WO2015194744A1 - 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법 - Google Patents

자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법 Download PDF

Info

Publication number
WO2015194744A1
WO2015194744A1 PCT/KR2015/002985 KR2015002985W WO2015194744A1 WO 2015194744 A1 WO2015194744 A1 WO 2015194744A1 KR 2015002985 W KR2015002985 W KR 2015002985W WO 2015194744 A1 WO2015194744 A1 WO 2015194744A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
magnetic resonance
blood vessel
wall
mri
Prior art date
Application number
PCT/KR2015/002985
Other languages
English (en)
French (fr)
Inventor
정준영
김응엽
Original Assignee
가천대학교 산학협력단
(의료)길의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단, (의료)길의료재단 filed Critical 가천대학교 산학협력단
Priority to JP2016571033A priority Critical patent/JP6377774B2/ja
Priority to US15/319,150 priority patent/US10420485B2/en
Priority to EP15809179.3A priority patent/EP3158929B1/en
Publication of WO2015194744A1 publication Critical patent/WO2015194744A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5602Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by filtering or weighting based on different relaxation times within the sample, e.g. T1 weighting using an inversion pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to an imaging technique implemented in an MRI (Magnetic Resonance Imaging) system, and more particularly, to a method for obtaining an image obtained by automatically dividing a blood vessel wall using a multimodal MRI image.
  • MRI Magnetic Resonance Imaging
  • MRI is not harmful to the human body compared to other imaging devices, and it is a very important measuring device in clinical practice because it image the characteristics of the internal components of the human body.
  • the MRI device can obtain tissue parameters such as spin density, T1, T2, chemical shift, magnetization transition, chemical exchange saturation transition, blood flow, and spectroscopy, which are unique information of a living body, and obtain various bioinformation images through these parameters. Can be.
  • Magnetic Resonance Angiography is an MRI device that measures blood flow in arteries and veins flowing through the body and reconstructs it into images, providing clinical information that is critical for the diagnosis and treatment of vascular diseases. Doing.
  • the T1-weighted image of the blood flow is used to determine the velocity of the blood flow, that is, the property according to the time of flight (TOF).
  • Magnetic resonance angiography (MRA) images obtained using MRI equipment can measure the phenomena due to blood flow in blood vessels.
  • X-ray angiography also has a fundamental problem that can not measure the thickness of the vessel because the contrast agent is administered by inserting a catheter in the vessel.
  • the thickness measurement of the cerebrovascular wall helps objectively measure the progression of arteriosclerosis in patients, and can play a big role in identifying the cause of cerebral infarction and preventing future recurrence. Therefore, accurate cerebrovascular wall thickness measurement technique is required.
  • the vascular wall magnetic resonance imaging used to observe the vascular wall suppresses the cerebrospinal fluid signal outside the blood flow area and blood vessels. Since the signal of the vascular mesenteric (tunica media) in the vascular wall is dark in the magnetic resonance image, it can not be observed by the conventional vascular wall magnetic resonance imaging technique. Therefore, conventional techniques can only measure the thickness of the outer vascular outer membrane (tunica adventitia), and as a result, it is impossible to measure the exact thickness of the vessel wall. If the signal of blood flow is obtained separately with the technique for imaging the mesenteric region, it is expected that this disadvantage can be compensated.
  • the size of the blood vessel can be accurately measured.
  • the present invention has been made in accordance with the technical background described above, and an object thereof is to provide a method for imaging both an inner wall and an outer wall of a magnetic resonance imaging system.
  • Another object of the present invention is to provide a method for automatically segmenting an inner wall and an outer wall of an image in a magnetic resonance imaging system.
  • the image of the blood vessel wall is automatically divided.
  • the MRI image acquisition method obtaining a first magnetic resonance image reflecting the first property of the blood vessel; Obtaining a second magnetic resonance image reflecting a second property different from the first property of the blood vessel; And subtracting the second magnetic resonance image from the first magnetic resonance image.
  • a method of acquiring an MRI image comprising: obtaining a first magnetic resonance image reflecting a first property of a blood vessel; Obtaining a second magnetic resonance image reflecting a second property different from the first property of the blood vessel; Inverting the first magnetic resonance image to obtain a third magnetic resonance image; And subtracting the second magnetic resonance image from the third magnetic resonance image.
  • the first and second properties may include one of the form or thickness of each of the vascular membranes constituting the blood vessel, the form of the inner wall of the vessel, the form of the outer wall of the vessel, and the blood flow.
