WO2015196324A1 - 数据传输的方法、集中处理节点、网关及基站 - Google Patents

数据传输的方法、集中处理节点、网关及基站 Download PDF

Info

Publication number
WO2015196324A1
WO2015196324A1 PCT/CN2014/080484 CN2014080484W WO2015196324A1 WO 2015196324 A1 WO2015196324 A1 WO 2015196324A1 CN 2014080484 W CN2014080484 W CN 2014080484W WO 2015196324 A1 WO2015196324 A1 WO 2015196324A1
Authority
WO
WIPO (PCT)
Prior art keywords
user data
processing node
comp user
downlink
base station
Prior art date
Application number
PCT/CN2014/080484
Other languages
English (en)
French (fr)
Inventor
张锦芳
李波杰
戎璐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480046629.8A priority Critical patent/CN105493565B/zh
Priority to PCT/CN2014/080484 priority patent/WO2015196324A1/zh
Publication of WO2015196324A1 publication Critical patent/WO2015196324A1/zh
Priority to US15/390,002 priority patent/US10263895B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/122Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method for data transmission, a centralized processing node, a gateway, and a base station. Background technique
  • CoMP Coordinated Multi-Point Transmission and Reception
  • LTE-A Long Term Evolution-Advanced
  • the user data participating in CoMP can improve the interference characteristics of the cell edge users through cooperative scheduling and joint coding, and improve the transmission efficiency of the entire system by improving the transmission efficiency of the cell edge users.
  • CS Coordinated Scheduling
  • JP Joint Processing
  • user data of the uplink and downlink CoMPs are usually aggregated to a centralized processing node for processing.
  • the processing of the user data of the CoMP by the central processing node includes scheduling, joint coding or joint decoding.
  • the centralized processing node is located at a baseband unit center (BBU center), and the centralized processing node passes the general public radio interface.
  • CPRI Common Public Radio Interface
  • RRUs Remote Radio Units
  • IQ baseband signal is transmitted between the BBU center and each RRU, and the data transmission amount is relatively large. Because the S1 interface of the BBU center needs to send and receive user data in each RRU coverage range, it is easy to cause a transmission bottleneck.
  • the central processing node is located at the BBU center, and is connected to a plurality of evolved RRUs (eRRUs) through a Packet Transport Network (PTN).
  • eRRU has radio frequency function and baseband compression.
  • the baseband signal is compressed and transmitted between the BBU center and the eRRU, and the amount of data transmission can be reduced relative to the CRAN.
  • the S1 interface of the BBU center still needs to send and receive CoMP user data within the coverage of each eRRU, which still causes a transmission bottleneck.
  • Embodiments of the present invention provide a data transmission method, which can prevent a transmission bottleneck of a centralized processing node.
  • a first aspect provides a data transmission method, where the method includes: a centralized processing node receives downlink user data from a first gateway GW; and the centralized processing node sends the downlink user data to a corresponding base station; When the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the first GW, where the first bearer switching request message is used to indicate the The first GW bypasses the centralized processing node for data transmission.
  • the downlink user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data
  • the centralized processing node sends the downlink user Sending the data to the corresponding base station
  • the method includes: sending, by the central processing node, the downlink non-CoMP user data to the first base station, and sending the downlink CoMP user data to at least two base stations, where the first base station is The serving base station of the target user of the downlink non-CoMP user data, the at least two base stations are configured to perform cooperative transmission on the downlink CoMP user data, where the first bearer switching request message is specifically used to indicate the first GW And transmitting the downlink non-CoMP user data to the first base station by bypassing the centralized processing node.
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data, where Transmitting the downlink CoMP user data to the at least two base stations, including: sending the first downlink CoMP user data to at least two second base stations, and sending the second downlink CoMP user data to at least two a third base station, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data, and the at least two third base stations are configured to perform data on the second downlink CoMP user data.
  • the method further includes: when determining that the interface is still congested, the centralized processing node sends a second bearer switching request. Sending a message to the first GW, the second bearer switching request message is used to instruct the first GW to bypass the first downlink CoMP user data by using the set Processing node transmitting to the at least two second base station.
  • the k second base stations in the at least two second base stations are in the second GW
  • the second bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k
  • the other base station is not configured to: the first GW is configured to generate the forwarding bearer of the first GW to the second GW, and the first downlink CoMP user data is sent on the forwarding bearer.
  • the method further includes: the centralized processing node sends a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, where The generating a bearer request message is used to instruct the second GW to generate a bearer of the second GW to the k second base stations, so that the second GW is on the bearer, and the first GW is to be used by the first GW.
  • the received first downlink CoMP user data is transmitted to the k second base stations by the centralized processing node, where k is a positive integer.
  • the downlink user data is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and a second downlink CoMP user.
  • the central processing node sending the downlink user data to the corresponding base station the method includes: the centralized processing node sending the first downlink CoMP user data to at least two second base stations, where the second The downlink CoMP user data is sent to the at least two third base stations, where the at least two second base stations are used for cooperative transmission of the first downlink CoMP user data, and the at least two third base stations are used for The second downlink CoMP user data is cooperatively transmitted, where the first bearer switching request message is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the centralized processing node to the At least two second base stations.
  • the k second base stations in the at least two second base stations are in the second GW
  • the first bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the method of the second GW further includes: the centralized processing node sends a generating bearer request message to the second GW, where the generating bearer request message includes identifier information of the k second base stations, and the generating The bearer request message is used to instruct the second GW to generate a bearer of the second GW to the k second base stations, so that the second GW is received on the bearer from the first GW.
  • the first downlink CoMP Bypassing the centralized data processing node k is transmitted to the second base station, wherein, k is a positive integer.
  • the centralized processing node receives the first downlink CoMP user in the at least two second base stations a downlink scheduling request message sent by the serving base station of the target user of the data; the centralized processing node performs downlink scheduling and sends the scheduling result to the at least two second base stations, where the scheduling result includes at least one of the following:
  • the link controls RLC segmentation information, coded modulation information, and transmit power.
  • the method further includes: the central processing node receiving the target of the first downlink CoMP user data An ACK message sent by the serving base station of the user; the central processing node sends a first message to the at least two second base stations, where the first message is used to instruct the at least two second base stations to delete the first A copy of the data of the downlink CoMP user data.
  • the method further includes: the central processing node receiving the target of the first downlink CoMP user data a NACK message sent by the serving base station of the user; when the number of retransmissions does not reach the preset maximum number of retransmissions, the central processing node sends a retransmission scheduling acknowledgement message to the at least two second base stations, the retransmission scheduling The acknowledgment message is used to instruct the at least two second base stations to perform cooperative transmission of the first downlink CoMP user data again.
  • the centralized processing node will be the first And sending, by the at least two second base stations, the data copy of the first downlink CoMP user data.
  • the method further includes: when determining that the interface is idle, the centralized processing The node sends a third bearer switching request message to the first GW, where the third bearer switching request message is used to instruct the first GW to transmit the downlink user data to the corresponding Base station.
  • a second aspect provides a data transmission method, where the method includes: a centralized processing node receives uplink user data, where the uplink user data includes uplink non-coordinated multipoint transmission CoMP user data sent by the first base station; The processing node sends the uplink user data to the first gateway GW; when it is determined that the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the The first base station, the first bearer switching request message is used to instruct the first base station to bypass the uplink non-CoMP user data The centralized processing node transmits to the first GW.
  • the uplink user data further includes uplink CoMP user data
  • the centralized processing node receives uplink user data, including: the centralized processing node
  • the first base station receives the uplink non-CoMP user data, and receives the uplink CoMP user data from at least two second base stations.
  • the method further includes: when determining that the interface is idle, the centralized processing node Sending a second bearer switching request message to the first base station, where the second bearer switching request message is used to instruct the first base station to transmit the uplink non-CoMP user data to the first through the centralized processing node GW.
  • a third aspect provides a method for data transmission, where the method includes: sending, by a first device, user data to a central processing node, so that the centralized processing node sends the user data to a second device; Receiving, by the device, the first bearer switching request message sent by the central processing node, where the first bearer switching request message is used to instruct the first device to bypass the central processing node for data transmission; The first bearer switching request message sends the user data to the second device.
  • the first device is a first gateway GW
  • the second device is a base station corresponding to the user data.
  • the user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data, where The bearer switching request message is specifically configured to instruct the first device to transmit the downlink non-CoMP user data to the first base station by using the centralized processing node, where the first base station is the target of the downlink non-CoMP user data.
  • the serving base station of the user sending the user data to the second device according to the first bearer switching request message, including: the first device bypassing the downlink non-CoMP user data
  • the centralized processing node transmits to the first base station, and sends the downlink CoMP user data to the centralized processing node, so that the centralized processing node sends the downlink CoMP user data to at least two base stations, where the at least Two base stations are configured to perform cooperative transmission on the downlink CoMP user data, where the second device includes the first base station and Said at least two base stations.
  • the downlink CoMP user data includes first downlink CoMP user data and a second downlink
  • the method of the method further includes: the first device receiving the second bearer switching request message sent by the central processing node, where the second bearer switching request message is used to indicate that the first device is to The first downlink CoMP user data is transmitted to the at least two second base stations by using the central processing node; the first device bypasses the first downlink CoMP user data according to the second bearer switching request message Transmitting, by the central processing node, the at least two second base stations, and sending the second downlink CoMP user data to the centralized processing node, so that the centralized processing node sends the second downlink CoMP user data Up to at least two third base stations, wherein the at least two base stations comprise the at least two second base stations and the at least two third base stations, and the at least two second base stations are used to The downlink CoMP user data is cooperatively transmitted, and the at least two third
  • the k second base stations in the at least two second base stations are in the second GW
  • the second bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the second GW the transmitting the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, includes: bypassing the first downlink CoMP user data Transmitting, by the central processing node, to other base stations other than the k second base stations of the at least two second base stations, and sending the first downlink CoMP user data to the forwarding bearer a second GW to cause the second G W transmitting the first downlink CoMP user data to the k second base stations around the centralized processing node, where k is a positive integer.
  • the user data is downlink CoMP user data
  • the downlink CoMP user data includes a first downlink CoMP user Data and the second downlink CoMP user data
  • the first bearer switching request message is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the at least two by using the centralized processing node
  • the second base station, the first device, according to the first bearer switching request message, sending the user data to the second device, the method includes: the first device, the first downlink CoMP user data is wrapped Transmitting, by the centralized processing node, to at least two second base stations, and sending the second downlink CoMP user data to the centralized processing node, so that the centralized processing node sends the second downlink CoMP user data to At least two a third base station, where the second device includes the at least two second base stations and the at least two third base stations, where the at least two second base stations are configured to use the first downlink CoMP
  • the k second base stations in the at least two second base stations are in the second GW
  • the first bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the second GW the transmitting the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, includes: bypassing the first downlink CoMP user data Transmitting, by the central processing node, to other base stations other than the k second base stations of the at least two second base stations, and sending the first downlink CoMP user data to the forwarding bearer a second GW to cause the second G W transmitting the first downlink CoMP user data to the k second base stations around the centralized processing node, where k is a positive integer.
  • the first device is a first base station
  • the second device is a first GW
  • the user data includes uplink non-CoMP user data
  • the first bearer switching request message is specifically configured to instruct the first device to transmit the uplink non-CoMP user data to the second device by using the centralized processing node, where the first device is according to the first device.
  • the carrying the handover request message, the sending the user data to the second device includes: the first device transmitting the uplink non-CoMP user data to the second device by bypassing the centralized processing node.
  • the user data further includes uplink CoMP user data
  • the first device switches according to the first bearer.
  • the request message, the sending the user data to the second device further includes: the first device, together with the at least one base station, cooperatively sending the uplink CoMP user data to the centralized processing node, so that The centralized processing node sends the uplink CoMP user data to the second device, where the first device and the at least one base station are used to perform cooperative transmission on the uplink CoMP user data.
  • the method further includes: the first device receiving a third bearer switching request message sent by the central processing node, where the second bearer switching request message is used to indicate the A device performs data transmission through the centralized processing node; the first device sends the user data to the second device according to the second bearer switching request message.
  • a fourth aspect provides a method for data transmission, where the method includes: receiving a gateway by a base station
  • the scheduling result sent by the node is centralized, and the scheduling result includes at least one of the following: a radio link control RLC segmentation information, coded modulation information, and transmit power; and the base station cooperates with at least one base station according to the scheduling result.
  • the method further includes: the base station sending an ACK message to the centralized processing node; and the base station receiving the sending by the central processing node a first message, the first message is used to instruct the base station to delete a data copy of the downlink CoMP user data, and the base station deletes a data copy of the downlink CoMP user data.
  • the method further includes: the base station sending a NACK message to the centralized processing node; and the base station receiving the sending by the central processing node And retransmitting the scheduling acknowledgement message or the first message, where the retransmission scheduling acknowledgement message is used to indicate that the base station sends the downlink CoMP user data to the at least one base station for cooperation, and the first message is used to indicate Deleting, by the base station, a data copy of the downlink CoMP user data; the base station, according to the retransmission scheduling acknowledgement message, retransmitting the downlink CoMP user data and the at least one base station, or the base station according to the The first message deletes the data copy of the downlink CoMP user data.
  • the fifth aspect provides a centralized processing node, where the central processing node includes: a receiving unit, configured to receive downlink user data from the first gateway GW, and a sending unit, configured to receive the downlink user received by the receiving unit Sending the data to the corresponding base station; the sending unit is further configured to: when determining that the interface between the central processing node and the first GW is congested, send a first bearer switching request message to the first GW, where The first bearer switching request message is used to instruct the first GW to bypass the centralized processing node for data transmission.
  • the downlink user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data
  • the sending unit is specifically configured to:
  • the downlink non-CoMP user data is sent to the first base station, and the downlink CoMP user data is sent to the at least two base stations, where the first base station is a serving base station of the target user of the downlink non-CoMP user data,
  • the at least two base stations are configured to perform cooperative transmission on the downlink CoMP user data, where the first bearer switching request message is specifically used to instruct the first GW to bypass the downlink non-CoMP user data by using the centralized processing node. Transmitted to the first base station.
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data, where Transmitting the downlink CoMP user data to the at least two base stations, including: sending the first downlink CoMP user data to at least two second base stations, and sending the second downlink CoMP user data to at least two a third base station, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data, and the at least two third base stations are configured to perform data on the second downlink CoMP user data.
  • the sending unit is further configured to: when determining that the interface is still congested, send a second bearer switching request message to the first GW, where the second bearer switching request message is used to indicate the first
  • the GW transmits the first downlink CoMP user data to the at least two second base stations by bypassing the centralized processing node.
  • the k second base stations in the at least two second base stations are in the second GW
  • the second bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the second GW is further configured to: send a bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, and the generating bearer request The message is used to instruct the second GW to generate a bearer of the second GW to the k second base stations, so that the second GW, on the bearer, is to be received by the first GW First downlink CoMP user data bypass Said centralized processing node k is transmitted to the second base station, wherein, k is a positive integer.
  • the downlink user The data is the downlink CoMP user data
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the sending unit is specifically configured to: send the first downlink CoMP user data to
  • the at least two second base stations send the second downlink CoMP user data to the at least two third base stations, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data, where the first bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP user.
  • Data is transmitted around the centralized processing node to the at least two second base stations.
  • the k second base stations in the at least two second base stations are in the second GW
  • the first bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the second GW is further configured to: send a bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, and the generating bearer request The message is used to instruct the second GW to generate a bearer of the second GW to the k second base stations, so that the second GW, on the bearer, is to be received by the first GW First downlink CoMP user data bypass Said centralized processing node k is transmitted to the second base station, wherein, k is a positive integer.
  • the processing unit is further configured to receive a downlink scheduling request message sent by a serving base station of the target user of the first downlink CoMP user data in the at least two second base stations, where the processing unit uses And performing the downlink scheduling, where the sending unit is further configured to send the scheduling result of the processing node to the at least two second base stations, where the scheduling result includes at least one of the following: a radio link control RLC score Segment information, coded modulation information, and transmit power.
  • the receiving unit is further configured to receive a service of a target user of the first downlink CoMP user data.
  • An ACK message sent by the base station; the sending unit is further configured to send the first message to the at least two second base stations, where the first message is used to indicate that the at least two second base stations delete A copy of the data of the first downlink CoMP user data.
  • the receiving unit is further configured to receive a service of a target user of the first downlink CoMP user data.
  • a NACK message sent by the base station where the sending unit is further configured to: when the number of retransmissions does not reach the preset maximum number of retransmissions, send a retransmission scheduling acknowledgement message to the at least two second base stations, where the retransmission scheduling The acknowledgment message is used to indicate that the at least two second base stations send the first downlink CoMP user data to perform cooperative transmission again, and when the number of retransmissions reaches a preset maximum number of retransmissions, send the first message to the And at least two second base stations, where the first message is used to instruct the at least two second base stations to delete a data copy of the first downlink CoMP user data.
  • the sending unit is further configured to:
  • the third bearer switching request message is sent to the first GW, where the third bearer switching request message is used to instruct the first GW to process the downlink user data by using the centralized processing.
  • the node transmits to the corresponding base station.
  • the sixth aspect provides a centralized processing node, where the centralized processing node includes: a receiving unit, configured to receive uplink user data, where the uplink user data includes uplink non-coordinated multi-point transmission CoMP user data sent by the first base station; a sending unit, configured to send the uplink user data received by the receiving unit to the first gateway GW, where the sending unit is further configured to determine that the interface between the central processing node and the first GW is congested Sending a first bearer switching request message to the first base station, where the first bearer switching request message is used to instruct the first base station to transmit the uplink non-CoMP user data to the central processing node Said the first GW.
  • the uplink user data further includes uplink CoMP user data
  • the receiving unit is specifically configured to: receive the uplink from the first base station Non-CoMP user data, receiving the uplink CoMP user data from at least two second base stations.
  • the sending unit is further configured to: when determining that the interface is idle, send the first The second bearer switching request message is sent to the first base station, where the second bearer switching request message is used to instruct the first base station to transmit the uplink non-CoMP user data to the first GW through the centralized processing node.
  • a first device includes: a sending unit, configured to: Sending the user data to the central processing node, so that the centralized processing node sends the user data to the second device, and the receiving unit is configured to receive the first bearer switching request message sent by the central processing node, where the first The bearer switching request message is used to indicate that the first device bypasses the central processing node for data transmission, and the sending unit is further configured to: according to the first bearer switching request message received by the receiving unit, User data is sent to the second device.
  • the first device is a first gateway GW
  • the second device is a base station corresponding to the user data.
  • the user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data, where The bearer switching request message is specifically configured to instruct the first device to transmit the downlink non-CoMP user data to the first base station by using the centralized processing node, where the first base station is the target of the downlink non-CoMP user data.
  • the serving base station of the user is specifically configured to: send the downlink non-CoMP user data to the first base station by using the centralized processing node, and send the downlink CoMP user data to the centralized processing node,
  • the at least two base stations are configured to send the downlink CoMP user data to the at least two base stations, where the second device includes the a first base station and the at least two base stations.
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data
  • the receiving unit is further configured to receive a second bearer switching request message sent by the central processing node, where the second bearer switching request message is used to instruct the first device to bypass the first downlink CoMP user data.
  • the central processing node is transmitted to the at least two second base stations; the sending unit is further configured to: bypass the first downlink CoMP user data according to the second bearer switching request message received by the receiving unit Transmitting, by the central processing node, the at least two second base stations, and sending the second downlink CoMP user data to the centralized processing node, so that the central processing node sends the second downlink CoMP user data Up to at least two third base stations, wherein the at least two base stations comprise the at least two second base stations and the at least two third base stations, The at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data, and the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the fourth possible implementation in the seventh aspect In the current mode, the k second base stations in the at least two second base stations are in the second GW, and the second bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP.
  • the user data is transmitted to the other base station except the k second base stations, and is further used to instruct the first GW to generate the first GW to And forwarding, by the second GW, the first downlink CoMP user data to the second GW, where the first downlink CoMP user data is bypassed by the centralized bearer Transmitting, by the processing node, the at least two second base stations, including: transmitting, by the central processing node, the first downlink CoMP user data to the at least two second base stations, except the k second
  • the other base station other than the base station sends the first downlink CoMP user data to the second GW on the forwarding bearer, so that the second GW bypasses the first downlink CoMP user data.
  • the centralized processing node transmits to the k second base stations, where k is A positive integer.
  • the user data is downlink CoMP user data
  • the downlink CoMP user data includes a first downlink CoMP user Data and the second downlink CoMP user data
  • the first bearer switching request message is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the at least two by using the centralized processing node
  • the second base station, the sending unit is specifically configured to: send the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, and send the second downlink CoMP user data to The central processing node, so that the centralized processing node sends the second downlink CoMP user data to at least two third base stations, where the second device includes the at least two second base stations and the At least two third base stations, the at least two second base stations are configured to cooperatively transmit the first downlink CoMP user data, and the at least two third base stations are used for The second downlink CoMP user data is cooperatively transmitted.
  • the k second base stations in the at least two second base stations are in the second GW
  • the first bearer switching request message is specifically configured to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node, except the k second
  • the base station is configured to send the first GW to the forwarding bearer of the second GW, and send the first downlink CoMP user data to the forwarding bearer to the base station.
  • the second GW the transmitting the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, includes: the first downlink CoMP user Transmitting, by the centralized processing node, to the other base stations of the at least two second base stations except the k second base stations, and sending the first downlink CoMP user data on the forwarding bearer Up to the second GW, such that the second GW transmits the first downlink CoMP user data to the k second base stations by using the centralized processing node, wherein k is a positive integer.
  • the first device is a first base station
  • the second device is a first GW
  • the user data includes uplink non-CoMP user data
  • the first bearer switching request message is specifically configured to instruct the first device to transmit the uplink non-CoMP user data to the second device by using the centralized processing node
  • the sending unit is specifically configured to:
  • the uplink non-CoMP user data is transmitted to the second device by bypassing the centralized processing node.
  • the user data further includes uplink CoMP user data
  • the sending unit is further configured to: And transmitting, by the base station, the uplink CoMP user data to the centralized processing node, so that the centralized processing node sends the uplink CoMP user data to the second device, where the first device and the device
  • the at least one base station is configured to perform cooperative transmission on the uplink CoMP user data.
  • the receiving unit is further configured to receive the third sent by the centralized processing node, in a ninth possible implementation manner of the seventh aspect, Carrying a handover request message, the second bearer switching request message is used to indicate that the first device performs data transmission by using the centralized processing node, and the sending unit is further configured to receive, according to the receiving unit, the second Carrying a handover request message, and transmitting the user data to the second device.
  • the eighth aspect provides a base station, where the base station includes: a receiving unit, configured to receive downlink coordinated multi-point transmission CoMP user data sent by the gateway GW, and a sending unit, configured to send a downlink scheduling request message to the central processing node,
  • the downlink scheduling request message is used to request the centralized processing node to perform downlink scheduling;
  • the receiving unit is further configured to receive a scheduling result sent by the central processing node, where the scheduling result includes at least one of the following: Controlling the RLC segmentation information, the coded modulation information, and the transmit power.
  • the sending unit is further configured to, according to the scheduling result received by the receiving unit, cooperate with the at least one base station to send the downlink CoMP user received by the receiving unit.
  • the base station further includes a processing unit: the sending unit is further configured to send an ACK message to the centralized processing node; And the first message is used to receive the first message sent by the central processing node, where the first message is used to instruct the base station to delete a data copy of the downlink CoMP user data, and the processing unit is configured to use, according to the receiving unit, Receiving the first message, deleting a data copy of the downlink CoMP user data.
  • the base station further includes a processing unit: the sending unit is further configured to send a NACK message to the centralized processing node; And receiving, by the central processing node, a retransmission scheduling acknowledgement message or a first message, where the retransmission scheduling acknowledgement message is used to instruct the base station to perform the downlink CoMP user data and the at least one base station again.
  • the first message is used to instruct the base station to delete a data copy of the downlink CoMP user data
  • the processing unit is configured to: according to the retransmission scheduling acknowledge message received by the receiving unit, the downlink The CoMP user data is co-transmitted with the at least one base station, or the data copy of the downlink CoMP user data is deleted according to the first message received by the receiving unit.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first bearer switching request message is sent to the first GW, so that the first GW bypasses the downlink user data.
  • the processing node performs transmission, so that the data traffic of the interface between the central processing node and the first GW can be reduced, thereby reducing or eliminating the congestion condition of the interface.
  • FIG. 1 is a schematic diagram of a cloud radio access network architecture.
  • FIG. 2 is a schematic diagram of the Hybrid L1 architecture.
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method of data transmission in accordance with an embodiment of the present invention.
  • Figure 5 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • 7 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • FIG. 8 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • FIG. 9 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the flow of a method of data transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • Figure 15 is a diagram showing the flow of a method of data transmission in accordance with another embodiment of the present invention.
  • 16 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • FIG 17 is a block diagram of a centralized processing node in accordance with one embodiment of the present invention.
  • Figure 18 is a block diagram of a centralized processing node in accordance with another embodiment of the present invention.
  • Figure 19 is a block diagram of a first device in accordance with one embodiment of the present invention.
  • Figure 20 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • 21 is a block diagram of a centralized processing node in accordance with another embodiment of the present invention.
  • Figure 22 is a block diagram of a centralized processing node in accordance with another embodiment of the present invention.
  • Figure 23 is a block diagram of a first device of another embodiment of the present invention.
  • FIG. 24 is a block diagram of a base station in accordance with another embodiment of the present invention. detailed description
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can be executed by various computer readable media having various data structures stored thereon.
  • Parts can have one according to Signals of one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) through local and/or Remote processes to communicate.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the base station can be used for communicating with a mobile device, and the base station can be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB in the Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB evolved Node B
  • LTE Long Term Evolution
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a user equipment (User Equipment , UE).
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and has wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a computer readable medium may include, but is not limited to: a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disk (CD), a digital versatile disk (DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disk
  • DVD digital versatile disk
  • Etc. smart cards and flash memory devices
  • EPROM Erasable Programmable Read-Only Memory
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • machine readable medium may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a cloud radio access network architecture.
  • the CRAN architecture in Figure 1 includes a BBU center 101, and an RRU 102.
  • the RRU 102 and the BBU center 101 are interconnected by a CPRI interface.
  • the centralized processing node is located in the BBU center.
  • the S 1 interface of the BBU center 101 is to receive and send each RRU 102 coverage area
  • FIG. 2 is a schematic diagram of the Hybrid L1 architecture.
  • the Hybrid L1 architecture in FIG. 2 includes a BBU center 201, a base station 202, and a switching device 203.
  • the base station 202 and the BBU center 201 are connected by a PTN.
  • At least one switching device 203 may be included in the PTN.
  • the base station 202 can be an eRRU, and the centralized processing node is located at the BBU center.
  • the downlink CoMP user data is first transmitted from the core network (not shown in Fig. 2) to the central processing node, and then transmitted from the central processing node via the PTN to each of the cooperative base stations.
  • the uplink CoMP user data is transmitted from the coordinated base station to the central processing node via the PTN, and then transmitted from the centralized processing node to the core network.
  • the centralized processing node is connected to the core network through the S1 interface, the transmission bottleneck of the S1 interface of the central processing node is easily caused.
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • the scenario shown in Figure 3 is a distributed architecture including a centralized processing node 301 and a base station 302.
  • the base station 302 and the base station 302, and the central processing node 301 and the base station 302 are interconnected by e-X2.
  • the centralized processing node shown in Figure 3 can be a base station.
  • the centralized processing node can be a macro base station.
  • the downlink CoMP user data is first transmitted from the core network (not shown in Fig. 3) to the central processing node 301, and then transmitted from the central processing node 301 to each of the cooperative base stations 302.
  • the downlink non-CoMP user data may be transmitted from the core network (not shown in Fig. 3) to the central processing node 301, and then transmitted from the central processing node 301 to the serving base station of the target user of the downlink non-CoMP user data.
  • the downlink non-CoMP user data may also be directly transmitted from the core network (not shown in FIG. 3) to the serving base station of the target user of the downlink non-CoMP user data.
  • the uplink CoMP user data is transmitted from each of the coordinated base stations 302 to the central processing node 301 and then from the centralized processing node 301 to the core network.
  • Uplink non-CoMP user data may be transmitted from one base station to the central processing node 301 and then from the centralized processing node 301 to the core network (not shown in Figure 3).
  • uplink non-CoMP user data can also be transmitted directly from a base station to the core network (not shown in Figure 3).
  • the interface between the central processing node 301 and the core network may be an S1 interface.
  • the embodiment of the present invention provides a data transmission method, which can avoid the transmission bottleneck of the interface between the centralized processing node and the core network.
  • a gateway (Gateway, GW) is used as an edge node of the core network.
  • the centralized processing node is a logical unit, the centralized processing node may be located in the BBU center, or the centralized processing node may also be a base station in the distributed architecture that assumes the function of the centralized processing node, and the present invention This is not limited.
  • connection between the central processing node and each of the base stations is a custom interface.
  • the interface between the central processing node and each base station is a non-S1 interface, for example, an X2 interface or an eX2 interface or an Ethernet. Network interface, etc.
  • the central processing node and the core network, and each base station and the core network are interconnected through an S1 interface.
  • S1 interface is a logical interface.
  • the base station has a data processing function of L2 (data link layer) - L1 (physical layer).
  • the base station has a protocol stack function of L2, including a Packet Data Convergence Protocol (PDCP), a Radio Link Control (RLC), and a Medium Access Control (MAC).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the centralized processing node has a complete L3 (Radio Resource Control) - L1 base station function.
  • the centralized processing node not only has the protocol stack function of L2 such as PDCP, RLC, and MAC, but also the L2 scheduling function and the Hybrid Automatic Repeat reQuest (HARQ) entity maintenance function.
  • L2 Radio Resource Control
  • HARQ Hybrid Automatic Repeat reQuest
  • FIG. 4 is a flow chart of a method of data transmission in accordance with an embodiment of the present invention.
  • the method shown in Figure 4 includes:
  • the central processing node receives downlink user data from the first GW.
  • the central processing node sends the downlink user data to a corresponding base station.
  • the centralized processing node When it is determined that the interface between the central processing node and the first GW is congested, the centralized processing node sends a first bearer switching request message to the first GW, where the first bearer switching request message is used. Instructing the first GW to bypass the centralized processing node for data transmission.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested
  • the first bearer switching request message is sent to the first GW, so that the first GW bypasses the downlink user data.
  • the processing node performs transmission, so that the data traffic of the interface between the central processing node and the first GW can be reduced, thereby reducing or eliminating the congestion condition of the interface, thereby effectively avoiding the interface between the central processing node and the first GW. Transmission bottleneck.
  • the interface between the central processing node and the first GW may be SI interface.
  • the central processing node can determine the interface congestion by detecting the state of the interface.
  • the status of the interface can include the bandwidth usage of the interface.
  • the centralized processing node can detect the state of the interface periodically or periodically. For example, it can be tested every 15 minutes from 9:00 to 18:00 on weekdays. Alternatively, it can be tested every 10 minutes from 20 to 24 hours a day. Alternatively, it is also possible to perform the test in a 24-hour cycle. and many more. The invention is not limited thereto.
  • the method for detecting the state of the interface is not limited in the embodiment of the present invention.
  • the centralized processing node can directly detect the state of the interface between the central processing node and the first GW.
  • the centralized processing node can also detect the state of the interface of the link between the central processing node and each base station, and further calculate the state of the interface between the centralized processing node and the first GW by using a certain algorithm.
  • the invention is not limited thereto.
  • the centralized processing node determines that the interface is congested, and the centralized processing node detects that the bandwidth usage of the interface is greater than the first threshold for a period of time. For example, the centralized processing node performs detection every one minute for ten consecutive minutes. Each time the detection detects that the bandwidth usage of the interface is greater than the first threshold, the centralized processing node may determine that the interface is congested.
  • Centralized processing of nodes depends on the state of the interface, and other methods can be used to determine congestion of the interface. The present invention is not limited thereto.
  • the first threshold may be predefined by the operator.
  • the present invention is not limited thereto.
  • the downlink user data in 401 may include downlink non-CoMP user data and/or downlink CoMP user data.
  • the central processing node receives downlink user data from the first GW through the interface.
  • the central processing node sends the first bearer switching request message to the first GW, where the centralized processing node directly sends the first bearer switching request message to the first GW, or The central processing node may send the first bearer switching request message to the first GW indirectly, for example, the central processing node may send the first bearer switching request message to the first mobility management entity (MME), and then The first MME sends an update bearer request message to the first GW.
  • MME mobility management entity
  • the downlink user data in the 401 includes downlink non-CoMP user data and downlink CoMP user data. It can be understood that the first GW performs downlink transmission of downlink non-CoMP user data and downlink CoMP user data at the same time, and both are transmitted through the centralized processing node.
  • the central processing node sends the downlink non-CoMP user data to the first base station, and sends the downlink CoMP user data to the at least two base stations.
  • the first base station is a serving base station of a target user of the downlink non-CoMP user data, and at least two base stations are used for cooperative transmission of downlink CoMP user data.
  • the downlink CoMP user data is sent to the at least two base stations, where the centralized processing node performs joint precoding on the downlink CoMP user data, and then sends the jointly precoded downlink CoMP user data to at least two.
  • the base stations are configured to enable the at least two base stations to cooperatively transmit the downlink CoMP user data that is jointly precoded.
  • the central processing node may generate precoding control information according to the downlink CoMP user data, and then send the downlink CoMP user data and the precoded control information to at least two base stations, so that at least two base stations Downlink CoMP user data is jointly precoded and transmitted cooperatively.
  • the present invention is not limited thereto.
  • the first bearer switching request message in the 403 is specifically used to instruct the first GW to transmit the downlink non-CoMP user data to the first base station by bypassing the centralized processing node.
  • the first bearer switching request message may carry the identifier information of the first base station.
  • the identification information in the embodiment of the present invention may be a MAC address or a physical address, or may be other identification information, which is not limited by the present invention.
  • the first GW may transmit the downlink non-CoMP user data to the first base station by bypassing the centralized processing node according to the first bearer switching request message. Specifically, the first GW may change the transmission route of the downlink non-CoMP user data, so that the forwarding path of the first GW to the first base station does not include the centralized processing node.
  • the first GW may change the address of the next hop of the transmission path of the downlink non-CoMP user data to lower the downlink.
  • CoMP user data is transmitted directly to the first base station. That is, it can be understood that the user plane of the first GW switches the downlink path of the downlink non-CoMP user data to the first base station.
  • the first GW may be configured according to the first base station carried in the first bearer switching request message.
  • the identifier information is generated, and the bearer of the first GW is generated to the first base station, and the downlink non-CoMP user data is transmitted to the first base station on the bearer of the first GW to the first base station.
  • the first GW may also release the bearer of the first GW to the central processing node for transmitting downlink non-CoMP user data.
  • the first GW releases the used bearer in time, which can avoid resource waste and save resource occupation, thereby improving resource utilization.
  • the first GW may further generate first indication information and send the first indication information to the centralized processing node.
  • the first indication information is used to instruct the first GW to stop sending downlink non-CoMP user data to the centralized processing node.
  • the first indication information is an end marker.
  • the first indication information is an end marker of the process in which the first GW sends the downlink non-CoMP user data to the central processing node.
  • the method of the embodiment of the present invention may further include: the centralized processing node receiving the first indication information from the first GW.
  • the first indication information is used to instruct the first GW to stop transmitting downlink non-CoMP user data to the central processing node, that is, the central processing node stops receiving downlink non-CoMP user data from the first GW.
  • the first GW may also generate a first bearer switching response message, and send the first bearer switching response message to the central processing node.
  • the first GW sends the first bearer switching response message to the central processing node, and the first GW may directly send the first bearer switching response message to the central processing node, or the first GW may switch the first bearer response.
  • the message is sent to the central processing node indirectly.
  • the first GW sends the update bearer response message to the first MME, and then the first MME sends the first bearer switch response message to the centralized processing node. Not limited.
  • the method of the embodiment of the present invention may further include: the centralized processing node receiving the first bearer handover response message from the first GW.
  • the method of the embodiment of the present invention may further include: the central processing node sending the downlink non-CoMP user data that has been received from the first GW and stored in a buffer of the central processing node to The first base station.
  • the central processing node may send the first indication information received from the first GW to the first base station, where the first indication information is used by the central processing node. Instructing the centralized processing node to receive from the first GW and store it in the The downlink non-CoMP user data in the cache of the centralized processing node is completed.
  • the central processing node may carry the first indication information in a last data packet of downlink non-CoMP user data sent to the first base station. It can be understood that the first indication information sent by the central processing node to the first base station is an end marker of the process that the central processing node sends the downlink non-CoMP user data to the first base station.
  • the centralized processing node may also release the downlink transmission resource used for transmitting the downlink non-CoMP user data.
  • the centralized processing node releases the transmission resources that are no longer used in time, which can avoid resource waste and save resource occupation, thereby improving resource utilization.
  • the first base station receives downlink non-CoMP user data from the central processing node.
  • the first base station receives downlink non-CoMP user data from the first GW.
  • the first base station also receives downlink non-CoMP user data in the buffer of the central processing node from the central processing node.
  • the downlink non-CoMP received by the first base station from the first GW may arrive at the first base station earlier or at the same time as the downlink non-CoMP user data in the buffer sent by the central processing node.
  • the first base station may first send the downlink non-CoMP user data received from the central processing node to the target user, and after receiving the first indication information, send the downlink non-CoMP user data received from the first GW to the target user. . For example, if the last data packet sent by the central processing node to the first base station carries the first indication information, after the first base station parses the first indication information, the first base station may determine that the data packet carrying the first indication information is centralized processing. After the last data packet sent by the node, the first base station can continue to parse the downlink non-CoMP user data received from the first GW.
  • the central processing node continues to receive downlink CoMP user data from the first GW, and sends the downlink CoMP user data to at least two base stations. At least two base stations are used for cooperative transmission of downlink CoMP user data.
  • the first GW still sends the downlink CoMP user data to the central processing node, so that the central processing node transmits the downlink CoMP user data to at least two base stations. And, the first GW sends subsequent downlink non-CoMP user data to the first base station by bypassing the centralized processing node.
  • the first GW sends downlink non-CoMP user data to the first base station bypassing the centralized processing node.
  • the first GW can directly downlink non-CoMP user data. Send to the first base station.
  • the first GW can send downlink non-CoMP user data to the first base station by using an interface between the first GW and the first base station.
  • the interface between the first GW and the first base station may be an S1 interface.
  • the first GW still sends the downlink CoMP user data to the central processing node, and the centralized processing node sends the downlink CoMP user data to the at least two base stations.
  • the centralized processing node when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the centralized processing node can enable the first GW to perform downlink non-CoMP by sending a first bearer switching request message to the first GW. User data is bypassed by the central processing node for transmission to the corresponding base station. In this way, the data traffic passing through the interface between the central processing node and the first GW can be reduced, and the congestion condition of the interface can be alleviated or eliminated.
  • the downlink non-CoMP user data is transmitted around the central processing node to improve the transmission efficiency of the downlink non-CoMP user data.
  • the downlink CoMP user data is still transmitted through the centralized processing node, which can ensure the transmission efficiency of the downlink CoMP user data.
  • the central processing node sends the first downlink non-CoMP user data to the first base station A1. And transmitting the second downlink non-CoMP user data to the first base station A2.
  • the first base station A1 is a serving base station of a target user of the first downlink non-CoMP user data
  • the first base station A2 is a serving base station of the target user of the second downlink non-CoMP user data.
  • the first GW may bypass the first downlink non-CoMP user data to the first base station A1, and bypass the second downlink non-CoMP user data.
  • the centralized processing node transmits to the first base station A2.
  • the first GW may first transmit only the first downlink non-CoMP user data to the first base station A1 by using the centralized processing node, if after that, centralized processing The interface between the node and the first GW is still congested, and the second downlink non-CoMP user data is transmitted to the first base station A2 bypassing the centralized processing node.
  • the downlink non-CoMP user data may be M groups, where M is a positive integer.
  • the central processing node transmits M sets of downlink non-CoMP user data to the M first base stations.
  • the first GW may first One or more of the M sets of downlink non-CoMP user data are transmitted around the centralized processing node to the corresponding one or several first base stations.
  • the number of target users of the downlink non-CoMP user data of the M group may be greater than ⁇ 1. For example, multiple target users may be within the service range of the same first base station. The invention is not limited thereto.
  • the downlink CoMP user data may include the first downlink CoMP user data and the second downlink CoMP user data, and sending the downlink CoMP user data to the at least two base stations, including: The downlink CoMP user data is sent to the at least two second base stations, and the second downlink CoMP user data is sent to the at least two third base stations.
  • the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data
  • the at least two third base stations are used to perform cooperative transmission on the second downlink CoMP user data.
  • the first downlink CoMP user data is sent to the at least two second base stations, where the centralized processing node performs joint precoding on the first downlink CoMP user data, and then the joint precoding is performed.
  • the first downlink CoMP user data is sent to the at least two second base stations, so that the at least two second base stations cooperatively transmit the jointly downlinked first downlink CoMP user data.
  • the centralized processing node may generate the pre-coded first control information according to the first downlink CoMP user data, and then send the first downlink CoMP user data and the pre-coded first control information to at least two
  • the second base station is configured to enable the at least two second base stations to jointly pre-code the first downlink CoMP user data and jointly transmit the data.
  • the invention is not limited thereto.
  • the second downlink CoMP user data is sent to the at least two third base stations, where the centralized processing node performs joint precoding on the second downlink CoMP user data, and then performs the joint precoding second.
  • the downlink CoMP user data is sent to the at least two third base stations, so that the at least two third base stations cooperatively transmit the jointly downlink pre-coded second downlink CoMP user data.
  • the central processing node may generate second pre-coded control information according to the second downlink CoMP user data, and then send the second downlink CoMP user data and the pre-coded second control information to at least two amines.
  • the base station is configured to enable the at least two third base stations to jointly pre-code and jointly transmit the second downlink CoMP user data.
  • the invention is not limited thereto.
  • the method of FIG. 4 may further include: when determining that the interface is still congested, the centralized processing node sends a second bearer switching request message to the first GW, where the second bearer switches The request message is used to indicate that the first GW is to use the first downlink CoMP User data is transmitted to the at least two second base stations bypassing the centralized processing node. It can be understood that, after the above embodiment, the data transmitted by the central processing node is downlink.
  • CoMP user data if the interface between the centralized processing node and the first GW is still congested, part of the data in the downlink CoMP user data can be switched. For example, the first downlink CoMP user data is switched.
  • the central processing node sends the second bearer switching request message to the first GW, and the centralized processing node may directly send the second bearer switching request message to the first GW, or may be the centralized processing node indirectly
  • the bearer handover request message is sent to the first GW.
  • the central processing node may send the second bearer handover request message to the first MME, and then the first MME sends another update bearer request message to the first GW.
  • the invention is not limited thereto.
  • the second bearer switching request message may carry identifier information of at least two second base stations.
  • the first GW may transmit the first downlink CoMP user data to the at least two second base stations by bypassing the central processing node according to the second bearer switching request message. Specifically, the first GW may change the transmission route of the first downlink CoMP user data, so that the forwarding path of the first GW to the at least two second base stations does not include the centralized processing node.
  • the first GW may generate, according to the identifier information of the at least two second base stations carried in the second bearer switching request message, the bearers of the first GW to the at least two second base stations, and And transmitting, by the at least two second base stations, the first downlink non-CoMP user data to the at least two second base stations.
  • the at least two second base stations are all under the first GW.
  • the first GW may also release the bearer of the first GW to the central processing node for transmitting the first downlink non-CoMP user data.
  • the first GW releases the used bearer in time, which can avoid resource waste and save resource occupation, thereby improving resource utilization.
  • the first GW may further generate second indication information and send the second indication information to the centralized processing node.
  • the second indication information is used to indicate that the first GW stops sending the first downlink CoMP user data to the centralized processing node. It can be understood that the second indication information is an end marker. Specifically, the second indication information is that the first GW sends the first downlink CoMP user data to the central processing node. End marker
  • the method of the embodiment of the present invention may further include: the centralized processing node receiving the second indication information from the first GW.
  • the second indication information is used to instruct the first GW to stop transmitting the first downlink CoMP user data to the central processing node, that is, the centralized processing node stops receiving the first downlink CoMP user data from the first GW.
  • the first GW may also generate a second bearer switching response message, and send the second bearer switching response message to the central processing node.
  • the first GW sends the second bearer switching response message to the central processing node, where the first GW may directly send the second bearer switching response message to the central processing node, or the first GW may switch the second bearer response.
  • the message is sent to the central processing node indirectly.
  • the indirect transmission may be that the first GW sends another update bearer response message to the first MME, and then the second MME sends the second bearer handover response message to the centralized processing node. This is not limited.
  • the method of the embodiment of the present invention may further include: the centralized processing node receiving the second bearer handover response message from the first GW.
  • the method of the embodiment of the present invention may further include: the central processing node sending the first downlink CoMP user data that has been received from the first GW and stored in a cache of the central processing node to the At least two second base stations.
  • the centralized processing node may send the second indication information received from the first GW to the at least two second base stations, where the second The indication information is used to indicate that the central processing node sends the first downlink CoMP user data received from the first GW and stored in the buffer of the central processing node.
  • the central processing node may carry the second indication information in a last data packet of the first downlink CoMP user data sent to the at least two second base stations.
  • the second indication information that the central processing node sends to at least two second base stations is an end marker of the process that the central processing node sends the first downlink CoMP user data to the at least two second base stations.
  • the downlink transmission resource used for transmitting the first downlink CoMP user data may also be released.
  • the centralized processing node releases the transmission resources that are no longer used in time, which can avoid resource waste and save resource occupation, thereby improving resource utilization.
  • the GW receives the second downlink CoMP user data, and sends the second downlink CoMP user data to the At least two third base stations.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first GW still sends the second downlink CoMP user data to the central processing node, so that the central processing node transmits the second downlink CoMP user data to the at least two third base stations. And, the first GW sends the subsequent first downlink CoMP user data to the at least two second base stations by bypassing the centralized processing node.
  • At least two second base stations receive the first downlink CoMP user data from the first GW.
  • at least two of the second base stations further receive, from the central processing node, the first downlink CoMP user data in the buffer of the central processing node.
  • the first downlink CoMP received by the at least two second base stations from the first GW may reach the at least two second base stations earlier or simultaneously with the first downlink CoMP user data in the buffer sent by the central processing node.
  • the at least two second base stations may firstly cooperatively transmit the first downlink CoMP user data received from the central processing node to the target user, and after receiving the second indication information, the first downlink received from the first GW.
  • CoMP user data collaboration is sent to the target user. For example, if the last data packet sent by the central processing node to the at least two second base stations carries the second indication information, the at least two second base stations may determine to carry the second indication information after parsing the second indication information.
  • the data packet is the last data packet sent by the central processing node, and then at least two second base stations can continue to parse the first downlink CoMP user data received from the first GW.
  • At least two second base stations will receive the first downlink from the first GW.
  • the CoMP user data is co-sent to the target user, and the method includes: the at least two second base stations cooperatively transmit the first downlink CoMP user data to the at least two second base stations according to the scheduling information of the centralized processing node.
  • the central processing node may receive a downlink scheduling request message sent by the serving base station of the target user of the first downlink CoMP user data of the at least two second base stations, and the centralized processing node performs downlink scheduling and sends the scheduling result to at least two.
  • the scheduling result may include at least one of the following: Radio Link Control (RLC) segmentation information, code modulation information, and transmission power.
  • RLC Radio Link Control
  • the downlink scheduling request message may include at least one of the following: the identifier information of the target user of the first downlink CoMP user data, and the identifier of the serving base station of the target user of the first downlink CoMP user data in the at least two second base stations. Information, the total amount of data waiting to be sent in the buffer. or, The downlink scheduling request message may also include the priority of the data, and the amount of data waiting to be transmitted for each priority.
  • the scheduling result may further include a physical resource block (PRB) quantity and location information, an emission layer number, and an antenna number information.
  • PRB physical resource block
  • the at least two second base stations can send the first downlink CoMP user data to the target user of the first downlink CoMP user data according to the scheduling result. And, at least two second base stations receive feedback information of the target user of the first downlink CoMP user data. Specifically, the feedback information is an ACK message or a NACK message.
  • the serving base station of the target user of the first downlink CoMP user data of the at least two second base stations sends the feedback information to the central processing node.
  • the central processing node receives an ACK message sent by the serving base station of the target user of the first downlink CoMP user data; the centralized processing node sends the first message to the at least two second base stations, where The first message is used to instruct the at least two second base stations to delete a data copy of the first downlink CoMP user data.
  • the serving base station of the target user of the first downlink CoMP user data performs ACK decoding
  • the serving base station of the target user of the first downlink CoMP user data receives the ACK sent by the target user of the first downlink CoMP user data.
  • the message is ACK-decoded to determine that the first downlink CoMP user data transmission is successful.
  • the monthly service base station of the target user of the first downlink CoMP user data sends an ACK message to the central processing node, and the The serving base station of the target user of the first downlink CoMP user data deletes the stored data copy of the first downlink CoMP user data.
  • the central processing node After receiving the ACK message, the central processing node generates a first message, and sends the first message to the serving base station of the target user of the at least two second base stations except the first downlink CoMP user data.
  • the other second base station is configured to instruct the other second base station to delete the data copy of the first downlink CoMP user data.
  • the serving base station of the target user of the first downlink CoMP user data receives the ACK message sent by the target user of the first downlink CoMP user data, and then forwards the ACK message to the centralized processing.
  • the node can also understand that the ACK message is transparently transmitted to the central processing node.
