WO2015196668A1 - 一种路径损耗的计算、补偿装置与方法 - Google Patents

一种路径损耗的计算、补偿装置与方法 Download PDF

Info

Publication number
WO2015196668A1
WO2015196668A1 PCT/CN2014/089338 CN2014089338W WO2015196668A1 WO 2015196668 A1 WO2015196668 A1 WO 2015196668A1 CN 2014089338 W CN2014089338 W CN 2014089338W WO 2015196668 A1 WO2015196668 A1 WO 2015196668A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
path loss
module
parameter
Prior art date
Application number
PCT/CN2014/089338
Other languages
English (en)
French (fr)
Inventor
张天鹏
邵立群
刘彬
王钢
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196668A1 publication Critical patent/WO2015196668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • the present invention relates to the field of communications, and more particularly to path loss in mobile communications.
  • the existing communication system mainly includes three parts: a base station device, a feeder line and an antenna.
  • the base station device generates a signal of predetermined power, carrier frequency and bandwidth under the background control of the network management system.
  • the antenna is transmitted to the antenna via the feeder, and the antenna completes the reception and coverage.
  • the area radiates wireless signals.
  • Antennas are often placed at the top of a tower that is tens of meters high, and the calculation of path loss is very difficult.
  • Many new 4G networks share feeders of 2G or 3G existing networks, and the change of these scenarios causes the transmission loss of the feeders to also change. Therefore, it is necessary to repeatedly measure the path loss.
  • the existing measurement methods mainly have the following two types: First, the transmission loss of the feeder is measured by the human tower, which requires a lot of labor costs; secondly, the cable specification and the accessory index are used for estimation. Big. Therefore, there is currently no practical, accurate and convenient solution to calculate the path loss of the transmission channel.
  • the embodiment of the invention provides a device for calculating and compensating the path loss, and solves the problem that the existing path loss calculation and compensation scheme requires a large amount of human resources or a large error.
  • the embodiment of the present invention adopts the following technical solutions:
  • a path loss computing device includes:
  • a first acquiring module configured to acquire a performance parameter of an original signal generated by the base station device and transmitted to the antenna through the transmitting channel
  • a second acquiring module configured to acquire a performance of the antenna receiving signal after the original signal reaches the antenna Performance parameters of the parameter
  • the calculation module is configured to calculate a path loss of the transmit channel according to the performance parameter of the original signal and the performance parameter of the antenna received signal.
  • the first obtaining module includes a configuration submodule and/or a first detecting submodule.
  • the configuration submodule is configured to receive a signal parameter set by the user, where the signal parameter includes a performance parameter of the original signal;
  • a first detecting submodule configured to couple the original signal sent by the base station device and detect a performance parameter thereof
  • the second obtaining module includes a second detecting submodule configured to couple the original signal to a received signal at an antenna port behind the antenna, and detect a performance parameter thereof.
  • the signal parameter further includes a carrier frequency; or the signal parameter further includes a carrier frequency and a bandwidth.
  • the configuration submodule is further configured to control the base station device to generate the original signal according to the signal parameter and transmit the signal to the antenna through the transmitting channel.
  • the configuration submodule is further configured to configure the second detection submodule to be coupled to the received signal at the antenna port behind the antenna according to the received signal parameter.
  • the calculation module is specifically configured to subtract the performance parameter of the original signal from the performance parameter of the antenna received signal to obtain a path loss of the transmit channel.
  • a path loss compensating device comprising the path loss calculating device according to any one of the preceding claims, further comprising:
  • the compensation module is configured to perform performance compensation on the signal transmitted by the base station device through the transmission channel according to the path loss of the transmission channel calculated by the calculation device of the path loss.
  • a method for calculating path loss including:
  • the path loss of the transmission channel is calculated according to the performance parameter of the original signal and the performance parameter of the antenna received signal.
  • obtaining performance parameters of the original signal generated by the base station device and transmitted to the antenna through the transmitting channel includes:
  • the signal parameter including a performance parameter of the original signal; or coupling the original signal sent by the base station device, and detecting a performance parameter thereof;
  • Obtaining the performance parameters of the antenna receiving signal includes: coupling the original signal to the receiving signal at the antenna port after the antenna, and detecting the performance parameter thereof.
  • the method further includes: controlling, according to the received signal parameter, the base station device to generate the original signal according to the signal parameter and transmit the signal to the antenna through the transmitting channel.
  • calculating a path loss of the transmit channel according to the performance parameter of the original signal and the performance parameter of the antenna received signal includes:
  • the performance parameter of the original signal is subtracted from the performance parameter of the antenna received signal to obtain the path loss of the transmitting channel.
  • a method for compensating for path loss comprising:
  • performance compensation is performed on the signal transmitted by the base station device through the transmitting channel.
  • the embodiment of the invention further provides a computer program and a carrier thereof, the computer program comprising program instructions, when the program instruction is executed by the path loss computing device, enabling the device to implement the path loss calculation method.
  • the embodiment of the invention further provides a computer program and a carrier thereof, the computer program comprising program instructions, when the program instruction is executed by the path loss compensation device, enabling the device to implement the path loss compensation method.
  • the base station device In the existing communication system, the base station device generates the original signal and transmits the signal to the antenna through the feeder line. Because of the path loss, the antenna receiving signal has a path loss compared to the original signal, and the embodiment of the present invention actually sends out according to the base station device.
  • the performance parameters of the original signal and the performance parameters of the antenna received signal are used to calculate the path loss of the transmit channel. Provides a practical, accurate and convenient meter