  • the first magnetic resonance image may be a CISS (Constructive Interference in Steady State) T2 / T1 weighted image
  • the second magnetic resonance image may be a T2 weighted image
  • both the inner and outer walls of blood vessels can be imaged, thereby obtaining accurate blood vessel size and thickness between the outer and inner walls of blood vessels. have.
  • FIG. 1 shows MRI images having different properties and shows TOF Angio, T2 weighted, and CISS T2 / T1 weighted images, respectively.
  • FIG. 2 is an enlarged image of a blood vessel of an MRI image having different properties of FIG. 1.
  • FIG. 3 is a flowchart illustrating a method of acquiring a blood vessel wall image according to an exemplary embodiment of the present invention.
  • FIG. 4 is a view showing an image processed according to the blood vessel wall image acquisition method according to an embodiment of the present invention.
  • FIG 5 is an enlarged image of a blood vessel wall image obtained according to a blood vessel wall image acquisition method according to an exemplary embodiment of the present invention.
  • the configuration of the MRI system applied to the present invention is widely known and thus omitted.
  • FIG. 1 shows MRI images having different properties
  • (a), (b), and (c) show TOF Angio, T2 weighted, and CISS T2 / T1 weighted images, respectively, for the head region
  • FIG. An enlarged image of the blood vessels is shown.
  • the accompanying drawings in this specification is to obtain an image of the head region from a normal subject using a clinical 3.0 Tesla magnetic resonance imaging apparatus.
  • the TOF Angio image which measures blood flow in arteries and veins flowing through the human body using an MRI device, reconstructs the image into a blood flow using a T1-weighted image of the blood flow, ie, a property according to the velocity of blood flow, that is, time of flight (TOF).
  • TOF Angio is the most widely used vascular imaging technique in the medical field because it can present various vascular structures of individual subjects with excellent image resolution.
  • the related technologies continue to develop, so that complex blood flow phenomena such as vortex can be diagnosed, and recently, microvascular images can be obtained. Therefore, although TOF Angio is known to be optimal for obtaining a whole image of blood vessels, it is possible that blood flow velocity can be changed by the inner wall structure of the blood vessel, and it is possible to accurately determine both the outer and inner wall structures of blood vessels. none.
  • the T2-weighted image shows the transverse attenuation due to T2 relaxation due to the spindle-to-spindle effect, which can measure the thickness of the tunica adventitia.
  • Constructive Interference in Steady State (CISS) T2 / T1-weighted images can image tunica media and simultaneously measure signals in the bloodstream.
  • FIG. 3 is a flowchart illustrating a method for acquiring a blood vessel wall image according to an exemplary embodiment of the present invention
  • FIG. 4 is a view illustrating an image processed according to a method for acquiring a blood vessel wall image according to an exemplary embodiment of the present invention.
  • the CISS T2 / T1 weighted image 410 is acquired (S310), and the inverted image 420 is obtained (S320).
  • FIG 5 is an enlarged image of a blood vessel wall image obtained according to a blood vessel wall image acquisition method according to an exemplary embodiment of the present invention.
  • Figure 5 (a) shows the outer vessel (tunica adventitia), Figure 5 (b) shows the vascular media (tunica media).
  • the inverted CISS T2 / T1-weighted image 420 by simply subtracting the T2-weighted image from the two MR images, that is, the inverted CISS T2 / T1-weighted image 420, an accurate structure including the outer wall and the inner wall of the blood vessel can be obtained.
  • the internal wall structure enables accurate measurement without altering blood flow rate or inserting a vascular catheter for contrast agent administration.
  • the CISS T2 / T1-weighted image is inverted and the T2-weighted image is subtracted to obtain an image of the result of the automatic segmentation of the blood vessel wall.
  • two types reflecting different properties of the outer and inner walls of the blood vessel are described.
  • MRI images are not necessarily limited to the above two.
  • a similar effect may be obtained by obtaining a difference between an image representing an outline of an outer wall of a blood vessel and an image representing an outline of an inner wall of a blood flow or a blood vessel.
  • the two images used may be an image including one of the form or thickness of one of the vascular membranes constituting the blood vessel, the form of the inner wall of the blood vessel, the form of the outer wall of the blood vessel, and the blood flow.
  • a combination of T2 image, Proton image and T1 image, Proton image and T2 image, T1 image and T2 * image, Proton image and T2 * image may be possible.
  • the two MRI images used to obtain the vascular wall auto split image may be obtained in any manner and order. However, what is obtained at a similar point would be advantageous to obtain accurate results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Hematology (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

