación solar sobre la temperatura del lecho de almacenamiento. Mediante la integración CSP-FB-CaL que proponemos en la presente invención se tendría un nuevo parámetro de control estratégico (el %C02 en el gas de fluidización) con el fin de provocar las reacciones de descarbonatación o carbonatación según se desee reducir o aumentar la temperatura del lecho en función de la intensidad de radiación solar. La carbonatación durante períodos de baja radiación usando flujos de gas con alto %C02 permitiría elevar la temperatura incrementando así el rendimiento de la tecnología. En función de la intensidad de radiación solar puede elegirse una proporción óptima de CaC03 en la mezcla de sólidos granulares. El gas de fluidización puede circular en circuito cerrado de manera que se evitan emisiones de C02 a la atmósfera. The fluidization of sand / CaCCVCaO in contact with the solar collector using a C0 2 / air mixture in percentages that can vary from 0% (if you want to calcine at temperatures below approximately 700 ° C) up to 100% (if desired carbonation at high temperatures), would result in calcination of CaC0 3 at temperatures above a desired critical value and exothermic carbonation of CaO when the temperature dropped below a certain value which would allow increasing the autonomy of this storage method and homogenize the heat delivery to the power cycle. In addition, the volume of material that would be necessary to use to maintain a sufficiently high storage bed temperature could be reduced. In the pilot device CSP-FB of 0.1 MWt in current operation (SOLTESS project) about 15000 kg are used in the storage bed to maintain its temperature between approximately 530 ° C and 780 ° C in night / day cycles and thus allow a continuous operation of the power unit with a global efficiency of transformation of solar energy to the power unit around 70% (much higher than in CSP with parabolic trough and central tower technology that is established around 20%) . With 15,000 kg of sand, an autonomy of operation is achieved around 10/15 h. It is to be expected, however, that the need to use volumes of sand that are too high represents a problem in the higher level scaling of CSP-FB technology. In addition, the energy required to fluidize the material can be a limiting factor if very high volumes are required since the pressure drop across the bed of the applied gas flow must necessarily compensate for the total weight per unit area of the bed. Taking into account the high latent and sensitive heat of CaC0 3, it is foreseeable that the total mass of material needed in CSP-FB-CaL technology can be reduced, so this integration proposed in the present invention could provide an advantage in a relevant aspect. in the commercial development of technology such as the energy needed to fluidize large volumes of material. On the other hand, the CSP-FB technology offers the possibility of varying control parameters that regulate the thermal transfer such as the speed of the gas in order to counteract the effect of the variability of the intensity of solar radiation on the bed temperature of storage. Through the CSP-FB-CaL integration that we propose in the The present invention would have a new strategic control parameter (% C0 2 in the fluidization gas) in order to cause decarbonation or carbonation reactions as desired to reduce or increase the temperature of the bed depending on the intensity of solar radiation . The carbonation during periods of low radiation using gas flows with high% C0 2 would allow the temperature to rise thus increasing the performance of the technology. Depending on the intensity of solar radiation, an optimum proportion of CaC0 3 can be chosen in the granular solids mixture. The fluidizing gas may circulate in a closed circuit so that C0 2 emissions to the atmosphere are prevented.
En CSP-FB es necesaria la división del lecho fluidizado en compartimentos de recepción, intercambio y almacenamiento de energía termosolar para el control selectivo de la velocidad del gas en cada uno de ellos al objeto de evitar minimizar las inevitables pérdidas térmicas. Durante la noche, por ejemplo, se corta el suministro de gas al compartimento receptor (para evitar fugas de calor hacia la cavidad receptora de radiación solar) y al compartimento de almacenamiento si su temperatura baja por debajo de un valor crítico. La absorción/liberación de energía química en la tecnología integrada CSP-FB-CaL que se propone en la presente invención puede ser controlada de manera selectiva a lo largo de lecho fluidizado mediante la regulación del %C02 en el gas de fluidización a través de cada compartimento lo que contribuiría a reducir las pérdidas de calor. Además, se considera la posibilidad de añadir un compartimento para un lecho fluidizado exclusivamente de CaC03 de almacenamiento de energía química. La alta transferencia térmica en lecho fluidizado sólido/gas permitiría la transferencia eficiente de calor en exceso a este compartimento. El CaO generado por calcinación en este compartimento puede ser usado en la misma planta si fuese necesario para generar calor y aumentar la temperatura de vapor o bien ser transportado si se produjese en exceso para la generación de calor en otras aplicaciones industriales. In CSP-FB it is necessary to divide the fluidized bed into compartments for receiving, exchanging and storing solar thermal energy for the selective control of the gas velocity in each of them in order to avoid minimizing the inevitable thermal losses. During the night, for example, the gas supply to the receiving compartment is cut off (to avoid heat leaks to the solar radiation receiving cavity) and to the storage compartment if its temperature falls below a critical value. The absorption / release of chemical energy in the integrated CSP-FB-CaL technology proposed in the present invention can be selectively controlled along the fluidized bed by regulating the% C0 2 in the fluidization gas through each compartment which would contribute to reduce heat losses. In addition, the possibility of adding a compartment for a fluidized bed exclusively of chemical energy storage CaC0 3 is considered . The high thermal transfer in solid fluidized bed / gas would allow efficient transfer of excess heat to this compartment. The CaO generated by calcination in this compartment can be used in the same plant if necessary to generate heat and increase the steam temperature or be transported if produced in excess for heat generation in other industrial applications.