  • the calculation scheme does not require a large amount of human resources to be measured on the tower, nor is it estimated based on the cable index, so the estimation error can be avoided.
  • the performance compensation is performed to ensure the power stability of the antenna radiated signal, the stability of the coverage and the stability of the network performance.
  • the maximum power of the antenna radiated signal is also consistent with the maximum transmit power of the cell configured in the background of the network management.
  • FIG. 1 is a flowchart of a path loss compensation method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a path loss calculation apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a path loss compensation apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • the embodiments of the present invention are mainly applied to a communication system.
  • the communication system mainly includes a base station device, a feeder, and an antenna.
  • One base station device has at least one transmission channel, and the carrier frequencies of the signals transmitted on the respective transmission channels may be the same or different, and the broadband may be the same or different.
  • the power can be the same or different.
  • the at least one transmitting channel can share the same feeder, and different base station devices can share the same feeder.
  • the base station device is configured to generate an original signal of a predetermined power, select a transmission channel, transmit the signal to the antenna via the feeder, and then radiate the wireless signal to the coverage area. Due to the path loss, the antenna receives a signal with a path loss compared to the original signal.
  • the path loss of the original signal transmitted from the base station device to the antenna is referred to as the path loss of the transmission channel in the embodiment of the present invention. In fact, it is mainly the transmission loss of the feeder. This loss affects the coverage and network performance of the wireless signal radiated by the antenna.
  • performance parameters in the embodiments of the present invention include, but are not limited to, electrical energy and power.
  • FIG. 1 is a flowchart of a path loss compensation method according to an embodiment of the present invention. As shown in Figure 1, the following steps are included:
  • the acquiring manner of the performance parameter of the antenna receiving signal in step S101 includes, but is not limited to, coupling the received signal at the antenna port after the original signal reaches the antenna, and detecting the performance parameter.
  • the signal coupled to the antenna port is substantially close to the actual received signal of the antenna.
  • step S101 includes but is not limited to the following two types:
  • Manner 1 Coupling the original signal sent by the base station device and detecting its performance parameters.
  • the base station device first generates and sends the original signal, and then couples the original signal on the transmission path between the base station device and the feeder, or at the output port of the base station device, if the base station device includes a BBU (baseband processing unit) and an RRU. (RF remote module)
  • the original signal is coupled at the output port of the BBU or in the RRU.
  • Manner 2 receiving a signal parameter set by a user, where the signal parameter includes a performance parameter of the original signal.
  • the specific receiving manner includes: setting a signal parameter in the background of the network management, receiving the signal parameter set by the user in the background of the network management; or receiving a signal parameter directly input by the user.
  • the performance parameters of the original signal are set by the user, so the base station device is not required to generate and send the original signal first.
  • the base station device may further generate an original signal according to the signal parameter.
  • the base station device may generate and send a tone signal having the performance parameter according to a carrier frequency and a performance parameter, as an original signal, or generate and send a broadband signal having the performance parameter according to a carrier frequency, a bandwidth, and a performance parameter, As the original signal.
  • a filtering module for detecting may be configured according to the signal parameter, for example, configuring a center frequency and a bandwidth of the filtering module according to a carrier frequency and a bandwidth in the signal parameter, so as to be coupled to the antenna after the original signal reaches the antenna. The signal is received at the port and the out-of-band signal is filtered out.
  • the path loss is calculated in step S102.
  • the performance parameter of the original signal is subtracted from the performance parameter of the antenna received signal to obtain a path loss of the transmit channel.
  • step S103 loss compensation may be performed in the digital domain or analog power compensation may be performed on the analog link. Since the working signal is transmitted from the base station device via the feeder to the antenna, the base station device first converts the digital signal into an analog signal, and the analog signal is transmitted to the antenna via the feeder. Therefore, the digital signal before being converted into an analog signal can be compensated for loss, and the converted analog signal can be compensated for loss.
  • the path loss calculation and compensation method provided in this embodiment is more practical, accurate, and convenient than the existing manual tower measurement or estimation method.
  • the antenna can be secured.
  • the power, coverage, and network performance of the radiated wireless signal are stable, and the maximum power of the wireless signal radiated by the antenna is also consistent with the maximum transmit power of the cell configured in the background of the network management.
  • the path loss calculation apparatus 2 includes a first acquisition module 21, a second acquisition module 22, and a calculation module 23, wherein the first acquisition module 21 is configured to acquire a performance parameter of the original signal generated by the base station device and transmitted to the antenna through the transmitting channel; the second obtaining module 22 is configured to obtain a performance parameter of the antenna received signal after the original signal reaches the antenna; and the calculating module 23 is configured to perform performance according to the original signal The parameter and the performance parameter of the antenna receiving signal calculate the path loss of the transmitting channel.
  • the first obtaining module 21 includes a configuration submodule and/or a first detecting submodule, and the configuration submodule is configured to receive a signal parameter set by the user, where the signal parameter includes a performance parameter of the original signal; the first detector The module is configured to couple the original signal sent by the base station device and detect its performance parameter.
  • the second obtaining module 22 includes a second detecting submodule configured to couple the original signal to the receiving signal at the antenna port after the antenna. And detected its performance parameters.