혈관의 서로 다른 성질을 반영하는 두 가지 MRI 영상을 획득하고, 두 영상의 차를 구함으로써, 혈관벽이 자동으로 분할된 영상을 얻는다. 이는 혈관의 내벽과 외벽을 모두 영상화할 수 있으며, 이에 따라 정확한 혈관의 크기, 혈관의 외벽과 내벽 사이의 두께를 얻을 수 있다. 따라서, 스텐트 시술 시에 정확한 크기의 스텐트를 이용하여 안정적으로 시술할 수 있는 효과를 얻을 수 있다.

Description

자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법
본 발명은 MRI(Magnetic Resonance Imaging) 시스템에서 구현되는 영상 기법에 관한 것으로, 더 구체적으로는 멀티모달 MRI 영상을 이용하여 혈관벽을 자동분할한 영상을 얻을 수 있는 방법에 관한 것이다.
영상진단 방법으로 X선, CT, 초음파, RI 영상, MRI 등 다양한 방식의 장치가 있다. 그 중에서 MRI는 다른 영상진단기기에 비해서 인체에 해롭지 않고, 인체 내부 구성 물질의 특성을 영상화하기 때문에 임상 진료에 있어서 매우 중요한 측정 장치이다.
MRI 장치는 생체의 고유한 정보인 스핀 밀도, T1, T2, 화학적 이동, 자화 전이, 화학 교환 포화 전이, 혈류, 스펙트로스코피 등의 조직 파라미터를 얻을 수 있고, 이러한 파라미터를 통해 다양한 생체 정보 영상을 얻을 수 있다.
자기공명 혈관 조영술(Magnetic Resonance Angiography, MRA)은 MRI 장치를 사용하여 인체에 흐르는 동맥과 정맥의 혈류를 측정하여 영상으로 재구성하는 방법으로 현재 혈관질환의 진단 및 치료를 위해 매우 중요한 임상적 정보를 제공하고 있다. MRA 영상의 경우는 혈류의 T1 강조영상을 이용하여 혈류의 속도, 즉 TOF(time of flight)에 따른 성질을 이용한다.
MRI 장비를 이용하여 획득한 자기공명 혈관 조영술(Magnetic Resonance Angiography, MRA)의 영상은 혈관 내의 혈류에 기인한 현상을 측정할 수 있다.
그러나, 이는 혈관 내벽 구조에 의하여 혈류 속도가 변경될 수 있는 개연성을 내포하고 있다.
또한, X-Ray 혈관촬영술 역시 혈관 내에 카테타를 삽입하여 조영제를 투여하기 때문에 혈관의 두께를 측정할 수 없는 근본적인 문제가 있다.
뇌혈관벽의 두께 측정은 환자의 동맥경화 진행 정도를 객관적으로 측정할 수 있게 도와주며, 뇌경색의 원인을 찾아내고 향후 재발 방지에 큰 역할을 할 수 있다. 따라서 정확한 뇌혈관벽 두께 측정 기법이 요구된다.
최근 혈관벽을 관찰하기 위하여 사용하는 혈관벽 자기공명영상은 혈류가 지나는 부위와 혈관 밖의 뇌척수액 신호를 억제한다. 혈관내벽 중 혈관중간막 (tunica media)은 자기공명영상에서 신호가 어둡게 나오므로, 기존의 혈관벽 자기공명영상 기법으로는 이 부위를 관찰할 수 없게 된다. 따라서, 기존의 기법으로는 혈관바깥막 (tunica adventitia)의 두께만 측정할 수 있으며, 결과적으로 정확한 혈관벽 두께를 측정할 수 없다. 혈관중간막 부위를 영상화 할 수 있는 기법과 함께 혈류의 신호를 따로 얻는다면, 이러한 단점을 보완할 수 있을 것으로 기대한다.
따라서, 혈관 내벽 및 외벽을 모두 영상화할 수 있고, 이를 자동으로 분할할 수 있다면, 정확한 혈관의 사이즈를 측정할 수 있게 된다. 또한 외벽과 내벽 사이의 두께를 정확히 측정할 수 있게 되어 혈관내 스텐트 시술시에도 정확한 사이즈의 스텐트를 선택하여 사용함으로써 인체 내 모든 부위(뇌, 심장, 하지 등등)에서 스텐트를 사용하는 시술에 대해 안정성을 확보할 수 있게 된다,
본 발명은 상술한 기술적 배경에 따라 착안된 것으로서, 자기 공명 영상 시스템에서 혈관 내벽 및 외벽을 모두 영상화할 수 있는 방법을 제공하는 것을 그 과제로 한다.