La eficacia de la integración CSP-FB-CaL descrita en la presente invención dependería críticamente de la reactividad del CaO regenerado en cada ciclo mediante calcinación. Resultados obtenidos en nuestro laboratorio muestran que es posible mantener una reactividad cíclica alta del CaO regenerado en ciertas condiciones de calcinación/carbonatación como la calcinación a en atmósfera de aire y la carbonatación en atmósfera con alta concentración de C02 a temperaturas entre 600°C y 900°C. La posibilidad de introducir vapor de H20, en torno al 20% en volumen, en el lecho fluidizado contribuiría asimismo a incrementar la reactividad del CaO como muestran resultados experimentales. Teniendo en cuenta el rango de oscilación de temperaturas en la actual tecnología CSP-FB, estas condiciones serían compatibles con una eficiente integración CSP-FB-CaL. The effectiveness of the CSP-FB-CaL integration described in the present invention would critically depend on the reactivity of the regenerated CaO in each cycle by calcination. Results obtained in our laboratory show that it is possible to maintain a high cyclic reactivity of CaO regenerated under certain conditions of calcination / carbonation as calcination in air and carbonation in an atmosphere with high concentration of C0 2 at temperatures between 600 ° C and 900 ° C The possibility of introducing H 2 0 vapor, around 20% by volume, into the fluidized bed would also contribute to increasing the reactivity of CaO as experimental results show. Taking into account the oscillation range of temperatures in the current CSP-FB technology, these conditions would be compatible with an efficient CSP-FB-CaL integration.
Modo de realización de la invención Embodiment of the invention
Un ejemplo de realización de la invención basada en la integración de las tecnologías CSP-FB-CaL (transferencia y almacenamiento termoquímico de energía solar concentrada en lecho fluidizado de mezcla de sólidos granulados inertes y CaC03/CaO) queda representado en la Figura 1. La radiación solar (a) es colectada por el lecho fluidizado (c) mediante una cavidad de la misma forma que se realiza en la tecnología demostrada CSP-FB. El lecho de sólidos granulados está formado por una mezcla de sólidos inertes (por ejemplo arena fina silícea) de elevada capacidad calorífica y conductividad térmica y CaC03/CaO (derivados por ejemplo de la caliza natural). El lecho se encuentra en estado de fluidización por la aplicación de un flujo de gas (b) consistente en una mezcla de gas inerte (por ejemplo aire) y C02 a una velocidad y en una proporción regulables en la unidad de control (d). Se contempla la posibilidad de introducir vapor con el objeto de intensificar la reactividad del CaO si fuera necesario. Mediante intercambiadores de calor (e), el calor almacenado en el lecho fluidizado es transferido al ciclo de potencia (f) para la generación de energía eléctrica siguiendo el procedimiento convencional llevado a cabo en plantas fósiles. Es posible la división del lecho fluidizado en diferentes compartimentos (receptor, intercambiador y almacenamiento de energía) al igual que en la tecnología CSP-FB. La modificación introducida en la presente invención consiste en la integración de la tecnología CaL. En una división en compartimentos del lecho fluidizado es posible utilizar mezclas de sólidos inertes/CaC03/CaO en proporciones variables en cada una de los compartimentos al objeto de intensificar la carbonatación exotérmica en las regiones cercanas a los intercambiadores e incrementar de esta forma en modo más eficiente la temperatura de vapor. También existe la posibilidad de hacer pasar flujos de gas con diferente %C02 a través de cada compartimento al objeto de intensificar la descarbonatación en la región de mayor temperatura reduciendo el %C02 (normalmente el compartimento de recepción durante el día) e intensificar la carbonatación