  • the central processing node After receiving the ACK message, the central processing node performs ACK decoding to determine that the first downlink CoMP user data transmission is successful. Then, the central processing node generates a first message, and sends the first message to at least two second base stations, where the first message is used to indicate that at least two second base stations delete data copies of the first downlink CoMP user data.
  • the centralized processing node receives the NACK message sent by the serving base station of the target user of the first downlink CoMP user data; and when the number of retransmissions does not reach the preset maximum number of retransmissions, the centralized processing node Sending a retransmission scheduling acknowledgement message to the at least two second base stations, where the retransmission scheduling acknowledgement message is used to instruct the at least two second base stations to perform cooperative transmission of the first downlink CoMP user data again.
  • the central processing node sends a first message to the at least two second base stations, where the first message is used to indicate the at least two second base stations. Deleting a data copy of the first downlink CoMP user data.
  • the NeNB may perform the NACK decoding by the serving base station of the target user of the first downlink CoMP user data, or may be NACK-decoded by the central processing node, which is not limited by the present invention.
  • the first GW transmits the first downlink CoMP user data to the at least two second base stations bypassing the centralized processing node.
  • the first GW may directly transmit the first downlink CoMP user data to at least two second base stations.
  • the first GW can send the first downlink CoMP user data to at least two second base stations through an interface between the first GW and the at least two second base stations.
  • the interface between the first GW and the at least two second base stations may be an S1 interface.
  • the first GW still sends the second downlink CoMP user data to the central processing node, and the central processing node transmits the second downlink CoMP user data to the at least two third base stations.
  • the second bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP user data is transmitted from the central processing node to the other base stations of the at least two second base stations except the k second base stations, and is further used to instruct the first GW to generate the first GW. Forwarding the bearer to the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer.
  • k is a positive integer.
  • k is smaller than the number of base stations in at least two second base stations.
  • the serving base station of the target user of the first downlink CoMP user data is under the first GW, and participates in the first At least two second base stations that perform coordinated transmission of CoMP user data may be under different GWs.
  • the first GW transmits the first downlink CoMP user data to the other base stations except the k second base stations by using the central processing node to bypass the central processing node.
  • the method may further include: the centralized processing node sends a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, where the generate bearer request message is used to indicate Generating, by the second GW, the bearer of the second GW to the k second base stations, so that the second GW is on the bearer, and the first downlink that is to be received by the first GW CoMP user data is transmitted to the k second base stations bypassing the centralized processing node.
  • the second GW may generate a 7-load response message and send the generated 7-load response message to the central processing node.
  • the centralized processing node sends a generate bearer request message to the second GW, which may be that the centralized processing node having the MME function directly sends the generate bearer request message to the second GW.
  • the central processing node sends the second bearer switching request message to the first MME
  • the first MME sends a redirect message to the second MME
  • the second MME sends a bearer request message to the second GW.
  • the first MME is the MME of the network where the first GW is located
  • the second MME is the MME of the network where the second GW is located.
  • the invention is not limited thereto.
  • the second GW sends a generate bearer response message to the central processing node, where the second GW sends a bearer response message to the second MME, and then the second MME returns a redirect feedback message to the first MME, and finally The first MME forwards to the central processing node.
  • the present invention is not limited thereto.
  • the manner of message communication between the centralized processing node and the first GW, and between the centralized processing node and the second GW is not limited.
  • the direct communication may be performed, or the indirect communication may be performed by other devices, which is not limited by the present invention.
  • the first GW may transmit subsequent first downlink CoMP user data to the central processing node to the other base stations except the k second base stations, and Transmitting, by the first GW to the forwarding bearer of the second GW, the subsequent first downlink CoMP user data to the second GW, and then the second GW from the second GW to the k second of the at least two second base stations
  • the bearer of the base station is sent by the second GW to the k second base stations of the at least two second base stations.
  • the at least two second base stations further perform subsequent first downlink CoMP
  • the user data is cooperatively transmitted to the target user of the first downlink CoMP user data.
  • the at least two second base stations perform the coordinated transmission of the subsequent first downlink CoMP user data, and the at least two second base stations perform the cooperative transmission according to the scheduling result of the centralized processing node.
  • the at least two second base stations perform the coordinated transmission of the subsequent first downlink CoMP user data, and the at least two second base stations perform the cooperative transmission according to the scheduling result of the centralized processing node.
  • the second bearer switching request message is used to indicate that the first GW generates the forwarding bearer of the first GW to the second GW, and the first GW is in the forwarding On the bearer, the first downlink CoMP user data is sent to the second GW.
  • the method may further include: the centralized processing node sends a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the at least two second base stations, where the generate bearer request message is used Instructing the second GW to generate a bearer of the second GW to the at least two second base stations, so that the second GW is on the bearer, the first one to be received from the first GW Downlink CoMP user data is transmitted to the at least two second base stations bypassing the centralized processing node.
  • the second GW may generate a 7-load response message and send the generated 7-load response message to the central processing node.
  • the first GW may send the subsequent first downlink CoMP user data to the second GW on the forwarding bearer of the first GW to the second GW.
  • the second GW may send to the at least two second base stations on the bearers of the second GW to the at least two second base stations. Then, the at least two second base stations cooperatively transmit the subsequent first downlink CoMP user data to the target user of the first downlink CoMP user data.
  • the at least two second base stations perform the coordinated transmission of the subsequent first downlink CoMP user data, and the at least two second base stations perform the cooperative transmission according to the scheduling result of the centralized processing node.
  • the at least two second base stations perform the coordinated transmission of the subsequent first downlink CoMP user data, and the at least two second base stations perform the cooperative transmission according to the scheduling result of the centralized processing node.
  • the central processing node when the central processing node determines that the interface between the central processing node and the first GW is congested, the central processing node can send the first bearer switching request message to the first GW, so that the first GW can be downlinked.
  • CoMP user data is transmitted around the centralized processing node to the corresponding base station.
  • the central processing node determines that the interface between the central processing node and the first GW is still congested, the centralized processing node can enable the first GW to use the first downlink CoMP user by sending a second bearer switching request message to the first GW.
  • the data is transmitted around the centralized processing node to at least two second base stations.
  • the data traffic passing through the interface between the central processing node and the first GW can be further reduced, and the congestion condition of the interface can be alleviated or eliminated.
  • the first downlink CoMP user data is transmitted around the centralized processing node, and the second downlink CoMP user data is still transmitted through the centralized processing node, thereby ensuring the transmission efficiency of the second downlink CoMP user data. .
  • the downlink CoMP user data may further include third downlink CoMP user data transmitted to the at least two fourth base stations.
  • the number of target users of the first downlink CoMP user data may be plural.
  • downlink CoMP user data sent to the plurality of target users are cooperatively transmitted by at least two second base stations.
  • the target users of the first downlink CoMP user data are the terminal T1 and the terminal T2
  • the first downlink CoMP user data includes the first data of the target user being the terminal T1 and the second data of the target user being the terminal T2.
  • the base station that the target user sends the cooperation of the first data of the terminal T1 is the at least two second base stations
  • the base station that the target user sends the cooperation of the second data of the terminal T2 is also the at least two second base stations.
  • the downlink CoMP user data may be multiple sets of downlink CoMP user data
  • the second bearer switching request message may be used to instruct the first GW to switch one or more groups of the multiple sets of downlink CoMP user data.
  • the invention is not limited thereto.
  • the switching here refers to switching the transmission through the centralized processing node to bypass the centralized processing node transmission.
  • Each group of downlink CoMP user data refers to downlink user data that is cooperatively transmitted by the same at least two base stations.
  • the first GW when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first GW may be instructed to first transmit the downlink non-CoMP user data to the central processing node for transmission, thereby reducing the The data traffic of the interface mitigates or eliminates congestion on the interface. If the interface is still determined to be congested, the first GW is instructed to bypass part of the downlink CoMP user data for transmission by the centralized processing node, thereby further reducing data traffic passing through the interface, thereby eliminating congestion of the interface.
  • the first GW may be instructed to first transmit the downlink non-CoMP user data to the central processing node for transmission, thereby reducing the The data traffic of the interface mitigates or eliminates congestion on the interface.
  • the first GW is instructed to bypass part of the downlink CoMP user data for transmission by the centralized processing node, thereby further reducing data traffic passing through the interface, thereby eliminating congestion of the interface.
  • the downlink user data in the 401 is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data.
  • the central processing node sends the downlink user data to the corresponding base station, including:
  • the first downlink CoMP user data is sent to at least two second base stations, and the second downlink CoMP user data is sent to at least two third base stations.
  • the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first bearer switching request message in 403 is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by bypassing the centralized processing node.
  • downlink non-CoMP user data is not included in the data transmitted by the first GW through the centralized processing node.
  • the first bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP user.
  • the data is transmitted to the other base stations except the k second base stations by the central processing node, and is further configured to instruct the first GW to generate the first GW to the Transmitting the forwarding bearer of the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer
  • the method further includes: sending, by the central processing node, a bearer request message to the The second GW, the generating a bearer request message includes the identifier information of the k second base stations, where the generating bearer request message is used to instruct the second GW to generate the second GW to the k second a bearer of the base station, such that the second GW is on the bearer, and the first downlink CoMP user data received from the first GW is transmitted to the kth second through the
  • the first bearer switching request message is used to instruct the first GW to generate a forwarding bearer of the first GW to the second GW, and the first GW is in the forwarding On the bearer, the first downlink CoMP user data is sent to the second GW.
  • the method may further include: the central processing node sends a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the at least two second base stations, where the generate bearer request message is used to indicate Generating, by the second GW, the bearer of the second GW to the at least two second base stations, so that the second GW is on the bearer, and the first downlink that is to be received from the first GW CoMP user data is transmitted to the at least two second base stations bypassing the centralized processing node.
  • the first GW transmits the first downlink CoMP user data to the at least two second base stations by bypassing the centralized processing node according to the first bearer switching request message.
  • the first GW bypasses the first downlink CoMP user data according to the second bearer switching request message.
  • the over-concentration processing node transmits to the at least two second base stations. To avoid repetition, we will not repeat them here. Further, the at least two second base stations cooperate to send the first downlink CoMP user data to the target user.
  • the at least two second base stations cooperate to send the first downlink CoMP user data to the target user.
  • the first GW when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first GW may instruct the first GW to bypass part of the data in the downlink CoMP user data for transmission, thereby reducing the The data traffic of the interface can further alleviate or eliminate the congestion condition of the interface.
  • the first GW may instruct the first GW to bypass part of the data in the downlink CoMP user data for transmission, thereby reducing the The data traffic of the interface can further alleviate or eliminate the congestion condition of the interface.
  • the downlink user data in 401 is downlink non-CoMP user data. It can be understood that, in this embodiment, downlink CoMP user data is not included in the downlink user data.
  • the downlink non-CoMP user data may be a group M, and M is a positive integer.
  • the first bearer switching request message in the 403 may be used to instruct the first GW to switch one or more groups of the M group of downlink non-CoMP user data, which is not limited by the present invention.
  • the number of target users of each group of downlink non-CoMP user data may be multiple, and the service base stations of multiple target users are the same.
  • switching refers to switching the transmission through the centralized processing node to bypass the centralized processing node transmission.
  • the i-th downlink non-CoMP user data in the M-group downlink non-CoMP user data includes the first downlink non-CoMP user data and the second downlink non-CoMP user data.
  • i is any positive integer not greater than M.
  • the target user of the first downlink non-CoMP user data is the terminal T1
  • the serving base station of the T1 is the first base station A1
  • the target user of the second downlink non-CoMP user data is the terminal T2
  • the serving base station of the ⁇ 2 is also the first base station.
  • the first GW may simultaneously switch the first downlink non-CoMP user data and the second downlink non-CoMP user data.
  • the method for the first GW to switch the group or groups of the downlink non-CoMP user data according to the first bearer switching request message may be referred to in the foregoing embodiment, where the first GW according to the first bearer switching request message
  • the method of bypassing the non-CoMP user data to bypass the centralized processing node for transmission, in order to avoid repetition, will not be described here.
  • the downlink user data sent by the first GW is downlink non-CoMP user data
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested
  • the downlink non-CoMP user data is included. Part of the data is switched, thereby eliminating the interface Congestion situation.
  • the downlink user data sent by the first GW is the downlink CoMP user data
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, the part of the downlink CoMP user data is switched, thereby eliminating the interface. Congestion situation.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, part of the data in the downlink non-CoMP user data is to be used. Switching can alleviate or eliminate the congestion of the interface. If the interface is still congested, part of the data in the downlink CoMP user data can be further switched, thereby eliminating congestion on the interface.
  • switching refers to: switching data transmitted through a centralized processing node to bypass the centralized processing node for transmission.
  • the data transmission method may further include:
  • the central processing node sends a third bearer switching request message to the first GW, where the third bearer switching request message is used to indicate that the first GW is to use the downlink user data. And transmitted to the corresponding base station by the centralized processing node.
  • the central processing node can determine that the interface is idle by detecting the state of the interface.
  • the status of the interface can include the bandwidth usage of the interface.
  • the centralized processing node can determine that the interface is idle according to the bandwidth usage of the interface. For example, if the centralized processing node continuously detects multiple times in a period of time and determines that the bandwidth usage of the interface is less than the second threshold, the interface may be determined to be idle.
  • the second threshold may be pre-configured by the operator, which is not limited by the present invention.
  • the manner in which the centralized processing node determines that the interface is idle is not limited.
  • the central processing node may directly detect the state of the interface between the central processing node and the first GW, or may determine the state between the central processing node and the first GW by detecting the state of the interface between the central processing node and each base station.
  • the state of the interface is not limited by the present invention.
  • the downlink MME data is included in the downlink user data that is sent by the first GW, and the first GW bypasses the first downlink CoMP user data in the downlink CoMP user data.
  • the node transmits to at least two second base stations.
  • the GW After receiving the third bearer switching request message, the GW transmits the first downlink CoMP user data to the at least two second base stations according to the third bearer switching request message.
  • the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the first GW may send subsequent first downlink CoMP user data to the central processing node. Specifically, the first GW may change the downlink transmission route of the first downlink CoMP user data.
  • the first GW may change the address of the next hop of the transmission path of the first downlink CoMP user data to directly transmit the first downlink CoMP user data to the central processing node.
  • the method may further include: the centralized processing node receiving the subsequent first downlink CoMP user data from the first GW, and sending the subsequent first downlink CoMP user data to the at least two Two base stations, so that the at least two second base stations cooperatively transmit the subsequent first downlink CoMP user data.
  • the subsequent first downlink CoMP user data may be jointly pre-coded, and the subsequent first downlink CoMP after the joint and the encoding is performed.
  • User data is sent to the at least two second base stations.
  • the pre-coded control information may be generated, and then the subsequent first downlink CoMP user data and the pre-coded control information are sent to the at least Two second base stations.
  • the invention is not limited thereto.
  • the third bearer switching request message may include the identifier information of the central processing node. Then, after receiving the third bearer switching request message, the first GW may generate a first bearer to the first bearer of the central processing node, and send, on the first bearer, subsequent first downlink CoMP user data to the first bearer. Centralize the nodes.
  • the first GW may release the bearer of the first GW to the at least two second multiple base stations for transmitting the first downlink CoMP user data.
  • the first GW releases the used bearer in time, which can avoid resource waste and save resource occupation, thereby improving resource utilization.
  • the first GW may generate third indication information and send the third indication information to the at least two second base stations.
  • the third indication information is an end marker.
  • the third indication information is that the first GW will be the first downlink. The end marker of this process of CoMP user data transmission to at least two second base stations.
  • the at least two second base stations can perform cooperative transmission on the subsequent first downlink CoMP user data received from the central processing node after receiving the third indication information.
  • the first GW may carry the third indication information in a last data packet sent to the at least two second base stations.
  • the at least two second base stations may determine that the currently parsed data packet is the last data packet sent by the first GW. Then, after the at least two second base stations can start parsing the subsequent first downlink CoMP user data received from the central processing node.
  • the first GW may also generate a third bearer switching response message, and send the third bearer switching response message to the central processing node.
  • the first GW sends the third bearer switching response message to the central processing node, where the first GW may directly send the third bearer switching response message to the central processing node, or the first GW may switch the third bearer response.
  • the message is sent to the central processing node indirectly.
  • the inter-layer transmission may be that the first GW sends an update bearer response message to the first MME, and then the third MME sends a third bearer switch response message to the central processing node. Not limited.
  • the method can further include: the centralized processing node receiving the third bearer handover response message from the first GW.
  • the first GW sends the first downlink CoMP user data to the at least two second
  • the first GW sends the first downlink CoMP user data to the second GW on the forwarding bearers of the first GW to the second GW.
  • the forwarding bearer of the first GW to the second GW may be released.
  • the centralized processing node when the centralized processing node determines that the interface between the central processing node and the first GW is idle, the first downlink CoMP user data that is sent by the first GW to bypass the centralized processing node may be switched. Transfer to a centralized processing node. In this way, not only the utilization of the interface between the central processing node and the first GW but also the transmission efficiency of the first downlink CoMP user data can be improved.
  • the first downlink non-CoMP user data in the downlink user data bypasses the centralized processing.
  • the node transmits and the centralized processing node determines The interface between the central processing node and the first GW is still idle.
  • the central processing node may send a fourth bearer switching request message to the first GW, where the fourth bearer switching request message is used to indicate that the first GW is to be The first downlink non-CoMP user data is transmitted through the centralized processing node.
  • the CoMP user data is sent to the central processing node such that the centralized processing node transmits the first downlink non-CoMP user data to the first base station.
  • the first base station is a serving base station of the target user of the first downlink non-CoMP user data.
  • the method may further include: the centralized processing node receiving the first downlink non-CoMP user data from the first GW, and transmitting the first downlink non-CoMP user data to the first base station.
  • the first GW may generate a first bearer to the second bearer of the central processing node, and send the first downlink non-CoMP user data to the second bearer. Centralize the nodes.
  • the first GW may release the bearer of the first GW to the first base station for transmitting the first downlink non-CoMP user data.
  • the first GW may generate fourth indication information, and send the fourth indication information to the first base station.
  • the fourth indication information is an end marker.
  • the fourth indication information is an end marker of the process that the first GW sends the first downlink non-CoMP user data to the first base station by bypassing the centralized processing node.
  • the first GW may carry the fourth indication information in a last data packet of the first downlink non-CoMP user data sent to the first base station.
  • the first base station may determine that the currently parsed data packet is the last data packet sent by the first GW. After that, the first base station transmits the first downlink non-CoMP user data received from the central processing node to the target user of the first downlink non-CoMP user data.
  • the first GW may generate a fourth bearer switching response message, and send the fourth bearer switching response message to the central processing node.
  • the method may further include the central processing node receiving the fourth bearer switching response message sent by the first GW.
  • the first GW transmits the downlink CoMP user data to the central processing node
  • the centralized processing node determines that the interface between the central processing node and the first GW is still idle
  • the GW can switch the transmitted first downlink non-CoMP user data that is transmitted around the centralized processing node to the centralized processing node for transmission, so that the utilization ratio of the interface between the centralized processing node and the first GW can be further improved.
  • the downlink user data that is being sent by the first GW does not include the downlink CoMP user data, or all the downlink CoMP user data in the downlink user data that is sent by the first GW is concentrated. Processing node for transmission.
  • the first downlink non-CoMP user data in the downlink user data sent by the first GW is transmitted to the first base station by bypassing the centralized processing node. Then, in 404, the third bearer switching request message is used to instruct the first GW to transmit the first downlink non-CoMP user data to the first base station through the central processing node.
  • the method may be referred to in the foregoing embodiment, where the first GW transmits the first downlink non-CoMP user data to the first base station through the central processing node according to the fourth handover request message, so as to avoid repetition, details are not described herein again. .
  • the centralized processing node can be a base station.
  • the downlink user data in the embodiment of the present invention does not include user data that the GW transmits to the terminal that uses the centralized processing node as the serving base station.
  • the user data sent by the GW to the terminal that uses the centralized processing node as the serving base station needs to be transmitted through the centralized processing node.
  • the embodiment of the present invention does not switch the user data sent by the GW to the terminal that uses the centralized processing node as the serving base station.
  • FIG. 6 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • the method shown in Figure 6 includes:
  • the central processing node receives uplink user data, where the uplink user data includes uplink non-coordinated multi-point transmission CoMP user data sent by the first base station.
  • the central processing node sends the uplink user data to the first gateway GW.
  • the central processing node when it is determined that the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the first base station, where the first bearer switching request message is used to indicate The first base station transmits the uplink non-CoMP user data to the first GW by bypassing the centralized processing node.
  • the central processing node when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the first base station, thereby The uplink non-CoMP user data bypasses the centralized processing node and transmits to the first GW, which can reduce the data flow of the interface between the centralized processing node and the first GW. The amount, in turn, can alleviate or eliminate the congestion condition of the interface.
  • the 601 may include: the centralized processing node receiving the uplink non-CoMP user data from the first base station.
  • the uplink non-CoMP user data is transmitted from the terminal T3 to the first GW.
  • the first base station is a serving base station of the terminal T3.
  • the first base station can receive the uplink non-CoMP user data from the terminal T3 through an air interface (AMnterface, AI).
  • the central processing node may send the uplink non-CoMP user data to the first gateway GW through an interface between the central processing node and the first GW. Specifically, the central processing node may send the uplink non-CoMP user data to the first gateway GW on the bearer that processes the node to the first GW.
  • the uplink user data in 601 may further include another uplink non-CoMP user data.
  • the embodiment of the present invention can be understood as: when determining that the interface is congested, part or all of the non-CoMP user data in the uplink user data is bypassed and transmitted by the centralized processing node. In this way, the data traffic through the central processing node can be reduced.
  • the uplink user data may also include uplink CoMP user data.
  • the 601 may further include: the centralized processing node receiving the uplink CoMP user data from the at least two second base stations.
  • the central processing node sends the uplink CoMP user data to the first GW.
  • the central processing node may jointly decode the uplink CoMP user data and then send the data to the first GW.
  • the centralized processing node determines the congestion of the interface, and the method of determining the congestion of the interface by the 403 centralized processing node in FIG. 4 is not mentioned here.
  • the first base station may send the uplink non-CoMP user data to the first GW by bypassing the centralized processing node.
  • the first base station may change a transmission path of the uplink non-CoMP user data.
  • the next hop address may be modified from the address of the central processing node to the address of the first GW.
  • the first bearer switching request message may include first bearer context information. Then, after receiving the first bearer switching request message, the first base station may establish a user plane according to the first bearer context information, and specifically, generate a third bearer from the first base station to the first GW according to the first bearer switching request message. And transmitting, on the third bearer, subsequent uplink non-CoMP user data To the first GW.
  • the first base station may release the uplink transmission resource of the first base station to the central processing node for transmitting the uplink non-CoMP user data.
  • the first base station releases the uplink transmission resources that are no longer used in time, thereby avoiding waste of resources and saving resource occupation, thereby improving resource utilization.
  • the first base station may generate first indication information and send the first indication information to the central processing node.
  • the first indication information is an end marker.
  • the first indication information is an end marker of a process in which the first base station sends uplink non-CoMP user data to the central processing node.
  • the first base station may generate a first bearer switching response message, and send the first bearer switching response message to the central processing node.
  • the method may further include: the central processing node receiving the first bearer handover response message sent by the first base station.
  • the method may further include: the centralized processing node may release the bearer used by the central processing node used for transmitting the uplink non-CoMP user data to the first GW.
  • the method may further include: the centralized processing node transmitting the uplink non-CoMP user data that has been received from the first base station and stored in the buffer of the centralized processing node to the first GW.
  • the central processing node may also send the first indication information received from the first base station to the first GW.
  • the central processing node may carry the first indication information in a last data packet sent to the first GW. In this way, after receiving the first indication information, the first GW sends the uplink non-CoMP user data received from the first base station to the core network.
  • the uplink non-CoMP user data in the uplink user data is transmitted to the first centralized processing node.
  • the GW can reduce the data traffic of the interface between the central processing node and the first GW, thereby further alleviating or eliminating the congestion condition of the interface.
  • the uplink non-CoMP user data may be an M group.
  • the central processing node receives the first uplink non-CoMP user data from the first base station A1 and the second uplink non-CoMP user data from the first base station A2.
  • the first base station A1 receives the first bearer switching request message, and transmits the first uplink non-CoMP user data to the first GW by bypassing the centralized processing node, and the first base station A2 also receives the first bearer switching.
  • the method may further include: when determining that the interface is idle, the central processing node sends a second bearer switching request message to the first base station, where the second bearer switching request message is used to indicate the first base station And transmitting the uplink non-CoMP user data to the first GW through the centralized processing node.
  • the first base station may send the uplink non-CoMP user data to the central processing node.
  • the first base station may generate a second bearer switching response message, and send the second bearer response message to the central processing node.
  • the second bearer switch response message may include second bearer context information.
  • the method may further include: receiving, by the central processing node, the second bearer switching response message sent by the first base station.
  • the central processing node may generate, according to the second bearer context information, the centralized processing node to the fourth bearer of the first GW. In this way, the central processing node can send the uplink non-CoMP user data received from the first base station to the first GW on the fourth bearer.
  • the first base station may release the bearer of the first base station to the first GW for transmitting the uplink non-CoMP user data.
  • the first base station may generate second indication information and send the second indication information to the first GW.
  • the second indication information is an end marker.
  • the second indication information is an end marker of the process in which the first base station transmits the uplink non-CoMP user data to the first GW.
  • the first base station can carry the second indication information in the last data packet sent to the first GW.
  • the first GW may determine that the last data packet received from the first base station is being parsed, after which the first GW may continue to parse the uplink non-received received from the central processing node.
  • CoMP user data the first GW sends the uplink non-CoMP user data received from the central processing node to the core network after transmitting all the uplink non-CoMP user data received from the first base station to the core network.
  • the centralized processing node may be a base station.
  • the uplink non-CoMP user data in the embodiment of the present invention does not include non-CoMP user data that is sent to the first GW by the terminal that uses the centralized processing node as the serving base station.
  • the non-CoMP user data sent by the central processing node as the serving base station needs to pass between the centralized processing node and the first GW.
  • the interface is transmitted to the first GW.
  • the embodiment of the present invention does not switch the non-CoMP user data sent by the terminal that uses the centralized processing node as the serving base station.
  • FIG. 7 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • the method shown in Figure 7 includes:
  • the first device sends user data to the central processing node, so that the centralized processing node sends the user data to the second device.
  • the first device receives a first bearer switching request message sent by the central processing node, where the first bearer switching request message is used to instruct the first device to bypass the centralized processing node for data transmission.
  • the first device sends the user data to the second device according to the first bearer switching request message.
  • the first device switches the partial data in the user data from the centralized processing node to the bypass centralized processing node according to the first bearer switching request message sent by the central processing node, so that the centralized processing can be reduced.
  • the data traffic of the interface between the node and the first GW can further alleviate or eliminate the congestion condition of the interface.
  • the method may further include: the first device generating a first bearer response message, and sending the first bearer response message to the central processing node.
  • the first device may be a first GW
  • the second device is a base station corresponding to the user data.
  • User data in 701 may include downlink non-CoMP user data and downlink CoMP user data. If the user data includes downlink non-CoMP user data and downlink CoMP user data, the first bearer switching request message is specifically used to instruct the first device to bypass the downlink non-CoMP user data by the centralized processing node.
  • the first base station is a serving base station of a target user of the downlink non-CoMP user data.
  • the first device transmits the downlink non-CoMP user data to the first base station by using the centralized processing node, and sends the downlink CoMP user data to the centralized processing node, so that The centralized processing node sends the downlink CoMP user data to at least two base stations, and the at least two base stations are configured to perform cooperative transmission on the downlink CoMP user data.
  • the second device includes the first base station and the at least two base stations.
  • the first bearer switching request message may carry the identifier information of the first base station.
  • the GW may generate a bearer of the first GW to the first base station, and transmit downlink non-CoMP user data to the first base station on the bearer of the first GW to the first base station.
  • the first GW may release the bearer of the first GW to the central processing node for transmitting downlink non-CoMP user data.
  • the first GW may further generate first indication information and send the first indication information to the centralized processing node.
  • the first indication information is used to instruct the first GW to stop sending downlink non-CoMP user data to the centralized processing node.
  • the first indication information is an end marker.
  • the first indication information is an end marker of the process in which the first GW sends the downlink non-CoMP user data to the central processing node.
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the method may further include: receiving, by the first device, the second bearer switching request message sent by the centralized processing node, where The second bearer switching request message is used to instruct the first device to transmit the first downlink CoMP user data to the at least two second base stations by bypassing the centralized processing node. Transmitting, by the first device, the first downlink CoMP user data to the at least two second base stations by using the second bearer switching request message, and using the second downlink CoMP user data Sending to the centralized processing node, so that the centralized processing node sends the second downlink CoMP user data to at least two third base stations.
  • the at least two base stations include the at least two second base stations and the at least two third base stations, and the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first GW may transmit the first downlink CoMP user data to the at least two second base stations according to the second bearer switching request message.
  • the second bearer switching request message may carry identifier information of at least two second base stations.
  • the first GW may generate the bearer of the first GW to the at least two second base stations according to the identifier information of the at least two second base stations carried in the second bearer switching request message. And transmitting, by the first GW to the bearers of the at least two second base stations, the first downlink non-CoMP user data to the at least two second base stations. It can be understood that, in this embodiment, the at least two second base stations are all under the first GW.
  • the first GW may also release the bearer of the first GW to the central processing node for transmitting the first downlink non-CoMP user data.
  • the first GW may further generate second indication information and send the second indication information to the centralized processing node.
  • the second indication information is used to instruct the first GW to stop sending the first downlink CoMP user data to the centralized processing node.
  • the second indication information is an end marker.
  • the second indication information is an end marker of the process in which the first GW sends the first downlink CoMP user data to the central processing node.
  • the second bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP user data is transmitted from the central processing node to the other base stations of the at least two second base stations except the k second base stations, and is further used to instruct the first GW to generate the first GW. Forwarding the bearer to the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer.
  • k is a positive integer.
  • k is smaller than the number of base stations in at least two second base stations.
  • the first GW may transmit subsequent first downlink CoMP user data to the central processing node to the other base stations except the k second base stations, and Transmitting, by the first GW to the forwarding bearer of the second GW, the subsequent first downlink CoMP user data to the second GW, and then the second GW from the second GW to the k second of the at least two second base stations
  • the bearer of the base station is sent by the second GW to the k second base stations of the at least two second base stations.
  • the at least two second base stations further cooperatively send the subsequent first downlink CoMP user data to the target user of the first downlink CoMP user data.
  • the second bearer switching request message is used to indicate that the first GW generates the forwarding bearer of the first GW to the second GW, and the first GW is in the forwarding On the bearer, the first downlink CoMP user data is sent to the second GW.
  • the first GW may send the subsequent first downlink CoMP user data to the second GW on the forwarding bearer of the first GW to the second GW.
  • the second GW may send to the at least two second base stations on the bearers of the second GW to the at least two second base stations. From the above to The two second base stations cooperatively transmit the subsequent first downlink CoMP user data to the target user of the first downlink CoMP user data. If the user data is the downlink CoMP user data, the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data, where the first bearer switching request message is specifically used to indicate the first GW.
  • the 703 may include: the first device transmitting the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, and sending the second downlink CoMP user data to the centralized processing a node, such that the central processing node sends the second downlink CoMP user data to at least two third base stations.
  • the second device includes the at least two second base stations and the at least two third base stations, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP user data is transmitted from the central processing node to the other base stations of the at least two second base stations except the k second base stations, and is further used to instruct the first GW to generate the first GW. Forwarding the bearer to the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer.
  • the transmitting, by the centralized processing node, the first downlink CoMP user data to the at least two second base stations includes: bypassing the first downlink CoMP user data by the centralized processing Transmitting, by the node, to the other base stations other than the k second base stations, sending the first downlink CoMP user data to the second GW on the forwarding bearer, So that the second GW transmits the first downlink CoMP user data to the k second base stations by bypassing the centralized processing node.
  • k is a positive integer.
  • the first GW bypasses the first downlink CoMP user data according to the first bearer switching request message, and the first GW performs the second bearer switching request according to the second bearer switching request.
  • the message bypasses the process of transmitting the first downlink CoMP user data by the centralized processing node. To avoid repetition, details are not described herein.
  • the user data is downlink non-CoMP user data. It can be understood that, in this embodiment, downlink CoMP user data is not included in the user data.
  • the downlink non-CoMP user data may be M group, and M is a positive integer.
  • the first bearer switching request message may be used to instruct the first GW to switch one or more groups of the M group of downlink non-CoMP user data, which is not limited by the disclosure.
  • the number of target users of each group of downlink non-CoMP user data may be multiple, and the service base stations of multiple target users are the same.
  • switching refers to switching the transmission through the centralized processing node to bypass the centralized processing node transmission.
  • the method for the first GW to switch the group or groups of the downlink non-CoMP user data according to the first bearer switching request message may be referred to in the foregoing embodiment, where the first GW according to the first bearer switching request message
  • the method of bypassing the non-CoMP user data to bypass the centralized processing node for transmission, in order to avoid repetition, will not be described here.
  • the first device in FIG. 7 when the first device is the first GW, reference may be made to the related description of the method implemented by the first GW in FIG. 4, and details are not described herein again to avoid repetition.
  • the step of 703 may include: the first device transmitting the uplink non-CoMP user data to the second device by bypassing the centralized processing node.
  • the first bearer switching request message may include first bearer context information. Then, after receiving the first bearer switching request message, the first base station may establish a user plane according to the first bearer context information, and specifically, generate a third bearer from the first base station to the first GW according to the first bearer switching request message. And transmitting, on the third bearer, subsequent uplink non-CoMP user data to the first GW.
  • the first base station may release the uplink transmission resource of the first base station to the central processing node for transmitting the uplink non-CoMP user data.
  • the first base station may generate first indication information and send the first indication information to the central processing node.
  • the first indication information is an end marker.
  • the first indication information is that the first base station will be an uplink non-CoMP user.
  • the data is sent to the end marker of the process of central processing nodes.
  • the step 703 further includes: the first device, together with the at least one base station, cooperatively sending the uplink CoMP user data to the centralized processing node, so that The centralized processing node sends the uplink CoMP user data to the second device.
  • the first device and the at least one base station are configured to perform cooperative transmission on the uplink CoMP user data.
  • the method may further include: receiving, by the first device, a third bearer switching request message sent by the central processing node, where the second bearer switching request message is used to indicate the The first device performs data transmission through the centralized processing node; the first device sends the user data to the second device according to the second bearer switching request message.
  • the first device when the first device is the first GW, refer to the foregoing description of the method implemented by the first GW in FIG. 5.
  • the first device when the first device is the first base station, reference may be made to the foregoing description of the method implemented by the first base station according to the second bearer switching request message in FIG. To avoid repetition, we will not repeat them here.
  • FIG. 8 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • the method shown in Figure 8 includes:
  • the second GW receives the generated bearer request message sent by the central processing node, where the generated bearer request message includes the identifier information of the at least one base station, where the generate bearer request message is used to instruct the second GW to generate the second GW. And a bearer to the at least one base station, where the bearer is used to send, by the second GW, downlink CoMP user data received from the first GW to the at least one base station.
  • the second GW generates a bearer of the second GW to the at least one base station according to the generating a bearer request message.
  • the second GW receives the downlink CoMP user data sent by the first GW.
  • the second GW sends the downlink CoMP user data to the at least one base station on the bearer.
  • the second GW generates a bearer of the second GW to the at least one base station according to the generated bearer request message sent by the central processing node, and can send the downlink sent by the first GW.
  • CoMP user data is transmitted to the at least one base station via the second GW.
  • At least one base station is under the second GW.
  • the method implemented by the second GW can refer to the related description of the second GW in the foregoing embodiment of FIG. 4. To avoid repetition, we will not repeat them here.
  • FIG. 9 is a flow chart of a method of data transmission in accordance with another embodiment of the present invention.
  • the method shown in Figure 9 includes:
  • the base station receives downlink CoMP user data sent by the GW.
  • the base station sends a downlink scheduling request message to the central processing node, where the downlink scheduling request message is used to request the centralized processing node to perform downlink scheduling.
  • the base station receives the scheduling result sent by the central processing node, where the scheduling result includes at least one of the following: radio link control RLC segmentation information, coded modulation information, and transmit power.
  • the base station cooperates with the at least one base station to send the downlink CoMP user data.
  • the base station receives downlink CoMP user data from the GW, and cooperates with the at least one base station to jointly transmit the downlink CoMP user data to the target user according to the scheduling result of the centralized processing node. It can guarantee the transmission of downlink CoMP user data.
  • the GW sends the downlink CoMP user data to the base station and the at least one base station by bypassing the centralized processing node.
  • the at least one base station may receive the downlink CoMP user data from the GW. Alternatively, the at least one base station may also receive the downlink CoMP user data from another GW. Or the k base stations in the at least one base station receive the downlink CoMP user data from another GW, and the base stations other than the k base stations in the at least one base station receive the downlink from the GW CoMP user data.
  • the invention is not limited thereto.
  • the base station is a serving base station of a target user of the downlink CoMP user data.
  • the downlink scheduling request message in the 902 may include at least one of the following: the identifier information of the base station, the identifier information of the target user of the downlink CoMP user data, and the total amount of data waiting to be sent in the buffer.
  • the downlink scheduling request message may further include a priority of the data, and an amount of data waiting for transmission of each priority.
  • the scheduling result may further include PRB number and location information, number of transmitting layers, and number of antennas, and the like.
  • the base station together with at least one base station, according to the scheduling result, Up to the downlink CoMP user data is sent to the target user of the downlink CoMP user data. And, the base station receives feedback information of the target user. Specifically, the feedback information is an ACK message or a NACK message.
  • the base station sends the feedback information to the central processing node.
  • the base station sends an ACK message to the central processing node; the base station receives a first message sent by the central processing node, where the first message is used to instruct the base station to delete the downlink CoMP a data copy of the user data; the base station deleting the data copy of the downlink CoMP user data.
  • the base station If the base station performs ACK decoding, the base station receives the ACK message sent by the target user, and performs ACK decoding, so that the downlink CoMP user data transmission is successful, and the base station sends the ACK message to the centralized processing. a node, and the base station deletes the stored data copy of the downlink CoMP user data. Then, after receiving the ACK message, the central processing node generates a first message, and sends the first message to at least one base station, where the first message is used to instruct the at least one base station to delete a data copy of the downlink CoMP user data. Then, after receiving the first message, the base station deletes the data copy of the downlink CoMP user data.
  • the base station may forward the ACK message to the central processing node after receiving the ACK message sent by the target user, and may also understand that the ACK message is transparently transmitted to the central processing node.
  • the central processing node After receiving the ACK message, the central processing node performs ACK decoding to determine that the downlink CoMP user data transmission is successful. Then, the central processing node generates a first message, and sends the first message to the base station and the at least one base station, where the first message is used to indicate that the base station and the at least one base station delete downlink CoMP user data. A copy of the data. Then, after receiving the first message, the base station deletes a data copy of the downlink CoMP user data.
  • the base station sends a NACK message to the central processing node; the base station receives a retransmission scheduling acknowledgement message or a first message sent by the central processing node, where the retransmission scheduling acknowledgement message is used. Instructing the base station to perform the coordinated transmission of the downlink CoMP user data and the at least one base station, where the first message is used to instruct the base station to delete a data copy of the downlink CoMP user data; And transmitting, by the base station, the data copy of the downlink CoMP user data according to the first message, by using the retransmission scheduling acknowledgement message to retransmit the downlink CoMP user data and the at least one base station.
  • the base station performs NACK decoding, or may be The centralized processing node performs NACK decoding, which is not limited by the present invention.
  • the base station receives downlink CoMP user data from the GW, and cooperates with the at least one base station to jointly transmit the downlink CoMP user data to the target user according to the scheduling result of the centralized processing node. It can guarantee the transmission of downlink CoMP user data.
  • FIG. 10 is a schematic diagram showing the flow of a method of data transmission according to an embodiment of the present invention.
  • the first GW 31, the first base station 21, the second base station 22, the third base station 23, and the central processing node 24 are shown in FIG.
  • two terminals (not shown in FIG. 10) are provided, which are a first terminal and a second terminal, respectively, wherein the serving base station of the first terminal is the first base station 21, and the serving base station of the second terminal is the second base station. twenty two.
  • the first GW 31 sends the downlink user data to the central processing node 24 through the interface between the central processing node 24 and the first GW 31, where the downlink user data includes the first downlink CoMP user data to the first terminal, to The second downlink CoMP user data of the second terminal and the downlink non-CoMP user data to the second terminal.
  • the interface between the central processing node 24 and the first GW 31 is an S1 interface of the central processing node 24.
  • the first downlink CoMP user data needs to be cooperatively transmitted by the first base station 21 and the second base station 22, and the second downlink CoMP user data needs to be cooperatively transmitted by the first base station 21, the second base station 22, and the third base station 23.
  • the central processing node 24 sends downlink user data to the corresponding base station. Specifically, the central processing node 24 sends the first downlink CoMP user data and the second downlink CoMP user data to the first base station 21, and uses the first downlink CoMP user data, the second downlink CoMP user data, and the downlink non-CoMP user data.
  • the second base station 22 transmits the second downlink CoMP user data to the third base station 23.
  • the central processing node 24 may perform joint precoding on the first downlink CoMP user data, and then send the first downlink CoMP user data after the joint precoding to the first base station 21 and the second base station 22. Similarly, the central processing node 24 may perform joint precoding on the second downlink CoMP user data, and then send the second downlink CoMP user data after the joint precoding to the first base station 21, the second base station 22, and the third base station 23. .
  • the central processing node 24 may generate first pre-coded control information, and transmit the first pre-coded control information and the first downlink CoMP user data to the first base station 21 and the second base station 22.
  • the centralized processing node 24 can generate second precoded control information and the second precoding The control information and the second downlink CoMP user data are transmitted to the first base station 21, the second base station 22, and the third base station 23.
  • the invention is not limited thereto.
  • the embodiment of the present invention does not limit the time sent by the central processing node 24.
  • the central processing node 24 may send CoMP user data first and then send non-CoMP user data, or may send non-CoMP user data to send CoMP user data first, or simultaneously transmit or transmit CoMP user data and non-CoMP user data.
  • the central processing node 24 may first send corresponding user data to the first base station 21, or may first send corresponding user data to the second base station 22, or may first send corresponding user data to the third base station 23, or Can be sent at the same time.
  • the invention is not limited thereto.
  • the first base station 21 and the second base station 22 cooperatively transmit the first downlink CoMP user data to the first terminal, and the first base station 21, the second base station 22, and the third base station 23 cooperatively send the second downlink CoMP user data to The second terminal.
  • the second base station 22 transmits the downlink non-CoMP user data to the second terminal.
  • the downlink user data sent by the first GW 31 in the embodiment of the present invention is only an illustrative example.
  • the downlink user data may include only downlink CoMP user data, or, in practice, the downlink user data may be sent to other terminals not shown in FIG. The invention is not limited thereto.
  • the downlink user data does not include user data transmitted to the terminal that processes the node 24 as the serving base station.
  • the serving base station of the fourth terminal is the centralized processing node 24.
  • the fourth downlink non-CoMP user data is sent by the first GW 31 to the central processing node 24, and then the fourth downlink non-CoMP user data is sent by the central processing node 24 to the fourth terminal.
  • the cooperative base station of the fourth downlink CoMP user data that is not transmitted by the first GW 31 to the fourth terminal is the first base station 21, the second base station 22, and the central processing node 24. Then, the fourth downlink CoMP user data is sent by the first GW 31 to the central processing node 24, and then the fourth downlink CoMP user data is transmitted by the central processing node 24 to the first base station 21 and the second base station 22. Finally, the fourth downlink CoMP user data is cooperatively transmitted by the first base station 21, the second base station 22, and the central processing node 24 to the fourth terminal.
  • the embodiment of the present invention does not consider the downlink user that the first GW 31 sends to the fourth terminal. Data.
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is congested, and generates a first bearer switching request message.
  • the central processing node 24 sends a first bearer switching request message to the first GW 31.
  • the first bearer switching request message indicates that the central processing node 24 determines the interface congestion, and the first bearer switching request message is used to instruct the first GW 31 to switch the downlink path of the downlink non-CoMP user data from the centralized processing node 24 to the first Two base stations 22. That is, the first bearer switching request message instructs the first GW 31 to switch the downlink path of the downlink non-CoMP user data, so that the downlink transmission of the downlink non-CoMP user data bypasses the centralized processing node 24.
  • the first bearer switching request message may include the identifier information of the second base station 22.
  • the first GW 31 generates a first bearer of the first GW 31 to the second base station 22 according to the first bearer switching request message.
  • the first GW 31 can also release the bearer of the first GW 31 to the central processing node 24, which is used for transmitting the downlink non-CoMP user data.
  • the first GW 31 may generate first indication information, and send the first indication information to the central processing node 24 (not shown in FIG. 10).
  • the first indication information is used to indicate that the first GW 31 stops transmitting downlink non-CoMP user data to the central processing node 24. It can be understood that the first indication information is an end marker.
  • the first GW 31 generates a first bearer switching response message.
  • the first GW 31 sends a first bearer handover response message to the central processing node 24.
  • the first GW 31 sends downlink non-CoMP user data to the second base station 22 on the first bearer.
  • the first GW 31 transmits the downlink non-CoMP user data to the second base station 22 through the S1 interface of the second base station 22.
  • 1109 is performed after 1106. Specifically, the order of 1109 and 1107 and 1108 is not limited. That is, 1109 may be performed before or after 1107, and 1109 may be performed before or after 1108, which is not limited by the present invention.
  • downlink non-CoMP user data received from the first GW 31 before 1105 is also stored in the buffer of the central processing node 24. So,
  • the central processing node 24 transmits the downlink non-CoMP user data in the buffer of the central processing node 24 to the second base station 22. Further, the centralized processing node 24 may transmit the first indication information received from the first GW 31 to the second base station 22 (not shown in FIG. 10).
  • the second base station 22 sends the downlink non-CoMP user data received from the first GW 31 to the second terminal.
  • the second base station 22 After receiving the first indication information, the second base station 22 starts to start from 1109.
  • the downlink non-CoMP user data received by the GW 31 is sent to the second terminal.
  • the downlink non-CoMP user data received from the central processing node 24 is started to be sent to the second terminal.
  • the downlink is not
  • the CoMP user data is transmitted to the second base station 22 through the S1 interface of the second base station 22, as shown at 1109 in FIG.
  • the downlink non-CoMP user data is then transmitted by the second base station 22 to the second terminal, as shown by 1111 in FIG.
  • the first downlink CoMP user data and the second downlink CoMP user data are still sent to the centralized through the S1 interface of the central processing node 24 according to the method described in steps 1101 to 1103. Processing node 24. It is then sent by the central processing node 24 to the base station for cooperative transmission. Specifically, the central processing node 24 transmits the first downlink CoMP user data to the first base station 21 and the second base station 22, and transmits the second downlink CoMP user data to the first base station 21, the second base station 22, and the third base station 23. .
  • the first downlink CoMP user data is cooperatively transmitted by the first base station 21 and the second base station 22 to the first terminal, and the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data to The second terminal.
  • the downlink non-CoMP user data is transmitted to the corresponding base station by bypassing the centralized processing node, thereby reducing the centralized processing node and the first GW.
  • the data traffic between the interfaces which in turn can alleviate or eliminate congestion on the interface.
  • the downlink CoMP user data is still transmitted through the centralized processing node, and the transmission efficiency of the downlink CoMP user data can be guaranteed.
  • the method further includes: The central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is in a normal state. For example, the centralized processing node may determine that the bandwidth usage of the interface is greater than the second threshold and less than the first threshold. Then continue to perform downlink transmission according to the foregoing reception.
  • the method may further include:
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is still congested.
  • the central processing node 24 sends a second bearer switching request message to the first GW 31.
  • the second bearer switching request message indicates that the central processing node 24 determines that the interface is still congested, and the second bearer switching request message is used to instruct the first GW 31 to switch the downlink path of the second downlink CoMP user data from the centralized processing node 24.
  • the corresponding base stations of the second downlink CoMP user data are the first base station 21, the second base station 22, and the third base station 23. That is, the second bearer switching request message instructs the first GW 31 to switch the downlink path of the second downlink CoMP user data, so that the downlink transmission of the second downlink CoMP user data bypasses the central processing node 24.
  • the second bearer switching request message may include the identifier information of the first base station 21, the identifier information of the second base station 22, and the identifier information of the third base station 23.
  • the second bearer switching request message may also be used to indicate the first
  • the GW 31 switches the downlink path of the first downlink CoMP user data, which is not limited by the present invention.
  • the first GW 31 generates a second bearer of the first GW 31 to the first base station 21 according to the second bearer switching request message, generates a third bearer of the first GW 31 to the second base station 22, and generates a first GW 31.
  • the first base station 21, the second base station 22 and the third base station 23 are under the first GW 31.
  • the first GW 31 may also release the bearer of the first GW 31 to the central processing node 24, which is used for transmitting the second downlink CoMP user data.
  • the first GW 31 may generate second indication information, and send the second indication information to the central processing node 24 (not shown in FIG. 11).
  • the second indication information is used to indicate that the first GW 31 stops sending the second downlink CoMP user data to the central processing node 24.
  • the second indication information is an end marker.
  • the first GW 31 generates a second bearer switching response message.
  • the first GW 31 sends a second bearer handover response message to the central processing node 24. 1119.
  • the first GW 31 sends the second downlink CoMP user data to the first base station 21, the second base station 22, and the third base station 23.
  • the first GW 31 sends the second downlink CoMP user data to the first base station 21 through the S1 interface of the first base station 21 on the second bearer.
  • the second downlink CoMP user data is transmitted to the second base station 22 through the S1 interface of the second base station 22.
  • the second downlink CoMP user data is transmitted to the third base station 23 through the S1 interface of the third base station 23.
  • 1119 is performed after 1116. Specifically, the order of 1119 and 1117 and 1118 is not limited. That is, 1119 may be performed before or after 1117, and 1119 may be performed before or after 1118, which is not limited by the present invention.
  • the central processing node 24 transmits the second downlink CoMP user data in the buffer of the central processing node 24 to the first base station 21, the second base station 22, and the third base station 23.
  • the central processing node 24 may transmit the second indication information received from the first GW 31 to the first base station 21, the second base station 22, and the third base station 23 (not shown in Fig. 11).
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data received from the first GW 31 to the second terminal.
  • the first base station 21, the second base station 22, and the third base station 23 start to cooperatively send the second downlink CoMP user data received from the first GW 31 in 1119 to the first Two terminals.
  • the serving base station of the second terminal that is, the second base station 22, first sends a downlink scheduling request message to the central processing node 24, and is processed by the centralized processing.
  • the node 24 performs centralized scheduling
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data to the second terminal according to the scheduling result.