본 발명의 다른 과제는 자기 공명 영상 시스템에서 혈관 내벽 및 외벽을 모두 영상화하여 이를 자동으로 분할할 수 있는 방법을 제공하는 것이다.
상술한 과제를 해결하기 위해 본 발명에서는, 혈관의 서로 다른 성질을 반영하는 두 가지 MRI 영상을 획득하고, 두 영상의 차를 구함으로써, 혈관벽이 자동으로 분할된 영상을 얻는다.
즉, 본 발명의 일 면에 따른 MRI 영상 획득 방법은, 혈관의 제1 성질을 반영하는 제1 자기공명 영상을 얻는 단계; 혈관의 상기 제1 성질과는 다른 제2 성질을 반영하는 제2 자기공명 영상을 얻는 단계; 및 상기 제1 자기공명 영상으로부터 상기 제2 자기공명 영상을 차감하는 단계를 포함하여 이루어진다.
본 발명의 다른 면에 따른 MRI 영상 획득 방법은, 혈관의 제1 성질을 반영하는 제1 자기공명 영상을 얻는 단계; 혈관의 상기 제1 성질과는 다른 제2 성질을 반영하는 제2 자기공명 영상을 얻는 단계; 상기 제1 자기공명 영상을 반전시켜 제3 자기공명 영상을 얻는 단계; 및 상기 제3 자기공명 영상으로부터 상기 제2 자기공명 영상을 차감하는 단계를 포함한다.
상기 제1 및 제2 성질은 각각 혈관을 구성하는 각 혈관막 중 하나의 형태 또는 두께, 혈관 내벽의 형태, 혈관 외벽의 형태, 혈류 중 하나를 포함하는 것일 수 있다.
여기에서, 상기 제1 자기공명 영상은 CISS (Constructive Interference in Steady State) T2/T1 강조 영상일 수 있으며, 상기 제2 자기공명 영상은 T2 강조 영상일 수 있다.
본 발명의 실시예에 따른 MRI 영상 획득 방법을 이용하여 얻어진 혈관벽 자동 분할 영상에서는 혈관의 내벽과 외벽을 모두 영상화할 수 있으며, 이에 따라 정확한 혈관의 크기, 혈관의 외벽과 내벽 사이의 두께를 얻을 수 있다.
이는 인체의 머리 부위에서 혈관 구조를 정확히 측정할 수 있는 원천기술에 해당하며, 이와 같이 정확한 측정 결과를 얻게 됨에 따라 스텐트 시술 시에 정확한 크기의 스텐트를 이용하여 안정적으로 시술할 수 있는 효과를 얻을 수 있다. 또한, 이러한 기술을 이용하여 머리 부위의 혈관뿐만 아니라, 심장혈관, 하지 혈관 등 모든 혈관 구조를 정확히 측정할 수 있을 것이며, 각 부위별 스텐트 시술에 안정성을 확보할 수 있을 것이다.
도 1은 서로 다른 성질을 가지는 MRI 영상을 나타낸 것으로서, 머리 부위에 대하여 각각 TOF Angio, T2 강조, CISS T2/T1 강조 영상을 나타낸다.
도 2는 도 1의 서로 다른 성질을 가지는 MRI 영상의 혈관 부분 확대 영상을 나타낸다.
도 3은 본 발명의 실시예에 따른 혈관벽 영상 획득 방법을 나타내는 흐름도이다.
도 4는 본 발명의 실시예에 따른 혈관벽 영상 획득 방법에 따라 처리되는 영상을 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 혈관벽 영상 획득 방법에 따라 얻어진 혈관벽 영상의 확대 영상이다.
이제 본 발명에 따른 자기 공명 영상(Magnetic Resonance Imaging) 시스템을 통해 혈관벽 영상을 획득하기 위한 방법의 바람직한 실시예를 첨부한 도면을 참고로 하여 상세히 설명한다. 다만, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
본 발명에 적용되는 MRI 시스템의 구성은 널리 알려져 있으므로 생략한다.
도 1은 서로 다른 성질을 가지는 MRI 영상을 나타낸 것으로서, (a), (b), (c)는 머리 부위에 대하여 각각 TOF Angio, T2 강조, CISS T2/T1 강조 영상을 나타내며, 도 2는 이의 혈관 부분을 각각 확대한 영상을 나타낸다. 한편, 본 명세서에 첨부된 도면은 임상용 3.0 Tesla 자기공명 영상장치를 이용하여 정상적인 피험자로부터 머리 부위의 영상을 획득한 것이다.