  • the signal parameter further includes a carrier frequency; or the signal parameter further includes a carrier frequency and a bandwidth.
  • the configuration submodule is further configured to control the base station device to generate an original signal according to the signal parameter and transmit the signal to the antenna through the transmitting channel.
  • the configuration submodule is further configured to configure the second detector according to the received signal parameter.
  • the calculation module is specifically configured to subtract the performance parameter of the original signal from the performance parameter of the antenna received signal to obtain a path loss of the transmit channel.
  • FIG. 3 is a schematic diagram of a path loss compensation apparatus according to an embodiment of the present invention.
  • the path loss compensating device 3 includes, in addition to the above-mentioned path loss calculating means 2, a compensating module 31 which is set as a path loss of the transmitting channel calculated by the path loss calculating means 2, Performance compensation is performed on the signal transmitted by the base station device through the transmitting channel.
  • the first obtaining module 21, the calculating module 23, and the compensating module 31 may be disposed outside the base station device or integrated in the base station device. If the base station device includes a BBU (baseband processing unit) and an RRU (radio remote module), the BBU After the original signal is generated and sent through the RRU, the first obtaining module 21 can be disposed at the output port of the BBU, the calculating module 23 and the compensation module 31 can be integrated in the RRU, and the second acquiring module 11 can be disposed between the feeder and the antenna. On the transmission path, or at the antenna port.
  • the first obtaining module 21, the calculating module 23 and the second acquiring module 11 can communicate by wire or wirelessly, and can also communicate with the feeder between the base station device and the antenna.
  • the path loss calculation process provided by the embodiment of the present invention may be performed synchronously with the normal working process of the communication system, or may be performed after the normal operation of the communication system is suspended.
  • the following are examples.
  • FIG. 4 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system 4 includes: a base station device 40, a feeder 41, and an antenna 42 connected in sequence, and a second detection submodule 43 disposed at the port of the antenna 42.
  • the configuration submodule 44 connected to the base station device 40 a transmission module 45 for the second detection sub-module 43 to communicate with the configuration sub-module 44, a calculation module 46 connected to the configuration sub-module 44, a compensation module disposed in the base station device 40 and connected to the calculation module 46 (not shown) show).
  • the base station device 40 has a plurality of transmission channels, and the carrier frequency planned by the user for one of the transmission channels A of the base station device 40 is F, the bandwidth is B, and the rated power is P. Assuming that the path loss of the transmission channel is calculated by suspending the normal operation of the communication system 4, the following processes are specifically included:
  • the network management system starts the path loss calculation function, and sends the signal parameters to the configuration sub-module 44: the carrier frequency F, the bandwidth B, and the rated power P.
  • the configuration sub-module 44 receives the signal parameter, the carrier frequency F is obtained.
  • the bandwidth B and the rated power P are sent to the base station device 40, and the carrier frequency F and the bandwidth B are sent to the second detection submodule 43 through the transmission module 45; the base station device 40 Generating a parameter according to the received signal to generate an original signal with a carrier frequency F, a bandwidth B, and a power P, and transmitting the signal through the transmitting channel A.
  • the second detecting sub-module 43 includes a filtering module with adjustable bandwidth, and configuring the center of the filtering module.
  • the frequency is F and the bandwidth is B.
  • the original signal generated by the base station device 40 is transmitted to the antenna 42 via the feed line 41, and the second detection sub-module 43 is coupled to the received signal at the port of the antenna 42 for filtering, and performing power detection on the filtered signal.
  • the second detecting sub-module 43 transmits the power P′ of the antenna receiving signal to the configuration sub-module 44 through the transmission module 45, and the configuration sub-module 44 transmits the power P of the original signal and the power of the antenna receiving signal.
  • the loss Pe compensates for the work signal transmitted by the base station device 40 through the corresponding transmission channel, and can perform power compensation directly in the digital domain or analog power compensation on the analog link.
  • FIG. 5 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • the communication system 5 includes: a base station device 50, a feeder 51, and an antenna 52 that are sequentially connected, and a second detection submodule 53 disposed at the port of the antenna 52, which is disposed at the port of the base station device 50.
  • a detection sub-module 54, a calculation module 55 connected to the first detection sub-module 54 and the second detection sub-module 53, is provided in the base station device 50 and connected to the calculation module 55 (not shown),
  • the second detection sub-module 53 has no bandwidth limitation. Assuming that the path loss calculation is performed in synchronization with the normal operation of the communication system 5, the following process is included:
  • the base station device 50 After the base station device 50 is started, it enters the normal working mode, that is, after the working signal is generated, it is sent to the antenna 52 through the transmitting channel A, and the antenna 52 is radiated again.
  • the first detecting sub-module 54 couples the working signal sent by the base station device at time t as the original signal.
  • the second detecting sub-module 53 continuously couples the signal at the port of the antenna 52, the signal coupled at the time of (t + ⁇ t) is taken as an antenna receiving signal ( ⁇ t indicates that the signal is transmitted from the base station device 50 to the antenna).
  • the time required at port 52 can be measured or estimated to perform power detection on the received signal of the antenna to obtain the power P(t+ ⁇ t)' of the received signal of the antenna; the second detecting sub-module 53 receives the signal from the antenna.
  • the power P(t+ ⁇ t)' the first detection sub-module 54 transmits the power Pt of the original signal to the calculation module 55;
  • the compensation module performs power compensation in the digital domain according to the path loss Pe or performs analog power compensation on the analog link.
  • the base station device 50 can also calculate and compensate the path loss of other transmission channels in the same manner as described above.
  • the path loss calculation and compensation may be performed on each base station device in the same manner as described above.