  • the downlink data transmitted by the S1 interface of the central processing node includes only downlink CoMP user data, specifically, the first Downlink CoMP user data and second downlink CoMP user data.
  • the second downlink CoMP user data passes through the S1 interface of the first base station 21, the S1 interface of the second base station 22, and The SI interface of the third base station 23 is transmitted to the first base station 21, the second base station 22, and the third base station 23.
  • the first base station 21, the second base station 22, and the third base station 23 are cooperatively transmitted to the second terminal.
  • the first downlink CoMP user data in the downlink user data sent by the first GW 31 is still sent to the central processing node 24 through the S1 interface of the central processing node 24 according to the method described in steps 1101 to 1103. It is then transmitted by the central processing node 24 to the first base station 21 and the second base station 22. Finally, the first base station 21 and the second base station 22 cooperate to transmit to the first terminal.
  • the second downlink CoMP in the downlink user data may be used.
  • the user data is bypassed by the central processing node for transmission, so that the data traffic passing through the interface between the central processing node and the first GW can be further reduced, thereby further alleviating or eliminating the congestion condition of the interface.
  • the transmission efficiency of the first downlink CoMP user data can be guaranteed.
  • the centralized processing node 24 determines that the interface is in a normal state, after the processes shown in FIG. 10 and FIG. 11, the congestion status of the interface is eliminated.
  • the centralized processing node 24 determines that the interface is still congested, after the processes shown in FIG. 10 and FIG. 11, the congestion condition of the interface is only mitigated. However, since the data transmitted through the interface at this time is only the first downlink CoMP user data transmitted to the first terminal, the congestion state of the present process at this time is not further processed.
  • the third base station 23 is under the second GW. After the embodiment shown in FIG. 10, as shown in FIG. 12, it may further include:
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is still congested.
  • the central processing node 24 sends a second bearer switching request message to the first GW 31.
  • the second bearer switching request message indicates that the central processing node 24 determines that the interface is still congested, and the second bearer switching request message is used to instruct the first GW 31 to switch the downlink path of the second downlink CoMP user data from the centralized processing node 24.
  • the second bearer switching request message is specifically used by the first GW 31 to send the second downlink CoMP user data to the first base station 21 and the second base station 22 by bypassing the central processing node 24, and generate the first GW 31 to the second.
  • Forwarding bearer of GW 32, the first GW 31 to The forwarding bearer of the second GW 32 is used by the first GW 31 to send the second downlink CoMP user data to the second GW 32.
  • the first GW 31 generates a forwarding bearer of the first GW 31 to the second GW 32 according to the second bearer switching request message.
  • the second bearer switching request message may carry the identifier information of the first base station 21 and the identifier information of the second base station 22.
  • the first GW 31 may generate a second bearer of the first GW 31 to the first base station 21 according to the second bearer switching request message, and generate a third bearer of the first GW 31 to the second base station 22.
  • the first GW 31 may also release the bearer of the first GW 31 to the central processing node 24, which is used for transmitting the second downlink CoMP user data.
  • the first GW 31 may generate second indication information, and send the second indication information to the central processing node 24 (not shown in FIG. 12).
  • the second indication information is used to indicate that the first GW 31 stops sending the second downlink CoMP user data to the central processing node 24.
  • the second indication information is an end marker.
  • the first GW 31 may also generate a second bearer handover response message and send the second bearer handover response message to the central processing node 24.
  • the central processing node 24 sends a generate bearer request message to the second GW 32.
  • the centralized processing node 24 may have the functionality of an MME, and the centralized processing node 24 may send a Generate Bearer Request message directly to the second GW 32. Alternatively, the central processing node 24 may also send the generate bearer request message to the second GW 32 indirectly through the MME. The invention is not limited thereto.
  • the generating bearer request message may include the identifier information of the third base station 23.
  • the generating bearer request message is used to instruct the second GW 32 to generate a fourth bearer to the fourth bearer of the third base station 23.
  • the second GW 32 generates a fourth bearer of the second GW 32 to the third base station 23 according to the generated bearer request message.
  • the second GW 32 can receive the second downlink CoMP user data from the first GW 31 and transmit it to the third base station 23 on the fourth bearer.
  • the second GW 32 may generate a generate bearer response message, and send the generated bearer response message to the central processing node 24. 1219.
  • the second downlink CoMP user data received from the first GW 31 before 1215 is also stored in the cache of the central processing node 24.
  • the centralized processing node 24 transmits the second downlink CoMP user data in the buffer of the central processing node 24 to the first base station 21, the second base station 22, and the third base station 23.
  • the centralized processing node 24 may transmit the second indication information received from the first GW 31 to the first base station 21, the second base station 22, and the third base station 23 (not shown in FIG. 13).
  • the first GW 31 sends the second downlink CoMP user data to the first base station 21 on the second bearer, and sends the second downlink CoMP user data to the second base station on the third bearer.
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data to the second terminal.
  • the first base station 21, the second base station 22, and the third base station 23 jointly transmit the second downlink CoMP user data received from the first GW 31 and the second GW 32 to the first Two terminals.
  • the serving base station of the second terminal that is, the second base station 22, first sends a downlink scheduling request message to the central processing node 24, and is processed by the centralized processing.
  • the node 24 performs centralized scheduling
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data to the second terminal according to the scheduling result.
  • the centralized processing node 24 determines that the interface is in a normal state, after the processes shown in FIG. 10 and FIG. 12, the congestion status of the interface is eliminated.
  • the centralized processing node 24 determines that the interface is still congested, after the processes shown in FIG. 10 and FIG. 12, only the congestion condition of the interface is mitigated. However, since the data transmitted through the interface at this time is only the first downlink CoMP user data transmitted to the first terminal, the congestion state of the present process at this time is not further processed.
  • the first GW 31 will downlink non-CoMP
  • the user data is transmitted to the second base station 22 by bypassing the centralized processing node 24; the second downlink CoMP user data is transmitted to the first base station 21 and the second base station 22 bypassing the centralized processing node 24, and sent to the second GW 32, so that The second GW 32 will transmit the second downlink CoMP user data to the third base station 23 bypassing the centralized processing node 24; and send the first downlink CoMP user data to the centralized processing node 24.
  • the congestion condition of the interface between the central processing node 24 and the first GW 31 is alleviated or eliminated, and the transmission efficiency of the first downlink CoMP user data is ensured.
  • the method further includes:
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is idle.
  • the central processing node 24 sends a third bearer switching request message to the first GW 31.
  • the third bearer switching request message is used to instruct the first GW 31 to switch the downlink transmission path of the second downlink CoMP user data, so that the second downlink CoMP user data is transmitted through the central processing node 24.
  • the first GW 31 generates a fifth bearer of the first GW 31 to the centralized processing node 24 according to the third bearer switching request message.
  • the first GW 31 may also release the bearers of the first GW 31 to the first base station 21, the second base station 22, and the third base station 23, which are used for transmitting the second downlink CoMP user data.
  • the first GW 31 may also release the bearers used by the first GW 31 to the first base station 21 and the second base station 22 for transmitting the second downlink CoMP user data. And forwarding the forwarding bearers of the first GW 31 to the second GW 32.
  • the first GW 31 may generate third indication information and transmit the third indication information to the first base station 21, the second base station 22, and the third base station 23 (not shown in Fig. 13).
  • the third indication information is used to indicate that the first GW 31 stops transmitting the second downlink CoMP user data to the first base station 21, the second base station 22, and the third base station 23.
  • the third indication information is an end marker.
  • the first GW 31 may generate a third bearer handover response message, and send the third bearer handover response message to the central processing node 24.
  • the first GW 31 sends the second downlink CoMP user data to the central processing node 24 on the fifth bearer.
  • the central processing node 24 receives the second downlink from the first GW 31.
  • the CoMP user data is transmitted to the first base station 21, the second base station 22, and the third base station 23.
  • the buffers of the second base station 22 and the third base station 23 also store the second downlink CoMP user received from the first GW 31, or from the first GW 31 and the second GW 32 before 1128. data. So,
  • the first base station 21, the second base station 22, and the third base station 23 respectively buffer the second downlink CoMP user data in the buffer of the second base station 22 and the third base station 23 in the buffer of the first base station 21, The collaboration is sent to the second terminal.
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data received from the central processing node 24 to the second terminal.
  • the first base station 21, the second base station 22, and the third base station 23 cooperatively transmit the second downlink CoMP user data received from the central processing node 24 to the second terminal.
  • the second downlink CoMP user data that is bypassed by the central processing node is switched to be transmitted through the centralized processing node, so that Improve the utilization of the interface and ensure the transmission efficiency of CoMP user data.
  • the method further includes: 1134, the centralized processing node 24 determines that the interface between the centralized processing node 24 and the first GW 31 is still idle.
  • the central processing node 24 sends a fourth bearer switching request message to the first GW 31.
  • the fourth bearer switching request message is used to instruct the first GW 31 to switch the downlink transmission path of the downlink non-CoMP user data, so that the downlink non-CoMP user data is transmitted through the central processing node 24.
  • the first GW 31 generates a sixth bearer of the first GW 31 to the centralized processing node according to the fourth bearer switching request message.
  • the first GW 31 can also release the bearers of the first GW 31 to the second base station 22 used for transmitting the downlink non-CoMP user data.
  • the first GW 31 may generate fourth indication information and transmit the fourth indication information to the second base station 22 (not shown in Fig. 14).
  • the fourth indication information is used to indicate that the first GW 31 stops transmitting downlink non-CoMP user data to the second base station 22.
  • the fourth indication information is an end marker.
  • the first GW 31 may carry the fourth indication information in the last data packet sent to the second base station 22.
  • the first GW 31 may generate a fourth bearer handover response message, and send the fourth bearer handover response message to the central processing node 24.
  • the first GW 31 may send downlink non-CoMP user data to the central processing node 24 on the sixth bearer.
  • the first GW 31 transmits the downlink non-CoMP user data to the centralized processing node 24 through the interface between the central processing node 24 and the first GW 31.
  • the central processing node 24 transmits the downlink non-CoMP user data received from the first GW 31 to the second base station 22.
  • downlink non-CoMP user data received from the first GW 31 before 1135 is also stored in the buffer of the second base station 22. So,
  • the second base station 22 sends the downlink non-CoMP user data in the buffer of the second base station 22 to the second terminal.
  • the second base station 22 transmits the downlink non-CoMP user data received from the central processing node 24 to the second terminal.
  • the second base station 22 after receiving the fourth indication information sent by the first GW 31, the second base station 22 sends the downlink non-CoMP user data received from the central processing node 24 to the second terminal.
  • all CoMP user data sent by the first GW is transmitted by the central processing node, and when the centralized processing node further determines that the interface is still idle, the downlink non-CoMP user data sent by the first GW is also concentrated.
  • the processing node is transmitted, which can improve the utilization of the interface.
  • the centralized processing node switches the second downlink CoMP user data that bypasses the centralized processing node for downlink transmission when determining that the interface between the centralized processing node and the first GW is idle.
  • the transmission to the centralized processing node can not only improve the utilization of the interface, but also ensure the transmission efficiency of the second downlink CoMP user data.
  • the central processing node determines that the interface between the central processing node and the first GW is still idle, the downlink non-CoMP user data that bypasses the centralized processing node for downlink transmission may be further switched to the centralized processing node for transmission, which can further Increase the utilization of this interface.
  • FIG. 15 is a schematic diagram showing the flow of a method of data transmission according to another embodiment of the present invention.
  • the first GW 31, the first base station 21, the second base station 22, and the centralized processing node 24 are shown in FIG. Another
  • the terminal 4 is provided with three terminals (not shown in FIG. 15), which are a first terminal, a second terminal, and a third terminal, respectively, wherein the serving base station of the first terminal is the first base station 21, and the serving base station of the second terminal is The second base station 22, the serving base station of the third terminal is also the second base station 22.
  • the first base station 21 receives the first uplink non-CoMP user data from the first terminal, and sends the first uplink non-CoMP user data to the centralized processing node 24.
  • the second base station 22 receives the second uplink non-CoMP user data from the second terminal, and transmits the second uplink non-CoMP user data to the central processing node 24.
  • the first base station 21 and the second base station 22 receive uplink CoMP user data from the third terminal, and cooperatively transmit the uplink CoMP user data to the centralized processing node 24.
  • the central processing node 24 sends the first uplink non-CoMP user data, the second uplink non-CoMP user data, and the uplink CoMP user data to the first GW 31.
  • the central processing node 24 transmits the first uplink non-CoMP user data, the second uplink non-CoMP user data, and the uplink CoMP user data to the first GW 31 through the interface between the central processing node 24 and the first GW 31.
  • the interface between the central processing node 24 and the first GW 31 may be the S1 interface of the central processing node 24.
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is congested, and generates a first bearer switching request message.
  • the central processing node 24 sends a first bearer switching request message to the first base station 21, where the first bearer switching request message is used to instruct the first base station 21 to transmit the first uplink non-CoMP user data to the central processing node 24 to The first GW 31.
  • the first base station 21 generates a first bearer of the first base station 21 to the first GW 31 according to the first bearer switching request message.
  • the first base station 21 may generate first indication information, and send the first indication information to the central processing node 24 (not shown in FIG. 15).
  • the first indication information is used to indicate that the first base station 21 stops transmitting the first uplink non-CoMP user data to the central processing node 24. It can be understood that the first indication information is an end marker.
  • the first base station 21 may also generate a first bearer handover response message and send the first bearer handover response message to the central processing node 24 (not shown in Fig. 15).
  • the first base station 21 can send the first uplink non-CoMP user data to the first GW 31 on the first bearer. That is, the first base station 21 transmits the first uplink non-CoMP user data to the first GW 31 bypassing the centralized processing node 24.
  • the first base station 21 passes the interface between the first base station 21 and the first GW 31, The first uplink non-CoMP user data is sent to the first GW 31.
  • the interface between the first base station 21 and the first GW 31 may be an S1 interface of the first base station 21.
  • the first base station 21 can also release the uplink transmission resources of the first base station 21 to the central processing node 24 for transmitting the first uplink non-CoMP user data.
  • the central processing node 24 transmits the first uplink non-CoMP user data in the buffer of the central processing node 24 to the first GW 31.
  • the centralized processing node 24 may transmit the first indication information received from the first base station 21 to the first GW 31 (not shown in Fig. 15).
  • the central processing node 24 may carry the first indication information in the last data packet of the first uplink non-CoMP user data sent to the first GW 31.
  • the first GW 31 transmits the first uplink non-CoMP user data received from the first base station 21 in 1506 to the core network (not shown in Fig. 15) only after receiving the first indication information.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first uplink non-CoMP user data that is uplinked by the central processing node is switched to bypass the centralized processing node. Transmission, which reduces data traffic through the interface, thereby mitigating or eliminating congestion on the interface. It can be understood that in this embodiment, part of the non-CoMP user data in the uplink non-CoMP user data is bypassed and transmitted through the centralized processing node.
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is still congested.
  • the uplink path of the second uplink non-CoMP user data may be further switched.
  • the central processing node 24 may send another bearer switching request message to the second base station 22, where the another bearer switching request message is used to instruct the second base station 22 to bypass the second uplink non-CoMP user data by the centralized processing node. 24 for transmission.
  • the method for switching the uplink path of the second uplink non-CoMP user data is similar to the foregoing steps of 1504 to 1507. To avoid repetition, details are not described herein again.
  • the centralized processing node 24 determines the centralized processing section The interface between point 24 and first GW 31 is in a normal state. It is then stated that after 1507, the congestion condition of the interface has been eliminated.
  • the centralized processing node 24 determines that the interface is still congested, after the method illustrated in Figure 15, the congestion condition of the interface is only mitigated. However, since the data for uplink transmission by the central processing node 24 at this time has only uplink CoMP user data, the centralized processing node 24 does not further process the congestion condition at this time.
  • the uplink CoMP user data needs to be transmitted to the first GW through the centralized processing node.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, part of the non-CoMP user data or all non-CoMP user data in the uplink user data is used. Bypassing the centralized processing node to transmit to the first
  • the GW can reduce the data traffic passing through the interface, thereby alleviating or eliminating the congestion condition of the interface, and at the same time ensuring the transmission efficiency of the uplink CoMP user data transmitted by the central processing node.
  • the method may further include:
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is idle, and generates a second bearer switching request message.
  • the central processing node 24 sends a second bearer handover request message to the second base station 22.
  • the second bearer switching request message is used to instruct the second base station 22 to transmit the second uplink non-CoMP user data to the first GW 31 through the central processing node 24.
  • the second base station 22 may generate second indication information, and send the second indication information to the first GW 31 (not shown in FIG. 16).
  • the second indication information is used to indicate that the second base station 22 stops transmitting the second uplink non-CoMP user data to the first GW 31.
  • the second indication information is an end marker.
  • the second base station 22 can carry the second indication information in the last data packet of the second uplink non-CoMP user data sent to the first GW 31.
  • the second base station 22 can also generate a second bearer handover response message, and send the second bearer handover response message to the central processing node 24 (not shown in FIG. 16).
  • the second base station 22 switches the uplink transmission path of the second uplink non-CoMP user data according to the second bearer switching request message. Specifically, the second uplink non-CoMP user data is sent to the central processing node 24. It should be noted that this step can be performed after 1511. For example, it may be before or after 1512, before or after 1514. The invention is not limited thereto.
  • the central processing node 24 generates a second bearer that centrally processes the node 24 to the first GW 31 according to the second bearer handover response message.
  • the central processing node 24 can send the second uplink non-CoMP user data received from the second base station 22 to the first GW 31 on the second bearer.
  • the central processing node 24 may send the second uplink non-CoMP user data to the first GW 31 on the second bearer by using an interface between the central processing node 24 and the first GW 31.
  • the first GW 31 transmits the second uplink non-CoMP user data received from the central processing node 24 to the core network after receiving the second indication information sent by the second base station 22.
  • the centralized processing node determines that the interface between the centralized processing node and the first GW is idle, the second uplink non-CoMP user data that is uplinked by the central processing node is bypassed. Switching to a centralized processing node for uplink transmission can improve the utilization of the interface.
  • the central processing node may also receive the fourth uplink non-CoMP user data sent by the terminal located in the service range of the centralized processing node.
  • the invention is not limited thereto.
  • the embodiment of the present invention does not switch the uplink non-CoMP user data sent by the terminal located in the service range of the central processing node.
  • the central processing node 24 determines that the interface between the central processing node 24 and the first GW 31 is still idle.
  • the uplink path of the first uplink non-CoMP user data may be further switched.
  • the central processing node 24 may send the third bearer switching request message to the first base station 21, where the third bearer switching request message is used to instruct the first base station 21 to perform the first uplink non-CoMP user data through the centralized processing node. transmission.
  • the method for switching the uplink path of the first uplink non-CoMP user data is similar to the foregoing steps of 1511 to 1515. To avoid repetition, details are not described herein again.
  • the centralized processing node 24 determines that the interface between the centralized processing node 24 and the first GW 31 is in a normal state. Then you do not need to perform step 1517.
  • the centralized processing node determines that the interface between the centralized processing node and the first GW is idle, the centralized processing node is bypassed for uplink transmission. Part of the non-CoMP user data or all non-CoMP user data that is transmitted is switched to be transmitted through the centralized processing node, which can improve the utilization of the interface.
  • FIG 17 is a block diagram of a centralized processing node in accordance with one embodiment of the present invention.
  • the centralized processing node 1700 shown in Fig. 17 includes a receiving unit 1701 and a transmitting unit 1702.
  • the receiving unit 1701 is configured to receive downlink user data from the first gateway GW.
  • the sending unit 1702 is configured to send the downlink user data received by the receiving unit 1701 to the corresponding base station.
  • the sending unit 1702 is further configured to: when determining that the interface between the central processing node 1700 and the first GW is congested, send a first bearer switching request message to the first GW, where the first bearer switching request message is sent And configured to instruct the first GW to bypass the centralized processing node 1700 for data transmission.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first bearer switching request message is sent to the first GW, so that the first GW bypasses the downlink user data.
  • the processing node performs transmission, so that the data traffic of the interface between the central processing node and the first GW can be reduced, thereby reducing or eliminating the congestion condition of the interface.
  • the downlink user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data
  • the sending unit 1702 is specifically configured to: send the downlink non-CoMP user data to the first
  • the base station sends the downlink CoMP user data to at least two base stations, where the first base station is a serving base station of a target user of the downlink non-CoMP user data, and the at least two base stations are used to perform the downlink
  • the CoMP user data is cooperatively transmitted, and the first bearer switching request message is specifically used to instruct the first GW to transmit the downlink non-CoMP user data to the first base station by bypassing the central processing node 1700.
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the sending the downlink CoMP user data to the at least two base stations includes: Transmitting the first downlink CoMP user data to at least two second base stations, and sending the second downlink CoMP user data to at least two third base stations, where the at least two second base stations are used to The first downlink CoMP user data is cooperatively transmitted, and the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data
  • the sending unit 1702 is further configured to: determine that the interface is still When the congestion occurs, the second bearer switching request message is sent to the first GW, where the second bearer switching request message is used to instruct the first GW to transmit the first downlink CoMP user data to the central processing node 1700. To the stated At least two second base stations.
  • the k second base stations in the at least two second base stations are in the second GW, where the second bearer switching request message is specifically used to indicate that the first GW is to be
  • the first downlink CoMP user data is transmitted to the base station other than the k second base stations, and is used to indicate the first GW generation station.
  • the sending unit 1702 is further configured to: send a generation bearer request Sending a message to the second GW, the generating a bearer request message includes the identifier information of the k second base stations, where the generating a bearer request message is used to instruct the second GW to generate the second GW to the k Bearers of the second base station, such that the second GW on the bearer transmits the first downlink CoMP user data received from the first GW to the k processing nodes 1700 a second base station, where k is A positive integer.
  • the downlink user data is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data
  • the sending unit 1702 is specifically configured to: And transmitting the first downlink CoMP user data to the at least two second base stations, and sending the second downlink CoMP user data to the at least two third base stations.
  • the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first bearer switching request message is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by bypassing the central processing node 1700.
  • the k second base stations in the at least two second base stations are in the second GW, where the first bearer switching request message is specifically used to indicate that the first GW is to be
  • the first downlink CoMP user data is transmitted to the base station other than the k second base stations, and is used to indicate the first GW generation station. Transmitting the first GW to the forwarding bearer of the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer.
  • the sending unit 1702 is further configured to: send a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, where the generate bearer request message is used to indicate the Generating, by the second GW, the bearer of the second GW to the k second base stations, so that the second GW, on the bearer, the first downlink CoMP user data to be received from the first GW Bypassing the centralized processing section Point 1700 is transmitted to the k second base stations, where k is a positive integer.
  • the centralized processing node 1700 further includes a processing unit.
  • the receiving unit 1701 is further configured to receive a downlink scheduling request message sent by the serving base station of the target user of the first downlink CoMP user data in the at least two second base stations, where the processing unit is configured to perform downlink scheduling, and send
  • the unit 1702 is further configured to send the scheduling result of the processing node to the at least two second base stations.
  • the scheduling result includes at least one of the following: radio link control RLC segmentation information, coded modulation information, and transmit power.
  • the receiving unit 1701 is further configured to receive an ACK message sent by the serving base station of the target user of the first downlink CoMP user data
  • the sending unit 1702 is further configured to send the first message.
  • the first message is used to instruct the at least two second base stations to delete a data copy of the first downlink CoMP user data.
  • the receiving unit 1701 is further configured to receive a NACK message sent by the serving base station of the target user of the first downlink CoMP user data
  • the sending unit 1702 is further configured to: when the number of retransmissions is not When the preset maximum number of retransmissions is reached, a retransmission scheduling acknowledgement message is sent to the at least two second base stations, where the retransmission scheduling acknowledgement message is used to indicate that the at least two second base stations are to perform the first
  • the CoMP user data is transmitted cooperatively again.
  • the first message is sent to the at least two second base stations, where the first message is used to instruct the at least two second base stations to delete the first A copy of the data of the downlink CoMP user data.
  • the sending unit 1702 is further configured to: when determining that the interface is idle, send a third bearer switching request message to the first GW, where the third bearer switching request message is used. Instructing the first GW to transmit the downlink user data to the corresponding base station via the centralized processing node 1700.
  • the centralized processing node 1700 shown in FIG. 17 can implement the processes executed by the central processing node in FIG. 4 to FIG. 5 and FIG. 8 to FIG. 14 . To avoid repetition, details are not described herein again.
  • FIG. 18 is a block diagram of a centralized processing node in accordance with another embodiment of the present invention.
  • the centralized processing node 1800 shown in FIG. 18 includes: a receiving unit 1801 and a transmitting unit 1802.
  • the receiving unit 1801 is configured to receive uplink user data, where the uplink user data includes uplink non-coordinated multi-point transmission CoMP user data sent by the first base station;
  • the sending unit 1802 is configured to send the uplink user data received by the receiving unit 1801 to the first gateway GW;
  • the sending unit 1802 is further configured to: when determining that the interface between the central processing node 1800 and the first GW is congested, send a first bearer switching request message to the first base station, where the first bearer switching request message is used. Instructing the first base station to transmit the uplink non-CoMP user data to the first GW by bypassing the central processing node 1800.
  • the central processing node when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the first base station, thereby CoMP user data bypasses the centralized processing node and transmits to the first GW, which can reduce the data traffic of the interface between the centralized processing node and the first GW, thereby alleviating or eliminating the congestion condition of the interface.
  • the uplink user data further includes uplink CoMP user data
  • the receiving unit 1801 is configured to: receive the uplink non-CoMP user data from the first base station, from at least two second The base station receives the uplink CoMP user data.
  • the sending unit 1802 is further configured to: when determining that the interface is idle, send a second bearer switching request message to the first base station, where the second bearer switching request message is used. Instructing the first base station to transmit the uplink non-CoMP user data to the first GW through the central processing node 1800.
  • the centralized processing node 1800 in FIG. 18 can implement the processes performed by the central processing node in FIG. 6, FIG. 15, and FIG. 16, and the details are not described herein again.
  • FIG. 19 is a block diagram of a first device in accordance with one embodiment of the present invention.
  • the first device 1900 shown in Fig. 19 includes a transmitting unit 1901 and a receiving unit 1902.
  • the sending unit 1901 is configured to send user data to the central processing node, so that the central processing node sends the user data to the second device.
  • the receiving unit 1902 is configured to receive the first bearer switching request message sent by the central processing node, where the first bearer switching request message is used to instruct the first device 1900 to bypass the centralized processing node for data transmission;
  • the sending unit 1901 is further configured to send the user data to the second device according to the first bearer switching request message received by the receiving unit 1902.
  • the first device switches part of the data in the user data from the centralized processing node to the bypass centralized processing node according to the first bearer switching request message sent by the central processing node, so that the centralized processing can be reduced.
  • the data traffic of the interface between the node and the first GW can further alleviate or eliminate the congestion condition of the interface.
  • the first device 1900 is a first gateway GW
  • the second device is a base station corresponding to the user data.
  • the user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data, where the first bearer switching request message is specifically used to instruct the first device 1900 to bypass the downlink non-CoMP user data.
  • the centralized processing node transmits to the first base station, where the first base station is a serving base station of the target user of the downlink non-CoMP user data.
  • the sending unit 1901 is configured to: transmit the downlink non-CoMP user data to the first base station by using the centralized processing node, and send the downlink CoMP user data to the centralized processing node, so that the centralized processing The node sends the downlink CoMP user data to at least two base stations, where the at least two base stations are used for cooperative transmission of the downlink CoMP user data, where the second device includes the first base station and the At least two base stations.
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the receiving unit 1902 is further configured to receive the second bearer switching request message sent by the central processing node, where The second bearer switching request message is used to indicate that the first device 1900 transmits the first downlink CoMP user data to the at least two second base stations by using the central processing node;
  • the sending unit 1901 is further configured to receive, according to the receiving unit 1902 Receiving, by the second bearer switching request message, the first downlink CoMP user data is transmitted to the at least two second base stations by using the centralized processing node, and the second downlink CoMP user data is sent to
  • the central processing node is configured to enable the centralized processing node to send the second downlink CoMP user data to at least two third base stations.
  • the at least two base stations include the at least two second base stations and the at least two third base stations, and the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the k second base stations of the at least two second base stations are in the second GW, where the second bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP
  • the user data is transmitted to the other base station except the k second base stations, and is further used to instruct the first GW to generate the first GW to And forwarding, by the second GW, the first downlink CoMP user data to the second GW, where the first downlink CoMP user data is bypassed by the centralized bearer Transmitting, by the processing node, the at least two second base stations, including: transmitting, by the central processing node, the first downlink CoMP user data to the at least two second base stations, except the k second
  • the other base station other than the base station sends the first downlink CoMP user data to the second GW on the forwarding bearer, so that the second GW bypasses the first downlink CoMP user data.
  • the centralized processing node transmits to the k second base stations, where k is
  • the user data is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data
  • the first bearer switching request message is specifically used to indicate the
  • the first GW transmits the first downlink CoMP user data to the at least two second base stations
  • the sending unit 1901 is configured to: bypass the first downlink CoMP user data. Transmitting, by the centralized processing node, to at least two second base stations, and sending the second downlink CoMP user data to the centralized processing node, so that the centralized processing node sends the second downlink CoMP user data to At least two third base stations.
  • the second device includes the at least two second base stations and the at least two third base stations, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the k second base stations of the at least two second base stations are in the second GW, where the first bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP
  • the user data is transmitted to the other base station except the k second base stations, and is further used to instruct the first GW to generate the first GW to And forwarding, by the second GW, the first downlink CoMP user data to the second GW, where the first downlink CoMP user data is bypassed by the centralized bearer Transmitting, by the processing node, the at least two second base stations, including: transmitting, by the central processing node, the first downlink CoMP user data to the at least two second base stations, except the k second The other base station other than the base station sends the first downlink CoMP user data to the second GW on the forwarding bearer, so that the second GW bypasses the first downlink CoMP user data. Transmitting the central processing node to the k second Station, where, k is a positive integer.
  • the first device 1900 is a first base station
  • the second device is a first GW
  • the user data includes uplink non-CoMP user data
  • the first bearer switching request message is specifically used. Instructing the first device 1900 to transmit the uplink non-CoMP user data to the second device by using the centralized processing node, and the sending unit 1901 is configured to: bypass the uplink non-CoMP user data by using the centralized device The processing node transmits to the second device.
  • the user data further includes uplink CoMP user data, a sending unit 1901,
  • the method is further configured to: send, by the central processing node, the uplink CoMP user data to the central processing node, in cooperation with the at least one base station, to enable the centralized processing node to send the uplink CoMP user data to the second device, where
  • the first device 1900 and the at least one base station are configured to perform cooperative transmission on the uplink CoMP user data.
  • the receiving unit 1902 is further configured to receive a third bearer switching request message sent by the central processing node, where the second bearer switching request message is used to instruct the first device 1900 to perform data transmission by using the centralized processing node.
  • the sending unit 1901 is further configured to send the user data to the second device according to the second bearer switching request message received by the receiving unit 1902.
  • the first device 1900 in FIG. 19 can implement the processes performed by the first GW in FIG. 4 to FIG. 5, FIG. 8 to FIG. 14, and the first device in FIG.
  • the processes performed by the first device in the first GW are not repeated here to avoid repetition.
  • the first device 1900 in FIG. 19 can implement the processes performed by the first base station in FIG. 6, FIG. 15, and FIG. 16, and the first device in FIG. 7 is the first base station.
  • the various processes performed by the first device are not repeated here to avoid repetition.
  • FIG. 20 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • the base station 2000 shown in Fig. 20 includes: a receiving unit 2001 and a transmitting unit 2002.
  • the receiving unit 2001 is configured to receive downlink coordinated multi-point transmission CoMP user data sent by the gateway GW.
  • the sending unit 2002 is configured to send a downlink scheduling request message to the central processing node, where the downlink scheduling request message is used to request the centralized processing node to perform downlink scheduling.
  • the receiving unit 2001 is further configured to receive a scheduling result sent by the central processing node, where the scheduling result includes at least one of the following: radio link control RLC segmentation information, coded modulation information, and transmit power.
  • the sending unit 2002 is further configured to: according to the scheduling result received by the receiving unit 2001, cooperate with the at least one base station to send the downlink CoMP user data received by the receiving unit 2001, where the base station is a target of the downlink CoMP user data.
  • the user's service base station is further configured to: according to the scheduling result received by the receiving unit 2001, cooperate with the at least one base station to send the downlink CoMP user data received by the receiving unit 2001, where the base station is a target of the downlink CoMP user data.
  • the base station receives downlink CoMP user data from the GW, and cooperates with the at least one base station to jointly transmit the downlink CoMP user data to the target user according to the scheduling result of the centralized processing node. It can guarantee the transmission of downlink CoMP user data.
  • the GW sends downlink CoMP user data to the base station and the at least one base station by bypassing the centralized processing node.
  • the base station 2000 further includes a processing unit: the sending unit 2002 is further configured to send an ACK message to the centralized processing node, and the receiving unit 2001 is further configured to receive, by the central processing node, a message, the first message is used to indicate that the base station 2000 deletes the data copy of the downlink CoMP user data, and the processing unit is configured to delete the downlink CoMP user data according to the first message received by the receiving unit 2001. A copy of the data.
  • the base station 2000 further includes a processing unit: the sending unit 2002 is further configured to send a NACK message to the centralized processing node, and the receiving unit 2001 is further configured to receive the sending by the centralized processing node. And retransmitting the scheduling acknowledgement message or the first message, where the retransmission scheduling acknowledgement message is used to instruct the base station 2000 to perform the coordinated transmission of the downlink CoMP user data and the at least one base station, where the first message is used to indicate the base station 2000.
  • the processing unit configured to, according to the retransmission scheduling acknowledge message received by the receiving unit 2001, retransmit the downlink CoMP user data and the at least one base station, or And deleting the data copy of the downlink CoMP user data according to the first message received by the receiving unit 2001.
  • the base station 2000 in FIG. 20 can implement the processes performed by the serving base station of the target user of the downlink CoMP user data in FIG. 4 to FIG. 5 and FIG. 9 to FIG. 14 . To avoid repetition, details are not described herein.
  • the centralized processing node 2100 shown in Fig. 21 includes a processor 2101, a receiving circuit 2102, a transmitting circuit 2103, and a memory 2104.
  • the receiving circuit 2102 is configured to receive downlink user data from the first gateway GW.
  • the transmitting circuit 2103 is configured to send the downlink user data received by the receiving circuit 2102 to the corresponding base station.
  • the sending circuit 2103 is further configured to: when the processor 2101 determines that the interface between the central processing node 2100 and the first GW is congested, send a first bearer switching request message to the first GW, where the first bearer switching request is sent The message is used to instruct the first GW to bypass the centralized processing node 2100 for data transmission.
  • the centralized processing node determines that the interface between the central processing node and the first GW is congested, the first bearer switching request message is sent to the first GW, so that the first GW bypasses the downlink user data.
  • the processing node performs transmission, so that the data traffic of the interface between the central processing node and the first GW can be reduced, thereby reducing or eliminating the congestion condition of the interface.
  • the various components in the centralized processing node 2100 are coupled together by a bus system 2105, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 2105 in FIG.
  • the downlink user data includes downlink non-coordinated multipoint transmission.
  • the transmitting circuit 2103 is configured to: send the downlink non-CoMP user data to the first base station, and send the downlink CoMP user data to at least two base stations, where the a base station is a serving base station of the target user of the downlink non-CoMP user data, and the at least two base stations are configured to perform cooperative transmission on the downlink CoMP user data, where the first bearer switching request message is specifically used to indicate the
  • the first GW transmits the downlink non-CoMP user data to the first base station by bypassing the central processing node 2100.
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the sending the downlink CoMP user data to the at least two base stations includes: Transmitting the first downlink CoMP user data to at least two second base stations, and sending the second downlink CoMP user data to at least two third base stations, where the at least two second base stations are used to The first downlink CoMP user data is cooperatively transmitted, and the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data
  • the sending circuit 2103 is further configured to: determine that the interface is still When the congestion occurs, the second bearer switching request message is sent to the first GW, where the second bearer switching request message is used to instruct the first GW to transmit the first downlink CoMP user data by using the centralized processing node 2100. To the at least two second base stations.
  • the k second base stations in the at least two second base stations are in the second GW, where the second bearer switching request message is specifically used to indicate that the first GW is to be
  • the first downlink CoMP user data is transmitted to the base station of the at least two second base stations except the k second base stations, and is used to indicate the first GW generating station.
  • the sending circuit 2103 is further configured to: send a bearer request Sending a message to the second GW, the generating a bearer request message includes the identifier information of the k second base stations, where the generating a bearer request message is used to instruct the second GW to generate the second GW to the k Bearers of the second base station, such that the second GW bypasses the first downlink CoMP user data received from the first GW on the bearer Point 2100 is transmitted to the k second base stations, where k is a positive integer.
  • the downlink user data is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data
  • the sending circuit 2103 is specifically configured to: And transmitting the first downlink CoMP user data to the at least two second base stations, and sending the second downlink CoMP user data to the at least two third base stations.
  • the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the first bearer switching request message is specifically used to instruct the first GW to transmit the first downlink CoMP user data to the at least two second base stations by bypassing the central processing node 2100.
  • the k second base stations in the at least two second base stations are in the second GW, where the first bearer switching request message is specifically used to indicate that the first GW is to be
  • the first downlink CoMP user data is transmitted to the base station of the at least two second base stations except the k second base stations, and is used to indicate the first GW generating station. Transmitting the first GW to the forwarding bearer of the second GW and transmitting the first downlink CoMP user data to the second GW on the forwarding bearer.
  • the sending circuit 2103 is further configured to: send a generate bearer request message to the second GW, where the generate bearer request message includes identifier information of the k second base stations, where the generate bearer request message is used to indicate the Generating, by the second GW, the bearer of the second GW to the k second base stations, so that the second GW, on the bearer, the first downlink CoMP user data to be received from the first GW
  • the centralized processing node 2100 is bypassed for transmission to the k second base stations, where k is a positive integer.
  • the receiving circuit 2102 is further configured to receive a downlink scheduling request message sent by a serving base station of the target user of the first downlink CoMP user data in the at least two second base stations;
  • the processor 2101 is configured to perform downlink scheduling, and the sending circuit 2103 is further configured to send the scheduling result of the processing node to the at least two second base stations.
  • the scheduling result includes at least one of the following: radio link control RLC segmentation information, coded modulation information, and transmit power.
  • the receiving circuit 2102 is further configured to receive an ACK message sent by the serving base station of the target user of the first downlink CoMP user data
  • the sending circuit 2103 is further configured to send the first message.
  • the first message is used to instruct the at least two second base stations to delete a data copy of the first downlink CoMP user data.
  • the receiving circuit 2102 is further configured to receive a NACK message sent by the serving base station of the target user of the first downlink CoMP user data
  • the sending circuit 2103 is further configured to: when the number of retransmissions is not When the preset maximum number of retransmissions is reached, a retransmission scheduling acknowledgement message is sent to the at least two second base stations, where the retransmission scheduling acknowledgement message is used to indicate that the at least two second base stations are to perform the first
  • the CoMP user data is transmitted cooperatively again.
  • the first message is sent to the at least two second base stations, where the first message is used to instruct the at least two second base stations to delete the first A copy of the data of the downlink CoMP user data.
  • the sending circuit 2103 is further configured to: when determining that the interface is idle, send a third bearer switching request message to the first GW, where the third bearer switching request message is used. Instructing the first GW to transmit the downlink user data to the corresponding base station via the central processing node 2100.
  • the method disclosed in the above embodiments of the present invention may be applied to the processor 2101 or implemented by the processor 2101.
  • the processor 2101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 2101 or an instruction in the form of software.
  • the processor 2101 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logic blocks disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read-only memory or an electrically erasable programmable memory, a register, and the like. in.
  • the storage medium is located in the memory 2104, and the processor 2101 reads the information in the memory 2104 and combines the hardware to perform the steps of the above method.
  • the centralized processing node 2100 shown in FIG. 21 can implement the processes executed by the centralized processing node in FIG. 4 to FIG. 5 and FIG. 8 to FIG. 14 . To avoid repetition, details are not described herein again.
  • FIG. 22 is a block diagram of a centralized processing node in accordance with another embodiment of the present invention.
  • the centralized processing node 2200 shown in FIG. 22 includes: a processor 2201, a receiving circuit 2202, a transmitting circuit 2203, and a storage. 2204.
  • the receiving circuit 2202 is configured to receive uplink user data, where the uplink user data includes uplink non-coordinated multi-point transmission CoMP user data sent by the first base station;
  • the sending circuit 2203 is configured to send the uplink user data received by the receiving circuit 2202 to the first gateway GW;
  • the sending circuit 2203 is further configured to: when the processor 2201 determines that the interface between the central processing node 2200 and the first GW is congested, send a first bearer switching request message to the first base station, where the first bearer switching request is sent The message is used to instruct the first base station to transmit the uplink non-CoMP user data to the first GW by bypassing the central processing node 2200.
  • the central processing node when the centralized processing node determines that the interface between the central processing node and the first GW is congested, the central processing node sends a first bearer switching request message to the first base station, thereby CoMP user data bypasses the centralized processing node and transmits to the first GW, which can reduce the data traffic of the interface between the centralized processing node and the first GW, thereby alleviating or eliminating the congestion condition of the interface.
  • bus system 2205 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 2205 various buses are labeled as bus system 2205 in FIG.
  • the uplink user data further includes uplink CoMP user data
  • the receiving circuit 2202 is configured to: receive the uplink non-CoMP user data from the first base station, from at least two second The base station receives the uplink CoMP user data.
  • the sending circuit 2203 is further configured to: when the processor 2201 determines that the interface is idle, send a second bearer switching request message to the first base station, where the second bearer switching request The message is used to instruct the first base station to transmit the uplink non-CoMP user data to the first GW through the central processing node 2200.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 2201 or implemented by the processor 2201.
  • the processor 2201 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2201 or an instruction in a form of software.
  • the processor 2201 described above may be a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, Logical block diagram.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in RAM, flash memory, ROM, programmable read only memory, or electrically erasable programmable memory, registers, and the like, which are well established in the art.
  • the storage medium is located in the memory 2204.
  • the processor 2201 reads the information in the memory 2204 and completes the steps of the above method in combination with the hardware.
  • the centralized processing node 2200 in FIG. 22 can implement the processes performed by the central processing node in FIG. 6, FIG. 15, and FIG. 16, and the details are not described herein again.
  • Figure 23 is a block diagram of a first device of another embodiment of the present invention.
  • the first device 2300 shown in Fig. 23 includes a processor 2301, a receiving circuit 22302, a transmitting circuit 2303, and a memory 2304.
  • a sending circuit 2303 configured to send user data to the central processing node, so that the central processing node sends the user data to the second device;
  • the receiving circuit 2302 is configured to receive the first bearer switching request message sent by the central processing node, where the first bearer switching request message is used to instruct the first device 2300 to bypass the centralized processing node for data transmission;
  • the sending circuit 2303 is further configured to send the user data to the second device according to the first bearer switching request message received by the receiving circuit 2302.
  • the first device switches part of the data in the user data from the centralized processing node to the bypass centralized processing node according to the first bearer switching request message sent by the central processing node, so that the centralized processing can be reduced.
  • the data traffic of the interface between the node and the first GW can further alleviate or eliminate the congestion condition of the interface.
  • bus system 2305 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 2305 various buses are labeled as bus system 2305 in FIG.
  • the first device 2300 is a first gateway GW
  • the second device is a base station corresponding to the user data.
  • the user data includes downlink non-coordinated multi-point transmission CoMP user data and downlink CoMP user data, where the first bearer switching request message is specifically used to instruct the first device 2300 to bypass the downlink non-CoMP user data.
  • the centralized processing node transmits to the first base station, where the first base station is a serving base station of the target user of the downlink non-CoMP user data.
  • the sending circuit 2303 is specifically configured to: bypass the downlink non-CoMP user data by using the centralized processing node to transmit Sending, by the first base station, the downlink CoMP user data to the centralized processing node, so that the centralized processing node sends the downlink CoMP user data to at least two base stations, where the at least two base stations are used to The downlink CoMP user data is cooperatively transmitted, where the second device includes the first base station and the at least two base stations.
  • the downlink CoMP user data includes the first downlink CoMP user data and the second downlink CoMP user data
  • the receiving circuit 2302 is further configured to receive the second bearer switching request message sent by the central processing node, where The second bearer switching request message is used to instruct the first device 2300 to transmit the first downlink CoMP user data to the at least two second base stations by using the central processing node; the sending circuit 2303 is further configured to be used according to the receiving circuit 2302.
  • the central processing node is configured to enable the centralized processing node to send the second downlink CoMP user data to at least two third base stations.
  • the at least two base stations include the at least two second base stations and the at least two third base stations, and the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the k second base stations of the at least two second base stations are in the second GW, where the second bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP
  • the user data is transmitted to the other base station except the k second base stations, and is further used to instruct the first GW to generate the first GW to And forwarding, by the second GW, the first downlink CoMP user data to the second GW, where the first downlink CoMP user data is bypassed by the centralized bearer Transmitting, by the processing node, the at least two second base stations, including: transmitting, by the central processing node, the first downlink CoMP user data to the at least two second base stations, except the k second The other base station other than the base station sends the first downlink CoMP user data to the second GW on the forwarding bearer, so that the second GW bypasses the first downlink CoMP user data. Transmitting the central processing node to the k second Station, where, k is a positive integer.
  • the user data is downlink CoMP user data
  • the downlink CoMP user data includes first downlink CoMP user data and second downlink CoMP user data
  • the first bearer switching request message is specifically used to indicate the
  • the first GW transmits the first downlink CoMP user data to the at least two second base stations by using the centralized processing node, and the sending circuit 2303 is used by the first GW.
  • the first downlink CoMP user data is transmitted to the at least two second base stations by using the centralized processing node, and the second downlink CoMP user data is sent to the centralized processing node, so that the centralized The processing node sends the second downlink CoMP user data to at least two third base stations.
  • the second device includes the at least two second base stations and the at least two third base stations, where the at least two second base stations are configured to perform cooperative transmission on the first downlink CoMP user data.
  • the at least two third base stations are configured to perform cooperative transmission on the second downlink CoMP user data.
  • the k second base stations of the at least two second base stations are in the second GW, where the first bearer switching request message is specifically used to indicate that the first GW is to use the first downlink CoMP
  • the user data is transmitted to the other base station except the k second base stations, and is further used to instruct the first GW to generate the first GW to And forwarding, by the second GW, the first downlink CoMP user data to the second GW, where the first downlink CoMP user data is bypassed by the centralized bearer Transmitting, by the processing node, the at least two second base stations, including: transmitting, by the central processing node, the first downlink CoMP user data to the at least two second base stations, except the k second The other base station other than the base station sends the first downlink CoMP user data to the second GW on the forwarding bearer, so that the second GW bypasses the first downlink CoMP user data. Transmitting the central processing node to the k second Station, where, k is a positive integer.
  • the first device 2300 is a first base station
  • the second device is a first GW
  • the user data includes uplink non-CoMP user data
  • the first bearer switching request message is specifically used. Instructing the first device 2300 to transmit the uplink non-CoMP user data to the second device by using the centralized processing node, and the sending circuit 2303 is specifically configured to: bypass the uplink non-CoMP user data by using the centralized device The processing node transmits to the second device.
  • the user data further includes uplink CoMP user data
  • the sending circuit 2303 is further configured to: cooperate with the at least one base station to jointly send the uplink CoMP user data to the centralized processing node, so that the centralized The processing node sends the uplink CoMP user data to the second device, where the first device 2300 and the at least one base station are configured to perform cooperative transmission on the uplink CoMP user data.
  • the receiving circuit 2302 is further configured to receive a third bearer switching request message sent by the central processing node, where the second bearer switching request message is used to instruct the first device 2300 to perform data transmission by using the centralized processing node.
  • a transmitting circuit 2303 further configured to receive according to the receiving circuit 2302 Receiving the second bearer switching request message, and sending the user data to the second device.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 2301 or implemented by the processor 2301.
  • the processor 2301 may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2301 or an instruction in a form of software.
  • the processor 2301 described above may be a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic device, or a logic block diagram.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in RAM, flash memory, ROM, programmable read only memory, or electrically erasable programmable memory, registers, and the like, which are well established in the art.
  • the storage medium is located in the memory 2304, and the processor 2301 reads the information in the memory 2304 and completes the steps of the above method in combination with hardware.
  • the first device 2300 in FIG. 23 When the first device 2300 in FIG. 23 is the first GW, the first device 2300 can implement the processes performed by the first GW in FIG. 4 to FIG. 5, FIG. 10 to FIG. 14, and the first device in FIG. The processes performed by the first device in the first GW are not repeated here to avoid repetition.
  • the first device 2300 in FIG. 23 When the first device 2300 in FIG. 23 is the first base station, the first device 2300 can implement the processes performed by the first base station in FIG. 6, FIG. 15, and FIG. 16, and the first device in FIG. 7 is the first base station. The various processes performed by the first device are not repeated here to avoid repetition.
  • FIG. 24 is a block diagram of a base station in accordance with another embodiment of the present invention.
  • the base station 2400 shown in FIG. 24 includes: a processor 2401, a receiving circuit 2402, a transmitting circuit 2403, and a memory 2404.
  • the receiving circuit 2402 is configured to receive downlink cooperative multi-point transmission CoMP user data sent by the gateway GW.
  • the sending circuit 2403 is configured to send a downlink scheduling request message to the central processing node, where the downlink scheduling request message is used to request the centralized processing node to perform downlink scheduling.
  • the receiving circuit 2402 is further configured to receive a scheduling result sent by the central processing node, where the scheduling result includes at least one of the following: radio link control RLC segmentation information, coded modulation information, and transmit power.
  • the transmitting circuit 2403 is further configured to: according to the scheduling result received by the receiving circuit 2402, cooperate with at least one base station to send the downlink CoMP user data received by the receiving circuit 2402, where the base station is a target of the downlink CoMP user data.
  • the user's service base station In the embodiment of the present invention, the base station receives the downlink CoMP user data from the GW, and sends the downlink CoMP user data to the target user in cooperation with the at least one base station according to the scheduling result of the centralized processing node. It can guarantee the transmission of downlink CoMP user data.
  • the GW sends the downlink CoMP user data to the base station and the at least one base station by bypassing the centralized processing node.
  • bus system 2405 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 2405 various buses are labeled as bus system 2405 in FIG.
  • the sending circuit 2403 is further configured to send an ACK message to the centralized processing node
  • the receiving circuit 2402 is further configured to receive the first message sent by the central processing node, where the first The message is used to indicate that the base station 2400 deletes the data copy of the downlink CoMP user data.
  • the processor 2401 is configured to delete the data copy of the downlink CoMP user data according to the first message received by the receiving circuit 2402.
  • the sending circuit 2403 is further configured to send a NACK message to the centralized processing node
  • the receiving circuit 2402 is further configured to receive a retransmission scheduling acknowledgement message sent by the central processing node or a message, the retransmission scheduling acknowledgement message is used to instruct the base station 2400 to perform the coordinated transmission of the downlink CoMP user data and the at least one base station, where the first message is used to instruct the base station 2400 to delete the downlink CoMP user data.
  • the processor 2401 configured to, according to the retransmission scheduling acknowledgement message received by the receiving circuit 2402, retransmit the downlink CoMP user data with the at least one base station, or according to the receiving circuit 2402
  • the first message deletes a data copy of the downlink CoMP user data.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 2401 or implemented by the processor 2401.
  • the processor 2401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2401 or an instruction in a form of software.
  • the processor 2401 described above may be a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic device, or a logic block diagram.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in RAM, Flash, ROM, Programmable Read Only Memory or electrically erasable programmable Memory, registers, etc. are well-known in the storage medium.
  • the storage medium is located in the memory 2404.
  • the processor 2401 reads the information in the memory 2404 and completes the steps of the above method in combination with hardware.
  • the base station 2400 in FIG. 24 can implement the processes performed by the serving base station of the target user of the downlink CoMP user data in FIG. 4 to FIG. 5 and FIG. 9 to FIG. 14 . To avoid repetition, details are not described herein.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect connection or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提出了一种数据传输的方法,包括:集中处理节点从第一网关GW接收下行用户数据;所述集中处理节点将所述下行用户数据发送至对应的基站;在确定所述集中处理节点与所述第一GW之间的接口拥塞时,所述集中处理节点发送第一承载切换请求消息至所述第一GW,所述第一承载切换请求消息用于指示所述第一GW绕过所述集中处理节点进行数据传输。本发明实施例中,集中处理节点在确定集中处理节点与第一GW之间的接口拥塞时,将第一承载切换请求消息发送至第一GW,以使得第一GW将下行用户数据绕过集中处理节点进行传输,这样,能够减少集中处理节点与第一GW之间的接口的数据流量,进而能够缓解或消除接口的拥塞状况。