MRI 장치를 사용하여 인체에 흐르는 동맥과 정맥의 혈류를 측정하여 영상으로 재구성하는 TOF Angio 영상은 혈류의 T1 강조영상을 이용하여 혈류의 속도, 즉 TOF(time of flight)에 따른 성질을 이용한다. TOF Angio는 뛰어난 영상해상도로 피검자 개개인의 다양한 혈관구조를 상세히 제시할 수 있어 현재 의료분야에서 가장 많이 활용되는 혈관 영상 기법이다. 또한, 관련기술이 계속 발달하여 와류와 같은 복합혈류 현상도 진단할 수 있고, 최근에는 미세혈관 영상도 얻을 수 있는 등 그 발전속도가 빠르다. 따라서, TOF Angio는 혈관의 전체 영상을 얻기에 최적인 것으로 알려져 있지만, 혈관 내벽 구조에 의하여 혈류 속도가 변경될 수 있는 개연성을 가지고 있으며, 이를 통해 혈관의 외벽과 내벽의 구조 모두를 정확히 파악할 수는 없다.
T2 강조 영상은 스핀들 간의 영향에 의한 T2 이완에 따른 횡자화 감쇠를 나타내는 것으로서, 이는 혈관바깥막(tunica adventitia)의 두께를 측정할 수 있다.
CISS(Constructive Interference in Steady State) T2/T1 강조 영상은 혈관중간막(tunica media) 부위를 영상화할 수 있고, 동시에 혈류의 신호를 측정할 수 있다.
도 3은 본 발명의 실시예에 따른 혈관벽 영상 획득 방법을 나타내는 흐름도이며, 도 4는 본 발명의 실시예에 따른 혈관벽 영상 획득 방법에 따라 처리되는 영상을 나타내는 도면이다.
도 3에 나타난 바와 같이, CISS T2/T1 강조 영상(410)을 획득하고(S310), 이를 반전시켜 반전 영상(420)을 얻는다(S320).
다음, 반전된 CISS T2/T1 강조 영상(420)으로부터 별도로 획득된 T2 강조 영상(430)을 빼면(S330), 결과적으로 혈관벽이 자동 분할된 영상(440)을 얻게 된다.
도 5는 본 발명의 실시예에 따른 혈관벽 영상 획득 방법에 따라 얻어진 혈관벽 영상의 확대 영상이다.
도 5의 (a)는 혈관바깥막(tunica adventitia)을 나타내며, 도 5의 (b)는 혈관중간막(tunica media)을 나타낸다.
도 5에 나타난 바와 같이, 두 가지 MR 영상, 즉 반전된 CISS T2/T1 강조 영상(420)으로부터 T2 강조 영상을 단순히 차감하는 것만으로 혈관의 외벽과 내벽을 포함하는 정확한 구조를 얻을 수 있으며, 혈관 내벽 구조에 의하여 혈류 속도가 변경되거나 조영제 투여를 위해 혈관 내 카테타를 삽입하는 등과 같이 혈관의 구조에 영향을 미치는 요소 없이 정확한 측정이 가능하다.
상술한 실시예에서는 CISS T2/T1 강조 영상을 반전시키고 이로부터 T2 강조 영상을 빼 혈관벽이 자동 분할된 결과 영상을 얻는 것을 예로 들어 설명하였지만, 혈관의 외벽 및 내벽의 서로 다른 성질을 반영하는 두 가지 MRI 영상이 반드시 위의 두 가지로 제한되는 것은 아니다. 구체적으로 혈관의 외벽의 윤곽선을 나타낼 수 있는 영상과 혈류 또는 혈관의 내벽의 윤곽선을 나타낼 수 있는 영상의 차를 구한다면 이와 유사한 효과를 얻을 수 있다. 즉, 사용되는 두 가지 영상은 혈관을 구성하는 각 혈관막 중 하나의 형태 또는 두께, 혈관 내벽의 형태, 혈관 외벽의 형태, 혈류 중 하나를 포함하는 영상일 수 있으며, 예를 들어, T1 영상과 T2 영상, Proton 영상과 T1 영상, Proton 영상과 T2 영상, T1 영상과 T2* 영상, Proton 영상과 T2*영상 등의 조합으로도 가능할 수 있다.
또한, 혈관벽 자동 분할 영상을 얻기 위해 사용되는 두 가지 MRI 영상은 임의의 방식과 순서로 얻어질 수 있다. 다만, 유사한 시점에서 얻어지는 것이 정확한 결과를 얻기에 유리할 것이다.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (5)

