WO2015194540A1 - Bacteriophage, agent for preventing xanthomonas campestris disease, and method for preventing xanthomonas campestris disease - Google Patents

Bacteriophage, agent for preventing xanthomonas campestris disease, and method for preventing xanthomonas campestris disease Download PDF

Info

Publication number
WO2015194540A1
WO2015194540A1 PCT/JP2015/067282 JP2015067282W WO2015194540A1 WO 2015194540 A1 WO2015194540 A1 WO 2015194540A1 JP 2015067282 W JP2015067282 W JP 2015067282W WO 2015194540 A1 WO2015194540 A1 WO 2015194540A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteriophage
citrus
citrus canker
infected
strain
Prior art date
Application number
PCT/JP2015/067282
Other languages
French (fr)
Japanese (ja)
Inventor
山田 隆
藤江 誠
川崎 健
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to JP2016529365A priority Critical patent/JPWO2015194540A1/en
Publication of WO2015194540A1 publication Critical patent/WO2015194540A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention relates to a bacteriophage, a citrus canker prevention agent, and a method for preventing citrus canker.
  • Cited Document 1 discloses a plant treatment composition containing a copper agent and an amine compound.
  • a plant disease control agent containing signamycin as an active ingredient is disclosed in Citation 2.
  • cited reference 3 discloses a plant disease control agent using a non-pathogenic Xanthomonas bacterium as a biopesticide that can be used for measures against citrus canker.
  • Patent Document 1 Since the copper preparation contained in the plant treatment composition disclosed in Patent Document 1 is a deleterious substance, there is a concern about the effect of residual agricultural chemicals on the health when used in food crops. In addition, some of the used copper agent is washed away into the river, groundwater or sea by rain, so there is a risk of environmental pollution. Furthermore, an increase in citrus scab disease resistant to copper agents is a problem.
  • control agent containing signamycin disclosed in Patent Document 2 as an active ingredient, an effective application amount is expected to increase due to the emergence of resistant citrus canker as long as it is a chemical pesticide.
  • control agent using a non-pathogenic Xanthomonas genus bacterium disclosed in Patent Document 3 is not specific to antagonizing bacteria and the like, and may affect other useful microorganisms.
  • the present invention has been made in view of the above circumstances, and provides a bacteriophage, a citrus canker prevention agent, and a method for preventing citrus canker that are highly specific for citrus canker and can prevent citrus canker more safely.
  • the purpose is to do.
  • the bacteriophage according to the first aspect of the present invention is:
  • the structure of the phage particle is linear and infects citrus canker.
  • the genome size is 7000-8000b. It is good as well.
  • the genome structure includes a DNA replication module, a structural protein module, an association / secretion module, and a control region. It is good as well.
  • genome base sequence consists of the base sequence shown in SEQ ID NO: 1. It is good as well.
  • the citrus canker is Xanthomonas axonopodis pv. citri, Xanthomonas campestris pv. citri, or Xanthomonas citri, It is good as well.
  • the citrus canker prevention agent according to the second aspect of the present invention The bacteriophage according to the first aspect of the present invention is included.
  • the citrus canker prevention agent according to the third aspect of the present invention The citrus scab pathogen infected with the bacteriophage according to the first aspect of the present invention is included.
  • the citrus canker is Xanthomonas campestris pv.
  • Citri MAFF301080 strain infected with the bacteriophage (name of depositary organization: National Institute of Technology and Evaluation, Patent Microorganism Depositary, Address of depositary organization: 2 Kazusa Kamashishi, Kisarazu City, Chiba Prefecture, Japan 292-0818 -5-8 Room 122, Deposit Date: June 16, 2014, Deposit Number: NITE BP-01875) It is good as well.
  • the method for preventing citrus canker disease according to the fourth aspect of the present invention includes: Administering the citrus scab prevention agent according to the second aspect of the present invention or the citrus scab prevention agent according to the third aspect of the present invention to a plant or a plant growth medium.
  • the plant is a citrus. It is good as well.
  • the specificity to citrus canker disease is high, and citrus canker disease can be prevented more safely.
  • FIG. 1 It is a figure which shows an example of the shape of the bacteriophage which concerns on this invention. It is a figure which shows the time-dependent change of the proliferation of the bacteriophage which concerns on this invention. It is a figure which shows the structure of the genome of the bacteriophage which concerns on this invention. It is a figure which shows the swimming motility of the strain infected with the bacteriophage which concerns on this invention.
  • A is a figure which shows the colony of an uninfected host strain.
  • B is a diagram showing colonies of strains infected with bacteriophages.
  • C is a figure which shows the time-dependent change of the motility distance of the uninfected host strain and the strain infected with the bacteriophage.
  • FIG. 1 It is a figure which shows the Swarming motility of the strain infected with the bacteriophage which concerns on this invention.
  • A is a figure which shows the colony of an uninfected host strain.
  • B is a diagram showing colonies of strains infected with bacteriophages.
  • C is a figure which shows the time-dependent change of the motility distance of the uninfected host strain and the strain infected with the bacteriophage. It is a figure which shows Twitching motility of the strain infected with the bacteriophage which concerns on this invention.
  • A is a figure which shows the colony of an uninfected host strain.
  • B is a diagram showing colonies of strains infected with bacteriophages.
  • (B) is a figure which shows the time-dependent change of the leaf which sprayed the strain infected with the bacteriophage. It is a figure which shows the citrus canker prevention effect by the strain infected with the bacteriophage which concerns on this invention.
  • (A) is a figure which shows the time-dependent change of the leaf which inoculated the citrus canker disease bacteria without spraying the bacteriophage infected strain.
  • (B) is a figure which shows the time-dependent change of the leaf which inoculated the citrus canker disease fungus after spraying the strain which the bacteriophage infected.
  • the citrus scab prevention agent according to the present embodiment includes a citrus scab fungus infected with bacteriophage.
  • the bacteriophage has a linear phage particle structure and infects citrus canker.
  • the bacteriophage can be said to be an Inovirus or Ff type phage because the structure of the phage particle is linear. That the structure of the phage particle is linear means that the structure of the phage particle is as shown in FIG.
  • the structure of the phage particle can be observed with an electron microscope by negatively staining the phage particle with sodium phosphotungstate.
  • the size of the phage particle depends on the genome size. When the genome size is 7000 to 8000b, the length of the phage particle is approximately 8000 to 1500 nm. In the case of the phage particle shown in FIG. 1, the phage particle has a length of 1000 nm and a diameter of 7 nm.
  • the genome size of the bacteriophage shown in FIG. 1 is 7325b, but the genome size of the bacteriophage is not limited to this.
  • the genome size of the bacteriophage may be 7000-8000b, or 7000-7600b, preferably 7100-7500b, more preferably 7200-7400b.
  • the base sequence of the bacteriophage genome shown in FIG. 1 consists of the base sequence shown in SEQ ID NO: 1.
  • the genome structure of the bacteriophage includes a DNA replication module, a structural protein module, and an association / secretion module as common modules with E. coli M13, which is a representative of Inovirus (Ff type phage).
  • the genomic organization of the bacteriophage includes a regulatory region downstream of the association / secretion module.
  • the base sequence of the bacteriophage genome can be determined by a known method such as a shotgun sequencing method after DNA is isolated from the bacteriophage by phenol extraction or the like. By analyzing the determined base sequence of the genome using a sequence analysis program and a sequence database, the functions of the ORF and the gene can be estimated.
  • the bacteriophage is not limited to the base sequence shown in SEQ ID NO: 1, but is a bacteriophage that has a linear phage particle structure and infects citrus canker. And 80% to 100%, 85% to 100%, 90% to 100%, or 95% to 100% sequence homology.
  • the citrus canker that is infected by the bacteriophage is a pathogen that causes diseases on citrus fruits, leaves, branches, and the like.
  • Citrus canker can be obtained by, for example, Xanthomonas axonopodis pv. citri, Xanthomonas campestris pv. citri, or Xanthomonas citri.
  • Citrus canker disease is, for example, the MAFF strain available from the National Institute for Agrobiological Sciences. More specifically, the citrus canker that is infected with bacteriophage is MAFF301080, MAFF302102, MAFF673011, MAFF673030, MAFF6733013, MAFF6730301, and the like.
  • the bacteriophage can be obtained, for example, by washing and centrifuging a sample containing soil and filtering the supernatant with a membrane filter. Furthermore, the target bacteriophage can be isolated by using the above citrus scab pathogen suitable as a host. For isolation of bacteriophage and measurement of titer, a method of forming plaques by overlaying an agar medium with a soft agar medium (0.75% agar) obtained by adding a test bacteria and a phage sample mixed solution to the agar medium is preferable.
  • bacteriophage can be infected with citrus canker by adding bacteriophage to a culture solution containing citrus canker that is cultured in an NB (Nutrient Broth) medium.
  • NB Nutrient Broth
  • the citrus canker that is infected with bacteriophage grows while producing and secreting the bacteriophage without lysis.
  • the absorbance of light having a wavelength of 600 nm which is an indicator of the concentration of the bacterium, may be measured.
  • exopolysaccharides such as xanthan are known.
  • EPS exopolysaccharides
  • Example 5 infection with bacteriophages greatly reduces the production of extracellular polysaccharides, particularly xanthan, from citrus canker.
  • Example 6 bacteriophage infects pathogenic citrus canker disease bacteria, thereby significantly reducing the pathogenicity of the citrus itchworm fungus and eliminating the ability to form itch.
  • the citrus canker that is infected with the bacteriophage has a decrease in at least one of the swimming motility, the swarming motility, and the switching motility as compared with an uninfected citrus canker (see Example 4 below).
  • this reduction in motility contributes to a marked reduction in the pathogenicity of bacteriophage-infected citrus canker and the loss of ability to form itch.
  • citrus scab disease fungus contained in the citrus scab disease prevention agent for example, Xanthomonas campestris pv. Citri MAFF301080 strain infected with the bacteriophage (name of depositary organization: National Institute of Technology and Evaluation, Patent Microorganism Depository Center, name of depositary organization: 292-2818, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan -5-8 Room 122, Deposit Date: June 16, 2014, Deposit Number: NITE BP-01875).
  • the citrus canker prevention agent according to the present embodiment may be administered to a plant or a plant growth medium such as soil, a mat, a solid medium or the like, a nutrient solution in hydroponics, and water in hydroponics.
  • a plant growth medium such as soil, a mat, a solid medium or the like, a nutrient solution in hydroponics, and water in hydroponics.
  • the bacteriophage secreted by the citrus canker disease contained in the citrus canker disease preventive agent can be infected with a potential pathogenic citrus canker disease.
  • prevention refers to prevention of plant infection with citrus scab, prevention of plant disease with citrus scab, prevention of spread of plant illness with citrus scab, and control of pathogenic citrus scab.
  • the plant growth medium may be any medium as long as the plant grows.