Description

数据传输的方法、 集中处理节点、 网关及基站 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法、 集中处理节点、 网关及基站。 背景技术
十办作多点传输 ( Coordinated Multi-Point transmission and reception , CoMP )是长期演进 ( Long Term Evolution- Advanced, LTE-A ) 中提出的一 种能有效提高无线网络的系统容量的技术。参与 CoMP的用户数据通过协同 调度, 联合编译码, 可以有效改善小区边缘用户的干扰特性, 能够通过提高 小区边缘用户的传输效率来提升整个系统的传输效率。
对于协同调度 ( Coordinated Scheduling , CS ) 或联合处理 ( Joint Processing, JP )等 CoMP应用模式, 通常上下行 CoMP的用户数据汇聚到 一个集中处理节点进行处理。集中处理节点对 CoMP的用户数据的处理包括 调度、 联合编码或联合译码等。
在如图 1所示的云无线接入网 ( Cloud Radio Access Network, CRAN ) 架构中, 集中处理节点位于基带处理单元中心(Base Band Unit center, BBU center ), 并且集中处理节点通过通用公共无线接口 (Common Public Radio Interface, CPRI )与多个远端射频单元 ( Remote Radio Unit, RRU )相连。 其中, RRU具有射频功能。 BBU center与每个 RRU之间传输 IQ基带信号, 数据传输量比较大。 由于 BBU center的 S1接口要收发每一个 RRU覆盖范 围内的用户数据, 容易造成传输瓶颈。
在如图 2所示的混合层一( Hybrid L1 )架构中, 集中处理节点位于 BBU center, 并且通过分组传送网 ( Packet Transport Network, PTN )与多个演进 型 RRU ( evolved RRU, eRRU )相连。 其中, eRRU具有射频功能以及基带 压缩功能。 这样,基带信号经压缩后在 BBU center和 eRRU之间传输, 相对 于 CRAN来说, 可以减小数据传输量。 但是, BBU center的 S 1接口仍然要 收发每一个 eRRU覆盖范围内的 CoMP用户数据, 依然会造成传输瓶颈。 发明内容 本发明实施例提供了一种数据传输的方法, 能够防止集中处理节点的传 输瓶颈。
第一方面, 提供了一种数据传输的方法, 所述方法包括: 集中处理节点 从第一网关 GW接收下行用户数据;所述集中处理节点将所述下行用户数据 发送至对应的基站;在确定所述集中处理节点与所述第一 GW之间的接口拥 塞时, 所述集中处理节点发送第一承载切换请求消息至所述第一 GW, 所述 第一承载切换请求消息用于指示所述第一 GW绕过所述集中处理节点进行 数据传输。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述下行用户 数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据,所述 集中处理节点将所述下行用户数据发送至对应的基站, 包括: 所述集中处理 节点将所述下行非 CoMP用户数据发送至第一基站,将所述下行 CoMP用户 数据发送至至少两个基站, 其中, 所述第一基站为所述下行非 CoMP用户数 据的目标用户的服务基站,所述至少两个基站用于对所述下行 CoMP用户数 据进行协作发送,所述第一承载切换请求消息具体用于指示所述第一 GW将 所述下行非 CoMP用户数据绕过所述集中处理节点传输至所述第一基站。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实 现方式中,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下 行 CoMP用户数据, 所述将所述下行 CoMP用户数据发送至至少两个基站, 包括: 将所述第一下行 CoMP用户数据发送至至少两个第二基站, 将所述第 二下行 CoMP用户数据发送至至少两个第三基站, 其中, 所述至少两个第二 基站用于对所述第一下行 CoMP用户数据进行协作发送,所述至少两个第三 基站用于对所述第二下行 CoMP用户数据进行协作发送,在所述集中处理节 点发送第一承载切换请求消息至所述第一 GW之后, 所述方法还包括: 在确 定所述接口仍然拥塞时, 所述集中处理节点发送第二承载切换请求消息至所 述第一 GW,所述第二承载切换请求消息用于指示所述第一 GW将所述第一 下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述方法还包括: 所述集中处理节点发送生成承载 请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个第二基站的 标识信息,所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW 至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述 第一 GW接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至 所述 k个第二基站, 其中, k为正整数。
结合第一方面, 在第一方面的第四种可能的实现方式中, 所述下行用户 数据为下行 CoMP用户数据,所述下行 CoMP用户数据包括第一下行 CoMP 用户数据和第二下行 CoMP用户数据,所述集中处理节点将所述下行用户数 据发送至对应的基站, 包括: 所述集中处理节点将所述第一下行 CoMP用户 数据发送至至少两个第二基站,将所述第二下行 CoMP用户数据发送至至少 两个第三基站, 其中, 所述至少两个第二基站用于对所述第一下行 CoMP用 户数据进行协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用 户数据进行协作发送, 所述第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少 两个第二基站。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述方法还包括: 所述集中处理节点发送生成承载 请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个第二基站的 标识信息,所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW 至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述 第一 GW接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至 所述 k个第二基站, 其中, k为正整数。
结合第一方面的第二种可能的实现方式至第一方面的第五种可能的实 现方式中的任一种可能的实现方式, 在第一方面的第六种可能的实现方式 中, 所述集中处理节点接收所述至少两个第二基站中的所述第一下行 CoMP 用户数据的目标用户的服务基站发送的下行调度请求消息; 所述集中处理节 点进行下行调度并将调度结果发送至所述至少两个第二基站, 其中, 所述调 度结果包括以下至少一种: 无线链路控制 RLC分段信息、 编码调制信息和 发射功率。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实 现方式中, 所述方法还包括: 所述集中处理节点接收所述第一下行 CoMP用 户数据的目标用户的服务基站发送的 ACK消息; 所述集中处理节点将第一 消息发送至所述至少两个第二基站, 所述第一消息用于指示所述至少两个第 二基站删除所述第一下行 CoMP用户数据的数据副本。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实 现方式中, 所述方法还包括: 所述集中处理节点接收所述第一下行 CoMP用 户数据的目标用户的服务基站发送的 NACK 消息; 当重传次数未达到预设 的最大重传次数时, 所述集中处理节点发送重传调度确认消息至所述至少两 个第二基站, 所述重传调度确认消息用于指示所述至少两个第二基站将所述 第一下行 CoMP用户数据再次进行协作发送, 当重传次数达到预设的最大重 传次数时, 所述集中处理节点将第一消息发送至所述至少两个第二基站, 所 述第一消息用于指示所述至少两个第二基站删除所述第一下行 CoMP用户 数据的数据副本。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面 的第九种可能的实现方式中, 所述方法还包括: 在确定所述接口空闲时, 所 述集中处理节点发送第三承载切换请求消息至所述第一 GW, 所述第三承载 切换请求消息用于指示所述第一 GW将所述下行用户数据,经所述集中处理 节点传输至所述对应的基站。
第二方面, 提供了一种数据传输的方法, 所述方法包括: 集中处理节点 接收上行用户数据, 所述上行用户数据包括第一基站发送的上行非协作多点 传输 CoMP用户数据;所述集中处理节点将所述上行用户数据发送至第一网 关 GW; 在确定所述集中处理节点与所述第一 GW之间的接口拥塞时, 所述 集中处理节点发送第一承载切换请求消息至所述第一基站, 所述第一承载切 换请求消息用于指示所述第一基站将所述上行非 CoMP用户数据绕过所述 集中处理节点传输至所述第一 GW。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述上行用户 数据还包括上行 CoMP用户数据, 所述集中处理节点接收上行用户数据, 包 括: 所述集中处理节点从所述第一基站接收所述上行非 CoMP用户数据, 从 至少两个第二基站接收所述上行 CoMP用户数据。
结合第二方面或者第二方面的第一种可能的实现方式,在第二方面的第 二种可能的实现方式中, 所述方法还包括: 在确定所述接口空闲时, 所述集 中处理节点发送第二承载切换请求消息至所述第一基站, 所述第二承载切换 请求消息用于指示所述第一基站将所述上行非 CoMP用户数据经过所述集 中处理节点传输至所述第一 GW。
第三方面, 提供了一种数据传输的方法, 所述方法包括: 第一设备发送 用户数据至集中处理节点, 以使得所述集中处理节点将所述用户数据发送至 第二设备; 所述第一设备接收所述集中处理节点发送的第一承载切换请求消 息, 所述第一承载切换请求消息用于指示所述第一设备绕过所述集中处理节 点进行数据传输; 所述第一设备根据所述第一承载切换请求消息, 将所述用 户数据发送至所述第二设备。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述第一设备 为第一网关 GW, 所述第二设备为与所述用户数据对应的基站。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实 现方式中, 所述用户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述第一承载切换请求消息具体用于指示所述第一设备将 所述下行非 CoMP用户数据绕过所述集中处理节点传输至第一基站,所述第 一基站为所述下行非 CoMP用户数据的目标用户的服务基站,所述第一设备 根据所述第一承载切换请求消息, 将所述用户数据发送至所述第二设备, 包 括:所述第一设备将所述下行非 CoMP用户数据绕过所述集中处理节点传输 至第一基站, 将所述下行 CoMP用户数据发送至所述集中处理节点, 以使得 所述集中处理节点将所述下行 CoMP用户数据发送至至少两个基站,所述至 少两个基站用于对所述下行 CoMP用户数据进行协作发送, 其中, 所述第二 设备包括所述第一基站和所述至少两个基站。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实 现方式中,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下 行 CoMP用户数据, 所述方法还包括: 所述第一设备接收所述集中处理节点 发送的第二承载切换请求消息, 所述第二承载切换请求消息用于指示所述第 一设备将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少 两个第二基站; 所述第一设备根据所述第二承载切换请求消息, 将所述第一 下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点,以使得所述集中 处理节点将所述第二下行 CoMP用户数据发送至至少两个第三基站, 其中, 所述至少两个基站包括所述至少两个第二基站和所述至少两个第三基站, 所 述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发送,所 述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发送。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
结合第三方面的第一种可能的实现方式,在第三方面的第五种可能的实 现方式中, 所述用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数据 包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述第一承载切 换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过 所述集中处理节点传输至所述至少两个第二基站, 所述第一设备根据所述第 一承载切换请求消息, 将所述用户数据发送至所述第二设备, 包括: 所述第 一设备将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少 两个第二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点, 以使得所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两个 第三基站, 其中, 所述第二设备包括所述至少两个第二基站和所述至少两个 第三基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行 协作发送。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
结合第三方面, 在第三方面的第七种可能的实现方式中, 所述第一设备 为第一基站, 所述第二设备为第一 GW, 所述用户数据包括上行非 CoMP用 户数据, 所述第一承载切换请求消息具体用于指示所述第一设备将所述上行 非 CoMP用户数据绕过所述集中处理节点传输至所述第二设备,所述第一设 备根据所述第一承载切换请求消息, 将所述用户数据发送至所述第二设备, 包括:所述第一设备将所述上行非 CoMP用户数据绕过所述集中处理节点传 输至所述第二设备。
结合第三方面的第七种可能的实现方式,在第三方面的第八种可能的实 现方式中, 所述用户数据还包括上行 CoMP用户数据, 所述第一设备根据所 述第一承载切换请求消息, 将所述用户数据发送至所述第二设备, 还包括: 所述第一设备, 与至少一个基站一起, 将所述上行 CoMP用户数据协作发送 至所述集中处理节点,以使得所述集中处理节点将所述上行 CoMP用户数据 发送至所述第二设备, 其中, 所述第一设备与所述至少一个基站用于对所述 上行 CoMP用户数据进行协作发送。
结合第三方面或者上述第三方面的任一种可能的实现方式,在第三方面 的第九种可能的实现方式中, 所述方法还包括: 所述第一设备接收所述集中 处理节点发送的第三承载切换请求消息, 所述第二承载切换请求消息用于指 示所述第一设备经过所述集中处理节点进行数据传输; 所述第一设备根据所 述第二承载切换请求消息, 将所述用户数据发送至所述第二设备。
第四方面, 提供了一种数据传输的方法, 所述方法包括: 基站接收网关
GW发送的下行协作多点传输 CoMP用户数据; 所述基站将下行调度请求消 息发送至集中处理节点, 所述下行调度请求消息用于请求所述集中处理节点 进行下行调度; 所述基站接收所述集中处理节点发送的调度结果, 所述调度 结果至少包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和发 射功率; 所述基站根据所述调度结果, 与至少一个基站协作发送所述下行 CoMP用户数据, 其中, 所述基站为所述下行 CoMP用户数据的目标用户的 服务基站。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述方法还包 括: 所述基站将 ACK消息发送至所述集中处理节点; 所述基站接收所述集 中处理节点发送的第一消息, 所述第一消息用于指示所述基站删除所述下行 CoMP用户数据的数据副本; 所述基站删除所述下行 CoMP用户数据的数据 副本。
结合第四方面, 在第四方面的第二种可能的实现方式中, 所述方法还包 括: 所述基站将 NACK 消息发送至所述集中处理节点; 所述基站接收所述 集中处理节点发送的重传调度确认消息或第一消息, 所述重传调度确认消息 用于指示所述基站将所述下行 CoMP用户数据与所述至少一个基站再次进 行协作发送,所述第一消息用于指示所述基站删除所述下行 CoMP用户数据 的数据副本;所述基站根据所述重传调度确认消息将所述下行 CoMP用户数 据与所述至少一个基站再次进行协作发送, 或者, 所述基站根据所述第一消 息删除所述下行 CoMP用户数据的数据副本。
第五方面, 提供了一种集中处理节点, 所述集中处理节点包括: 接收单 元, 用于从第一网关 GW接收下行用户数据; 发送单元, 用于将所述接收单 元接收的所述下行用户数据发送至对应的基站; 所述发送单元, 还用于在确 定所述集中处理节点与所述第一 GW之间的接口拥塞时,发送第一承载切换 请求消息至所述第一 GW, 所述第一承载切换请求消息用于指示所述第一 GW绕过所述集中处理节点进行数据传输。 结合第五方面, 在第五方面的第一种可能的实现方式中, 所述下行用户 数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述发送单元, 具体用于: 将所述下行非 CoMP用户数据发送至第一基 站, 将所述下行 CoMP用户数据发送至至少两个基站, 其中, 所述第一基站 为所述下行非 CoMP用户数据的目标用户的服务基站,所述至少两个基站用 于对所述下行 CoMP用户数据进行协作发送,所述第一承载切换请求消息具 体用于指示所述第一 GW将所述下行非 CoMP用户数据绕过所述集中处理节 点传输至所述第一基站。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实 现方式中,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下 行 CoMP用户数据, 所述将所述下行 CoMP用户数据发送至至少两个基站, 包括: 将所述第一下行 CoMP用户数据发送至至少两个第二基站, 将所述第 二下行 CoMP用户数据发送至至少两个第三基站, 其中, 所述至少两个第二 基站用于对所述第一下行 CoMP用户数据进行协作发送,所述至少两个第三 基站用于对所述第二下行 CoMP用户数据进行协作发送, 所述发送单元, 还 用于: 在确定所述接口仍然拥塞时, 发送第二承载切换请求消息至所述第一 GW, 所述第二承载切换请求消息用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述发送单元, 还用于: 发送生成承载请求消息至 所述第二 GW, 所述生成承载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW至所述 k 个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW 接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个 第二基站, 其中, k为正整数。
结合第五方面, 在第五方面的第四种可能的实现方式中, 所述下行用户 数据为下行 CoMP用户数据,所述下行 CoMP用户数据包括第一下行 CoMP 用户数据和第二下行 CoMP用户数据, 所述发送单元, 具体用于: 将所述第 一下行 CoMP用户数据发送至至少两个第二基站, 将所述第二下行 CoMP 用户数据发送至至少两个第三基站, 其中, 所述至少两个第二基站用于对所 述第一下行 CoMP用户数据进行协作发送,所述至少两个第三基站用于对所 述第二下行 CoMP用户数据进行协作发送,所述第一承载切换请求消息具体 用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节 点传输至所述至少两个第二基站。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述发送单元, 还用于: 发送生成承载请求消息至 所述第二 GW, 所述生成承载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW至所述 k 个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW 接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个 第二基站, 其中, k为正整数。
结合第五方面的第二种可能的实现方式至第五方面的第五种可能的实 现方式中的任一种可能的实现方式, 在第五方面的第六种可能的实现方式 中, 还包括处理单元: 所述接收单元, 还用于接收所述至少两个第二基站中 的所述第一下行 CoMP用户数据的目标用户的服务基站发送的下行调度请 求消息; 所述处理单元, 用于进行下行调度; 所述发送单元, 还用于将所述 处理节点的调度结果发送至所述至少两个第二基站, 其中, 所述调度结果包 括以下至少一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率。
结合第五方面的第六种可能的实现方式,在第五方面的第七种可能的实 现方式中, 所述接收单元, 还用于接收所述第一下行 CoMP用户数据的目标 用户的服务基站发送的 ACK消息; 所述发送单元, 还用于将第一消息发送 至所述至少两个第二基站, 所述第一消息用于指示所述至少两个第二基站删 除所述第一下行 CoMP用户数据的数据副本。
结合第五方面的第六种可能的实现方式,在第五方面的第八种可能的实 现方式中, 所述接收单元, 还用于接收所述第一下行 CoMP用户数据的目标 用户的服务基站发送的 NACK 消息; 所述发送单元, 还用于当重传次数未 达到预设的最大重传次数时,发送重传调度确认消息至所述至少两个第二基 站, 所述重传调度确认消息用于指示所述至少两个第二基站将所述第一下行 CoMP用户数据再次进行协作发送,当重传次数达到预设的最大重传次数时, 将第一消息发送至所述至少两个第二基站, 所述第一消息用于指示所述至少 两个第二基站删除所述第一下行 CoMP用户数据的数据副本。
结合第五方面或者上述第五方面的任一种可能的实现方式,在第五方面 的第九种可能的实现方式中, 所述发送单元, 还用于:
在确定所述接口空闲时, 发送第三承载切换请求消息至所述第一 GW, 所述第三承载切换请求消息用于指示所述第一 GW将所述下行用户数据,经 所述集中处理节点传输至所述对应的基站。
第六方面, 提供了一种集中处理节点, 所述集中处理节点包括: 接收单 元, 用于接收上行用户数据, 所述上行用户数据包括第一基站发送的上行非 协作多点传输 CoMP用户数据; 发送单元, 用于将所述接收单元接收的所述 上行用户数据发送至第一网关 GW; 所述发送单元, 还用于在确定所述集中 处理节点与所述第一 GW之间的接口拥塞时,发送第一承载切换请求消息至 所述第一基站, 所述第一承载切换请求消息用于指示所述第一基站将所述上 行非 CoMP用户数据绕过所述集中处理节点传输至所述第一 GW。
结合第六方面, 在第六方面的第一种可能的实现方式中, 所述上行用户 数据还包括上行 CoMP用户数据, 所述接收单元, 具体用于: 从所述第一基 站接收所述上行非 CoMP 用户数据, 从至少两个第二基站接收所述上行 CoMP用户数据。
结合第六方面或者第六方面的第一种可能的实现方式,在第六方面的第 二种可能的实现方式中, 所述发送单元, 还用于: 在确定所述接口空闲时, 发送第二承载切换请求消息至所述第一基站, 所述第二承载切换请求消息用 于指示所述第一基站将所述上行非 CoMP用户数据经过所述集中处理节点 传输至所述第一 GW。
第七方面, 提供了一种第一设备, 所述第一设备包括: 发送单元, 用于 发送用户数据至集中处理节点, 以使得所述集中处理节点将所述用户数据发 送至第二设备; 接收单元, 用于接收所述集中处理节点发送的第一承载切换 请求消息, 所述第一承载切换请求消息用于指示所述第一设备绕过所述集中 处理节点进行数据传输; 所述发送单元, 还用于根据所述接收单元接收的所 述第一承载切换请求消息, 将所述用户数据发送至所述第二设备。
结合第七方面, 在第七方面的第一种可能的实现方式中, 所述第一设备 为第一网关 GW, 所述第二设备为与所述用户数据对应的基站。
结合第七方面的第一种可能的实现方式,在第七方面的第二种可能的实 现方式中, 所述用户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述第一承载切换请求消息具体用于指示所述第一设备将 所述下行非 CoMP用户数据绕过所述集中处理节点传输至第一基站,所述第 一基站为所述下行非 CoMP用户数据的目标用户的服务基站, 所述发送单 元, 具体用于: 将所述下行非 CoMP用户数据绕过所述集中处理节点传输至 第一基站, 将所述下行 CoMP用户数据发送至所述集中处理节点, 以使得所 述集中处理节点将所述下行 CoMP用户数据发送至至少两个基站,所述至少 两个基站用于对所述下行 CoMP用户数据进行协作发送, 其中, 所述第二设 备包括所述第一基站和所述至少两个基站。
结合第七方面的第二种可能的实现方式,在第七方面的第三种可能的实 现方式中,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下 行 CoMP用户数据, 所述接收单元, 还用于接收所述集中处理节点发送的第 二承载切换请求消息, 所述第二承载切换请求消息用于指示所述第一设备将 所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个第二 基站; 所述发送单元, 还用于根据所述接收单元接收的所述第二承载切换请 求消息,将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 至少两个第二基站,将所述第二下行 CoMP用户数据发送至所述集中处理节 点,以使得所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两 个第三基站, 其中, 所述至少两个基站包括所述至少两个第二基站和所述至 少两个第三基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数 据进行协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数 据进行协作发送。
结合第七方面的第三种可能的实现方式,在第七方面的第四种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
结合第七方面的第一种可能的实现方式,在第七方面的第五种可能的实 现方式中, 所述用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数据 包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述第一承载切 换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过 所述集中处理节点传输至所述至少两个第二基站,所述发送单元,具体用于: 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个第 二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点, 以使得 所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两个第三基 站, 其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三基 站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发 送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发 送。
结合第七方面的第五种可能的实现方式,在第七方面的第六种可能的实 现方式中, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
结合第七方面, 在第七方面的第七种可能的实现方式中, 所述第一设备 为第一基站, 所述第二设备为第一 GW, 所述用户数据包括上行非 CoMP用 户数据, 所述第一承载切换请求消息具体用于指示所述第一设备将所述上行 非 CoMP用户数据绕过所述集中处理节点传输至所述第二设备,所述发送单 元, 具体用于: 将所述上行非 CoMP用户数据绕过所述集中处理节点传输至 所述第二设备。
结合第七方面的第七种可能的实现方式,在第七方面的第八种可能的实 现方式中, 所述用户数据还包括上行 CoMP用户数据, 所述发送单元, 还用 于: 与至少一个基站一起, 将所述上行 CoMP用户数据协作发送至所述集中 处理节点,以使得所述集中处理节点将所述上行 CoMP用户数据发送至所述 第二设备, 其中, 所述第一设备与所述至少一个基站用于对所述上行 CoMP 用户数据进行协作发送。
结合第七方面或者上述第七方面的任一种可能的实现方式,在第七方面 的第九种可能的实现方式中, 所述接收单元, 还用于接收所述集中处理节点 发送的第三承载切换请求消息, 所述第二承载切换请求消息用于指示所述第 一设备经过所述集中处理节点进行数据传输; 所述发送单元, 还用于根据所 述接收单元接收的所述第二承载切换请求消息,将所述用户数据发送至所述 第二设备。
第八方面, 提供了一种基站, 所述基站包括: 接收单元, 用于接收网关 GW发送的下行协作多点传输 CoMP用户数据; 发送单元, 用于将下行调度 请求消息发送至集中处理节点, 所述下行调度请求消息用于请求所述集中处 理节点进行下行调度; 所述接收单元, 还用于接收所述集中处理节点发送的 调度结果, 所述调度结果至少包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率; 所述发送单元, 还用于根据所述接收单元接收的 所述调度结果, 与至少一个基站协作发送所述接收单元接收的所述下行 CoMP用户数据, 其中, 所述基站为所述下行 CoMP用户数据的目标用户的 服务基站。 结合第八方面, 在第八方面的第一种可能的实现方式中, 所述基站还包 括处理单元: 所述发送单元, 还用于将 ACK消息发送至所述集中处理节点; 所述接收单元, 还用于接收所述集中处理节点发送的第一消息, 所述第一消 息用于指示所述基站删除所述下行 CoMP用户数据的数据副本;所述处理单 元, 用于根据所述接收单元接收的所述第一消息, 删除所述下行 CoMP用户 数据的数据副本。
结合第八方面, 在第八方面的第二种可能的实现方式中, 所述基站还包 括处理单元: 所述发送单元, 还用于将 NACK 消息发送至所述集中处理节 点; 所述接收单元, 还用于接收所述集中处理节点发送的重传调度确认消息 或第一消息,所述重传调度确认消息用于指示所述基站将所述下行 CoMP用 户数据与所述至少一个基站再次进行协作发送, 所述第一消息用于指示所述 基站删除所述下行 CoMP用户数据的数据副本; 所述处理单元, 用于根据所 述接收单元接收的所述重传调度确认消息将所述下行 CoMP用户数据与所 述至少一个基站再次进行协作发送, 或者, 根据所述接收单元接收的所述第 一消息删除所述下行 CoMP用户数据的数据副本。
本发明实施例中,集中处理节点在确定集中处理节点与第一 GW之间的 接口拥塞时, 将第一承载切换请求消息发送至第一 GW, 以使得第一 GW将 下行用户数据绕过集中处理节点进行传输, 这样, 能够减少集中处理节点与 第一 GW之间的接口的数据流量, 进而能够緩解或消除接口的拥塞状况。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是云无线接入网架构的示意图。
图 2是 Hybrid L1架构的示意图。
图 3是本发明实施例的一个应用场景的示意图。
图 4是本发明一个实施例的数据传输的方法的流程图。
图 5是本发明另一个实施例的数据传输的方法的流程图。
图 6是本发明另一个实施例的数据传输的方法的流程图。 图 7是本发明另一个实施例的数据传输的方法的流程图。
图 8是本发明另一个实施例的数据传输的方法的流程图。
图 9是本发明另一个实施例的数据传输的方法的流程图。
图 10是本发明一个实施例的数据传输的方法的流程的示意图。
图 11是本发明另一个实施例的数据传输的方法的流程的示意图。
图 12是本发明另一个实施例的数据传输的方法的流程的示意图。
图 13是本发明另一个实施例的数据传输的方法的流程的示意图。
图 14是本发明另一个实施例的数据传输的方法的流程的示意图。
图 15是本发明另一个实施例的数据传输的方法的流程的示意图。
图 16是本发明另一个实施例的数据传输的方法的流程的示意图。
图 17是本发明一个实施例的集中处理节点的框图。
图 18是本发明另一个实施例的集中处理节点的框图。
图 19是本发明一个实施例的第一设备的框图。
图 20是本发明一个实施例的基站的框图。
图 21是本发明另一个实施例的集中处理节点的框图。
图 22是本发明另一个实施例的集中处理节点的框图。
图 23是本发明另一个实施例的第一设备的框图。
图 24是本发明另一个实施例的基站的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在本说明书中使用的术语 "部件"、 "模块"、 "系统 "等用于表示计算机 相关的实体、 硬件、 固件、 硬件和软件的组合、 软件、 或执行中的软件。 例 如, 部件可以是但不限于, 在处理器上运行的进程、 处理器、 对象、 可执行 文件、 执行线程、 程序和 /或计算机。 通过图示, 在计算设备上运行的应用和 计算设备都可以是部件。一个或多个部件可驻留在进程和 /或执行线程中,部 件可位于一个计算机上和 /或分布在两个或更多个计算机之间。此外,这些部 件可由存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一 个或多个数据分组(例如来自与本地系统、分布式系统和 /或网络间的另一部 件交互的二个部件的数据, 例如通过信号与其它系统交互的互联网)的信号 通过本地和 /或远程进程来通信。
此外, 结合基站描述了各个实施例。 基站可用于与移动设备通信, 基站 可以是全球移动通讯( Global System of Mobile communication, GSM )或码 分多址 ( Code Division Multiple Access, CDMA )中的基站 ( Base Transceiver Station, BTS ), 也可以是宽带码分多址(Wideband Code Division Multiple Access, WCDMA )中的基站( NodeB , NB ),还可以是长期演进 ( Long Term Evolution, LTE ) 中的演进型基站 ( Evolutional Node B, eNB或 eNodeB ), 或者中继站或接入点, 或者未来 5G网络中的基站设备等。 此外, 结合接入 终端描述了各个实施例。 接入终端也可以称为系统、 用户单元、 用户站、 移 动站、 移动台、 远方站、 远程终端、 移动设备、 用户终端、 终端、 无线通信 设备、 用户代理、 用户装置或用户设备(User Equipment, UE )。 接入终端 可以是蜂窝电话、无绳电话、会话启动协议( Session Initiation Protocol, SIP ) 电话、无线本地环路( Wireless Local Loop, WLL )站、个人数字处理( Personal Digital Assistant, PDA ), 具有无线通信功能的手持设备、 计算设备或连接到 无线调制解调器的其它处理设备。
此外, 本发明的各个方面或特征可以实现成方法、 装置或使用标准编程 和 /或工程技术的制品。 本申请中使用的术语 "制品"涵盖可从任何计算机可 读器件、 载体或介质访问的计算机程序。 例如, 计算机可读介质可以包括, 但不限于: 磁存储器件(例如, 硬盘、 软盘或磁带等), 光盘 (例如, 压缩 盘( Compact Disk, CD )、 数字通用盘( Digital Versatile Disk, DVD )等), 智能卡和闪存器件(例如,可擦写可编程只读存储器( Erasable Programmable Read-Only Memory, EPROM )、 卡、 棒或钥匙驱动器等)。 另夕卜, 本文描述 的各种存储介质可代表用于存储信息的一个或多个设备和 /或其它机器可读 介质。 术语 "机器可读介质" 可包括但不限于, 无线信道和能够存储、 包含 和 /或承载指令和 /或数据的各种其它介质。
图 1是云无线接入网架构的示意图。 图 1 中的 CRAN架构包括 BBU center 101, 以及 RRU 102。 RRU 102与 BBU center 101之间通过 CPRI接口 互连。 集中处理节点位于 BBU center。
由于 BBU center 101的 S 1接口要收发每一个 RRU 102覆盖范围内的所 有的用户数据, 包括每一个 RRU 102的 CoMP用户数据和非 CoMP用户数 据, 容易造成 S1接口的传输瓶颈。
图 2是 Hybrid L1架构的示意图。图 2中的 Hybrid L1架构包括 BBU center 201、 基站 202, 以及交换设备 203。 基站 202与 BBU center 201之间通过 PTN相连。其中 PTN中可包括至少一个交换设备 203。基站 202可以为 eRRU, 集中处理节点位于 BBU center。 下行 CoMP用户数据首先从核心网(图 2中 未示出)传输到集中处理节点, 然后再从集中处理节点经 PTN传输至协作 的每个基站。 上行 CoMP用户数据从协作的每个基站经 PTN传输到集中处 理节点, 然后再从集中处理节点传输至核心网。 由于集中处理节点与核心网 之间通过 S1接口连接,这样,容易造成集中处理节点的 S1接口的传输瓶颈。
图 3是本发明实施例的一个应用场景的示意图。 图 3中所示的场景为分 布式架构, 包括集中处理节点 301和基站 302。 基站 302与基站 302之间、 集中处理节点 301与基站 302之间通过 e-X2互连。 应注意, 图 3所示的集 中处理节点可以是基站。 例如, 集中处理节点可以是宏基站。
一般情况下, 下行 CoMP用户数据首先从核心网(图 3中未示出 )传输 到集中处理节点 301, 然后再从集中处理节点 301 传输至协作的每个基站 302。
下行非 CoMP用户数据可以从核心网(图 3中未示出)传输到集中处理 节点 301, 然后再从集中处理节点 301传输至下行非 CoMP用户数据的目标 用户的服务基站。 或者下行非 CoMP用户数据也可以从核心网(图 3中未示 出 ) 直接传输至下行非 CoMP用户数据的目标用户的服务基站。
上行 CoMP用户数据从协作的每个基站 302传输到集中处理节点 301, 然后再从集中处理节点 301传输至核心网。
上行非 CoMP用户数据可以从一个基站传输到集中处理节点 301, 然后 再从集中处理节点 301传输至核心网(图 3中未示出)。或者, 上行非 CoMP 用户数据也可以从一个基站直接传输至核心网 (图 3中未示出)。
当集中处理节点 301与核心网之间传输的数据流量较大时,有可能会导 致集中处理节点 301与核心网之间的接口的拥塞, 进而造成该接口的传输瓶 颈。 例如, 集中处理节点 301与核心网之间的接口可以是 S1接口。
本发明实施例针对如图 3所示的场景, 提出一种数据传输的方法, 能够 避免集中处理节点与核心网之间的接口的传输瓶颈。 应注意, 本发明实施例中, 以网关(Gateway, GW )为核心网的边缘节 点。
应注意, 本发明实施例中, 集中处理节点是一个逻辑单元, 集中处理节 点可以是位于 BBU center中的,或者集中处理节点也可以是分布式架构中的 承担集中处理节点功能的基站, 本发明对此不作限定。
本发明实施例中, 集中处理节点与各个基站之间的连接为自定义接口, 具体地, 集中处理节点与各个基站之间的接口为非 S1接口, 例如, 可以是 X2接口或者 eX2接口或者以太网接口等。
本发明实施例中, 集中处理节点与核心网之间、 各个基站与核心网之间 通过 S1接口互连。 应注意, S1接口是逻辑接口。
本发明实施例中, 基站具有 L2 (数据链路层) -L1 (物理层) 的数据处 理功能。例如,基站具有 L2的协议栈功能,包括分组数据汇聚层协议( Packet Data Convergence Protocol, PDCP )、 无线链路控制层 ( Radio Link Control, RLC )和媒体接入控制层 (Medium Access Control, MAC )。
集中处理节点具有完整的 L3 (无线资源控制) -L1的基站功能。 例如, 集中处理节点不仅具有 PDCP、 RLC和 MAC等 L2的协议栈功能, 并且集 中处理节点还具有 L2 的调度功能和下行混合自动请求重传 (Hybrid Automatic Repeat reQuest, HARQ ) 实体维护功能。
图 4是本发明一个实施例的数据传输的方法的流程图。 图 4所示的方法 包括:
401 , 集中处理节点从第一 GW接收下行用户数据。
402, 集中处理节点将所述下行用户数据发送至对应的基站。
403, 在确定所述集中处理节点与所述第一 GW之间的接口拥塞时, 所 述集中处理节点发送第一承载切换请求消息至所述第一 GW, 所述第一承载 切换请求消息用于指示所述第一 GW绕过所述集中处理节点进行数据传输。
本发明实施例中,集中处理节点在确定集中处理节点与第一 GW之间的 接口拥塞时, 将第一承载切换请求消息发送至第一 GW, 以使得第一 GW将 下行用户数据绕过集中处理节点进行传输, 这样, 能够减少集中处理节点与 第一 GW之间的接口的数据流量, 进而能够緩解或消除接口的拥塞状况,从 而能够有效避免集中处理节点与第一 GW之间的接口的传输瓶颈。
应注意, 本发明实施例中, 集中处理节点与第一 GW之间的接口可以是 SI接口。
具体地, 在 403中, 集中处理节点可以通过检测接口的状态以确定该接 口拥塞。 其中接口的状态可以包括接口的带宽使用率。 集中处理节点可以定 时地或者周期性地检测该接口的状态。 例如, 可以是在工作日的 9时至 18 时每隔 15分钟进行一次检测。 或者, 可以是在每天的 20时至 24时每隔 10 分钟进行一次检测。 或者, 还可以是以 24小时为周期进行检测。 等等。 本 发明对此不作限定。
应注意, 本发明实施例对检测该接口的状态的方法不作限定。 例如, 集 中处理节点可以直接检测集中处理节点与第一 GW之间的接口的状态。再例 如, 集中处理节点也可以检测集中处理节点与各个基站之间的链路的接口的 状态,并进一步釆用一定的算法计算得到集中处理节点与第一 GW之间的接 口的状态。 本发明对此不作限定。
可以理解, 集中处理节点确定该接口拥塞, 可以是集中处理节点在一段 时间内均检测到该接口的带宽使用率大于第一阔值。 例如, 集中处理节点在 连续的十分钟内, 每隔一分钟进行一次检测, 每一次检测均检测到该接口的 带宽使用率大于第一阔值, 则集中处理节点可确定该接口拥塞。 集中处理节 点根据该接口的状态, 也可以通过其他的方法, 确定该接口拥塞。 本发明对 此不作限定。
应注意, 本发明实施例中, 第一阔值可以是运营商预定义的。 本发明对 此不作限定。
本发明实施例中, 401中的下行用户数据可包括下行非 CoMP用户数据 和 /或下行 CoMP用户数据。
具体地, 401中, 集中处理节点通过该接口从第一 GW接收下行用户数 据。
应注意, 本发明实施例中, 在 403中, 集中处理节点发送第一承载切换 请求消息至第一 GW, 可以是集中处理节点直接地将第一承载切换请求消息 发送至第一 GW, 或者也可以是集中处理节点间接地将第一承载切换请求消 息发送至第一 GW, 例如可以是集中处理节点发送第一承载切换请求消息至 第一移动管理实体( Mobility Management Entity, MME ), 再由该第一 MME 发送更新承载请求消息至第一 GW。 本发明对此不作限定。 可选地, 作为一个实施例,
401中的下行用户数据包括下行非 CoMP用户数据和下行 CoMP用户数 据, 可以理解, 第一 GW在同时进行下行非 CoMP用户数据和下行 CoMP 用户数据的下行传输, 且都经过集中处理节点进行传输。
具体地, 402中, 集中处理节点将下行非 CoMP用户数据发送至第一基 站, 将下行 CoMP用户数据发送至至少两个基站。 其中, 所述第一基站为所 述下行非 CoMP用户数据的目标用户的服务基站,至少两个基站用于对下行 CoMP用户数据进行协作发送。
其中, 将下行 CoMP用户数据发送至至少两个基站, 可以是: 集中处理 节点对该下行 CoMP用户数据进行联合预编码,然后再将所述进行联合预编 码后的下行 CoMP用户数据发送至至少两个基站,以使得至少两个基站对所 述进行联合预编码后的下行 CoMP用户数据进行协作发送。或者,也可以是: 集中处理节点根据下行 CoMP用户数据生成预编码的控制信息,然后将该下 行 CoMP用户数据和预编码的控制信息一起发送至至少两个基站,以使得至 少两个基站对该下行 CoMP用户数据进行联合预编码并协作发送。本发明对 此不作限定。
并且, 403中的第一承载切换请求消息具体用于指示所述第一 GW将所 述下行非 CoMP用户数据绕过所述集中处理节点传输至所述第一基站。 其 中, 该第一承载切换请求消息可携带该第一基站的标识信息。 本发明实施例 中的标识信息可以是 MAC地址或者物理地址, 或者也可以是其他的标识信 息, 本发明对此不作限定。
这样, 第一 GW在接收到第一承载切换请求消息之后,可根据该第一承 载切换请求消息,将下行非 CoMP用户数据绕过集中处理节点传输至第一基 站。 具体地, 第一 GW可以更改该下行非 CoMP用户数据的传输路由, 以使 第一 GW至第一基站的转发路径中不包含集中处理节点。
例如,若 401中,集中处理节点直接从第一 GW接收下行非 CoMP用户 数据,则在 403之后,第一 GW可以更改下行非 CoMP用户数据的传输路径 的下一跳的地址, 以将下行非 CoMP用户数据直接传输至第一基站。 即, 可 理解是第一 GW的用户平面将下行非 CoMP用户数据的下行路径切换到第一 基站。
可选地,第一 GW可根据第一承载切换请求消息中所携带的第一基站的 标识信息, 生成第一 GW至第一基站的承载, 并且在该第一 GW至第一基 站的承载上, 将下行非 CoMP用户数据传输至第一基站。
可选地, 第一 GW在接收到第一承载切换请求消息之后,还可释放第一 GW至集中处理节点的用于传输下行非 CoMP用户数据的承载。
本发明实施例中, 第一 GW及时释放停止使用的承载, 能够避免资源浪 费, 节省资源占用, 从而能够提高资源利用率。
可选地, 第一 GW在接收到第一承载切换请求消息之后,还可生成第一 指示信息并将所述第一指示信息发送至所述集中处理节点。 其中, 所述第一 指示信息用于指示所述第一 GW停止将下行非 CoMP用户数据发送至所述集 中处理节点。 可理解, 该第一指示信息是一个结束标志(end marker )。 具体 地,该第一指示信息是第一 GW将下行非 CoMP用户数据发送至集中处理节 点的这个过程的 end marker
这样, 在 403之后, 本发明实施例的方法还可包括: 集中处理节点从第 一 GW接收第一指示信息。 该第一指示信息用于指示第一 GW停止将下行 非 CoMP用户数据发送至集中处理节点, 也就是说, 集中处理节点停止从第 一 GW接收下行非 CoMP用户数据。
可选地, 第一 GW在接收到第一承载切换请求消息之后,也可以生成第 一承载切换响应消息, 并将该第一承载切换响应消息发送至集中处理节点。 应注意, 第一 GW发送第一承载切换响应消息至集中处理节点, 可以是第一 GW将第一承载切换响应消息直接地发送至集中处理节点, 也可以是第一 GW将第一承载切换响应消息间接地发送至集中处理节点, 例如, 间接地发 送可以是第一 GW发送更新承载响应消息至第一 MME, 再由第一 MME发 送第一承载切换响应消息至集中处理节点, 本发明对此不作限定。
这样, 在 403之后, 本发明实施例的方法还可包括: 集中处理节点从第 一 GW接收第一承载切换响应消息。
可选地, 在 403之后, 本发明实施例的方法还可包括: 集中处理节点将 已经从所述第一 GW接收的并存储在所述集中处理节点的緩存中的下行非 CoMP用户数据发送至所述第一基站。
若集中处理节点从第一 GW接收第一指示信息, 随后, 集中处理节点可 将从所述第一 GW接收的所述第一指示信息发送至所述第一基站,所述第一 指示信息用于指示所述集中处理节点将从所述第一 GW接收的并存储在所 述集中处理节点的緩存中的下行非 CoMP用户数据发送完毕。 例如, 集中处 理节点可在发送至第一基站的下行非 CoMP用户数据的最后一个数据包中 携带该第一指示信息。 可理解, 集中处理节点发送至第一基站的第一指示信 息, 是集中处理节点将下行非 CoMP用户数据发送至第一基站这个过程的 end marker。
进一步地, 集中处理节点在将第一指示信息发送至所述第一基站之后, 还可释放传输该下行非 CoMP用户数据所釆用的下行传输资源。
本发明实施例中, 集中处理节点及时释放不再使用的传输资源, 能够避 免资源浪费, 节省资源占用, 从而能够提高资源利用率。
对第一基站来说, 在 402中, 可理解第一基站从集中处理节点接收下行 非 CoMP用户数据。 在 403之后, 第一基站从第一 GW接收下行非 CoMP 用户数据。 同时, 第一基站还从集中处理节点接收在集中处理节点的緩存中 的下行非 CoMP用户数据。 而且, 第一基站从第一 GW接收的下行非 CoMP 可能早于或同时与集中处理节点发送的緩存中的下行非 CoMP用户数据到 达第一基站。
这样,第一基站可以先将从集中处理节点接收的下行非 CoMP用户数据 发送至目标用户, 在接收到第一指示信息之后, 才将从第一 GW接收的下行 非 CoMP用户数据发送至目标用户。 例如, 若集中处理节点发送至第一基站 的最后一个数据包携带该第一指示信息, 那么, 第一基站在解析到第一指示 信息之后, 可确定携带第一指示信息的数据包为集中处理节点发送的最后一 个数据包,之后第一基站便可继续解析从第一 GW接收的下行非 CoMP用户 数据。
可理解, 本发明实施例中, 在 403之后, 集中处理节点继续从第一 GW 接收下行 CoMP用户数据,并将该下行 CoMP用户数据发送至至少两个基站。 其中, 至少两个基站用于对下行 CoMP用户数据进行协作发送。
对第一 GW来说, 在 403之后, 第一 GW仍然将下行 CoMP用户数据 发送至集中处理节点,以便集中处理节点将下行 CoMP用户数据发送至至少 两个基站。并且,第一 GW将后续的下行非 CoMP用户数据绕过集中处理节 点发送至第一基站。
这样,在上述实施例之后,第一 GW将下行非 CoMP用户数据绕过集中 处理节点发送至第一基站。例如,第一 GW可将下行非 CoMP用户数据直接 发送至第一基站。 可理解, 第一 GW可以通过第一 GW与第一基站之间的 接口, 将下行非 CoMP用户数据发送至第一基站。 其中, 第一 GW与第一基 站之间的接口可以为 S1接口。 同时, 第一 GW仍然将下行 CoMP用户数据 发送至集中处理节点,集中处理节点将下行 CoMP用户数据发送至至少两个 基站。
在上述实施例中,在集中处理节点确定集中处理节点与第一 GW之间的 接口拥塞时, 集中处理节点通过向第一 GW发送第一承载切换请求消息, 能 够使得第一 GW将下行非 CoMP用户数据绕过集中处理节点传输至对应的基 站。 这样, 能够减少经过集中处理节点与第一 GW之间的接口的数据流量, 能够緩解或者消除该接口的拥塞状况。
同时, 在上述实施例中, 将下行非 CoMP用户数据绕过集中处理节点进 行传输, 能够提高该下行非 CoMP用户数据的传输效率。 另一方面, 下行 CoMP用户数据仍然经过集中处理节点进行传输, 能够保证该下行 CoMP用 户数据的传输效率。
应注意, 上述实施例仅是本发明的一个实施例, 本领域技术人员在上述 实施例的基础上所得到的其他实施例, 均在本发明保护范围之内。
例如,若下行非 CoMP用户数据包括第一下行非 CoMP用户数据和第二 下行非 CoMP用户数据,那么,在 402中,集中处理节点将第一下行非 CoMP 用户数据发送至第一基站 Al, 将第二下行非 CoMP用户数据发送至第一基 站 A2。 其中, 第一基站 A1是第一下行非 CoMP用户数据的目标用户的服 务基站,第一基站 A2是第二下行非 CoMP用户数据的目标用户的服务基站。 进一步地, 第一 GW在接收到第一承载切换请求消息之后, 可以将第一下行 非 CoMP用户数据绕过集中处理节点传输至第一基站 Al, 并且将第二下行 非 CoMP用户数据绕过集中处理节点传输至第一基站 A2。 或者, 进一步地, 第一 GW在接收到第一承载切换请求消息之后, 可以先只将第一下行非 CoMP用户数据绕过集中处理节点传输至第一基站 Al, 如果在这之后, 集 中处理节点与第一 GW之间的接口仍然拥塞,再将第二下行非 CoMP用户数 据绕过集中处理节点传输至第一基站 A2。
也就是说, 下行非 CoMP用户数据可以是 M组, 其中 M为正整数。 那 么, 在 402中, 集中处理节点将 M组下行非 CoMP用户数据发送至 M个第 一基站。 进一步地, 第一 GW在接收到第一承载切换请求消息之后, 可以先 将 M组下行非 CoMP用户数据中的一组或几组绕过集中处理节点传输至对 应的一个或几个第一基站。应注意, M组下行非 CoMP用户数据的目标用户 的数量可以大于^1, 例如, 可以是多个目标用户处于同一个第一基站的服务 范围之内。 本发明对此不作限定。
可选地, 在上述实施例中, 下行 CoMP用户数据可包括第一下行 CoMP 用户数据和第二下行 CoMP用户数据,将所述下行 CoMP用户数据发送至至 少两个基站, 包括: 将第一下行 CoMP用户数据发送至至少两个第二基站, 将第二下行 CoMP用户数据发送至至少两个第三基站。 其中, 至少两个第二 基站用于对第一下行 CoMP用户数据进行协作发送,至少两个第三基站用于 对第二下行 CoMP用户数据进行协作发送。
其中, 将第一下行 CoMP用户数据发送至至少两个第二基站, 可以是: 集中处理节点对该第一下行 CoMP用户数据进行联合预编码,然后再将所述 进行联合预编码后的第一下行 CoMP用户数据发送至至少两个第二基站,以 使得至少两个第二基站对所述进行联合预编码后的第一下行 CoMP用户数 据进行协作发送。 或者, 也可以是: 集中处理节点根据第一下行 CoMP用户 数据生成预编码的第一控制信息,然后将该第一下行 CoMP用户数据和预编 码的第一控制信息一起发送至至少两个第二基站, 以使得至少两个第二基站 对该第一下行 CoMP用户数据进行联合预编码并协作发送。本发明对此不作 限定。
其中, 将第二下行 CoMP用户数据发送至至少两个第三基站, 可以是: 集中处理节点对该第二下行 CoMP用户数据进行联合预编码,然后再将所述 进行联合预编码后的第二下行 CoMP用户数据发送至至少两个第三基站,以 使得至少两个第三基站对所述进行联合预编码后的第二下行 CoMP用户数 据进行协作发送。 或者, 也可以是: 集中处理节点根据第二下行 CoMP用户 数据生成预编码的第二控制信息,然后将该第二下行 CoMP用户数据和预编 码的第二控制信息一起发送至至少两个第胺基站, 以使得至少两个第三基站 对该第二下行 CoMP用户数据进行联合预编码并协作发送。本发明对此不作 限定。
那么, 在上述实施例之后, 图 4的方法还可以包括: 在确定所述接口仍 然拥塞时, 所述集中处理节点发送第二承载切换请求消息至所述第一 GW, 所述第二承载切换请求消息用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站。 可理解, 在上述实施例之后, 经过集中处理节点进行传输的数据为下行
CoMP用户数据, 若集中处理节点与第一 GW之间的接口仍然拥塞, 可将下 行 CoMP用户数据中的部分数据进行切换。例如,将第一下行 CoMP用户数 据进行切换。
应注意, 集中处理节点发送第二承载切换请求消息至第一 GW, 可以是 集中处理节点直接地将第二承载切换请求消息发送至第一 GW, 或者也可以 是集中处理节点间接地将第二承载切换请求消息发送至第一 GW, 例如可以 是集中处理节点发送第二承载切换请求消息至第一 MME,再由该第一 MME 发送另一更新承载请求消息至第一 GW。 本发明对此不作限定。
本发明实施例中, 第二承载切换请求消息中可以携带至少两个第二基站 的标识信息。
这样, 第一 GW在接收到第二承载切换请求消息之后, 可以根据第二承 载切换请求消息,将第一下行 CoMP用户数据绕过集中处理节点传输至至少 两个第二基站。具体地,第一 GW可以更改该第一下行 CoMP用户数据的传 输路由,以使第一 GW至至少两个第二基站的转发路径中不包含集中处理节 点。