  1. 자기공명(Magnetic Resonance) 영상 시스템을 통해 혈관벽의 영상을 획득하는 방법으로서,
    혈관의 제1 성질을 반영하는 제1 자기공명 영상을 얻는 단계;
    혈관의 상기 제1 성질과는 다른 제2 성질을 반영하는 제2 자기공명 영상을 얻는 단계; 및
    상기 제1 자기공명 영상으로부터 상기 제2 자기공명 영상을 차감하는 단계를 포함하는 MRI 영상 획득 방법.
  2. 자기공명(Magnetic Resonance) 영상 시스템을 통해 혈관벽의 영상을 획득하는 방법으로서,
    혈관의 제1 성질을 반영하는 제1 자기공명 영상을 얻는 단계;
    혈관의 상기 제1 성질과는 다른 제2 성질을 반영하는 제2 자기공명 영상을 얻는 단계;
    상기 제1 자기공명 영상을 반전시켜 제3 자기공명 영상을 얻는 단계; 및
    상기 제3 자기공명 영상으로부터 상기 제2 자기공명 영상을 차감하는 단계를 포함하는 MRI 영상 획득 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 제1 및 제2 성질은 각각 혈관을 구성하는 각 혈관막 중 하나의 형태 또는 두께, 혈관 내벽의 형태, 혈관 외벽의 형태, 혈류 중 하나를 포함하는 MRI 영상 획득 방법.
  4. 제1항 또는 제2항에 있어서,
    상기 제1 자기공명 영상은 CISS (Constructive Interference in Steady State) T2/T1 강조 영상인 MRI 영상 획득 방법.
  5. 제1항 또는 제2항에 있어서,
    상기 제2 자기공명 영상은 T2 강조 영상인 MRI 영상 획득 방법.
PCT/KR2015/002985 2014-06-18 2015-03-26 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법 WO2015194744A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016571033A JP6377774B2 (ja) 2014-06-18 2015-03-26 磁気共鳴映像システムにおいて血管壁の映像を得る方法
US15/319,150 US10420485B2 (en) 2014-06-18 2015-03-26 Method for acquiring a vascular wall image from magnetic resonance imaging
EP15809179.3A EP3158929B1 (en) 2014-06-18 2015-03-26 Method for acquiring image of blood vessel wall in magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0074443 2014-06-18
KR1020140074443A KR101593310B1 (ko) 2014-06-18 2014-06-18 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법