  • the plant to which the citrus canker disease preventive agent is administered may be of any kind as long as it can be affected by the disease of citrus canker disease, and in particular, citrus.
  • By administering the citrus scab disease preventive agent to the plant growth medium by spraying or the like it is possible to prevent the plant growing in the plant growth medium from being infected with citrus scab disease fungus or the disease caused by citrus scab disease fungus.
  • by administering the citrus canker disease preventive agent to a plant by spraying or the like if the plant is not infected with pathogenic citrus canker disease, the plant may be infected with citrus canker disease or citrus canker disease. Diseases can be prevented from reaching the plant. If the plant is infected with a pathogenic citrus canker, it can be prevented from spreading by administering the citrus canker preventive.
  • the citrus canker disease preventive agent includes citrus canker disease fungus infected with bacteriophage at any concentration as long as a desired effect is obtained.
  • citrus scabs infected with bacteriophages in suspension in sterile water can be 10 3 to 10 14 colony forming units (cfu) / mL, 10 4 to 10 12 cfu / mL or 10 3 to 10 8 cfu. / ML.
  • the citrus scab prevention agent may be administered in an amount of 1 ⁇ L to 1000 mL, 10 ⁇ L to 100 mL, 100 ⁇ L to 10 mL, or 1 to 5 mL per plant individual, and in any amount higher than this.
  • the said citrus scab prevention agent When administering to a plant, the said citrus scab prevention agent may be put into a syringe and inoculated by pressure, or may be inoculated via an injection needle.
  • a suspension containing the citrus canker prevention agent When a suspension containing the citrus canker prevention agent is administered to a plant growth medium, for example, 1 ⁇ L to 1000 mL, 10 ⁇ L to 100 mL, 100 ⁇ L to 10 mL, or 1 to 5 mL is sprayed per 1 m 2 of the surface area of the plant growth medium. May be administered in any amount greater than this.
  • the citrus canker prevention agent according to the present embodiment may be administered once to a plant or a plant growth medium, or may be administered multiple times to a plant or a plant growth medium at an arbitrary time interval.
  • the citrus scab prevention agent maintained a significant decrease in pathogenicity and loss of itch formation ability for 4 weeks after administration to plants.
  • the citrus canker prevention agent according to the present embodiment is applied to plants or the like at intervals of once or several times a week, once every two weeks, once every three weeks, once every four weeks, etc. What is necessary is just to administer.
  • the administration interval can be appropriately determined according to the plant to be administered or the plant growth medium.
  • the citrus canker prevention agent according to the present embodiment may include other pharmaceutically or botanically acceptable substances, compositions, and the like in addition to the citrus canker disease fungus infected with the active ingredient bacteriophage. Good.
  • the citrus scab disease preventive agent according to the present embodiment can remarkably reduce the pathogenicity of citrus scab disease fungi, and can eliminate the itch formation ability. For this reason, the plant can be prevented from being infected with citrus canker disease, or the onset or spread of citrus canker disease in the plant can be prevented. Moreover, the said citrus canker disease preventive agent can be used also for control of a citrus canker disease fungus.
  • the bacteriophage secreted by the citrus canker disease contained in the citrus canker disease preventive agent according to the present embodiment has a property of specifically infecting the citrus canker disease, it has high specificity and other useful microorganisms. Does not affect. Thereby, the said citrus canker prevention agent can make the influence on an environment small as much as possible. Therefore, the citrus canker prevention agent is safer than chemical pesticides and can avoid problems such as environmental pollution and residual pesticides.
  • the citrus scab prevention agent according to the present embodiment has the bacteriophage in the citrus scab, it is possible to reduce the influence of environmental factors such as ultraviolet rays, drying and temperature changes on the bacteriophage. That is, bacteriophage stability and persistence can be increased. For this reason, the citrus canker prevention agent which concerns on this Embodiment can prevent a citrus canker disease over a long period of time.
  • the citrus scab fungus contained in the citrus scab disease preventive agent produces a bacteriophage and secretes the produced bacteriophage while proliferating, and thus further infects the potential pathogenic citrus scab fungus be able to.
  • the citrus canker prevention agent according to the present embodiment improves the convenience of plant producers and contributes to the provision of safe agricultural products at low cost.
  • the above bacteriophage can also be used as a preventive agent for citrus canker disease.
  • a citrus scab prevention agent comprising a bacteriophage suspended in an appropriate solvent as an active ingredient is administered to a plant or a plant growth medium, so that the bacteriophage is transmitted to a potential pathogenic citrus scab. Can infect and prevent citrus canker disease.
  • the dose of the citrus scab prevention agent containing the bacteriophage as an active ingredient can be determined as appropriate according to the type of plant to be administered, the volume of the plant growth medium, and the like.
  • the dose of bacteriophage contained in a citrus canker prevention agent is measured, for example, in infectious units, where the infectious units are defined as plaque forming units (pfu), which is the ability to form clear areas or plaques on a bacterial culture plate.
  • a suitable dose is 10 2 to 10 10 pfu per plant individual, preferably 10 4 to 10 8 pfu.
  • the citrus canker prevention agent contains the above-mentioned dose of bacteriophage in a suitable carrier or diluent, and is, for example, 100 ⁇ L to 100 mL or 1 to 10 mL depending on the type of plant to be administered or the volume of the plant growth medium. .
  • citrus canker disease preventive agent containing bacteriophage as an active ingredient, since bacteriophage is infected with citrus canker disease and self-growth, citrus canker disease can be prevented with a small amount of administration.
  • the bacteriophage there is a production inhibitor of extracellular polysaccharides of citrus scab.
  • the extracellular polysaccharide production inhibitor contains the bacteriophage as an active ingredient.
  • the above bacteriophage can infect citrus canker disease bacteria and suppress the production of exocytosis polysaccharides by citrus canker disease bacteria. it can.
  • the pathogenicity of a citrus scab can be remarkably reduced and the ability to form a scab can be eliminated.
  • the method for inhibiting the production of exopolysaccharide includes a step of infecting the bacteriophage with a citrus scab.
  • the method for preventing citrus canker disease according to the present embodiment includes the step of administering the agent for preventing citrus canker according to Embodiment 1 to a plant or a plant growth medium.
  • the plant may be of any kind as long as it can be affected by the disease of citrus canker, but is preferably citrus. More preferably, the plant is a high-grade citrus such as lemon or navel orange.
  • the method for administering the citrus canker disease preventive agent is arbitrary as long as it can expose the plant or plant growth medium to the citrus canker disease preventive agent.
  • the method for administering the citrus canker prevention agent includes, for example, spraying and injecting the citrus canker disease preventing agent, or allowing the citrus canker disease preventing agent to penetrate into a plant or a plant growth medium.
  • the dose of the citrus scab prevention agent is arbitrary, but the citrus scab prevention agent containing citrus scab disease bacteria infected with bacteriophages at an arbitrary concentration is 1 ⁇ L to 1000 mL, 10 ⁇ L to 100 mL, 100 ⁇ L to 10 mL, 1-5 mL may be administered.
  • the citrus canker prevention agent may be administered by spraying 1 ⁇ L to 1000 mL, 10 ⁇ L to 100 mL, 100 ⁇ L to 10 mL, or 1 to 5 mL per 1 m 2 of the surface area of the plant growth medium.
  • the method for preventing citrus canker disease according to the present embodiment can efficiently cause a bacteriophage that significantly reduces the pathogenicity of citrus canker disease to a plant or a plant growth medium.
  • Example 1 Isolation and purification of bacteriophage
  • the MAFF strain which is a citrus canker disease used in the test, was sold by the National Institute for Agrobiological Sciences.
  • the MAFF strain was cultured at 28 ° C. using a nutrient agar medium (NA medium; Difco TM, manufactured by BBL Becton Dickinson and Company, Cockeys Hill, MD, USA). When liquid culture was required, shaking culture was performed at 220 ° C. for 24 hours in NB medium (BBL Becton Dickinson & Company) (220 rpm).
  • the MAFF strain was stored at ⁇ 80 ° C. in 0.8% NB medium containing 30% (v / v) glycerol.
  • a linear bacteriophage (hereinafter also simply referred to as “phage”) was detected from a soil sample collected from a Japanese farmland as follows. Approximately 10 g of soil sample was placed in a sterile 50 mL conical centrifuge tube, which was filled with tap water and inverted every 20 minutes. Next, the tube was centrifuged at 1500 ⁇ g for 20 minutes, and the supernatant was filtered using a membrane filter (Millipore, Bedford, Mass., USA) having a membrane pore diameter of 0.45 ⁇ m.
  • the supernatant was filtered through a membrane filter having a membrane pore diameter of 0.45 ⁇ m, and phage particles were precipitated in the presence of 0.5 M NaCl and 5% (v / v) polyethylene glycol 6000 (manufactured by Kanto Chemical Co., Inc.). .
  • the pellet was recovered by centrifugation (15000 ⁇ g, 4 ° C. for 30 minutes using RPR20-2 rotor) with a centrifuge (Hitachi Himac CR21E), and the pellet was collected in SM buffer (50 mM Tris / HCl (pH 7. 5), 100 mM NaCl, 10 mM MgSO 4 and 0.01% gelatin (w / v)).
  • SM buffer 50 mM Tris / HCl (pH 7. 5), 100 mM NaCl, 10 mM MgSO 4 and 0.01% gelatin (w / v)
  • the titer of the phage was determined by serial dilution and plaque formation test. 5 ⁇ L of the purified phage (10 13 pfu / mL) was dropped on a mesh covered with a carbon support membrane, negatively stained with 5 ⁇ L of 2% sodium phosphotungstate, and observed with an electron microscope (Hitachi H600A).
  • FIG. 1 shows an electron microscopic image of the obtained phage (hereinafter referred to as “XacF1 phage”) particles.
  • the particles had a linear structure with a length of 1000 nm and a diameter of 7 nm.
  • Table 1 shows XacF1 phage hosts. XacF1 phage was confirmed to infect at least 6 strains of citrus canker that infect different citrus varieties.
  • Example 2 proliferation test
  • the MAFF strain infected with the XacF1 phage (hereinafter also simply referred to as “XacF1 infected strain”) and the uninfected MAFF strain were cultured overnight in 5 mL of NB medium.
  • XacF1 infected strain a MAFF strain infected with the XacF1 phage
  • 0.5 mL of MAFF strain suspension (10 8 cfu / mL) was placed in a 100 mL flask containing 30 mL of NB medium. The flask was incubated at 28 ° C. with stirring at 200 rpm, and OD 600 nm was measured every 3 hours for 48 hours using a spectrophotometer.
  • FIG. 2 shows the time course of OD 600 nm .
  • the MAFF strain infected with XacF1 phage (hereinafter, also simply referred to as “XacF1 infected strain”) has been shown to grow while producing XacF1 phage without lysis because OD 600 nm is increased.
  • the XacF1-infected strain had a growth rate and a growth amount reduced to about 2/3 as compared with the uninfected MAFF strain (hereinafter also simply referred to as “uninfected host strain”).
  • Example 3 DNA isolation
  • XacF1 phage DNA was isolated from the purified XacF1 phage particles by phenol extraction. In some cases, extrachromosomal DNA was isolated from bacteria infected with XacF1 phage by small-scale preparation with alkaline SDS solution. Replicate (RF) DNA for sequence analysis was isolated from host bacteria infected with XacF1 phage, treated with S1 nuclease, and shotgun sequencing was performed using Roche GS Junior Sequence System.
  • FIG. 3 shows a genetic map of the XacF1 phage compared to E. coli M13, which is a representative of Invivorus (Ff phage).
  • the DNA replication module (R), structural protein module (S), and association / secretion module (AS) of XacF1 phage are modules common to M13. Unlike the M13, the XacF1 phage genome had a control region downstream of the association / secretion module. Details of the predicted ORF of the XacF1 phage are shown in Table 2.
  • Example 4 Evaluation of motility of XacF1 phage-infected bacteria
  • Twitching motility was evaluated as follows. As above, 2 ⁇ L of bacterial suspension was added to minimal nutrient medium (MM; 0.125% (NH 4 ) 2 SO 4 , 0.175% K 2 HPO 4 , 0.075% KH 2 PO 4 , 0.025 % MgSO 4 , 0.015% sodium citrate, 1.5% agar (w / v)). While culturing at 28 ° C., the periphery of the colony was observed with a microscope (100 times).
  • minimal nutrient medium MM; 0.125% (NH 4 ) 2 SO 4 , 0.175% K 2 HPO 4 , 0.075% KH 2 PO 4 , 0.025 % MgSO 4 , 0.015% sodium citrate, 1.5% agar (w / v)
  • FIGS. 4 (A) to 4 (C) The results of the swimming motility are shown in FIGS. 4 (A) to 4 (C). Compared to the uninfected host strain shown in FIG. 4 (A), it was observed that the XacF1 phage-infected strain shown in FIG. 4 (B) did not spread on the medium. When the motility distance was quantified, as shown in FIG. 4 (C), it was shown that the XacF1 phage-infected strain had a lower swimming motility than the uninfected host strain.
  • FIGS. 5 (A) to (C) show the results of the warming motility. Similar to the swimming motility, it was observed that the XacF1 phage-infected strain shown in FIG. 5 (B) did not spread on the medium as compared to the uninfected host strain shown in FIG. 5 (A). When the motility distance was quantified, as shown in FIG. 5 (C), it was shown that the XacF1 phage-infected strain has a lower Warming motility than the uninfected host strain.
  • FIG. 6 (A) and 6 (B) show the results of Switching motility.
  • FIG. 6 (A) shows the uninfected host strain shown in FIG. 6 (A).
  • an irregular structure derived from Switching motility was observed around the colony.
  • the shape around the colony of the XacF1 phage-infected strain shown in FIG. 6 (B) was smoother than that around the colony of the uninfected host strain. That is, it was shown that the Twitching motility of the XacF1 phage-infected strain is lower than that of the uninfected host strain.
  • Example 5 Production evaluation of extracellular polysaccharide (xanthan)
  • the exopolysaccharide contained in the culture supernatants of the XacF1 phage-infected strain and the uninfected host strain was quantified by the following method.
  • NB medium supplemented with 2% (w / v) D-glucose
  • XacF1 phage-infected strain or uninfected host strain was cultured with shaking at 28 ° C. for 24 hours (200 rpm).
  • Ten mL of the culture was centrifuged (5000 ⁇ g for 20 minutes) to remove the cells.
  • the culture supernatant was mixed with 3 times the amount of 99% ethanol, cooled at 4 ° C. for 30 minutes, and centrifuged to collect extracellular polysaccharide as a precipitate.
  • the recovered extracellular polysaccharide was dried at 55 ° C. overnight and quantified.
  • Example 6 Evaluation of pathogenicity of XacF1 phage-infected strain
  • the pathogenicity of the XacF1 phage-infected strain was evaluated by the following method. After the lemon leaf was carefully washed with tap water, the leaf was completely spread, sterilized by soaking in sodium hypochlorite for 2 minutes, and washed with sterile water. Leaves were placed on the filter paper surface with the spine surface facing up. Each suspension of the XacF1 phage-infected strain and the uninfected host strain was inoculated into the leaves by a needle stick method and an osmotic method (10 8 cfu / mL with sterile water).
  • the leaves were stabbed with a needle, and 10 ⁇ L of each suspension was added dropwise to the puncture site.
  • the permeation method the front side of the leaf was supported with a finger, and a syringe containing each suspension was pressure-inoculated on the back side. For observation, the treated area was marked directly after inoculation.
  • inoculated leaves were covered with a plastic bag for 48 hours in order to promote infection. Leaves were placed in a 28 ° C. cultivation box for 4 weeks with a photoperiod of 12 hours light and 12 hours dark.
  • FIG. 8 shows the results of the needle stick method.
  • the uninfected host strain lesions became prominent after 1 week, and the lesions expanded and raised over time, and typical symptom after 2 weeks. After that, Kaiyo further expanded.
  • the XacF1 phage-infected strain clear lesions were hardly seen even after 4 weeks.
  • the result of quantifying the lesion area in each of the 20 leaves is shown in FIG. The lesion caused by the XacF1 phage-infected strain hardly appeared, indicating that the XacF1 phage-infected strain was not pathogenic.
  • FIG. 10 shows the results of the infiltration method.
  • the upper row shows the back side of the leaf, and the left two sites are inoculated with an uninfected host strain, and the right side is inoculated with a XacF1 phage-infected strain.
  • the lower row shows the front side of the upper leaf.
  • the inoculated site was decolored after 1 week, and clear symptom was observed. Two weeks later, the inoculation site turned brown and the tissue began to collapse. Four weeks later, further progress was made in tying.
  • Example 7 Preventing citrus canker disease of XacF1 phage
  • the citrus canker prevention effect of the XacF1 phage-infected strain was evaluated by the following method. After the lemon leaf was carefully washed with tap water, the leaf was completely spread and sterilized by immersing it in a sodium hypochlorite solution for 2 minutes, followed by washing with sterile water. Leaves were placed on the filter paper surface with the spine surface facing up. A sterile water suspension (10 8 cells / mL) of XacF1-infected strain (Xanthomonas pv. Citri MAFF301080) was sprayed onto the leaf surface with a nebulizer (1 mL / leaf).
  • an uninfected host strain (MAFF301080) was sprayed on the leaf surface under the same conditions. After spraying, the leaves were stored in a petri dish adjusted for humidity at a photoperiod of 12 hours light period and 12 hours dark period at 28 ° C. for 4 weeks and observed.
  • Example 8 Prevention effect of citrus canker disease of XacF1 phage-infected strain
  • Lemon leaves that had been sprayed with XacF1 phage-infected strains were stabbed with a needle two days after spraying, and MAFF301080 wild strain sterilized water suspension (10 8 cells / mL) was dropped into the stabbed area. (10 ⁇ L per location).
  • MAFF301080 wild strain sterilized water suspension (10 8 cells / mL) was dropped into the stabbed area. (10 ⁇ L per location).
  • the above-mentioned sterilized water suspension was similarly inoculated on a lemon leaf that was not sprayed. After inoculation, lemon leaves were stored and observed in the same manner as in Example 7 above.
  • the lemon leaves inoculated with the XacF1 phage-infected strain showed no signs of citrus scab even when exposed to wild strains of pathogenic citrus scab. Therefore, the XacF1 phage-infected strain is useful as a preventive agent for citrus canker disease.
  • the present invention is suitable for prevention, expansion prevention, or control of citrus canker against fruit trees, mainly citrus.
  • it is suitable for prevention and prevention of scabies in high-grade citrus fruits such as lemon and navel orange which are susceptible to scabies.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Agronomy & Crop Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 A bacteriophage, having phage particles of linear structure, infects Xanthomonas campestris pv. citri. This bacteriophage may have a genome size of 7,000-8,000 b. This bacteriophage may have a genome configuration including a DNA replication module, a structural protein module, an assembly and secretion module, and a regulatory region.

Description

バクテリオファージ、カンキツかいよう病予防剤およびカンキツかいよう病の予防方法Bacteriophage, citrus canker prevention agent and citrus canker prevention method
 本発明は、バクテリオファージ、カンキツかいよう病予防剤およびカンキツかいよう病の予防方法に関する。 The present invention relates to a bacteriophage, a citrus canker prevention agent, and a method for preventing citrus canker.
 カンキツ類に病害を及ぼすカンキツかいよう病の対策に使用される主な農薬は、銅剤である。例えば、引用文献1には、銅剤とアミン化合物を含有する植物処理組成物が開示されている。他の農薬としては、有効成分としてシグナーマイシンを含む植物病害防除剤が引用文献2に開示されている。さらに引用文献3には、カンキツかいよう病の対策に使用できる生物農薬として、非病原性のキサントモナス属細菌を用いた植物病害防除剤が開示されている。 Copper chemicals are the main agricultural chemicals used to combat citrus canker disease that affects citrus. For example, Cited Document 1 discloses a plant treatment composition containing a copper agent and an amine compound. As another agrochemical, a plant disease control agent containing signamycin as an active ingredient is disclosed in Citation 2. Furthermore, cited reference 3 discloses a plant disease control agent using a non-pathogenic Xanthomonas bacterium as a biopesticide that can be used for measures against citrus canker.
特表2013-536237号公報Special table 2013-536237 gazette 特開2010-222292号公報JP 2010-222292 A 特開2013-215189号公報JP 2013-215189 A
 上記特許文献1に開示された植物処理組成物に含まれる銅剤は劇物であるため、食用作物に使用した際、残留農薬の健康への影響が懸念される。また、使用された銅剤の一部は、雨によって川、地下水または海に流されるため、環境汚染のリスクもある。さらに、銅剤に耐性を示すカンキツかいよう病菌の増加が問題となっている。 Since the copper preparation contained in the plant treatment composition disclosed in Patent Document 1 is a deleterious substance, there is a concern about the effect of residual agricultural chemicals on the health when used in food crops. In addition, some of the used copper agent is washed away into the river, groundwater or sea by rain, so there is a risk of environmental pollution. Furthermore, an increase in citrus scab disease resistant to copper agents is a problem.
 上記特許文献2に開示されたシグナーマイシンを有効成分として含む防除剤に関しても、化学農薬である以上、耐性を示すカンキツかいよう病菌の出現による有効散布量の増大が予想される。 As for the control agent containing signamycin disclosed in Patent Document 2 as an active ingredient, an effective application amount is expected to increase due to the emergence of resistant citrus canker as long as it is a chemical pesticide.
 上記特許文献3に開示された非病原性のキサントモナス属細菌を用いた防除剤は、拮抗する細菌等に特異性がなく、他の有用な微生物に影響を及ぼす可能性がある。 The control agent using a non-pathogenic Xanthomonas genus bacterium disclosed in Patent Document 3 is not specific to antagonizing bacteria and the like, and may affect other useful microorganisms.
 本発明は、上記実情に鑑みてなされたものであり、カンキツかいよう病菌に特異性が高く、より安全にカンキツかいよう病を予防できるバクテリオファージ、カンキツかいよう病予防剤およびカンキツかいよう病の予防方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a bacteriophage, a citrus canker prevention agent, and a method for preventing citrus canker that are highly specific for citrus canker and can prevent citrus canker more safely. The purpose is to do.
 本発明の第1の観点に係るバクテリオファージは、
 ファージ粒子の構造が線状で、カンキツかいよう病菌に感染する。
The bacteriophage according to the first aspect of the present invention is:
The structure of the phage particle is linear and infects citrus canker.
 この場合、ゲノムサイズが7000~8000bである、
 こととしてもよい。
In this case, the genome size is 7000-8000b.
It is good as well.
 また、ゲノム構成がDNA複製モジュール、構造タンパク質モジュール、会合・分泌モジュールおよび制御領域を含む、
 こととしてもよい。
In addition, the genome structure includes a DNA replication module, a structural protein module, an association / secretion module, and a control region.
It is good as well.
 また、ゲノムの塩基配列が、配列番号1に示す塩基配列からなる、
 こととしてもよい。
Further, the genome base sequence consists of the base sequence shown in SEQ ID NO: 1.
It is good as well.
 また、前記カンキツかいよう病菌は、Xanthomonas axonopodis pv.citri、Xanthomonas campestris pv.citri、またはXanthomonas citriである、
 こととしてもよい。
In addition, the citrus canker is Xanthomonas axonopodis pv. citri, Xanthomonas campestris pv. citri, or Xanthomonas citri,
It is good as well.
 本発明の第2の観点に係るカンキツかいよう病予防剤は、
 上記本発明の第1の観点に係るバクテリオファージを含む。
The citrus canker prevention agent according to the second aspect of the present invention,
The bacteriophage according to the first aspect of the present invention is included.
 本発明の第3の観点に係るカンキツかいよう病予防剤は、
 上記本発明の第1の観点に係るバクテリオファージが感染したカンキツかいよう病菌を含む。
The citrus canker prevention agent according to the third aspect of the present invention,
The citrus scab pathogen infected with the bacteriophage according to the first aspect of the present invention is included.
 この場合、前記カンキツかいよう病菌は、Xanthomonas campestris pv.citri MAFF301080株に前記バクテリオファージを感染させた菌株(寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター、寄託機関のあて名:〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室、寄託日:2014年6月16日、受託番号:NITE BP-01875)である、
 こととしてもよい。
In this case, the citrus canker is Xanthomonas campestris pv. Citri MAFF301080 strain infected with the bacteriophage (name of depositary organization: National Institute of Technology and Evaluation, Patent Microorganism Depositary, Address of depositary organization: 2 Kazusa Kamashishi, Kisarazu City, Chiba Prefecture, Japan 292-0818 -5-8 Room 122, Deposit Date: June 16, 2014, Deposit Number: NITE BP-01875)
It is good as well.
 本発明の第4の観点に係るカンキツかいよう病の予防方法は、
 上記本発明の第2の観点に係るカンキツかいよう病予防剤または上記本発明の第3の観点に係るカンキツかいよう病予防剤を、植物または植物成長媒体に投与する工程、を含む。
The method for preventing citrus canker disease according to the fourth aspect of the present invention includes:
Administering the citrus scab prevention agent according to the second aspect of the present invention or the citrus scab prevention agent according to the third aspect of the present invention to a plant or a plant growth medium.
 この場合、前記植物は、カンキツ類である、
 こととしてもよい。
In this case, the plant is a citrus.
It is good as well.
 本発明によれば、カンキツかいよう病菌に特異性が高く、より安全にカンキツかいよう病を予防できる。 According to the present invention, the specificity to citrus canker disease is high, and citrus canker disease can be prevented more safely.
本発明に係るバクテリオファージの形状の一例を示す図である。It is a figure which shows an example of the shape of the bacteriophage which concerns on this invention. 本発明に係るバクテリオファージの増殖の経時変化を示す図である。It is a figure which shows the time-dependent change of the proliferation of the bacteriophage which concerns on this invention. 本発明に係るバクテリオファージのゲノムの構成を示す図である。It is a figure which shows the structure of the genome of the bacteriophage which concerns on this invention. 本発明に係るバクテリオファージが感染した菌株のSwimming運動性を示す図である。(A)は未感染の宿主菌株のコロニーを示す図である。(B)はバクテリオファージが感染した菌株のコロニーを示す図である。(C)は未感染の宿主菌株およびバクテリオファージが感染した菌株の運動性距離の経時変化を示す図である。It is a figure which shows the Swimming motility of the strain infected with the bacteriophage which concerns on this invention. (A) is a figure which shows the colony of an uninfected host strain. (B) is a diagram showing colonies of strains infected with bacteriophages. (C) is a figure which shows the time-dependent change of the motility distance of the uninfected host strain and the strain infected with the bacteriophage. 本発明に係るバクテリオファージが感染した菌株のSwarming運動性を示す図である。(A)は未感染の宿主菌株のコロニーを示す図である。(B)はバクテリオファージが感染した菌株のコロニーを示す図である。(C)は未感染の宿主菌株およびバクテリオファージが感染した菌株の運動性距離の経時変化を示す図である。It is a figure which shows the Swarming motility of the strain infected with the bacteriophage which concerns on this invention. (A) is a figure which shows the colony of an uninfected host strain. (B) is a diagram showing colonies of strains infected with bacteriophages. (C) is a figure which shows the time-dependent change of the motility distance of the uninfected host strain and the strain infected with the bacteriophage. 本発明に係るバクテリオファージが感染した菌株のTwitching運動性を示す図である。(A)は未感染の宿主菌株のコロニーを示す図である。(B)はバクテリオファージが感染した菌株のコロニーを示す図である。It is a figure which shows Twitching motility of the strain infected with the bacteriophage which concerns on this invention. (A) is a figure which shows the colony of an uninfected host strain. (B) is a diagram showing colonies of strains infected with bacteriophages. 本発明に係るバクテリオファージが感染した菌株および未感染宿主菌株をそれぞれ液体培養後、遠心分離により菌体を沈殿させた状態を示す図である。It is a figure which shows the state which precipitated the microbial cell by centrifugation after liquid culture | cultivating the bacterial strain which infected the bacteriophage which concerns on this invention, and an uninfected host strain, respectively. 本発明に係るバクテリオファージが感染した菌株を針刺し法で接種した葉の経時変化を示す図である。(A)はバクテリオファージに未感染の宿主菌株を接種した葉の経時変化を示す図である。(B)はバクテリオファージが感染した菌株を接種した葉の経時変化を示す図である。It is a figure which shows the time-dependent change of the leaf which inoculated the strain infected with the bacteriophage which concerns on this invention by the needlestick method. (A) is a figure which shows the time-dependent change of the leaf which inoculated the bacteriophage uninfected host strain. (B) is a figure which shows the time-dependent change of the leaf inoculated with the strain infected with the bacteriophage. 本発明に係るバクテリオファージが感染した菌株を針刺し法で接種した葉における病変の大きさを示す図である。It is a figure which shows the magnitude | size of the lesion in the leaf which inoculated the strain infected with the bacteriophage which concerns on this invention with the needle stick method. 本発明に係るバクテリオファージが感染した菌株を浸透法で接種した葉の経時変化を示す図である。It is a figure which shows the time-dependent change of the leaf which inoculated by the osmosis | permeation method the strain infected with the bacteriophage which concerns on this invention. 本発明に係るバクテリオファージが感染した菌株を吹き付けた葉の経時変化を示す図である。(A)はバクテリオファージに未感染の宿主菌株を吹き付けた葉の経時変化を示す図である。(B)はバクテリオファージが感染した菌株を吹き付けた葉の経時変化を示す図である。It is a figure which shows the time-dependent change of the leaf which sprayed the strain infected with the bacteriophage which concerns on this invention. (A) is a figure which shows the time-dependent change of the leaf which sprayed the bacteriophage uninfected host strain. (B) is a figure which shows the time-dependent change of the leaf which sprayed the strain infected with the bacteriophage. 本発明に係るバクテリオファージが感染した菌株によるカンキツかいよう病予防効果を示す図である。(A)はバクテリオファージが感染した菌株を噴霧せずにカンキツかいよう病菌を接種した葉の経時変化を示す図である。(B)はバクテリオファージが感染した菌株を噴霧してからカンキツかいよう病菌を接種した葉の経時変化を示す図である。It is a figure which shows the citrus canker prevention effect by the strain infected with the bacteriophage which concerns on this invention. (A) is a figure which shows the time-dependent change of the leaf which inoculated the citrus canker disease bacteria without spraying the bacteriophage infected strain. (B) is a figure which shows the time-dependent change of the leaf which inoculated the citrus canker disease fungus after spraying the strain which the bacteriophage infected.
 本発明に係る実施の形態について添付の図面を参照して説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。 Embodiments according to the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by the following embodiment and drawing.
 (実施の形態1)
 本実施の形態に係るカンキツかいよう病予防剤は、バクテリオファージが感染したカンキツかいよう病菌を含む。当該バクテリオファージは、ファージ粒子の構造が線状で、カンキツかいよう病菌に感染する。当該バクテリオファージは、ファージ粒子の構造が線状であるため、Inovirus、またはFf型ファージであるともいえる。ファージ粒子の構造が線状であるとは、ファージ粒子の構造が、例えば図1に示すような構造である。ファージ粒子の構造は、ファージ粒子をリンタングステン酸ナトリウムでネガティブ染色し、電子顕微鏡で観察することができる。
(Embodiment 1)
The citrus scab prevention agent according to the present embodiment includes a citrus scab fungus infected with bacteriophage. The bacteriophage has a linear phage particle structure and infects citrus canker. The bacteriophage can be said to be an Inovirus or Ff type phage because the structure of the phage particle is linear. That the structure of the phage particle is linear means that the structure of the phage particle is as shown in FIG. The structure of the phage particle can be observed with an electron microscope by negatively staining the phage particle with sodium phosphotungstate.
 ファージ粒子の大きさは、ゲノムサイズに依存する。ゲノムサイズが7000~8000bの場合、ファージ粒子の長さは、およそ8000~1500nmである。図1に示すファージ粒子の場合、ファージ粒子の長さは、1000nmであって、その径は7nmである。 The size of the phage particle depends on the genome size. When the genome size is 7000 to 8000b, the length of the phage particle is approximately 8000 to 1500 nm. In the case of the phage particle shown in FIG. 1, the phage particle has a length of 1000 nm and a diameter of 7 nm.
 図1に示すバクテリオファージのゲノムサイズは、7325bであるが、バクテリオファージのゲノムサイズはこれに限定されない。バクテリオファージのゲノムサイズは、7000~8000b、または7000~7600bであってもよく、好ましくは、7100~7500b、より好ましくは、7200~7400bである。 The genome size of the bacteriophage shown in FIG. 1 is 7325b, but the genome size of the bacteriophage is not limited to this. The genome size of the bacteriophage may be 7000-8000b, or 7000-7600b, preferably 7100-7500b, more preferably 7200-7400b.
 図1に示すバクテリオファージのゲノムの塩基配列は、配列番号1に示される塩基配列からなる。当該バクテリオファージのゲノム構成は、Inovirus(Ff型ファージ)の代表格である大腸菌M13と共通するモジュールとしてDNA複製モジュール、構造タンパク質モジュールおよび会合・分泌モジュールを含む。さらに、当該バクテリオファージのゲノム構成には、会合・分泌モジュールの下流に制御領域が含まれる。 The base sequence of the bacteriophage genome shown in FIG. 1 consists of the base sequence shown in SEQ ID NO: 1. The genome structure of the bacteriophage includes a DNA replication module, a structural protein module, and an association / secretion module as common modules with E. coli M13, which is a representative of Inovirus (Ff type phage). Furthermore, the genomic organization of the bacteriophage includes a regulatory region downstream of the association / secretion module.
 バクテリオファージのゲノムの塩基配列は、バクテリオファージからフェノール抽出などによってDNAを単離し、ショットガンシークエンス法などの公知の方法で決定できる。決定したゲノムの塩基配列を配列解析プログラムおよび配列データベースを用いて解析することで、ORFおよび遺伝子の機能を推定できる。 The base sequence of the bacteriophage genome can be determined by a known method such as a shotgun sequencing method after DNA is isolated from the bacteriophage by phenol extraction or the like. By analyzing the determined base sequence of the genome using a sequence analysis program and a sequence database, the functions of the ORF and the gene can be estimated.
 バクテリオファージは、そのゲノムの塩基配列が配列番号1に示す塩基配列に限られず、ファージ粒子の構造が線状で、カンキツかいよう病菌に感染するバクテリオファージであれば、配列番号1に示される塩基配列と80%~100%、85%~100%、90%~100%または95%~100%の配列相同性を示すものであってもよい。 The bacteriophage is not limited to the base sequence shown in SEQ ID NO: 1, but is a bacteriophage that has a linear phage particle structure and infects citrus canker. And 80% to 100%, 85% to 100%, 90% to 100%, or 95% to 100% sequence homology.
 上記バクテリオファージが感染するカンキツかいよう病菌は、カンキツ類の果実、葉、枝などに病害を及ぼす病原菌である。カンキツかいよう病菌は、例えば、Xanthomonas axonopodis pv.citri、Xanthomonas campestris pv.citri、またはXanthomonas citriである。カンキツかいよう病菌は、例えば、独立行政法人農業生物資源研究所から入手可能なMAFF株である。より具体的には、バクテリオファージが感染するカンキツかいよう病菌は、MAFF301080、MAFF302102、MAFF673001、MAFF673010、MAFF673013、MAFF673021などである。 The citrus canker that is infected by the bacteriophage is a pathogen that causes diseases on citrus fruits, leaves, branches, and the like. Citrus canker can be obtained by, for example, Xanthomonas axonopodis pv. citri, Xanthomonas campestris pv. citri, or Xanthomonas citri. Citrus canker disease is, for example, the MAFF strain available from the National Institute for Agrobiological Sciences. More specifically, the citrus canker that is infected with bacteriophage is MAFF301080, MAFF302102, MAFF673011, MAFF673030, MAFF6733013, MAFF6730301, and the like.
 上記バクテリオファージは、例えば、土壌などを含む試料を、洗浄して遠心分離し、膜フィルターで上清を濾過することで得られる。さらに、宿主として適切な上記カンキツかいよう病菌を用いることで、目的とするバクテリオファージを単離することができる。バクテリオファージの単離および力価の測定には、寒天培地に検定菌とファージ試料混合液を加えた軟寒天培地(0.75%寒天)を重層してプラークを形成させる方法が好適である。 The bacteriophage can be obtained, for example, by washing and centrifuging a sample containing soil and filtering the supernatant with a membrane filter. Furthermore, the target bacteriophage can be isolated by using the above citrus scab pathogen suitable as a host. For isolation of bacteriophage and measurement of titer, a method of forming plaques by overlaying an agar medium with a soft agar medium (0.75% agar) obtained by adding a test bacteria and a phage sample mixed solution to the agar medium is preferable.
 バクテリオファージのカンキツかいよう病菌への感染方法は、当該技術分野で公知である任意の方法を用いることができる。一例としては、NB(Nutrient Broth)培地で培養したカンキツかいよう病菌を含む培養液にバクテリオファージを加え、培養することでバクテリオファージをカンキツかいよう病菌に感染させることができる。 As the method for infecting bacteriophage with citrus canker, any method known in the art can be used. As an example, bacteriophage can be infected with citrus canker by adding bacteriophage to a culture solution containing citrus canker that is cultured in an NB (Nutrient Broth) medium.
 バクテリオファージが感染したカンキツかいよう病菌は、溶菌せずに当該バクテリオファージを生産、分泌しながら増殖する。バクテリオファージが感染したカンキツかいよう病菌が溶菌せずに増殖していることを確かめるには、菌濃度の指標となる600nmの波長光の吸光度を測定すればよい。 The citrus canker that is infected with bacteriophage grows while producing and secreting the bacteriophage without lysis. In order to confirm that the citrus canker that is infected with the bacteriophage is growing without lysis, the absorbance of light having a wavelength of 600 nm, which is an indicator of the concentration of the bacterium, may be measured.
 カンキツかいよう病菌の重要な病原因子の1つとして、キサンタンなどの菌体外多糖(「EPS」ともいう)が知られている。下記実施例5に示すように、バクテリオファージが感染することでカンキツかいよう病菌からの菌体外多糖、特にキサンタンの生成が大幅に低下する。このため、バクテリオファージは、下記実施例6に示すように、病原性のあるカンキツかいよう病菌に感染することで、当該カンキツかいよう病菌の病原性を顕著に低下させ、かいよう形成能を消失させる。 As one of the important virulence factors of citrus canker disease, exopolysaccharides (also referred to as “EPS”) such as xanthan are known. As shown in Example 5 below, infection with bacteriophages greatly reduces the production of extracellular polysaccharides, particularly xanthan, from citrus canker. For this reason, as shown in Example 6 below, bacteriophage infects pathogenic citrus canker disease bacteria, thereby significantly reducing the pathogenicity of the citrus itchworm fungus and eliminating the ability to form itch.
 また、バクテリオファージが感染したカンキツかいよう病菌は、Swimming運動性、Swarming運動性およびTwitching運動性の少なくとも1つが未感染のカンキツかいよう病菌と比べて低下する(下記実施例4参照)。上述の菌体外多糖の生成の大幅な低下に加え、この運動性の低下は、バクテリオファージが感染したカンキツかいよう病菌の病原性の顕著な低下、およびかいよう形成能の消失の一因である。 In addition, the citrus canker that is infected with the bacteriophage has a decrease in at least one of the swimming motility, the swarming motility, and the switching motility as compared with an uninfected citrus canker (see Example 4 below). In addition to the significant reduction in exopolysaccharide production described above, this reduction in motility contributes to a marked reduction in the pathogenicity of bacteriophage-infected citrus canker and the loss of ability to form itch.
 本実施の形態に係るカンキツかいよう病予防剤に含まれるカンキツかいよう病菌として、例えば、Xanthomonas campestris pv.citri MAFF301080株に上記バクテリオファージを感染させた菌株(寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター、寄託機関のあて名:〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室、寄託日:2014年6月16日、受託番号:NITE BP-01875)が挙げられる。 As the citrus scab disease fungus contained in the citrus scab disease prevention agent according to the present embodiment, for example, Xanthomonas campestris pv. Citri MAFF301080 strain infected with the bacteriophage (name of depositary organization: National Institute of Technology and Evaluation, Patent Microorganism Depository Center, name of depositary organization: 292-2818, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan -5-8 Room 122, Deposit Date: June 16, 2014, Deposit Number: NITE BP-01875).
 本実施の形態に係るカンキツかいよう病予防剤は、植物、または土壌、マット、固形培地などの構造体、養液栽培における養液、および水栽培における水などの植物成長媒体に投与すればよい。こうすることで、カンキツかいよう病予防剤に含まれるカンキツかいよう病菌が分泌するバクテリオファージを、潜在的な病原性のカンキツかいよう病菌に感染させることができる。この結果、カンキツかいよう病を予防できる。ここで、「予防」とは、カンキツかいよう病菌の植物への感染の予防、カンキツかいよう病菌による植物の病害の予防、カンキツかいよう病菌による植物の病害の拡大防止および病原性のカンキツかいよう病菌の駆除を含む。なお、植物成長媒体は、植物が成長する媒体であれば任意のものでよい。 The citrus canker prevention agent according to the present embodiment may be administered to a plant or a plant growth medium such as soil, a mat, a solid medium or the like, a nutrient solution in hydroponics, and water in hydroponics. By carrying out like this, the bacteriophage secreted by the citrus canker disease contained in the citrus canker disease preventive agent can be infected with a potential pathogenic citrus canker disease. As a result, citrus canker can be prevented. Here, “prevention” refers to prevention of plant infection with citrus scab, prevention of plant disease with citrus scab, prevention of spread of plant illness with citrus scab, and control of pathogenic citrus scab. Including. The plant growth medium may be any medium as long as the plant grows.
 上記カンキツかいよう病予防剤の投与対象となる植物は、カンキツかいよう病菌の病害が及び得るものであれば任意の種類であってよく、特には、カンキツ類である。当該カンキツかいよう病予防剤を、噴霧などにより植物成長媒体に投与することで、植物成長媒体で生育する植物に、カンキツかいよう病菌が感染すること、あるいはカンキツかいよう病菌による病害が及ぶことを防止できる。また、当該カンキツかいよう病予防剤を、噴霧などにより植物に投与することで、病原性のカンキツかいよう病菌に未感染の植物であれば、該植物へのカンキツかいよう病菌の感染、あるいはカンキツかいよう病菌の病害が該植物に及ぶことを防止できる。病原性のカンキツかいよう病菌に感染後の植物であれば、当該カンキツかいよう病予防剤を投与することで病害の拡大を阻止できる。 The plant to which the citrus canker disease preventive agent is administered may be of any kind as long as it can be affected by the disease of citrus canker disease, and in particular, citrus. By administering the citrus scab disease preventive agent to the plant growth medium by spraying or the like, it is possible to prevent the plant growing in the plant growth medium from being infected with citrus scab disease fungus or the disease caused by citrus scab disease fungus. In addition, by administering the citrus canker disease preventive agent to a plant by spraying or the like, if the plant is not infected with pathogenic citrus canker disease, the plant may be infected with citrus canker disease or citrus canker disease. Diseases can be prevented from reaching the plant. If the plant is infected with a pathogenic citrus canker, it can be prevented from spreading by administering the citrus canker preventive.
 本実施の形態に係るカンキツかいよう病予防剤は、所望の効果が得られる限り、バクテリオファージが感染したカンキツかいよう病菌を任意の濃度で含む。例えば、滅菌水に懸濁した状態で、バクテリオファージが感染したカンキツかいよう病菌は、10~1014コロニー形成単位(cfu)/mL、10~1012cfu/mLまたは10~10cfu/mLであってもよい。この濃度で植物に投与する場合、カンキツかいよう病予防剤は、植物個体あたり1μL~1000mL、10μL~100mL、100μL~10mL、1~5mLを投与してもよく、これ以上の任意の量で投与してもよい。植物に投与する場合、当該カンキツかいよう病予防剤を注射筒に入れ、圧迫接種してもよいし、注射針を介して接種してもよい。当該カンキツかいよう病予防剤を含む懸濁液を植物成長媒体に投与する場合、例えば、植物成長媒体の表面積1mあたり、1μL~1000mL、10μL~100mL、100μL~10mL、1~5mLを散布することで投与してもよく、これ以上の任意の量で投与してもよい。 The citrus canker disease preventive agent according to the present embodiment includes citrus canker disease fungus infected with bacteriophage at any concentration as long as a desired effect is obtained. For example, citrus scabs infected with bacteriophages in suspension in sterile water can be 10 3 to 10 14 colony forming units (cfu) / mL, 10 4 to 10 12 cfu / mL or 10 3 to 10 8 cfu. / ML. When administered to plants at this concentration, the citrus scab prevention agent may be administered in an amount of 1 μL to 1000 mL, 10 μL to 100 mL, 100 μL to 10 mL, or 1 to 5 mL per plant individual, and in any amount higher than this. May be. When administering to a plant, the said citrus scab prevention agent may be put into a syringe and inoculated by pressure, or may be inoculated via an injection needle. When a suspension containing the citrus canker prevention agent is administered to a plant growth medium, for example, 1 μL to 1000 mL, 10 μL to 100 mL, 100 μL to 10 mL, or 1 to 5 mL is sprayed per 1 m 2 of the surface area of the plant growth medium. May be administered in any amount greater than this.
 本実施の形態に係るカンキツかいよう病予防剤は、植物または植物成長媒体に単回で投与されてもよいし、任意の時間間隔で植物または植物成長媒体に複数回投与されてもよい。実施例6に示すように、当該カンキツかいよう病予防剤は、植物に投与後4週間にわたって、病原性の顕著な低下、およびかいよう形成能の消失を維持した。このため、本実施の形態に係るカンキツかいよう病予防剤は、1週間に1回または複数回、あるいは2週間に1回、3週間に1回、4週間に1回などの間隔で植物などに投与すればよい。投与間隔は、投与対象の植物または植物成長媒体に応じて、適宜決定することができる。 The citrus canker prevention agent according to the present embodiment may be administered once to a plant or a plant growth medium, or may be administered multiple times to a plant or a plant growth medium at an arbitrary time interval. As shown in Example 6, the citrus scab prevention agent maintained a significant decrease in pathogenicity and loss of itch formation ability for 4 weeks after administration to plants. For this reason, the citrus canker prevention agent according to the present embodiment is applied to plants or the like at intervals of once or several times a week, once every two weeks, once every three weeks, once every four weeks, etc. What is necessary is just to administer. The administration interval can be appropriately determined according to the plant to be administered or the plant growth medium.
 本実施の形態に係るカンキツかいよう病予防剤は、有効成分であるバクテリオファージが感染したカンキツかいよう病菌以外にも、一般に薬学的または植物学的に許容される他の物質、組成物等を含んでもよい。 The citrus canker prevention agent according to the present embodiment may include other pharmaceutically or botanically acceptable substances, compositions, and the like in addition to the citrus canker disease fungus infected with the active ingredient bacteriophage. Good.
 以上詳細に説明したように、本実施の形態に係るカンキツかいよう病予防剤は、カンキツかいよう病菌の病原性を顕著に低下させ、かいよう形成能を消失させることができる。このため、カンキツかいよう病菌の植物への感染、または植物におけるカンキツかいよう病の発症もしくは病害拡大を予防できる。また、当該カンキツかいよう病予防剤は、カンキツかいよう病菌の防除にも使用できる。 As described above in detail, the citrus scab disease preventive agent according to the present embodiment can remarkably reduce the pathogenicity of citrus scab disease fungi, and can eliminate the itch formation ability. For this reason, the plant can be prevented from being infected with citrus canker disease, or the onset or spread of citrus canker disease in the plant can be prevented. Moreover, the said citrus canker disease preventive agent can be used also for control of a citrus canker disease fungus.
 なお、本実施の形態に係るカンキツかいよう病予防剤に含まれるカンキツかいよう病菌が分泌するバクテリオファージは、カンキツかいよう病菌に特異的に感染する性質を有するため、特異性が高く、他の有用な微生物に影響を与えない。これにより、当該カンキツかいよう病予防剤は、環境への影響を極力小さくすることができる。したがって、当該カンキツかいよう病予防剤は、化学農薬よりも安全性が高く、環境汚染、残留農薬などの問題を回避できる。 In addition, since the bacteriophage secreted by the citrus canker disease contained in the citrus canker disease preventive agent according to the present embodiment has a property of specifically infecting the citrus canker disease, it has high specificity and other useful microorganisms. Does not affect. Thereby, the said citrus canker prevention agent can make the influence on an environment small as much as possible. Therefore, the citrus canker prevention agent is safer than chemical pesticides and can avoid problems such as environmental pollution and residual pesticides.
 また、本実施の形態に係るカンキツかいよう病予防剤は、バクテリオファージがカンキツかいよう病菌内にあるため、バクテリオファージに対する紫外線、乾燥、温度変化などの環境因子の影響を低減することができる。すなわち、バクテリオファージの安定性および持続性を高めることができる。このため、本実施の形態に係るカンキツかいよう病予防剤は、長期にわたってカンキツかいよう病を予防できる。また、当該カンキツかいよう病予防剤に含まれるカンキツかいよう病菌は、増殖しながら、バクテリオファージを生産し、生産したバクテリオファージを分泌するので、潜在的な病原性カンキツかいよう病菌にさらにバクテリオファージを感染させることができる。これにより、少量の投与でカンキツかいよう病の予防が可能であるうえ、非病原性拮抗菌としても利用できる。したがって、本実施の形態に係るカンキツかいよう病予防剤は、植物の生産者の利便性を高め、低コストでの安全な農作物の提供に寄与する。 In addition, since the citrus scab prevention agent according to the present embodiment has the bacteriophage in the citrus scab, it is possible to reduce the influence of environmental factors such as ultraviolet rays, drying and temperature changes on the bacteriophage. That is, bacteriophage stability and persistence can be increased. For this reason, the citrus canker prevention agent which concerns on this Embodiment can prevent a citrus canker disease over a long period of time. In addition, the citrus scab fungus contained in the citrus scab disease preventive agent produces a bacteriophage and secretes the produced bacteriophage while proliferating, and thus further infects the potential pathogenic citrus scab fungus be able to. Thereby, it is possible to prevent citrus canker disease with a small amount of administration, and it can also be used as a non-pathogenic antagonist. Therefore, the citrus canker prevention agent according to the present embodiment improves the convenience of plant producers and contributes to the provision of safe agricultural products at low cost.
 なお、上記バクテリオファージも、カンキツかいよう病予防剤として利用できる。例えば、適切な溶媒に懸濁させたバクテリオファージを有効成分とするカンキツかいよう病予防剤は、植物、または植物成長媒体に投与することで、潜在的な病原性のカンキツかいよう病菌に該バクテリオファージを感染させ、カンキツかいよう病を予防できる。 The above bacteriophage can also be used as a preventive agent for citrus canker disease. For example, a citrus scab prevention agent comprising a bacteriophage suspended in an appropriate solvent as an active ingredient is administered to a plant or a plant growth medium, so that the bacteriophage is transmitted to a potential pathogenic citrus scab. Can infect and prevent citrus canker disease.
 上記バクテリオファージを有効成分とするカンキツかいよう病予防剤の投与量は、投与対象の植物の種類あるいは植物成長媒体の容積などに応じて、適宜决定することができる。カンキツかいよう病予防剤に含まれるバクテリオファージの用量は、例えば感染単位で測定され、感染単位は細菌培養用平板上に透明領域又はプラークを形成する能力であるプラーク形成単位(pfu)として定義される。例えば、好適な用量は、植物個体あたり10~1010pfu、好ましくは10~10pfuである。カンキツかいよう病予防剤は、上記用量のバクテリオファージを好適な担体又は希釈剤中に含み、投与対象の植物の種類あるいは植物成長媒体の容積などに応じて、例えば100μL~100mLまたは1~10mLである。 The dose of the citrus scab prevention agent containing the bacteriophage as an active ingredient can be determined as appropriate according to the type of plant to be administered, the volume of the plant growth medium, and the like. The dose of bacteriophage contained in a citrus canker prevention agent is measured, for example, in infectious units, where the infectious units are defined as plaque forming units (pfu), which is the ability to form clear areas or plaques on a bacterial culture plate. . For example, a suitable dose is 10 2 to 10 10 pfu per plant individual, preferably 10 4 to 10 8 pfu. The citrus canker prevention agent contains the above-mentioned dose of bacteriophage in a suitable carrier or diluent, and is, for example, 100 μL to 100 mL or 1 to 10 mL depending on the type of plant to be administered or the volume of the plant growth medium. .
 上記バクテリオファージを有効成分とするカンキツかいよう病予防剤によれば、バクテリオファージがカンキツかいよう病菌に感染して自己増殖するため、少量の投与でカンキツかいよう病の予防が可能である。 According to the above-mentioned citrus canker disease preventive agent containing bacteriophage as an active ingredient, since bacteriophage is infected with citrus canker disease and self-growth, citrus canker disease can be prevented with a small amount of administration.
 なお、上記バクテリオファージの他の実施の形態として、カンキツかいよう病菌の菌体外多糖の生成抑制剤が挙げられる。菌体外多糖の生成抑制剤は、有効成分として上記バクテリオファージを含む。病原性のカンキツかいよう病菌を、菌体外多糖の生成抑制剤に任意の方法で暴露することで、上記バクテリオファージがカンキツかいよう病菌に感染し、該カンキツかいよう病菌による菌体外多糖の生成を抑制できる。こうすることで、カンキツかいよう病菌の病原性を顕著に低下させ、かいよう形成能を消失させることができる。 In addition, as another embodiment of the bacteriophage, there is a production inhibitor of extracellular polysaccharides of citrus scab. The extracellular polysaccharide production inhibitor contains the bacteriophage as an active ingredient. By exposing pathogenic citrus canker disease bacteria to exopolysaccharide production inhibitors by any method, the above bacteriophage can infect citrus canker disease bacteria and suppress the production of exocytosis polysaccharides by citrus canker disease bacteria. it can. By carrying out like this, the pathogenicity of a citrus scab can be remarkably reduced and the ability to form a scab can be eliminated.