可选地,第一 GW可根据第二承载切换请求消息中所携带的至少两个第 二基站的标识信息, 生成第一 GW至至少两个第二基站的承载, 并且在该第 一 GW至至少两个第二基站的承载上,将第一下行非 CoMP用户数据传输至 至少两个第二基站。
可理解, 本实施例中, 该至少两个第二基站均处于该第一 GW下。 可选地, 第一 GW在接收到第二承载切换请求消息之后,还可释放第一 GW至集中处理节点的用于传输第一下行非 CoMP用户数据的承载。
本发明实施例中, 第一 GW及时释放停止使用的承载, 能够避免资源浪 费, 节省资源占用, 从而能够提高资源利用率。
可选地, 第一 GW在接收到第二承载切换请求消息之后,还可生成第二 指示信息并将所述第二指示信息发送至所述集中处理节点。 其中, 所述第二 指示信息用于指示所述第一 GW停止将第一下行 CoMP用户数据发送至所述 集中处理节点。 可理解, 该第二指示信息是一个 end marker。 具体地, 该第 二指示信息是第一 GW将第一下行 CoMP用户数据发送至集中处理节点的这 个过程的 end marker
这样, 本发明实施例的方法还可包括: 集中处理节点从第一 GW接收第 二指示信息。该第二指示信息用于指示第一 GW停止将第一下行 CoMP用户 数据发送至集中处理节点, 也就是说, 集中处理节点停止从第一 GW接收第 一下行 CoMP用户数据。
可选地, 第一 GW在接收到第二承载切换请求消息之后,也可以生成第 二承载切换响应消息, 并将该第二承载切换响应消息发送至集中处理节点。 应注意, 第一 GW发送第二承载切换响应消息至集中处理节点, 可以是第一 GW将第二承载切换响应消息直接地发送至集中处理节点, 也可以是第一 GW将第二承载切换响应消息间接地发送至集中处理节点, 例如, 间接地发 送可以是第一 GW发送另一更新承载响应消息至第一 MME,再由第一 MME 发送第二承载切换响应消息至集中处理节点, 本发明对此不作限定。
这样, 本发明实施例的方法还可包括: 集中处理节点从第一 GW接收第 二承载切换响应消息。
可选地, 本发明实施例的方法还可包括: 集中处理节点将已经从所述第 一 GW接收的并存储在所述集中处理节点的緩存中的第一下行 CoMP用户数 据发送至所述至少两个第二基站。
若集中处理节点从第一 GW接收第二指示信息, 随后, 集中处理节点可 将从所述第一 GW接收的所述第二指示信息发送至所述至少两个第二基站, 所述第二指示信息用于指示所述集中处理节点将从所述第一 GW接收的并 存储在所述集中处理节点的緩存中的第一下行 CoMP用户数据发送完毕。例 如,集中处理节点可在发送至至少两个第二基站的第一下行 CoMP用户数据 的最后一个数据包中携带该第二指示信息。 可理解, 集中处理节点发送至至 少两个第二基站的第二指示信息,是集中处理节点将第一下行 CoMP用户数 据发送至至少两个第二基站这个过程的 end marker。
进一步地, 集中处理节点在将第二指示信息发送至所述至少两个第二基 站之后, 还可释放传输该第一下行 CoMP用户数据所釆用的下行传输资源。
本发明实施例中, 集中处理节点及时释放不再使用的传输资源, 能够避 免资源浪费, 节省资源占用, 从而能够提高资源利用率。
可理解, 本发明实施例中, 在上述方法之后, 集中处理节点继续从第一
GW接收第二下行 CoMP用户数据,并将该第二下行 CoMP用户数据发送至 至少两个第三基站。 其中, 至少两个第三基站用于对第二下行 CoMP用户数 据进行协作发送。
对第一 GW来说, 在上述方法之后, 第一 GW仍然将第二下行 CoMP 用户数据发送至集中处理节点,以便集中处理节点将第二下行 CoMP用户数 据发送至至少两个第三基站。并且,第一 GW将后续的第一下行 CoMP用户 数据绕过集中处理节点发送至至少两个第二基站。
对至少两个第二基站来说, 在上述方法之后, 可理解, 至少两个第二基 站从第一 GW接收第一下行 CoMP用户数据。 同时,至少两个第二基站还从 集中处理节点接收在集中处理节点的緩存中的第一下行 CoMP用户数据。而 且,至少两个第二基站从第一 GW接收的第一下行 CoMP可能早于或同时与 集中处理节点发送的緩存中的第一下行 CoMP用户数据到达至少两个第二 基站。
这样, 至少两个第二基站可以先将从集中处理节点接收的第一下行 CoMP用户数据协作发送至目标用户, 在接收到第二指示信息之后, 才将从 第一 GW接收的第一下行 CoMP用户数据协作发送至目标用户。例如,若集 中处理节点发送至至少两个第二基站的最后一个数据包携带该第二指示信 息, 那么, 至少两个第二基站在解析到第二指示信息之后, 可确定携带第二 指示信息的数据包为集中处理节点发送的最后一个数据包,之后至少两个第 二基站便可继续解析从第一 GW接收的第一下行 CoMP用户数据。
本发明实施例中, 至少两个第二基站将从第一 GW接收的第一下行
CoMP用户数据协作发送至目标用户, 可以包括: 至少两个第二基站根据集 中处理节点的调度信息,将第一下行 CoMP用户数据协作发送至至少两个第 二基站。
具体地,集中处理节点可接收至少两个第二基站中的第一下行 CoMP用 户数据的目标用户的服务基站发送的下行调度请求消息, 集中处理节点进行 下行调度并将调度结果发送至至少两个第二基站。 其中, 调度结果可包括以 下至少一种: 无线链路控制 (Radio Link Control, RLC )分段信息、 编码调 制信息和发射功率。
其中, 下行调度请求消息可包括以下至少一种: 第一下行 CoMP用户数 据的目标用户的标识信息、至少两个第二基站中的第一下行 CoMP用户数据 的目标用户的服务基站的标识信息、 緩存器中等待发送的总数据量。 或者, 下行调度请求消息还可包括数据的优先级、 以及各个优先级的等待发送的数 据量。
相应地,调度结果还可包括物理资源块( Physical Resource Block, PRB ) 数量和位置信息、 发射层数和天线数信息等。
这样,至少两个第二基站可根据调度结果将第一下行 CoMP用户数据发 送至第一下行 CoMP用户数据的目标用户。 并且, 至少两个第二基站接收第 一下行 CoMP用户数据的目标用户的反馈信息。具体地,该反馈信息为 ACK 消息或者为 NACK消息。
进一步地,至少两个第二基站中的第一下行 CoMP用户数据的目标用户 的服务基站将该反馈信息发送至集中处理节点。
作为一种情况,集中处理节点接收所述第一下行 CoMP用户数据的目标 用户的服务基站发送的 ACK消息; 所述集中处理节点将第一消息发送至所 述至少两个第二基站, 所述第一消息用于指示所述至少两个第二基站删除所 述第一下行 CoMP用户数据的数据副本。
若该第一下行 CoMP用户数据的目标用户的服务基站进行 ACK译码, 则该第一下行 CoMP用户数据的目标用户的服务基站接收到第一下行 CoMP 用户数据的目标用户发送的 ACK消息,进行 ACK译码, 即可确定该第一下 行 CoMP用户数据传输成功,此时该第一下行 CoMP用户数据的目标用户的 月良务基站将 ACK消息发送至集中处理节点, 并且该第一下行 CoMP用户数 据的目标用户的服务基站删除所存储的所述第一下行 CoMP用户数据的数 据副本。 随后, 集中处理节点接收到该 ACK消息之后, 生成第一消息, 并 将该第一消息发送至至少两个第二基站中除该第一下行 CoMP用户数据的 目标用户的服务基站之外的其他的第二基站,该第一消息用于指示该其他的 第二基站删除第一下行 CoMP用户数据的数据副本。
若集中处理节点进行 ACK译码, 则该第一下行 CoMP用户数据的目标 用户的服务基站接收到第一下行 CoMP用户数据的目标用户发送的 ACK消 息后,将该 ACK消息转发至集中处理节点,也可以理解该 ACK消息是透传 至集中处理节点的。集中处理节点接收到该 ACK消息之后,进行 ACK译码, 确定该第一下行 CoMP用户数据传输成功。 随后, 集中处理节点生成第一消 息, 并将该第一消息发送至至少两个第二基站, 该第一消息用于指示至少两 个第二基站删除第一下行 CoMP用户数据的数据副本。 作为另一种情况,集中处理节点接收所述第一下行 CoMP用户数据的目 标用户的服务基站发送的 NACK 消息; 当重传次数未达到预设的最大重传 次数时, 所述集中处理节点发送重传调度确认消息至所述至少两个第二基 站, 所述重传调度确认消息用于指示所述至少两个第二基站将所述第一下行 CoMP用户数据再次进行协作发送。当重传次数达到预设的最大重传次数时, 所述集中处理节点将第一消息发送至所述至少两个第二基站, 所述第一消息 用于指示所述至少两个第二基站删除所述第一下行 CoMP用户数据的数据 副本。
在该另一种情况下,可能是由该第一下行 CoMP用户数据的目标用户的 服务基站进行 NACK译码, 也可能是由集中处理节点进行 NACK译码的, 本发明对此不作限定。
这样,在上述实施例之后,第一 GW将第一下行 CoMP用户数据绕过集 中处理节点发送至至少两个第二基站。 例如, 第一 GW可将第一下行 CoMP 用户数据直接发送至至少两个第二基站。 可理解, 第一 GW可以通过第一 GW与至少两个第二基站之间的接口,将第一下行 CoMP用户数据发送至至 少两个第二基站。 其中, 第一 GW与至少两个第二基站之间的接口可以为 S1接口。 同时, 第一 GW仍然将第二下行 CoMP用户数据发送至集中处理 节点, 集中处理节点将第二下行 CoMP用户数据发送至至少两个第三基站。
可选地,如果所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所 述 k个第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP 用户数据发送至所述第二 GW。 其中, k为正整数。 并且 k小于至少两个第 二基站中的基站的数目。
可理解, 至少两个第二基站中除所述 k个第二基站之外的其他基站处于 第一 GW下。
例如,若第一下行 CoMP用户数据的目标用户处于该第一 GW所在网络 的边缘,该第一下行 CoMP用户数据的目标用户的服务基站处于该第一 GW 下,参与对该第一下行 CoMP用户数据进行协作发送的至少两个第二基站便 可能处于不同的 GW下。 应注意,其中,第一 GW将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基 站, 可以参见上述实施例中关于第一 GW的描述, 为避免重复, 这里不再赘 述。
那么, 该方法还可以包括: 集中处理节点发送生成承载请求消息至所述 第二 GW, 所述生成承载请求消息包括所述 k个第二基站的标识信息, 所述 生成承载请求消息用于指示所述第二 GW生成所述第二 GW至所述 k个第 二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW接 收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第 二基站。
相应地, 第二 GW可以生成生成 7 载响应消息, 并将该生成 7 载响应消 息发送至集中处理节点。
应注意, 集中处理节点发送生成承载请求消息至所述第二 GW, 可以是 指具有 MME 功能的集中处理节点将生成承载请求消息直接发送至第二 GW。或者,也可以是集中处理节点发送第二承载切换请求消息至第一 MME 之后, 由第一 MME发送重定向消息至第二 MME, 再由第二 MME发送生 成承载请求消息至第二 GW。其中,第一 MME是第一 GW所在网络的 MME, 第二 MME是第二 GW所在网络的 MME。 本发明对此不作限定。
相应地, 第二 GW将生成承载响应消息发送至集中处理节点, 可以是第 二 GW向第二 MME发送生成承载响应消息, 再由第二 MME向第一 MME 返回重定向反馈消息, 最后再由第一 MME转发至集中处理节点。 本发明对 此不作限定。
本发明实施例中,对集中处理节点与第一 GW之间、 集中处理节点与第 二 GW之间的消息通信方式不作限定。 例如, 可以是直接通信, 也可以是通 过其他的设备进行间接的通信, 本发明对此不作限定。
这样,第一 GW可以将后续的第一下行 CoMP用户数据绕过所述集中处 理节点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基 站, 并且在第一 GW至第二 GW的转发承载上, 将后续的第一下行 CoMP 用户数据发送至第二 GW,再由第二 GW在第二 GW至至少两个第二基站中 的 k个第二基站的承载上, 由第二 GW发送至所述至少两个第二基站中的 k 个第二基站。进一步地,再由所述至少两个第二基站将后续的第一下行 CoMP 用户数据进行协作发送至第一下行 CoMP用户数据的目标用户。 其中,至少两个第二基站将后续的第一下行 CoMP用户数据进行协作发 送, 是指至少两个第二基站根据集中处理节点的调度结果进行协作发送, 可 以参见上述实施例的相关描述, 为避免重复, 这里不再赘述。
可选地,如果至少两个第二基站均处于第二 GW下, 那么第二承载切换 请求消息用于指示第一 GW生成第一 GW至第二 GW的转发承载, 并且第 一 GW在该转发承载上, 将第一下行 CoMP用户数据发送至第二 GW。
那么, 该方法还可以包括: 集中处理节点发送生成承载请求消息至所述 第二 GW, 所述生成承载请求消息包括所述至少两个第二基站的标识信息, 所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW至所述至 少两个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 至少两个第二基站。
相应地, 第二 GW可以生成生成 7 载响应消息, 并将该生成 7 载响应消 息发送至集中处理节点。
这样, 第一 GW可以在第一 GW至第二 GW的转发承载上, 将后续的 第一下行 CoMP用户数据发送至第二 GW。 第二 GW可以在第二 GW至所 述至少两个第二基站的承载上, 发送至所述至少两个第二基站。 再由所述至 少两个第二基站将后续的第一下行 CoMP用户数据进行协作发送至第一下 行 CoMP用户数据的目标用户。
其中,至少两个第二基站将后续的第一下行 CoMP用户数据进行协作发 送, 是指至少两个第二基站根据集中处理节点的调度结果进行协作发送, 可 以参见上述实施例的相关描述, 为避免重复, 这里不再赘述。
在本发明实施例中,在集中处理节点确定集中处理节点与第一 GW之间 的接口拥塞时, 集中处理节点通过向第一 GW发送第一承载切换请求消息, 能够使得第一 GW将下行非 CoMP用户数据绕过集中处理节点传输至对应的 基站。 进一步地, 如果集中处理节点确定集中处理节点与第一 GW之间的接 口仍然拥塞, 集中处理节点通过向第一 GW发送第二承载切换请求消息, 能 够使得第一 GW将第一下行 CoMP用户数据绕过集中处理节点传输至至少两 个第二基站。 这样, 能够进一步地减少经过集中处理节点与第一 GW之间的 接口的数据流量, 能够緩解或者消除该接口的拥塞状况。 同时, 在上述实施例中, 将第一下行 CoMP用户数据绕过集中处理节点 进行传输, 而第二下行 CoMP用户数据仍然经过集中处理节点进行传输, 能 够保证第二下行 CoMP用户数据的传输效率。
应注意, 上述实施例仅是本发明的一个实施例, 本领域技术人员在上述 实施例的基础上所得到的其他实施例, 均在本发明保护范围之内。
例如,下行 CoMP用户数据还可包括发送至至少两个第四基站的第三下 行 CoMP用户数据。
应注意, 上述实施例中, 第一下行 CoMP用户数据的目标用户的数量可 以是多个。 并且, 发送至该多个目标用户的下行 CoMP用户数据均由至少两 个第二基站进行协作发送。 例如,假设第一下行 CoMP用户数据的目标用户 为终端 T1和终端 T2, 该第一下行 CoMP用户数据包括目标用户为终端 T1 的第一数据和目标用户为终端 T2 的第二数据。 并且, 目标用户为终端 T1 的第一数据的协作发送的基站为所述至少两个第二基站, 目标用户为终端 T2的第二数据的协作发送的基站也为所述至少两个第二基站。
可理解, 在上述实施例中, 下行 CoMP用户数据可以是多组下行 CoMP 用户数据, 第二承载切换请求消息可用于指示第一 GW将多组下行 CoMP 用户数据中的一组或者几组进行切换。 本发明对此不作限定。 这里所说的切 换, 是指, 将经过集中处理节点传输切换为绕过集中处理节点传输。 其中, 每组下行 CoMP用户数据是指由同样的至少两个基站进行协作发送的下行 用户数据。
在本发明实施例中,集中处理节点确定集中处理节点与第一 GW之间的 接口拥塞时,可指示第一 GW首先将下行非 CoMP用户数据绕过集中处理节 点进行传输, 从而减少经过所述接口的数据流量, 緩解或消除该接口的拥塞 状况。 如果进一步仍然确定该接口拥塞, 再指示第一 GW将部分下行 CoMP 用户数据绕过集中处理节点进行传输,从而能够进一步减少经过所述接口的 数据流量, 进而能够消除该接口的拥塞状况。 可选地, 作为另一个实施例,
401中的下行用户数据为下行 CoMP用户数据, 该下行 CoMP用户数据 包括第一下行 CoMP用户数据和第二下行 CoMP用户数据。 那么在 402中, 集中处理节点将下行用户数据发送至对应的基站, 包括: 集中处理节点将所 述第一下行 CoMP 用户数据发送至至少两个第二基站, 将所述第二下行 CoMP用户数据发送至至少两个第三基站。 其中, 所述至少两个第二基站用 于对所述第一下行 CoMP用户数据进行协作发送,所述至少两个第三基站用 于对所述第二下行 CoMP用户数据进行协作发送。那么在 403中的第一承载 切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述至少两个第二基站。
可理解, 这种情况下, 在 401中, 第一 GW经过集中处理节点进行的下 行传输的数据中不包括下行非 CoMP用户数据。
可选地, 若至少两个第二基站中的 k个第二基站处于第二 GW下, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述方法还包括: 所述集中处理节点发送生成承载 请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个第二基站的 标识信息,所述生成承载请求消息用于指示所述第二 GW生成所述第二 GW 至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述 第一 GW接收的所述第一下行 CoMP用户数据绕过所述集中处理节点传输至 所述 k个第二基站。 其中, k为正整数, 且 k小于至少两个第二基站中的基 站的数目。
可选地, 若至少两个第二基站处于第二 GW下, 所述第一承载切换请求 消息用于指示第一 GW生成第一 GW至第二 GW的转发承载,并且第一 GW 在该转发承载上, 将第一下行 CoMP用户数据发送至第二 GW。 该方法还可 以包括: 集中处理节点发送生成承载请求消息至所述第二 GW, 所述生成承 载请求消息包括所述至少两个第二基站的标识信息, 所述生成承载请求消息 用于指示所述第二 GW生成所述第二 GW至所述至少两个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW接收的所述第一下 行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站。
应注意, 第一 GW根据所述第一承载切换请求消息, 将第一下行 CoMP 用户数据绕过集中处理节点传输至所述至少两个第二基站。可以参见上述实 施例中,第一 GW根据第二承载切换请求消息将第一下行 CoMP用户数据绕 过集中处理节点传输至所述至少两个第二基站。为避免重复,这里不再赘述。 进一步地,至少两个第二基站将第一下行 CoMP用户数据协作发送至目 标用户,也可以参见上述实施例中的相关描述,为避免重复,这里不再赘述。
在本发明实施例中,集中处理节点确定集中处理节点与第一 GW之间的 接口拥塞时,可指示第一 GW将下行 CoMP用户数据中的部分数据绕过集中 处理节点进行传输, 从而减少经过所述接口的数据流量, 进而能够緩解或消 除该接口的拥塞状况。 可选地, 作为另一个实施例,
401中的下行用户数据为下行非 CoMP用户数据。可理解,本实施例中, 下行用户数据中不包括下行 CoMP用户数据。其中,该下行非 CoMP用户数 据可以是 M组, M为正整数。 403中的第一承载切换请求消息可用于指示第 一 GW将 M组下行非 CoMP用户数据中的一组或者几组进行切换, 本发明 对此不作限定。 其中, 每组下行非 CoMP用户数据的目标用户的数量可以为 多个, 且多个目标用户的服务基站相同。 这里所说的切换, 是指, 将经过集 中处理节点传输切换为绕过集中处理节点传输。
例如, M组下行非 CoMP用户数据中的第 i组下行非 CoMP用户数据包 括第一下行非 CoMP用户数据和第二下行非 CoMP用户数据。 其中, i为不 大于 M的任一正整数。 并且, 第一下行非 CoMP用户数据的目标用户为终 端 Tl, Tl的服务基站为第一基站 Al, 第二下行非 CoMP用户数据的目标 用户为终端 T2, Τ2的服务基站也为第一基站 Al。 那么, 第一 GW在接收 到第一承载切换请求消息之后,可将该第一下行非 CoMP用户数据和第二下 行非 CoMP用户数据同时进行切换。
具体地, 第一 GW根据第一承载切换请求消息将 M组下行非 CoMP用 户数据中的一组或者几组进行切换的方法, 可以参见上述实施例中, 第一 GW根据第一承载切换请求消息将下行非 CoMP用户数据绕过集中处理节点 进行传输的方法, 为避免重复, 这里不再赘述。 这样,本发明实施例中,若第一 GW发送的下行用户数据为下行非 CoMP 用户数据, 在集中处理节点确定集中处理节点与第一 GW之间的接口拥塞 时, 将下行非 CoMP用户数据中的部分数据进行切换, 从而能够消除接口的 拥塞状况。
若第一 GW发送的下行用户数据为下行 CoMP用户数据,在集中处理节 点确定集中处理节点与第一 GW之间的接口拥塞时,将下行 CoMP用户数据 中的部分数据进行切换, 从而能够消除接口的拥塞状况。
若第一 GW发送的下行用户数据为下行非 CoMP用户数据和下行 CoMP 用户数据, 在集中处理节点确定集中处理节点与第一 GW之间的接口拥塞 时, 将下行非 CoMP用户数据中的部分数据进行切换, 从而能够緩解或消除 接口的拥塞状况。 如果接口仍然拥塞, 可进一步将下行 CoMP用户数据中的 部分数据进行切换, 从而能够消除接口的拥塞状况。
这里所说的切换, 是指: 将经过集中处理节点传输的数据切换为绕过集 中处理节点进行传输。 可选地, 在上述的任一实施例之后, 如图 5所示, 该数据传输的方法还 可包括:
404, 在确定所述接口空闲时, 集中处理节点发送第三承载切换请求消 息至所述第一 GW,所述第三承载切换请求消息用于指示所述第一 GW将所 述下行用户数据, 经所述集中处理节点传输至所述对应的基站。
具体地, 在 404中, 集中处理节点可以通过检测接口的状态以确定该接 口空闲。 其中接口的状态可以包括接口的带宽使用率。 集中处理节点可根据 接口的带宽使用率确定该接口空闲。 例如, 若集中处理节点在一段时间内连 续多次检测, 均确定该接口的带宽使用率小于第二阔值, 则可确定该接口空 闲。 本发明实施例中, 第二阔值可以是由运营商预配置的, 本发明对此不作 限定。
本发明实施例, 对集中处理节点确定接口空闲的方式不作限定。 例如, 集中处理节点可以直接检测集中处理节点与第一 GW之间的接口的状态,也 可以是通过检测集中处理节点与各个基站之间的接口的状态来确定集中处 理节点与第一 GW之间的接口的状态, 本发明对此不作限定。 可选地,作为一个实施例,如第一 GW正在发送的下行用户数据中包括 下行 CoMP用户数据, 并且第一 GW将所述下行 CoMP用户数据中的第一 下行 CoMP用户数据绕过集中处理节点传输至至少两个第二基站。 那么, 第 一 GW接收到第三承载切换请求消息之后, 根据该第三承载切换请求消息, 将所述第一下行 CoMP用户数据经过集中处理节点传输至所述至少两个第 二基站。 其中, 至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送。
具体地, 第一 GW在接收到第三承载切换请求消息之后, 可将后续的第 一下行 CoMP用户数据发送至集中处理节点。具体地,第一 GW可以更改该 第一下行 CoMP用户数据的下行传输路由。
例如,第一 GW可以更改第一下行 CoMP用户数据的传输路径的下一跳 的地址, 以将第一下行 CoMP用户数据直接传输至集中处理节点。
可理解, 404之后, 该方法还可包括: 集中处理节点从第一 GW接收后 续的第一下行 CoMP用户数据,并将该后续的第一下行 CoMP用户数据发送 至所述至少两个第二基站, 以便于所述至少两个第二基站将所述后续的第一 下行 CoMP用户数据协作发送。
具体地, 集中处理节点接收到后续的第一下行 CoMP用户数据之后, 可 对该后续的第一下行 CoMP用户数据进行联合预编码,在将联合与编码之后 的后续的第一下行 CoMP用户数据发送至所述至少两个第二基站。 或者, 集 中处理节点接收到后续的第一下行 CoMP用户数据之后,可生成预编码的控 制信息,然后将后续的第一下行 CoMP用户数据和该预编码的控制信息一起 发送至所述至少两个第二基站。 本发明对此不作限定。
可选地,第三承载切换请求消息可包括集中处理节点的标识信息。那么, 第一 GW接收到第三承载切换请求消息之后, 可生成第一 GW至集中处理 节点的第一承载, 并且, 在该第一承载上, 将后续的第一下行 CoMP用户数 据发送至集中处理节点。
可选地, 第一 GW接收到第三承载切换请求消息之后, 可释放第一 GW 至所述至少两个第二多个基站的用于传输所述第一下行 CoMP用户数据的 承载。
本发明实施例中, 第一 GW及时释放停止使用的承载, 能够避免资源浪 费, 节省资源占用, 从而能够提高资源利用率。
可选, 第一 GW接收到第三承载切换请求消息之后, 可生成第三指示信 息并将该第三指示信息发送至所述至少两个第二基站。 可理解, 该第三指示 信息是一个 end marker。 具体地, 该第三指示信息是第一 GW将第一下行 CoMP用户数据发送至至少两个第二基站的这个过程的 end marker。
这样, 能够使得所述至少两个第二基站在接收到该第三指示信息之后, 才将从集中处理节点接收的后续的第一下行 CoMP用户数据进行协作发送。
具体地,第一 GW可以在发送至所述至少两个第二基站的最后一个数据 包携带该第三指示信息。 所述至少两个第二基站在解析到该第三指示信息之 后, 可确定当前解析的数据包为第一 GW发送的最后一个数据包。 那么, 在 此之后, 所述至少两个第二基站可以开始解析从集中处理节点接收到的后续 的第一下行 CoMP用户数据。
可选地, 第一 GW在接收到第三承载切换请求消息之后,也可以生成第 三承载切换响应消息, 并将该第三承载切换响应消息发送至集中处理节点。 应注意, 第一 GW发送第三承载切换响应消息至集中处理节点, 可以是第一 GW将第三承载切换响应消息直接地发送至集中处理节点, 也可以是第一 GW将第三承载切换响应消息间接地发送至集中处理节点, 例如, 间接地发 送可以是第一 GW发送更新承载响应消息至第一 MME, 再由第一 MME发 送第三承载切换响应消息至集中处理节点, 本发明对此不作限定。
可理解, 404之后, 该方法还可包括: 集中处理节点从第一 GW接收第 三承载切换响应消息。
可选地,如果所述至少两个第二基站中的 k个基站处于第二 GW下,在 404之前,第一 GW将所述第一下行 CoMP用户数据发送至所述至少两个第 二基站中除所述 k个基站之外的其他基站, 且第一 GW在第一 GW至第二 GW的转发承载上,将所述第一下行 CoMP用户数据发送至第二 GW。那么, 在 404之后, 即第一 GW接收到第三承载切换请求消息之后, 可释放第一 GW至第二 GW的转发承载。
这样, 本发明实施例中, 在集中处理节点确定集中处理节点与第一 GW 之间的接口空闲时,可将第一 GW发送的绕过集中处理节点进行传输的第一 下行 CoMP用户数据切换至经过集中处理节点进行传输。 这样, 不仅可以提 高集中处理节点与第一 GW之间的接口的利用率, 并且可以提高第一下行 CoMP用户数据的传输效率。
进一步地,在 404之后, 若第一 GW正在传输的下行用户数据中的所有 下行 CoMP用户数据均经过集中处理节点进行传输,而下行用户数据中的第 一下行非 CoMP用户数据绕过集中处理节点进行传输,且集中处理节点确定 集中处理节点与第一 GW之间的接口仍然空闲, 那么, 集中处理节点可发送 第四承载切换请求消息至第一 GW, 所述第四承载切换请求消息用于指示所 述第一 GW将所述第一下行非 CoMP用户数据经过所述集中处理节点进行传 输。
可选地, 第一 GW接收第四承载切换请求消息之后, 可将第一下行非
CoMP用户数据发送至集中处理节点, 以使得所述集中处理节点将所述第一 下行非 CoMP用户数据发送至第一基站。 其中, 第一基站为所述第一下行非 CoMP用户数据的目标用户的服务基站。
可理解, 在上述实施例之后, 该方法还可包括: 集中处理节点从第一 GW接收第一下行非 CoMP用户数据,并将该第一下行非 CoMP用户数据发 送至第一基站。
可选地, 第一 GW接收到第四承载切换请求消息之后, 可生成第一 GW 至集中处理节点的第二承载, 并在该第二承载上, 将第一下行非 CoMP用户 数据发送至集中处理节点。
可选地, 第一 GW接收到第四承载切换请求消息之后, 可释放第一 GW 至第一基站的用于传输所述第一下行非 CoMP用户数据的承载。
可选地, 第一 GW接收到第四承载切换请求消息之后,可生成第四指示 信息, 并将该第四指示信息发送至第一基站。 可理解, 该第四指示信息是一 个 end marker。 具体地, 第四指示信息是第一 GW将第一下行非 CoMP用户 数据绕过集中处理节点发送至第一基站这个过程的 end marker。
例如,第一 GW可在发送至第一基站的第一下行非 CoMP用户数据的最 后一个数据包中携带该第四指示信息。 这样, 第一基站在解析该第四指示信 息之后, 可确定当前解析的数据包为第一 GW发送的最后一个数据包。在此 之后,第一基站才将从集中处理节点接收的第一下行非 CoMP用户数据发送 至所述第一下行非 CoMP用户数据的目标用户。
可选地, 第一 GW接收第四承载切换请求消息之后, 可生成第四承载切 换响应消息, 并将该第四承载切换响应消息发送至集中处理节点。
可理解, 在上述实施例之后, 该方法还可包括集中处理节点可接收第一 GW发送的第四承载切换响应消息。
这样,第一 GW将下行 CoMP用户数据均经过集中处理节点传输时,若 集中处理节点确定集中处理节点与第一 GW之间的接口仍然空闲, 那么, 第 一 GW可将发送的绕过集中处理节点进行传输的第一下行非 CoMP用户数据 切换至经过集中处理节点进行传输, 这样, 能够进一步提高集中处理节点与 第一 GW之间的接口的利用率。 可选地,作为另一个实施例,若第一 GW正在发送的下行用户数据中不 包括下行 CoMP用户数据,或者,第一 GW正在发送的下行用户数据中的所 有的下行 CoMP用户数据均经过集中处理节点进行传输。并且,第一 GW发 送的下行用户数据中的第一下行非 CoMP用户数据绕过集中处理节点传输 至第一基站。 那么, 在 404中, 第三承载切换请求消息可用于指示第一 GW 将所述第一下行非 CoMP用户数据经过集中处理节点传输至第一基站。
具体地, 该方法可参见上述实施例中, 第一 GW根据第四切换请求消息 将第一下行非 CoMP用户数据经过集中处理节点传输至第一基站的方法,为 避免重复, 这里不再赘述。
可理解, 如图 3中所示, 集中处理节点可以为基站。 应注意, 本发明实 施例中的下行用户数据不包括 GW发送至以该集中处理节点为服务基站的 终端的用户数据。 GW发送至以该集中处理节点为服务基站的终端的用户数 据需经过集中处理节点进行传输。 换句话说, 可理解, 本发明实施例对 GW 发送至以该集中处理节点为服务基站的终端的用户数据不进行切换。
图 6是本发明另一个实施例的数据传输的方法的流程图。 图 6所示的方 法包括:
601 , 集中处理节点接收上行用户数据, 所述上行用户数据包括第一基 站发送的上行非协作多点传输 CoMP用户数据。
602, 集中处理节点将所述上行用户数据发送至第一网关 GW。
603, 在确定所述集中处理节点与所述第一 GW之间的接口拥塞时, 集 中处理节点发送第一承载切换请求消息至所述第一基站, 所述第一承载切换 请求消息用于指示所述第一基站将所述上行非 CoMP用户数据绕过所述集 中处理节点传输至所述第一 GW。
这样, 本发明实施例在上行数据传输过程中, 在集中处理节点确定集中 处理节点与第一 GW之间的接口拥塞时,通过集中处理节点向第一基站发送 第一承载切换请求消息,从而将上行非 CoMP用户数据绕过集中处理节点传 输至第一 GW,能够减少经过集中处理节点与第一 GW之间的接口的数据流 量, 进而能够緩解或消除所述接口的拥塞状况。
本发明实施例中, 601可包括: 集中处理节点从第一基站接收所述上行 非 CoMP用户数据。
例如, 假设该上行非 CoMP用户数据是从终端 T3发送至第一 GW的。 并且, 第一基站是终端 T3的服务基站。 那么, 在 601之前, 第一基站可通 过空口 ( AMnterface, AI )从终端 T3接收所述上行非 CoMP用户数据。
进一步地,在 602中, 集中处理节点可通过集中处理节点与第一 GW之 间的接口将所述上行非 CoMP用户数据发送至第一网关 GW。 具体地, 集中 处理节点可在集中处理节点至第一 GW的承载上,将所述上行非 CoMP用户 数据发送至第一网关 GW。
可选地, 601中的上行用户数据还可包括另一上行非 CoMP用户数据。 那么, 本发明实施例可以理解为, 在确定所述接口拥塞时, 将上行用户数据 中的部分或全部非 CoMP用户数据绕过集中处理节点进行传输。 这样, 能够 减少经过集中处理节点的数据流量。
应注意, 在 601中, 上行用户数据还可包括上行 CoMP用户数据。 具体 地, 601还可包括: 集中处理节点从至少两个第二基站接收所述上行 CoMP 用户数据。
进一步地, 在 602中, 集中处理节点将所述上行 CoMP用户数据发送至 第一 GW。 具体地, 集中处理节点可对所述上行 CoMP用户数据进行联合解 码, 然后再发送至第一 GW。
应注意, 在 603中, 集中处理节点确定所述接口拥塞的方法, 可参见前 述图 4中的 403集中处理节点确定接口拥塞的方法, 为避免重复, 这里不再 赘述。
本发明实施例中, 第一基站接收到第一承载切换请求消息之后, 可将所 述上行非 CoMP用户数据绕过集中处理节点发送至第一 GW。
具体地,第一基站可更改所述上行非 CoMP用户数据的传输路径。例如, 可以是将下一跳地址由集中处理节点的地址修改为第一 GW的地址。
可选地, 第一承载切换请求消息中可包括第一承载上下文信息。 那么, 第一基站接收到第一承载切换请求消息之后,可根据第一承载上下文信息建 立用户平面, 具体地, 可根据第一承载切换请求消息, 生成第一基站至第一 GW的第三承载, 并在该第三承载上, 将后续的上行非 CoMP用户数据发送 至第一 GW。
可选地, 第一基站接收到第一承载切换请求消息之后, 可释放第一基站 至集中处理节点的用于传输所述上行非 CoMP用户数据的上行传输资源。
本发明实施例中, 第一基站及时释放不再使用的上行传输资源, 能够避 免资源浪费, 节省资源占用, 从而能够提高资源利用率。
可选地, 第一基站接收到第一承载切换请求消息之后, 可生成第一指示 信息并将该第一指示信息发送至集中处理节点。 可理解, 该第一指示信息是 一个 end marker。 具体地, 该第一指示信息为第一基站将上行非 CoMP用户 数据发送至集中处理节点这个过程的 end marker。
可选地, 第一基站接收到第一承载切换请求消息之后, 可生成第一承载 切换响应消息, 并将该第一承载切换响应消息发送至集中处理节点。
可理解, 在 603之后, 该方法还可包括: 集中处理节点接收第一基站发 送的第一承载切换响应消息。
可选地, 在 603之后, 该方法还可包括: 集中处理节点可释放传输所述 上行非 CoMP用户数据所釆用的集中处理节点至第一 GW的承载。
可选地, 在 603之后, 该方法还可包括: 集中处理节点将已经从第一基 站接收的并存储在该集中处理节点的緩存中的上行非 CoMP用户数据发送 至第一 GW。
另外, 集中处理节点还可将从第一基站接收的第一指示信息发送至该第 一 GW。 例如, 集中处理节点可在发送至第一 GW的最后一个数据包中携带 该第一指示信息。 这样, 第一 GW在接收到该第一指示信息之后, 再将从第 一基站接收的上行非 CoMP用户数据发送至核心网。
这样, 本发明实施例中, 在上行传输过程中, 当确定集中处理节点与第 一 GW之间的接口拥塞时,将上行用户数据中的上行非 CoMP用户数据绕过 集中处理节点传输至第一 GW,能够减少集中处理节点与第一 GW之间的接 口的数据流量, 进而能够緩解或消除所述接口的拥塞状况。
可理解, 上述实施例中, 上行非 CoMP用户数据可以是 M组。 例如, 在 601中, 集中处理节点从第一基站 A1接收第一上行非 CoMP用户数据, 从第一基站 A2接收第二上行非 CoMP用户数据。 那么, 在 603中, 第一基 站 A1接收到第一承载切换请求消息, 并将第一上行非 CoMP用户数据绕过 集中处理节点传输至第一 GW, 第一基站 A2也接收到第一承载切换请求消 息, 并将第二上行非 CoMP用户数据绕过集中处理节点传输至第一 GW。 进一步地, 该方法还可包括: 在确定所述接口空闲时, 集中处理节点发 送第二承载切换请求消息至所述第一基站, 所述第二承载切换请求消息用于 指示所述第一基站将所述上行非 CoMP用户数据经过所述集中处理节点传 输至所述第一 GW。
具体地,第一基站接收到第二承载切换请求消息之后,可将上行非 CoMP 用户数据发送至集中处理节点。
可选地, 第一基站接收到第二承载切换请求消息之后, 可生成第二承载 切换响应消息, 并将该第二承载响应消息发送至集中处理节点。 其中, 该第 二承载切换响应消息可包括第二承载上下文信息。
可理解, 在上述实施例之后, 该方法还可包括: 集中处理节点接收所述 第一基站发送的第二承载切换响应消息。
可选地, 集中处理节点可根据第二承载上下文信息生成所述集中处理节 点至所述第一 GW的第四承载。 这样, 集中处理节点可在该第四承载上, 将 从第一基站接收的上行非 CoMP用户数据发送至第一 GW。
可选地, 第一基站接收到第二承载切换请求消息之后, 可释放第一基站 至第一 GW的用于传输所述上行非 CoMP用户数据的承载。
可选地, 第一基站接收到第二承载切换请求消息之后, 可生成第二指示 信息并将该第二指示信息发送至第一 GW。 可理解, 该第二指示信息是一个 end marker。 具体地, 第二指示信息是第一基站将上行非 CoMP用户数据发 送至第一 GW的这个过程的 end marker。
例如,第一基站可在发送至第一 GW的最后一个数据包中携带该第二指 示信息。 这样, 第一 GW在解析到该第二指示信息之后, 可确定正在解析的 是从第一基站接收的最后一个数据包, 在此之后, 第一 GW可继续解析从集 中处理节点接收的上行非 CoMP用户数据。并且,第一 GW在将从第一基站 接收的上行非 CoMP用户数据全部发送至核心网之后,再将从集中处理节点 接收的上行非 CoMP用户数据发送至核心网。
同样地, 如图 3中所示, 集中处理节点可以为基站。 应注意, 本发明实 施例中的上行非 CoMP用户数据不包括以该集中处理节点为服务基站的终 端发送至第一 GW的非 CoMP用户数据。可理解, 以该集中处理节点为服务 基站的终端发送的非 CoMP用户数据需通过集中处理节点与第一 GW之间的 接口传输至第一 GW。 换句话说, 本发明实施例对以该集中处理节点为服务 基站的终端发送的非 CoMP用户数据不进行切换。
图 7是本发明另一个实施例的数据传输的方法的流程图。 图 7所示的方 法包括:
701, 第一设备发送用户数据至集中处理节点, 以使得所述集中处理节 点将所述用户数据发送至第二设备。
702, 第一设备接收所述集中处理节点发送的第一承载切换请求消息, 所述第一承载切换请求消息用于指示所述第一设备绕过所述集中处理节点 进行数据传输。
703, 第一设备根据所述第一承载切换请求消息, 将所述用户数据发送 至所述第二设备。
本发明实施例中,第一设备根据集中处理节点发送的第一承载切换请求 消息,将用户数据中的部分数据从经过集中处理节点传输切换为绕过集中处 理节点传输,这样能够减少经过集中处理节点与第一 GW之间的接口的数据 流量, 进而能够緩解或消除接口的拥塞状况。
可选地, 在 702之后, 该方法还可包括: 第一设备生成第一承载响应消 息, 并将该第一承载响应消息发送至集中处理节点。 可选地, 作为一个实施例, 第一设备可以为第一 GW, 第二设备为与所 述用户数据对应的基站。 701中的用户数据可包括下行非 CoMP用户数据和 下行 CoMP用户数据。 若所述用户数据包括下行非 CoMP用户数据和下行 CoMP用户数据,所 述第一承载切换请求消息具体用于指示所述第一设备将所述下行非 CoMP 用户数据绕过所述集中处理节点传输至第一基站, 所述第一基站为所述下行 非 CoMP用户数据的目标用户的服务基站。
那么, 在 703中, 第一设备将所述所述下行非 CoMP用户数据绕过所述 集中处理节点传输至第一基站,将所述下行 CoMP用户数据发送至所述集中 处理节点,以使得所述集中处理节点将所述下行 CoMP用户数据发送至至少 两个基站, 所述至少两个基站用于对所述下行 CoMP用户数据进行协作发 送。 其中, 所述第二设备包括所述第一基站和所述至少两个基站。 可选地, 第一承载切换请求消息可携带所述第一基站的标识信息。 第一
GW接收到第一承载切换请求消息之后,可生成第一 GW至第一基站的承载, 并且在该第一 GW至第一基站的承载上,将下行非 CoMP用户数据传输至第 一基站。
可选地, 第一 GW接收到第一承载切换请求消息之后, 可释放第一 GW 至集中处理节点的用于传输下行非 CoMP用户数据的承载。
可选地, 第一 GW在接收到第一承载切换请求消息之后,还可生成第一 指示信息并将所述第一指示信息发送至所述集中处理节点。 其中, 所述第一 指示信息用于指示所述第一 GW停止将下行非 CoMP用户数据发送至所述集 中处理节点。 可理解, 该第一指示信息是一个 end marker。 具体地, 该第一 指示信息是第一 GW将下行非 CoMP用户数据发送至集中处理节点的这个过 程的 end marker。
可选地,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二 下行 CoMP用户数据, 该方法还可包括: 第一设备接收所述集中处理节点发 送的第二承载切换请求消息, 所述第二承载切换请求消息用于指示所述第一 设备将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两 个第二基站。 第一设备根据所述第二承载切换请求消息, 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站, 将所 述第二下行 CoMP用户数据发送至所述集中处理节点,以使得所述集中处理 节点将所述第二下行 CoMP用户数据发送至至少两个第三基站。 其中, 所述 至少两个基站包括所述至少两个第二基站和所述至少两个第三基站, 所述至 少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发送,所述至 少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发送。
可选地, 第一 GW在接收到第二承载切换请求消息之后, 可以根据第二 承载切换请求消息,将第一下行 CoMP用户数据绕过集中处理节点传输至至 少两个第二基站。
可选地, 第二承载切换请求消息中可以携带至少两个第二基站的标识信 息。 第一 GW在接收到第二承载切换请求消息之后, 可根据第二承载切换请 求消息中所携带的至少两个第二基站的标识信息,生成第一 GW至至少两个 第二基站的承载, 并且在该第一 GW至至少两个第二基站的承载上, 将第一 下行非 CoMP用户数据传输至至少两个第二基站。 可理解, 本实施例中, 该至少两个第二基站均处于该第一 GW下。
可选地, 第一 GW在接收到第二承载切换请求消息之后,还可释放第一 GW至集中处理节点的用于传输第一下行非 CoMP用户数据的承载。
可选地, 第一 GW在接收到第二承载切换请求消息之后,还可生成第二 指示信息并将所述第二指示信息发送至所述集中处理节点。 其中, 所述第二 指示信息用于指示所述第一 GW停止将第一下行 CoMP用户数据发送至所述 集中处理节点。 可理解, 该第二指示信息是一个 end marker。 具体地, 该第 二指示信息是第一 GW将第一下行 CoMP用户数据发送至集中处理节点的这 个过程的 end marker
可选地,如果所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所 述 k个第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP 用户数据发送至所述第二 GW。 其中, k为正整数。 并且 k小于至少两个第 二基站中的基站的数目。
可理解, 至少两个第二基站中除所述 k个第二基站之外的其他基站处于 第一 GW下。
这样,第一 GW可以将后续的第一下行 CoMP用户数据绕过所述集中处 理节点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基 站, 并且在第一 GW至第二 GW的转发承载上, 将后续的第一下行 CoMP 用户数据发送至第二 GW,再由第二 GW在第二 GW至至少两个第二基站中 的 k个第二基站的承载上, 由第二 GW发送至所述至少两个第二基站中的 k 个第二基站。进一步地,再由所述至少两个第二基站将后续的第一下行 CoMP 用户数据进行协作发送至第一下行 CoMP用户数据的目标用户。
可选地,如果至少两个第二基站均处于第二 GW下, 那么第二承载切换 请求消息用于指示第一 GW生成第一 GW至第二 GW的转发承载, 并且第 一 GW在该转发承载上, 将第一下行 CoMP用户数据发送至第二 GW。
这样, 第一 GW可以在第一 GW至第二 GW的转发承载上, 将后续的 第一下行 CoMP用户数据发送至第二 GW。 第二 GW可以在第二 GW至所 述至少两个第二基站的承载上, 发送至所述至少两个第二基站。 再由所述至 少两个第二基站将后续的第一下行 CoMP用户数据进行协作发送至第一下 行 CoMP用户数据的目标用户。 若所述用户数据为下行 CoMP用户数据,所述下行 CoMP用户数据包括 第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述第一承载切换请 求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述 集中处理节点传输至所述至少两个第二基站。 那么, 703可包括: 第一设备 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个第 二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点, 以使得 所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两个第三基 站。 其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三基 站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发 送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发 送。
可选地,如果所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所述第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所 述 k个第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP 用户数据发送至所述第二 GW。 那么, 所述将所述第一下行 CoMP用户数据 绕过所述集中处理节点传输至所述至少两个第二基站, 包括: 将所述第一下 行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基站中 除所述 k个第二基站之外的其他基站, 在所述转发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW, 以使得所述第二 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二基站。 其中, k 为正整数。
具体地, 本实施例中, 第一 GW根据第一承载切换请求消息将第一下行 CoMP用户数据绕过集中处理节点进行传输, 可以看见上述实施例中, 第一 GW根据第二承载切换请求消息将第一下行 CoMP用户数据绕过集中处理节 点进行传输的过程, 为避免重复, 这里不再赘述。 若所述用户数据为下行非 CoMP用户数据。 可理解, 本实施例中, 用户 数据中不包括下行 CoMP用户数据。其中,该下行非 CoMP用户数据可以是 M组, M为正整数。 第一承载切换请求消息可用于指示第一 GW将 M组下 行非 CoMP用户数据中的一组或者几组进行切换, 本发明对此不作限定。 其 中, 每组下行非 CoMP用户数据的目标用户的数量可以为多个, 且多个目标 用户的服务基站相同。 这里所说的切换, 是指, 将经过集中处理节点传输切 换为绕过集中处理节点传输。
具体地, 第一 GW根据第一承载切换请求消息将 M组下行非 CoMP用 户数据中的一组或者几组进行切换的方法, 可以参见上述实施例中, 第一 GW根据第一承载切换请求消息将下行非 CoMP用户数据绕过集中处理节点 进行传输的方法, 为避免重复, 这里不再赘述。 应注意, 在图 7所示的方法中, 当第一设备为第一 GW时, 可以参见前 述图 4中由第一 GW所实现的方法的相关描述,为避免重复,这里不再赘述。 可选地, 作为另一个实施例, 图 7中的所述第一设备为第一基站, 所述 第二设备为第一 GW, 所述用户数据包括上行非 CoMP用户数据, 所述第一 承载切换请求消息具体用于指示所述第一设备将所述上行非 CoMP用户数 据绕过所述集中处理节点传输至所述第二设备。 那么, 703的步骤可包括: 第一设备将所述上行非 CoMP用户数据绕过所述集中处理节点传输至所述 第二设备。
可选地, 第一承载切换请求消息中可包括第一承载上下文信息。 那么, 第一基站接收到第一承载切换请求消息之后,可根据第一承载上下文信息建 立用户平面, 具体地, 可根据第一承载切换请求消息, 生成第一基站至第一 GW的第三承载, 并在该第三承载上, 将后续的上行非 CoMP用户数据发送 至第一 GW。
可选地, 第一基站接收到第一承载切换请求消息之后, 可释放第一基站 至集中处理节点的用于传输所述上行非 CoMP用户数据的上行传输资源。
可选地, 第一基站接收到第一承载切换请求消息之后, 可生成第一指示 信息并将该第一指示信息发送至集中处理节点。 可理解, 该第一指示信息是 一个 end marker。 具体地, 该第一指示信息为第一基站将上行非 CoMP用户 数据发送至集中处理节点这个过程的 end marker。
若所述所述用户数据还包括上行 CoMP用户数据, 那么, 703的步骤还 包括: 第一设备, 与至少一个基站一起, 将所述上行 CoMP用户数据协作发 送至所述集中处理节点,以使得所述集中处理节点将所述上行 CoMP用户数 据发送至所述第二设备。 其中, 所述第一设备与所述至少一个基站用于对所 述上行 CoMP用户数据进行协作发送。
应注意, 在图 7所示的方法中, 当第一设备为第一基站时, 可以参见前 述图 6中由第一基站所实现的方法的相关描述,为避免重复,这里不再赘述。 可选地, 在图 7所示的方法之后, 该方法还可包括: 第一设备接收所述 集中处理节点发送的第三承载切换请求消息, 所述第二承载切换请求消息用 于指示所述第一设备经过所述集中处理节点进行数据传输; 第一设备根据所 述第二承载切换请求消息, 将所述用户数据发送至所述第二设备。
具体地, 当第一设备为第一 GW时, 可参见前述图 5中由第一 GW所 实现的方法的相关描述。 当第一设备为第一基站时, 可参见前述图 6中由第 一基站根据第二承载切换请求消息所实现的方法的相关描述。 为避免重复, 这里不再赘述。
图 8是本发明另一个实施例的数据传输的方法的流程图。 图 8所示的方 法包括:
801 , 第二 GW接收集中处理节点发送的生成承载请求消息, 所述生成 承载请求消息包括至少一个基站的标识信息, 所述生成承载请求消息用于指 示所述第二 GW生成所述第二 GW至所述至少一个基站的承载, 所述承载 用于由所述第二 GW将从所述第一 GW接收的下行 CoMP用户数据发送至 所述至少一个基站。
802, 第二 GW根据所述生成承载请求消息, 生成所述第二 GW至所述 至少一个基站的承载。
803, 第二 GW接收所述第一 GW发送的所述下行 CoMP用户数据。
804, 第二 GW在所述承载上, 将所述下行 CoMP用户数据发送至所述 至少一个基站。
本发明实施例中, 第二 GW根据集中处理节点发送的生成承载请求消 息, 生成第二 GW至至少一个基站的承载, 能够将由第一 GW发送的下行 CoMP用户数据, 经由该第二 GW发送至至少一个基站。
可理解, 至少一个基站是处于该第二 GW下的。
具体地, 本发明实施例中, 第二 GW所实现的方法可参见上述图 4的实 施例中第二 GW的相关描述。 为避免重复, 这里不再赘述。
图 9是本发明另一个实施例的数据传输的方法的流程图。 图 9所示的方 法包括:
901 , 基站接收 GW发送的下行 CoMP用户数据。
902, 基站将下行调度请求消息发送至集中处理节点, 所述下行调度请 求消息用于请求所述集中处理节点进行下行调度。
903, 基站接收所述集中处理节点发送的调度结果, 所述调度结果至少 包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率。
904,基站根据所述调度结果,与至少一个基站协作发送所述下行 CoMP 用户数据。
本发明实施例中,基站从 GW接收下行 CoMP用户数据,并根据集中处 理节点的调度结果, 与至少一个基站一起, 将该下行 CoMP用户数据协作发 送至目标用户。 能够保证下行 CoMP用户数据的传输。
本发明实施例中, GW将下行 CoMP用户数据绕过集中处理节点发送至 所述基站以及所述至少一个基站。
其中,所述至少一个基站可以从所述 GW接收所述下行 CoMP用户数据。 或者,所述至少一个基站也可以是从另一 GW接收所述下行 CoMP用户数据。 或者,所述至少一个基站中的 k个基站从另一 GW接收所述下行 CoMP用户 数据,而所述至少一个基站中除所述 k个基站之外的其他基站从所述 GW接 收所述下行 CoMP用户数据。 本发明对此不作限定。
可理解, 该基站为所述下行 CoMP用户数据的目标用户的服务基站。 本发明实施例中, 902中的下行调度请求消息可包括以下至少一种: 所 述基站的标识信息、 所述下行 CoMP用户数据的目标用户的标识信息、緩存 器中等待发送的总数据量。或者,下行调度请求消息还可包括数据的优先级、 以及各个优先级的等待发送的数据量。
相应地, 调度结果还可包括 PRB数量和位置信息、 发射层数和天线数 信息等。
在 904中, 所述基站, 可与至少一个基站一起, 根据所述调度结果, 将 多达下行 CoMP用户数据发送至所述下行 CoMP用户数据的目标用户。并且, 所述基站接收所述目标用户的反馈信息。 具体地, 该反馈信息为 ACK消息 或者为 NACK消息。
进一步地, 所述基站将该反馈信息发送至集中处理节点。
作为一种情况, 所述基站将 ACK消息发送至所述集中处理节点; 所述 基站接收所述集中处理节点发送的第一消息, 所述第一消息用于指示所述基 站删除所述下行 CoMP用户数据的数据副本; 所述基站删除所述下行 CoMP 用户数据的数据副本。
若所述基站进行 ACK译码,则所述基站接收到目标用户发送的 ACK消 息, 进行 ACK译码, 即可确定该下行 CoMP用户数据传输成功, 此时所述 基站将 ACK消息发送至集中处理节点, 并且所述基站删除所存储的所述下 行 CoMP用户数据的数据副本。 随后, 集中处理节点接收到该 ACK消息之 后, 生成第一消息, 并将该第一消息发送至至少一个基站, 该第一消息用于 指示所述至少一个基站删除下行 CoMP用户数据的数据副本。 那么, 所述基 站接收到所述第一消息之后, 删除所述下行 CoMP用户数据的数据副本。
若集中处理节点进行 ACK译码, 则所述基站接收到目标用户发送的 ACK消息后, 将该 ACK消息转发至集中处理节点, 也可以理解该 ACK消 息是透传至集中处理节点的。 集中处理节点接收到该 ACK消息之后, 进行 ACK译码, 确定该下行 CoMP用户数据传输成功。 随后, 集中处理节点生 成第一消息, 并将该第一消息发送至所述基站和所述至少一个基站, 该第一 消息用于指示所述基站和所述至少一个基站删除下行 CoMP用户数据的数 据副本。 那么, 所述基站接收到所述第一消息之后, 删除所述下行 CoMP用 户数据的数据副本。
作为另一种情况, 所述基站将 NACK 消息发送至所述集中处理节点; 所述基站接收所述集中处理节点发送的重传调度确认消息或第一消息, 所述 重传调度确认消息用于指示所述基站将所述下行 CoMP用户数据与所述至 少一个基站再次进行协作发送, 所述第一消息用于指示所述基站删除所述下 行 CoMP用户数据的数据副本;所述基站根据所述重传调度确认消息将所述 下行 CoMP用户数据与所述至少一个基站再次进行协作发送, 或者, 所述基 站根据所述第一消息删除所述下行 CoMP用户数据的数据副本。
在该另一种情况下, 可能是由所述基站进行 NACK译码, 也可能是由 集中处理节点进行 NACK译码的, 本发明对此不作限定。