Publications (1)

Publication Number Publication Date
WO2015194744A1 true WO2015194744A1 (ko) 2015-12-23

Family

ID=54935694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002985 WO2015194744A1 (ko) 2014-06-18 2015-03-26 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법

Country Status (5)

Country Link
US (1) US10420485B2 (ko)
EP (1) EP3158929B1 (ko)
JP (1) JP6377774B2 (ko)
KR (1) KR101593310B1 (ko)
WO (1) WO2015194744A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102025356B1 (ko) * 2017-11-17 2019-09-25 울산과학기술원 뇌에 존재하는 철의 시각화를 위한 방법
KR20210027905A (ko) * 2019-09-03 2021-03-11 고려대학교 산학협력단 Mri를 이용한 뇌혈관 예비능 측정방법
KR102336058B1 (ko) * 2020-07-14 2021-12-07 주식회사 휴런 자기공명영상을 이용한 대뇌 미세출혈 탐지 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209867A (ja) * 2001-01-10 2002-07-30 Sogen Boku 脳の磁気共鳴映像から白質と灰白質および脳脊髄液を分離し体積を算出する方法
US20100228115A1 (en) * 2002-03-20 2010-09-09 New York University CSF biomarker dilution factor corrections by MIRI imaging and algorithm
KR20100125884A (ko) * 2009-05-22 2010-12-01 경희대학교 산학협력단 치아우식증 분석을 위한 이미지 변환 시스템 및 그 방법
US20120046541A1 (en) * 2010-08-23 2012-02-23 Toshiba Medical Systems Corporation Mri using hybrid image
WO2013057697A1 (en) * 2011-10-19 2013-04-25 Tel Hashomer Medical Research Infrastructure And Services Ltd. Magnetic resonance maps for analyzing tissue

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340887B1 (en) * 1999-09-21 2002-01-22 Picker International Inc. Multiple contrast FSE approach to black blood angiography with redundant and supplementary vascular information
EP2010932B1 (en) * 2006-04-20 2016-06-08 Koninklijke Philips N.V. Black-blood steady-state free precession magnetic resonance imaging
JP5395332B2 (ja) * 2007-04-27 2014-01-22 株式会社東芝 磁気共鳴イメージング装置
DE102008062853B4 (de) 2008-12-23 2011-04-14 Siemens Aktiengesellschaft Verfahren zur kontrastmittelfreien angiographischen Bildgebung in der Magnetresonanztomographie
DE102009019596B4 (de) * 2009-04-30 2023-08-17 Siemens Healthcare Gmbh Magnetresonanzangiographie mit flusskompensierter und flusssensitiver Bildgebung
US9305344B2 (en) * 2014-04-22 2016-04-05 The Boeing Company Method for improving linear feature detectability in digital images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209867A (ja) * 2001-01-10 2002-07-30 Sogen Boku 脳の磁気共鳴映像から白質と灰白質および脳脊髄液を分離し体積を算出する方法
US20100228115A1 (en) * 2002-03-20 2010-09-09 New York University CSF biomarker dilution factor corrections by MIRI imaging and algorithm
KR20100125884A (ko) * 2009-05-22 2010-12-01 경희대학교 산학협력단 치아우식증 분석을 위한 이미지 변환 시스템 및 그 방법
US20120046541A1 (en) * 2010-08-23 2012-02-23 Toshiba Medical Systems Corporation Mri using hybrid image
WO2013057697A1 (en) * 2011-10-19 2013-04-25 Tel Hashomer Medical Research Infrastructure And Services Ltd. Magnetic resonance maps for analyzing tissue