  • the two or more base station devices can share a path loss computing device and share a path loss supplementation device.
  • FIG. 6 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • the communication system 6 includes: a first base station device 60, a second base station device 70, a feeder 61, an antenna 62, a second detection sub-module 63 disposed at the port of the antenna 62, and connected to the first base station device 60.
  • the first configuration sub-module 64, the first transmission module 65 for the second detection sub-module 63 to communicate with the first configuration sub-module 64, and the first calculation module 66 connected to the first configuration sub-module 64 are disposed at the first a first compensation module (not shown) connected to the first computing module 66 in the base station device 60, a second configuration sub-module 71 connected to the second base station device 70, and a second detection sub-module 63 and a second transmission module 72 that communicates with the second configuration sub-module 71, a second calculation module 73 that is connected to the second configuration sub-module 71, and a second compensation module that is disposed in the second base station device 70 and connected to the second calculation module 73 ( Not shown in the figure).
  • the first base station device 60 and the second base station device 70 each have a plurality of transmission channels, and the carrier frequency planned by the user for one of the transmission channels A of the first base station device 60 is F1, the bandwidth is B1, and the rated power is P1;
  • the carrier frequency planned by one of the transmission channels B of the base station device 70 is F2, the bandwidth is B2, and the rated power is P2.
  • the path loss calculation is performed on the transmission channel of the first base station device 60:
  • the network management system starts the path loss calculation function, and sends the signal parameters to the first configuration sub-module 64: the carrier frequency F1, the bandwidth B1, and the rated power P1; the first configuration sub-module 64 receives the signal parameter. Then, the carrier frequency F1, the bandwidth B1, and the rated power P1 are sent to the first base station device 60, and the carrier frequency F1 and the bandwidth B1 are sent to the second detection submodule 63 through the first transmission module 65.
  • the first base station device 60 receives the data according to the reception.
  • the original signal generated by the first base station device 60 is transmitted to the antenna 62 via the feeder 61, and the second detection sub-module 63 couples the received signal at the port of the antenna 62 for filtering, and performs power detection on the filtered signal to obtain the power of the received signal of the antenna.
  • the second detecting sub-module 63 transmits the power P1' of the antenna receiving signal to the first configuration sub-module 64 through the first transmission module 65, and the first configuration sub-module 64 transmits the power of the original signal P1 and the power of the antenna receiving signal.
  • the first calculation module 66 transmits Pe1 to the first compensation module.
  • the path loss of the other transmission channels of the first base station device 60 is calculated in the same manner as described above.
  • the first compensation module performs loss compensation on the working signal transmitted by the first base station device 60 through the corresponding transmission channel according to the path loss of each transmission channel, and can perform power compensation directly in the digital domain or analog power compensation on the analog link. .
  • the path loss calculation is performed on the transmit channel of the second base station device 70:
  • the network management system starts the path loss calculation function, and sends the signal parameters to the second configuration sub-module 71: the carrier frequency F2, the bandwidth B2, and the rated power P2; the second configuration sub-module 71 receives the signal parameter.
  • the carrier frequency F2, the bandwidth B2, and the rated power P2 are sent to the second base station device 70, and the carrier frequency F2 and the bandwidth B2 are sent to the second detection submodule 63 through the second transmission module 72.
  • the second base station device 70 receives the data according to the reception.
  • the signal generating parameter generates an original signal with a carrier frequency of F2, a bandwidth of B2, and a power of P2, and is sent through the transmitting channel B.
  • the second detecting sub-module 63 includes a filtering module with adjustable bandwidth, and the center frequency of the filtering module is configured. F2, the bandwidth is B2; the original signal generated by the second base station device 70 is transmitted to the antenna 62 via the feeder 61, and the second detection sub-module 63 is coupled to the received signal at the port of the antenna 62 for filtering, and performing power detection on the filtered signal.
  • the second detecting sub-module 63 transmits the power P2' of the received signal of the antenna to the second configuration through the second transmission module 72
  • the module 71, the second configuration sub-module 71 transmits the power P2 of the original signal and the power P2' of the antenna received signal to the first
  • the second calculation module 73 The Pe2 is transmitted to the second compensation module. Then, in the same manner as above, the path loss of the other transmission channels of the second base station device 70 is calculated.
  • the second compensation module performs loss compensation on the working signal transmitted by the second base station device 70 through the corresponding transmission channel according to the path loss of each transmission channel, and can perform power compensation directly in the digital domain or analog power compensation on the analog link. .
  • the embodiment of the invention provides a practical, accurate and convenient solution, which ensures the power stability of the antenna radiated signal, the stable coverage and the stability of the network performance, and also the maximum power of the antenna radiated signal and the maximum emission of the cell configured in the background of the network management. The power is consistent.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the path loss calculation and compensation apparatus and method disclosed in the embodiments of the present invention acquires performance parameters of an original signal generated by a base station device and transmitted to an antenna through a transmission channel, and performance parameters of the received signal of the antenna after the original signal reaches the antenna;
  • the performance parameter of the original signal and the performance parameter of the antenna received signal calculate the path loss of the transmit channel.
  • the path loss can be calculated and compensated accurately and conveniently, and the power of the antenna radiated signal is stabilized, the coverage is stable, and the network performance is stable.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种路径损耗的计算、补偿装置与方法,获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数,以及该原始信号达到天线后天线接收信号的性能参数;根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。本发明实施例通过以上技术方案,不需要耗费大量人力资源上塔进行路径损耗的测量,也不需要根据线缆指标估算路径损耗,提供了一个实用、精准、便利的路径损耗计算方案,在此基础之上再进行损耗补偿,保障了天线辐射信号的功率稳定、覆盖范围稳定和网络性能的稳定,也使得天线辐射信号的最大功率,与网管后台配置的小区最大发射功率保持一致。