 さらに、別の実施の形態として、カンキツかいよう病菌の菌体外多糖の生成抑制方法が挙げられる。当該菌体外多糖の生成抑制方法は、上記バクテリオファージを、カンキツかいよう病菌に感染させる工程を含む。 Furthermore, as another embodiment, there is a method for suppressing the production of exopolysaccharides of citrus canker. The method for inhibiting the production of exopolysaccharide includes a step of infecting the bacteriophage with a citrus scab.
 (実施の形態2)
 続いて、実施の形態2について説明する。本実施の形態に係るカンキツかいよう病予防方法は、上記実施の形態1に係るカンキツかいよう病予防剤を、植物または植物成長媒体に投与する工程を含む。植物は、カンキツかいよう病菌の病害が及び得るものであれば任意の種類であってよいが、好ましくはカンキツ類である。さらに好適には当該植物は、レモン、ネーブルオレンジ等の高級カンキツ類である。
(Embodiment 2)
Next, the second embodiment will be described. The method for preventing citrus canker disease according to the present embodiment includes the step of administering the agent for preventing citrus canker according to Embodiment 1 to a plant or a plant growth medium. The plant may be of any kind as long as it can be affected by the disease of citrus canker, but is preferably citrus. More preferably, the plant is a high-grade citrus such as lemon or navel orange.
 カンキツかいよう病予防剤を投与する方法は、植物または植物成長媒体を、カンキツかいよう病予防剤に暴露することができる方法であれば任意である。カンキツかいよう病予防剤を投与する方法は、例えば、カンキツかいよう病予防剤を噴霧、注射すること、あるいはカンキツかいよう病予防剤を植物または植物成長媒体に浸透させることなどである。 The method for administering the citrus canker disease preventive agent is arbitrary as long as it can expose the plant or plant growth medium to the citrus canker disease preventive agent. The method for administering the citrus canker prevention agent includes, for example, spraying and injecting the citrus canker disease preventing agent, or allowing the citrus canker disease preventing agent to penetrate into a plant or a plant growth medium.
 カンキツかいよう病予防剤の投与量は任意であるが、バクテリオファージが感染したカンキツかいよう病菌を任意の濃度で含むカンキツかいよう病予防剤を、植物個体あたり1μL~1000mL、10μL~100mL、100μL~10mL、1~5mL投与すればよい。あるいは、当該カンキツかいよう病予防剤を、植物成長媒体の表面積1mあたり、1μL~1000mL、10μL~100mL、100μL~10mL、1~5mLを散布することで投与してもよい。 The dose of the citrus scab prevention agent is arbitrary, but the citrus scab prevention agent containing citrus scab disease bacteria infected with bacteriophages at an arbitrary concentration is 1 μL to 1000 mL, 10 μL to 100 mL, 100 μL to 10 mL, 1-5 mL may be administered. Alternatively, the citrus canker prevention agent may be administered by spraying 1 μL to 1000 mL, 10 μL to 100 mL, 100 μL to 10 mL, or 1 to 5 mL per 1 m 2 of the surface area of the plant growth medium.
 以上詳細に説明したように、本実施の形態に係るカンキツかいよう病予防方法は、カンキツかいよう病菌の病原性を顕著に低下させるバクテリオファージを植物または植物成長媒体に効率よく作用させることができる。 As described above in detail, the method for preventing citrus canker disease according to the present embodiment can efficiently cause a bacteriophage that significantly reduces the pathogenicity of citrus canker disease to a plant or a plant growth medium.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to the examples.
 (実施例1:バクテリオファージの単離および精製)
 試験に用いたカンキツかいよう病菌であるMAFF株は独立行政法人農業生物資源研究所から分譲された。MAFF株は、栄養寒天培地(NA medium;Difco(商標)、BBL ベクトン ディッキンソン アンド カンパニー製、米国メリーランド州コッキーズヒル)を用いて28℃で培養した。液体培養が必要な場合は、NB培地(BBL ベクトン ディッキンソン アンド カンパニー製)で、28℃、24時間振盪培養した(220rpm)。MAFF株は、30%(v/v)グリセロールを含む0.8%のNB培地中で、-80℃で保管した。
Example 1: Isolation and purification of bacteriophage
The MAFF strain, which is a citrus canker disease used in the test, was sold by the National Institute for Agrobiological Sciences. The MAFF strain was cultured at 28 ° C. using a nutrient agar medium (NA medium; Difco ™, manufactured by BBL Becton Dickinson and Company, Cockeys Hill, MD, USA). When liquid culture was required, shaking culture was performed at 220 ° C. for 24 hours in NB medium (BBL Becton Dickinson & Company) (220 rpm). The MAFF strain was stored at −80 ° C. in 0.8% NB medium containing 30% (v / v) glycerol.
 日本の農地から採取した土壌試料から線状のバクテリオファージ(以下、単に「ファージ」ともいう)を、次のように検出した。およそ10gの土壌試料を、滅菌した50mLの円錐状の遠心分離チューブに入れ、当該チューブを水道水で満たし、20分毎に反転させた。次に、チューブを、20分間、1500×gで遠心分離し、膜孔の径が0.45μmの膜フィルター(ミリポア社製、米国マサチューセッツ州ベッドフォード)を用いて、上清を濾過した。 A linear bacteriophage (hereinafter also simply referred to as “phage”) was detected from a soil sample collected from a Japanese farmland as follows. Approximately 10 g of soil sample was placed in a sterile 50 mL conical centrifuge tube, which was filled with tap water and inverted every 20 minutes. Next, the tube was centrifuged at 1500 × g for 20 minutes, and the supernatant was filtered using a membrane filter (Millipore, Bedford, Mass., USA) having a membrane pore diameter of 0.45 μm.
 次に、土壌濾液100μLを、宿主としてMAFF株を用いて軟寒天培地(0.75%寒天)と混合し、1.5%(w/v)寒天を含むNBプレートに重層してプラークを形成させた。ファージは、単一のプラークで増殖したものを精製した。1mLのNB培地で一晩培養した細菌の培養液を、500mLフラスコ内の100mLの新たなNB培地で100倍に希釈した。十分な量のファージ粒子を得るために、全体で2Lの培養液で細菌培養を行った。OD600nmが0.2になったときに、MOI(multiplicity of infection)が0.001~1.0になるようにファージを加えた。さらに12~24時間の培養後、遠心分離機(日立Himac CR21E)による遠心分離(R12A2ローターを使用して、8000×g、4℃で15分間)で細胞を除去した。 Next, 100 μL of the soil filtrate is mixed with soft agar medium (0.75% agar) using MAFF strain as a host, and overlaid on an NB plate containing 1.5% (w / v) agar to form a plaque. I let you. Phages were purified from those grown on a single plaque. A bacterial culture grown overnight in 1 mL of NB medium was diluted 100-fold with 100 mL of fresh NB medium in a 500 mL flask. In order to obtain a sufficient amount of phage particles, bacterial culture was performed with a total of 2 L of culture solution. When the OD 600 nm reached 0.2, phages were added so that the MOI (multiplicity of infection) was 0.001 to 1.0. After further culturing for 12 to 24 hours, the cells were removed by centrifugation (8000 × g, 4 ° C. for 15 minutes using an R12A2 rotor) with a centrifuge (Hitachi Himac CR21E).
 膜孔の径が0.45μmの膜フィルターで上清を濾過し、0.5MのNaClおよび5%(v/v)ポリエチレングリコール6000(関東化学工業社製)存在下でファージ粒子を沈降させた。遠心分離機(日立Himac CR21E)による遠心分離(RPR20-2ローターを使用して、15000×g、4℃で30分間)でペレットを回収し、ペレットを、SMバッファ(50mM Tris/HCl(pH7.5)、100mM NaCl、10mM MgSOおよび0.01%ゼラチン(w/v))に溶解した。ファージを保管する場合、4℃の遮光環境に静置した。 The supernatant was filtered through a membrane filter having a membrane pore diameter of 0.45 μm, and phage particles were precipitated in the presence of 0.5 M NaCl and 5% (v / v) polyethylene glycol 6000 (manufactured by Kanto Chemical Co., Inc.). . The pellet was recovered by centrifugation (15000 × g, 4 ° C. for 30 minutes using RPR20-2 rotor) with a centrifuge (Hitachi Himac CR21E), and the pellet was collected in SM buffer (50 mM Tris / HCl (pH 7. 5), 100 mM NaCl, 10 mM MgSO 4 and 0.01% gelatin (w / v)). When the phage was stored, it was left in a light-shielding environment at 4 ° C.
 ファージの力価は、系列希釈およびプラーク形成試験で決定した。精製されたファージ(1013pfu/mL)を、カーボン支持膜を張ったメッシュに5μL滴下後、2%リンタングステン酸ナトリウム5μLでネガティブ染色し、電子顕微鏡(日立H600A)で観察した。 The titer of the phage was determined by serial dilution and plaque formation test. 5 μL of the purified phage (10 13 pfu / mL) was dropped on a mesh covered with a carbon support membrane, negatively stained with 5 μL of 2% sodium phosphotungstate, and observed with an electron microscope (Hitachi H600A).
 (結果)
 図1は、得られたファージ(以下、「XacF1ファージ」とする)粒子の電子顕微鏡像を示す。粒子は、長さ1000nm、径7nmの線状構造を有していた。
(result)
FIG. 1 shows an electron microscopic image of the obtained phage (hereinafter referred to as “XacF1 phage”) particles. The particles had a linear structure with a length of 1000 nm and a diameter of 7 nm.
 表1は、XacF1ファージの宿主を示す。XacF1ファージは、異なるカンキツ品種に感染するカンキツかいよう病菌の少なくとも6株に感染することを確認した。 Table 1 shows XacF1 phage hosts. XacF1 phage was confirmed to infect at least 6 strains of citrus canker that infect different citrus varieties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2:増殖試験)
 XacF1ファージが感染したMAFF株の増殖を調べるために、XacF1ファージが感染したMAFF株(以下、単に「XacF1感染菌株」ともいう)および未感染のMAFF株を5mLのNB培地で一晩培養した。続いて、30mLのNB培地を含む100mLフラスコに、0.5mLのMAFF株懸濁液(10cfu/mL)を入れた。フラスコを200rpmで撹拌しながら28℃で培養し、分光光度計を用いて48時間にわたって3時間毎に、OD600nmを測定した。
(Example 2: proliferation test)
In order to examine the growth of the MAFF strain infected with the XacF1 phage, the MAFF strain infected with the XacF1 phage (hereinafter also simply referred to as “XacF1 infected strain”) and the uninfected MAFF strain were cultured overnight in 5 mL of NB medium. Subsequently, 0.5 mL of MAFF strain suspension (10 8 cfu / mL) was placed in a 100 mL flask containing 30 mL of NB medium. The flask was incubated at 28 ° C. with stirring at 200 rpm, and OD 600 nm was measured every 3 hours for 48 hours using a spectrophotometer.