mediante la aplicación de un flujo con elevado %C02 (normalmente en el intercambiador y la unidad de almacenamiento si la temperatura es demasiado baja). También puede añadirse un compartimento exclusivo de almacenamiento químico consistente en un lecho fluidizado de CaC03. El CaO generado en este compartimento puede ser usado en la misma planta para liberar calor mediante su carbonatación o bien ser transportado para su uso en otras aplicaciones que requieran calor. Este CaO puede ser almacenado sin pérdidas de energía para su uso cuando y donde fuera necesario. Si bien la fluidización permite obtener un alto grado de transferencia térmica existe la posibilidad de aplicar técnicas que intensifiquen la transferencia de calor y masa para potenciar así la carbonatación del CaO. Una de estas técnicas de demostrada eficiencia para potenciar la carbonatación de CaO en otras aplicaciones en reactor de lecho fluidizado a alta temperatura es la aplicación de sonido de alta intensidad y baja frecuencia que podría ser implementada en esta invención. An exemplary embodiment of the invention based on the integration of CSP-FB-CaL technologies (thermochemical transfer and storage of concentrated solar energy in a fluidized bed of inert granulated solids and CaC0 3 / CaO) is shown in Figure 1. Solar radiation (a) is collected by the fluidized bed (c) by a cavity in the same way as is done in the proven CSP-FB technology. The bed of granulated solids is formed by a mixture of inert solids (for example fine siliceous sand) of high heat capacity and thermal conductivity and CaC0 3 / CaO (derived for example from natural limestone). The bed is in a fluidized state by the application of a gas flow (b) consisting of a mixture of inert gas (for example air) and C0 2 at a rate and in an adjustable proportion in the control unit (d) . The possibility of introducing steam is contemplated in order to intensify the reactivity of the CaO if necessary. Through heat exchangers (e), the heat stored in the fluidized bed is transferred to the power cycle (f) for the generation of electric energy following the conventional procedure carried out in fossil plants. It is possible to divide the fluidized bed into different compartments (receiver, exchanger and energy storage) as in the CSP-FB technology. The modification introduced in the present invention consists in the integration of CaL technology. In a division in compartments of the fluidized bed it is possible to use mixtures of inert solids / CaC0 3 / CaO in varying proportions in each of the compartments in order to intensify the exothermic carbonation in the regions close to the exchangers and thus increase in mode more efficient steam temperature. There is also the possibility of passing gas flows with different% C0 2 through each compartment in order to intensify decarbonation in the higher temperature region by reducing% C0 2 (normally the reception compartment during the day) and intensifying the carbonation by applying a flow with high% C0 2 (usually in the exchanger and the storage unit if the temperature is too low). An exclusive chemical storage compartment consisting of a fluidized bed of CaC0 3 can also be added. The CaO generated in this compartment can be used in the same plant to release heat by carbonation or be transported for use in other applications that require hot. This CaO can be stored without energy losses for use when and where necessary. Although fluidization allows a high degree of thermal transfer to be obtained, there is the possibility of applying techniques that intensify the transfer of heat and mass to enhance the carbonation of CaO. One of these techniques of proven efficiency to enhance the carbonation of CaO in other applications in a high temperature fluidized bed reactor is the application of high intensity and low frequency sound that could be implemented in this invention.