Description

一种路径损耗的计算、补偿装置与方法 技术领域
本发明涉及通信领域,尤其涉及移动通信中的路径损耗。
背景技术
现有通信系统主要包括基站设备、馈线和天线三部分,基站设备在网管后台控制下产生预定功率、载波频率、带宽的信号,选择发射通道后,经馈线传输至天线,天线完成接收和向覆盖区辐射无线信号。信号从基站设备传输至天线这段路径中存在路径损耗,称之为发射通道的路径损耗,实际上主要是馈线的传输损耗。该损耗直接影响天线辐射出的无线信号的覆盖范围和网络性能。
天线经常被安置于几十米高的塔顶,路径损耗的计算非常困难。而且,目前不同无线制式和不同频段的基站设备共馈线的应用场景越来越多,许多新的4G网络共用2G或3G现有网络的馈线,这些场景的变化导致馈线的传输损耗也发生变化,因此需要重复测量路径损耗。现有测量方法主要有以下两种:其一,通过人力上塔对馈线的传输损耗进行测量,这个过程需要大量人力成本;其二,通过线缆规格和附件指标进行估算,这种方式误差较大。因此,目前还没有一个实用、精准、便利的方案来计算发射通道的路径损耗。
发明内容
本发明实施例提供一种路径损耗的计算、补偿装置与方法,解决现有路径损耗计算、补偿方案需要耗费大量人力资源,或者误差较大的问题。
为解决上述技术问题,本发明实施例采用以下技术方案:
一种路径损耗的计算装置,包括:
第一获取模块,设置为获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数;
第二获取模块,设置为获取该原始信号到达天线后天线接收信号的性能 参数的性能参数;
计算模块,设置为根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。
可选地,第一获取模块包括配置子模块和/或第一检测子模块,
配置子模块,设置为接收用户设定的信号参数,该信号参数包括该原始信号的性能参数;
第一检测子模块,设置为耦合基站设备发出的该原始信号,并检测出其性能参数;
第二获取模块包括第二检测子模块,设置为耦合该原始信号达到天线后天线端口处的接收信号,并检测出其性能参数。
可选地,该信号参数还包括载波频率;或者该信号参数还包括载波频率和带宽。
可选地,配置子模块还设置为控制该基站设备根据该信号参数产生该原始信号并通过发射通道向天线传输。
可选地,配置子模块还设置为根据接收到的该信号参数,配置第二检测子模块,使其能够耦合到该原始信号达到天线后天线端口处的接收信号。
可选地,计算模块具体设置为将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
一种路径损耗的补偿装置,包括上述任一项所述的路径损耗的计算装置,还包括:
补偿模块,设置为根据所述路径损耗的计算装置计算出的发射通道的路径损耗,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
一种路径损耗的计算方法,包括:
获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数,以及该原始信号达到天线后天线接收信号的性能参数;
根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。
可选地,获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数包括:
接收用户设定的信号参数,该信号参数包括该原始信号的性能参数;或者,耦合基站设备发出的该原始信号,并检测出其性能参数;
获取天线接收信号的性能参数包括:耦合该原始信号达到天线后天线端口处的接收信号,并检测出其性能参数。
可选地,接收用户设定的信号参数之后,还包括:根据接收到的该信号参数,控制该基站设备根据该信号参数产生该原始信号并通过发射通道向天线传输。
可选地,根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗包括:
将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
一种路径损耗的补偿方法,包括:
采用上述任一项所述的路径损耗的计算方法,计算出发射通道的路径损耗;
根据该路径损耗值,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
本发明实施例还提供一种计算机程序及其载体,该计算机程序包括程序指令,当该程序指令被路径损耗计算设备执行时,使得该设备可实施上述路径损耗的计算方法。
本发明实施例还提供一种计算机程序及其载体,该计算机程序包括程序指令,当该程序指令被路径损耗补偿设备执行时,使得该设备可实施上述路径损耗的补偿方法。
由于现有通信系统中,基站设备产生原始信号,并通过馈线传输至天线,由于存在路径损耗,天线接收信号相比原始信号而言,存有路径损耗,本发明实施例根据基站设备实际发出的原始信号的性能参数、天线接收信号的性能参数,来计算该发射通道的路径损耗。提供了一个实用、精准、便利的计 算方案,不需要耗费大量人力资源上塔进行测量,也不需要根据线缆指标估算,因此可避免估算误差。在此基础之上再进行性能补偿,保障了天线辐射信号的功率稳定、覆盖范围的稳定和网络性能的稳定,也使得天线辐射信号的最大功率,与网管后台配置的小区最大发射功率保持一致。
附图概述
图1为本发明实施例提供的路径损耗的补偿方法的流程图;
图2为本发明实施例提供的路径损耗的计算装置的示意图;
图3为本发明实施例提供的路径损耗的补偿装置的示意图;
图4为本发明一实施例提供的通信系统的示意图;
图5为本发明另一实施例提供的通信系统的示意图;
图6为本发明又一实施例提供的通信系统的示意图。
本发明的较佳实施方式
本发明实施例主要应用于通信系统,通信系统主要包括基站设备、馈线和天线,一个基站设备具有至少一个发射通道,各发射通道上发射的信号的载波频率可相同或不同、宽带可相同或不同、功率可相同或不同。该至少一个发射通道可共用相同馈线,不同基站设备也可共用相同馈线。基站设备用于产生预定功率的原始信号,选择发射通道后,经馈线传输至天线,天线再向覆盖区辐射无线信号。由于存在路径损耗,天线接收信号相比原始信号而言,存在路径损耗。原始信号从基站设备传输至天线发生的路径损耗,本发明实施例称之为发射通道的路径损耗,实际上,其主要是馈线的传输损耗。该损耗影响天线辐射出的无线信号的覆盖范围和网络性能。此外,本发明实施例中的性能参数包括但不局限于电能、功率。
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例提供的路径损耗的补偿方法的流程图。如图1所示,包括以下步骤:
S101、获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数,以及该原始信号到达天线后天线接收信号的性能参数;
S102、根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗;
S103、根据该发射通道的路径损耗,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