本发明实施例中,基站从 GW接收下行 CoMP用户数据,并根据集中处 理节点的调度结果, 与至少一个基站一起, 将该下行 CoMP用户数据协作发 送至目标用户。 能够保证下行 CoMP用户数据的传输。
图 10是本发明一个实施例的数据传输的方法的流程的示意图。 图 10中 示出了第一 GW 31, 第一基站 21、 第二基站 22、 第三基站 23以及集中处理 节点 24。 另外 4叚设有两个终端(图 10中未示出), 分别是第一终端和第二终 端,其中第一终端的服务基站为第一基站 21, 第二终端的服务基站为第二基 站 22。
1101,第一 GW 31通过集中处理节点 24与第一 GW 31之间的接口将下 行用户数据发送至集中处理节点 24,其中下行用户数据包括至第一终端的第 一下行 CoMP用户数据、至第二终端的第二下行 CoMP用户数据、和至第二 终端的下行非 CoMP用户数据。 其中, 集中处理节点 24与第一 GW 31之间 的接口为集中处理节点 24的 S1接口。
其中,第一下行 CoMP用户数据需第一基站 21和第二基站 22进行协作 发送, 第二下行 CoMP用户数据需第一基站 21、 第二基站 22和第三基站 23 进行协作发送。
1102, 集中处理节点 24将下行用户数据发送至对应的基站。 具体地, 集中处理节点 24将第一下行 CoMP用户数据和第二下行 CoMP用户数据发 送至第一基站 21, 将第一下行 CoMP用户数据、 第二下行 CoMP用户数据 和下行非 CoMP用户数据发送至第二基站 22, 将第二下行 CoMP用户数据 发送至第三基站 23。
应注意, 图 10中该步骤示出了三个实线箭头。
应注意, 这里, 集中处理节点 24可对第一下行 CoMP用户数据先进行 联合预编码,再将联合预编码之后的第一下行 CoMP用户数据发送至第一基 站 21和第二基站 22。 同样地, 集中处理节点 24可对第二下行 CoMP用户 数据先进行联合预编码,再将联合预编码之后的第二下行 CoMP用户数据发 送至第一基站 21、 第二基站 22和第三基站 23。
或者, 集中处理节点 24可生成第一预编码的控制信息, 并将第一预编 码的控制信息和第一下行 CoMP用户数据发送至第一基站 21和第二基站 22。 同样地, 集中处理节点 24可生成第二预编码的控制信息, 并将第二预编码 的控制信息和第二下行 CoMP用户数据发送至第一基站 21、 第二基站 22和 第三基站 23。 本发明对此不作限定。
应注意, 本发明实施例对集中处理节点 24发送的时刻不作限定。 例如, 集中处理节点 24既可以先发送 CoMP用户数据再发送非 CoMP用户数据, 也可以先发送非 CoMP用户数据再发送 CoMP用户数据,也可以同时或交错 发送 CoMP用户数据和非 CoMP用户数据。 例如, 集中处理节点 24可以先 发送相应的用户数据至第一基站 21,或者可以先发送相应的用户数据至第二 基站 22, 或者也可以先发送相应的用户数据至第三基站 23, 或者也可以同 时发送。 本发明对此不作限定。
1103,第一基站 21和第二基站 22将第一下行 CoMP用户数据协作发送 至第一终端, 第一基站 21、 第二基站 22和第三基站 23将第二下行 CoMP 用户数据协作发送至第二终端。 第二基站 22将下行非 CoMP用户数据发送 至第二终端。
应注意, 图 10中该步骤示出了三个虚线箭头。
应注意, 本发明实施例中的第一 GW 31发送的下行用户数据仅是一个 示意性的例子。 例如, 实际中, 该下行用户数据可以是仅包括下行 CoMP用 户数据的, 或者, 实际中, 该下行用户数据可以是发送至图 10中未示出的 其他的终端的。 本发明对此不作限定。
但是, 该下行用户数据不包括发送至以集中处理节点 24为服务基站的 终端的用户数据。
例如, 假设第四终端的服务基站为集中处理节点 24。
那么, 由第一 GW 31发送第四下行非 CoMP用户数据至集中处理节点 24,再由集中处理节点 24将该第四下行非 CoMP用户数据发送至该第四终 端。
另一方面, H没由第一 GW 31发送至该第四终端的第四下行 CoMP用 户数据的协作基站为第一基站 21、 第二基站 22和集中处理节点 24。 那么, 由第一 GW 31发送第四下行 CoMP用户数据至集中处理节点 24,再由集中 处理节点 24将第四下行 CoMP用户数据发送至第一基站 21和第二基站 22。 最后再由第一基站 21、第二基站 22和集中处理节点 24将该第四下行 CoMP 用户数据协作发送至该第四终端。
可理解, 本发明实施例不考虑第一 GW 31发送至第四终端的下行用户 数据。
1104, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口拥塞时, 生成第一承载切换请求消息。
1105, 集中处理节点 24发送第一承载切换请求消息至第一 GW 31。 具体地,该第一承载切换请求消息表示集中处理节点 24确定接口拥塞, 该第一承载切换请求消息用于指示第一 GW 31将下行非 CoMP用户数据的 下行路径从集中处理节点 24切换至第二基站 22。 也就是说, 第一承载切换 请求消息指示第一 GW 31将下行非 CoMP用户数据的下行路径进行切换, 以使得下行非 CoMP用户数据据的下行传输绕过集中处理节点 24。
其中, 该第一承载切换请求消息中可包括第二基站 22的标识信息。
1106, 第一 GW 31根据第一承载切换请求消息, 生成第一 GW 31至第 二基站 22的第一承载。
同时, 第一 GW 31也可释放传输下行非 CoMP用户数据所釆用的, 第 — GW 31至集中处理节点 24的承载。
应注意,在 1106前,第一 GW 31在接收到第一承载切换请求消息之后, 可生成第一指示信息, 并将该第一指示信息发送至集中处理节点 24 (图 10 中未示出)。 其中, 第一指示信息用于表示第一 GW 31停止将下行非 CoMP 用户数据发送至集中处理节点 24。 可理解, 第一指示信息是 end marker。
1107, 第一 GW 31生成第一承载切换响应消息。
1108, 第一 GW 31将第一承载切换响应消息发送至集中处理节点 24。
1109, 第一 GW 31在第一承载上, 将下行非 CoMP用户数据发送至第 二基站 22。
具体地, 第一 GW 31通过第二基站 22的 S1接口将下行非 CoMP用户 数据发送至第二基站 22。
应注意, 1109是在 1106之后执行的。 具体地, 1109与 1107和 1108的 顺序不限定。 即, 1109可以在 1107之前或之后执行, 1109可以在 1108之 前或之后执行, 本发明对此不作限定。
另外, 由于集中处理节点 24的緩存中还存储有在 1105之前从第一 GW 31接收的下行非 CoMP用户数据。 于是,
1110,集中处理节点 24将集中处理节点 24的緩存中的下行非 CoMP用 户数据发送至第二基站 22。 进一步地, 集中处理节点 24可将从第一 GW 31接收的第一指示信息发 送至第二基站 22 (图 10中未示出)。
1111, 第二基站 22将从第一 GW 31接收到的下行非 CoMP用户数据发 送至第二终端。
具体地, 第二基站 22在收到第一指示信息之后, 才开始将 1109中从第
— GW 31接收到的下行非 CoMP用户数据发送至第二终端。
具体地,第二基站 22将从集中处理节点 24接收的下行非 CoMP用户数 据全部发送至第二终端之后,才开始将从第一 GW 31接收到的下行非 CoMP 用户数据发送至第二终端。
这样, 在该实施例之后, 第一 GW 31发送的下行用户数据中, 下行非
CoMP用户数据通过第二基站 22的 S1接口, 传输至第二基站 22, 如图 10 中的 1109所示。然后再由第二基站 22将下行非 CoMP用户数据发送至第二 终端, 如图 10中的 1111所示。
第一 GW 31发送的下行用户数据中, 第一下行 CoMP用户数据和第二 下行 CoMP用户数据, 依然按照步骤 1101至 1103中所描述的方法, 通过集 中处理节点 24的 S1接口, 发送至集中处理节点 24。 然后再由集中处理节 点 24发送至协作发送的基站。 具体地, 集中处理节点 24将第一下行 CoMP 用户数据发送至第一基站 21和第二基站 22, 将第二下行 CoMP用户数据发 送至第一基站 21、 第二基站 22和第三基站 23。 最后由第一基站 21和第二 基站 22将第一下行 CoMP用户数据协作发送至第一终端, 第一基站 21、 第 二基站 22和第三基站 23将第二下行 CoMP用户数据协作发送至第二终端。
这样,通过本发明实施例, 在确定集中处理节点与第一 GW之间的接口 拥塞时, 将下行非 CoMP用户数据绕过集中处理节点传输至对应的基站, 能 够减少集中处理节点与第一 GW之间的接口的数据流量,进而能够緩解或消 除所述接口的拥塞状况。 并且, 下行 CoMP用户数据仍然经过集中处理节点 进行传输, 能够保证下行 CoMP用户数据的传输效率。
可选地, 作为一个实施例, 在图 10所示的实施例之后, 还可包括: 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接口处于 正常状态。例如可以是集中处理节点确定该接口的带宽使用率大于第二阔值 且小于第一阔值。 则继续按照前述的接收进行下行传输。
则说明, 在图 10所述的实施例之后, 已经消除了所述接口的拥塞。 或者, 可选地, 作为另一个实施例, 在图 10所示的实施例之后, 如图 11所示, 还可包括:
1114, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口仍然拥塞。
1115, 集中处理节点 24发送第二承载切换请求消息至第一 GW 31。 具体地, 该第二承载切换请求消息表示集中处理节点 24确定接口仍然 拥塞, 该第二承载切换请求消息用于指示第一 GW 31将第二下行 CoMP用 户数据的下行路径从集中处理节点 24切换至对应的基站。 这里, 第二下行 CoMP用户数据的对应的基站为第一基站 21、 第二基站 22和第三基站 23。 也就是说, 第二承载切换请求消息指示第一 GW 31将第二下行 CoMP用户 数据的下行路径进行切换,以使得第二下行 CoMP用户数据的下行传输绕过 集中处理节点 24。
其中, 该第二承载切换请求消息中可包括第一基站 21的标识信息、 第 二基站 22的标识信息和第三基站 23的标识信息。
可选地, 作为另一个实施例, 第二承载切换请求消息也可以用于指示第
— GW 31将第一下行 CoMP用户数据的下行路径进行切换, 本发明对此不 作限定。
1116, 第一 GW 31根据第二承载切换请求消息, 生成第一 GW 31至第 一基站 21的第二承载, 生成第一 GW 31至第二基站 22的第三承载, 并且 生成第一 GW 31至第三基站 23的第四承载。
可理解, 图 11所示的实施例中, 第一基站 21、 第二基站 22和第三基站 23是处于第一 GW 31下的。
同时, 第一 GW 31也可释放传输第二下行 CoMP用户数据所釆用的, 第一 GW 31至集中处理节点 24的承载。
应注意,在 1116前,第一 GW 31在接收到第二承载切换请求消息之后, 可生成第二指示信息, 并将该第二指示信息发送至集中处理节点 24 (图 11 中未示出)。其中,第二指示信息用于表示第一 GW 31停止将第二下行 CoMP 用户数据发送至集中处理节点 24。
可理解, 第二指示信息是一个 end marker。
1117, 第一 GW 31生成第二承载切换响应消息。
1118, 第一 GW 31将第二承载切换响应消息发送至集中处理节点 24。 1119, 第一 GW 31将第二下行 CoMP用户数据发送至第一基站 21、 第 二基站 22和第三基站 23。
具体地, 第一 GW 31在第二承载上, 通过第一基站 21的 S1接口将第 二下行 CoMP用户数据发送至第一基站 21。 在第三承载上, 通过第二基站 22的 S1接口将第二下行 CoMP用户数据发送至第二基站 22。在第四承载上, 通过第三基站 23的 S1接口将第二下行 CoMP用户数据发送至第三基站 23。
应注意, 1119是在 1116之后执行的。 具体地, 1119与 1117和 1118的 顺序不限定。 即, 1119可以在 1117之前或之后执行, 1119可以在 1118之前 或之后执行, 本发明对此不作限定。
另外, 由于集中处理节点 24的緩存中还存储有在 1115之前从第一 GW
31接收的第二下行 CoMP用户数据。 于是,
1120, 集中处理节点 24将集中处理节点 24的緩存中的第二下行 CoMP 用户数据发送至第一基站 21、 第二基站 22和第三基站 23。
进一步地, 集中处理节点 24可将从第一 GW 31接收的第二指示信息发 送至第一基站 21、 第二基站 22和第三基站 23 (图 11中未示出)。
1121 , 第一基站 21、 第二基站 22和第三基站 23将从第一 GW 31接收 到的第二下行 CoMP用户数据协作发送至第二终端。
具体地,第一基站 21、第二基站 22和第三基站 23在收到第二指示信息 之后, 才开始将在 1119中从第一 GW 31接收到的第二下行 CoMP用户数据 协作发送至第二终端。
其中, 第一基站 21、 第二基站 22和第三基站 23进行协作发送时, 需先 由第二终端的服务基站, 即第二基站 22向集中处理节点 24发送下行调度请 求消息, 由集中处理节点 24进行集中调度之后, 再由第一基站 21、 第二基 站 22和第三基站 23根据调度结果,向第二终端协作发送第二下行 CoMP用 户数据。 具体地, 可以参见图 9的实施例中的相关描述, 为避免重复, 这里 不再赘述。
这样,在图 10所示的实施例之后,第一 GW 31发送的下行用户数据中, 通过集中处理节点的 S1接口进行下行传输的用户数据中只包括下行 CoMP 用户数据,具体地,为第一下行 CoMP用户数据和第二下行 CoMP用户数据。 在图 11所示的实施例之后, 第一 GW 31发送的下行用户数据中, 第二下行 CoMP用户数据分别通过第一基站 21的 S1接口、 第二基站 22的 S1接口和 第三基站 23的 SI接口, 发送至第一基站 21、 第二基站 22和第三基站 23。 如图 11中的 1119所示。 然后再由第一基站 21、 第二基站 22和第三基站 23 协作发送至第二终端。 如图 11中的 1121所示。
而对于第一 GW 31发送的下行用户数据中的第一下行 CoMP用户数据, 依然按照步骤 1101至 1103中所描述的方法, 通过集中处理节点 24的 S1接 口, 发送至集中处理节点 24。 然后再由集中处理节点 24发送至第一基站 21 和第二基站 22。 最后由第一基站 21和第二基站 22协作发送至第一终端。
这样, 通过本发明实施例, 将下行非 CoMP用户数据绕过集中处理节点 进行传输之后, 如果确定集中处理节点与第一 GW之间的接口仍然拥塞, 可 将下行用户数据中的第二下行 CoMP用户数据绕过集中处理节点进行传输, 这样, 能够进一步减少经过集中处理节点与第一 GW之间的接口的数据流 量, 进而能够緩解或者消除所述接口的拥塞状况。 并且, 能够保证第一下行 CoMP用户数据的传输效率。
可选地, 若进一步地: 集中处理节点 24确定所述接口处于正常状态, 说明图 10和图 11所示的流程之后, 已经消除了所述接口的拥塞状况。
可选的, 若进一步地: 集中处理节点 24确定所述接口仍然拥塞, 说明 图 10和图 11所示的流程之后, 只是緩解了所述接口的拥塞状况。 但是, 由 于此时经过所述接口进行下行传输的数据只有发送至第一终端的第一下行 CoMP用户数据, 所以本流程对此时的拥塞状态不作进一步地处理。 或者, 可选地, 作为另一个实施例, 若第三基站 23处于第二 GW下。 在图 10所示的实施例之后, 如图 12所示, 还可包括:
1214, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口仍然拥塞。
1215, 集中处理节点 24发送第二承载切换请求消息至第一 GW 31。 具体地, 该第二承载切换请求消息表示集中处理节点 24确定接口仍然 拥塞, 该第二承载切换请求消息用于指示第一 GW 31将第二下行 CoMP用 户数据的下行路径从集中处理节点 24切换至对应的基站。 由于第三基站 23 处于第二 GW 32下。 此时, 第二承载切换请求消息具体用于第一 GW 31将 第二下行 CoMP用户数据绕过集中处理节点 24发送至第一基站 21和第二基 站 22, 并且生成第一 GW 31至第二 GW 32的转发承载, 该第一 GW 31至 第二 GW 32的转发承载用于第一 GW 31将第二下行 CoMP用户数据发送至 第二 GW 32。
1216, 第一 GW 31根据第二承载切换请求消息, 生成第一 GW 31至第 二 GW 32的转发承载。
本实施例中, 第二承载切换请求消息中可携带第一基站 21的标识信息 和第二基站 22的标识信息。 第一 GW 31可根据第二承载切换请求消息, 生 成第一 GW 31至第一基站 21的第二承载, 生成第一 GW 31至第二基站 22 的第三承载。
同时, 第一 GW 31也可释放传输第二下行 CoMP用户数据所釆用的, 第一 GW 31至集中处理节点 24的承载。
应注意,在 1216前,第一 GW 31在接收到第二承载切换请求消息之后, 可生成第二指示信息, 并将该第二指示信息发送至集中处理节点 24 (图 12 中未示出)。其中,第二指示信息用于表示第一 GW 31停止将第二下行 CoMP 用户数据发送至集中处理节点 24。
可理解, 第二指示信息是一个 end marker。
可选地, 第一 GW 31也可生成第二承载切换响应消息并将该第二承载 切换响应消息发送至集中处理节点 24。
1217, 集中处理节点 24发送生成承载请求消息至第二 GW 32。
可理解, 该集中处理节点 24可具有 MME的功能, 那么集中处理节点 24可以将生成承载请求消息直接发送至第二 GW 32。 或者, 集中处理节点 24也可以将生成承载请求消息通过 MME间接地发送至第二 GW 32。本发明 对此不作限定。
其中, 该生成承载请求消息中可包括第三基站 23的标识信息。 该生成 承载请求消息用于指示第二 GW 32生成第二 GW至第三基站 23的第四承 载。
1218, 第二 GW 32根据生成承载请求消息, 生成第二 GW 32至第三基 站 23的第四承载。
这样,第二 GW 32可将从第一 GW 31接收到第二下行 CoMP用户数据, 在第四承载上发送至第三基站 23。
可选地, 第二 GW 32可以生成生成承载响应消息, 并将该生成承载响 应消息发送至集中处理节点 24。 1219, 由于集中处理节点 24的緩存中还存储有在 1215之前从第一 GW 31接收的第二下行 CoMP用户数据。 集中处理节点 24将集中处理节点 24 的緩存中的第二下行 CoMP用户数据发送至第一基站 21、 第二基站 22和第 三基站 23。
进一步地, 集中处理节点 24可将从第一 GW 31接收的第二指示信息发 送至第一基站 21、 第二基站 22和第三基站 23 (图 13中未示出)。
具体地, 该步骤 1219可参见图 11中的 1120的相关描述, 为避免重复, 这里不再赘述。
1220, 第一 GW 31在第二承载上, 将第二下行 CoMP用户数据发送至 第一基站 21; 在第三承载上, 将第二下行 CoMP用户数据发送至第二基站
22; 在第一 GW 31至第二 GW 32的转发承载上, 将第二下行 CoMP用户数 据发送至第二 GW 32。 随后, 第二 GW 32在第四承载上,将第二下行 CoMP 用户数据发送至第三基站 23。
1221 , 第一基站 21、 第二基站 22和第三基站 23将第二下行 CoMP用 户数据协作发送至第二终端。
具体地,第一基站 21、第二基站 22和第三基站 23在接收到第二指示信 息之后, 才将从第一 GW 31和第二 GW 32接收的第二下行 CoMP用户数据 协作发送至第二终端。
其中, 第一基站 21、 第二基站 22和第三基站 23进行协作发送时, 需先 由第二终端的服务基站, 即第二基站 22向集中处理节点 24发送下行调度请 求消息, 由集中处理节点 24进行集中调度之后, 再由第一基站 21、 第二基 站 22和第三基站 23根据调度结果,向第二终端协作发送第二下行 CoMP用 户数据。 具体地, 可以参见图 9的实施例中的相关描述, 为避免重复, 这里 不再赘述。
可选地, 若进一步地: 集中处理节点 24确定所述接口处于正常状态, 说明图 10和图 12所示的流程之后, 已经消除了所述接口的拥塞状况。
可选的, 若进一步地: 集中处理节点 24确定所述接口仍然拥塞, 说明 图 10和图 12所示的流程之后, 只是緩解了所述接口的拥塞状况。 但是, 由 于此时经过所述接口进行下行传输的数据只有发送至第一终端的第一下行 CoMP用户数据, 所以本流程对此时的拥塞状态不作进一步地处理。
这样, 在图 10和图 12所示的流程之后, 第一 GW 31将下行非 CoMP 用户数据绕过集中处理节点 24传输至第二基站 22; 将第二下行 CoMP用户 数据绕过集中处理节点 24传输至第一基站 21和第二基站 22,并发送至第二 GW 32, 以使第二 GW 32将将第二下行 CoMP用户数据绕过集中处理节点 24传输至第三基站 23;将第一下行 CoMP用户数据发送至集中处理节点 24。 这样, 既緩解或消除了集中处理节点 24与第一 GW 31之间的接口的拥塞状 况, 同时又保证了第一下行 CoMP用户数据的传输效率。 可选地, 在图 11或图 12所示的方法之后, 如图 13所示, 还可包括:
1124, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口空闲。
1125, 集中处理节点 24发送第三承载切换请求消息至第一 GW 31。 其中,第三承载切换请求消息用于指示第一 GW 31切换第二下行 CoMP 用户数据的下行传输路径,以使得第二下行 CoMP用户数据的传输经过集中 处理节点 24。
1126, 第一 GW 31根据第三承载切换请求消息, 生成第一 GW 31至集 中处理节点 24的第五承载。
同时, 第一 GW 31也可释放传输第二下行 CoMP用户数据所釆用的, 第一 GW 31至第一基站 21、 第二基站 22和第三基站 23的承载。
或者, 若第三基站 23处于第二 GW 32下, 第一 GW 31也可释放传输 第二下行 CoMP用户数据所釆用的, 第一 GW 31至第一基站 21和第二基站 22的承载, 且释放第一 GW 31至第二 GW 32的转发承载。
应注意, 在 1125之后, 第一 GW 31可生成第三指示信息, 并将该第三 指示信息发送至第一基站 21、第二基站 22和第三基站 23 (图 13中未示出)。 其中, 第三指示信息用于表示第一 GW 31停止将第二下行 CoMP用户数据 发送至第一基站 21、 第二基站 22和第三基站 23。
可理解, 第三指示信息是一个 end marker。
可选地, 第一 GW 31可生成第三承载切换响应消息, 并将该第三承载 切换响应消息发送至集中处理节点 24。
1127, 第一 GW 31在第五承载上, 将第二下行 CoMP用户数据发送至 集中处理节点 24。
1128, 进一步地, 集中处理节点 24将从第一 GW 31接收的第二下行 CoMP用户数据发送至第一基站 21、 第二基站 22和第三基站 23。
另外, 由于第一基站 21,第二基站 22和第三基站 23的緩存中还存储有 在 1128之前从第一 GW 31, 或者从第一 GW 31和第二 GW 32接收的第二 下行 CoMP用户数据。 于是,
1129, 第一基站 21, 第二基站 22和第三基站 23分别将第一基站 21的 緩存中的, 第二基站 22的緩存中的和第三基站 23緩存中的第二下行 CoMP 用户数据, 协作发送至第二终端。
1130, 第一基站 21, 第二基站 22和第三基站 23将从集中处理节点 24 接收的第二下行 CoMP用户数据协作发送至第二终端。
具体地,第一基站 21,第二基站 22和第三基站 23在收到第三指示信息 之后, 将从集中处理节点 24接收的第二下行 CoMP用户数据, 协作发送至 第二终端。
这样,在本实施例中, 在确定集中处理节点与第一 GW之间的接口空闲 时, 将绕过集中处理节点传输的第二下行 CoMP用户数据, 切换为经过集中 处理节点进行传输, 这样能够提高接口的利用率, 并且能够保证 CoMP用户 数据的传输效率。
可选地, 进一步地, 在图 13所示的方法之后, 如图 14所示,还可包括: 1134, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口仍然空闲。
1135, 集中处理节点 24发送第四承载切换请求消息至第一 GW 31。 其中, 第四承载切换请求消息用于指示第一 GW 31切换下行非 CoMP 用户数据的下行传输路径,以使得下行非 CoMP用户数据的传输经过集中处 理节点 24。
1136, 第一 GW 31根据第四承载切换请求消息, 生成第一 GW 31至集 中处理节点的第六承载。
同时, 第一 GW 31也可释放传输下行非 CoMP用户数据所釆用的, 第 一 GW 31至第二基站 22的承载。
应注意, 在 1135之后, 第一 GW 31可生成第四指示信息, 并将该第四 指示信息发送至第二基站 22 (图 14中未示出)。 其中, 第四指示信息用于表 示第一 GW 31停止将下行非 CoMP用户数据发送至第二基站 22。
可理解, 第四指示信息是一个 end marker。 例如, 第一 GW 31可以在发送至第二基站 22的最后一个数据包携带该 第四指示信息。
可选地, 第一 GW 31可生成第四承载切换响应消息, 并将该第四承载 切换响应消息发送至集中处理节点 24。
1137, 第一 GW 31可在第六承载上, 将下行非 CoMP用户数据发送至 集中处理节点 24。
具体地, 第一 GW 31通过集中处理节点 24与第一 GW 31之间的接口, 将下行非 CoMP用户数据发送至集中处理节点 24。
1138,进一步地,集中处理节点 24将从第一 GW 31接收的下行非 CoMP 用户数据发送至第二基站 22。
另外, 由于第二基站 22的緩存中还存储有在 1135之前从第一 GW 31 接收的下行非 CoMP用户数据。 于是,
1139, 第二基站 22将第二基站 22的緩存中的下行非 CoMP用户数据, 发送至第二终端。
1140,第二基站 22将从集中处理节点 24接收的下行非 CoMP用户数据 发送至第二终端。
具体地, 第二基站 22在接收到第一 GW 31发送的第四指示信息之后, 才将从集中处理节点 24接收的下行非 CoMP用户数据, 发送至第二终端。
这样,在本实施例中,第一 GW发送的所有 CoMP用户数据均经过集中 处理节点传输, 在集中处理节点进一步确定该接口仍然空闲时, 将第一 GW 发送的下行非 CoMP用户数据也经过集中处理节点进行传输,这样能够提高 该接口的利用率。
这样, 经过图 13和图 14所示的实施例, 集中处理节点在确定集中处理 节点与第一 GW之间的接口空闲时,将绕过集中处理节点进行下行传输的第 二下行 CoMP用户数据切换至经过集中处理节点进行传输,这样不仅能够提 高接口的利用率, 而且能够保证在第二下行 CoMP用户数据的传输效率。 进 一步, 如果集中处理节点确定集中处理节点与第一 GW之间的接口仍然空 闲,可进一步将绕过集中处理节点进行下行传输的下行非 CoMP用户数据切 换至经过集中处理节点进行传输, 这样能够进一步提高该接口的利用率。
图 15是本发明另一个实施例的数据传输的方法的流程的示意图。 图 15 中示出了第一 GW 31、 第一基站 21、 第二基站 22以及集中处理节点 24。 另 外 4叚设有三个终端(图 15中未示出), 分别是第一终端、 第二终端和第三终 端,其中第一终端的服务基站为第一基站 21, 第二终端的服务基站为第二基 站 22, 第三终端的服务基站也为第二基站 22。
1501 , 第一基站 21从第一终端接收第一上行非 CoMP用户数据, 并将 该第一上行非 CoMP用户数据发送至集中处理节点 24。 第二基站 22从第二 终端接收第二上行非 CoMP用户数据,并将该第二上行非 CoMP用户数据发 送至集中处理节点 24。 第一基站 21 和第二基站 22从第三终端接收上行 CoMP用户数据, 并将该上行 CoMP用户数据协作发送至集中处理节点 24。
1502, 集中处理节点 24将第一上行非 CoMP用户数据、 第二上行非 CoMP用户数据和上行 CoMP用户数据发送至第一 GW 31。
具体地, 集中处理节点 24通过集中处理节点 24与第一 GW 31之间的 接口, 将第一上行非 CoMP用户数据、 第二上行非 CoMP用户数据和上行 CoMP用户数据发送至第一 GW 31。 其中, 集中处理节点 24与第一 GW 31 之间的接口可以为集中处理节点 24的 S 1接口。
1503, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口拥塞时, 生成第一承载切换请求消息。
1504, 集中处理节点 24将第一承载切换请求消息发送至第一基站 21, 该第一承载切换请求消息用于指示第一基站 21将第一上行非 CoMP用户数 据绕过集中处理节点 24传输至第一 GW 31。
1505, 第一基站 21根据该第一承载切换请求消息, 生成第一基站 21至 第一 GW 31的第一承载。
可选地, 在 1504之后, 第一基站 21可生成第一指示信息, 并将该第一 指示信息发送至集中处理节点 24 (图 15中未示出)。 其中, 第一指示信息用 于表示第一基站 21停止将第一上行非 CoMP用户数据发送至集中处理节点 24。 可理解, 第一指示信息是一个 end marker。
可选地, 第一基站 21也可生成第一承载切换响应消息, 并将该第一承 载切换响应消息发送至集中处理节点 24 (图 15中未示出)。
1506, 这样, 第一基站 21可在该第一承载上, 将第一上行非 CoMP用 户数据发送至第一 GW 31。 也就是说, 第一基站 21将第一上行非 CoMP用 户数据绕过集中处理节点 24传输至第一 GW 31。
可理解, 第一基站 21通过第一基站 21与第一 GW 31之间的接口, 将 第一上行非 CoMP用户数据发送至第一 GW 31。 其中, 第一基站 21与第一 GW 31之间的接口可以为第一基站 21的 S1接口。
同时, 第一基站 21还可释放第一基站 21至集中处理节点 24的, 用于 传输所述第一上行非 CoMP用户数据的上行传输资源。
另外, 由于集中处理节点 24的緩存中还存储有在 1504之前从第一基站
21接收的第一上行非 CoMP用户数据。 于是,
1507,集中处理节点 24将集中处理节点 24的緩存中的第一上行非 CoMP 用户数据发送至第一 GW 31。
可选地, 集中处理节点 24可将从第一基站 21接收的第一指示信息发送 至第一 GW 31 (图 15中未示出)。
例如, 集中处理节点 24可在发送至第一 GW 31的第一上行非 CoMP用 户数据的最后一个数据包中携带该第一指示信息。 这样, 第一 GW 31只有 在接收到第一指示信息之后, 才将在 1506中从第一基站 21接收的第一上行 非 CoMP用户数据发送至核心网 (图 15中未示出)。
这样,在上述实施例中, 集中处理节点确定集中处理节点与第一 GW之 间的接口拥塞时,将经过集中处理节点进行上行传输的第一上行非 CoMP用 户数据切换至绕过集中处理节点进行传输, 这样能够减少经过所述接口的数 据流量, 进而能够緩解或消除所述接口的拥塞状况。 可理解, 本实施例是将 上行非 CoMP用户数据中的部分非 CoMP用户数据绕过集中处理节点进行传 输。
可选地, 若进一步地, 在上述实施例之后:
1508, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口仍然拥塞。
则说明在 1507之后, 只是緩解了所述接口的拥塞状况。 那么,
1509,可进一步地切换第二上行非 CoMP用户数据的上行路径。具体地, 集中处理节点 24可将另一承载切换请求消息发送至第二基站 22, 所述另一 承载切换请求消息用于指示第二基站 22将第二上行非 CoMP用户数据绕过 集中处理节点 24进行传输。
具体地,切换第二上行非 CoMP用户数据的上行路径的方法与前述 1504 至 1507的步骤类似, 为避免重复, 这里不再赘述。
可选地, 若进一步地, 在 1507之后, 集中处理节点 24确定集中处理节 点 24与第一 GW 31之间的接口处于正常状态。 则说明在 1507之后, 已经 消除了所述接口的拥塞状况。
应注意, 在 1509之后, 若集中处理节点 24确定所述接口仍然拥塞, 说 明图 15所示的方法之后, 只是緩解了所述接口的拥塞状况。 但是, 由于此 时经过集中处理节点 24进行上行传输的数据只有上行 CoMP用户数据, 所 以集中处理节点 24对此时的拥塞状况不作进一步地处理。
可理解, 上行 CoMP用户数据均需经过集中处理节点传输至第一 GW。 这样, 本发明实施例, 在上行数据传输过程中, 在集中处理节点确定集 中处理节点与第一 GW之间的接口拥塞时, 将上行用户数据中的部分非 CoMP用户数据或者全部非 CoMP用户数据绕过集中处理节点传输至第一
GW, 能够减少经过所述接口的数据流量, 进而能够緩解或消除所述接口的 拥塞状况,并且同时能够保证经过集中处理节点进行传输的上行 CoMP用户 数据的传输效率。
可选地,作为另一个实施例,在图 15所示的实施例之后,如图 16所示, 还可包括:
1510, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口空闲时, 生成第二承载切换请求消息。
1511, 集中处理节点 24将第二承载切换请求消息至第二基站 22。
其中,第二承载切换请求消息用于指示第二基站 22将第二上行非 CoMP 用户数据经过集中处理节点 24传输至第一 GW 31。
可选地, 在 1511之后, 第二基站 22可生成第二指示信息, 并将该第二 指示信息发送至第一 GW 31 (图 16中未示出)。 其中, 第二指示信息用于表 示第二基站 22停止将第二上行非 CoMP用户数据发送至第一 GW 31。 可理 解, 第二指示信息是一个 end marker。 例如, 第二基站 22可在发送至第一 GW 31的第二上行非 CoMP用户数据的最后一个数据包中携带该第二指示 信息。
1512, 第二基站 22也可生成第二承载切换响应消息, 并将该第二承载 切换响应消息发送至集中处理节点 24 (图 16中未示出)。
1513,第二基站 22根据第二承载切换请求消息,切换第二上行非 CoMP 用户数据的上行传输路径。 具体地, 将第二上行非 CoMP用户数据发送至集 中处理节点 24。 应注意, 该步骤可在 1511之后执行。 例如, 可以在 1512之前或之后, 可以在 1514之前或之后。 本发明对此不作限定。
1514, 集中处理节点 24根据第二承载切换响应消息, 生成集中处理节 点 24至第一 GW 31的第二承载。
1515, 这样, 集中处理节点 24可在该第二承载上, 将从第二基站 22接 收的第二上行非 CoMP用户数据发送至第一 GW 31。
具体地, 集中处理节点 24可在该第二承载上, 通过集中处理节点 24与 第一 GW 31之间的接口,将第二上行非 CoMP用户数据发送至第一 GW 31。
应注意, 第一 GW 31在接收到第二基站 22发送的第二指示信息之后, 才将从集中处理节点 24接收的第二上行非 CoMP用户数据发送至核心网。
这样, 本发明实施例中, 在上行传输过程中, 集中处理节点确定集中处 理节点与第一 GW之间的接口空闲时,将绕过集中处理节点进行上行传输的 第二上行非 CoMP用户数据, 切换为经过集中处理节点进行上行传输, 这样 能够提高所述接口的利用率。
应注意, 本发明实施例中, 集中处理节点也可接收位于集中处理节点的 服务范围内的终端发送的第四上行非 CoMP用户数据。 本发明对此不作限 定。 但是, 本发明实施例对位于集中处理节点的服务范围内的终端发送的上 行非 CoMP用户数据不进行切换。
可选地, 若进一步地:
1516, 集中处理节点 24确定集中处理节点 24与第一 GW 31之间的接 口仍然空闲。
1517,可进一步地切换第一上行非 CoMP用户数据的上行路径。具体地, 集中处理节点 24可将第三承载切换请求消息发送至第一基站 21, 所述第三 承载切换请求消息用于指示第一基站 21将第一上行非 CoMP用户数据经过 集中处理节点进行传输。
具体地,切换第一上行非 CoMP用户数据的上行路径的方法与前述 1511 至 1515的步骤类似, 为避免重复, 这里不再赘述。
可选地, 若进一步地, 在 1515之后, 集中处理节点 24确定集中处理节 点 24与第一 GW 31之间的接口处于正常状态。 则无需执行步骤 1517。
这样, 本发明实施例, 在上行数据传输过程中, 当集中处理节点确定集 中处理节点与第一 GW之间的接口空闲时,将绕过集中处理节点进行上行传 输的部分非 CoMP用户数据或全部非 CoMP用户数据,切换为经过集中处理 节点进行传输, 这样能够提高所述接口的利用率。
图 17是本发明一个实施例的集中处理节点的框图。 图 17所示的集中处 理节点 1700包括接收单元 1701和发送单元 1702。
接收单元 1701, 用于从第一网关 GW接收下行用户数据。
发送单元 1702, 用于将接收单元 1701接收的所述下行用户数据发送至 对应的基站。
发送单元 1702, 还用于在确定所述集中处理节点 1700与所述第一 GW 之间的接口拥塞时, 发送第一承载切换请求消息至所述第一 GW, 所述第一 承载切换请求消息用于指示所述第一 GW绕过所述集中处理节点 1700进行 数据传输。
本发明实施例中,集中处理节点在确定集中处理节点与第一 GW之间的 接口拥塞时, 将第一承载切换请求消息发送至第一 GW, 以使得第一 GW将 下行用户数据绕过集中处理节点进行传输, 这样, 能够减少集中处理节点与 第一 GW之间的接口的数据流量, 进而能够緩解或消除接口的拥塞状况。
可选地, 作为一个实施例, 所述下行用户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 发送单元 1702, 具体用于: 将所述 下行非 CoMP用户数据发送至第一基站,将所述下行 CoMP用户数据发送至 至少两个基站, 其中, 所述第一基站为所述下行非 CoMP用户数据的目标用 户的服务基站,所述至少两个基站用于对所述下行 CoMP用户数据进行协作 发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所述下行非 CoMP用户数据绕过集中处理节点 1700传输至所述第一基站。
可选地, 作为另一个实施例, 所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述将所述下行 CoMP用户数 据发送至至少两个基站, 包括: 将所述第一下行 CoMP用户数据发送至至少 两个第二基站, 将所述第二下行 CoMP用户数据发送至至少两个第三基站, 其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作 发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作 发送, 发送单元 1702, 还用于: 在确定所述接口仍然拥塞时, 发送第二承载 切换请求消息至所述第一 GW, 所述第二承载切换请求消息用于指示所述第 一 GW将所述第一下行 CoMP用户数据绕过集中处理节点 1700传输至所述 至少两个第二基站。
可选地, 作为另一个实施例, 所述至少两个第二基站中的 k个第二基站 处于第二 GW下,所述第二承载切换请求消息具体用于指示所述第一 GW将 所述第一下行 CoMP用户数据绕过集中处理节点 1700传输至所述至少两个 第二基站中除所述 k个第二基站之外的其他基站, 还用于指示所述第一 GW 生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述 第一下行 CoMP用户数据发送至所述第二 GW, 发送单元 1702, 还用于: 发 送生成承载请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个 第二基站的标识信息,所述生成承载请求消息用于指示所述第二 GW生成所 述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载 上,将从所述第一 GW接收的所述第一下行 CoMP用户数据绕过集中处理节 点 1700传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一实施例, 所述下行用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下行 CoMP 用户数据, 发送单元 1702, 具体用于: 将所述第一下行 CoMP用户数据发 送至至少两个第二基站,将所述第二下行 CoMP用户数据发送至至少两个第 三基站。 其中, 所述至少两个第二基站用于对所述第一下行 CoMP用户数据 进行协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据 进行协作发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所 述第一下行 CoMP用户数据绕过集中处理节点 1700传输至所述至少两个第 二基站。
可选地, 作为另一个实施例, 所述至少两个第二基站中的 k个第二基站 处于第二 GW下,所述第一承载切换请求消息具体用于指示所述第一 GW将 所述第一下行 CoMP用户数据绕过集中处理节点 1700传输至所述至少两个 第二基站中除所述 k个第二基站之外的其他基站, 还用于指示所述第一 GW 生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述 第一下行 CoMP用户数据发送至所述第二 GW。发送单元 1702, 还用于: 发 送生成承载请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个 第二基站的标识信息,所述生成承载请求消息用于指示所述第二 GW生成所 述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载 上,将从所述第一 GW接收的所述第一下行 CoMP用户数据绕过集中处理节 点 1700传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一个实施例, 集中处理节点 1700还包括处理单元。 接 收单元 1701, 还用于接收所述至少两个第二基站中的所述第一下行 CoMP 用户数据的目标用户的服务基站发送的下行调度请求消息; 处理单元, 用于 进行下行调度;发送单元 1702,还用于将所述处理节点的调度结果发送至所 述至少两个第二基站。 其中, 所述调度结果包括以下至少一种: 无线链路控 制 RLC分段信息、 编码调制信息和发射功率。
可选地, 作为另一个实施例, 接收单元 1701, 还用于接收所述第一下行 CoMP用户数据的目标用户的服务基站发送的 ACK消息; 发送单元 1702, 还用于将第一消息发送至所述至少两个第二基站, 所述第一消息用于指示所 述至少两个第二基站删除所述第一下行 CoMP用户数据的数据副本。
可选地, 作为另一个实施例, 接收单元 1701, 还用于接收所述第一下行 CoMP用户数据的目标用户的服务基站发送的 NACK消息; 发送单元 1702, 还用于当重传次数未达到预设的最大重传次数时,发送重传调度确认消息至 所述至少两个第二基站, 所述重传调度确认消息用于指示所述至少两个第二 基站将所述第一下行 CoMP用户数据再次进行协作发送。当重传次数达到预 设的最大重传次数时, 将第一消息发送至所述至少两个第二基站, 所述第一 消息用于指示所述至少两个第二基站删除所述第一下行 CoMP用户数据的 数据副本。
可选地, 作为另一个实施例, 发送单元 1702, 还用于: 在确定所述接口 空闲时, 发送第三承载切换请求消息至所述第一 GW, 所述第三承载切换请 求消息用于指示所述第一 GW将所述下行用户数据, 经集中处理节点 1700 传输至所述对应的基站。
图 17所示的集中处理节点 1700能够实现图 4至图 5、图 8至图 14中由 集中处理节点执行的各个过程, 为避免重复, 这里不再赘述。
图 18是本发明另一个实施例的集中处理节点的框图。 图 18所示的集中 处理节点 1800包括: 接收单元 1801和发送单元 1802。
接收单元 1801,用于接收上行用户数据, 所述上行用户数据包括第一基 站发送的上行非协作多点传输 CoMP用户数据;
发送单元 1802, 用于将接收单元 1801接收的所述上行用户数据发送至 第一网关 GW; 发送单元 1802, 还用于在确定集中处理节点 1800与所述第一 GW之间 的接口拥塞时, 发送第一承载切换请求消息至所述第一基站, 所述第一承载 切换请求消息用于指示所述第一基站将所述上行非 CoMP用户数据绕过集 中处理节点 1800传输至所述第一 GW。
本发明实施例在上行数据传输过程中,在集中处理节点确定集中处理节 点与第一 GW之间的接口拥塞时,通过集中处理节点向第一基站发送第一承 载切换请求消息,从而将上行非 CoMP用户数据绕过集中处理节点传输至第 — GW, 能够减少经过集中处理节点与第一 GW之间的接口的数据流量, 进 而能够緩解或消除所述接口的拥塞状况。
可选地, 作为一个实施例, 所述上行用户数据还包括上行 CoMP用户数 据, 接收单元 1801, 具体用于: 从所述第一基站接收所述上行非 CoMP用 户数据, 从至少两个第二基站接收所述上行 CoMP用户数据。
可选地, 作为另一个实施例, 发送单元 1802, 还用于: 在确定所述接口 空闲时, 发送第二承载切换请求消息至所述第一基站, 所述第二承载切换请 求消息用于指示所述第一基站将所述上行非 CoMP用户数据经过集中处理 节点 1800传输至所述第一 GW。
图 18中的集中处理节点 1800能够实现图 6、 图 15和图 16中由集中处 理节点执行的各个过程, 为避免重复, 这里不再赘述。
图 19是本发明一个实施例的第一设备的框图。 图 19所示的第一设备 1900包括发送单元 1901和接收单元 1902。
发送单元 1901,用于发送用户数据至集中处理节点, 以使得所述集中处 理节点将所述用户数据发送至第二设备;
接收单元 1902,用于接收所述集中处理节点发送的第一承载切换请求消 息, 所述第一承载切换请求消息用于指示第一设备 1900绕过所述集中处理 节点进行数据传输;
发送单元 1901, 还用于根据接收单元 1902接收的所述第一承载切换请 求消息, 将所述用户数据发送至所述第二设备。
本发明实施例中, 第一设备根据集中处理节点发送的第一承载切换请求 消息,将用户数据中的部分数据从经过集中处理节点传输切换为绕过集中处 理节点传输,这样能够减少经过集中处理节点与第一 GW之间的接口的数据 流量, 进而能够緩解或消除接口的拥塞状况。 可选地, 作为一个实施例, 第一设备 1900为第一网关 GW, 所述第二 设备为与所述用户数据对应的基站。
可选地,所述用户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述第一承载切换请求消息具体用于指示第一设备 1900 将所述下行非 CoMP用户数据绕过所述集中处理节点传输至第一基站,所述 第一基站为所述下行非 CoMP用户数据的目标用户的服务基站。 发送单元 1901 , 具体用于: 将所述下行非 CoMP用户数据绕过所述集中处理节点传输 至第一基站, 将所述下行 CoMP用户数据发送至所述集中处理节点, 以使得 所述集中处理节点将所述下行 CoMP用户数据发送至至少两个基站,所述至 少两个基站用于对所述下行 CoMP用户数据进行协作发送, 其中, 所述第二 设备包括所述第一基站和所述至少两个基站。
可选地,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二 下行 CoMP用户数据, 接收单元 1902, 还用于接收所述集中处理节点发送 的第二承载切换请求消息, 所述第二承载切换请求消息用于指示第一设备 1900将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两 个第二基站; 发送单元 1901, 还用于根据接收单元 1902接收的所述第二承 载切换请求消息,将所述第一下行 CoMP用户数据绕过所述集中处理节点传 输至所述至少两个第二基站,将所述第二下行 CoMP用户数据发送至所述集 中处理节点,以使得所述集中处理节点将所述第二下行 CoMP用户数据发送 至至少两个第三基站。 其中, 所述至少两个基站包括所述至少两个第二基站 和所述至少两个第三基站, 所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发送, 所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发送。
可选地, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所 述第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
可选地, 所述用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数 据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述第一承载 切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述至少两个第二基站,发送单元 1901,具体用 于:将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个 第二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点, 以使 得所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两个第三 基站。 其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三 基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作 发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作 发送。
可选地, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所 述第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一个实施例, 第一设备 1900为第一基站, 所述第二设 备为第一 GW, 所述用户数据包括上行非 CoMP用户数据, 所述第一承载切 换请求消息具体用于指示第一设备 1900将所述上行非 CoMP用户数据绕过 所述集中处理节点传输至所述第二设备, 发送单元 1901, 具体用于: 将所述 上行非 CoMP用户数据绕过所述集中处理节点传输至所述第二设备。
可选地, 所述用户数据还包括上行 CoMP用户数据, 发送单元 1901, 还用于: 与至少一个基站一起, 将所述上行 CoMP用户数据协作发送至所述 集中处理节点,以使得所述集中处理节点将所述上行 CoMP用户数据发送至 所述第二设备, 其中, 第一设备 1900与所述至少一个基站用于对所述上行 CoMP用户数据进行协作发送。
可选地,接收单元 1902,还用于接收所述集中处理节点发送的第三承载 切换请求消息, 所述第二承载切换请求消息用于指示第一设备 1900经过所 述集中处理节点进行数据传输; 发送单元 1901, 还用于根据接收单元 1902 接收的所述第二承载切换请求消息, 将所述用户数据发送至所述第二设备。
图 19中的第一设备 1900为第一 GW时, 该第一设备 1900能够实现图 4至图 5、 图 8至图 14中由第一 GW执行的各个过程, 以及图 7中第一设备 为第一 GW时由第一设备执行的各个过程, 为避免重复, 这里不再赘述。
图 19中的第一设备 1900为第一基站时,该第一设备 1900能够实现图 6、 图 15和图 16中由第一基站执行的各个过程, 以及图 7中第一设备为第一基 站时由第一设备执行的各个过程, 为避免重复, 这里不再赘述。
图 20是本发明一个实施例的基站的框图。 图 20所示的基站 2000包括: 接收单元 2001和发送单元 2002。
接收单元 2001, 用于接收网关 GW发送的下行协作多点传输 CoMP用 户数据。
发送单元 2002,用于将下行调度请求消息发送至集中处理节点,所述下 行调度请求消息用于请求所述集中处理节点进行下行调度。
接收单元 2001,还用于接收所述集中处理节点发送的调度结果,所述调 度结果至少包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和 发射功率。
发送单元 2002, 还用于根据接收单元 2001接收的所述调度结果, 与至 少一个基站协作发送接收单元 2001接收的所述下行 CoMP用户数据,其中, 所述基站为所述下行 CoMP用户数据的目标用户的服务基站。
本发明实施例中,基站从 GW接收下行 CoMP用户数据,并根据集中处 理节点的调度结果, 与至少一个基站一起, 将该下行 CoMP用户数据协作发 送至目标用户。 能够保证下行 CoMP用户数据的传输。
本发明实施例中, GW将下行 CoMP用户数据绕过集中处理节点发送至 所述基站以及所述至少一个基站。 可选地, 作为一个实施例, 基站 2000还包括处理单元: 发送单元 2002, 还用于将 ACK消息发送至所述集中处理节点; 接收单元 2001, 还用于接收 所述集中处理节点发送的第一消息, 所述第一消息用于指示基站 2000删除 所述下行 CoMP用户数据的数据副本; 所述处理单元, 用于根据接收单元 2001接收的所述第一消息, 删除所述下行 CoMP用户数据的数据副本。
可选地,作为另一个实施例,基站 2000还包括处理单元:发送单元 2002, 还用于将 NACK消息发送至所述集中处理节点; 接收单元 2001, 还用于接 收所述集中处理节点发送的重传调度确认消息或第一消息, 所述重传调度确 认消息用于指示基站 2000将所述下行 CoMP用户数据与所述至少一个基站 再次进行协作发送, 所述第一消息用于指示基站 2000删除所述下行 CoMP 用户数据的数据副本; 所述处理单元, 用于根据接收单元 2001接收的所述 重传调度确认消息将所述下行 CoMP用户数据与所述至少一个基站再次进 行协作发送, 或者, 根据接收单元 2001接收的所述第一消息删除所述下行 CoMP用户数据的数据副本。
图 20中的基站 2000能够实现图 4至图 5、图 9至图 14中由下行 CoMP 用户数据的目标用户的服务基站执行的各个过程, 为避免重复, 这里不再赘 述。
图 21是本发明另一个实施例的集中处理节点的框图。 图 21所示的集中 处理节点 2100包括处理器 2101、 接收电路 2102、 发送电路 2103和存储器 2104。
接收电路 2102, 用于从第一网关 GW接收下行用户数据。
发送电路 2103, 用于将接收电路 2102接收的所述下行用户数据发送至 对应的基站。
发送电路 2103,还用于在处理器 2101确定集中处理节点 2100与所述第 一 GW之间的接口拥塞时, 发送第一承载切换请求消息至所述第一 GW, 所 述第一承载切换请求消息用于指示所述第一 GW绕过集中处理节点 2100进 行数据传输。
本发明实施例中,集中处理节点在确定集中处理节点与第一 GW之间的 接口拥塞时, 将第一承载切换请求消息发送至第一 GW, 以使得第一 GW将 下行用户数据绕过集中处理节点进行传输, 这样, 能够减少集中处理节点与 第一 GW之间的接口的数据流量, 进而能够緩解或消除接口的拥塞状况。 集中处理节点 2100中的各个组件通过总线系统 2105耦合在一起,其中 总线系统 2105除包括数据总线之外, 还包括电源总线、 控制总线和状态信 号总线。 但是为了清楚说明起见, 在图 21 中将各种总线都标为总线系统 2105。
可选地, 作为一个实施例, 所述下行用户数据包括下行非协作多点传输
CoMP用户数据和下行 CoMP用户数据, 发送电路 2103, 具体用于: 将所述 下行非 CoMP用户数据发送至第一基站,将所述下行 CoMP用户数据发送至 至少两个基站, 其中, 所述第一基站为所述下行非 CoMP用户数据的目标用 户的服务基站,所述至少两个基站用于对所述下行 CoMP用户数据进行协作 发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所述下行非 CoMP用户数据绕过集中处理节点 2100传输至所述第一基站。
可选地, 作为另一个实施例, 所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述将所述下行 CoMP用户数 据发送至至少两个基站, 包括: 将所述第一下行 CoMP用户数据发送至至少 两个第二基站, 将所述第二下行 CoMP用户数据发送至至少两个第三基站, 其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作 发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作 发送, 发送电路 2103, 还用于: 在确定所述接口仍然拥塞时, 发送第二承载 切换请求消息至所述第一 GW, 所述第二承载切换请求消息用于指示所述第 一 GW将所述第一下行 CoMP用户数据绕过集中处理节点 2100传输至所述 至少两个第二基站。