El control del %C02 usado en el gas de fluidización se podrá realizar de acuerdo con el equilibrio de la reacción de descarbonatación/carbonatación del CaC03 representado en la Fig. 2 y en función de la distribución de temperaturas en el lecho fluidizado. Este diagrama permite prever el sentido en el que se desplazará la reacción de acuerdo con el %C02 en el gas de fluidización y de la temperatura. De este modo, si por ejemplo el %C02 se mantiene en torno al 10%, el sistema desprenderá calor (carbonatación de CaO) donde y cuando la temperatura baje de 750°C y absorberá calor cuando la temperatura suba por encima de este valor (descarbonatación de CaC03). La regulación del %C02 en el gas fluidización en la unidad de control de gas se usaría como mecanismo de control de la temperatura en el lecho fluidizado de modo que esta se transfiera con pocas oscilaciones al ciclo de potencia. The control of the% C0 2 used in the fluidization gas can be carried out in accordance with the equilibrium of the decarbonation / carbonation reaction of CaC0 3 represented in Fig. 2 and depending on the temperature distribution in the fluidized bed. This diagram allows to anticipate the direction in which the reaction will move according to the% C0 2 in the fluidization gas and the temperature. Thus, if for example the% C0 2 is maintained at around 10%, the system will release heat (carbonation of CaO) where and when the temperature drops below 750 ° C and absorb heat when the temperature rises above this value. (decarbonation of CaC0 3 ). The regulation of% C0 2 in the fluidizing gas in the gas control unit would be used as a temperature control mechanism in the fluidized bed so that it is transferred with few oscillations to the power cycle.
La cantidad total de calor absorbido y liberado en el lecho fluidizado depende de la proporción de CaC03 y CaO usada en la mezcla de sólidos granulados que puede ser también variable en función de la radiación solar incidente característica de la región en que la planta sea instalada. En todo momento, el calor en exceso quedará almacenado químicamente de manera permanente y estable en forma de CaO para ser utilizado cuando sea necesario. Este calor puede provenir de la combustión de gas en el mismo lecho fluidizado tal y como se propone en la tecnología CSP-FB en un sistema híbrido. No obstante, en CSP-FB se puede almacenar calor sólo de manera transitoria puesto que el lecho de sólidos inertes (arena) presentará siempre pérdidas térmicas. La única solución posible en CSP-FB para prolongar el período transitorio de almacenamiento es incrementar el volumen del lecho fluidizado de almacenamiento con la consiguiente pérdida de eficiencia de la tecnología. En el concepto CSP-FB-CaL propuesto en la presente invención, el calor en exceso puede ser almacenado químicamente de forma permanente hasta que sea necesario recuperarlo por lo que es esperable que esta innovación suponga una mejora de almacenamiento con respecto a la tecnología CSP-FB. The total amount of heat absorbed and released in the fluidized bed depends on the proportion of CaC0 3 and CaO used in the mixture of granulated solids that can also be variable depending on the incident solar radiation characteristic of the region where the plant is installed . At all times, excess heat will be stored chemically permanently and stably in the form of CaO to be used when necessary. This heat can come from the combustion of gas in the same fluidized bed as proposed in the CSP-FB technology in a hybrid system. However, heat can only be stored temporarily in CSP-FB since the bed of inert solids (sand) will always have thermal losses. The only possible solution in CSP-FB to prolong the transitory storage period is to increase the volume of the fluidized storage bed with the consequent loss of technology efficiency. In the CSP-FB-CaL concept proposed in the present invention, excess heat can be permanently stored chemically until it is necessary to recover it, so it is expected that this innovation will result in improved storage with respect to CSP technology. FB

Claims

Reivindicaciones Claims
1. Procedimiento termoquímico de transferencia y almacenamiento de energía solar concentrada caracterizado porque consiste en someter a radiación solar concentrada un lecho de sólidos granulados fluidizado por gas y que está dividido en compartimentos para la recepción, intercambio y almacenamiento de energía en función de la proporción de la mezcla. 1. Thermochemical procedure for the transfer and storage of concentrated solar energy characterized in that it consists in subjecting a bed of concentrated solids to the solar fluid concentrated by gas and which is divided into compartments for the reception, exchange and storage of energy depending on the proportion of mix.
2. Procedimiento termoquímico de transferencia y almacenamiento de energía solar concentrada según reivindicación 1 caracterizado porque el sólido granulado está constituido por una mezcla de sólidos granulados inertes, preferentemente arena, y CaCCyCaO , preferentemente derivado de la piedra caliza natural. 2. Thermochemical process for transferring and storing concentrated solar energy according to claim 1, characterized in that the granulated solid is constituted by a mixture of inert granulated solids, preferably sand, and CaCCyCaO, preferably derived from natural limestone.
3. Procedimiento termoquímico de transferencia y almacenamiento de energía solar concentrada según reivindicaciones 1 y 2 caracterizado porque el flujo de gas usado para la fluidización está formado por una mezcla de gas inerte, preferentemente aire, y C02 en proporción controlada de tal manera que por encima de un valor crítico de temperatura, preferentemente 700°C, se almacena energía química mediante la descarbonatación de CaC03. 3. Thermochemical process for transferring and storing concentrated solar energy according to claims 1 and 2, characterized in that the gas flow used for fluidization is formed by a mixture of inert gas, preferably air, and C0 2 in controlled proportion such that by Above a critical temperature value, preferably 700 ° C, chemical energy is stored by decarbonation of CaC0 3 .
4. Procedimiento termoquímico de transferencia y almacenamiento de energía solar concentrada según reivindicaciones 1 y 2 caracterizado porque el flujo de gas usado para la fluidización está formado por una mezcla de gas inerte, preferentemente aire y C02 en proporción controlada de tal manera que por debajo de un valor crítico de temperatura, preferentemente 700°C, se libera energía química medíante la carbonatación de CaO. 4. Thermochemical process for transferring and storing concentrated solar energy according to claims 1 and 2 characterized in that the gas flow used for fluidization is formed by a mixture of inert gas, preferably air and C0 2 in controlled proportion such that below from a critical temperature value, preferably 700 ° C, chemical energy is released through the carbonation of CaO.
5. Procedimiento termoquímico de transferencia y almacenamiento de energía solar concentrada según reivindicación 4 caracterizado porque la incorporación de cantidades controladas en torno al 20% en volumen de vapor de H20 en el flujo de gas permite incrementar la reactividad del CaO. 5. Thermochemical process for transferring and storing concentrated solar energy according to claim 4, characterized in that the incorporation of controlled quantities around 20% by volume of H 2 0 vapor in the gas flow allows to increase the reactivity of CaO.
6. Procedimiento termoquímico de transferencia y almacenamiento de energía según la reivindicación 1 , caracterizado porque la aplicación de ondas sonoras sobre el lecho fluidizado intensifica la transferencia de calor y masa en el lecho fluidizado. 6. Thermochemical energy transfer and storage method according to claim 1, characterized in that the application of sound waves on the fluidized bed intensifies the transfer of heat and mass in the fluidized bed.
PCT/ES2015/000084 2014-06-26 2015-06-26 Thermochemical method for the transfer and storage of concentrated solar energy WO2015197885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201400520A ES2555329B2 (en) 2014-06-26 2014-06-26 Thermochemical procedure for transferring and storing concentrated solar energy
ESP201400520 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015197885A1 true WO2015197885A1 (en) 2015-12-30

Family

ID=54883796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/000084 WO2015197885A1 (en) 2014-06-26 2015-06-26 Thermochemical method for the transfer and storage of concentrated solar energy

Country Status (2)

Country Link
ES (1) ES2555329B2 (en)
WO (1) WO2015197885A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737658A (en) * 2016-04-30 2016-07-06 华南理工大学 Fluidization calcium-based thermal-chemical high temperature energy storing/releasing system and working method thereof
DE102016217090A1 (en) * 2016-09-08 2018-03-08 Siemens Aktiengesellschaft Method and system for storing and recovering heat energy in a power plant
CN109520346A (en) * 2018-12-14 2019-03-26 北方民族大学 A method of heat chemistry energy storage is carried out using lime stone
CN109566200A (en) * 2018-11-30 2019-04-05 华中科技大学 A kind of agricultural greenhouse self-sufficiency water system based on fluidized bed
WO2021119752A1 (en) * 2019-12-18 2021-06-24 Curtin University Thermal battery
WO2021151758A1 (en) * 2020-01-28 2021-08-05 Saltx Technology Ab System and method for transportable energy storage and carbon capture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418422A1 (en) * 1978-02-24 1979-09-21 Fives Cail Babcock Storing and recovering heat energy - by decomposing calcium carbonate and recombining the products elsewhere
US4894989A (en) * 1986-08-29 1990-01-23 Aisin Seiki Kabushiki Kaisha Heater for a stirling engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418422A1 (en) * 1978-02-24 1979-09-21 Fives Cail Babcock Storing and recovering heat energy - by decomposing calcium carbonate and recombining the products elsewhere
US4894989A (en) * 1986-08-29 1990-01-23 Aisin Seiki Kabushiki Kaisha Heater for a stirling engine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARENA N. ET AL.: "Carbon Dioxide Adsorption in a Sound-Assisted Fluidized Bed of Fine Powders", XXXIV MEETING OF THE ITALIAN SECTION OF THE COMBUSTION INSTITUTE., 2011, XP055247588 *
CHIRONE, R. ET AL.: "Development of a Novel Concept of Solar Receiver/Thermal Energy Storage System Based on Compartmented Dense Gas Fluidized Beds.", THE 14TH INTERNATIONAL CONFERENCE ON FLUIDIZATION - FROM FUNDAMENTALS TO PRODUCTS., 2013 *
FLAMANT, GILLES ET AL.: "Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3.", SOLAR ENERGY, vol. 24, no. 4, 1980, pages 385 - 395, XP025451818, ISSN: 0038-092x *
PARDO, P. ET AL.: "A review on high temperature thermochemical heat energy storage.", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 32, 5 February 2014 (2014-02-05), pages 591 - 610, XP055247587, ISSN: 1364-0321 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737658A (en) * 2016-04-30 2016-07-06 华南理工大学 Fluidization calcium-based thermal-chemical high temperature energy storing/releasing system and working method thereof
DE102016217090A1 (en) * 2016-09-08 2018-03-08 Siemens Aktiengesellschaft Method and system for storing and recovering heat energy in a power plant
CN109566200A (en) * 2018-11-30 2019-04-05 华中科技大学 A kind of agricultural greenhouse self-sufficiency water system based on fluidized bed
CN109520346A (en) * 2018-12-14 2019-03-26 北方民族大学 A method of heat chemistry energy storage is carried out using lime stone
CN109520346B (en) * 2018-12-14 2020-08-07 北方民族大学 Method for thermochemical energy storage by using limestone
WO2021119752A1 (en) * 2019-12-18 2021-06-24 Curtin University Thermal battery
WO2021151758A1 (en) * 2020-01-28 2021-08-05 Saltx Technology Ab System and method for transportable energy storage and carbon capture

Also Published As

Publication number Publication date
ES2555329A1 (en) 2015-12-30
ES2555329B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
WO2015197885A1 (en) Thermochemical method for the transfer and storage of concentrated solar energy
Liu et al. Progress in thermochemical energy storage for concentrated solar power: A review
US20140298822A1 (en) Chemical Looping Fluidized-Bed Concentrating Solar Power System and Method
CN102822614B (en) Systems and methods of thermal transfer and/or storage
CN105888995B (en) Groove type solar high temperature integrated thermal generating device
US20090175603A1 (en) Equipment group and procedure for storage of heat energy using electric current
EP3308091A1 (en) Heat exchange system with a heat exchange chamber in with a thermal insulation layer, method for manufacturing the heat exchange system and method for exchanging heat by using the heat exchange system
ES2715405T3 (en) Thermal energy storage facility in compact rock bed
ES2595443B1 (en) Integrated calcination-carbonation system and closed loop CO2 cycle for thermochemical energy storage and electric power generation
Tamme et al. Thermal energy storage
ES2735673T3 (en) Heat exchange system with joint active fluid movement device for loading mode and discharge mode and method for heat exchange by using the heat exchange system
Hirano Thermal Energy Storage and Transport
KR101429233B1 (en) Tower type solar thermal power plant system
WO2017055346A1 (en) Heat exchange system with main heat exchange chamber and subsidiary heat exchange chamber and method for exchanging heat by using the heat exchange system
Jawhar et al. Thermal energy storage options for concentrated solar power plants in the united arab emirates
EP3303967B2 (en) Heat exchange system with at least two heat exchange chambers and method for exchanging heat by using the heat exchange system
Rekkas Ventiris Archimede concentrated solar power plant dynamic simulation: control systems, heat transfer fluids and thermal energy storage
ES2382707B1 (en) TOWER RECEIVER CONFIGURATION FOR HIGH POWER.
EP3311092A1 (en) Heat exchange system with heat exchange tubes and method for exchanging heat by using the heat exchange system
ES2637510B1 (en) Thermochemical procedure for concentrated solar energy storage from steel slag
Gil et al. Thermal Energy Storage Systems
Montagnaro Innovative Systems for the Accumulation of Solar Energy in Solid Materials
Stein Concentrating solar thermal power
Wallentinsen Concentrated Solar Power Gas Turbine Hybrid with Thermal Storage
GB2427249A (en) Combined generator and water distillation plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811301

Country of ref document: EP

Kind code of ref document: A1