步骤S101中天线接收信号的性能参数的获取方式,包括但不局限于:耦合原始信号到达天线后天线端口处的接收信号,并检测出性能参数。在天线端口处耦合到的信号基本接近天线的实际接收信号。
步骤S101中原始信号的性能参数的获取方式,包括但不局限于以下两种:
方式一:耦合基站设备发出的原始信号,并检测出其性能参数。这种方式要求基站设备先产生并发出原始信号,再在基站设备与馈线之间的传输路径上,或在基站设备的输出端口处耦合原始信号,若基站设备包括BBU(基带处理单元)和RRU(射频拉远模块),可选地,在BBU的输出端口处或在RRU中耦合原始信号。
方式二:接收用户设定的信号参数,该信号参数包括该原始信号的性能参数。具体接收方式包括:用户在网管后台设定信号参数,接收网管后台发送的该由用户设定的信号参数;或者,接收用户直接输入的信号参数。这种方式中原始信号的性能参数由用户设定得到,因此不要求基站设备先产生并发出原始信号。甚至,若用户设定的该信号参数还包括载波频率,或者该信号参数还包括载波频率和带宽,基站设备还可以根据该信号参数来产生原始信号。具体地,基站设备可根据载波频率和性能参数来产生并发出具有该性能参数的单音信号,作为原始信号,或者根据载波频率、带宽和性能参数来产生并发出具有该性能参数的宽带信号,作为原始信号。此外,还可以根据该信号参数,配置用于检测的滤波模块,例如根据该信号参数中的载波频率、带宽来配置滤波模块的中心频率和带宽,使其能够耦合到该原始信号到达天线后天线端口处的接收信号,并滤除带外信号。
步骤S102中计算路径损耗的方式,可选地,将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
步骤S103中,可以在数字域进行损耗补偿或在模拟链路上进行模拟功率补偿。由于工作信号从基站设备经馈线到天线的传输过程是:基站设备先将数字信号转换成模拟信号,该模拟信号再经馈线传输至天线。因此可以对转换成模拟信号前的数字信号进行损耗补偿,也可以对转换后的模拟信号进行损耗补偿。
本实施例提供的路径损耗计算、补偿方法,与现有人工上塔测量或估算的方式相比,更加实用、精准和便利,采用本发明实施例提供的上述方法进行损耗补偿后,能够保障天线辐射出的无线信号的功率、覆盖范围、网络性能的稳定,同时还能够使天线辐射出的无线信号的最大功率,与网管后台配置的小区最大发射功率保持一致。
图2为本发明实施例提供的路径损耗的计算装置的示意图,路径损耗的计算装置2包括第一获取模块21、第二获取模块22和计算模块23,其中,第一获取模块21设置为获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数;第二获取模块22设置为获取该原始信号达到天线后天线接收信号的性能参数;计算模块23设置为根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。
可选地,第一获取模块21包括配置子模块和/或第一检测子模块,配置子模块设置为接收用户设定的信号参数,该信号参数包括该原始信号的性能参数;第一检测子模块设置为耦合基站设备发出的该原始信号,并检测出其性能参数;可选地,第二获取模块22包括第二检测子模块,设置为耦合该原始信号达到天线后天线端口处的接收信号,并检测出其性能参数。
可选地,该信号参数还包括载波频率;或者该信号参数还包括载波频率和带宽。
可选地,配置子模块还设置为控制该基站设备根据该信号参数产生原始信号并通过发射通道向天线传输。
可选地,配置子模块还设置为根据接收到的信号参数,配置第二检测子 模块,使其能够耦合到该原始信号达到天线后天线端口处的接收信号。
可选地,计算模块具体设置为将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
图3为本发明实施例提供的路径损耗的补偿装置的示意图。如图3所示,路径损耗的补偿装置3除了包括上述路径损耗的计算装置2外,还包括补偿模块31,补偿模块31设置为根据路径损耗的计算装置2计算出的发射通道的路径损耗,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
其中,第一获取模块21、计算模块23和补偿模块31可以设置在基站设备之外,或集成在基站设备中,若基站设备包括BBU(基带处理单元)和RRU(射频拉远模块),BBU产生原始信号后通过RRU发出,则第一获取模块21可以设置在BBU的输出端口处,计算模块23和补偿模块31可以集成在RRU中,第二获取模块11可以设置在馈线与天线之间的传输路径上,或设置在天线端口处。第一获取模块21、计算模块23与第二获取模块11之间可通过有线或无线方式通信,还可以借助基站设备与天线之间的馈线通信。
本发明实施例提供的路径损耗的计算过程,可以与通信系统的正常工作过程同步进行,也可以暂停通信系统的正常工作后进行。下面分别举例说明。
图4为本发明一实施例提供的通信系统的示意图。如图4所示,通信系统4包括:依次连接的基站设备40、馈线41、天线42,还包括设置在天线42端口处的第二检测子模块43,与基站设备40连接的配置子模块44,用于第二检测子模块43与配置子模块44通信的传输模块45,与配置子模块44连接的计算模块46,设置在基站设备40中并与计算模块46连接的补偿模块(图中未示出)。基站设备40具有多个发射通道,用户给基站设备40的其中一发射通道A规划的载波频率为F、带宽为B、额定功率为P。假设采取暂停通信系统4的正常工作的方式,对其发射通道的路径损耗进行计算,则具体包括如下流程:
基站设备40启动后,网管后台启动路径损耗的计算功能,向配置子模块44发送信号参数:载波频率F、带宽B和额定功率P;配置子模块44收到该信号参数后,将载波频率F、带宽B和额定功率P发送给基站设备40,将载波频率F和带宽B通过传输模块45发送给第二检测子模块43;基站设备40 根据接收的信号产生参数产生载波频率为F、带宽为B、功率为P的原始信号,并通过发射通道A发出;第二检测子模块43中包括带宽可调的滤波模块,配置滤波模块的中心频率为F、带宽为B;基站设备40产生的原始信号经馈线41传输至天线42,第二检测子模块43耦合天线42端口处的接收信号,进行滤波,对滤波后的信号进行功率检测,得到天线接收信号的功率P′;第二检测子模块43将天线接收信号的功率P′通过传输模块45传输给配置子模块44,配置子模块44将原始信号的功率P、天线接收信号的功率P′均传输至计算模块46;计算模块46进行如下计算:Pe=P-P′,Pe为该发射通道的路径损耗,以上完成了对发射通道A的路径损耗的计算过程,计算模块46将Pe传输给补偿模块。再采取上述同样的方式,对基站设备40的其他发射通道的路径损耗进行计算,在完成所有发射通道的路径损耗的计算之后,基站设备40恢复到正常工作模式,补偿模块根据各个发射通道的路径损耗Pe,对基站设备40通过对应发射通道传输的工作信号进行损耗补偿,可以直接在数字域进行功率补偿或在模拟链路上进行模拟功率补偿。