可选地, 作为另一个实施例, 所述至少两个第二基站中的 k个第二基站 处于第二 GW下,所述第二承载切换请求消息具体用于指示所述第一 GW将 所述第一下行 CoMP用户数据绕过集中处理节点 2100传输至所述至少两个 第二基站中除所述 k个第二基站之外的其他基站, 还用于指示所述第一 GW 生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述 第一下行 CoMP用户数据发送至所述第二 GW, 发送电路 2103, 还用于: 发 送生成承载请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个 第二基站的标识信息,所述生成承载请求消息用于指示所述第二 GW生成所 述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载 上,将从所述第一 GW接收的所述第一下行 CoMP用户数据绕过集中处理节 点 2100传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一实施例, 所述下行用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下行 CoMP 用户数据, 发送电路 2103, 具体用于: 将所述第一下行 CoMP用户数据发 送至至少两个第二基站,将所述第二下行 CoMP用户数据发送至至少两个第 三基站。 其中, 所述至少两个第二基站用于对所述第一下行 CoMP用户数据 进行协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据 进行协作发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所 述第一下行 CoMP用户数据绕过集中处理节点 2100传输至所述至少两个第 二基站。
可选地, 作为另一个实施例, 所述至少两个第二基站中的 k个第二基站 处于第二 GW下,所述第一承载切换请求消息具体用于指示所述第一 GW将 所述第一下行 CoMP用户数据绕过集中处理节点 2100传输至所述至少两个 第二基站中除所述 k个第二基站之外的其他基站, 还用于指示所述第一 GW 生成所述第一 GW至所述第二 GW的转发承载并在所述转发承载上将所述 第一下行 CoMP用户数据发送至所述第二 GW。发送电路 2103, 还用于: 发 送生成承载请求消息至所述第二 GW, 所述生成承载请求消息包括所述 k个 第二基站的标识信息,所述生成承载请求消息用于指示所述第二 GW生成所 述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载 上,将从所述第一 GW接收的所述第一下行 CoMP用户数据绕过集中处理节 点 2100传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一个实施例, 接收电路 2102, 还用于接收所述至少两个 第二基站中的所述第一下行 CoMP用户数据的目标用户的服务基站发送的 下行调度请求消息; 处理器 2101, 用于进行下行调度; 发送电路 2103, 还 用于将所述处理节点的调度结果发送至所述至少两个第二基站。 其中, 所述 调度结果包括以下至少一种: 无线链路控制 RLC分段信息、 编码调制信息 和发射功率。
可选地, 作为另一个实施例, 接收电路 2102, 还用于接收所述第一下行 CoMP用户数据的目标用户的服务基站发送的 ACK消息; 发送电路 2103, 还用于将第一消息发送至所述至少两个第二基站, 所述第一消息用于指示所 述至少两个第二基站删除所述第一下行 CoMP用户数据的数据副本。 可选地, 作为另一个实施例, 接收电路 2102, 还用于接收所述第一下行 CoMP用户数据的目标用户的服务基站发送的 NACK消息; 发送电路 2103, 还用于当重传次数未达到预设的最大重传次数时,发送重传调度确认消息至 所述至少两个第二基站, 所述重传调度确认消息用于指示所述至少两个第二 基站将所述第一下行 CoMP用户数据再次进行协作发送。当重传次数达到预 设的最大重传次数时, 将第一消息发送至所述至少两个第二基站, 所述第一 消息用于指示所述至少两个第二基站删除所述第一下行 CoMP用户数据的 数据副本。
可选地, 作为另一个实施例, 发送电路 2103, 还用于: 在确定所述接口 空闲时, 发送第三承载切换请求消息至所述第一 GW, 所述第三承载切换请 求消息用于指示所述第一 GW将所述下行用户数据, 经集中处理节点 2100 传输至所述对应的基站。
上述本发明实施例揭示的方法可以应用于处理器 2101 中, 或者由处理 器 2101实现。处理器 2101可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 2101 中的硬件的集成逻 辑电路或者软件形式的指令完成。 上述的处理器 2101可以是通用处理器、 数字信号处理器( Digital Signal Processor, DSP ),专用集成电路( Application Specific Integrated Circuit, ASIC )、 现成可编程门阵列 ( Field Programmable Gate Array, FPGA )或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例中的公开的各方法、 步骤及 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处 理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件 模块可以位于随机存储器(Random Access Memory, RAM ), 闪存、 只读存 储器(Read-Only Memory, ROM ), 可编程只读存储器或者电可擦写可编程 存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 2104, 处理器 2101读取存储器 2104中的信息, 结合其硬件完成上述方法的步骤。
图 21所示的集中处理节点 2100能够实现图 4至图 5、图 8至图 14中由 集中处理节点执行的各个过程, 为避免重复, 这里不再赘述。
图 22是本发明另一个实施例的集中处理节点的框图。 图 22所示的集中 处理节点 2200包括: 处理器 2201、 接收电路 2202、 发送电路 2203和存储 器 2204。
接收电路 2202,用于接收上行用户数据, 所述上行用户数据包括第一基 站发送的上行非协作多点传输 CoMP用户数据;
发送电路 2203, 用于将接收电路 2202接收的所述上行用户数据发送至 第一网关 GW;
发送电路 2203,还用于在处理器 2201确定集中处理节点 2200与所述第 一 GW之间的接口拥塞时,发送第一承载切换请求消息至所述第一基站, 所 述第一承载切换请求消息用于指示所述第一基站将所述上行非 CoMP用户 数据绕过集中处理节点 2200传输至所述第一 GW。
本发明实施例在上行数据传输过程中,在集中处理节点确定集中处理节 点与第一 GW之间的接口拥塞时,通过集中处理节点向第一基站发送第一承 载切换请求消息,从而将上行非 CoMP用户数据绕过集中处理节点传输至第 — GW, 能够减少经过集中处理节点与第一 GW之间的接口的数据流量, 进 而能够緩解或消除所述接口的拥塞状况。
集中处理节点 2200中的各个组件通过总线系统 2205耦合在一起,其中 总线系统 2205除包括数据总线之外, 还包括电源总线、 控制总线和状态信 号总线。 但是为了清楚说明起见, 在图 22 中将各种总线都标为总线系统 2205。
可选地, 作为一个实施例, 所述上行用户数据还包括上行 CoMP用户数 据, 接收电路 2202, 具体用于: 从所述第一基站接收所述上行非 CoMP用 户数据, 从至少两个第二基站接收所述上行 CoMP用户数据。
可选地, 作为另一个实施例, 发送电路 2203, 还用于: 在处理器 2201 确定所述接口空闲时, 发送第二承载切换请求消息至所述第一基站, 所述第 二承载切换请求消息用于指示所述第一基站将所述上行非 CoMP用户数据 经过集中处理节点 2200传输至所述第一 GW。
上述本发明实施例揭示的方法可以应用于处理器 2201 中, 或者由处理 器 2201实现。处理器 2201可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 2201 中的硬件的集成逻 辑电路或者软件形式的指令完成。 上述的处理器 2201可以是通用处理器、 DSP、 ASIC, FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处 理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件 模块可以位于 RAM、 闪存、 ROM、 可编程只读存储器或者电可擦写可编程 存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 2204, 处理器 2201读取存储器 2204中的信息, 结合其硬件完成上述方法的步骤。
图 22中的集中处理节点 2200能够实现图 6、 图 15和图 16中由集中处 理节点执行的各个过程, 为避免重复, 这里不再赘述。
图 23是本发明另一个实施例的第一设备的框图。 图 23所示的第一设备 2300包括处理器 2301、 接收电路 22302、 发送电路 2303和存储器 2304。
发送电路 2303,用于发送用户数据至集中处理节点, 以使得所述集中处 理节点将所述用户数据发送至第二设备;
接收电路 2302,用于接收所述集中处理节点发送的第一承载切换请求消 息, 所述第一承载切换请求消息用于指示第一设备 2300绕过所述集中处理 节点进行数据传输;
发送电路 2303, 还用于根据接收电路 2302接收的所述第一承载切换请 求消息, 将所述用户数据发送至所述第二设备。
本发明实施例中, 第一设备根据集中处理节点发送的第一承载切换请求 消息,将用户数据中的部分数据从经过集中处理节点传输切换为绕过集中处 理节点传输,这样能够减少经过集中处理节点与第一 GW之间的接口的数据 流量, 进而能够緩解或消除接口的拥塞状况。
第一设备 2300中的各个组件通过总线系统 2305耦合在一起, 其中总线 系统 2305除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总 线。 但是为了清楚说明起见, 在图 23中将各种总线都标为总线系统 2305。
可选地, 作为一个实施例, 第一设备 2300为第一网关 GW, 所述第二 设备为与所述用户数据对应的基站。
可选地,所述用户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述第一承载切换请求消息具体用于指示第一设备 2300 将所述下行非 CoMP用户数据绕过所述集中处理节点传输至第一基站,所述 第一基站为所述下行非 CoMP用户数据的目标用户的服务基站。 发送电路 2303 , 具体用于: 将所述下行非 CoMP用户数据绕过所述集中处理节点传输 至第一基站, 将所述下行 CoMP用户数据发送至所述集中处理节点, 以使得 所述集中处理节点将所述下行 CoMP用户数据发送至至少两个基站,所述至 少两个基站用于对所述下行 CoMP用户数据进行协作发送, 其中, 所述第二 设备包括所述第一基站和所述至少两个基站。
可选地,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二 下行 CoMP用户数据, 接收电路 2302, 还用于接收所述集中处理节点发送 的第二承载切换请求消息, 所述第二承载切换请求消息用于指示第一设备 2300将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两 个第二基站; 发送电路 2303, 还用于根据接收电路 2302接收的所述第二承 载切换请求消息,将所述第一下行 CoMP用户数据绕过所述集中处理节点传 输至所述至少两个第二基站,将所述第二下行 CoMP用户数据发送至所述集 中处理节点,以使得所述集中处理节点将所述第二下行 CoMP用户数据发送 至至少两个第三基站。 其中, 所述至少两个基站包括所述至少两个第二基站 和所述至少两个第三基站, 所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发送, 所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发送。
可选地, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所 述第二承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
可选地, 所述用户数据为下行 CoMP用户数据, 所述下行 CoMP用户数 据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述第一承载 切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述至少两个第二基站,发送电路 2303,具体用 于:将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个 第二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节点, 以使 得所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两个第三 基站。 其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三 基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作 发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作 发送。
可选地, 所述至少两个第二基站中的 k个第二基站处于第二 GW下, 所 述第一承载切换请求消息具体用于指示所述第一 GW将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个 第二基站之外的其他基站, 还用于指示所述第一 GW生成所述第一 GW至 所述第二 GW的转发承载并在所述转发承载上将所述第一下行 CoMP用户数 据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中 处理节点传输至所述至少两个第二基站, 包括: 将所述第一下行 CoMP用户 数据绕过所述集中处理节点传输至所述至少两个第二基站中除所述 k个第二 基站之外的其他基站,在所述转发承载上将所述第一下行 CoMP用户数据发 送至所述第二 GW,以使得所述第二 GW将所述第一下行 CoMP用户数据绕 过所述集中处理节点传输至所述 k个第二基站, 其中, k为正整数。
可选地, 作为另一个实施例, 第一设备 2300为第一基站, 所述第二设 备为第一 GW, 所述用户数据包括上行非 CoMP用户数据, 所述第一承载切 换请求消息具体用于指示第一设备 2300将所述上行非 CoMP用户数据绕过 所述集中处理节点传输至所述第二设备, 发送电路 2303, 具体用于: 将所述 上行非 CoMP用户数据绕过所述集中处理节点传输至所述第二设备。
可选地, 所述用户数据还包括上行 CoMP用户数据, 发送电路 2303, 还用于: 与至少一个基站一起, 将所述上行 CoMP用户数据协作发送至所述 集中处理节点,以使得所述集中处理节点将所述上行 CoMP用户数据发送至 所述第二设备, 其中, 第一设备 2300与所述至少一个基站用于对所述上行 CoMP用户数据进行协作发送。
可选地,接收电路 2302,还用于接收所述集中处理节点发送的第三承载 切换请求消息, 所述第二承载切换请求消息用于指示第一设备 2300经过所 述集中处理节点进行数据传输; 发送电路 2303, 还用于根据接收电路 2302 接收的所述第二承载切换请求消息, 将所述用户数据发送至所述第二设备。 上述本发明实施例揭示的方法可以应用于处理器 2301 中, 或者由处理 器 2301实现。处理器 2301可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 2301 中的硬件的集成逻 辑电路或者软件形式的指令完成。 上述的处理器 2301可以是通用处理器、 DSP、 ASIC, FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处 理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件 模块可以位于 RAM、 闪存、 ROM、 可编程只读存储器或者电可擦写可编程 存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 2304, 处理器 2301读取存储器 2304中的信息, 结合其硬件完成上述方法的步骤。
图 23中的第一设备 2300为第一 GW时, 该第一设备 2300能够实现图 4至图 5、 图 10至图 14中由第一 GW执行的各个过程, 以及图 7中第一设 备为第一 GW时由第一设备执行的各个过程, 为避免重复, 这里不再赘述。
图 23中的第一设备 2300为第一基站时,该第一设备 2300能够实现图 6、 图 15和图 16中由第一基站执行的各个过程, 以及图 7中第一设备为第一基 站时由第一设备执行的各个过程, 为避免重复, 这里不再赘述。
图 24是本发明另一个实施例的基站的框图。 图 24所示的基站 2400包 括: 处理器 2401、 接收电路 2402、 发送电路 2403和存储器 2404。
接收电路 2402, 用于接收网关 GW发送的下行协作多点传输 CoMP用 户数据。
发送电路 2403,用于将下行调度请求消息发送至集中处理节点,所述下 行调度请求消息用于请求所述集中处理节点进行下行调度。
接收电路 2402,还用于接收所述集中处理节点发送的调度结果,所述调 度结果至少包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和 发射功率。
发送电路 2403, 还用于根据接收电路 2402接收的所述调度结果, 与至 少一个基站协作发送接收电路 2402接收的所述下行 CoMP用户数据,其中, 所述基站为所述下行 CoMP用户数据的目标用户的服务基站。 本发明实施例中,基站从 GW接收下行 CoMP用户数据,并根据集中处 理节点的调度结果, 与至少一个基站一起, 将该下行 CoMP用户数据协作发 送至目标用户。 能够保证下行 CoMP用户数据的传输。
本发明实施例中, GW将下行 CoMP用户数据绕过集中处理节点发送至 所述基站以及所述至少一个基站。
基站 2400中的各个组件通过总线系统 2405耦合在一起, 其中总线系统 2405除包括数据总线之外, 还包括电源总线、控制总线和状态信号总线。但 是为了清楚说明起见, 在图 24中将各种总线都标为总线系统 2405。
可选地, 作为一个实施例, 发送电路 2403, 还用于将 ACK消息发送至 所述集中处理节点;接收电路 2402,还用于接收所述集中处理节点发送的第 一消息, 所述第一消息用于指示基站 2400删除所述下行 CoMP用户数据的 数据副本; 处理器 2401, 用于根据接收电路 2402接收的所述第一消息, 删 除所述下行 CoMP用户数据的数据副本。
可选地, 作为另一个实施例, 发送电路 2403, 还用于将 NACK消息发 送至所述集中处理节点;接收电路 2402,还用于接收所述集中处理节点发送 的重传调度确认消息或第一消息,所述重传调度确认消息用于指示基站 2400 将所述下行 CoMP用户数据与所述至少一个基站再次进行协作发送,所述第 一消息用于指示基站 2400删除所述下行 CoMP用户数据的数据副本; 处理 器 2401, 用于根据接收电路 2402接收的所述重传调度确认消息将所述下行 CoMP用户数据与所述至少一个基站再次进行协作发送, 或者, 根据接收电 路 2402接收的所述第一消息删除所述下行 CoMP用户数据的数据副本。
上述本发明实施例揭示的方法可以应用于处理器 2401 中, 或者由处理 器 2401实现。处理器 2401可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 2401 中的硬件的集成逻 辑电路或者软件形式的指令完成。 上述的处理器 2401可以是通用处理器、 DSP、 ASIC, FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处 理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件 模块可以位于 RAM、 闪存、 ROM、 可编程只读存储器或者电可擦写可编程 存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 2404, 处理器 2401读取存储器 2404中的信息, 结合其硬件完成上述方法的步骤。
图 24中的基站 2400能够实现图 4至图 5、图 9至图 14中由下行 CoMP 用户数据的目标用户的服务基站执行的各个过程, 为避免重复, 这里不再赘 述。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接辆合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、 移动硬盘、 ROM、 RAM, 磁碟或者光盘等各种 可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种数据传输的方法, 其特征在于, 所述方法包括:
集中处理节点从第一网关 GW接收下行用户数据;
所述集中处理节点将所述下行用户数据发送至对应的基站;
在确定所述集中处理节点与所述第一 GW之间的接口拥塞时,所述集中 处理节点发送第一承载切换请求消息至所述第一 GW, 所述第一承载切换请 求消息用于指示所述第一 GW绕过所述集中处理节点进行数据传输。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述下行用户数据包括 下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据,
所述集中处理节点将所述下行用户数据发送至对应的基站, 包括: 所述集中处理节点将所述下行非 CoMP用户数据发送至第一基站,将所 述下行 CoMP用户数据发送至至少两个基站,
其中,所述第一基站为所述下行非 CoMP用户数据的目标用户的服务基 站, 所述至少两个基站用于对所述下行 CoMP用户数据进行协作发送, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述下行非 CoMP用户 数据绕过所述集中处理节点传输至所述第一基站。
3. 根据权利要求 2所述的方法, 其特征在于, 所述下行 CoMP用户数 据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,
所述将所述下行 CoMP用户数据发送至至少两个基站, 包括: 将所述第一下行 CoMP用户数据发送至至少两个第二基站,将所述第二 下行 CoMP用户数据发送至至少两个第三基站,
其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行 协作发送,
在所述集中处理节点发送第一承载切换请求消息至所述第一 GW之后, 所述方法还包括:
在确定所述接口仍然拥塞时, 所述集中处理节点发送第二承载切换请求 消息至所述第一 GW,所述第二承载切换请求消息用于指示所述第一 GW将 所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个 第二基站。
4. 根据权利要求 3所述的方法, 其特征在于, 所述至少两个第二基站 中的 k个第二基站处于第二 GW下,所述第二承载切换请求消息具体用于指 示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输 至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还用于指 示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述转 发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW, 所述方法还 包括:
所述集中处理节点发送生成承载请求消息至所述第二 GW, 所述生成承 载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消息用于 指示所述第二 GW生成所述第二 GW至所述 k个第二基站的承载, 以使得 所述第二 GW在所述承载上,将从所述第一 GW接收的所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述 k个第二基站,
其中, k为正整数。
5. 根据权利要求 1 所述的方法, 其特征在于, 所述下行用户数据为下 行 CoMP用户数据, 所述下行 CoMP用户数据包括第一下行 CoMP用户数 据和第二下行 CoMP用户数据,
所述集中处理节点将所述下行用户数据发送至对应的基站, 包括: 所述集中处理节点将所述第一下行 CoMP用户数据发送至至少两个第 二基站, 将所述第二下行 CoMP用户数据发送至至少两个第三基站,
其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行 协作发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所述第 一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基 站。
6. 根据权利要求 5所述的方法, 其特征在于, 所述至少两个第二基站 中的 k个第二基站处于第二 GW下,所述第一承载切换请求消息具体用于指 示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输 至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还用于指 示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述转 发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW, 所述方法还 包括:
所述集中处理节点发送生成承载请求消息至所述第二 GW, 所述生成承 载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消息用于 指示所述第二 GW生成所述第二 GW至所述 k个第二基站的承载, 以使得 所述第二 GW在所述承载上,将从所述第一 GW接收的所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述 k个第二基站,
其中, k为正整数。
7. 根据权利要求 3至 6任一项所述的方法, 其特征在于, 所述方法还 包括:
所述集中处理节点接收所述至少两个第二基站中的所述第一下行 CoMP 用户数据的目标用户的服务基站发送的下行调度请求消息;
所述集中处理节点进行下行调度并将调度结果发送至所述至少两个第 二基站,
其中, 所述调度结果包括以下至少一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率。
8. 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 所述集中处理节点接收所述第一下行 CoMP用户数据的目标用户的服 务基站发送的 ACK消息;
所述集中处理节点将第一消息发送至所述至少两个第二基站, 所述第一 消息用于指示所述至少两个第二基站删除所述第一下行 CoMP用户数据的 数据副本。
9. 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 所述集中处理节点接收所述第一下行 CoMP用户数据的目标用户的服 务基站发送的 NACK消息;
当重传次数未达到预设的最大重传次数时, 所述集中处理节点发送重传 调度确认消息至所述至少两个第二基站, 所述重传调度确认消息用于指示所 述至少两个第二基站将所述第一下行 CoMP用户数据再次进行协作发送, 当重传次数达到预设的最大重传次数时, 所述集中处理节点将第一消息 发送至所述至少两个第二基站, 所述第一消息用于指示所述至少两个第二基 站删除所述第一下行 CoMP用户数据的数据副本。
10. 根据权利要求 1至 9任一项所述的方法, 其特征在于, 所述方法还 包括:
在确定所述接口空闲时, 所述集中处理节点发送第三承载切换请求消息 至所述第一 GW,所述第三承载切换请求消息用于指示所述第一 GW将所述 下行用户数据, 经所述集中处理节点传输至所述对应的基站。
11. 一种数据传输的方法, 其特征在于, 所述方法包括:
集中处理节点接收上行用户数据, 所述上行用户数据包括第一基站发送 的上行非协作多点传输 CoMP用户数据;
所述集中处理节点将所述上行用户数据发送至第一网关 GW;
在确定所述集中处理节点与所述第一 GW之间的接口拥塞时,所述集中 处理节点发送第一承载切换请求消息至所述第一基站, 所述第一承载切换请 求消息用于指示所述第一基站将所述上行非 CoMP用户数据绕过所述集中 处理节点传输至所述第一 GW。
12. 根据权利要求 11 所述的方法, 其特征在于, 所述上行用户数据还 包括上行 CoMP用户数据,
所述集中处理节点接收上行用户数据, 包括:
所述集中处理节点从所述第一基站接收所述上行非 CoMP用户数据,从 至少两个第二基站接收所述上行 CoMP用户数据。
13. 根据权利要求 11或 12所述的方法,其特征在于,所述方法还包括: 在确定所述接口空闲时, 所述集中处理节点发送第二承载切换请求消息 至所述第一基站, 所述第二承载切换请求消息用于指示所述第一基站将所述 上行非 CoMP用户数据经过所述集中处理节点传输至所述第一 GW。
14. 一种数据传输的方法, 其特征在于, 所述方法包括:
第一设备发送用户数据至集中处理节点, 以使得所述集中处理节点将所 述用户数据发送至第二设备;
所述第一设备接收所述集中处理节点发送的第一承载切换请求消息, 所 述第一承载切换请求消息用于指示所述第一设备绕过所述集中处理节点进 行数据传输;
所述第一设备根据所述第一承载切换请求消息,将所述用户数据发送至 所述第二设备。
15. 根据权利要求 14所述的方法, 其特征在于, 所述第一设备为第一 网关 GW, 所述第二设备为与所述用户数据对应的基站。
16. 根据权利要求 15所述的方法, 其特征在于, 所述用户数据包括下 行非协作多点传输 CoMP用户数据和下行 CoMP用户数据,所述第一承载切 换请求消息具体用于指示所述第一设备将所述下行非 CoMP用户数据绕过 所述集中处理节点传输至第一基站,所述第一基站为所述下行非 CoMP用户 数据的目标用户的服务基站,
所述第一设备根据所述第一承载切换请求消息,将所述用户数据发送至 所述第二设备, 包括:
所述第一设备将所述下行非 CoMP用户数据绕过所述集中处理节点传 输至第一基站, 将所述下行 CoMP用户数据发送至所述集中处理节点, 以使 得所述集中处理节点将所述下行 CoMP用户数据发送至至少两个基站,所述 至少两个基站用于对所述下行 CoMP用户数据进行协作发送,
其中, 所述第二设备包括所述第一基站和所述至少两个基站。
17. 根据权利要求 16所述的方法, 其特征在于, 所述下行 CoMP用户 数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,所述方法还 包括:
所述第一设备接收所述集中处理节点发送的第二承载切换请求消息, 所 述第二承载切换请求消息用于指示所述第一设备将所述第一下行 CoMP用 户数据绕过所述集中处理节点传输至至少两个第二基站;
所述第一设备根据所述第二承载切换请求消息, 将所述第一下行 CoMP 用户数据绕过所述集中处理节点传输至所述至少两个第二基站,将所述第二 下行 CoMP用户数据发送至所述集中处理节点,以使得所述集中处理节点将 所述第二下行 CoMP用户数据发送至至少两个第三基站,
其中, 所述至少两个基站包括所述至少两个第二基站和所述至少两个第 三基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协 作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协 作发送。
18. 根据权利要求 17所述的方法, 其特征在于, 所述至少两个第二基 站中的 k个第二基站处于第二 GW下,所述第二承载切换请求消息具体用于 指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传 输至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还用于 指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述 转发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW,
所述将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所 述至少两个第二基站, 包括:
将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站中除所述 k个第二基站之外的其他基站,在所述转发承载上 将所述第一下行 CoMP用户数据发送至所述第二 GW, 以使得所述第二 GW 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二 基站,
其中, k为正整数。
19. 根据权利要求 15所述的方法, 其特征在于, 所述用户数据为下行 CoMP用户数据,所述下行 CoMP用户数据包括第一下行 CoMP用户数据和 第二下行 CoMP用户数据,所述第一承载切换请求消息具体用于指示所述第 一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站,
所述第一设备根据所述第一承载切换请求消息,将所述用户数据发送至 所述第二设备, 包括:
所述第一设备将所述第一下行 CoMP用户数据绕过所述集中处理节点 传输至至少两个第二基站,将所述第二下行 CoMP用户数据发送至所述集中 处理节点,以使得所述集中处理节点将所述第二下行 CoMP用户数据发送至 至少两个第三基站,
其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三基 站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发 送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发 送。
20. 根据权利要求 19所述的方法, 其特征在于, 所述至少两个第二基 站中的 k个第二基站处于第二 GW下,所述第一承载切换请求消息具体用于 指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传 输至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还用于 指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在所述 转发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW,
所述将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所 述至少两个第二基站, 包括:
将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站中除所述 k个第二基站之外的其他基站,在所述转发承载上 将所述第一下行 CoMP用户数据发送至所述第二 GW, 以使得所述第二 GW 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二 基站,
其中, k为正整数。
21. 根据权利要求 14所述的方法, 其特征在于, 所述第一设备为第一 基站,所述第二设备为第一 GW,所述用户数据包括上行非 CoMP用户数据, 所述第一承载切换请求消息具体用于指示所述第一设备将所述上行非 CoMP 用户数据绕过所述集中处理节点传输至所述第二设备,
所述第一设备根据所述第一承载切换请求消息,将所述用户数据发送至 所述第二设备, 包括:
所述第一设备将所述上行非 CoMP用户数据绕过所述集中处理节点传 输至所述第二设备。
22. 根据权利要求 21所述的方法, 其特征在于, 所述用户数据还包括 上行 CoMP用户数据, 所述第一设备根据所述第一承载切换请求消息, 将所 述用户数据发送至所述第二设备, 还包括:
所述第一设备, 与至少一个基站一起, 将所述上行 CoMP用户数据协作 发送至所述集中处理节点,以使得所述集中处理节点将所述上行 CoMP用户 数据发送至所述第二设备,
其中,所述第一设备与所述至少一个基站用于对所述上行 CoMP用户数 据进行协作发送。
23. 根据权利要求 14至 22任一项所述的方法, 其特征在于, 所述方法 还包括:
所述第一设备接收所述集中处理节点发送的第三承载切换请求消息, 所 述第二承载切换请求消息用于指示所述第一设备经过所述集中处理节点进 行数据传输;
所述第一设备根据所述第二承载切换请求消息,将所述用户数据发送至 所述第二设备。
24. 一种数据传输的方法, 其特征在于, 所述方法包括:
基站接收网关 GW发送的下行协作多点传输 CoMP用户数据; 所述基站将下行调度请求消息发送至集中处理节点, 所述下行调度请求 消息用于请求所述集中处理节点进行下行调度;
所述基站接收所述集中处理节点发送的调度结果, 所述调度结果至少包 括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率; 所述基站根据所述调度结果, 与至少一个基站协作发送所述下行 CoMP 用户数据,
其中, 所述基站为所述下行 CoMP用户数据的目标用户的服务基站。
25. 根据权利要求 24所述的方法, 其特征在于, 所述方法还包括: 所述基站将 ACK消息发送至所述集中处理节点;
所述基站接收所述集中处理节点发送的第一消息, 所述第一消息用于指 示所述基站删除所述下行 CoMP用户数据的数据副本;
所述基站删除所述下行 CoMP用户数据的数据副本。
26. 根据权利要求 24所述的方法, 其特征在于, 所述方法还包括: 所述基站将 NACK消息发送至所述集中处理节点;
所述基站接收所述集中处理节点发送的重传调度确认消息或第一消息, 所述重传调度确认消息用于指示所述基站将所述下行 CoMP用户数据与所 述至少一个基站再次进行协作发送, 所述第一消息用于指示所述基站删除所 述下行 CoMP用户数据的数据副本;
所述基站根据所述重传调度确认消息将所述下行 CoMP用户数据与所 述至少一个基站再次进行协作发送, 或者, 所述基站根据所述第一消息删除 所述下行 CoMP用户数据的数据副本。
27. 一种集中处理节点, 其特征在于, 所述集中处理节点包括: 接收单元, 用于从第一网关 GW接收下行用户数据;
发送单元, 用于将所述接收单元接收的所述下行用户数据发送至对应的 基站;
所述发送单元,还用于在确定所述集中处理节点与所述第一 GW之间的 接口拥塞时, 发送第一承载切换请求消息至所述第一 GW, 所述第一承载切 换请求消息用于指示所述第一 GW绕过所述集中处理节点进行数据传输。
28. 根据权利要求 27所述的集中处理节点, 其特征在于, 所述下行用 户数据包括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据, 所述发送单元, 具体用于: 将所述下行非 CoMP用户数据发送至第一基 站, 将所述下行 CoMP用户数据发送至至少两个基站, 其中,所述第一基站为所述下行非 CoMP用户数据的目标用户的服务基 站, 所述至少两个基站用于对所述下行 CoMP用户数据进行协作发送, 所述 第一承载切换请求消息具体用于指示所述第一 GW将所述下行非 CoMP用户 数据绕过所述集中处理节点传输至所述第一基站。
29.根据权利要求 28所述的集中处理节点,其特征在于,所述下行 CoMP 用户数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,
所述将所述下行 CoMP用户数据发送至至少两个基站, 包括: 将所述第 一下行 CoMP用户数据发送至至少两个第二基站, 将所述第二下行 CoMP 用户数据发送至至少两个第三基站,
其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行 协作发送,
所述发送单元, 还用于: 在确定所述接口仍然拥塞时, 发送第二承载切 换请求消息至所述第一 GW, 所述第二承载切换请求消息用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少 两个第二基站。
30. 根据权利要求 29所述的集中处理节点, 其特征在于, 所述至少两 个第二基站中的 k个第二基站处于第二 GW下,所述第二承载切换请求消息 具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处 理节点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基 站, 还用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承 载并在所述转发承载上将所述第一下行 CoMP 用户数据发送至所述第二 GW,
所述发送单元, 还用于: 发送生成承载请求消息至所述第二 GW, 所述 生成承载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消 息用于指示所述第二 GW生成所述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW接收的所述第一下 行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二基站,
其中, k为正整数。
31. 根据权利要求 27所述的集中处理节点, 其特征在于, 所述下行用 户数据为下行 CoMP用户数据, 所述下行 CoMP用户数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,
所述发送单元, 具体用于: 将所述第一下行 CoMP用户数据发送至至少 两个第二基站, 将所述第二下行 CoMP用户数据发送至至少两个第三基站, 其中,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行 协作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行 协作发送,所述第一承载切换请求消息具体用于指示所述第一 GW将所述第 一下行 CoMP用户数据绕过所述集中处理节点传输至所述至少两个第二基 站。
32. 根据权利要求 31所述的集中处理节点, 其特征在于, 所述至少两 个第二基站中的 k个第二基站处于第二 GW下,所述第一承载切换请求消息 具体用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处 理节点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基 站, 还用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承 载并在所述转发承载上将所述第一下行 CoMP 用户数据发送至所述第二 GW,
所述发送单元, 还用于: 发送生成承载请求消息至所述第二 GW, 所述 生成承载请求消息包括所述 k个第二基站的标识信息, 所述生成承载请求消 息用于指示所述第二 GW生成所述第二 GW至所述 k个第二基站的承载, 以使得所述第二 GW在所述承载上, 将从所述第一 GW接收的所述第一下 行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二基站,
其中, k为正整数。
33. 根据权利要求 29至 32任一项所述的集中处理节点, 其特征在于, 还包括处理单元:
所述接收单元, 还用于接收所述至少两个第二基站中的所述第一下行 CoMP用户数据的目标用户的服务基站发送的下行调度请求消息;
所述处理单元, 用于进行下行调度;
所述发送单元,还用于将所述处理节点的调度结果发送至所述至少两个 第二基站,
其中, 所述调度结果包括以下至少一种: 无线链路控制 RLC分段信息、 编码调制信息和发射功率。
34. 根据权利要求 33所述的集中处理节点, 其特征在于: 所述接收单元,还用于接收所述第一下行 CoMP用户数据的目标用户的 服务基站发送的 ACK消息;
所述发送单元, 还用于将第一消息发送至所述至少两个第二基站, 所述 第一消息用于指示所述至少两个第二基站删除所述第一下行 CoMP用户数 据的数据副本。
35. 根据权利要求 33所述的集中处理节点, 其特征在于:
所述接收单元,还用于接收所述第一下行 CoMP用户数据的目标用户的 服务基站发送的 NACK消息;
所述发送单元, 还用于当重传次数未达到预设的最大重传次数时, 发送 重传调度确认消息至所述至少两个第二基站, 所述重传调度确认消息用于指 示所述至少两个第二基站将所述第一下行 CoMP用户数据再次进行协作发 送,
当重传次数达到预设的最大重传次数时,将第一消息发送至所述至少两 个第二基站, 所述第一消息用于指示所述至少两个第二基站删除所述第一下 行 CoMP用户数据的数据副本。
36. 根据权利要求 27至 35任一项所述的集中处理节点, 其特征在于, 所述发送单元, 还用于:
在确定所述接口空闲时, 发送第三承载切换请求消息至所述第一 GW, 所述第三承载切换请求消息用于指示所述第一 GW将所述下行用户数据,经 所述集中处理节点传输至所述对应的基站。
37. 一种集中处理节点, 其特征在于, 所述集中处理节点包括: 接收单元, 用于接收上行用户数据, 所述上行用户数据包括第一基站发 送的上行非协作多点传输 CoMP用户数据;
发送单元, 用于将所述接收单元接收的所述上行用户数据发送至第一网 关 GW;
所述发送单元,还用于在确定所述集中处理节点与所述第一 GW之间的 接口拥塞时, 发送第一承载切换请求消息至所述第一基站, 所述第一承载切 换请求消息用于指示所述第一基站将所述上行非 CoMP用户数据绕过所述 集中处理节点传输至所述第一 GW。
38. 根据权利要求 37所述的集中处理节点, 其特征在于, 所述上行用 户数据还包括上行 CoMP用户数据, 所述接收单元, 具体用于: 从所述第一基站接收所述上行非 CoMP用户 数据, 从至少两个第二基站接收所述上行 CoMP用户数据。
39. 根据权利要求 37或 38所述的集中处理节点, 其特征在于, 所述发 送单元, 还用于:
在确定所述接口空闲时, 发送第二承载切换请求消息至所述第一基站, 所述第二承载切换请求消息用于指示所述第一基站将所述上行非 CoMP用 户数据经过所述集中处理节点传输至所述第一 GW。
40. 一种第一设备, 其特征在于, 所述第一设备包括:
发送单元, 用于发送用户数据至集中处理节点, 以使得所述集中处理节 点将所述用户数据发送至第二设备;
接收单元, 用于接收所述集中处理节点发送的第一承载切换请求消息, 所述第一承载切换请求消息用于指示所述第一设备绕过所述集中处理节点 进行数据传输;
所述发送单元,还用于根据所述接收单元接收的所述第一承载切换请求 消息, 将所述用户数据发送至所述第二设备。
41. 根据权利要求 40所述的第一设备, 其特征在于, 所述第一设备为 第一网关 GW, 所述第二设备为与所述用户数据对应的基站。
42. 根据权利要求 41所述的第一设备, 其特征在于, 所述用户数据包 括下行非协作多点传输 CoMP用户数据和下行 CoMP用户数据,所述第一承 载切换请求消息具体用于指示所述第一设备将所述下行非 CoMP用户数据 绕过所述集中处理节点传输至第一基站, 所述第一基站为所述下行非 CoMP 用户数据的目标用户的服务基站,
所述发送单元, 具体用于: 将所述下行非 CoMP用户数据绕过所述集中 处理节点传输至第一基站,将所述下行 CoMP用户数据发送至所述集中处理 节点,以使得所述集中处理节点将所述下行 CoMP用户数据发送至至少两个 基站, 所述至少两个基站用于对所述下行 CoMP用户数据进行协作发送, 其中, 所述第二设备包括所述第一基站和所述至少两个基站。
43. 根据权利要求 42所述的第一设备, 其特征在于, 所述下行 CoMP 用户数据包括第一下行 CoMP用户数据和第二下行 CoMP用户数据,
所述接收单元,还用于接收所述集中处理节点发送的第二承载切换请求 消息, 所述第二承载切换请求消息用于指示所述第一设备将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至至少两个第二基站; 所述发送单元,还用于根据所述接收单元接收的所述第二承载切换请求 消息,将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站, 将所述第二下行 CoMP用户数据发送至所述集中处理节 点,以使得所述集中处理节点将所述第二下行 CoMP用户数据发送至至少两 个第三基站,
其中, 所述至少两个基站包括所述至少两个第二基站和所述至少两个第 三基站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协 作发送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协 作发送。
44. 根据权利要求 43所述的第一设备, 其特征在于, 所述至少两个第 二基站中的 k个第二基站处于第二 GW下,所述第二承载切换请求消息具体 用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节 点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还 用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在 所述转发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所 述至少两个第二基站, 包括:
将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站中除所述 k个第二基站之外的其他基站,在所述转发承载上 将所述第一下行 CoMP用户数据发送至所述第二 GW, 以使得所述第二 GW 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二 基站,
其中, k为正整数。
45. 根据权利要求 41所述的第一设备, 其特征在于, 所述用户数据为 下行 CoMP用户数据, 所述下行 CoMP用户数据包括第一下行 CoMP用户 数据和第二下行 CoMP用户数据,所述第一承载切换请求消息具体用于指示 所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至 所述至少两个第二基站,
所述发送单元, 具体用于: 将所述第一下行 CoMP用户数据绕过所述集 中处理节点传输至至少两个第二基站,将所述第二下行 CoMP用户数据发送 至所述集中处理节点,以使得所述集中处理节点将所述第二下行 CoMP用户 数据发送至至少两个第三基站,
其中, 所述第二设备包括所述至少两个第二基站和所述至少两个第三基 站,所述至少两个第二基站用于对所述第一下行 CoMP用户数据进行协作发 送,所述至少两个第三基站用于对所述第二下行 CoMP用户数据进行协作发 送。
46. 根据权利要求 45所述的第一设备, 其特征在于, 所述至少两个第 二基站中的 k个第二基站处于第二 GW下,所述第一承载切换请求消息具体 用于指示所述第一 GW将所述第一下行 CoMP用户数据绕过所述集中处理节 点传输至所述至少两个第二基站中除所述 k个第二基站之外的其他基站,还 用于指示所述第一 GW生成所述第一 GW至所述第二 GW的转发承载并在 所述转发承载上将所述第一下行 CoMP用户数据发送至所述第二 GW, 所述将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所 述至少两个第二基站, 包括:
将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述至 少两个第二基站中除所述 k个第二基站之外的其他基站,在所述转发承载上 将所述第一下行 CoMP用户数据发送至所述第二 GW, 以使得所述第二 GW 将所述第一下行 CoMP用户数据绕过所述集中处理节点传输至所述 k个第二 基站,
其中, k为正整数。
47. 根据权利要求 40所述第一设备, 其特征在于, 所述第一设备为第 一基站, 所述第二设备为第一 GW, 所述用户数据包括上行非 CoMP用户数 据, 所述第一承载切换请求消息具体用于指示所述第一设备将所述上行非 CoMP用户数据绕过所述集中处理节点传输至所述第二设备,
所述发送单元, 具体用于: 将所述上行非 CoMP用户数据绕过所述集中 处理节点传输至所述第二设备。
48. 根据权利要求 47所述的第一设备, 其特征在于, 所述用户数据还 包括上行 CoMP用户数据,
所述发送单元, 还用于: 与至少一个基站一起, 将所述上行 CoMP用户 数据协作发送至所述集中处理节点, 以使得所述集中处理节点将所述上行 CoMP用户数据发送至所述第二设备, 其中,所述第一设备与所述至少一个基站用于对所述上行 CoMP用户数 据进行协作发送。
49. 根据权利要求 40至 48任一项所述的第一设备, 其特征在于: 所述接收单元,还用于接收所述集中处理节点发送的第三承载切换请求 消息, 所述第二承载切换请求消息用于指示所述第一设备经过所述集中处理 节点进行数据传输;
所述发送单元,还用于根据所述接收单元接收的所述第二承载切换请求 消息, 将所述用户数据发送至所述第二设备。
50. 一种基站, 其特征在于, 所述基站包括:
接收单元,用于接收网关 GW发送的下行协作多点传输 CoMP用户数据; 发送单元, 用于将下行调度请求消息发送至集中处理节点, 所述下行调 度请求消息用于请求所述集中处理节点进行下行调度;
所述接收单元, 还用于接收所述集中处理节点发送的调度结果, 所述调 度结果至少包括以下一种: 无线链路控制 RLC分段信息、 编码调制信息和 发射功率;
所述发送单元, 还用于根据所述接收单元接收的所述调度结果, 与至少 一个基站协作发送所述接收单元接收的所述下行 CoMP用户数据,
其中, 所述基站为所述下行 CoMP用户数据的目标用户的服务基站。
51. 根据权利要求 50所述的基站, 其特征在于, 所述基站还包括处理 单元:
所述发送单元, 还用于将 ACK消息发送至所述集中处理节点; 所述接收单元, 还用于接收所述集中处理节点发送的第一消息, 所述第 一消息用于指示所述基站删除所述下行 CoMP用户数据的数据副本;
所述处理单元, 用于根据所述接收单元接收的所述第一消息, 删除所述 下行 CoMP用户数据的数据副本。
52. 根据权利要求 50所述的基站, 其特征在于, 所述基站还包括处理 单元:
所述发送单元, 还用于将 NACK消息发送至所述集中处理节点; 所述接收单元,还用于接收所述集中处理节点发送的重传调度确认消息 或第一消息,所述重传调度确认消息用于指示所述基站将所述下行 CoMP用 户数据与所述至少一个基站再次进行协作发送, 所述第一消息用于指示所述 基站删除所述下行 CoMP用户数据的数据副本;
所述处理单元,用于根据所述接收单元接收的所述重传调度确认消息将 所述下行 CoMP用户数据与所述至少一个基站再次进行协作发送, 或者, 根 据所述接收单元接收的所述第一消息删除所述下行 CoMP用户数据的数据 副本。
PCT/CN2014/080484 2014-06-23 2014-06-23 数据传输的方法、集中处理节点、网关及基站 WO2015196324A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480046629.8A CN105493565B (zh) 2014-06-23 2014-06-23 数据传输的方法、集中处理节点、网关及基站
PCT/CN2014/080484 WO2015196324A1 (zh) 2014-06-23 2014-06-23 数据传输的方法、集中处理节点、网关及基站
US15/390,002 US10263895B2 (en) 2014-06-23 2016-12-23 Data transmission method, central processing node, gateway, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080484 WO2015196324A1 (zh) 2014-06-23 2014-06-23 数据传输的方法、集中处理节点、网关及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/390,002 Continuation US10263895B2 (en) 2014-06-23 2016-12-23 Data transmission method, central processing node, gateway, and base station