Also Published As

Publication number Publication date
JP6377774B2 (ja) 2018-08-22
US20170119275A1 (en) 2017-05-04
US10420485B2 (en) 2019-09-24
EP3158929A4 (en) 2018-01-17
KR101593310B1 (ko) 2016-02-11
EP3158929A1 (en) 2017-04-26
KR20150145088A (ko) 2015-12-29
JP2017516587A (ja) 2017-06-22
EP3158929B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
Kakite et al. Hepatocellular carcinoma: short‐term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 T
De Cocker et al. Clinical vascular imaging in the brain at 7 T
Touzé et al. Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components: consequences for prognosis studies and therapeutic trials
Bock et al. 4D phase contrast MRI at 3 T: Effect of standard and blood‐pool contrast agents on SNR, PC‐MRA, and blood flow visualization
Pohlmann et al. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements
Grözinger et al. Perfusion measurements of the calf in patients with peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty using MR arterial spin labeling
Takayama et al. T1ρ relaxation of the liver: a potential biomarker of liver function
Hutter et al. Perfusion and apparent oxygenation in the human placenta (PERFOX)
Huang et al. High-resolution structural and functional assessments of cerebral microvasculature using 3D Gas ΔR2*-mMRA
Hussein et al. The association between resting‐state functional magnetic resonance imaging and aortic pulse‐wave velocity in healthy adults
WO2015194744A1 (ko) 자기 공명 영상 시스템에서 혈관벽 영상을 획득하는 방법
Zhang et al. Noncontrast MR angiography (MRA) of infragenual arteries using flow‐sensitive dephasing (FSD)‐prepared steady‐state free precession (SSFP) at 3.0 Tesla: Comparison with contrast‐enhanced MRA
Bones et al. Influence of labeling parameters and respiratory motion on velocity‐selective arterial spin labeling for renal perfusion imaging
Zhang et al. Use of cardiac output to improve measurement of input function in quantitative dynamic contrast‐enhanced MRI
Kording et al. Doppler ultrasound triggering for cardiac MRI at 7T
EP2769672B1 (en) System for in vivo and magnetic resonance investigation of kidney function
Wehrum et al. Multi-contrast and three-dimensional assessment of the aortic wall using 3 T MRI
Fischer et al. Non-enhanced T1-weighted liver vessel imaging at 7 Tesla
Xu et al. Single breathhold noncontrast thoracic MRA using highly accelerated parallel imaging with a 32‐element coil array
Koktzoglou Gray blood magnetic resonance for carotid wall imaging and visualization of deep‐seated and superficial vascular calcifications
CN109146835A (zh) 一种无创的4d时间分辨动态磁共振血管成像方法
Ishizaka et al. Detection of normal spinal veins by using susceptibility‐weighted imaging
Versluis et al. MRI of arterial flow reserve in patients with intermittent claudication: feasibility and initial experience
Ebrahimi et al. Fibrosis detection in renal artery stenosis mouse model using magnetization transfer MRI
Fischer et al. Feasibility of semiquantitative liver perfusion assessment by ferucarbotran bolus injection in double‐contrast hepatic MRI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571033

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015809179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15319150

Country of ref document: US

Ref document number: 2015809179

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE