WO2015194603A1 - Active forceps - Google Patents

Active forceps Download PDF

Info

Publication number
WO2015194603A1
WO2015194603A1 PCT/JP2015/067512 JP2015067512W WO2015194603A1 WO 2015194603 A1 WO2015194603 A1 WO 2015194603A1 JP 2015067512 W JP2015067512 W JP 2015067512W WO 2015194603 A1 WO2015194603 A1 WO 2015194603A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pressure
pressing force
pneumatic
pneumatic actuator
Prior art date
Application number
PCT/JP2015/067512
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 竹之下
進司 大木
伊藤 雅昭
浅尾 高行
紀幸 稲木
宏志 本田
Original Assignee
公立大学法人福島県立医科大学
株式会社ニチオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人福島県立医科大学, 株式会社ニチオン filed Critical 公立大学法人福島県立医科大学
Priority to JP2016529414A priority Critical patent/JP6618468B2/en
Publication of WO2015194603A1 publication Critical patent/WO2015194603A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps

Definitions

  • the present invention relates to an active forceps used in an endoscopic operation for treating a living tissue or the like under an endoscope.
  • Endoscopic surgery is minimally invasive and is rapidly spreading in the medical field as a technique for reducing the burden of open surgery.
  • Endoscopic surgery is generally performed by opening 4 to 5 holes in the abdomen, inserting a trocar, inserting a laparoscope, surgical instrument, etc., injecting gas into the abdominal cavity, and inflating it. It is a surgical method to treat the patient.
  • forceps for endoscopic surgery are provided with a shaft portion to be inserted into the trocar, a treatment portion that can be opened and closed on the distal end side of the shaft portion, and a proximal end side of the shaft portion that opens and closes the treatment portion. And a handle portion to be operated.
  • a grasping forceps for grasping a living tissue or a peeling forceps for peeling the adhesion part are widely used, and a scissor type which is generally operated with the thumb and middle finger (or index finger) is widely used as the handle part. It has been.
  • An operator (including an assistant, the same shall apply hereinafter) introduces a treatment section to a target site while viewing a laparoscopic image, operates a handle section to grasp a living tissue, and introduces an endoscope introduced from another trocar Treatment such as cutting and suturing of living tissue is performed with a surgical instrument under a mirror.
  • the forceps are used when performing treatments such as cutting and suturing on a living tissue.
  • the number of forceps that can be introduced into the body is limited in an endoscopic operation, and the forceps are gripped during the operation. It is necessary to change the site frequently, to keep the gripping state until a certain treatment is completed, or to perform some operation all the time for a long time.
  • a shaft portion of about 200 to 350 mm exists between the grip portion and the handle portion, and delicate operation is required at the grip portion located at the tip thereof. For this reason, there is a problem that the burden on the operator who operates the forceps is large.
  • the treatment portion is opened and closed by the power of the electric motor, so that the burden on the operator can be reduced as compared with the conventional forceps directly operated by human power. Seems to be.
  • conventional forceps that use an electric motor as a drive source have a complicated mechanism for transmitting the driving force in addition to the electric motor requiring a certain volume in order to obtain a predetermined driving force.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an active forceps for endoscopic surgery that can further reduce the burden on an operator.
  • An active forceps includes a main body portion provided with an operation detector for detecting an operation of an operator, a shaft portion extending from the main body portion, and a treatment portion provided at the distal end of the shaft portion so as to be opened and closed. And a drive unit that opens and closes the treatment unit, and a control unit that outputs a command signal based on the operation signal output from the operation detector and controls the operation of the drive unit.
  • the driving means includes a pneumatic actuator (for example, an artificial muscle unit 40, a piston, etc. in the embodiment) that opens and closes the treatment section, and a pneumatic unit that supplies gas to the pneumatic actuator based on a command signal.
  • the actuator is disposed on the main body, and the pneumatic unit is disposed on a separate controller separately from the main body.
  • the controller preferably includes pressure adjusting means for adjusting and setting the pressure of the gas supplied to the pneumatic actuator (for example, the electropneumatic regulator 53, the gripping force adjuster 54, and a manually set guulator in the embodiment).
  • pressure adjusting means for adjusting and setting the pressure of the gas supplied to the pneumatic actuator (for example, the electropneumatic regulator 53, the gripping force adjuster 54, and a manually set guulator in the embodiment).
  • the pressure adjusting means has an electropneumatic regulator that sets the pressure of the gas supplied to the pneumatic actuator in accordance with a command signal output from the control unit, and the control unit operates the operation output from the operation detector.
  • a command signal based on the signal can be output to the electropneumatic regulator to control the pressure of the gas supplied to the pneumatic actuator.
  • the operation detector is a pressing force sensor for detecting the operator's pressing force
  • the control unit sends a command signal based on the operation signal according to the operator's pressing force output from the operation detector to the electropneumatic regulator. Can be configured to output.
  • control unit outputs a command signal to the pneumatic unit to supply gas to the pneumatic actuator when the operation signal output from the operation detector is a signal equal to or higher than a predetermined pressing force set in advance.
  • a predetermined pressing force set in advance is set based on the pressing force generated when the operator intentionally presses the operation detector with the intention of opening and closing the treatment portion.
  • the command signal output by the control unit may be set in a plurality of steps (for example, 2 to 5 steps) or steplessly according to the pressing force of the operator detected by the operation detector. it can. Note that a minimum value and a maximum value may be provided for the gas pressure output from the pneumatic unit, and the driving force of the treatment unit may be set to change stepwise or steplessly between the two values.
  • the pressure adjusting means includes a pressure adjuster (for example, a gripping force adjuster 54 in the embodiment) that outputs a pressure setting signal corresponding to a pressure that is adjusted and set in advance by an operator, and a command signal output from the control unit. And an electropneumatic regulator that sets the pressure of the gas supplied to the pneumatic actuator according to the control unit, and the control unit outputs a command signal based on the pressure setting signal output from the pressure regulator to the electropneumatic regulator.
  • the pressure of the gas supplied to the pneumatic actuator may be controlled.
  • the pressure set in the pressure regulator can be set in a plurality of stages (for example, 2 to 5 stages, etc.) or non-stage. Further, a minimum value and a maximum value may be provided for the pressure of the gas output from the pneumatic unit, and the driving force of the treatment unit may be set to change stepwise or steplessly between the two values.
  • the controller may be provided with flow rate adjusting means for adjusting and setting the flow rate of gas supplied to the pneumatic actuator (for example, the speed regulator 56, the flow rate regulating valve, the speed regulator and the electromagnetic proportional control valve in the embodiment). it can.
  • flow rate adjusting means for adjusting and setting the flow rate of gas supplied to the pneumatic actuator (for example, the speed regulator 56, the flow rate regulating valve, the speed regulator and the electromagnetic proportional control valve in the embodiment). it can.
  • the pneumatic actuator is an artificial muscle unit that is deformed in response to gas supply / discharge to open and close the treatment portion.
  • the operation detector is preferably a tactile switch.
  • the main body has a cylindrical or elliptical columnar grip extending in the front-rear direction in which the shaft portion is attached to the front end portion and the shaft portion extends, and the rear portion of the grip is reduced in diameter and inclined with respect to the axis of the shaft portion.
  • a connector portion from which a tube connecting the pneumatic actuator and the pneumatic unit is led out from the rear end, and the operation portion is located in front of the grip opposite to the connector portion across the axis of the shaft portion. It can be provided in the part.
  • the active forceps according to the aspect of the present invention can open and close the treatment portion by receiving power assist from the driving means with a light operating force for operating the operation detector. Furthermore, since the pneumatic unit that supplies gas to the pneumatic actuator based on the command signal is separated from the main body and disposed in a separate controller, the main body operated by the surgeon is configured to be small and lightweight. be able to. As a result, it is possible to provide an active forceps for endoscopic surgery that greatly reduces the burden on the operator.
  • the force generated by the pneumatic actuator by adjusting the supply pressure that is, the drive for driving the treatment section
  • the force (for example, the gripping force of the treatment portion) can be adjusted. Therefore, according to the active forceps of this configuration, the living tissue can be gently gripped with a weak gripping force or firmly fixed with a strong gripping force in accordance with the operator's intention. Furthermore, since the pressure of the gas that drives the pneumatic actuator is adjusted and set, the gripping force and the like can be controlled to be constant regardless of the opening / closing angle position of the treatment section. Accordingly, it is possible to provide an active forceps capable of grasping a living tissue with a grasping force according to an operator's intention with a simple configuration without adding a detector or the like for detecting a force acting on a treatment portion. Can do.
  • the pressure adjustment means has an electropneumatic regulator, and the control unit outputs a command signal based on the operation signal output from the operation detector to the electropneumatic regulator to control the pressure of the gas supplied to the pneumatic actuator
  • the surgeon can operate the treatment section with a driving force corresponding to an operation on the operation detector.
  • the operation detector is a pressing force sensor and the control unit outputs a command signal corresponding to the operator's pressing force to the electropneumatic regulator
  • the operator places a finger on the operation detector and applies the pressing force.
  • the treatment section can be operated with a driving force corresponding to the pressing force with a light operating force.
  • the pressure adjusting means has a pressure regulator and an electropneumatic regulator, and the control unit outputs a command signal based on the pressure setting signal output from the pressure regulator to the electropneumatic regulator and supplies it to the pneumatic actuator.
  • the operator can gently grip the living tissue with a weak gripping force or firmly fix the living tissue with a strong gripping force by adjusting the pressure regulator. .
  • the controller is provided with a flow rate adjusting means that adjusts the flow rate of the gas supplied to the pneumatic actuator
  • the operating speed of the pneumatic actuator that is, the opening and closing speed of the treatment section is adjusted by adjusting the gas flow rate.
  • the main body can be made compact and lightweight, and active forceps with high safety can be provided.
  • the main body can be made compact and lightweight, and an active forceps with good operability can be provided with a clear operational feeling.
  • the main body portion is formed with a grip that is attached to the front end portion of the shaft portion and extends in the front-rear direction, and the rear portion of the grip is reduced in diameter and inclined with respect to the axis of the shaft portion.
  • a connector portion from which a tube connecting to the pressure unit is led out is led out.
  • FIG. 1 It is a schematic block diagram of the active forceps of 1st Embodiment which illustrates the aspect of this invention. It is sectional drawing which shows the structure inside the handpiece in the said active forceps. It is an external appearance perspective view of the handpiece in the said active forceps. It is sectional drawing of the operation part of the 1st composition form and the 2nd example in the above-mentioned active forceps. It is explanatory drawing for demonstrating general
  • FIG. 4 is a cross-sectional view of the operation portion of the second configuration form in the active forceps
  • (a) is a cross-sectional view of the operation portion of the first embodiment
  • (b) is a cross-sectional view of the operation portion of the second embodiment
  • c) is a cross-sectional view of the operating portion of the third embodiment.
  • FIG. 1 shows a schematic configuration of an active forceps C1 of the first embodiment illustrating an aspect of the present invention
  • FIG. 2 is a sectional view showing the inside of the handpiece Ca in the active forceps C1
  • FIG. 2 is an external perspective view of the handpiece Ca 3 shows.
  • the active forceps C1 includes a hand piece Ca operated by an operator and a controller Cb provided separately, and is used in a state where both are connected by a signal cable 19 and a tube 59.
  • the handpiece Ca includes a main body portion 1 that is a base frame to which each member is attached, a shaft portion 2 that extends forward from the main body portion 1, a treatment portion 3 that can be opened and closed at the tip of the shaft portion 2, and a treatment portion.
  • 3 includes an artificial muscle unit 40 that opens and closes 3.
  • the controller Cb includes a pneumatic unit 50 that supplies / discharges gas to / from the artificial muscle unit 40 and a pneumatic unit 50 based on operation signals output from the operation detector 12 (12a, 12b) of the handpiece Ca.
  • the control unit 8 is configured to output a command signal to control the opening / closing operation of the treatment unit 3 by controlling the operation of the pneumatic unit 50.
  • the pneumatic actuator can be configured by using various actuators that utilize gas pressure, such as a piston, an air motor, and an artificial muscle unit.
  • gas pressure such as a piston, an air motor, and an artificial muscle unit.
  • the configuration using the artificial muscle unit 40 will be mainly described. To do.
  • the distal end direction (left direction in FIGS. 1 and 2) of the shaft portion 2 provided with the treatment portion 3 is front, and the proximal direction (same, right direction) of the shaft portion 2 is forward.
  • the rear end direction of the grip 15 is referred to as the lower side, and the base end direction is referred to as the upper side.
  • an artificial muscle unit 40 is attached to the center of the main body upper part 10 extending in the front-rear direction, and a forced release valve 49 is attached to the rear part.
  • a grip 15 that protrudes downward from the main body upper portion 10 and is gripped by the surgeon is formed at the lower portion of the main body portion 1, and an operation portion 11 is formed between the main body upper portion 10 and the grip 15 so as to protrude forward from the grip 15. ing.
  • the operation unit 11 is formed in a semi-cylindrical shape in a plan view.
  • the operation unit 11 is provided with a closing operation detector 12a and an opening operation detector 12b.
  • the operation unit 11 has a plurality of configuration forms including configurations to be described later. Therefore, first, a sheet-like pressing force sensor is used as the operation detector, and the operation unit 11A of the first configuration form in which this is provided on the outer surface side of the operation unit 11 is applied. To proceed. 1 to 3 show the operation unit 11A 1 of the first embodiment in this configuration. Reference numerals A to E following the number 11 indicating the operation unit indicate the first to fifth configuration forms of the operation unit 11, and the subscript numerals attached to the reference signs A to E are examples in each configuration form. Indicates.
  • rib-like identification protrusion 11t which projects forward in the upper and lower central portion of a cylindrical operation outer surface extending in the circumferential direction is formed.
  • the operation unit 11 partitioned vertically by the identification protrusion 11t is provided with a closing operation detector 12a in the upper first operation unit 11a and an opening operation detector 12b in the lower second operation unit 11b.
  • the closing operation detector 12a and the opening operation detector 12b are both thin sheet-like pressing force sensors 120 so that the pressure-sensitive region extending in the longitudinal direction on the strip-shaped flexible substrate is along the cylindrical surface of each operation unit. Arranged and bonded and fixed.
  • the pressing force sensor 120 is, for example, a variable resistance type pressing force sensor in which a pressure sensitive fluid is filled between two thin sheet-like electrodes, and between output terminals in proportion to the pressing force acting on the pressure sensitive region. The resistance is configured to change.
  • a pressing force sensor By using such a pressing force sensor, the opening / closing operation can be performed with a light operation force, and a detection signal having a magnitude corresponding to the operation force can be obtained.
  • the operation detectors 12a and 12b may use other types of pressing force sensors as long as a detection signal corresponding to the pressing force acting on the operation unit can be obtained.
  • the terminal portion of the closing operation detector 12a and the lead of the opening operation detector 12b are introduced into the main body through slit-like introduction portions 14a and 14b penetrating the operation portion 11, and terminals provided at the end portions of the leads are provided. It is connected to the control unit 8 through the signal cable 19 and the electrical connector 18a.
  • the introduction portions 14a and 14b through which the leads are communicated are sealed with a sealant such as silicone.
  • FIG. 4 is a cross-sectional view of the operation unit 11A 2 according to the second example of the present configuration.
  • the operation unit 11A 2 is configured by adding the following elements to the operation unit 11A 1 of the first embodiment shown in FIG.
  • the same components as those of the operation unit 11 ⁇ / b> A 1 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • a first covering member 13a is bonded and fixed to the first operation portion 11a so as to cover the closing operation detector 12a, and a second covering member 13b is bonded and fixed to the second operation portion 11b so as to cover the opening operation detector 12b. Is done.
  • the first covering member 13a and the second covering member 13b are thin sheet-like members having rubber elasticity.
  • butyl rubber or ethylene / propylene rubber (EPDM) with a thickness of about 0.2 to 2 mm is used as a rubber-elastic sheet-like member that is highly resistant to cleaning agents (strong alkaline detergents) used in operating rooms and can withstand sterilization temperatures ), Silicon rubber and the like.
  • the shaft portion 2 is formed with a hollow pipe-shaped sheath 21, a push-pull wire 22 slidably supported inside and outside the sheath 21, and a female screw for detachably attaching the shaft portion 2 to the artificial muscle unit 40.
  • the nut 25 is mainly used.
  • the front end side of the push-pull wire 22 is connected to the treatment members 31 and 32 of the treatment unit 3 via a link mechanism (not shown), and the rear end side of the push-pull wire 22 is connected via a terminal fitting 23 (see FIG. 5). To the artificial muscle unit 40.
  • the treatment section 3 is mainly composed of treatment members 31 and 32 that are pivotally supported at the distal end of the sheath 21 in the shaft section 2.
  • the base end portions of the treatment members 31 and 32 are connected to the push-pull wire 22 via a link mechanism, and when the push-pull wire 22 is pulled backward (on the main body 1 side), the treatment member 31 and the treatment member 32 are connected.
  • the forceps are closed by swinging in a direction approaching each other, and when the push-pull wire 22 is pushed forward, the forceps are opened by swinging in the direction in which the treatment member 31 and the treatment member 32 are separated from each other. Yes.
  • the shaft portion 2 is configured so that the sheath 21 can be rotated around an axis extending in the front-rear direction.
  • the operator rotates the rotation knob 24 provided on the proximal end side of the shaft portion to rotate the sheath 21.
  • the swinging open / close surfaces of the treatment members 31 and 32 can be adjusted and set to desired angular positions.
  • the treatment members 31 and 32 may have any suitable shape depending on the purpose and site of using the active forceps C1, for example, known forceps such as grasping forceps, peeling forceps, crushing forceps, and hemostatic forceps. It can be in the form of
  • the driving means for opening and closing the treatment section 3 is mainly composed of an artificial muscle unit 40 provided on the handpiece Ca side and a pneumatic unit 50 provided on the controller Cb side.
  • FIG. 5 is an explanatory diagram for explaining the schematic configuration and operation principle of the artificial muscle unit 40
  • FIG. 6 is a block diagram of the active forceps C1.
  • 5A shows a natural state before supplying gas to the artificial muscle unit 40
  • FIG. 5B shows a pressurized state where gas of a predetermined pressure is supplied to the artificial muscle unit 40.
  • the artificial muscle unit 40 includes a cylindrical rubber artificial muscle 41, a sliding member 42 bonded and fixed to the front end portion of the rubber artificial muscle 41, a fixing member 43 bonded and fixed to the rear end portion, a sliding member 42, A connection fitting 44 for releasably connecting the terminal fitting 23 at the rear end of the push-pull wire, a cylindrical case 45 for housing the artificial rubber muscle 41, a front cap 46 fixed to the front end of the case 45, An end cap 47 fixed to the rear end of the case 45 is formed.
  • the case 45 is manufactured using, for example, a pipe made of a transparent resin material. Since the window portion 17 is formed in the upper portion 10 of the main body, the state of the internal rubber artificial muscle 41 can be visually recognized from the window portion 17 through the case 45. It has become.
  • the front cap 46 is formed with a metal support hole for slidably supporting the connecting metal 44 in the front-rear direction at the center, and a male screw part for fixing the shaft part 2 by screwing with the female screw part of the nut 25 on the outer periphery. Is formed.
  • the end cap 47 is provided with a fixing structure such as a clip for fixing the fixing member 43, and a joint member 47a is provided at the rear end.
  • a gas flow path communicating with the inside of the rubber artificial muscle 41 is formed at the center of the end cap 47 and the fixing member 43 so as to extend back and forth, and the gas supplied to the artificial muscle unit 40 (joint member 47a) is formed.
  • the gas supplied to the inside of the artificial rubber muscle 41 through the gas channel and the gas supplied to the inside of the artificial rubber muscle 41 can be discharged from the artificial muscle unit 40 through the gas channel.
  • the peripheral surface of the rubber artificial muscle 41 is linear as shown in FIG. It is cylindrical and the sliding member 42 is located at a front end position close to the front cap 46.
  • the push-pull wire 22 connected to the sliding member 42 via the connecting metal fitting 44 and the terminal metal fitting 23 is also at the front end position, and the treatment member 31 and 32 of the distal treatment portion 3 are mutually connected.
  • the forceps are open and spaced apart.
  • the rubber artificial muscle 41 when gas is supplied to the artificial muscle unit 40 and the internal pressure of the rubber artificial muscle 41 becomes higher than the surrounding pressure, the rubber artificial muscle 41 swells like a balloon, and the peripheral surface as shown in FIG. Transforms into a curved barrel. That is, the artificial rubber muscle 41 expands in the radial direction and contracts in the axial direction.
  • the sliding member 42 moves rearward (to the right in FIG. 5), and its position is displaced from the front end position shown in FIG. 5A by the moving stroke s, as shown in FIG. 5B. Move to pressure position.
  • the push-pull wire 22 is pulled backward, and the treatment portion 3 is in a closed state in which the treatment members 31 and 32 are in close contact with each other and the forceps are closed.
  • the artificial muscle unit 40 (joint member 47a) is detachably connected to a forced release valve 49 via a pneumatic connector 48, and the forced release valve 49 and the pneumatic unit 50 are connected by a tube 59 via a pneumatic connector 18b.
  • the forcible release valve 49 is a manual valve that is mechanically operated by manual operation, and the artificial muscle unit 40 and the pneumatic unit 50 are connected in a normal state when the knob 49a protruding from the upper portion 10 of the main body is not pressed.
  • FIG. 6 illustrates a 3-port 2-position manual valve.
  • the pneumatic unit 50 includes a filter regulator 52 that removes dust and the like from an externally supplied gas (for example, N 2 gas, CO 2 gas, dry air, etc.) and outputs the gas by setting the gas to a predetermined primary pressure.
  • the gas output from the regulator 52 is set to a supply pressure corresponding to a command signal output from the control unit 8 and output, and the gas output from the electropneumatic regulator 53 is output from the control unit 8.
  • It is mainly composed of a flow path switching valve 55 for switching the gas supply state such as supplying to the artificial muscle unit 40 in response to a command signal, shutting it off, or opening it.
  • a configuration using a three-port, three-position electromagnetic valve as the flow path switching valve 55 is illustrated.
  • an electropneumatic regulator 53 is connected to a P port (air supply port), a forced release valve 49 is connected to an A port (device connection A port), and an R port (exhaust port) is connected via a filter. Open to the atmosphere.
  • the flow path switching valve 55 is a closed center solenoid valve, and when a command signal is not input from the control unit 8, the spool is in a neutral position as shown in the figure, and the gas flow from the pneumatic unit 50 to the artificial muscle unit 40 is shown. While the supply is cut off, the circuit on the artificial muscle unit 40 side is also closed.
  • the control unit 8 is connected to the closing operation detector 12a and the opening operation detector 12b at its input unit, and to the output unit is connected to the electropneumatic regulator 53 and the flow path switching valve 55.
  • the control unit 8 outputs a command signal to the electropneumatic regulator 53 and the flow path switching valve 55 based on the operation signals output from the two operation detectors 12a and 12b, and supplies gas to the artificial muscle unit 40.
  • the blocking / opening is controlled as follows.
  • Both the closing operation signal output from the closing operation detector 12a and the opening operation signal output from the opening operation detector 12b are detection signals less than a predetermined pressing force preset and stored in the control unit 8. At this time, the control unit 8 does not output a command signal for driving the flow path switching valve 55.
  • the “predetermined pressing force” preset in the control unit 8 is when the operator deliberately presses the operation detectors 12a and 12b with the intention of opening or closing the treatment unit 3.
  • the spool of the flow path switching valve 55 is in the neutral position, and the P port, A port, and R port of the flow path switching valve 55 are all cut off. That is, the gas supply from the pneumatic unit 50 to the artificial muscle unit 40 is shut off, and the pneumatic circuit on the artificial muscle unit 40 side is also held closed. Therefore, the treatment portion 3 at the tip of the handpiece Ca does not operate, and the treatment portion 3 is held in a previous state, for example, the treatment members 31 and 32 are in close contact with each other and the forceps are closed. When the forceps are closed, the rubber artificial muscle 41 is inflated (see FIG. 5B), and the pneumatic circuit of the artificial muscle unit 40 to the flow path switching valve 55 is filled with a gas of a predetermined pressure. Held in a state.
  • the control unit 8 moves the spool of the flow path switching valve 55 to the left in FIG.
  • the command signal to move to is output.
  • a command signal output from the control unit 8 to the flow path switching valve 55 is referred to as an open command signal, and a position state where the spool has moved to the left is referred to as an open position.
  • the open position the P port of the flow path switching valve 55 is blocked, and the A port and the R port are connected.
  • the gas supply from the pneumatic unit 50 to the artificial muscle unit 40 is cut off, and the pneumatic circuit on the artificial muscle unit 40 side is connected to the exhaust port and held by the artificial muscle unit 40 to the flow path switching valve 55. Gas is exhausted.
  • the artificial rubber muscle 41 changes from the state shown in FIG. 5B to the state shown in FIG. 5A, and in the treatment section 3, the treatment members 31, 32 are opened from the closed state where the treatment members 31, 32 are in close contact. Change to state.
  • the control unit 8 stops outputting the opening command signal to the flow path switching valve 55.
  • the spool of the flow path switching valve 55 returns to the neutral position, and all of the A port, P port, and R port are cut off, and the treatment section 3 is held in the closed state with the forceps open.
  • the pressing force applied to the opening operation detector 12b is released in a state where the forceps are not completely opened, and the treatment members 31 and 32 can be held in an open state with an arbitrary relative angle.
  • the control unit 8 places a spool on the flow path switching valve 55 to the right in FIG.
  • the command signal to move to is output.
  • a command signal output from the control unit 8 to the flow path switching valve 55 is referred to as a close command signal, and a position state where the spool has moved to the right is referred to as a closed position.
  • the control unit 8 outputs a command signal for setting the supply pressure corresponding to the pressing force F detected by the closing operation detector 12a to the electropneumatic regulator 53.
  • the command signal output from the control unit 8 to the electropneumatic regulator 53 at this time is referred to as a closing pressure command signal.
  • the closing pressure command signal can be set in a plurality of steps (for example, 2 to 5 steps) or steplessly according to the pressing force.
  • FIG. 7 illustrates the relationship between the pressing force F detected by the closing operation detector 12 a and the supply pressure P set by the electropneumatic regulator 53.
  • FIG. 7A shows a configuration example when the supply pressure is set in three stages
  • FIG. 7B shows a configuration example when the supply pressure is set in a stepless manner.
  • the horizontal axis represents the operator's pressing force F detected by the closing operation detector 12a
  • the vertical axis represents the supply pressure P set by the electropneumatic regulator 53 based on the closing pressure command signal.
  • the control unit 8 determines that the pressing force F detected by the closing operation detector 12a is less than F 2 including the predetermined pressing force F 1 (0 When ⁇ F ⁇ F 2 ), a closing pressure command signal for setting the supply pressure P to a low pressure P 1 is output to the electropneumatic regulator 53. Further, when it is F less than 3 or the pressing force F detected by the closing operation detector 12a are F 2 or more (F 2 ⁇ F ⁇ F 3) are closing pressure command to set the supply pressure P 2 of the medium pressure The signal is output to the electropneumatic regulator 53. When the pressing force F detected by the closing operation detector 12a is F 3 or more (F 3 ⁇ F), a closing pressure command signal for setting the supply pressure to a high pressure P 3 is output to the electropneumatic regulator 53. .
  • the magnitudes of the supply pressures P 1 , P 2 , and P 3 are based on the gripping force generated in the treatment section 3 when the gas of each supply pressure is supplied to the artificial muscle unit 40 and the forceps are closed. It is set in three levels: weak, medium, and mirror within a range that complies with 14971 (medical devices-application of risk management to medical devices).
  • the control unit 8 determines that the pressing force F detected by the closing operation detector 12a is equal to or less than a predetermined pressing force F 1 (0 ⁇ When F ⁇ F 1 ), a closing pressure command signal for setting the supply pressure P to the lowest pressure P 0 is output to the electropneumatic regulator 53.
  • a closing pressure command signal for setting the supply pressure to the maximum pressure P 4 is output to the electropneumatic regulator 53.
  • a closing pressure command signal set to a supply pressure proportional to the pressure F is output to the electropneumatic regulator 53.
  • the control unit 8 when the closing operation signal outputted from the closing operation detector 12a is a predetermined pressing force F 1 or more detection signals, the control unit 8 outputs a closing command signal to the channel switching valve 55 spool Is moved to a closed position, and a close pressure command signal is output to the electropneumatic regulator 53 to supply a gas having a supply pressure P corresponding to the pressing force F.
  • the closed position the P port and A port of the flow path switching valve 55 are connected and the R port is shut off.
  • a gas having a pressure corresponding to the pressing force is supplied from the pneumatic unit 50 to the artificial muscle unit 40.
  • the artificial rubber muscle 41 changes from the state of FIG. 5A to the state of FIG. 5B, and the treatment members 31 and 32 are brought into close contact with each other from the open state in which the treatment members 31 and 32 are separated from each other. Or it changes to the closed state which pinched
  • the force sandwiched between the treatment members 31, 32 that is, the gripping force that acts on the treatment portion 3 is determined by the pressure of the gas supplied from the pneumatic unit 50 to the artificial muscle unit 40, that is, the supply pressure.
  • the supply pressure is set in a plurality of steps or steplessly according to the operator's pressing force F against the closing operation detector 12a. Therefore, the surgeon can appropriately adjust the gripping force acting on the treatment section 3 by adjusting the pressing force when operating the closing operation detector 12a.
  • both the closing operation signal output from the closing operation detector 12a and the opening operation signal output from the opening operation detector 12b are detected to be greater than or equal to a predetermined pressing force F 1 preset and stored in the control unit 8.
  • the control unit 8 does not output a command signal to the flow path switching valve 55. This is because the operator's intention to operate is not clear.
  • the active forceps C1 configured as described above uses sheet-like pressing force sensors as the operation detectors 12a and 12b that detect the operation of the operator, the operator places a finger on the operation unit.
  • the treatment section 3 can be opened / closed simply by changing the pressing force (without finger displacement). Therefore, compared with the conventional forceps which had to swing the operation lever against the urging force to open and close the treatment portion, the operator's fatigue can be greatly reduced.
  • the operation detectors 12a and 12b are arranged on the outer surface side of the main body 1, the operator's operation force is directly applied to the operation detectors 12a and 12b. Therefore, high detection accuracy can be obtained.
  • the operation detectors 12a and 12b are disposed so as to be exposed to the operation unit, cleaning and sterilization can be easily performed.
  • the operation of the operator Force can be applied almost directly to the operation detectors 12a and 12b, and good operability can be obtained due to the elasticity of the covering members 13a and 13b.
  • the operation detectors 12a and 12b are disposed in a state of being covered with the covering members 13a and 13b, it is possible to suppress the adhesion of foreign matters to the operation detectors 12a and 12b, the release of dust, and the like. Further, cleaning and sterilization can be performed easily and reliably, and the operation detector is not worn by these frequently performed operations.
  • an operation portion 11 that bulges forward from the grip 15 is formed between the grip 15 gripped by the operator and the upper body portion 10, and operation detectors 12a and 12b are provided in the operation portion. ing.
  • the operation detector is unintentionally pressed when operating by gripping the grip 15, such as when inserting / removing the treatment unit 3 into / from the body or adjusting the position of the treatment unit 3. There is no such thing as
  • the finger can be extended to the operation section 11 with the grip 15 held, and the closing operation detector 12a can be easily operated.
  • the line of sight is not moved to the operation unit 11.
  • the closing operation detector 12a and the opening operation detector 12b can be accurately identified (by blind touch), and a situation in which these operation detectors are erroneously operated can be prevented.
  • the operator can
  • the handpiece to be operated can be configured to be lightweight, and the burden on the operator who operates the handpiece Ca for a long time with high frequency can be greatly reduced.
  • the operation detector 12a when the pressing force of the detected operator is predetermined pressing force F 1 or more previously set by 12b, for the control unit 8 is configured to be opened and closed using the treatment unit 3, the operator When the operator performs an opening / closing operation with the intention of opening / closing the treatment section 3, the opening / closing operation is performed according to the operator's intention, and when the operator accidentally touches the operation detector, the treatment section 3 Does not work. This provides an active forceps with high safety and good operability.
  • control unit 8 outputs a closing pressure command signal corresponding to the pressing force of the operator to the pneumatic unit 50, and the pneumatic unit 50 supplies a gas having a pressure based on the closing pressure command signal to the artificial muscle unit 40.
  • the living tissue can be gently gripped with a weak gripping force or firmly fixed with a strong gripping force according to the operator's intention.
  • the gripping force can be made constant regardless of the opening / closing angle position of the treatment section 3 under a certain supply pressure. As a result, it is possible to provide an active forceps that ensures safety and good operability.
  • the main body unit 1 by providing the main body unit 1 with the forced release valve 49 that is mechanically operated by manual operation to open the treatment unit 3, an electrical / mechanical abnormality occurs in the control unit 8 and the pneumatic unit 50. Even when the treatment unit 3 is closed unintentionally or when the treatment unit 3 remains closed and does not accept the opening operation, the treatment unit 3 is immediately and forcibly forced. Can be opened. Furthermore, since the forcible release valve 49 is provided in the main body 1, the treatment section can be quickly opened with high responsiveness.
  • the active forceps in the form (first configuration form) in which a sheet-like pressing force sensor is used as the operation detector and provided on the outer surface side of the operation unit 11 has been described above.
  • a sheet-type pressing force sensor is used as the operation detector, and the active forceps are provided in the operation unit 11 (second configuration), and a plunger-type pressing force sensor is used as the operation detector.
  • the operation unit 11B of the second configuration form is configured by using a sheet-like pressing force sensor as the operation detector 12 and providing this inside the operation unit 11.
  • FIG. 8A is a cross-sectional view of the operation unit 11B 1 of the first example in the present configuration
  • FIG. 8B is a cross-sectional view of the operation unit 11B 2 of the second example in the present configuration
  • FIG. ) Shows a cross-sectional view of the operation unit 11B 3 of the third embodiment in this configuration.
  • the operation portion 11B 1 of the first embodiment shown in FIG. 8 (a) has a hole (for example, a circular hole, a triangle, or a square hole) formed through the wall surface of the operation portion in the front-rear direction.
  • An operation button 210 is inserted as a separating member that separates the inside and outside of the main body 1.
  • the operation button 210 is manufactured using an elastic material (for example, ethylene / propylene rubber (EPDM), butyl rubber, silicon rubber, etc.).
  • EPDM ethylene / propylene rubber
  • a pressing force sensor 220 is disposed on the substrate 225 so as to be located behind the operation button 210.
  • the pressing force sensor 220 is a variable resistance type sensor in which the resistance between the terminals changes according to the pressing force, similarly to the described pressing force sensors 12a and 12b.
  • the pressure-sensitive area is a circular (button-shaped) pressure sensor in accordance with the mode of the operation button 210. That is, the pressing force sensor 220 is disposed inside the main body 1 via an operation button 210 that is an isolation member that separates the inside and outside of the main body 1, and the operator's pressing force is pressed via the operation button 210. It is transmitted to the pressure sensor 220. Then, an operation signal corresponding to the pressing force is output from the pressing force sensor 220 to the control unit 8.
  • the operation portion 11B 2 of the second embodiment shown in FIG. 8 (b) has a hole (same as above) formed through the wall surface of the operation portion in the front-rear direction.
  • a leaf spring 235 is attached as an isolation member separating the two.
  • An operation button 230 is attached to the front side of the leaf spring 235 and protrudes forward through the hole, and a pressing force sensor 240 is attached to the rear side of the leaf spring 235.
  • the pressing force sensor 240 is a sensor for obtaining a pressing force from deformation (strain) generated in the leaf spring 235.
  • a semiconductor strain gauge type sensor or a capacitance type sensor is used.
  • various plastic materials and metal materials can be used for the operation buttons.
  • the leaf spring 235 is elastically deformed, and the amount of deformation (the magnitude of the distortion) is detected by the pressing force sensor 240, and the plate An operation signal corresponding to the deformation amount of the spring 235, that is, the pressing force is output from the pressing force sensor 240 to the control unit 8.
  • the pressing force sensor 240 may be configured to detect the displacement of the leaf spring 235 (or the operation button) electrically, magnetically, or optically and obtain the pressing force from the detected displacement amount. .
  • the operation unit 11B 3 of the third embodiment shown in FIG. 8C is a configuration that detects the deformation amount itself of the wall surface of the operation unit, not the leaf spring.
  • an operation region 250 in which the thickness is partially reduced to reduce the elastic coefficient (the amount of deformation with respect to the pressing force is increased) is formed on the wall surface of the operation portion, and the rear surface of the operation region 250 It is comprised by arrange
  • a groove 251 for indicating the operation region 250 is carved in a circular shape on the front side of the main body 1. For this reason, when the vicinity of the operation area 250 is pressed, the operation area 250 is elastically deformed according to the pressing force.
  • the pressing force sensor 260 is a sensor that obtains the pressing force from the deformation amount (distortion) generated in the operation region 250, and the same sensor as in the second embodiment is used.
  • the operation unit 11B 3 having such a configuration, when the operator presses the operation region 250, the operation region 250 is elastically deformed, and the amount of deformation (the magnitude of the distortion) is detected by the pressing force sensor 260.
  • An operation signal corresponding to the deformation amount of the region, that is, the pressing force is output from the pressing force sensor 260 to the control unit 8.
  • the pressing force sensor is disposed inside the main body 1 and the surgeon's pressing force is transmitted to the pressing force sensor via the isolation member (the operation button 210, the leaf spring 235, the wall surface of the operation region 250).
  • the isolation member the operation button 210, the leaf spring 235, the wall surface of the operation region 250.
  • the operation unit 11C in the third configuration form is configured using a plunger-type pressing force sensor 320 as the operation detector 12.
  • the plunger-type pressing force sensor 320 is a sensor that detects the pressing force acting on the plunger by detecting the displacement amount of the plunger biased by the spring.
  • the pressing force sensor 320 includes a sensor case 321, a plunger 322 slidably held by the sensor case 321 in the front-rear direction (left and right in FIG. 9), and a main spring that urges the plunger 322 forward (to the left). 323 and a displacement sensor 325 that detects the amount of displacement of the plunger 322 in the axial direction relative to the sensor case 321 are mainly configured.
  • the pressing force acting on the plunger 322 is determined by the amount of displacement of the plunger 322 and the spring coefficient of the main spring 323.
  • the pressing force acting on the plunger is derived.
  • An operation button 326 is supported at the distal end of the plunger 322 so as to be slidable in the axial direction.
  • the operation button 326 is urged by a sub-spring 327 that urges the operation button 326 forward, and is disposed at the front end position.
  • the sub spring 327 is a spring whose spring coefficient is smaller than that of the main spring 323.
  • a hole is formed through the wall surface of the operation portion in the front-rear direction.
  • a pressing force sensor 320 is attached to the rear surface side (inside the main body portion) of the hole portion, and the operation button 326 is inserted through the hole portion to move the front end. A part protrudes ahead and is arrange
  • the operation unit 11C having such a configuration, when the operator presses the operation button 326, first, the sub spring 327 is elastically deformed to move the operation button 326 backward (invalid stroke), and the front end of the plunger 322 is the operation button. It moves with a light operating force until it engages with the bottom of 326. When the front end of the plunger 322 is engaged with the bottom of the operation button 326, thereafter, the resistance force when the operation button 326 is pressed is increased.
  • This resistance force is a reaction force (spring force) of the main spring 323.
  • the operation button 326 When the operation button 326 is pressed backward against this reaction force, the main spring 323 is elastically deformed and the plunger 322 moves backward (effective stroke). ).
  • the displacement amount of the plunger 322 is detected by the displacement sensor 325, and the pressing force is derived from the detected displacement amount and the spring coefficient of the main spring 323.
  • the displacement sensor 325 a sensor of a type that detects the displacement amount of the plunger 322 electrically, magnetically, or optically can be used.
  • the displacement amount detected by the displacement sensor 325 and the pressing force acting on the plunger are in a proportional relationship, and an operation signal corresponding to the pressing force is output from the pressing force sensor 320 to the control unit 8.
  • the surgeon can recognize his / her operation by the displacement of the operation button 326 to perform the pressing operation, and can surely recognize the point from the invalid stroke to the effective stroke by changing the reaction force. 8 can be clearly recognized. In addition, since there is an invalid stroke area before entering the effective stroke, it can be easily determined whether or not the operator is pressing the operation button for the opening / closing operation.
  • FIG. 10 illustrates a configuration in which a hole penetrating in the front-rear direction is formed in the wall surface of the operation unit and the switch 420 is attached to the inside of the main body unit 1 as the operation unit 11D 1 of the first example in this configuration.
  • the switch 420 a plunger-type limit switch whose actuator is a shaft, a limit switch whose actuator is a hinge type, or the like is preferably used.
  • the actuator is a plunger type limit switch, and the shaft of the actuator is inserted through the hole, and the front end portion projects forward.
  • An operation signal is output from the switch 420 to the control unit 8 when the actuator is pressed. The surgeon can confirm the switch operation with a click feeling and can open and close the treatment section 3 with a light operating force.
  • the switch 420 when the switch 420 is used as the operation detector, the operator's pressing operation can be detected, but an operation signal corresponding to the pressing force cannot be output. For this reason, it seems that it is difficult to control the forceps gripping force (gas supply pressure) in a plurality of stages according to the operation on the operation detector. However, if the following algorithm is adopted, the above setting is possible.
  • the operation signal output is basically an on signal or an off signal. Therefore, when the operation detector is not pressed, the operation signal is off.
  • the setting of the supply pressure by the electropneumatic regulator is set to a low pressure.
  • the closing operation signal is turned on / off / on within a predetermined time (for example, within 0.5 seconds) from the off state and then turned on continuously, that is, after the double click, the on state is turned on.
  • the supply pressure set by the electropneumatic regulator is set to a high pressure. If such an algorithm is adopted, the forceps gripping force can be set in a plurality of stages using an inexpensive switch having only an on / off function.
  • the operation unit 11E includes, as the operation detector 12, a switch 520 that detects the operator's pressing operation and a pressing force sensor 530 that detects the pressing force of the operator.
  • a hole is formed through the wall surface of the operation portion in the front-rear direction, and a switch 520 and a pressing force sensor 530 are attached to the inside of the main body portion 1.
  • the switch 520 a limit switch having a hinge type actuator is preferably used, and the pressure sensor 530 has a circular pressure-sensitive area (like the pressure sensor 220 described in the second embodiment of the first configuration).
  • a button-like pressing force sensor is preferably used.
  • An operation button 510 is attached to the tip of the actuator of the switch 520. The operation button 510 is inserted through the hole, and the front end protrudes forward.
  • a pressing force sensor 530 is attached behind the operation button 510.
  • the position of the pressing force sensor 530 in the front-rear direction is moved backward when the operation button 510 is pressed, and the rear surface of the operation button (or the rear surface of the actuator) is slightly beyond the reverse position of the limit switch. It is set so as to contact the In the operation unit having such a configuration, when the operation button 510 is pressed, the operation button 510 is first moved backward with a light operation force, and the contact of the switch 520 is reversed. At this time, the detection signal of the switch 520 is output to the control unit 8.
  • the rear surface of the operation button 510 comes into contact with the pressing force sensor 530 and the operation reaction force increases. Thereafter, the pressing force is detected by the pressing force sensor 530 and an operation signal corresponding to the pressing force is output to the control unit 8.
  • the surgeon can recognize the switch operation from the click feeling of the operation button 510 to perform the pressing operation, and can surely recognize that the reaction force changes to enter the detection area of the pressing force. 8 can be clearly recognized.
  • the operation detection by the switch 520 is performed before entering the detection area of the pressing force, it can be easily determined whether or not the operator is pressing the operation button for the opening / closing operation.
  • the active forceps C1 as described above it is possible to provide an active forceps suitable for endoscopic surgery that ensures the safety of the operator and the patient and reduces the burden on the operator.
  • the active forceps C2 of this embodiment is basically the same as that of the first embodiment except that the shape of the handpiece Ca including the arrangement of the operation unit 11 and the forced release valve are provided on the controller Cb side. It is comprised similarly to the active forceps C1. Therefore, in the following description, the same components as those of the active forceps C1 of the first embodiment are denoted by the same reference numerals, and a duplicate description thereof is omitted.
  • FIG. 12 is a schematic configuration of the active forceps C2
  • FIG. 13 is a cross-sectional view showing the inside of the handpiece Ca.
  • the active forceps C2 includes a hand piece Ca operated by an operator and a controller Cb provided separately, and is used in a state where both are connected.
  • the distal end direction (left direction in FIGS. 12 and 13) of the shaft portion 2 provided with the treatment portion 3 is the front
  • the proximal direction (same, right direction) of the shaft portion 2 is the forward direction.
  • the side hereinafter, the lower side
  • the opposite side will be referred to as the upper side.
  • the handpiece Ca includes a main body portion 1 that is a base frame to which each member is attached, a shaft portion 2 that extends forward from the main body portion 1, a treatment portion 3 that can be opened and closed at the tip of the shaft portion 2, and a treatment portion.
  • 3 includes an artificial muscle unit 40 that opens and closes 3.
  • the controller Cb includes a pneumatic unit 50 that supplies / discharges gas to / from the artificial muscle unit 40 and a pneumatic unit 50 based on operation signals output from the operation detector 12 (12a, 12b) of the handpiece Ca.
  • the control unit 8 is configured to output a command signal to control the opening / closing operation of the treatment unit 3 by controlling the operation of the pneumatic unit 50.
  • the main body 1 is formed with a cylindrical or elliptical columnar grip 16 having a shaft portion 2 attached to the front end and extending in the front-rear direction, and a rear portion of the grip 16 being bent in a slanting downward direction while being smoothly reduced in diameter.
  • the signal cable 19 and the connector part 18 from which the tube 59 is led out are configured.
  • a configuration in which the connector portion 18 is detachable from the rear end of the grip 16 is illustrated.
  • 12 and 13 illustrate a configuration in which the rear portion of the grip 16 is bent downward by 45 degrees.
  • the grip 16 is formed with a plurality of chevron-shaped finger hooking projections 16a on the outer peripheral surface centering on the lower surface so that the operator can easily grip the grip 16 so that the gripping position does not shift or fall off.
  • An operation unit 11 is provided at an upper front portion of the grip 16.
  • a closing operation detector 12a and an opening operation detector 12b are attached to the operation unit 11 side by side.
  • any of the operation units (11A to 11E) of the first to fifth configuration modes described above can be applied.
  • the operation unit of the fourth configuration form (11D) using a switch for detecting the operator's pressing operation is applied as the operation detector 12 (12a, 12b), and in FIG. 12 and FIG.
  • a configuration using a seal-type tactile switch also referred to as a tactile switch, a tactile switch, or a tact switch
  • a seal-type tactile switch also referred to as a tactile switch, a tactile switch, or a tact switch
  • a convex protective wall 11g is projected so as to surround the periphery of the plungers of both detectors, and when the operator holds the grip 16. The switch does not operate against the surgeon's intention.
  • the artificial muscle unit 40 is attached to the inside of the main body 1 so as to extend in the front-rear direction.
  • the basic configuration of the artificial muscle unit 40 is the same as that of the artificial muscle unit 40 already described with reference to FIGS.
  • the push-pull wire 22 of the shaft portion 2 is connected to the sliding member 42 via the coupling fitting 44 and the terminal fitting 23 (see the related description of FIGS. 1 and 5).
  • a joint member 47 b is connected to the end cap 47 on the rear end side of the unit 40.
  • the connector portion 18 extends from the electrical connector 18a for releasably connecting the signal cable 19 connecting the closing operation detector 12a and the opening operation detector 12b to the control unit 8, and the joint member 47b and the pneumatic unit 50 side.
  • a pneumatic connector 18b for detachably connecting the tube 59 is provided.
  • a male screw portion is formed at the rear end of the grip 16, and a female screw portion is formed at the front end of the nut member 18 c in the connector portion 18. Therefore, the electrical connector 18a and the pneumatic connector 18b are connected, and the female screw portion at the front end of the nut member 18c is screwed and fastened to the male screw portion at the rear end of the grip 16, thereby controlling the closing operation detector 12a and the opening operation detector 12b.
  • the part 8 is electrically connected, and the artificial muscle unit 40 and the pneumatic unit 50 are locked in a pneumatically connected state.
  • FIG. 14 A block diagram of the active forceps C2 is shown in FIG. As can be understood by comparing FIG. 6 and FIG. 14, the active forceps C2 exemplified in the present embodiment is the same as the active forceps C1 of the first embodiment in the basic configuration. On the other hand, it differs from the active forceps C1 of the first embodiment in the following points.
  • the forcible release valve 49 is disposed not on the handpiece Ca side but on the controller Cb side.
  • the handpiece Ca is further reduced in size and weight, and an active forceps that is easy to handle and further reduces the operator's fatigue is realized.
  • the controller Cb is provided with a regulator 52, an electropneumatic regulator 53, a flow path switching valve 55, and the like, and adjusts the pressure of gas supplied to the artificial muscle unit 40.
  • the gripping force adjuster 54 that adjusts and sets the gripping force generated in the treatment section 3 when the forceps are closed, and the flow rate of the gas supplied to the artificial muscle unit 40 is adjusted and set.
  • a speed regulator 56 is provided.
  • FIG. 14 illustrates a configuration in which a variable resistor is used as the gripping force adjuster 54 and a speed controller is used as the speed adjuster 56.
  • the gripping force adjuster 54 is connected to the control unit 8, and a pressure setting signal corresponding to the gripping force adjusted and set by the surgeon is output to the control unit 8.
  • the speed regulator 56 is inserted between the flow path switching valve 55 and the artificial muscle unit 40.
  • the control unit 8 outputs a command signal corresponding to the pressure setting signal output from the gripping force adjuster 54 to the electropneumatic regulator 53, and flows a command signal based on the operation signal detected by the operation detectors 12a and 12b.
  • the gas is output to the path switching valve 55 and the supply / blocking / opening of the gas to the artificial muscle unit 40 is controlled as follows.
  • the control unit 8 does not output a command signal to the electropneumatic regulator 53 and the flow path switching valve 55 when the circuit is off. For this reason, the pneumatic circuit on the pneumatic unit 50 side and the pneumatic circuit on the artificial muscle unit 40 side are blocked and held in a closed state.
  • the treatment portion 3 at the tip of the handpiece Ca is held in a conventional state, for example, the treatment members 31 and 32 are in close contact with each other and the forceps are closed.
  • the control unit 8 instructs the flow path switching valve 55 to open based on the opening operation signal output from the opening operation detector 12b. Output a signal.
  • the spool of the flow path switching valve 55 moves to the open position, the A port and the R port are connected, and the gas held in the artificial muscle unit 40 to the flow path switching valve 55 is exhausted. Therefore, the artificial rubber muscle 41 changes from the state shown in FIG. 5B to the state shown in FIG. 5A.
  • the forceps are opened from the closed state where the treatment members 31 and 32 are in close contact with each other. 32 changes to the separated open state.
  • the control unit 8 turns off the command signal for the opening command signal for the flow path switching valve 55.
  • the spool of the flow path switching valve 55 returns to the neutral position, and the A port (device connection port), P port (intake port), and R port (exhaust port) are all cut off, and the treatment section 3 is pressed.
  • the operation is released, that is, the treatment members 31, 32 are separated from each other, and the forceps are opened.
  • the pressing force against the opening operation detector 12b is released in a state where the forceps are not fully opened, and the relative angles of the treatment members 31 and 32 are held in an open state at an arbitrary angle.
  • the control unit 8 When the closing operation detector 12a is pressed and the closing operation signal is turned on, the control unit 8 outputs a closing command signal to the flow path switching valve 55 based on the opening operation signal output from the opening operation detector 12a. . Further, a closing pressure command signal set to the supply pressure P corresponding to the gripping force set in the gripping force adjuster 54 is output to the electropneumatic regulator 53. As a result, the spool of the flow path switching valve 55 moves to the closed position, the P port and the A port are connected, and the supply pressure P corresponding to the gripping force set in the gripping force adjuster 54 from the pneumatic unit 50. The gas is supplied to the artificial muscle unit 40 at a flow rate corresponding to the closing speed set in the speed regulator 56.
  • the artificial rubber muscle 41 changes from the state of FIG. 5A to the state of FIG. 5B, and the treatment members 31 and 32 are brought into close contact with each other from the open state in which the treatment members 31 and 32 are separated from each other. Or it changes to the closed state which pinched
  • the speed at which the treatment members 31 and 32 swing in the closing direction is the closing speed set in the speed regulator 56.
  • the force between the treatment members 31 and 32 that is, the force acting on the treatment portion 3 becomes the gripping force set in the gripping force adjuster 54. Therefore, the operator can adjust the closing speed of the treatment section 3 by adjusting the speed adjuster 56, and appropriately adjust the gripping force acting on the treatment section 3 by adjusting the gripping force adjuster 54. be able to.
  • the gas supply pressure P set according to the setting of the gripping force adjuster 54 is set so as to continuously change between P 0 and P 4 as illustrated in FIG. 7B. can do.
  • a toggle switch, a rocker switch, or the like can be used as the gripping force adjuster 54, and the supply pressure P can be set to change in two stages of Hi and Low depending on the state of the switch, or a multi-stage rotary Using a switch or the like, the supply pressure P can be set to change in a plurality of stages according to the angular position of the knob.
  • the pressing force to the closing operation detector 12a may be released.
  • the spool of the flow path switching valve 55 returns to the neutral position, and all of the A port, P port, and R port are cut off, and the pneumatic circuit on the artificial muscle unit 40 side is kept closed. . Therefore, the treatment section 3 is held in a state when the pressing force to the closing operation detector 12a is released, that is, a state in which a living tissue or the like is gripped with a predetermined gripping force.
  • the pressing force applied to the closing operation detector 12a is released in a state where the forceps are not completely closed, and the treatment members 31 and 32 can be held in a closed state at an arbitrary angle.
  • the configuration using the gripping force adjuster 54 and the electropneumatic regulator 53 as the gripping force adjusting means for adjusting the gripping force generated by the treatment unit 3 has been described above.
  • a manual operation regulator is used instead of the electropneumatic regulator.
  • the gas supply pressure P may be directly adjusted and set by a regulator.
  • the speed controller (flow control valve with a check valve) is used as the speed adjuster 56, and the configuration for adjusting the closing speed of the treatment unit 3 is illustrated.
  • a flow control valve that does not include a check valve is provided instead of the speed controller.
  • both the closing speed and the opening speed of the treatment unit 3 may be adjusted.
  • the speed adjusting means for adjusting the opening / closing speed of the treatment section 3 uses an electromagnetic proportional control valve as the flow path switching valve 55 (or an electromagnetic proportional flow control valve is provided separately from the flow path switching valve 55) to adjust the speed.
  • the device 56 may be configured using a variable resistor or various switches as described above.
  • the control unit 8 opens the valve according to the opening / closing speed set in the speed regulator 56.
  • the command signal / closing example signal is output to the flow path switching valve 55, and the gas is discharged / supplied at a flow rate corresponding to the set opening / closing speed.
  • the electromagnetic proportional operation may be only in the closing direction.
  • the configuration form using the tactile switch as the operation detector 12 (12a, 12b) has been exemplified, but the operation detector 12 has been described for the operation unit 11 (11A to 11E) of the active forceps C1 of the first embodiment.
  • the thing of a various structure form can be applied and the effect similar to having demonstrated about each structure form can be acquired.
  • the configuration using the artificial muscle unit has been exemplified as a configuration in which the gripping force can be adjusted and set by adjusting and setting the supply pressure of the gas.
  • other configurations such as a piston with a built-in spring, a double-acting piston, an air motor, etc. You may comprise using a pneumatic actuator of a type.
  • the same effects as described above for the active forceps C1 of the first embodiment (including each configuration form) can be obtained. Furthermore, with the active forceps C2 of this embodiment, the following effects can be obtained.
  • the controller Cb is provided with an electropneumatic regulator 53 and a gripping force adjuster 54 as pressure adjusting means for adjusting the pressure of the gas supplied to the artificial muscle unit 40. Therefore, the operator adjusts the gripping force adjuster 54 so that the gripping force is weakened and gently gripped according to the part of the biological tissue to be gripped and the state of the tissue that is visually observed. And can be adjusted and set in advance to a desired gripping force.
  • the controller Cb is provided with a speed regulator 56 as a flow rate adjusting means for adjusting the flow rate of the gas supplied to the artificial muscle unit 40. Therefore, the surgeon can adjust the speed adjuster 56 so that the treatment section 3 is slowly closed or rapidly closed.
  • the main body portion 1 of the handpiece Ca includes a substantially cylindrical grip 16 extending in the front-rear direction and a connector portion 18 whose rear portion of the grip 16 is reduced in diameter and inclined obliquely downward with respect to the axis of the shaft portion 2.
  • the operation unit 11 is provided at the front upper part of the grip 16
  • the operation detector 12 (12a, 12b) the operator can clearly recognize the operation performed by the user with a sense of click, thereby providing high safety and operability. Good active forceps can be provided.