Publications (1)

Publication Number Publication Date
WO2015196324A1 true WO2015196324A1 (zh) 2015-12-30

Family

ID=54936404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080484 WO2015196324A1 (zh) 2014-06-23 2014-06-23 数据传输的方法、集中处理节点、网关及基站

Country Status (3)

Country Link
US (1) US10263895B2 (zh)
CN (1) CN105493565B (zh)
WO (1) WO2015196324A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355785B1 (ko) * 2015-01-19 2022-01-26 삼성전자주식회사 무선 통신 시스템에서 협력 전송을 위한 제어 정보 송신 장치 및 방법
EP3266233B1 (en) 2015-03-02 2020-05-06 Samsung Electronics Co., Ltd. Method and apparatus for providing service in wireless communication system
WO2017052342A1 (ko) 2015-09-24 2017-03-30 삼성전자 주식회사 리모트 프로세(remote prose) 단말에 대한 네트워크 망에서의 합법적 감청 지원 방안
EP3355618B1 (en) * 2015-10-29 2020-02-26 Huawei Technologies Co., Ltd. Method and device for determining bearer by mobile edge computing
CN106993322B (zh) * 2016-01-21 2022-07-01 索尼公司 电子设备和通信方法
US11259292B2 (en) * 2018-02-12 2022-02-22 Qualcomm Incorporated Response-based resource management

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327630A (zh) * 2012-03-23 2013-09-25 华为技术有限公司 用于无线网络中的无线资源调度的方法和装置
CN103841605A (zh) * 2012-11-26 2014-06-04 上海贝尔股份有限公司 一种实现多个bbu设备间基带信号协同处理的方法与设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299876B (zh) 2007-04-30 2011-07-06 华为技术有限公司 同步方法、通信切换方法、无线网络以及节点
CN102638898A (zh) 2011-02-11 2012-08-15 中兴通讯股份有限公司 一种基于多点协作的集中式有线口数据传输方法及系统
CN102904908A (zh) * 2011-07-25 2013-01-30 华为技术有限公司 数据传输的方法、网关设备和接入网设备
US9614599B2 (en) * 2012-08-03 2017-04-04 Agency For Science, Technology And Research Method for determining precoding matrixes for communication and a system therefrom
US9253097B1 (en) * 2012-12-28 2016-02-02 Juniper Networks, Inc. Selective label switched path re-routing
US9363158B2 (en) * 2014-02-05 2016-06-07 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Reduce size of IPV6 routing tables by using a bypass tunnel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327630A (zh) * 2012-03-23 2013-09-25 华为技术有限公司 用于无线网络中的无线资源调度的方法和装置
CN103841605A (zh) * 2012-11-26 2014-06-04 上海贝尔股份有限公司 一种实现多个bbu设备间基带信号协同处理的方法与设备

Also Published As

Publication number Publication date
CN105493565B (zh) 2019-11-05
US20170111280A1 (en) 2017-04-20
CN105493565A (zh) 2016-04-13
US10263895B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US11758612B2 (en) Communication method and related product
EP3073661B1 (en) Multi-path transmission method and system, data transmitting device, and data receiving device
WO2018198963A1 (ja) 通信システム
US10784994B2 (en) Method for transmitting information for LTE-WLAN aggregation system and a device therefor
US8594094B2 (en) Mechanisms for data handling during a relay handover with S1 termination at evolved universal terrestrial radio access network access node
US10880790B2 (en) Method and device for transmitting data in wireless communication system supporting dual connectivity
US10263895B2 (en) Data transmission method, central processing node, gateway, and base station
CN116567748A (zh) 通信系统、通信终端装置及基站装置
WO2015058336A1 (zh) 数据传输装置和方法
CN101888675A (zh) 一种长期演进系统中跨基站切换方法及系统
WO2013170789A1 (zh) 一种数据转发的方法、设备及通讯系统
WO2013013412A1 (en) Switching between cellular and license-exempt (shared) bands
WO2014082270A1 (zh) 一种数据传输的控制方法、装置及系统
CA2764575A1 (en) Mechanisms for data handling during a relay handover with s1 termination at relay
WO2013128414A1 (en) Cooperative relaying and network coding in a cellular communications system
WO2020146991A1 (zh) 一种数据流处理方法、设备及存储介质
WO2017201743A1 (zh) 传输方法、基站和终端
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
US20220353641A1 (en) Multicast sending and receiving method and apparatus
US20210298123A1 (en) Wireless communication system, transmission and reception method, recording medium, wireless communication base station device, control circuit, and control method
CN116349293A (zh) Iab节点的移植方法及装置
CN108632878B (zh) 一种用于终端的基站切换方法
Li et al. Raptorq code based concurrent transmissions in dual connectivity lte network
WO2023061339A1 (zh) 一种数据传输方法及通信装置
WO2024031267A1 (en) Techniques for sidelink wireless communication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046629.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896054

Country of ref document: EP

Kind code of ref document: A1