图5为本发明另一实施例提供的通信系统的示意图。如图5所示,通信系统5包括:依次连接的基站设备50、馈线51、天线52,还包括设置在天线52端口处的第二检测子模块53,设置在基站设备50的端口处的第一检测子模块54,与第一检测子模块54、第二检测子模块53连接的计算模块55,设置在基站设备50中并与计算模块55连接的补偿模块(图中未示出),第二检测子模块53没有带宽限制。假设采取与通信系统5的正常工作同步进行路径损耗的计算,则包括如下流程:
基站设备50启动后进入正常工作模式,即产生工作信号后通过发射通道A发送到天线52,天线52再辐射出去,第一检测子模块54耦合基站设备在t时刻发出的工作信号,作为原始信号,并检测出其功率Pt;假设第二检测子模块53不断耦合天线52端口处的信号,将(t+△t)时刻耦合的信号作为天线接收信号(△t表示信号从基站设备50传输到天线52端口处所需的时间,可通过测量、或估算得到),对该天线接收信号进行功率检测,得到天线接收信号的功率P(t+△t)′;第二检测子模块53将天线接收信号的功率P(t+△t)′、第一检测子模块54将原始信号的功率Pt均传输至计算模块55;计 算模块55进行如下计算:Pe=Pt-P(t+△t)′,Pe为发射通道A的路径损耗,以上完成了对发射通道A的路径损耗的计算过程,计算模块55将Pe传输给补偿模块。后续基站设50备再通过发射通道A发射工作信号时,补偿模块根据该路径损耗Pe在数字域进行功率补偿或在模拟链路上进行模拟功率补偿。基站设备50还可以采取上述同样的方式,对其他发射通道的路径损耗进行计算、补偿。
对于两个或两个以上的基站设备共用馈线的场景,可采取上述相同方式,依次对各个基站设备进行路径损耗计算、补偿。该两个或两个以上的基站设备可共用一个路径损耗的计算装置,共用一个路径损耗的补充装置。
图6为本发明又一实施例提供的通信系统的示意图。如图6所示,通信系统6包括:第一基站设备60、第二基站设备70、馈线61、天线62、设置在天线62端口处的第二检测子模块63、与第一基站设备60连接的第一配置子模块64、用于第二检测子模块63与第一配置子模块64通信的第一传输模块65、与第一配置子模块64连接的第一计算模块66、设置在第一基站设备60中并与第一计算模块66连接的第一补偿模块(图中未示出)、与第二基站设备70连接的第二配置子模块71、用于第二检测子模块63与第二配置子模块71通信的第二传输模块72、与第二配置子模块71连接的第二计算模块73、设置在第二基站设备70中并与第二计算模块73连接的第二补偿模块(图中未示出)。第一基站设备60、第二基站设备70均具有多个发射通道,用户给第一基站设备60的其中一发射通道A规划的载波频率为F1、带宽为B1、额定功率为P1;给第二基站设备70的其中一发射通道B规划的载波频率为F2、带宽为B2、额定功率为P2。假设采取暂停通信系统6的正常工作的方式,对其发射通道的路径损耗进行计算,则具体包括如下流程:
先对第一基站设备60的发射通道进行路径损耗计算:
第一基站设备60启动后,网管后台启动路径损耗的计算功能,向第一配置子模块64发送信号参数:载波频率F1、带宽B1和额定功率P1;第一配置子模块64收到该信号参数后,将载波频率F1、带宽B1和额定功率P1发送给第一基站设备60,将载波频率F1和带宽B1通过第一传输模块65发送给第二检测子模块63;第一基站设备60根据接收的信号产生参数产生载波频 率为F1、带宽为B1、功率为P1的原始信号,并通过发射通道A发出;第二检测子模块63中包括带宽可调的滤波模块,配置滤波模块的中心频率为F1、带宽为B1;第一基站设备60产生的原始信号经馈线61传输至天线62,第二检测子模块63耦合天线62端口处的接收信号,进行滤波,对滤波后的信号进行功率检测,得到天线接收信号的功率P1′;第二检测子模块63将天线接收信号的功率P1′通过第一传输模块65传输给第一配置子模块64,第一配置子模块64将原始信号的功率P1、天线接收信号的功率P1′均传输至第一计算模块66;第一计算模块66进行如下计算:Pe1=P1-P1′,Pe1为该发射通道A的路径损耗,以上完成了对发射通道A的路径损耗的计算过程,第一计算模块66将Pe1传输给第一补偿模块。再采取上述同样的方式,对第一基站设备60的其他发射通道的路径损耗进行计算,在完成第一基站设备60的所有发射通道的路径损耗的计算之后,第一基站设备60恢复到正常工作模式,第一补偿模块根据各个发射通道的路径损耗,对第一基站设备60通过对应发射通道传输的工作信号进行损耗补偿,可以直接在数字域进行功率补偿或在模拟链路上进行模拟功率补偿。
完成对第一基站设备60的发射通道进行路径损耗计算、补偿后,再对第二基站设备70的发射通道进行路径损耗计算:
第二基站设备70启动后,网管后台启动路径损耗的计算功能,向第二配置子模块71发送信号参数:载波频率F2、带宽B2和额定功率P2;第二配置子模块71收到该信号参数后,将载波频率F2、带宽B2和额定功率P2发送给第二基站设备70,将载波频率F2和带宽B2通过第二传输模块72发送给第二检测子模块63;第二基站设备70根据接收的信号产生参数产生载波频率为F2、带宽为B2、功率为P2的原始信号,并通过发射通道B发出;第二检测子模块63中包括带宽可调的滤波模块,配置滤波模块的中心频率为F2、带宽为B2;第二基站设备70产生的原始信号经馈线61传输至天线62,第二检测子模块63耦合天线62端口处的接收信号,进行滤波,对滤波后的信号进行功率检测,得到天线接收信号的功率P2′;第二检测子模块63将天线接收信号的功率P2′通过第二传输模块72传输给第二配置子模块71,第二配置子模块71将原始信号的功率P2、天线接收信号的功率P2′均传输至第 二计算模块73;第二计算模块73进行如下计算:Pe2=P2-P2′,Pe2为该发射通道B的路径损耗,以上完成了对发射通道B的路径损耗的计算过程,第二计算模块73将Pe2传输给第二补偿模块。再采取上述同样的方式,对第二基站设备70的其他发射通道的路径损耗进行计算,在完成第二基站设备70的所有发射通道的路径损耗的计算之后,第二基站设备70恢复到正常工作模式,第二补偿模块根据各个发射通道的路径损耗,对第二基站设备70通过对应发射通道传输的工作信号进行损耗补偿,可以直接在数字域进行功率补偿或在模拟链路上进行模拟功率补偿。
本发明实施例提供了一个实用、精准、便利的方案,保障了天线辐射信号的功率稳定、覆盖范围稳定和网络性能的稳定,也使得天线辐射信号的最大功率,与网管后台配置的小区最大发射功率保持一致。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想 到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例公开的路径损耗的计算、补偿装置与方法,获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数,以及该原始信号达到天线后天线接收信号的性能参数;根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。可以精准、便利地计算和补偿路径损耗,保障天线辐射信号的功率稳定、覆盖范围稳定和网络性能的稳定。