Abstract

 Provided is an active forceps for use in endoscopic surgery, the active forceps reducing the burden on a technician. The active forceps C2 according to one embodiment that exemplifies the present invention is provided with a main unit 1 having operation detectors 12a, 12b, a shaft unit 2 extending from the main unit 1, a treatment unit 3 provided at the distal end of the shaft unit 2, a drive means for driving the opening and closing of the treatment unit 3, and a controller 8 for controlling the actuation of the drive means. The drive means is provided with a pneumatic actuator 40 for opening and closing the treatment unit 3, and a pneumatic unit 50 for supplying air to the pneumatic actuator 40 on the basis of a command signal outputted by the controller 8. The pneumatic actuator 40 is arranged in the main unit 1, and the pneumatic unit 50 is arranged in a controller Cb which is separate from the main unit.

Description

能動鉗子Active forceps
 本発明は、内視鏡下において生体組織等に処置を施す内視鏡下手術において用いられる能動鉗子に関するものである。 The present invention relates to an active forceps used in an endoscopic operation for treating a living tissue or the like under an endoscope.
 内視鏡下手術は低侵襲性であり、開腹手術の負担を軽減する手法として医療現場に急速に広まっている。内視鏡下手術は腹部に一般的には4~5カ所の孔を開けてトロカールを刺し込み、腹腔鏡や手術器具などを挿入し、腹腔にガスを注入して膨らませた状態で生体組織等に処置を施す手術法である。そのため、内視鏡下手術用の鉗子は、トロカールに挿入するシャフト部と、シャフト部の先端側に開閉可能に設けられた処置部と、シャフト部の基端側に設けられて処置部を開閉操作するハンドル部とを備えて構成される。処置部としては、生体組織を把持する把持鉗子や癒着部を剥離する剥離鉗子などが広く用いられ、ハンドル部は、一般的に親指と中指(または人差し指)で操作するはさみ型のものが広く用いられている。術者(補助者を含む、以下同じ)は、腹腔鏡の映像を見ながら処置部を目的の部位に導入し、ハンドル部を操作して生体組織を把持し、他のトロカールから導入した内視鏡下手術器具で生体組織の切断や縫合等の処置を行う。 Endoscopic surgery is minimally invasive and is rapidly spreading in the medical field as a technique for reducing the burden of open surgery. Endoscopic surgery is generally performed by opening 4 to 5 holes in the abdomen, inserting a trocar, inserting a laparoscope, surgical instrument, etc., injecting gas into the abdominal cavity, and inflating it. It is a surgical method to treat the patient. For this reason, forceps for endoscopic surgery are provided with a shaft portion to be inserted into the trocar, a treatment portion that can be opened and closed on the distal end side of the shaft portion, and a proximal end side of the shaft portion that opens and closes the treatment portion. And a handle portion to be operated. As the treatment part, a grasping forceps for grasping a living tissue or a peeling forceps for peeling the adhesion part are widely used, and a scissor type which is generally operated with the thumb and middle finger (or index finger) is widely used as the handle part. It has been. An operator (including an assistant, the same shall apply hereinafter) introduces a treatment section to a target site while viewing a laparoscopic image, operates a handle section to grasp a living tissue, and introduces an endoscope introduced from another trocar Treatment such as cutting and suturing of living tissue is performed with a surgical instrument under a mirror.
 上記のように、鉗子は生体組織に対して切断や縫合等の処置を行う際に用いられるところ、内視鏡下手術では体内に導入可能な鉗子数が限られており、手術中に把持する部位を頻繁に持ち替えたり、一定の処置が終わるまで継続して把持状態を保持したり、長時間にわたり常時何らかの操作が求められる。さらに、把持部とハンドル部との間には200~350mm程度のシャフト部が存在し、その先端に位置する把持部において繊細な操作が求められる。そのため、鉗子を操作する術者にとって負担が大きいという問題があった。 As described above, the forceps are used when performing treatments such as cutting and suturing on a living tissue. However, the number of forceps that can be introduced into the body is limited in an endoscopic operation, and the forceps are gripped during the operation. It is necessary to change the site frequently, to keep the gripping state until a certain treatment is completed, or to perform some operation all the time for a long time. Further, a shaft portion of about 200 to 350 mm exists between the grip portion and the handle portion, and delicate operation is required at the grip portion located at the tip thereof. For this reason, there is a problem that the burden on the operator who operates the forceps is large.
 一方、処置部を開閉させる動力源として電気モータを用いた内視鏡下手術用の能動鉗子が提案されている(例えば、特許文献1を参照)。これは、術者が把持するグリップを備えた本体部に電気モータを内蔵し、電気モータの回転駆動力をシャフト部の軸方向への直進駆動力に変換して、先端の処置部を開閉する。グリップ前方には本体部から突出する操作レバーが設けられ、この操作レバーを人差し指等で揺動操作することによって電気モータが駆動されるように構成される。また、シャフト部内部に複数の人工筋アクチュエータを設け、シャフト先端部を屈曲させる構成の医療用マニピュレータが提案されている(特許文献2を参照)。 On the other hand, an active forceps for endoscopic surgery using an electric motor as a power source for opening and closing the treatment section has been proposed (see, for example, Patent Document 1). This is because the electric motor is built in the main body with a grip that is held by the surgeon, and the rotational driving force of the electric motor is converted into a linear driving force in the axial direction of the shaft portion to open and close the treatment portion at the distal end. . An operation lever protruding from the main body is provided in front of the grip, and the electric motor is driven by swinging the operation lever with an index finger or the like. In addition, a medical manipulator having a configuration in which a plurality of artificial muscle actuators are provided inside the shaft and the tip of the shaft is bent has been proposed (see Patent Document 2).
特開2009-189835号公報JP 2009-189835 A 特開2010-149210号公報JP 2010-149210 A
 確かに、上記特許文献1に提案されたような能動鉗子によれば、処置部の開閉が電気モータの動力により行われるため、人力により直接操作する従来の鉗子よりは術者の負担を軽減できるように思われる。しかしながら、電気モータを駆動源とするような従来の鉗子は、所定の駆動力を得るためには電気モータが一定の容積を要することに加えて、駆動力を伝達する機構も複雑になることから本体部が大型化し、長時間にわたる内視鏡下手術における取り回し等の点を総合的に考慮すると、術者の負担は十分には軽減できないという課題があった。 Certainly, according to the active forceps proposed in the above-mentioned Patent Document 1, the treatment portion is opened and closed by the power of the electric motor, so that the burden on the operator can be reduced as compared with the conventional forceps directly operated by human power. Seems to be. However, conventional forceps that use an electric motor as a drive source have a complicated mechanism for transmitting the driving force in addition to the electric motor requiring a certain volume in order to obtain a predetermined driving force. When the main body becomes large and comprehensive considerations such as handling in endoscopic surgery over a long period of time, there is a problem that the burden on the operator cannot be reduced sufficiently.
 本発明は、上記のような課題に鑑みて成されたものであり、術者の負担をより軽減可能な内視鏡下手術用の能動鉗子を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide an active forceps for endoscopic surgery that can further reduce the burden on an operator.
 本発明を例示する態様の能動鉗子は、術者の操作を検出する操作検出器が設けられた本体部と、本体部から延びるシャフト部と、シャフト部の先端に開閉可能に設けられた処置部と、処置部を開閉駆動する駆動手段と、操作検出器から出力された操作信号に基づいて指令信号を出力し駆動手段の作動を制御する制御部とを備えて構成される。駆動手段は、処置部を開閉させる空圧アクチュエータ(例えば、実施形態における人工筋ユニット40、ピストン等)と、指令信号に基づいて空圧アクチュエータに気体を供給する空圧ユニットとを備え、空圧アクチュエータは本体部に配設され、空圧ユニットは本体部と分離して別体のコントローラーに配設される。 An active forceps according to an embodiment of the present invention includes a main body portion provided with an operation detector for detecting an operation of an operator, a shaft portion extending from the main body portion, and a treatment portion provided at the distal end of the shaft portion so as to be opened and closed. And a drive unit that opens and closes the treatment unit, and a control unit that outputs a command signal based on the operation signal output from the operation detector and controls the operation of the drive unit. The driving means includes a pneumatic actuator (for example, an artificial muscle unit 40, a piston, etc. in the embodiment) that opens and closes the treatment section, and a pneumatic unit that supplies gas to the pneumatic actuator based on a command signal. The actuator is disposed on the main body, and the pneumatic unit is disposed on a separate controller separately from the main body.
 なお、前記コントローラーに、空圧アクチュエータに供給する気体の圧力を調整設定する圧力調整手段(例えば、実施形態における電空レギュレータ53、把持力調整器54、マニュアル設定のギュレータ等)を備えることが好ましい。 The controller preferably includes pressure adjusting means for adjusting and setting the pressure of the gas supplied to the pneumatic actuator (for example, the electropneumatic regulator 53, the gripping force adjuster 54, and a manually set guulator in the embodiment). .
 ここで、前記圧力調整手段は、制御部から出力される指令信号に応じて空圧アクチュエータに供給する気体の圧力を設定する電空レギュレータを有し、制御部は操作検出器から出力された操作信号に基づいた指令信号を電空レギュレータに出力して、空圧アクチュエータに供給する気体の圧力を制御するように構成することができる。このとき、操作検出器を術者の押圧力を検出する押圧力センサとし、制御部は操作検出器から出力された術者の押圧力に応じた操作信号に基づいた指令信号を電空レギュレータに出力するように構成できる。さらに、制御部は、操作検出器から出力された操作信号が予め設定された所定の押圧力以上の信号であるときに、空圧ユニットに指令信号を出力して空圧アクチュエータに気体を供給させるように構成することができる。このとき、上記の予め設定する「所定の押圧力」は、術者が処置部を開閉動作させる意思を持って操作検出器を意図的に押圧操作したときに生じる押圧力を基準として設定される。また、制御部が出力する指令信号は、操作検出器により検出された術者の押圧力に応じて複数の段階的(例えば2~5段階等)に設定し、あるいは無段階に設定することができる。なお、空圧ユニットから出力する気体の圧力に最小値と最大値とを設けて、両者の間で処置部の駆動力が段階的または無段階に変化するように設定してもよい。 Here, the pressure adjusting means has an electropneumatic regulator that sets the pressure of the gas supplied to the pneumatic actuator in accordance with a command signal output from the control unit, and the control unit operates the operation output from the operation detector. A command signal based on the signal can be output to the electropneumatic regulator to control the pressure of the gas supplied to the pneumatic actuator. At this time, the operation detector is a pressing force sensor for detecting the operator's pressing force, and the control unit sends a command signal based on the operation signal according to the operator's pressing force output from the operation detector to the electropneumatic regulator. Can be configured to output. Further, the control unit outputs a command signal to the pneumatic unit to supply gas to the pneumatic actuator when the operation signal output from the operation detector is a signal equal to or higher than a predetermined pressing force set in advance. It can be constituted as follows. At this time, the “predetermined pressing force” set in advance is set based on the pressing force generated when the operator intentionally presses the operation detector with the intention of opening and closing the treatment portion. . The command signal output by the control unit may be set in a plurality of steps (for example, 2 to 5 steps) or steplessly according to the pressing force of the operator detected by the operation detector. it can. Note that a minimum value and a maximum value may be provided for the gas pressure output from the pneumatic unit, and the driving force of the treatment unit may be set to change stepwise or steplessly between the two values.
 また、前記圧力調整手段は、術者が予め調整設定した圧力に応じた圧力設定信号を出力する圧力調整器(例えば、実施形態における把持力調整器54)と、制御部から出力される指令信号に応じて空圧アクチュエータに供給する気体の圧力を設定する電空レギュレータとを有し、制御部は、圧力調整器から出力された圧力設定信号に基づいた指令信号を電空レギュレータに出力して、空圧アクチュエータに供給する気体の圧力を制御するように構成しても良い。このとき、圧力調整器において設定される圧力は、複数段の段階的(例えば2~5段階等)な設定、あるいは無段階とすることができる。また、空圧ユニットから出力する気体の圧力に最小値と最大値とを設けて、両者の間で処置部の駆動力が段階的または無段階に変化するように設定してもよい。 The pressure adjusting means includes a pressure adjuster (for example, a gripping force adjuster 54 in the embodiment) that outputs a pressure setting signal corresponding to a pressure that is adjusted and set in advance by an operator, and a command signal output from the control unit. And an electropneumatic regulator that sets the pressure of the gas supplied to the pneumatic actuator according to the control unit, and the control unit outputs a command signal based on the pressure setting signal output from the pressure regulator to the electropneumatic regulator. The pressure of the gas supplied to the pneumatic actuator may be controlled. At this time, the pressure set in the pressure regulator can be set in a plurality of stages (for example, 2 to 5 stages, etc.) or non-stage. Further, a minimum value and a maximum value may be provided for the pressure of the gas output from the pneumatic unit, and the driving force of the treatment unit may be set to change stepwise or steplessly between the two values.
 なお、前記コントローラーに、空圧アクチュエータに供給する気体の流量を調整設定する流量調整手段(例えば、実施形態における速度調整器56、流量調整弁、速度調整器と電磁比例制御弁)を設けることができる。 The controller may be provided with flow rate adjusting means for adjusting and setting the flow rate of gas supplied to the pneumatic actuator (for example, the speed regulator 56, the flow rate regulating valve, the speed regulator and the electromagnetic proportional control valve in the embodiment). it can.
 また、前記空圧アクチュエータは、気体の供給/排出に応じて変形し処置部を開閉させる人工筋ユニットとすることが好ましい。また、前記操作検出器は、タクタイルスイッチ(tactile switch)とすることが好ましい。 Further, it is preferable that the pneumatic actuator is an artificial muscle unit that is deformed in response to gas supply / discharge to open and close the treatment portion. The operation detector is preferably a tactile switch.
 また、前記本体部は、前端部にシャフト部が取り付けられシャフト部が延びる前後方向に延びる円柱状ないし楕円柱状のグリップと、グリップの後部が縮径されるとともにシャフト部の軸線に対して傾斜して形成されて後端から空圧アクチュエータと空圧ユニットとを結ぶチューブが導出されるコネクタ部とを有し、記操作部は、シャフト部の軸線を挟んでコネクタ部と反対側のグリップの前方部に設けて構成することができる。 The main body has a cylindrical or elliptical columnar grip extending in the front-rear direction in which the shaft portion is attached to the front end portion and the shaft portion extends, and the rear portion of the grip is reduced in diameter and inclined with respect to the axis of the shaft portion. And a connector portion from which a tube connecting the pneumatic actuator and the pneumatic unit is led out from the rear end, and the operation portion is located in front of the grip opposite to the connector portion across the axis of the shaft portion. It can be provided in the part.
 本発明の態様の能動鉗子は、操作検出器を操作する軽い操作力で駆動手段によるパワーアシストを受けて処置部を開閉作動させることができる。さらに、指令信号に基づいて空圧アクチュエータに気体を供給する空圧ユニットが本体部と分離して別体のコントローラーに配設されるため、術者が操作する本体部を小型・軽量に構成することができる。これにより、術者の負担を大幅に軽減した内視鏡下手術用の能動鉗子を提供することができる。 The active forceps according to the aspect of the present invention can open and close the treatment portion by receiving power assist from the driving means with a light operating force for operating the operation detector. Furthermore, since the pneumatic unit that supplies gas to the pneumatic actuator based on the command signal is separated from the main body and disposed in a separate controller, the main body operated by the surgeon is configured to be small and lightweight. be able to. As a result, it is possible to provide an active forceps for endoscopic surgery that greatly reduces the burden on the operator.
 なお、コントローラーに、空圧アクチュエータに供給する気体の圧力を調整設定する圧力調整手段を設けた構成によれば、供給圧を調整することにより空圧アクチュエータが発生する力すなわち処置部を駆動する駆動力(例えば処置部の把持力)を調整することができる。そのため、本構成の能動鉗子によれば、術者の意図に応じて、生体組織を弱い把持力で優しく把持したり、強い把持力で強固に固定したりすることができる。さらに、空圧アクチュエータを駆動する気体の圧力を調整設定する構成のため、処置部の開閉角度位置にかかわらず把持力等を一定に制御することができる。これにより、処置部に作用する力を検出するための検出器等を付加することなく、簡明な構成で、術者の意図にそった把持力で生体組織を把持可能な能動鉗子を提供することができる。 According to the configuration in which the controller is provided with a pressure adjusting means for adjusting and setting the pressure of the gas supplied to the pneumatic actuator, the force generated by the pneumatic actuator by adjusting the supply pressure, that is, the drive for driving the treatment section The force (for example, the gripping force of the treatment portion) can be adjusted. Therefore, according to the active forceps of this configuration, the living tissue can be gently gripped with a weak gripping force or firmly fixed with a strong gripping force in accordance with the operator's intention. Furthermore, since the pressure of the gas that drives the pneumatic actuator is adjusted and set, the gripping force and the like can be controlled to be constant regardless of the opening / closing angle position of the treatment section. Accordingly, it is possible to provide an active forceps capable of grasping a living tissue with a grasping force according to an operator's intention with a simple configuration without adding a detector or the like for detecting a force acting on a treatment portion. Can do.
 ここで、圧力調整手段に電空レギュレータを有し、制御部が操作検出器から出力された操作信号に基づいた指令信号を電空レギュレータに出力して空圧アクチュエータに供給する気体の圧力を制御するような構成によれば、術者は操作検出器に対する操作に応じた駆動力で処置部を動作させることができる。また、操作検出器を押圧力センサとし制御部が術者の押圧力に応じた指令信号を電空レギュレータに出力するよう構成によれば、術者は操作検出器に指を乗せて押圧力を変化させることにより、軽い操作力で押圧力に応じた駆動力で処置部を動作させることができる。これにより、従来のレバー操作式の能動鉗子で課題であった指の疲労を抑制し、かつ術者の意図に応じた動作が可能な能動鉗子を提供することができる。また、操作検出器から出力された操作信号が予め設定された所定の押圧力以上の信号であるときに、制御部が空圧アクチュエータに気体を供給させるような構成によれば、術者が処置部を開閉する意思を持って操作検出器を押圧操作したときにのみ術者の意思に沿って確実に開閉動作し、術者が処置部を開閉する意思を持たずに誤って操作検出器に触れたような場合には処置部は開閉動作しない。従って、安全性が高く操作性が良好な能動鉗子を提供することができる。 Here, the pressure adjustment means has an electropneumatic regulator, and the control unit outputs a command signal based on the operation signal output from the operation detector to the electropneumatic regulator to control the pressure of the gas supplied to the pneumatic actuator According to such a configuration, the surgeon can operate the treatment section with a driving force corresponding to an operation on the operation detector. Further, according to the configuration in which the operation detector is a pressing force sensor and the control unit outputs a command signal corresponding to the operator's pressing force to the electropneumatic regulator, the operator places a finger on the operation detector and applies the pressing force. By changing it, the treatment section can be operated with a driving force corresponding to the pressing force with a light operating force. Accordingly, it is possible to provide an active forceps capable of suppressing finger fatigue, which has been a problem with conventional lever-operated active forceps, and capable of operating in accordance with the operator's intention. Further, when the operation signal output from the operation detector is a signal equal to or higher than a predetermined pressing force set in advance, according to the configuration in which the control unit supplies gas to the pneumatic actuator, Only when the operation detector is pressed and operated with the intention of opening and closing the part, it opens and closes reliably according to the operator's intention, and the operator does not intend to open and close the treatment part by mistake. When touched, the treatment unit does not open or close. Therefore, it is possible to provide an active forceps with high safety and good operability.
 また、圧力調整手段に圧力調整器と電空レギュレータとを有し、制御部が圧力調整器から出力された圧力設定信号に基づいた指令信号を電空レギュレータに出力して空圧アクチュエータに供給する気体の圧力を制御するような構成によれば、術者が圧力調整器を調整することにより、生体組織を弱い把持力で優しく把持したり、強い把持力で強固に固定したりすることができる。 Further, the pressure adjusting means has a pressure regulator and an electropneumatic regulator, and the control unit outputs a command signal based on the pressure setting signal output from the pressure regulator to the electropneumatic regulator and supplies it to the pneumatic actuator. According to the configuration for controlling the gas pressure, the operator can gently grip the living tissue with a weak gripping force or firmly fix the living tissue with a strong gripping force by adjusting the pressure regulator. .
 また、コントローラーに空圧アクチュエータに供給する気体の流量を調整する流量調整手段を設けた構成によれば、気体の流量を調整することで空圧アクチュエータの動作速度、すなわち処置部の開閉速度を調整することができる。これにより術者は操作性が良好な能動鉗子を提供することができる。 In addition, according to the configuration in which the controller is provided with a flow rate adjusting means that adjusts the flow rate of the gas supplied to the pneumatic actuator, the operating speed of the pneumatic actuator, that is, the opening and closing speed of the treatment section is adjusted by adjusting the gas flow rate. can do. As a result, the operator can provide active forceps with good operability.
 また、空圧アクチュエータとして人工筋ユニットを用いることにより、本体部を小型・軽量に構成でき、かつ安全性が高い能動鉗子を提供できる。また、操作検出器としてタクタイルスイッチを用いることにより、本体部を小型・軽量に構成でき、かつ明確な操作感により操作性が良好な能動鉗子を提供できる。 Also, by using an artificial muscle unit as the pneumatic actuator, the main body can be made compact and lightweight, and active forceps with high safety can be provided. In addition, by using a tactile switch as the operation detector, the main body can be made compact and lightweight, and an active forceps with good operability can be provided with a clear operational feeling.
 また、本体部を、前端部にシャフト部が取り付けられ前後に延びるグリップと、グリップの後部が縮径されるとともにシャフト部の軸線に対して傾斜して形成されて後端から空圧アクチュエータと空圧ユニットとを結ぶチューブが導出されるコネクタ部とにより構成し、操作部は、シャフト部の軸線を挟んでコネクタ部と反対側のグリップの前方部に設けた構成によれば、内視鏡下手術において取り扱いやすく、操作性が良好な能動鉗子を提供することができる。 In addition, the main body portion is formed with a grip that is attached to the front end portion of the shaft portion and extends in the front-rear direction, and the rear portion of the grip is reduced in diameter and inclined with respect to the axis of the shaft portion. And a connector portion from which a tube connecting to the pressure unit is led out. According to the configuration in which the operation portion is provided in the front portion of the grip opposite to the connector portion across the axis of the shaft portion, It is possible to provide an active forceps that is easy to handle in surgery and has good operability.
本発明の態様を例示する第1実施形態の能動鉗子の概要構成図である。It is a schematic block diagram of the active forceps of 1st Embodiment which illustrates the aspect of this invention. 上記能動鉗子におけるハンドピース内部の構成を示す断面図である。It is sectional drawing which shows the structure inside the handpiece in the said active forceps. 上記能動鉗子におけるハンドピースの外観斜視図である。It is an external appearance perspective view of the handpiece in the said active forceps. 上記能動鉗子における、第1構成形態、第2実施例の操作部の断面図である。It is sectional drawing of the operation part of the 1st composition form and the 2nd example in the above-mentioned active forceps. 人工筋ユニットの概要構成および動作原理を説明するための説明図であり、(a)は人工筋ユニットに気体を供給する以前の自然状態、(b)は人工筋ユニットに所定圧力の気体を供給した加圧状態を示す概念図である。It is explanatory drawing for demonstrating general | schematic structure and an operation principle of an artificial muscle unit, (a) is the natural state before supplying gas to an artificial muscle unit, (b) supplies the gas of predetermined pressure to an artificial muscle unit. It is a conceptual diagram which shows the pressurized state. 上記能動鉗子のブロック図である。It is a block diagram of the said active forceps. 閉操作検出器により検出された押圧力と電空レギュレータにより設定される供給圧との関係を例示する説明図である。It is explanatory drawing which illustrates the relationship between the pressing force detected by the closing operation detector, and the supply pressure set by an electropneumatic regulator. 上記能動鉗子における、第2構成形態の操作部の断面図であり、(a)は第1実施例の操作部の断面図、(b)は第2実施例の操作部の断面図を、(c)は第3実施例の操作部の断面図である。FIG. 4 is a cross-sectional view of the operation portion of the second configuration form in the active forceps, (a) is a cross-sectional view of the operation portion of the first embodiment, (b) is a cross-sectional view of the operation portion of the second embodiment, c) is a cross-sectional view of the operating portion of the third embodiment. 上記能動鉗子における、第3構成形態の操作部の断面図である。It is sectional drawing of the operation part of the 3rd structure form in the said active forceps. 上記能動鉗子における、第4構成形態の操作部の断面図である。It is sectional drawing of the operation part of the 4th structure form in the said active forceps. 上記能動鉗子における、第5構成形態の操作部の断面図である。It is sectional drawing of the operation part of the 5th structure form in the said active forceps. 本発明の態様を例示する第2実施形態の能動鉗子の概要構成図である。It is a schematic block diagram of the active forceps of 2nd Embodiment which illustrates the aspect of this invention. 上記能動鉗子におけるハンドピース内部の構成を示す断面図である。It is sectional drawing which shows the structure inside the handpiece in the said active forceps. 上記能動鉗子のブロック図である。It is a block diagram of the said active forceps.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
(第1実施形態)
 本発明の態様を例示する第1実施形態の能動鉗子C1の概要構成を図1に、能動鉗子C1におけるハンドピースCaの内部を表す断面図を図2に、ハンドピースCaの外観斜視図を図3に示す。能動鉗子C1は、術者が操作するハンドピースCaと、別体に設けられたコントローラーCbとからなり、両者が信号ケーブル19およびチューブ59により接続された状態で使用される。
(First embodiment)
FIG. 1 shows a schematic configuration of an active forceps C1 of the first embodiment illustrating an aspect of the present invention, FIG. 2 is a sectional view showing the inside of the handpiece Ca in the active forceps C1, and FIG. 2 is an external perspective view of the handpiece Ca 3 shows. The active forceps C1 includes a hand piece Ca operated by an operator and a controller Cb provided separately, and is used in a state where both are connected by a signal cable 19 and a tube 59.
 ハンドピースCaは、各部材が取り付けられるベースフレームである本体部1と、本体部1から前方に延びるシャフト部2と、シャフト部2の先端に開閉可能に設けられた処置部3と、処置部3を開閉駆動する人工筋ユニット40などから構成される。コントローラーCbは、人工筋ユニット40に対して気体の供給/排出を行う空圧ユニット50と、ハンドピースCaの操作検出器12(12a,12b)から出力された操作信号に基づいて空圧ユニット50に指令信号を出力し、空圧ユニット50の作動を制御することにより処置部3の開閉作動を制御する制御部8などを備えて構成される。 The handpiece Ca includes a main body portion 1 that is a base frame to which each member is attached, a shaft portion 2 that extends forward from the main body portion 1, a treatment portion 3 that can be opened and closed at the tip of the shaft portion 2, and a treatment portion. 3 includes an artificial muscle unit 40 that opens and closes 3. The controller Cb includes a pneumatic unit 50 that supplies / discharges gas to / from the artificial muscle unit 40 and a pneumatic unit 50 based on operation signals output from the operation detector 12 (12a, 12b) of the handpiece Ca. The control unit 8 is configured to output a command signal to control the opening / closing operation of the treatment unit 3 by controlling the operation of the pneumatic unit 50.
 なお、空圧アクチュエータは、ピストンやエアモータ、人工筋ユニットなど気体の圧力を利用した種々のアクチュエータ用いて構成することができるが、本明細書においては人工筋ユニット40を用いた構成を主体として説明する。また本明細書では、説明の便宜上、処置部3が設けられたシャフト部2の先端方向(図1および図2における左方向)を前方、シャフト部2の基端方向(同、右方向)を後方と称し、グリップ15の先端方向を下方、基端方向を上方と称して説明する。 The pneumatic actuator can be configured by using various actuators that utilize gas pressure, such as a piston, an air motor, and an artificial muscle unit. In this specification, the configuration using the artificial muscle unit 40 will be mainly described. To do. Further, in this specification, for convenience of explanation, the distal end direction (left direction in FIGS. 1 and 2) of the shaft portion 2 provided with the treatment portion 3 is front, and the proximal direction (same, right direction) of the shaft portion 2 is forward. In the following description, the rear end direction of the grip 15 is referred to as the lower side, and the base end direction is referred to as the upper side.
 本体部1には、前後に延びる本体上部10の中央に人工筋ユニット40、後部に強制開放弁49が取り付けられている。本体部1の下部には、本体上部10から下方に突出して術者が握るグリップ15が形成され、本体上部10とグリップ15との間にグリップ15よりも前方に張り出して操作部11が形成されている。操作部11は、平断面視の概略形状が半円筒状に形成される。そして、この操作部11に、閉操作検出器12aと開操作検出器12bとが設けられる。 In the main body 1, an artificial muscle unit 40 is attached to the center of the main body upper part 10 extending in the front-rear direction, and a forced release valve 49 is attached to the rear part. A grip 15 that protrudes downward from the main body upper portion 10 and is gripped by the surgeon is formed at the lower portion of the main body portion 1, and an operation portion 11 is formed between the main body upper portion 10 and the grip 15 so as to protrude forward from the grip 15. ing. The operation unit 11 is formed in a semi-cylindrical shape in a plan view. The operation unit 11 is provided with a closing operation detector 12a and an opening operation detector 12b.
 ここで、操作部11については後述する構成を含めて複数の構成形態がある。そこで、まず操作検出器としてシート状の押圧力センサを用い、これを操作部11の外面側に設けた第1構成形態の操作部11Aを適用した構成例で、本発明の能動鉗子全体の説明を進めることにする。なお、図1~3は本構成形態における第1実施例の操作部11A1を表している。なお、操作部を示す番号11に続く符号A~Eは、操作部11の第1~第5の構成形態を示し、符号A~Eに付属する下添え字の数字は各構成形態における実施例を示す。 Here, the operation unit 11 has a plurality of configuration forms including configurations to be described later. Therefore, first, a sheet-like pressing force sensor is used as the operation detector, and the operation unit 11A of the first configuration form in which this is provided on the outer surface side of the operation unit 11 is applied. To proceed. 1 to 3 show the operation unit 11A 1 of the first embodiment in this configuration. Reference numerals A to E following the number 11 indicating the operation unit indicate the first to fifth configuration forms of the operation unit 11, and the subscript numerals attached to the reference signs A to E are examples in each configuration form. Indicates.
 操作部11A1では、円筒状の操作部外面の上下中央部に前方に突出して周方向に延びるリブ状の識別突起11tが形成されている。そして、識別突起11tにより上下に仕切られた操作部11には、上方の第1操作部11aに閉操作検出器12aが設けられ、下方の第2操作部11bに開操作検出器12bが設けられる。閉操作検出器12aおよび開操作検出器12bは、ともに薄いシート状の押圧力センサ120であり、短冊状のフレキシブル基板上に長手方向に延びる感圧領域が各操作部の円筒面に沿うように配置されて接着固定される。 In the operation unit 11A 1, rib-like identification protrusion 11t which projects forward in the upper and lower central portion of a cylindrical operation outer surface extending in the circumferential direction is formed. The operation unit 11 partitioned vertically by the identification protrusion 11t is provided with a closing operation detector 12a in the upper first operation unit 11a and an opening operation detector 12b in the lower second operation unit 11b. . The closing operation detector 12a and the opening operation detector 12b are both thin sheet-like pressing force sensors 120 so that the pressure-sensitive region extending in the longitudinal direction on the strip-shaped flexible substrate is along the cylindrical surface of each operation unit. Arranged and bonded and fixed.
 押圧力センサ120は、例えば、2枚の薄いシート状の電極間に感圧流体が充填された可変抵抗型の押圧力センサであり、感圧領域に作用する押圧力に比例して出力端子間の抵抗が変化するように構成される。このような押圧力センサを用いることにより、軽い操作力で開閉操作ができ、かつ操作力に応じた大きさの検出信号を得ることができる。なお、操作検出器12a,12bは、操作部に作用する押圧力に応じた検出信号が得られるものであれば他の形態の押圧力センサを用いても良い。閉操作検出器12aの端子部および開操作検出器12bのリードは、操作部11を貫通するスリット状の導入部14a,14bを通って本体内部に導入され、リード端部に設けられた端子が信号ケーブル19および電気コネクタ18aを介して制御部8に接続される。リードが相通された導入部14a,14bはシリコーン等の封止剤により封止される。 The pressing force sensor 120 is, for example, a variable resistance type pressing force sensor in which a pressure sensitive fluid is filled between two thin sheet-like electrodes, and between output terminals in proportion to the pressing force acting on the pressure sensitive region. The resistance is configured to change. By using such a pressing force sensor, the opening / closing operation can be performed with a light operation force, and a detection signal having a magnitude corresponding to the operation force can be obtained. Note that the operation detectors 12a and 12b may use other types of pressing force sensors as long as a detection signal corresponding to the pressing force acting on the operation unit can be obtained. The terminal portion of the closing operation detector 12a and the lead of the opening operation detector 12b are introduced into the main body through slit- like introduction portions 14a and 14b penetrating the operation portion 11, and terminals provided at the end portions of the leads are provided. It is connected to the control unit 8 through the signal cable 19 and the electrical connector 18a. The introduction portions 14a and 14b through which the leads are communicated are sealed with a sealant such as silicone.
 図4に、本構成形態における第2実施例の操作部11A2の断面図を示す。この操作部11A2は、図3に示した第1実施例の操作部11A1に以下の要素を付加して構成される。図4には第1実施例の操作部11A1と同様の構成要素に同一番号を付しており、重複説明を省略する。第1操作部11aには閉操作検出器12aを覆うように第1被覆部材13aが接着固定され、第2操作部11bには開操作検出器12bを覆うように第2被覆部材13bが接着固定される。第1被覆部材13aおよび第2被覆部材13bは、ゴム弾性を有する薄いシート状の部材である。手術室で用いられる洗浄剤(強アルカリ性の洗剤)に対する耐性が高く、滅菌温度に耐えるゴム弾性のシート状部材として、例えば、厚さが0.2~2mm程度のブチルゴムやエチレン・プロピレンゴム(EPDM)、シリコンゴムなどが例示される。 FIG. 4 is a cross-sectional view of the operation unit 11A 2 according to the second example of the present configuration. The operation unit 11A 2 is configured by adding the following elements to the operation unit 11A 1 of the first embodiment shown in FIG. In FIG. 4, the same components as those of the operation unit 11 </ b> A 1 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted. A first covering member 13a is bonded and fixed to the first operation portion 11a so as to cover the closing operation detector 12a, and a second covering member 13b is bonded and fixed to the second operation portion 11b so as to cover the opening operation detector 12b. Is done. The first covering member 13a and the second covering member 13b are thin sheet-like members having rubber elasticity. For example, butyl rubber or ethylene / propylene rubber (EPDM) with a thickness of about 0.2 to 2 mm is used as a rubber-elastic sheet-like member that is highly resistant to cleaning agents (strong alkaline detergents) used in operating rooms and can withstand sterilization temperatures ), Silicon rubber and the like.
 シャフト部2は、中空パイプ状のシース21、シース21の内部に前後に摺動可能に支持されたプッシュプルワイヤ22、シャフト部2を人工筋ユニット40に着脱自在に取り付けるための雌ねじが形成されたナット25などを主体として構成される。プッシュプルワイヤ22の前端側は、図示省略するリンク機構を介して処置部3の処置部材31,32に接続され、プッシュプルワイヤ22の後端側は端末金具23(図5を参照)を介して人工筋ユニット40に接続される。 The shaft portion 2 is formed with a hollow pipe-shaped sheath 21, a push-pull wire 22 slidably supported inside and outside the sheath 21, and a female screw for detachably attaching the shaft portion 2 to the artificial muscle unit 40. The nut 25 is mainly used. The front end side of the push-pull wire 22 is connected to the treatment members 31 and 32 of the treatment unit 3 via a link mechanism (not shown), and the rear end side of the push-pull wire 22 is connected via a terminal fitting 23 (see FIG. 5). To the artificial muscle unit 40.
 処置部3は、シャフト部2におけるシース21の先端に揺動自在に軸支された処置部材31,32を主体として構成される。処置部材31,32の基端部はリンク機構を介してプッシュプルワイヤ22に接続されており、プッシュプルワイヤ22が後方(本体部1側)に引き込まれたときに処置部材31および処置部材32が互いに接近する方向に揺動して鉗子が閉じ、プッシュプルワイヤ22が前方に押し出されたときに処置部材31および処置部材32が互いに離間する方向に揺動して鉗子が開くようになっている。 The treatment section 3 is mainly composed of treatment members 31 and 32 that are pivotally supported at the distal end of the sheath 21 in the shaft section 2. The base end portions of the treatment members 31 and 32 are connected to the push-pull wire 22 via a link mechanism, and when the push-pull wire 22 is pulled backward (on the main body 1 side), the treatment member 31 and the treatment member 32 are connected. The forceps are closed by swinging in a direction approaching each other, and when the push-pull wire 22 is pushed forward, the forceps are opened by swinging in the direction in which the treatment member 31 and the treatment member 32 are separated from each other. Yes.
 シャフト部2は、前後に延びる軸廻りにシース21を回動自在になっており、シャフト部の基端側に設けられたローテーションノブ24を術者が回動することによってシース21を回動し、処置部材31,32の揺動開閉面を所望の角度位置に調整設定可能になっている。なお、処置部材31,32の形態は、能動鉗子C1を用いる目的や部位に応じて適宜な形態を採択することができ、例えば、把持鉗子や剥離鉗子、圧挫鉗子、止血鉗子など公知の鉗子の形態にすることができる。 The shaft portion 2 is configured so that the sheath 21 can be rotated around an axis extending in the front-rear direction. The operator rotates the rotation knob 24 provided on the proximal end side of the shaft portion to rotate the sheath 21. The swinging open / close surfaces of the treatment members 31 and 32 can be adjusted and set to desired angular positions. Note that the treatment members 31 and 32 may have any suitable shape depending on the purpose and site of using the active forceps C1, for example, known forceps such as grasping forceps, peeling forceps, crushing forceps, and hemostatic forceps. It can be in the form of
 処置部3を開閉駆動する駆動手段は、ハンドピースCa側に設けられた人工筋ユニット40と、コントローラーCb側に設けられた空圧ユニット50とを主体として構成される。人工筋ユニット40の概要構成および動作原理を説明するための説明図を図5に、能動鉗子C1のブロック図を図6に示す。なお、図5における(a)は人工筋ユニット40に気体を供給する以前の自然状態、(b)は人工筋ユニット40に所定圧力の気体を供給した加圧状態を示す。 The driving means for opening and closing the treatment section 3 is mainly composed of an artificial muscle unit 40 provided on the handpiece Ca side and a pneumatic unit 50 provided on the controller Cb side. FIG. 5 is an explanatory diagram for explaining the schematic configuration and operation principle of the artificial muscle unit 40, and FIG. 6 is a block diagram of the active forceps C1. 5A shows a natural state before supplying gas to the artificial muscle unit 40, and FIG. 5B shows a pressurized state where gas of a predetermined pressure is supplied to the artificial muscle unit 40.
 人工筋ユニット40は、円筒状のゴム人工筋41と、ゴム人工筋41の前端部に接着固定された摺動部材42および後端部に接着固定された固定部材43と、摺動部材42とプッシュプルワイヤ後端の端末金具23とを係脱可能に連結する連結金具44と、ゴム人工筋41を収容する円筒状のケース45と、ケース45の前端部に固定されたフロントキャップ46と、ケース45の後端部に固定されたエンドキャップ47などから構成される。ケース45は、例えば透明な樹脂材料のパイプを用いて製作され、本体上部10に窓部17が開口形成されているため、窓部17からケース45を通して内部のゴム人工筋41の状態を視認可能になっている。 The artificial muscle unit 40 includes a cylindrical rubber artificial muscle 41, a sliding member 42 bonded and fixed to the front end portion of the rubber artificial muscle 41, a fixing member 43 bonded and fixed to the rear end portion, a sliding member 42, A connection fitting 44 for releasably connecting the terminal fitting 23 at the rear end of the push-pull wire, a cylindrical case 45 for housing the artificial rubber muscle 41, a front cap 46 fixed to the front end of the case 45, An end cap 47 fixed to the rear end of the case 45 is formed. The case 45 is manufactured using, for example, a pipe made of a transparent resin material. Since the window portion 17 is formed in the upper portion 10 of the main body, the state of the internal rubber artificial muscle 41 can be visually recognized from the window portion 17 through the case 45. It has become.
 フロントキャップ46には、中心部に連結金具44を前後方向に摺動自在に支持する金具支持孔が形成され、外周にはナット25の雌ねじ部と螺合してシャフト部2を固定する雄ねじ部が形成されている。エンドキャップ47には、固定部材43を固定するクリップ等の固定構造が設けられ、後端には継手部材47aが設けられている。エンドキャップ47および固定部材43の中心部には、ゴム人工筋41の内側に連通する気体流路が前後に延びて形成されており、人工筋ユニット40(継手部材47a)に供給された気体が気体流路を通ってゴム人工筋41の内側に供給され、またゴム人工筋41の内側に供給された気体が人工筋ユニット40から気体流路を通って排出可能になっている。 The front cap 46 is formed with a metal support hole for slidably supporting the connecting metal 44 in the front-rear direction at the center, and a male screw part for fixing the shaft part 2 by screwing with the female screw part of the nut 25 on the outer periphery. Is formed. The end cap 47 is provided with a fixing structure such as a clip for fixing the fixing member 43, and a joint member 47a is provided at the rear end. A gas flow path communicating with the inside of the rubber artificial muscle 41 is formed at the center of the end cap 47 and the fixing member 43 so as to extend back and forth, and the gas supplied to the artificial muscle unit 40 (joint member 47a) is formed. The gas supplied to the inside of the artificial rubber muscle 41 through the gas channel and the gas supplied to the inside of the artificial rubber muscle 41 can be discharged from the artificial muscle unit 40 through the gas channel.
 人工筋ユニット40に気体が供給されず、ゴム人工筋41の内側の圧力と外側の圧力が同圧の状態では、ゴム人工筋41は図5(a)に示すように周面が直線的な円筒状であり、摺動部材42はフロントキャップ46に近接した前端位置に位置している。このとき、シャフト部2では、摺動部材42に連結金具44および端末金具23を介して接続されたプッシュプルワイヤ22も前端位置にあり、先端の処置部3は処置部材31,32が相互に離間して鉗子が開いた開状態になっている。 When no gas is supplied to the artificial muscle unit 40 and the pressure inside the rubber artificial muscle 41 is the same as the pressure outside the rubber artificial muscle 41, the peripheral surface of the rubber artificial muscle 41 is linear as shown in FIG. It is cylindrical and the sliding member 42 is located at a front end position close to the front cap 46. At this time, in the shaft portion 2, the push-pull wire 22 connected to the sliding member 42 via the connecting metal fitting 44 and the terminal metal fitting 23 is also at the front end position, and the treatment member 31 and 32 of the distal treatment portion 3 are mutually connected. The forceps are open and spaced apart.
 一方、人工筋ユニット40に気体が供給され、ゴム人工筋41の内圧が周囲の圧力よりも高圧になると、ゴム人工筋41は風船のように膨らみ、図5(b)に示すように周面が曲線的な樽型に変形する。すなわち、ゴム人工筋41は径方向に膨張し軸方向に縮む。この変形に伴って摺動部材42は後方(図5における右方)に移動し、その位置は図5(a)に示す前端位置から、移動ストロークsだけ変位して図5(b)に示す加圧位置に移動する。このとき、シャフト部2では、プッシュプルワイヤ22が後方に引き込まれ、処置部3は処置部材31,32が相互に密着して鉗子が閉じた閉状態になる。 On the other hand, when gas is supplied to the artificial muscle unit 40 and the internal pressure of the rubber artificial muscle 41 becomes higher than the surrounding pressure, the rubber artificial muscle 41 swells like a balloon, and the peripheral surface as shown in FIG. Transforms into a curved barrel. That is, the artificial rubber muscle 41 expands in the radial direction and contracts in the axial direction. Along with this deformation, the sliding member 42 moves rearward (to the right in FIG. 5), and its position is displaced from the front end position shown in FIG. 5A by the moving stroke s, as shown in FIG. 5B. Move to pressure position. At this time, in the shaft portion 2, the push-pull wire 22 is pulled backward, and the treatment portion 3 is in a closed state in which the treatment members 31 and 32 are in close contact with each other and the forceps are closed.
 人工筋ユニット40(継手部材47a)は、空圧コネクタ48を介して強制開放弁49と着脱可能に接続され、強制開放弁49と空圧ユニット50とが空圧コネクタ18bを介してチューブ59により接続される。強制開放弁49は手動操作により機械的に動作するマニュアル弁であり、本体上部10に突出するノブ49aが押圧操作されていない通常時に人工筋ユニット40と空圧ユニット50とを接続状態とし、ノブ49aが押圧操作されたときには人工筋ユニット40と空圧ユニット50との接続を遮断するとともに、人工筋ユニット40内の気体を大気開放する弁である。図6には3ポート2ポジションのマニュアル弁を例示する。 The artificial muscle unit 40 (joint member 47a) is detachably connected to a forced release valve 49 via a pneumatic connector 48, and the forced release valve 49 and the pneumatic unit 50 are connected by a tube 59 via a pneumatic connector 18b. Connected. The forcible release valve 49 is a manual valve that is mechanically operated by manual operation, and the artificial muscle unit 40 and the pneumatic unit 50 are connected in a normal state when the knob 49a protruding from the upper portion 10 of the main body is not pressed. When 49a is pressed, the connection between the artificial muscle unit 40 and the pneumatic unit 50 is cut off, and the gas in the artificial muscle unit 40 is released to the atmosphere. FIG. 6 illustrates a 3-port 2-position manual valve.
 空圧ユニット50は、外部から供給される気体(例えばN2ガスやCO2ガス、乾燥エア等)からダスト等を除去するとともに気体を所定の一次圧に設定して出力するフィルタレギュレータ52、フィルタレギュレータ52から出力された気体を制御部8から出力される指令信号に応じた供給圧に設定して出力する電空レギュレータ53、電空レギュレータ53から出力された気体を制御部8から出力される指令信号に応じて人工筋ユニット40に供給し、遮断し、あるいは開放するなど、気体の供給状態を切り換える流路切換弁55などを主体として構成される。流路切換弁55として3ポート3ポジションの電磁弁を用いた構成を例示する。 The pneumatic unit 50 includes a filter regulator 52 that removes dust and the like from an externally supplied gas (for example, N 2 gas, CO 2 gas, dry air, etc.) and outputs the gas by setting the gas to a predetermined primary pressure. The gas output from the regulator 52 is set to a supply pressure corresponding to a command signal output from the control unit 8 and output, and the gas output from the electropneumatic regulator 53 is output from the control unit 8. It is mainly composed of a flow path switching valve 55 for switching the gas supply state such as supplying to the artificial muscle unit 40 in response to a command signal, shutting it off, or opening it. A configuration using a three-port, three-position electromagnetic valve as the flow path switching valve 55 is illustrated.
 流路切換弁55は、Pポート(給気ポート)に電空レギュレータ53が接続され、Aポート(機器接続Aポート)に強制開放弁49が接続され、Rポート(排気ポート)はフィルタを介して大気に開放されている。流路切換弁55はクローズドセンタの電磁弁であり、制御部8から指令信号が入力されていないときには図示のようにスプールが中立位置にあり、空圧ユニット50から人工筋ユニット40への気体の供給が遮断されるとともに、人工筋ユニット40側の回路も閉止された状態になっている。 In the flow path switching valve 55, an electropneumatic regulator 53 is connected to a P port (air supply port), a forced release valve 49 is connected to an A port (device connection A port), and an R port (exhaust port) is connected via a filter. Open to the atmosphere. The flow path switching valve 55 is a closed center solenoid valve, and when a command signal is not input from the control unit 8, the spool is in a neutral position as shown in the figure, and the gas flow from the pneumatic unit 50 to the artificial muscle unit 40 is shown. While the supply is cut off, the circuit on the artificial muscle unit 40 side is also closed.
 制御部8には、その入力部に閉操作検出器12aおよび開操作検出器12bが接続され、出力部に電空レギュレータ53および流路切換弁55が接続される。制御部8は、これら二つの操作検出器12a,12bから出力される操作信号に基づいて電空レギュレータ53および流路切換弁55に指令信号を出力し、人工筋ユニット40への気体の供給/遮断/開放を以下のように制御する。 The control unit 8 is connected to the closing operation detector 12a and the opening operation detector 12b at its input unit, and to the output unit is connected to the electropneumatic regulator 53 and the flow path switching valve 55. The control unit 8 outputs a command signal to the electropneumatic regulator 53 and the flow path switching valve 55 based on the operation signals output from the two operation detectors 12a and 12b, and supplies gas to the artificial muscle unit 40. The blocking / opening is controlled as follows.
 閉操作検出器12aから出力された閉操作信号、および開操作検出器12bから出力された開操作信号のいずれもが、制御部8に予め設定記憶された所定の押圧力未満の検出信号であるとき、制御部8は流路切換弁55を駆動する指令信号を出力しない。ここで、制御部8に予め設定される「所定の押圧力」は、術者が処置部3を開動作または閉動作させる意思を持って操作検出器12a,12bを意図的に押圧操作したときに生じる押圧力F1であり、例えば、押圧力センサの押圧力検出レンジを0.2~20N(ニュートン)としたときにF1=2N程度を基準に設定される。 Both the closing operation signal output from the closing operation detector 12a and the opening operation signal output from the opening operation detector 12b are detection signals less than a predetermined pressing force preset and stored in the control unit 8. At this time, the control unit 8 does not output a command signal for driving the flow path switching valve 55. Here, the “predetermined pressing force” preset in the control unit 8 is when the operator deliberately presses the operation detectors 12a and 12b with the intention of opening or closing the treatment unit 3. a pressing force F 1 caused, for example, it is set based on the order of F 1 = 2N when the pressing force detection range of the pressing force sensor and 0.2 ~ 20 N (Newton).
 このとき、流路切換弁55のスプールは中立位置にあり、流路切換弁55のPポート、AポートおよびRポートはいずれも遮断状態になっている。すなわち、空圧ユニット50から人工筋ユニット40への気体供給が遮断されるとともに、人工筋ユニット40側の空圧回路も閉止された状態で保持される。そのため、ハンドピースCa先端の処置部3は動作せず、処置部3はそれ以前の状態、例えば処置部材31,32が相互に密着して鉗子が閉じた状態に保持される。鉗子が閉じた状態はゴム人工筋41が膨らんだ状態であり(図5(b)を参照)、人工筋ユニット40~流路切換弁55の空圧回路は、所定圧力の気体で満たされた状態で保持されている。 At this time, the spool of the flow path switching valve 55 is in the neutral position, and the P port, A port, and R port of the flow path switching valve 55 are all cut off. That is, the gas supply from the pneumatic unit 50 to the artificial muscle unit 40 is shut off, and the pneumatic circuit on the artificial muscle unit 40 side is also held closed. Therefore, the treatment portion 3 at the tip of the handpiece Ca does not operate, and the treatment portion 3 is held in a previous state, for example, the treatment members 31 and 32 are in close contact with each other and the forceps are closed. When the forceps are closed, the rubber artificial muscle 41 is inflated (see FIG. 5B), and the pneumatic circuit of the artificial muscle unit 40 to the flow path switching valve 55 is filled with a gas of a predetermined pressure. Held in a state.
 開操作検出器12bから出力された開操作信号が、予め設定記憶された所定の押圧力F1以上の検出信号であるとき、制御部8は流路切換弁55のスプールを図6における左方に移動させる指令信号を出力する。このとき制御部8から流路切換弁55に出力される指令信号を開指令信号といい、スプールが左方に移動した位置状態を開位置という。開位置では、流路切換弁55のPポートが遮断され、AポートとRポートとが接続された状態になる。これにより、空圧ユニット50から人工筋ユニット40への気体供給が遮断され、人工筋ユニット40側の空圧回路が排気ポートに接続されて人工筋ユニット40~流路切換弁55に保持されていた気体が排気される。 When the opening operation signal output from the opening operation detector 12b is a detection signal greater than or equal to a predetermined pressing force F 1 set and stored in advance, the control unit 8 moves the spool of the flow path switching valve 55 to the left in FIG. The command signal to move to is output. At this time, a command signal output from the control unit 8 to the flow path switching valve 55 is referred to as an open command signal, and a position state where the spool has moved to the left is referred to as an open position. In the open position, the P port of the flow path switching valve 55 is blocked, and the A port and the R port are connected. Thereby, the gas supply from the pneumatic unit 50 to the artificial muscle unit 40 is cut off, and the pneumatic circuit on the artificial muscle unit 40 side is connected to the exhaust port and held by the artificial muscle unit 40 to the flow path switching valve 55. Gas is exhausted.
 そのため、ゴム人工筋41が図5(b)の状態から図5(a)の状態に変化し、処置部3では処置部材31,32が密着した閉状態から処置部材31,32が離間した開状態に変化する。開操作検出器12bに対する押圧力が解除されると、制御部8は流路切換弁55に対する開指令信号の出力を停止する。これにより、流路切換弁55のスプールが中立位置に戻ってAポート、PポートおよびRポートがいずれも遮断状態になり、処置部3は鉗子が開いた閉状態に保持される。なお、鉗子が完全に開ききらない状態で開操作検出器12bに対する押圧力を解除した場合も同様であり、処置部材31,32を相対角が任意角度の開状態で保持することができる。 Therefore, the artificial rubber muscle 41 changes from the state shown in FIG. 5B to the state shown in FIG. 5A, and in the treatment section 3, the treatment members 31, 32 are opened from the closed state where the treatment members 31, 32 are in close contact. Change to state. When the pressing force to the opening operation detector 12b is released, the control unit 8 stops outputting the opening command signal to the flow path switching valve 55. As a result, the spool of the flow path switching valve 55 returns to the neutral position, and all of the A port, P port, and R port are cut off, and the treatment section 3 is held in the closed state with the forceps open. The same applies to the case where the pressing force applied to the opening operation detector 12b is released in a state where the forceps are not completely opened, and the treatment members 31 and 32 can be held in an open state with an arbitrary relative angle.
 閉操作検出器12aから出力された閉操作信号が、予め設定記憶された所定の押圧力F1以上の検出信号であるとき、制御部8は流路切換弁55にスプールを図6における右方に移動させる指令信号を出力する。このとき制御部8から流路切換弁55に出力される指令信号を閉指令信号といい、スプールが右方に移動した位置状態を閉位置という。 When the closing operation signal output from the closing operation detector 12a is a detection signal equal to or higher than a predetermined pressing force F 1 set and stored in advance, the control unit 8 places a spool on the flow path switching valve 55 to the right in FIG. The command signal to move to is output. At this time, a command signal output from the control unit 8 to the flow path switching valve 55 is referred to as a close command signal, and a position state where the spool has moved to the right is referred to as a closed position.
 また、制御部8は、電空レギュレータ53に対して閉操作検出器12aにより検出された押圧力Fに応じた供給圧に設定する指令信号を出力する。このとき制御部8から電空レギュレータ53に出力する指令信号を閉圧力指令信号という。閉圧力指令信号は、押圧力に応じて複数段階(例えば2~5段階等)または無段階に設定することができる。図7に、閉操作検出器12aにより検出された押圧力Fと、電空レギュレータ53により設定される供給圧Pとの関係を例示する。ここで、図7(a)は供給圧を3段階に設定した場合の構成例を示し、図7(b)は供給圧を無段階に設定した場合の構成例を示す。両図における横軸は閉操作検出器12aにより検出された術者の押圧力F、縦軸は閉圧力指令信号に基づいて電空レギュレータ53により設定される供給圧Pである。 Also, the control unit 8 outputs a command signal for setting the supply pressure corresponding to the pressing force F detected by the closing operation detector 12a to the electropneumatic regulator 53. The command signal output from the control unit 8 to the electropneumatic regulator 53 at this time is referred to as a closing pressure command signal. The closing pressure command signal can be set in a plurality of steps (for example, 2 to 5 steps) or steplessly according to the pressing force. FIG. 7 illustrates the relationship between the pressing force F detected by the closing operation detector 12 a and the supply pressure P set by the electropneumatic regulator 53. Here, FIG. 7A shows a configuration example when the supply pressure is set in three stages, and FIG. 7B shows a configuration example when the supply pressure is set in a stepless manner. In both figures, the horizontal axis represents the operator's pressing force F detected by the closing operation detector 12a, and the vertical axis represents the supply pressure P set by the electropneumatic regulator 53 based on the closing pressure command signal.
 供給圧を3段階に設定した構成例(図7(a))において、制御部8は、閉操作検出器12aにより検出された押圧力Fが所定の押圧力F1を含むF2未満(0≦F<F2)であるときに、供給圧Pを低圧のP1に設定する閉圧力指令信号を電空レギュレータ53に出力する。また、閉操作検出器12aにより検出された押圧力FがF2以上でありF3未満(F2≦F<F3)であるときには、供給圧を中圧のP2に設定する閉圧力指令信号を電空レギュレータ53に出力する。また、閉操作検出器12aにより検出された押圧力FがF3以上(F3≦F)であるときには、供給圧を高圧のP3に設定する閉圧力指令信号を電空レギュレータ53に出力する。 In the configuration example (FIG. 7A) in which the supply pressure is set in three stages, the control unit 8 determines that the pressing force F detected by the closing operation detector 12a is less than F 2 including the predetermined pressing force F 1 (0 When ≦ F <F 2 ), a closing pressure command signal for setting the supply pressure P to a low pressure P 1 is output to the electropneumatic regulator 53. Further, when it is F less than 3 or the pressing force F detected by the closing operation detector 12a are F 2 or more (F 2 ≦ F <F 3) are closing pressure command to set the supply pressure P 2 of the medium pressure The signal is output to the electropneumatic regulator 53. When the pressing force F detected by the closing operation detector 12a is F 3 or more (F 3 ≦ F), a closing pressure command signal for setting the supply pressure to a high pressure P 3 is output to the electropneumatic regulator 53. .
 なお、押圧力F2,F3の大きさは、例えば、閉操作検出器12aの押圧力検出レンジを0.2N~20Nとし、押圧力F1を2Nとした場合に、F2=10N程度、F3=18N程度に設定される。また、供給圧P1,P2,P3の大きさは、各供給圧の気体が人工筋ユニット40に供給されて鉗子が閉じたときに処置部3に生じる把持力を基準とし、JIS T 14971(医療機器-リスクマネジメントの医療機器への適用)に適合する範囲内で、弱・中・鏡の3段階に設定される。 The magnitudes of the pressing forces F 2 and F 3 are, for example, about F 2 = 10N when the pressing force detection range of the closing operation detector 12a is 0.2N to 20N and the pressing force F 1 is 2N. , F 3 = about 18N. The magnitudes of the supply pressures P 1 , P 2 , and P 3 are based on the gripping force generated in the treatment section 3 when the gas of each supply pressure is supplied to the artificial muscle unit 40 and the forceps are closed. It is set in three levels: weak, medium, and mirror within a range that complies with 14971 (medical devices-application of risk management to medical devices).
 一方、供給圧を無段階に設定した構成例(図7(b))においては、制御部8は、閉操作検出器12aにより検出された押圧力Fが所定の押圧力F1以下(0≦F<F1)のときに、供給圧Pを最低圧のP0に設定する閉圧力指令信号を電空レギュレータ53に出力する。また、閉操作検出器12aにより検出された押圧力FがF3以上(F3≦F)であるときには、供給圧を最高圧のP4に設定する閉圧力指令信号を電空レギュレータ53に出力する。そして、閉操作検出器12aにより検出された押圧力FがF1~F3の間(F1≦F≦F3)にあるときには、最低圧P0と最高圧のP4との間で押圧力Fに比例した供給圧に設定する閉圧力指令信号を電空レギュレータ53に出力する。 On the other hand, in the configuration example in which the supply pressure is set steplessly (FIG. 7B), the control unit 8 determines that the pressing force F detected by the closing operation detector 12a is equal to or less than a predetermined pressing force F 1 (0 ≦ When F <F 1 ), a closing pressure command signal for setting the supply pressure P to the lowest pressure P 0 is output to the electropneumatic regulator 53. When the pressing force F detected by the closing operation detector 12a is F 3 or more (F 3 ≦ F), a closing pressure command signal for setting the supply pressure to the maximum pressure P 4 is output to the electropneumatic regulator 53. To do. When the pressing force F detected by the closing operation detector 12a is between F 1 and F 3 (F 1 ≦ F ≦ F 3 ), the pressing force F is between the minimum pressure P 0 and the maximum pressure P 4. A closing pressure command signal set to a supply pressure proportional to the pressure F is output to the electropneumatic regulator 53.
 このように、閉操作検出器12aから出力された閉操作信号が所定の押圧力F1以上の検出信号であるときに、制御部8は流路切換弁55に閉指令信号を出力してスプールを閉位置に移動させ、電空レギュレータ53に閉圧力指令信号を出力して押圧力Fに応じた供給圧Pの気体を供給させる。閉位置では、流路切換弁55のPポートとAポートとが接続され、Rポートが遮断された状態になる。これにより、空圧ユニット50から人工筋ユニット40に押圧力に応じた圧力の気体が供給される。 Thus, when the closing operation signal outputted from the closing operation detector 12a is a predetermined pressing force F 1 or more detection signals, the control unit 8 outputs a closing command signal to the channel switching valve 55 spool Is moved to a closed position, and a close pressure command signal is output to the electropneumatic regulator 53 to supply a gas having a supply pressure P corresponding to the pressing force F. In the closed position, the P port and A port of the flow path switching valve 55 are connected and the R port is shut off. As a result, a gas having a pressure corresponding to the pressing force is supplied from the pneumatic unit 50 to the artificial muscle unit 40.
 そのため、ゴム人工筋41は図5(a)の状態から図5(b)の状態に変化し、処置部3では処置部材31,32が離間した開状態から、処置部材31,32が密着しまたは両部材間に生体組織等を挟み込んだ閉状態に変化する。この閉状態において処置部材31,32で挟み込む力、すなわち処置部3に作用する把持力は、空圧ユニット50から人工筋ユニット40に供給される気体の圧力、すなわち供給圧によって定まる。そして、この供給圧は閉操作検出器12aに対する術者の押圧力Fに応じて複数段階または無段階に設定される。そのため、術者は閉操作検出器12aを操作するときの押圧力を加減することによって、処置部3に作用する把持力を適宜に調整することができる。 For this reason, the artificial rubber muscle 41 changes from the state of FIG. 5A to the state of FIG. 5B, and the treatment members 31 and 32 are brought into close contact with each other from the open state in which the treatment members 31 and 32 are separated from each other. Or it changes to the closed state which pinched | interposed the biological tissue etc. between both members. In this closed state, the force sandwiched between the treatment members 31, 32, that is, the gripping force that acts on the treatment portion 3 is determined by the pressure of the gas supplied from the pneumatic unit 50 to the artificial muscle unit 40, that is, the supply pressure. The supply pressure is set in a plurality of steps or steplessly according to the operator's pressing force F against the closing operation detector 12a. Therefore, the surgeon can appropriately adjust the gripping force acting on the treatment section 3 by adjusting the pressing force when operating the closing operation detector 12a.
 処置部3が生体組織等を把持した状態を維持するには、閉操作検出器12aに対する押圧力を解除(F1未満に)すればよい。このとき、流路切換弁55のスプールは中立位置に戻って流路切換弁55のPポート、AポートおよびRポートはいずれも遮断状態になり、人工筋ユニット40側の空圧回路が閉止された状態に保持される。そのため、処置部3は閉操作検出器12aに対する押圧力を解除したときの状態、すなわち生体組織等を把持した状態に保持される。なお、鉗子が完全に閉じきらない状態で閉操作検出器12aに対する押圧力を解除した場合も同様であり、処置部材31,32を任意角度の閉状態で保持することができる。 To remain treatment portion 3 grips the living tissue or the like, (less than F 1) releases the pressing force against the closing operation detector 12a may be. At this time, the spool of the flow path switching valve 55 returns to the neutral position, and all of the P port, A port and R port of the flow path switching valve 55 are cut off, and the pneumatic circuit on the artificial muscle unit 40 side is closed. Is kept in the state. Therefore, the treatment section 3 is held in a state when the pressing force to the closing operation detector 12a is released, that is, a state in which a living tissue or the like is gripped. The same applies when the pressing force applied to the closing operation detector 12a is released when the forceps are not completely closed, and the treatment members 31 and 32 can be held in a closed state at an arbitrary angle.
 なお、閉操作検出器12aから出力された閉操作信号、および開操作検出器12bから出力された開操作信号の両方が、制御部8に予め設定記憶された所定の押圧力F1以上の検出信号であるとき、制御部8は流路切換弁55に指令信号を出力しない。このような状態は術者の操作意思が明確ではないからである。 It should be noted that both the closing operation signal output from the closing operation detector 12a and the opening operation signal output from the opening operation detector 12b are detected to be greater than or equal to a predetermined pressing force F 1 preset and stored in the control unit 8. When it is a signal, the control unit 8 does not output a command signal to the flow path switching valve 55. This is because the operator's intention to operate is not clear.
 以上のように構成された能動鉗子C1は、術者の操作を検出する操作検出器12a,12bとしてシート状の押圧力センサを用いているため、術者は操作部に指を乗せた状態でのまま(指の変位を伴わずに)押圧力を変化させるだけで処置部3を開/閉動作させることができる。そのため、処置部を開閉させるために付勢力に抗して操作レバーを揺動操作しなければならなかった従来の鉗子と比較して、術者の疲労を大幅に低減することができる。 Since the active forceps C1 configured as described above uses sheet-like pressing force sensors as the operation detectors 12a and 12b that detect the operation of the operator, the operator places a finger on the operation unit. The treatment section 3 can be opened / closed simply by changing the pressing force (without finger displacement). Therefore, compared with the conventional forceps which had to swing the operation lever against the urging force to open and close the treatment portion, the operator's fatigue can be greatly reduced.
 さらに、操作検出器12a,12bを本体部1の外面側に配設した第1実施例の構成(図3を参照)によれば、術者の操作力が操作検出器12a,12bに直接的に作用するため高い検出確度を得ることができる。また、操作検出器12a,12bが操作部に露出して配設されるため洗浄や滅菌を容易に行うことができる。 Furthermore, according to the configuration of the first embodiment (see FIG. 3) in which the operation detectors 12a and 12b are arranged on the outer surface side of the main body 1, the operator's operation force is directly applied to the operation detectors 12a and 12b. Therefore, high detection accuracy can be obtained. In addition, since the operation detectors 12a and 12b are disposed so as to be exposed to the operation unit, cleaning and sterilization can be easily performed.
 一方、操作検出器12a,12bを本体部1の外面側に被覆部材13a,13bにより覆われた状態で配設した第2実施例の構成(図4を参照)によれば、術者の操作力を操作検出器12a,12bにほぼ直接的に作用させることができ、かつ被覆部材13a,13bの弾性により良好な操作性を得ることができる。また、操作検出器12a,12bが被覆部材13a,13bにより覆われた状態で配設されるため、操作検出器12a,12bへの異物の付着やダストの放出等を抑制することができる。さらに、洗浄や滅菌を容易かつ確実に行うことができ、かつ頻繁に行われるこれらの作業によって操作検出器が損耗を受けるようなことがない。 On the other hand, according to the configuration of the second embodiment (see FIG. 4) in which the operation detectors 12a and 12b are arranged on the outer surface side of the main body 1 while being covered with the covering members 13a and 13b, the operation of the operator Force can be applied almost directly to the operation detectors 12a and 12b, and good operability can be obtained due to the elasticity of the covering members 13a and 13b. Further, since the operation detectors 12a and 12b are disposed in a state of being covered with the covering members 13a and 13b, it is possible to suppress the adhesion of foreign matters to the operation detectors 12a and 12b, the release of dust, and the like. Further, cleaning and sterilization can be performed easily and reliably, and the operation detector is not worn by these frequently performed operations.
 また、能動鉗子C1では、術者が握るグリップ15と本体上部10との間に、グリップ15よりも前方に膨出する操作部11を形成し、この操作部に操作検出器12a,12bを設けている。このような構成により、処置部3を体内に挿入/抜去する際や処置部3の位置を調整する際など、グリップ15を握って操作をするときに意図せずに操作検出器を押圧操作してしまうようなことがない。一方、処置部3で生体組織を把持するようなときには、グリップ15を握った状態で操作部11に指を伸ばし閉操作検出器12aを容易に操作することができる。 Further, in the active forceps C1, an operation portion 11 that bulges forward from the grip 15 is formed between the grip 15 gripped by the operator and the upper body portion 10, and operation detectors 12a and 12b are provided in the operation portion. ing. With such a configuration, the operation detector is unintentionally pressed when operating by gripping the grip 15, such as when inserting / removing the treatment unit 3 into / from the body or adjusting the position of the treatment unit 3. There is no such thing as On the other hand, when the living tissue is gripped by the treatment section 3, the finger can be extended to the operation section 11 with the grip 15 held, and the closing operation detector 12a can be easily operated.
 さらに、操作部11に識別突起11tを形成し、この識別突起11tを挟んで閉操作検出器12aと開操作検出器12bとを配設しているため、視線を操作部11に移動することなく(ブラインドタッチで)閉操作検出器12aおよび開操作検出器12bを正確に識別することができ、これらの操作検出器を誤認操作するような事態を未然に防止することができる。 Further, since the identification protrusion 11t is formed on the operation unit 11, and the closing operation detector 12a and the opening operation detector 12b are disposed with the identification protrusion 11t interposed therebetween, the line of sight is not moved to the operation unit 11. The closing operation detector 12a and the opening operation detector 12b can be accurately identified (by blind touch), and a situation in which these operation detectors are erroneously operated can be prevented.
 また、処置部3を開閉駆動する駆動手段のうち、人工筋ユニット40をハンドピースCa側に配設し、空圧ユニット50を別体のコントローラーCb側に配設しているため、術者が操作するハンドピースを軽量に構成することができ、高頻度で長時間ハンドピースCaを操作する術者の負担を大幅に軽減することができる。 Moreover, since the artificial muscle unit 40 is disposed on the handpiece Ca side and the pneumatic unit 50 is disposed on the separate controller Cb side among the driving means for opening and closing the treatment section 3, the operator can The handpiece to be operated can be configured to be lightweight, and the burden on the operator who operates the handpiece Ca for a long time with high frequency can be greatly reduced.
 また、操作検出器12a,12bにより検出された術者の押圧力が予め設定された所定の押圧力F1以上であるときに、制御部8が処置部3を開閉動作させる構成のため、術者が処置部3を開閉する意思を持って開閉操作した場合には術者の意思に沿って確実に開閉動作し、術者が誤って操作検出器に触れた様な場合には処置部3は動作しない。これにより安全性が高く操作性が良好な能動鉗子が提供される。 The operation detector 12a, when the pressing force of the detected operator is predetermined pressing force F 1 or more previously set by 12b, for the control unit 8 is configured to be opened and closed using the treatment unit 3, the operator When the operator performs an opening / closing operation with the intention of opening / closing the treatment section 3, the opening / closing operation is performed according to the operator's intention, and when the operator accidentally touches the operation detector, the treatment section 3 Does not work. This provides an active forceps with high safety and good operability.
 また、制御部8が術者の押圧力に応じた閉圧力指令信号を空圧ユニット50に出力し、空圧ユニット50が閉圧力指令信号に基づいた圧力の気体を人工筋ユニット40に供給する構成により、術者の意図に応じて、生体組織を弱い把持力で優しく把持したり強い把持力で強固に固定したりすることができる。さらに、人工筋ユニット40に供給する気体の圧力を制御する構成のため、ある供給圧のもとでは処置部3の開閉角度位置にかかわらず把持力を一定にすることができる。これにより、安全性を担保するとともに操作性が良好な能動鉗子を提供することができる。 Further, the control unit 8 outputs a closing pressure command signal corresponding to the pressing force of the operator to the pneumatic unit 50, and the pneumatic unit 50 supplies a gas having a pressure based on the closing pressure command signal to the artificial muscle unit 40. According to the configuration, the living tissue can be gently gripped with a weak gripping force or firmly fixed with a strong gripping force according to the operator's intention. Furthermore, since the pressure of the gas supplied to the artificial muscle unit 40 is controlled, the gripping force can be made constant regardless of the opening / closing angle position of the treatment section 3 under a certain supply pressure. As a result, it is possible to provide an active forceps that ensures safety and good operability.
 また、本体部1に手動操作により機械的に動作して処置部3を開かせる強制開放弁49を設けたことにより、制御部8や空圧ユニット50に電気的/機械的な異常が発生し、処置部3が意図に反して閉動作した場合や、処置部3が閉状態のままで開操作を受け付けない状況が発生したような場合であっても、処置部3を即座に強制的に開放することができる。さらに、強制開放弁49が本体部1に設けられているため、高い応答性で迅速に処置部を開放することができる。 Further, by providing the main body unit 1 with the forced release valve 49 that is mechanically operated by manual operation to open the treatment unit 3, an electrical / mechanical abnormality occurs in the control unit 8 and the pneumatic unit 50. Even when the treatment unit 3 is closed unintentionally or when the treatment unit 3 remains closed and does not accept the opening operation, the treatment unit 3 is immediately and forcibly forced. Can be opened. Furthermore, since the forcible release valve 49 is provided in the main body 1, the treatment section can be quickly opened with high responsiveness.
 このように、以上説明した能動鉗子C1によれば、患者や術者に対する安全性を担保しつつ、術者の負担を軽減した能動鉗子を提供することができる。 Thus, according to the active forceps C1 described above, it is possible to provide an active forceps that reduces the burden on the operator while ensuring safety for the patient and the operator.
 以上では、操作検出器としてシート状の押圧力センサを用い、これを操作部11の外面側に設けた形態(第1構成形態)の能動鉗子について説明した。以降では、操作検出器としてシート状の押圧力センサを用いこれを操作部11の内部に設けた形態(第2構成形態)の能動鉗子、操作検出器としてプランジャ型の押圧力センサを用いた形態(第3構成形態)の能動鉗子、操作検出器としてスイッチを用いた形態(第4構成形態)の能動鉗子、操作検出器としてスイッチ及び押圧力センサを用いた形態(第5構成形態)の能動鉗子につて説明する。 The active forceps in the form (first configuration form) in which a sheet-like pressing force sensor is used as the operation detector and provided on the outer surface side of the operation unit 11 has been described above. Hereinafter, a sheet-type pressing force sensor is used as the operation detector, and the active forceps are provided in the operation unit 11 (second configuration), and a plunger-type pressing force sensor is used as the operation detector. Active forceps in (third configuration form), active forceps in form using switch as operation detector (fourth configuration form), active in form using switch and pressing force sensor as operation detector (fifth configuration form) The forceps will be described.
 なお、操作部11を除く各部の構成は基本的に同一であることから重複説明は省略し、相違する部分についてのみ説明する。また、各構成形態において閉操作検出器と開操作検出器の構成は基本的には共通であることから、「開」および「閉」を識別せずに操作検出器と表記して説明する。 In addition, since the structure of each part except the operation part 11 is fundamentally the same, duplication description is abbreviate | omitted and only a different part is demonstrated. In addition, since the configuration of the closing operation detector and the opening operation detector is basically the same in each configuration form, the description will be made by describing the operation detector without identifying “open” and “closed”.
 第2構成形態の操作部11Bは、操作検出器12としてシート状の押圧力センサを用い、これを操作部11の内部に設けて構成される。図8(a)に本構成形態における第1実施例の操作部11B1の断面図、図8(b)に本構成形態における第2実施例の操作部11B2の断面図、図8(c)に本構成形態における第3実施例の操作部11B3の断面図を示す。 The operation unit 11B of the second configuration form is configured by using a sheet-like pressing force sensor as the operation detector 12 and providing this inside the operation unit 11. FIG. 8A is a cross-sectional view of the operation unit 11B 1 of the first example in the present configuration, FIG. 8B is a cross-sectional view of the operation unit 11B 2 of the second example in the present configuration, and FIG. ) Shows a cross-sectional view of the operation unit 11B 3 of the third embodiment in this configuration.
 図8(a)に示す第1実施例の操作部11B1は、操作部の壁面を前後に貫通して孔部(例えば円孔や三角形、四角形の孔等)が形成され、この孔部に本体部1の内外を隔てる隔離部材として操作ボタン210が嵌入されている。操作ボタン210は、弾性を有する材料(例えば、エチレン・プロピレンゴム(EPDM)やブチルゴム、シリコンゴムなど)を用いて製作される。本体部1の内部には、操作ボタン210の背後に位置して、押圧力センサ220が基板225に取り付けられて配設される。押圧力センサ220は、記述した押圧力センサ12a,12bと同様に、押圧力に応じて端子間の抵抗が変化する可変抵抗型のセンサである。但し、本構成形態では操作ボタン210の形態に合わせて感圧領域が円形(ボタン状)の押圧力センサである。すなわち、押圧力センサ220は、本体部1の内外を隔てる隔離部材である操作ボタン210を介して本体部1の内部に配設されており、術者の押圧力が操作ボタン210を介して押圧力センサ220に伝達される。そして、押圧力に応じた操作信号が押圧力センサ220から制御部8に出力される。 The operation portion 11B 1 of the first embodiment shown in FIG. 8 (a) has a hole (for example, a circular hole, a triangle, or a square hole) formed through the wall surface of the operation portion in the front-rear direction. An operation button 210 is inserted as a separating member that separates the inside and outside of the main body 1. The operation button 210 is manufactured using an elastic material (for example, ethylene / propylene rubber (EPDM), butyl rubber, silicon rubber, etc.). Inside the main body 1, a pressing force sensor 220 is disposed on the substrate 225 so as to be located behind the operation button 210. The pressing force sensor 220 is a variable resistance type sensor in which the resistance between the terminals changes according to the pressing force, similarly to the described pressing force sensors 12a and 12b. However, in this configuration mode, the pressure-sensitive area is a circular (button-shaped) pressure sensor in accordance with the mode of the operation button 210. That is, the pressing force sensor 220 is disposed inside the main body 1 via an operation button 210 that is an isolation member that separates the inside and outside of the main body 1, and the operator's pressing force is pressed via the operation button 210. It is transmitted to the pressure sensor 220. Then, an operation signal corresponding to the pressing force is output from the pressing force sensor 220 to the control unit 8.
 図8(b)に示す第2実施例の操作部11B2は、操作部の壁面を前後に貫通して孔部(同上)が形成され、この孔部の後面側に、本体部1の内外を隔てる隔離部材として板バネ235が取り付けられている。そして、板バネ235の前面側に孔部を挿通して前方に突出する操作ボタン230が取り付けられ、板バネ235の後面側に押圧力センサ240が取り付けられている。押圧力センサ240は、板バネ235に生じる変形(歪み)から押圧力を求めるセンサであり、例えば、半導体歪みゲージ式のセンサや静電容量式のセンサなどが用いられる。操作ボタンは前述したゴム材料の他、各種プラスティック材料や金属材料を用いることができる。このような構成の操作部11B2では、術者が操作ボタン230を押圧操作することにより板バネ235が弾性変形してその変形量(歪みの大きさ)が押圧力センサ240により検出され、板バネ235の変形量、すなわち押圧力に応じた操作信号が押圧力センサ240から制御部8に出力される。なお、押圧力センサ240は、板バネ235(または操作ボタン)の変位を電気的、磁気的、または光学的に検出し、検出された変位量から押圧力を求める様な形態であっても良い。 The operation portion 11B 2 of the second embodiment shown in FIG. 8 (b) has a hole (same as above) formed through the wall surface of the operation portion in the front-rear direction. A leaf spring 235 is attached as an isolation member separating the two. An operation button 230 is attached to the front side of the leaf spring 235 and protrudes forward through the hole, and a pressing force sensor 240 is attached to the rear side of the leaf spring 235. The pressing force sensor 240 is a sensor for obtaining a pressing force from deformation (strain) generated in the leaf spring 235. For example, a semiconductor strain gauge type sensor or a capacitance type sensor is used. In addition to the rubber material described above, various plastic materials and metal materials can be used for the operation buttons. In the operation unit 11B 2 having such a configuration, when the operator presses the operation button 230, the leaf spring 235 is elastically deformed, and the amount of deformation (the magnitude of the distortion) is detected by the pressing force sensor 240, and the plate An operation signal corresponding to the deformation amount of the spring 235, that is, the pressing force is output from the pressing force sensor 240 to the control unit 8. The pressing force sensor 240 may be configured to detect the displacement of the leaf spring 235 (or the operation button) electrically, magnetically, or optically and obtain the pressing force from the detected displacement amount. .
 図8(c)に示す第3実施例の操作部11B3は、板バネではなく操作部の壁面の変形量そのもの検出する構成形態である。例えば図示するように、操作部の壁面に、部分的に厚さを薄くして弾性係数を低下させた(押圧力に対する変形量を大きくした)操作領域250を形成し、この操作領域250の後面側に、押圧力センサ260を配設することにより構成される。本体部1の前面側には、操作領域250を示すための溝251が円形に彫られている。このため、操作領域250の近傍を押圧すると、押圧力に応じて操作領域250が弾性変形する。押圧力センサ260は、操作領域250に生じる変形量(歪み)から押圧力を求めるセンサであり、第2実施例と同様のセンサが用いられる。このような構成の操作部11B3では、術者が操作領域250を押圧操作することにより操作領域250が弾性変形してその変形量(歪みの大きさ)が押圧力センサ260により検出され、操作領域の変形量、すなわち押圧力に応じた操作信号が押圧力センサ260から制御部8に出力される。 The operation unit 11B 3 of the third embodiment shown in FIG. 8C is a configuration that detects the deformation amount itself of the wall surface of the operation unit, not the leaf spring. For example, as shown in the figure, an operation region 250 in which the thickness is partially reduced to reduce the elastic coefficient (the amount of deformation with respect to the pressing force is increased) is formed on the wall surface of the operation portion, and the rear surface of the operation region 250 It is comprised by arrange | positioning the pressing force sensor 260 in the side. A groove 251 for indicating the operation region 250 is carved in a circular shape on the front side of the main body 1. For this reason, when the vicinity of the operation area 250 is pressed, the operation area 250 is elastically deformed according to the pressing force. The pressing force sensor 260 is a sensor that obtains the pressing force from the deformation amount (distortion) generated in the operation region 250, and the same sensor as in the second embodiment is used. In the operation unit 11B 3 having such a configuration, when the operator presses the operation region 250, the operation region 250 is elastically deformed, and the amount of deformation (the magnitude of the distortion) is detected by the pressing force sensor 260. An operation signal corresponding to the deformation amount of the region, that is, the pressing force is output from the pressing force sensor 260 to the control unit 8.
 以上のように、押圧力センサを本体部1の内側に配設し、術者の押圧力が隔離部材(操作ボタン210、板バネ235、操作領域250の壁面)を介して押圧力センサに伝達されるようにした本構成形態の構成によれば、押圧力センサが隔離部材を介して本体内部に配設されるため、押圧力センサへの異物の付着やダストの放出を遮断でき、かつ洗浄や滅菌を容易かつ着実に行うことができる。これにより頻繁に行われるこれらの作業によって押圧力センサが損耗を受けるようなことがない。 As described above, the pressing force sensor is disposed inside the main body 1 and the surgeon's pressing force is transmitted to the pressing force sensor via the isolation member (the operation button 210, the leaf spring 235, the wall surface of the operation region 250). According to the configuration of the present configuration thus configured, since the pressing force sensor is disposed inside the main body via the isolation member, it is possible to block adhesion of foreign matters to the pressing force sensor and release of dust, and cleaning. And sterilization can be performed easily and steadily. This prevents the pressing force sensor from being worn by these frequently performed operations.
 次に、第3構成形態の操作部11Cについて図9を参照して説明する。操作部11Cは、操作検出器12としてプランジャ型の押圧力センサ320を用いて構成される。プランジャ型の押圧力センサ320は、スプリングにより付勢されたプランジャの変位量を検出することによりプランジャに作用する押圧力を検出するセンサである。押圧力センサ320は、センサーケース321と、センサーケース321に前後(図9における左右)に摺動可能に保持されたプランジャ322と、プランジャ322を前方(同、左方)に付勢するメインスプリング323と、センサーケース321に対するプランジャ322の軸方向の変位量を検出する変位センサ325とを主体として構成される。 Next, the operation unit 11C in the third configuration form will be described with reference to FIG. The operation unit 11 </ b> C is configured using a plunger-type pressing force sensor 320 as the operation detector 12. The plunger-type pressing force sensor 320 is a sensor that detects the pressing force acting on the plunger by detecting the displacement amount of the plunger biased by the spring. The pressing force sensor 320 includes a sensor case 321, a plunger 322 slidably held by the sensor case 321 in the front-rear direction (left and right in FIG. 9), and a main spring that urges the plunger 322 forward (to the left). 323 and a displacement sensor 325 that detects the amount of displacement of the plunger 322 in the axial direction relative to the sensor case 321 are mainly configured.
 すなわち、メインスプリング323により前方に付勢されたプランジャ322が付勢力に抗して後方に押圧移動された場合、プランジャ322に作用する押圧力はプランジャ322の変位量とメインスプリング323のバネ係数との積であり、変位センサ325によりプランジャ322の変位量を検出することにより、プランジャに作用する押圧力を導出される。プランジャ322の先端部には、操作ボタン326が軸方向に摺動可能に支持され、操作ボタン326を前方に付勢するサブスプリング327により付勢されて前端位置に配設される。なお、サブスプリング327は、バネ係数がメインスプリング323のバネ係数よりも小さいバネである。 That is, when the plunger 322 biased forward by the main spring 323 is pressed and moved backward against the biasing force, the pressing force acting on the plunger 322 is determined by the amount of displacement of the plunger 322 and the spring coefficient of the main spring 323. By detecting the amount of displacement of the plunger 322 by the displacement sensor 325, the pressing force acting on the plunger is derived. An operation button 326 is supported at the distal end of the plunger 322 so as to be slidable in the axial direction. The operation button 326 is urged by a sub-spring 327 that urges the operation button 326 forward, and is disposed at the front end position. The sub spring 327 is a spring whose spring coefficient is smaller than that of the main spring 323.
 操作部の壁面には前後貫通して孔部が形成されており、この孔部の後面側(本体部の内側)に押圧力センサ320が取り付けられ、操作ボタン326が孔部を挿通して前端部が前方に突出して配設される。このような構成の操作部11Cでは、術者が操作ボタン326を押圧操作すると、まずサブスプリング327が弾性変形して操作ボタン326が後方に移動し(無効ストローク)、プランジャ322の前端が操作ボタン326の底部と係合するまで軽い操作力で移動する。プランジャ322の前端が操作ボタン326の底部と係合すると、以降は操作ボタン326を押圧操作する際の抵抗力が増大する。 A hole is formed through the wall surface of the operation portion in the front-rear direction. A pressing force sensor 320 is attached to the rear surface side (inside the main body portion) of the hole portion, and the operation button 326 is inserted through the hole portion to move the front end. A part protrudes ahead and is arrange | positioned. In the operation unit 11C having such a configuration, when the operator presses the operation button 326, first, the sub spring 327 is elastically deformed to move the operation button 326 backward (invalid stroke), and the front end of the plunger 322 is the operation button. It moves with a light operating force until it engages with the bottom of 326. When the front end of the plunger 322 is engaged with the bottom of the operation button 326, thereafter, the resistance force when the operation button 326 is pressed is increased.
 この抵抗力はメインスプリング323の反力(バネ力)であり、この反力に抗して操作ボタン326を後方に押圧するとメインスプリング323が弾性変形してプランジャ322が後方に移動する(有効ストローク)。このとき、プランジャ322の変位量が変位センサ325により検出され、検出された変位量とメインスプリング323のバネ係数とから押圧力が導出される。変位センサ325として、プランジャ322の変位量を電気的、磁気的、あるいは光学的に検出する形式のセンサを用いることができる。変位センサ325により検出された変位量とプランジャに作用する押圧力とは比例関係にあり、押圧力に応じた操作信号が押圧力センサ320から制御部8に出力される。 This resistance force is a reaction force (spring force) of the main spring 323. When the operation button 326 is pressed backward against this reaction force, the main spring 323 is elastically deformed and the plunger 322 moves backward (effective stroke). ). At this time, the displacement amount of the plunger 322 is detected by the displacement sensor 325, and the pressing force is derived from the detected displacement amount and the spring coefficient of the main spring 323. As the displacement sensor 325, a sensor of a type that detects the displacement amount of the plunger 322 electrically, magnetically, or optically can be used. The displacement amount detected by the displacement sensor 325 and the pressing force acting on the plunger are in a proportional relationship, and an operation signal corresponding to the pressing force is output from the pressing force sensor 320 to the control unit 8.
 術者は押圧操作する操作ボタン326の変位によって自己の操作を認識できるとともに、反力が変化することで無効ストロークから有効ストロークに変わる点を確実に認識でき、どの時点から自己の操作が制御部8に認識されるかを明確に把握することができる。また、有効ストロークに入る以前に無効ストローク領域があるため、術者が開閉操作を意図して操作ボタンを押圧しているか否かについても容易に判断することができる。 The surgeon can recognize his / her operation by the displacement of the operation button 326 to perform the pressing operation, and can surely recognize the point from the invalid stroke to the effective stroke by changing the reaction force. 8 can be clearly recognized. In addition, since there is an invalid stroke area before entering the effective stroke, it can be easily determined whether or not the operator is pressing the operation button for the opening / closing operation.
 次に、第4構成形態の操作部11Dについてについて図10を参照して説明する。本構成形態の操作部11Dは、操作検出器12として術者の押圧操作を検出するスイッチを用いて構成される。図10には、本構成形態における第1実施例の操作部11D1として、操作部の壁面に前後貫通する孔部を形成し、本体部1の内側にスイッチ420が取り付けた構成を例示する。スイッチ420としては、アクチュエータが軸であるプランジャタイプのリミットスイッチ、あるいはアクチュエータがヒンジタイプのリミットスイッチなどが好適に用いられる。図ではアクチュエータがプランジャタイプのリミットスイッチを例示しており、アクチュエータの軸が孔部を挿通して前端部が前方に突出して配設される。そして、アクチュエータが押圧操作されたときに操作信号がスイッチ420から制御部8に出力される。術者はクリック感でスイッチ動作を確認できるとともに、軽い操作力で処置部3を開閉作動させることができる。 Next, the operation unit 11D of the fourth configuration form will be described with reference to FIG. The operation unit 11 </ b> D of the present configuration form is configured using a switch that detects a surgeon's pressing operation as the operation detector 12. FIG. 10 illustrates a configuration in which a hole penetrating in the front-rear direction is formed in the wall surface of the operation unit and the switch 420 is attached to the inside of the main body unit 1 as the operation unit 11D 1 of the first example in this configuration. As the switch 420, a plunger-type limit switch whose actuator is a shaft, a limit switch whose actuator is a hinge type, or the like is preferably used. In the figure, the actuator is a plunger type limit switch, and the shaft of the actuator is inserted through the hole, and the front end portion projects forward. An operation signal is output from the switch 420 to the control unit 8 when the actuator is pressed. The surgeon can confirm the switch operation with a click feeling and can open and close the treatment section 3 with a light operating force.
 ここで、操作検出器としてスイッチ420を用いた場合、術者の押圧操作を検出することはできるが、押圧力に応じた操作信号を出力することはできない。このため、操作検出器に対する操作に応じて鉗子の把持力(気体の供給圧)を複数段階に設定する制御は困難のようにも思われる。しかし、以下のようなアルゴリズムを採用すれば上記のような設定が可能である。まず、スイッチ420では、出力される操作信号は基本的にオン信号またはオフ信号である。従って、操作検出器が押圧操作されていない場合には操作信号はオフ状態である。 Here, when the switch 420 is used as the operation detector, the operator's pressing operation can be detected, but an operation signal corresponding to the pressing force cannot be output. For this reason, it seems that it is difficult to control the forceps gripping force (gas supply pressure) in a plurality of stages according to the operation on the operation detector. However, if the following algorithm is adopted, the above setting is possible. First, in the switch 420, the operation signal output is basically an on signal or an off signal. Therefore, when the operation detector is not pressed, the operation signal is off.
 そこで、例えば、閉操作信号がオフ状態から連続したオン状態に切り替わったときには、電空レギュレータによる供給圧の設定を低圧に設定する。一方、閉操作信号がオフ状態から、予め設定した所定時間内(例えば0.5秒以内)にオン/オフ/オンになりその後連続したオン状態になったとき、すなわちダブルクリック後にオン状態になったようなときには、電空レギュレータによる供給圧の設定を高圧に設定する。このようなアルゴリズムを採用すれば、オン/オフ機能しか持たない安価なスイッチを用いて、鉗子の把持力を複数段に設定することができる。 Therefore, for example, when the closing operation signal is switched from the OFF state to the continuous ON state, the setting of the supply pressure by the electropneumatic regulator is set to a low pressure. On the other hand, when the closing operation signal is turned on / off / on within a predetermined time (for example, within 0.5 seconds) from the off state and then turned on continuously, that is, after the double click, the on state is turned on. In such a case, the supply pressure set by the electropneumatic regulator is set to a high pressure. If such an algorithm is adopted, the forceps gripping force can be set in a plurality of stages using an inexpensive switch having only an on / off function.
 次に、第5構成形態の操作部11Eについてについて図11を参照して説明する。操作部11Eは、操作検出器12として、術者の押圧操作を検出するスイッチ520と、術者の押圧力を検出する押圧力センサ530とから構成される。操作部の壁面には前後貫通して孔部が形成され、本体部1の内側にスイッチ520と押圧力センサ530とが取り付けられる。スイッチ520としては、アクチュエータがヒンジタイプのリミットスイッチが好適に用いられ、押圧力センサ530としては、第2構成形態第1実施例で説明した押圧力センサ220と同様に、感圧領域が円形(ボタン状)の押圧力センサが好適に用いられる。スイッチ520のアクチュエータの先端部には操作ボタン510が取り付けられ、この操作ボタン510が孔部を挿通して前端部が前方に突出して配設される。 Next, the operation unit 11E of the fifth configuration form will be described with reference to FIG. The operation unit 11E includes, as the operation detector 12, a switch 520 that detects the operator's pressing operation and a pressing force sensor 530 that detects the pressing force of the operator. A hole is formed through the wall surface of the operation portion in the front-rear direction, and a switch 520 and a pressing force sensor 530 are attached to the inside of the main body portion 1. As the switch 520, a limit switch having a hinge type actuator is preferably used, and the pressure sensor 530 has a circular pressure-sensitive area (like the pressure sensor 220 described in the second embodiment of the first configuration). A button-like pressing force sensor is preferably used. An operation button 510 is attached to the tip of the actuator of the switch 520. The operation button 510 is inserted through the hole, and the front end protrudes forward.
 本体部1の内部では、操作ボタン510の後方に位置して押圧力センサ530が取り付けられている。押圧力センサ530の前後方向の取り付け位置は、操作ボタン510が押圧されて後方に移動し、リミットスイッチの反転位置を僅かに超えたところで操作ボタンの後面(またはアクチュエータの後面)が押圧力センサ530に当接するように設定される。このような構成の操作部では、操作ボタン510を押圧操作すると、まず軽い操作力で操作ボタン510が後方に移動してスイッチ520の接点が反転する。このとき、スイッチ520の検出信号が制御部8に出力される。さらに押圧操作すると操作ボタン510の後面が押圧力センサ530に当接し操作反力が増大する。以降は押圧力センサ530により押圧力が検出され、押圧力に応じた操作信号が制御部8に出力される。 Inside the main body 1, a pressing force sensor 530 is attached behind the operation button 510. The position of the pressing force sensor 530 in the front-rear direction is moved backward when the operation button 510 is pressed, and the rear surface of the operation button (or the rear surface of the actuator) is slightly beyond the reverse position of the limit switch. It is set so as to contact the In the operation unit having such a configuration, when the operation button 510 is pressed, the operation button 510 is first moved backward with a light operation force, and the contact of the switch 520 is reversed. At this time, the detection signal of the switch 520 is output to the control unit 8. When the pressing operation is further performed, the rear surface of the operation button 510 comes into contact with the pressing force sensor 530 and the operation reaction force increases. Thereafter, the pressing force is detected by the pressing force sensor 530 and an operation signal corresponding to the pressing force is output to the control unit 8.
 術者は押圧操作する操作ボタン510のクリック感からスイッチ動作を認識できるとともに、反力が変化することで押圧力の検出領域に入ることを確実に認識でき、どの時点から自己の操作が制御部8に認識されるかを明確に把握することができる。また、押圧力の検出領域に入る以前にスイッチ520による操作検出が行われるため、術者が開閉操作を意図して操作ボタンを押圧しているか否かについても容易に判断することができる。 The surgeon can recognize the switch operation from the click feeling of the operation button 510 to perform the pressing operation, and can surely recognize that the reaction force changes to enter the detection area of the pressing force. 8 can be clearly recognized. In addition, since the operation detection by the switch 520 is performed before entering the detection area of the pressing force, it can be easily determined whether or not the operator is pressing the operation button for the opening / closing operation.
 従って、以上説明したような能動鉗子C1によれば、術者及び患者の安全を担保し、術者の負担を軽減した内視鏡下手術に好適な能動鉗子を提供することができる。 Therefore, according to the active forceps C1 as described above, it is possible to provide an active forceps suitable for endoscopic surgery that ensures the safety of the operator and the patient and reduces the burden on the operator.
(第2実施形態)
 次に、本発明の態様を例示する第2実施形態の能動鉗子C2について、図12~図14を参照して説明する。なお、本実施形態の能動鉗子C2は、操作部11の配置を含むハンドピースCaの形状、および強制開放弁がコントローラーCb側に設けられる点を除いて、基本的には、第1実施形態の能動鉗子C1と同様に構成される。そこで、以下では、第1実施形態の能動鉗子C1と同様の構成要素に同一の符号を付して重複説明を省略し、構成が相違する部分を中心に説明する。
(Second Embodiment)
Next, an active forceps C2 of a second embodiment illustrating an aspect of the present invention will be described with reference to FIGS. The active forceps C2 of this embodiment is basically the same as that of the first embodiment except that the shape of the handpiece Ca including the arrangement of the operation unit 11 and the forced release valve are provided on the controller Cb side. It is comprised similarly to the active forceps C1. Therefore, in the following description, the same components as those of the active forceps C1 of the first embodiment are denoted by the same reference numerals, and a duplicate description thereof is omitted.
 図12は能動鉗子C2の概要構成、図13はハンドピースCaの内部を表す断面図である。図12に示すように、能動鉗子C2は、術者が操作するハンドピースCaと、別体に設けられたコントローラーCbとからなり、両者が接続された状態で使用される。なお、第1実施形態と同様に、処置部3が設けられたシャフト部2の先端方向(図12および図13における左方向)を前方、シャフト部2の基端方向(同、右方向)を後方と称し、シャフト部2の軸線を挟んで本体部1が屈曲して延びる側(同、下方)を下方、反対側を上方と称して説明する。 12 is a schematic configuration of the active forceps C2, and FIG. 13 is a cross-sectional view showing the inside of the handpiece Ca. As shown in FIG. 12, the active forceps C2 includes a hand piece Ca operated by an operator and a controller Cb provided separately, and is used in a state where both are connected. As in the first embodiment, the distal end direction (left direction in FIGS. 12 and 13) of the shaft portion 2 provided with the treatment portion 3 is the front, and the proximal direction (same, right direction) of the shaft portion 2 is the forward direction. The side (hereinafter, the lower side) where the main body 1 is bent and extended across the axis of the shaft portion 2 will be referred to as the lower side, and the opposite side will be referred to as the upper side.
 ハンドピースCaは、各部材が取り付けられるベースフレームである本体部1と、本体部1から前方に延びるシャフト部2と、シャフト部2の先端に開閉可能に設けられた処置部3と、処置部3を開閉する人工筋ユニット40などから構成される。コントローラーCbは、人工筋ユニット40に対して気体の供給/排出を行う空圧ユニット50と、ハンドピースCaの操作検出器12(12a,12b)から出力された操作信号に基づいて空圧ユニット50に指令信号を出力し、空圧ユニット50の作動を制御することにより処置部3の開閉作動を制御する制御部8などを備えて構成される。 The handpiece Ca includes a main body portion 1 that is a base frame to which each member is attached, a shaft portion 2 that extends forward from the main body portion 1, a treatment portion 3 that can be opened and closed at the tip of the shaft portion 2, and a treatment portion. 3 includes an artificial muscle unit 40 that opens and closes 3. The controller Cb includes a pneumatic unit 50 that supplies / discharges gas to / from the artificial muscle unit 40 and a pneumatic unit 50 based on operation signals output from the operation detector 12 (12a, 12b) of the handpiece Ca. The control unit 8 is configured to output a command signal to control the opening / closing operation of the treatment unit 3 by controlling the operation of the pneumatic unit 50.
 本体部1は、前端にシャフト部2が取り付けられ前後に延びる円柱状ないし楕円柱状のグリップ16と、グリップ16の後部の径が滑らかに縮小しつつ斜め下方に屈曲して形成されて後端から信号ケーブル19およびチューブ59が導出されるコネクタ部18とから構成される。本実施形態ではコネクタ部18をグリップ16の後端に着脱可能とした構成を例示する。図12および図13には、グリップ16の後部を下方に45度屈曲して形成した構成を例示する。グリップ16には、下面を中心とする外周面に、術者にとって握りやすく把持位置がずれたり脱落したりしないように山形の指掛け突起16aが複数形成されている。 The main body 1 is formed with a cylindrical or elliptical columnar grip 16 having a shaft portion 2 attached to the front end and extending in the front-rear direction, and a rear portion of the grip 16 being bent in a slanting downward direction while being smoothly reduced in diameter. The signal cable 19 and the connector part 18 from which the tube 59 is led out are configured. In the present embodiment, a configuration in which the connector portion 18 is detachable from the rear end of the grip 16 is illustrated. 12 and 13 illustrate a configuration in which the rear portion of the grip 16 is bent downward by 45 degrees. The grip 16 is formed with a plurality of chevron-shaped finger hooking projections 16a on the outer peripheral surface centering on the lower surface so that the operator can easily grip the grip 16 so that the gripping position does not shift or fall off.
 グリップ16の前方上部に操作部11が設けられている。操作部11には閉操作検出器12aと開操作検出器12bとが前後に並んで取り付けられている。操作部11は、既述した第1~第5構成形態の操作部(11A~11E)のいずれでも適用することができる。ここでは、操作検出器12(12a,12b)として術者の押圧操作を検出するスイッチを用いた第4構成形態(11D)の操作部を適用し、図12および図13には、スイッチとして防塵・防滴性を備えたシールタイプのタクタイルスイッチ(tactile switch、タクティルスイッチあるいはタクトスイッチなどとも称される)を用いた構成を、第2実施例の操作部11D2として示す。閉操作検出器12aおよび開操作検出器12bの回りには、凸状の保護壁11gが両検出器のプランジャの周囲を囲むように突出成型されており、術者がグリップ16を把持したときに術者の意図に反してスイッチが動作するようなことがないようになっている。 An operation unit 11 is provided at an upper front portion of the grip 16. A closing operation detector 12a and an opening operation detector 12b are attached to the operation unit 11 side by side. As the operation unit 11, any of the operation units (11A to 11E) of the first to fifth configuration modes described above can be applied. Here, the operation unit of the fourth configuration form (11D) using a switch for detecting the operator's pressing operation is applied as the operation detector 12 (12a, 12b), and in FIG. 12 and FIG. A configuration using a seal-type tactile switch (also referred to as a tactile switch, a tactile switch, or a tact switch) having a drip-proof property is shown as the operation unit 11D 2 of the second embodiment. Around the closing operation detector 12a and the opening operation detector 12b, a convex protective wall 11g is projected so as to surround the periphery of the plungers of both detectors, and when the operator holds the grip 16. The switch does not operate against the surgeon's intention.
 本体部1の内部に、人工筋ユニット40が前後に延びて取り付けられている。人工筋ユニット40の基本的な構成は、既に図2および図5を参照して説明した人工筋ユニット40と同様である。人工筋ユニット40の前端側は、摺動部材42に連結金具44および端末金具23を介してシャフト部2のプッシュプルワイヤ22が接続され(図1および図5の関連説明を参照)、人工筋ユニット40の後端側では、エンドキャップ47に継手部材47bが接続される。 The artificial muscle unit 40 is attached to the inside of the main body 1 so as to extend in the front-rear direction. The basic configuration of the artificial muscle unit 40 is the same as that of the artificial muscle unit 40 already described with reference to FIGS. On the front end side of the artificial muscle unit 40, the push-pull wire 22 of the shaft portion 2 is connected to the sliding member 42 via the coupling fitting 44 and the terminal fitting 23 (see the related description of FIGS. 1 and 5). A joint member 47 b is connected to the end cap 47 on the rear end side of the unit 40.
 コネクタ部18には、閉操作検出器12aおよび開操作検出器12bと制御部8とを結ぶ信号ケーブル19を係脱可能に接続する電気コネクタ18aと、継手部材47bと空圧ユニット50側から延びるチューブ59を係脱可能に接続する空圧コネクタ18bとが設けられている。グリップ16の後端には雄ねじ部が形成され、コネクタ部18におけるナット部材18cの前端には雌ねじ部が形成されている。そのため、電気コネクタ18aおよび空圧コネクタ18bを接続し、ナット部材18c前端の雌ねじ部をグリップ16後端の雄ねじ部に螺合締結することによって、閉操作検出器12aおよび開操作検出器12bと制御部8とが電気的に接続され、人工筋ユニット40と空圧ユニット50とが空圧的に接続された状態でロックされる。 The connector portion 18 extends from the electrical connector 18a for releasably connecting the signal cable 19 connecting the closing operation detector 12a and the opening operation detector 12b to the control unit 8, and the joint member 47b and the pneumatic unit 50 side. A pneumatic connector 18b for detachably connecting the tube 59 is provided. A male screw portion is formed at the rear end of the grip 16, and a female screw portion is formed at the front end of the nut member 18 c in the connector portion 18. Therefore, the electrical connector 18a and the pneumatic connector 18b are connected, and the female screw portion at the front end of the nut member 18c is screwed and fastened to the male screw portion at the rear end of the grip 16, thereby controlling the closing operation detector 12a and the opening operation detector 12b. The part 8 is electrically connected, and the artificial muscle unit 40 and the pneumatic unit 50 are locked in a pneumatically connected state.
 能動鉗子C2のブロック図を図14に示す。図6と図14とを対比して理解されるように、本実施形態で例示する能動鉗子C2は、基本的な構成において第1実施形態の能動鉗子C1と同様である。一方、以下の点において第1実施形態の能動鉗子C1と相違する。 A block diagram of the active forceps C2 is shown in FIG. As can be understood by comparing FIG. 6 and FIG. 14, the active forceps C2 exemplified in the present embodiment is the same as the active forceps C1 of the first embodiment in the basic configuration. On the other hand, it differs from the active forceps C1 of the first embodiment in the following points.
 まず、強制開放弁49はハンドピースCa側ではなくコントローラーCb側に配設される。これにより、ハンドピースCaがさらに小型軽量化され、取り扱いやすく術者の疲労をさらに低減した能動鉗子が実現される。 First, the forcible release valve 49 is disposed not on the handpiece Ca side but on the controller Cb side. Thereby, the handpiece Ca is further reduced in size and weight, and an active forceps that is easy to handle and further reduces the operator's fatigue is realized.
 コントローラーCbには、第1実施形態の空圧ユニットと同様に、レギュレータ52、電空レギュレータ53、流路切換弁55などが設けられるとともに、人工筋ユニット40に供給する気体の圧力を調整することにより、鉗子が閉じたときに処置部3に生じる把持力を調整設定する把持力調整器54と、人工筋ユニット40に供給する気体の流量を調整することにより、鉗子の閉止速度を調整設定する速度調整器56とが設けられる。図14には、把持力調整器54として可変抵抗器を用い、速度調整器56としてスピードコントローラーを用いた構成を例示する。把持力調整器54は制御部8に接続されており、術者が調整設定した把持力に応じた圧力設定信号が制御部8に出力される。速度調整器56は流路切換弁55と人工筋ユニット40との間に介挿される。 Similarly to the pneumatic unit of the first embodiment, the controller Cb is provided with a regulator 52, an electropneumatic regulator 53, a flow path switching valve 55, and the like, and adjusts the pressure of gas supplied to the artificial muscle unit 40. By adjusting the gripping force adjuster 54 that adjusts and sets the gripping force generated in the treatment section 3 when the forceps are closed, and the flow rate of the gas supplied to the artificial muscle unit 40 is adjusted and set. A speed regulator 56 is provided. FIG. 14 illustrates a configuration in which a variable resistor is used as the gripping force adjuster 54 and a speed controller is used as the speed adjuster 56. The gripping force adjuster 54 is connected to the control unit 8, and a pressure setting signal corresponding to the gripping force adjusted and set by the surgeon is output to the control unit 8. The speed regulator 56 is inserted between the flow path switching valve 55 and the artificial muscle unit 40.
 制御部8は、把持力調整器54から出力された圧力設定信号に応じた指令信号を電空レギュレータ53に出力し、操作検出器12a,12bにおいて検出された操作信号に基づいた指令信号を流路切換弁55に出力して、人工筋ユニット40への気体の供給/遮断/開放を以下のように制御する。 The control unit 8 outputs a command signal corresponding to the pressure setting signal output from the gripping force adjuster 54 to the electropneumatic regulator 53, and flows a command signal based on the operation signal detected by the operation detectors 12a and 12b. The gas is output to the path switching valve 55 and the supply / blocking / opening of the gas to the artificial muscle unit 40 is controlled as follows.
 閉操作検出器12aおよび開操作検出器12bがいずれも押圧操作されていないとき、すなわち、閉操作検出器12aから出力される閉操作信号および開操作検出器12bから出力される開操作信号のいずれもがオフの状態のときには、制御部8は電空レギュレータ53および流路切換弁55に指令信号を出力しない。そのため、空圧ユニット50側の空圧回路および人工筋ユニット40側の空圧回路は遮断されて各々閉止された状態に保持される。このとき、ハンドピースCa先端の処置部3は従前の状態、例えば処置部材31,32が相互に密着して鉗子が閉じた状態に保持される。 When neither the closing operation detector 12a nor the opening operation detector 12b is pressed, that is, either the closing operation signal output from the closing operation detector 12a or the opening operation signal output from the opening operation detector 12b. The control unit 8 does not output a command signal to the electropneumatic regulator 53 and the flow path switching valve 55 when the circuit is off. For this reason, the pneumatic circuit on the pneumatic unit 50 side and the pneumatic circuit on the artificial muscle unit 40 side are blocked and held in a closed state. At this time, the treatment portion 3 at the tip of the handpiece Ca is held in a conventional state, for example, the treatment members 31 and 32 are in close contact with each other and the forceps are closed.
 この状態から、開操作検出器12bが押圧操作されて開操作信号がオンになると、制御部8は、開操作検出器12bから出力された開操作信号に基づいて流路切換弁55に開指令信号を出力する。これにより、流路切換弁55のスプールが開位置に移動してAポートとRポートとが接続され、人工筋ユニット40~流路切換弁55に保持されていた気体が排気される。そのため、ゴム人工筋41は図5(b)の状態から図5(a)の状態に変化し、処置部3では処置部材31,32が密着した閉状態から、鉗子が開いて処置部材31,32が離間した開状態に変化する。 When the opening operation detector 12b is pressed from this state and the opening operation signal is turned on, the control unit 8 instructs the flow path switching valve 55 to open based on the opening operation signal output from the opening operation detector 12b. Output a signal. Thereby, the spool of the flow path switching valve 55 moves to the open position, the A port and the R port are connected, and the gas held in the artificial muscle unit 40 to the flow path switching valve 55 is exhausted. Therefore, the artificial rubber muscle 41 changes from the state shown in FIG. 5B to the state shown in FIG. 5A. In the treatment section 3, the forceps are opened from the closed state where the treatment members 31 and 32 are in close contact with each other. 32 changes to the separated open state.
 開操作検出器12bへの押圧操作が解除され開操作信号がオフになると、制御部8は流路切換弁55に対する開指令信号に対する指令信号をオフにする。これにより、流路切換弁55のスプールが中立位置に戻ってAポート(機器接続ポート)、Pポート(吸気ポート)およびRポート(排気ポート)がいずれも遮断状態になり、処置部3は押圧操作を解除したときの状態、すなわち処置部材31,32が離間して鉗子が開いた開状態に保持される。鉗子が完全に開ききらない状態で開操作検出器12bに対する押圧力を解除した場合も同様であり、処置部材31,32の相対角が任意角度の開状態で保持される。 When the pressing operation to the opening operation detector 12b is released and the opening operation signal is turned off, the control unit 8 turns off the command signal for the opening command signal for the flow path switching valve 55. As a result, the spool of the flow path switching valve 55 returns to the neutral position, and the A port (device connection port), P port (intake port), and R port (exhaust port) are all cut off, and the treatment section 3 is pressed. When the operation is released, that is, the treatment members 31, 32 are separated from each other, and the forceps are opened. The same applies to the case where the pressing force against the opening operation detector 12b is released in a state where the forceps are not fully opened, and the relative angles of the treatment members 31 and 32 are held in an open state at an arbitrary angle.
 閉操作検出器12aが押圧操作されて閉操作信号がオンになると、制御部8は、開操作検出器12aから出力された開操作信号に基づいて流路切換弁55に閉指令信号を出力する。また、把持力調整器54において設定された把持力に応じた供給圧Pに設定する閉圧力指令信号を電空レギュレータ53に出力する。これにより、流路切換弁55のスプールが閉位置に移動して、PポートとAポートとが接続され、空圧ユニット50から把持力調整器54において設定された把持力に応じた供給圧P、速度調整器56において設定された閉止速度に応じた流量で気体が人工筋ユニット40に供給される。 When the closing operation detector 12a is pressed and the closing operation signal is turned on, the control unit 8 outputs a closing command signal to the flow path switching valve 55 based on the opening operation signal output from the opening operation detector 12a. . Further, a closing pressure command signal set to the supply pressure P corresponding to the gripping force set in the gripping force adjuster 54 is output to the electropneumatic regulator 53. As a result, the spool of the flow path switching valve 55 moves to the closed position, the P port and the A port are connected, and the supply pressure P corresponding to the gripping force set in the gripping force adjuster 54 from the pneumatic unit 50. The gas is supplied to the artificial muscle unit 40 at a flow rate corresponding to the closing speed set in the speed regulator 56.
 そのため、ゴム人工筋41は図5(a)の状態から図5(b)の状態に変化し、処置部3では処置部材31,32が離間した開状態から、処置部材31,32が密着しあるいは両部材間に生体組織等を挟み込んだ閉状態に変化する。このとき、処置部材31,32が閉止方向に揺動する速度は速度調整器56において設定された閉止速度となる。また、処置部材31,32が挟み込む力、すなわち処置部3に作用する力は把持力調整器54において設定された把持力となる。そのため、術者は速度調整器56を調整することによって処置部3の閉止速度を調整することができ、把持力調整器54を調整することによって処置部3に作用する把持力を適宜に調整することができる。 For this reason, the artificial rubber muscle 41 changes from the state of FIG. 5A to the state of FIG. 5B, and the treatment members 31 and 32 are brought into close contact with each other from the open state in which the treatment members 31 and 32 are separated from each other. Or it changes to the closed state which pinched | interposed the biological tissue etc. between both members. At this time, the speed at which the treatment members 31 and 32 swing in the closing direction is the closing speed set in the speed regulator 56. Further, the force between the treatment members 31 and 32, that is, the force acting on the treatment portion 3 becomes the gripping force set in the gripping force adjuster 54. Therefore, the operator can adjust the closing speed of the treatment section 3 by adjusting the speed adjuster 56, and appropriately adjust the gripping force acting on the treatment section 3 by adjusting the gripping force adjuster 54. be able to.
 ここで、把持力調整器54の設定に応じて設定される気体の供給圧Pは、図7(b)に例示したように、P0~P4の間で連続的に変化するように設定することができる。また、把持力調整器54としてトグルスイッチやロッカースイッチ等を用い、スイッチの状態に応じて供給圧PがHiとLowの2段階に変化するように設定することができ、あるいは、複数段のロータリースイッチ等を用い、つまみの角度位置に応じて供給圧Pが複数段階に変化するように設定することもできる。 Here, the gas supply pressure P set according to the setting of the gripping force adjuster 54 is set so as to continuously change between P 0 and P 4 as illustrated in FIG. 7B. can do. In addition, a toggle switch, a rocker switch, or the like can be used as the gripping force adjuster 54, and the supply pressure P can be set to change in two stages of Hi and Low depending on the state of the switch, or a multi-stage rotary Using a switch or the like, the supply pressure P can be set to change in a plurality of stages according to the angular position of the knob.
 処置部3が生体組織等を把持した状態を維持するには、閉操作検出器12aへの押圧力を解除すればよい。このとき、流路切換弁55のスプールは中立位置に戻ってAポート、PポートおよびRポートがいずれも遮断状態になり、人工筋ユニット40側の空圧回路が閉止された状態に保持される。そのため、処置部3は閉操作検出器12aに対する押圧力を解除したときの状態、すなわち生体組織等を所定の把持力で把持した状態に保持される。鉗子が完全に閉じきらない状態で閉操作検出器12aに対する押圧力を解除した場合も同様であり、処置部材31,32を任意角度の閉状態で保持することができる。 In order to maintain the state in which the treatment unit 3 grips the living tissue or the like, the pressing force to the closing operation detector 12a may be released. At this time, the spool of the flow path switching valve 55 returns to the neutral position, and all of the A port, P port, and R port are cut off, and the pneumatic circuit on the artificial muscle unit 40 side is kept closed. . Therefore, the treatment section 3 is held in a state when the pressing force to the closing operation detector 12a is released, that is, a state in which a living tissue or the like is gripped with a predetermined gripping force. The same applies when the pressing force applied to the closing operation detector 12a is released in a state where the forceps are not completely closed, and the treatment members 31 and 32 can be held in a closed state at an arbitrary angle.
 以上では、処置部3で発生する把持力を調整する把持力調整手段として、把持力調整器54と電空レギュレータ53とを用いた構成を説明したが、電空レギュレータに代えてマニュアル操作のレギュレータを設け、気体の供給圧Pをレギュレータにより直接調整設定するように構成しても良い。また、速度調整器56としてスピードコントローラー(チェック弁付き流量調整弁)を用い、処置部3の閉止速度を調整する構成を例示したが、スピードコントローラーに代えてチェック弁を内蔵しない流量調整弁を設け、処置部3の閉止速度および開放速度の両方を調整するように構成しても良い。 The configuration using the gripping force adjuster 54 and the electropneumatic regulator 53 as the gripping force adjusting means for adjusting the gripping force generated by the treatment unit 3 has been described above. However, a manual operation regulator is used instead of the electropneumatic regulator. And the gas supply pressure P may be directly adjusted and set by a regulator. In addition, the speed controller (flow control valve with a check valve) is used as the speed adjuster 56, and the configuration for adjusting the closing speed of the treatment unit 3 is illustrated. However, a flow control valve that does not include a check valve is provided instead of the speed controller. In addition, both the closing speed and the opening speed of the treatment unit 3 may be adjusted.
 また、処置部3の開閉速度を調整する速度調整手段は、流路切換弁55として電磁比例制御弁を用い(あるいは流路切換弁55とは別に電磁比例の流量制御弁を設け)、速度調整器56として可変抵抗器や上記のような各種スイッチを用いて構成することもできる。制御部8は開操作検出器12b/閉操作検出器12a,から開操作信号/閉操作信号が出力されたときに、速度調整器56において設定された開閉速度に応じたバルブ開度となる開指令信号/閉止例信号を流路切換弁55に出力し、設定された開閉速度に応じた流量で気体を排出/供給させる。電磁比例動作は閉方向のみとしても良い。 The speed adjusting means for adjusting the opening / closing speed of the treatment section 3 uses an electromagnetic proportional control valve as the flow path switching valve 55 (or an electromagnetic proportional flow control valve is provided separately from the flow path switching valve 55) to adjust the speed. The device 56 may be configured using a variable resistor or various switches as described above. When the opening operation signal / closing operation signal is output from the opening operation detector 12b / closing operation detector 12a, the control unit 8 opens the valve according to the opening / closing speed set in the speed regulator 56. The command signal / closing example signal is output to the flow path switching valve 55, and the gas is discharged / supplied at a flow rate corresponding to the set opening / closing speed. The electromagnetic proportional operation may be only in the closing direction.
 さらに、操作検出器12(12a,12b)としてタクタイルスイッチを用いた構成形態を例示したが、操作検出器12は第1実施形態の能動鉗子C1の操作部11(11A~11E)について説明したように、種々の構成形態のものを適用することができ、各構成形態について説明したと同様の効果を得ることができる。また、気体の供給圧を調整設定することにより把持力を調整設定可能な構成として、人工筋ユニットを用いた構成を例示したが、スプリング内蔵型のピストンや複動型のピストン、エアモータなど他の形式の空圧アクチュエータを用いて構成しても良い。 Further, the configuration form using the tactile switch as the operation detector 12 (12a, 12b) has been exemplified, but the operation detector 12 has been described for the operation unit 11 (11A to 11E) of the active forceps C1 of the first embodiment. Moreover, the thing of a various structure form can be applied and the effect similar to having demonstrated about each structure form can be acquired. In addition, the configuration using the artificial muscle unit has been exemplified as a configuration in which the gripping force can be adjusted and set by adjusting and setting the supply pressure of the gas. However, other configurations such as a piston with a built-in spring, a double-acting piston, an air motor, etc. You may comprise using a pneumatic actuator of a type.
 以上説明した第2実施形態の能動鉗子C2によれば、第1実施形態の能動鉗子C1(各構成形態を含む)について既述したのと同様の効果を得ることができる。さらに、本実施形態の能動鉗子C2では、以下のような効果を得ることができる。 According to the active forceps C2 of the second embodiment described above, the same effects as described above for the active forceps C1 of the first embodiment (including each configuration form) can be obtained. Furthermore, with the active forceps C2 of this embodiment, the following effects can be obtained.
 まず、コントローラーCbに、人工筋ユニット40に供給する気体の圧力を調整する圧力調整手段として、電空レギュレータ53と把持力調整器54とが設けられている。そのため、術者は把持力調整器54を調整することによって、把持する生体組織の部位や目視観察される組織の状態に応じて、把持力を弱くして優しく把持したり、把持力を強くして強固に固定したり、所望の把持力に予め調整設定することができる。また、コントローラーCbに、人工筋ユニット40に供給する気体の流量を調整する流量調整手段として速度調整器56が設けられている。そのため、術者は速度調整器56を調整することによって処置部3をゆっくり閉動作させたり、急速に閉動作させたりすることができる。 First, the controller Cb is provided with an electropneumatic regulator 53 and a gripping force adjuster 54 as pressure adjusting means for adjusting the pressure of the gas supplied to the artificial muscle unit 40. Therefore, the operator adjusts the gripping force adjuster 54 so that the gripping force is weakened and gently gripped according to the part of the biological tissue to be gripped and the state of the tissue that is visually observed. And can be adjusted and set in advance to a desired gripping force. The controller Cb is provided with a speed regulator 56 as a flow rate adjusting means for adjusting the flow rate of the gas supplied to the artificial muscle unit 40. Therefore, the surgeon can adjust the speed adjuster 56 so that the treatment section 3 is slowly closed or rapidly closed.
 また、ハンドピースCaの本体部1を、前後に延びる略円筒形状のグリップ16と、グリップ16の後部が縮径されるとともにシャフト部2の軸線に対して斜め下方に傾斜するコネクタ部18とにより構成し、操作部11を、グリップ16の前方上部に設けた構成によれば、内視鏡下手術において取り扱いやすく、操作性が良好な能動鉗子を提供することができる。また、操作検出器12(12a,12b)としてタクトスイッチを用いたことにより、術者は自らの行った操作をクリック感によって明確に自認することができ、これにより、安全性が高く操作性が良好な能動鉗子を提供することができる。 Further, the main body portion 1 of the handpiece Ca includes a substantially cylindrical grip 16 extending in the front-rear direction and a connector portion 18 whose rear portion of the grip 16 is reduced in diameter and inclined obliquely downward with respect to the axis of the shaft portion 2. According to the configuration and the configuration in which the operation unit 11 is provided at the front upper part of the grip 16, it is possible to provide an active forceps that is easy to handle in an endoscopic operation and has good operability. Further, by using the tact switch as the operation detector 12 (12a, 12b), the operator can clearly recognize the operation performed by the user with a sense of click, thereby providing high safety and operability. Good active forceps can be provided.
C1 第1実施形態の能動鉗子
C2 第1実施形態の能動鉗子
Ca ハンドピース
Cb コントローラー
1 本体部
2 シャフト部
3 処置部
8 制御部
11 操作部(11A~E 第1~第5構成形態の操作部、下添え字は実施例)
12 操作検出器(12a 閉操作検出器,12b開操作検出器)
16 グリップ
18 コネクタ部
40 人工筋ユニット
50 空圧ユニット
53 電空レギュレータ(圧力調整手段)
54 把持力調整器(圧力調整手段)
56 速度調整器(流量調整手段)
59 チューブ
120 押圧力センサ
220 押圧力センサ
240 押圧力センサ
260 押圧力センサ
320 押圧力センサ
530 押圧力センサ
C1 Active forceps C2 of the first embodiment Active forceps Ca of the first embodiment Handpiece Cb Controller 1 Main body portion 2 Shaft portion 3 Treatment portion 8 Control portion 11 Operation portion (11A to E Operation portions of the first to fifth configuration forms The subscript is an example)
12 operation detectors (12a closing operation detector, 12b opening operation detector)
16 Grip 18 Connector 40 Artificial muscle unit 50 Pneumatic unit 53 Electro-pneumatic regulator (pressure adjusting means)
54 Gripping force adjuster (pressure adjusting means)
56 Speed regulator (flow rate adjustment means)
59 Tube 120 Pushing force sensor 220 Pushing force sensor 240 Pushing force sensor 260 Pushing force sensor 320 Pushing force sensor 530 Pushing force sensor

Claims (10)

  1.  術者の操作を検出する操作検出器が設けられた本体部と、前記本体部から延びるシャフト部と、前記シャフト部の先端に開閉可能に設けられた処置部と、前記処置部を開閉駆動する駆動手段と、前記操作検出器から出力された操作信号に基づいて指令信号を出力し前記駆動手段の作動を制御する制御部とを備え、
     前記駆動手段は、前記処置部を開閉させる空圧アクチュエータと、前記指令信号に基づいて前記空圧アクチュエータに気体を供給する空圧ユニットとを備え、
     前記空圧アクチュエータは前記本体部に配設され、前記空圧ユニットは前記本体部と分離して別体のコントローラーに配設されることを特徴とする能動鉗子。
    A main body provided with an operation detector for detecting the operation of the surgeon, a shaft extending from the main body, a treatment part provided at the tip of the shaft so as to be openable and closable, and opening and closing the treatment part A drive unit and a control unit that outputs a command signal based on the operation signal output from the operation detector and controls the operation of the drive unit;
    The drive means includes a pneumatic actuator that opens and closes the treatment portion, and a pneumatic unit that supplies gas to the pneumatic actuator based on the command signal,
    The active forceps, wherein the pneumatic actuator is disposed in the main body, and the pneumatic unit is disposed in a separate controller separately from the main body.
  2.  前記コントローラーに、前記空圧アクチュエータに供給する気体の圧力を調整設定する圧力調整手段を備えることを特徴とする請求項1に記載の能動鉗子。 The active forceps according to claim 1, wherein the controller includes pressure adjusting means for adjusting and setting a pressure of a gas supplied to the pneumatic actuator.
  3.  前記圧力調整手段は、前記制御部から出力される指令信号に応じて前記空圧アクチュエータに供給する気体の圧力を設定する電空レギュレータを有し、
     前記制御部は、前記操作検出器から出力された操作信号に基づいた指令信号を前記電空レギュレータに出力して、前記空圧アクチュエータに供給する気体の圧力を制御することを特徴とする請求項2に記載の能動鉗子。
    The pressure adjusting unit includes an electropneumatic regulator that sets a pressure of gas supplied to the pneumatic actuator in accordance with a command signal output from the control unit,
    The control unit outputs a command signal based on an operation signal output from the operation detector to the electropneumatic regulator to control a pressure of gas supplied to the pneumatic actuator. 2. Active forceps according to 2.
  4.  前記操作検出器は、術者の押圧力を検出する押圧力センサであり、
     前記制御部は、前記操作検出器から出力された術者の押圧力に応じた操作信号に基づいた指令信号を前記電空レギュレータに出力することを特徴とする請求項3に記載の能動鉗子。
    The operation detector is a pressing force sensor that detects the pressing force of the surgeon,
    4. The active forceps according to claim 3, wherein the control unit outputs a command signal based on an operation signal corresponding to an operator's pressing force output from the operation detector to the electropneumatic regulator. 5.
  5.  前記制御部は、前記操作検出器から出力された操作信号が予め設定された所定の押圧力以上の信号であるときに、前記空圧ユニットに指令信号を出力して前記空圧アクチュエータに気体を供給させることを特徴とする請求項4に記載の能動鉗子。 The control unit outputs a command signal to the pneumatic unit to supply gas to the pneumatic actuator when the operation signal output from the operation detector is a signal equal to or higher than a predetermined pressing force set in advance. The active forceps according to claim 4, wherein the active forceps is supplied.
  6.  前記圧力調整手段は、術者が予め調整設定した圧力に応じた圧力設定信号を出力する圧力調整器と、前記制御部から出力される指令信号に応じて前記空圧アクチュエータに供給する気体の圧力を設定する電空レギュレータとを有し、
     前記制御部は、前記圧力調整器から出力された前記圧力設定信号に基づいた指令信号を前記電空レギュレータに出力して、前記空圧アクチュエータに供給する気体の圧力を制御することを特徴とする請求項2に記載の能動鉗子。
    The pressure adjusting means includes a pressure regulator that outputs a pressure setting signal corresponding to a pressure adjusted and set in advance by an operator, and a gas pressure supplied to the pneumatic actuator according to a command signal output from the control unit And an electropneumatic regulator to set
    The control unit outputs a command signal based on the pressure setting signal output from the pressure regulator to the electropneumatic regulator, and controls the pressure of gas supplied to the pneumatic actuator. The active forceps according to claim 2.
  7.  前記コントローラーに、前記空圧アクチュエータに供給する気体の流量を調整設定する流量調整手段を設けたことを特徴とする請求項1~6のいずれか一項に記載の能動鉗子。 The active forceps according to any one of claims 1 to 6, wherein the controller is provided with a flow rate adjusting means for adjusting and setting a flow rate of a gas supplied to the pneumatic actuator.
  8.  前記空圧アクチュエータは、気体の供給/排出に応じて変形し前記処置部を開閉させる人工筋ユニットであることを特徴とする請求項1~7のいずれか一項に記載の能動鉗子。 The active forceps according to any one of claims 1 to 7, wherein the pneumatic actuator is an artificial muscle unit that is deformed according to supply / discharge of gas to open and close the treatment portion.
  9.  前記操作検出器はタクタイルスイッチであることを特徴とする請求項1~8のいずれか一項に記載の能動鉗子。 The active forceps according to any one of claims 1 to 8, wherein the operation detector is a tactile switch.
  10.  前記本体部は、前端部に前記シャフト部が取り付けられ前記シャフト部が延びる前後方向に延びる円柱状ないし楕円柱状のグリップと、前記グリップの後部が縮径されるとともに前記シャフト部の軸線に対して傾斜して形成されて後端から前記空圧アクチュエータと前記空圧ユニットとを結ぶチューブが導出されるコネクタ部とを有し、
     前記操作部は、前記シャフト部の軸線を挟んで前記コネクタ部と反対側の前記グリップの前方部に設けられることを特徴とする請求項1~9のいずれか一項に記載の能動鉗子。
     
    The main body portion has a cylindrical or elliptical columnar grip extending in the front-rear direction in which the shaft portion is attached to the front end portion and the shaft portion is extended, and the rear portion of the grip is reduced in diameter and with respect to the axis of the shaft portion Having a connector part that is formed to be inclined and from which a tube connecting the pneumatic actuator and the pneumatic unit is led out from the rear end;
    The active forceps according to any one of claims 1 to 9, wherein the operation portion is provided in a front portion of the grip opposite to the connector portion across an axis of the shaft portion.
PCT/JP2015/067512 2014-06-19 2015-06-17 Active forceps WO2015194603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529414A JP6618468B2 (en) 2014-06-19 2015-06-17 Active forceps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-126473 2014-06-19
JP2014126473 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015194603A1 true WO2015194603A1 (en) 2015-12-23

Family

ID=54935583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067512 WO2015194603A1 (en) 2014-06-19 2015-06-17 Active forceps

Country Status (2)

Country Link
JP (1) JP6618468B2 (en)
WO (1) WO2015194603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197935A1 (en) * 2017-04-28 2018-11-01 Saxena Kuldeep Kuldeep Automated forceps expansion system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502578A (en) * 1995-12-29 2000-03-07 ガイラス・メディカル・リミテッド Electrosurgical instruments and electrosurgical electrode assemblies
JP2001276091A (en) * 2000-03-29 2001-10-09 Toshiba Corp Medical manipulator
JP2010156352A (en) * 2008-12-26 2010-07-15 Olympus Corp Actuator having small diameter
JP2010221399A (en) * 2009-01-13 2010-10-07 Panasonic Corp Control device, control method, and control program of elastic body actuator
JP2012125847A (en) * 2010-12-13 2012-07-05 Canon Inc Joint driving device
JP2014090800A (en) * 2012-11-01 2014-05-19 Tokyo Institute Of Technology Forceps manipulator, and forceps system comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964835B2 (en) * 2008-07-02 2012-07-04 シャープ株式会社 Two-dimensional signal conversion apparatus, two-dimensional signal conversion method, control program, and computer-readable recording medium recording the control program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502578A (en) * 1995-12-29 2000-03-07 ガイラス・メディカル・リミテッド Electrosurgical instruments and electrosurgical electrode assemblies
JP2001276091A (en) * 2000-03-29 2001-10-09 Toshiba Corp Medical manipulator
JP2010156352A (en) * 2008-12-26 2010-07-15 Olympus Corp Actuator having small diameter
JP2010221399A (en) * 2009-01-13 2010-10-07 Panasonic Corp Control device, control method, and control program of elastic body actuator
JP2012125847A (en) * 2010-12-13 2012-07-05 Canon Inc Joint driving device
JP2014090800A (en) * 2012-11-01 2014-05-19 Tokyo Institute Of Technology Forceps manipulator, and forceps system comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018197935A1 (en) * 2017-04-28 2018-11-01 Saxena Kuldeep Kuldeep Automated forceps expansion system

Also Published As

Publication number Publication date
JPWO2015194603A1 (en) 2017-04-20
JP6618468B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US11571209B2 (en) Powered surgical instrument with pressure sensitive motor speed control
KR102561853B1 (en) ultrasonic robot tool operation
US3494363A (en) Control for devices used in surgery
EP1736104B1 (en) Surgical instrument having fluid actuated opposing jaws
US11234781B2 (en) Dynamic control of surgical instruments in a surgical robotic system
AU682710B2 (en) Articulable socket joint assembly for an endoscopic instrument and surgical fastener track therefor
KR102222672B1 (en) Systems for detecting clamping or firing failure
US20170215944A1 (en) Jaw aperture position sensor for electrosurgical forceps
JP2014527422A (en) Laparoscopic surgery
BR102013006711A2 (en) Pencil handle surgical instrument activation feature
WO2016111755A1 (en) Combination medical device
US20220168037A1 (en) Energy-activation mechanisms for surgical instruments
US20130103199A1 (en) Surgical robot control apparatus
JP6618468B2 (en) Active forceps
CN105997232B (en) pliers
US10512501B2 (en) Electrosurgical apparatus
EP4137086A2 (en) End effector drive mechanisms for surgical instruments such as for use in robotic surgical systems
EP4201353A1 (en) End effector drive mechanisms for surgical instruments such as for use in robotic surgical systems
JP2023027029A (en) End effector drive mechanisms for surgical instruments for use in robotic surgical systems and the like

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15808867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529414

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15808867

Country of ref document: EP

Kind code of ref document: A1