Claims (17)

  1. 一种路径损耗的计算装置,包括:
    第一获取模块,设置为获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数;
    第二获取模块,设置为获取该原始信号到达天线后天线接收信号的性能参数;
    计算模块,设置为根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。
  2. 如权利要求1所述的计算装置,其中,所述第一获取模块包括配置子模块和/或第一检测子模块:
    所述配置子模块,设置为接收用户设定的信号参数,该信号参数包括该原始信号的性能参数;
    所述第一检测子模块,设置为耦合基站设备发出的该原始信号,并检测出其性能参数;
    所述第二获取模块包括第二检测子模块,设置为耦合该原始信号达到天线后天线端口处的接收信号,并检测出其性能参数。
  3. 如权利要求2所述的计算装置,其中,该信号参数还包括载波频率;或者该信号参数还包括载波频率和带宽。
  4. 如权利要求3所述的计算装置,其中,所述配置子模块还设置为控制该基站设备根据该信号参数产生该原始信号并通过发射通道向天线传输。
  5. 如权利要求3所述的计算装置,其中,所述配置子模块还设置为根据接收到的该信号参数,配置第二检测子模块,使其能够耦合得到该原始信号达到天线后天线端口处的接收信号。
  6. 如权利要求1至5任一项所述的计算装置,其中,计算模块具体设置为将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
  7. 一种路径损耗的补偿装置,包括如权利要求1至6任一项所述的路径损耗的计算装置,还包括:
    补偿模块,设置为根据所述路径损耗的计算装置计算出的发射通道的路径损耗,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
  8. 一种路径损耗的计算方法,包括:
    获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数,以及该原始信号达到天线后天线接收信号的性能参数;
    根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗。
  9. 如权利要求8所述的计算方法,其中,所述获取由基站设备产生并通过发射通道向天线传输的原始信号的性能参数包括:
    接收用户设定的信号参数,该信号参数包括该原始信号的性能参数;或者,耦合基站设备发出的该原始信号,并检测出其性能参数;
    获取天线接收信号的性能参数包括:耦合该原始信号达到天线后天线端口处的接收信号,并检测出其性能参数。
  10. 如权利要求9所述的计算方法,其中,该信号参数还包括载波频率;或者该信号参数还包括载波频率和带宽。
  11. 如权利要求10所述的计算方法,在接收用户设定的信号参数之后,还包括:根据接收到的该信号参数,控制该基站设备根据该信号参数产生该原始信号并通过发射通道向天线传输。
  12. 如权利要求8至11任一项所述的计算方法,其中,所述根据该原始信号的性能参数和天线接收信号的性能参数,计算该发射通道的路径损耗包括:
    将该原始信号的性能参数减去天线接收信号的性能参数,得到该发射通道的路径损耗。
  13. 一种路径损耗的补偿方法,包括:
    采用如权利要求8至12任一项所述的路径损耗的计算方法,计算发射通 道的路径损耗值;
    根据该路径损耗值,对该基站设备后续通过该发射通道发射的信号进行性能补偿。
  14. 一种计算机程序,包括程序指令,当该程序指令被路径损耗计算设备执行时,使得该设备可实施权利要求8-12任一项的方法。
  15. 一种载有权利要求14所述计算机程序的载体。
  16. 一种计算机程序,包括程序指令,当该程序指令被路径损耗补偿设备执行时,使得该设备可实施权利要求13所述的方法。
  17. 一种载有权利要求16所述计算机程序的载体。
PCT/CN2014/089338 2014-06-24 2014-10-23 一种路径损耗的计算、补偿装置与方法 WO2015196668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410288640.7A CN105306149A (zh) 2014-06-24 2014-06-24 一种路径损耗的计算、补偿装置与方法
CN201410288640.7 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015196668A1 true WO2015196668A1 (zh) 2015-12-30

Family

ID=54936615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089338 WO2015196668A1 (zh) 2014-06-24 2014-10-23 一种路径损耗的计算、补偿装置与方法

Country Status (2)

Country Link
CN (1) CN105306149A (zh)
WO (1) WO2015196668A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750405A2 (en) * 1995-06-21 1996-12-27 Nec Corporation Cable loss equalization system used in wireless communication equipment
CN1159278A (zh) * 1994-07-26 1997-09-10 艾利森电话股份有限公司 天线和馈电电缆测试器
US20050181732A1 (en) * 2004-02-18 2005-08-18 Kang Joseph H. Method and apparatus for determining at least an indication of return loss of an antenna
CN102217358A (zh) * 2011-04-15 2011-10-12 华为技术有限公司 基站天线信息远程检测方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964212A (zh) * 2006-12-13 2007-05-16 北京中星微电子有限公司 Td-scdma系统中补偿路径损耗估计误差的方法
US8374596B2 (en) * 2009-09-09 2013-02-12 Arieso Limited Method and apparatus for deriving pathloss estimation values

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159278A (zh) * 1994-07-26 1997-09-10 艾利森电话股份有限公司 天线和馈电电缆测试器
EP0750405A2 (en) * 1995-06-21 1996-12-27 Nec Corporation Cable loss equalization system used in wireless communication equipment
US20050181732A1 (en) * 2004-02-18 2005-08-18 Kang Joseph H. Method and apparatus for determining at least an indication of return loss of an antenna
CN102217358A (zh) * 2011-04-15 2011-10-12 华为技术有限公司 基站天线信息远程检测方法和系统

Also Published As

Publication number Publication date
CN105306149A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
EP3055938B1 (en) Systems and methods for delay management in distributed antenna system with direct digital interface to base station
US20190380102A1 (en) Node unit capable of measuring and compensating transmission delay and distributed antenna system including the same
KR102161827B1 (ko) 전력 제어 방법 및 단말기
US9287967B2 (en) Method, apparatus, and radio remote unit for transmitting wireless base band data
JP2015527762A (ja) アクティブアンテナシステム無線周波数インデックスの試験方法及び装置
CN106465322B (zh) 用于基站在没有预校准的情况下测量节点的内部上行链路延迟和下行链路延迟的技术
US9967041B1 (en) Multi-antenna noise power measuring method and apparatus
US20110299430A1 (en) Active antenna array and method for relaying radio signals with synchronous digital data interface
US9008588B2 (en) System and method for the calibration and verification of wireless networks with control network
JP6545259B2 (ja) 端末機器測位の方法、システム及び装置
US10841827B2 (en) Radio frequency (RF) power measurements in common public radio interface (CPRI) spectrum analysis
CN108134645A (zh) 雷达信号同步系统
CN109412767A (zh) 参考信号的发射功率的指示、接收方法、网络设备及终端
CN104579516B (zh) 一种驻波比检测方法和设备
US9078218B1 (en) Gain measurement of distributed antenna system (DAS) segments during active communications employing autocorrelation on a combined test signal and communications signal
US9584386B2 (en) Node unit capable of measuring delay and distributed antenna system including the same
WO2015196668A1 (zh) 一种路径损耗的计算、补偿装置与方法
CN108809416B (zh) 一种基于短光纤标校的拉远基站时延测量系统及方法
CN108923872A (zh) 一种直放站带内波动校准方法和系统
CN107294600A (zh) 一种dpd环路检测方法及设备
US9281975B1 (en) Reducing pass-band ripple in radio-frequency (RF) filters used for pass-band filtering in a wireless communications system
EP3393077A1 (en) Method and apparatus for compensating for optical transmission delay
JP6979934B2 (ja) 移動通信システム、基地局装置を構成する処理装置及びプログラム
US20160219536A1 (en) Device and method for time delay fine-tuning utp femto distribution and relay
KR101905434B1 (ko) 수동상호변조왜곡 신호 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896027

Country of ref document: EP

Kind code of ref document: A1