 (結果)
 図2は、OD600nmの経時変化を示す。XacF1ファージが感染したMAFF株(以下、単に「XacF1感染菌株」ともいう)は、OD600nmが上昇しているため、溶菌せずにXacF1ファージを産生しながら増殖することが示された。XacF1感染菌株は、未感染のMAFF株(以下、単に「未感染宿主菌株」ともいう)と比較して、増殖速度および増殖量が約2/3に低下した。
(result)
FIG. 2 shows the time course of OD 600 nm . The MAFF strain infected with XacF1 phage (hereinafter, also simply referred to as “XacF1 infected strain”) has been shown to grow while producing XacF1 phage without lysis because OD 600 nm is increased. The XacF1-infected strain had a growth rate and a growth amount reduced to about 2/3 as compared with the uninfected MAFF strain (hereinafter also simply referred to as “uninfected host strain”).
 (実施例3:DNAの単離)
 DNAの単離、制限酵素および他のヌクレアーゼによる切断、ならびに組み換えDNAの構築は、以下のように標準の分子生物学的手法を用いて行った。
(Example 3: DNA isolation)
Isolation of DNA, cleavage with restriction enzymes and other nucleases, and construction of recombinant DNA were performed using standard molecular biology techniques as follows.
 XacF1ファージのDNAは、精製されたXacF1ファージ粒子から、フェノール抽出によって単離した。場合によっては、アルカリSDS液による少量調製法によって、XacF1ファージが感染した細菌から染色体外のDNAを単離した。XacF1ファージに感染した宿主細菌から配列解析のための複製型(RF)DNAを単離し、S1ヌクレアーゼで処理し、Roche GS Junior Sequence Systemを用いて、ショットガンシークエンス法を行った。 XacF1 phage DNA was isolated from the purified XacF1 phage particles by phenol extraction. In some cases, extrachromosomal DNA was isolated from bacteria infected with XacF1 phage by small-scale preparation with alkaline SDS solution. Replicate (RF) DNA for sequence analysis was isolated from host bacteria infected with XacF1 phage, treated with S1 nuclease, and shotgun sequencing was performed using Roche GS Junior Sequence System.
 次に、GS De Novo Assembler v2.6を用いて、得られた配列のアセンブリを行った。解析された配列は、XacF1ファージの最終ゲノムサイズ(7325b)の156倍に相当した。DNASIS v3.6(日立ソフトウェア・エンジニアリング社製)を用いて、ヌクレオチド配列データをコンピュータで解析した。80bよりも長いORF候補がORF Finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)を用いて同定された。配列アライメントはClustalWプログラムを用いて行った。ORFに可能性のある機能を割り当てるために、FASTA、FASTX、BLASTNおよびBLASTXプログラムを用いて、DDBJ/EMBL/GenBankデータベースを検索した。 Next, assembly of the obtained array was performed using GS De Novo Assembler v2.6. The analyzed sequence corresponded to 156 times the final genome size (7325b) of the XacF1 phage. The nucleotide sequence data was analyzed with a computer using DNASIS v3.6 (manufactured by Hitachi Software Engineering). ORF candidates longer than 80b were identified using ORF Finder (http://www.ncbi.nlm.nih.gov/golf/golf.html). Sequence alignment was performed using the ClustalW program. To assign potential functions to the ORF, the DDBJ / EMBL / GenBank database was searched using the FASTA, FASTX, BLASTN and BLASTX programs.
 (結果)
 XacF1ファージのゲノムは、7325bからなる環状1本鎖DNAであった。図3は、Inovirous(Ffファージ)の代表格である大腸菌M13と比較したXacF1ファージの遺伝子地図を示す。XacF1ファージのDNA複製モジュール(R)、構造タンパク質モジュール(S)および会合・分泌モジュール(A-S)は、M13と共通するモジュールである。XacF1ファージのゲノムは、M13と異なり、会合・分泌モジュールの下流に制御領域を有していた。XacF1ファージの予測されたORFの詳細を表2に示す。
(result)
The genome of XacF1 phage was circular single-stranded DNA consisting of 7325b. FIG. 3 shows a genetic map of the XacF1 phage compared to E. coli M13, which is a representative of Invivorus (Ff phage). The DNA replication module (R), structural protein module (S), and association / secretion module (AS) of XacF1 phage are modules common to M13. Unlike the M13, the XacF1 phage genome had a control region downstream of the association / secretion module. Details of the predicted ORF of the XacF1 phage are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例4:XacF1ファージ感染菌の運動性の評価)
 Swimming運動性とSwarming運動性の評価は、それぞれ0.3%(w/v)および0.7%(w/v)の栄養寒天培地(Nutrient agar;Difco(商標)、米国ニュージャージー州フランクリンレイクス)において行なった。終夜培養した培養液を、4℃で2分間遠心分離し(8000×g)、菌体を滅菌水で洗浄後、OD600nm=1.0となるように滅菌水に懸濁した。20mLの栄養寒天培地を含む直径90mmのシャーレの培地上に、細菌懸濁液2μLをスポットし、28℃に保温しながら細菌移動範囲を測定した。
(Example 4: Evaluation of motility of XacF1 phage-infected bacteria)
The assessment of Swiming motility and Swarming motility was as follows: 0.3% (w / v) and 0.7% (w / v) nutrient agar (Nutrient agar; Difco ™, Franklin Lakes, NJ, USA) Performed in The culture broth cultured overnight was centrifuged at 4 ° C. for 2 minutes (8000 × g), and the cells were washed with sterilized water and then suspended in sterilized water so that OD 600 nm = 1.0. 2 μL of the bacterial suspension was spotted on a petri dish having a diameter of 90 mm containing 20 mL of nutrient agar medium, and the bacterial migration range was measured while keeping the temperature at 28 ° C.
 Twitching運動性は次のように評価した。上記と同様に2μLの細菌懸濁液を最少栄養培地(MM;0.125%(NHSO、0.175% KHPO、0.075% KHPO、0.025% MgSO、0.015% クエン酸ナトリウム、1.5%寒天(w/v))にスポットした。28℃で培養しながらコロニーの周縁部分を顕微鏡観察した(100倍)。 Twitching motility was evaluated as follows. As above, 2 μL of bacterial suspension was added to minimal nutrient medium (MM; 0.125% (NH 4 ) 2 SO 4 , 0.175% K 2 HPO 4 , 0.075% KH 2 PO 4 , 0.025 % MgSO 4 , 0.015% sodium citrate, 1.5% agar (w / v)). While culturing at 28 ° C., the periphery of the colony was observed with a microscope (100 times).
 (結果)
 Swimming運動性の結果を図4(A)~(C)に示す。図4(A)に示す未感染宿主菌株と比較して、図4(B)に示すXacF1ファージ感染菌株は、培地上にコロニーが拡がらないことが観察された。運動性距離を定量したところ、図4(C)に示すように、XacF1ファージ感染菌株は未感染宿主菌株よりもSwimming運動性が低下することが示された。
(result)
The results of the swimming motility are shown in FIGS. 4 (A) to 4 (C). Compared to the uninfected host strain shown in FIG. 4 (A), it was observed that the XacF1 phage-infected strain shown in FIG. 4 (B) did not spread on the medium. When the motility distance was quantified, as shown in FIG. 4 (C), it was shown that the XacF1 phage-infected strain had a lower swimming motility than the uninfected host strain.
 図5(A)~(C)は、Swarming運動性の結果を示す。Swimming運動性と同様に、図5(A)に示す未感染宿主菌株と比較して、図5(B)に示すXacF1ファージ感染菌株は、培地上にコロニーが拡がらないことが観察された。運動性距離を定量したところ、図5(C)に示すように、XacF1ファージ感染菌株は未感染宿主菌株よりもSwarming運動性が低下することが示された。 FIGS. 5 (A) to (C) show the results of the warming motility. Similar to the swimming motility, it was observed that the XacF1 phage-infected strain shown in FIG. 5 (B) did not spread on the medium as compared to the uninfected host strain shown in FIG. 5 (A). When the motility distance was quantified, as shown in FIG. 5 (C), it was shown that the XacF1 phage-infected strain has a lower Warming motility than the uninfected host strain.
 図6(A)および(B)は、Twitching運動性の結果を示す。図6(A)に示す未感染宿主菌株では、コロニー周辺にTwitching運動性に由来する不規則構造が観察された。一方、図6(B)に示すXacF1ファージ感染菌株のコロニー周辺の形状は、未感染宿主菌株のコロニー周辺よりも滑らかであった。つまり、XacF1ファージ感染菌株は未感染宿主菌株よりもTwitching運動性が低下することが示された。 6 (A) and 6 (B) show the results of Switching motility. In the uninfected host strain shown in FIG. 6 (A), an irregular structure derived from Switching motility was observed around the colony. On the other hand, the shape around the colony of the XacF1 phage-infected strain shown in FIG. 6 (B) was smoother than that around the colony of the uninfected host strain. That is, it was shown that the Twitching motility of the XacF1 phage-infected strain is lower than that of the uninfected host strain.
 (実施例5:菌体外多糖(キサンタン)の生産評価)
 XacF1ファージ感染菌株および未感染宿主菌株の培養上清に含まれる菌体外多糖を、次の方法で定量した。2%(w/v)D-グルコースを追加したNB培地で、XacF1ファージ感染菌株または未感染宿主菌株を、24時間、28℃で振盪培養した(200rpm)。10mLの培養液を遠心分離し(5000×gで20分間)、細胞を除去した。培養上清を3倍量の99%エタノールと混合し、4℃で30分間冷却後、遠心分離により沈殿として菌体外多糖を回収した。回収した菌体外多糖は、55℃で終夜乾燥させ定量した。
(Example 5: Production evaluation of extracellular polysaccharide (xanthan))
The exopolysaccharide contained in the culture supernatants of the XacF1 phage-infected strain and the uninfected host strain was quantified by the following method. In NB medium supplemented with 2% (w / v) D-glucose, XacF1 phage-infected strain or uninfected host strain was cultured with shaking at 28 ° C. for 24 hours (200 rpm). Ten mL of the culture was centrifuged (5000 × g for 20 minutes) to remove the cells. The culture supernatant was mixed with 3 times the amount of 99% ethanol, cooled at 4 ° C. for 30 minutes, and centrifuged to collect extracellular polysaccharide as a precipitate. The recovered extracellular polysaccharide was dried at 55 ° C. overnight and quantified.
 (結果)
 XacF1ファージ感染菌株では、10mLの培養液から0.6mgの菌体外多糖が回収された。一方、未感染宿主菌株では、10mLの培養液から6.7mgの菌体外多糖が回収された。XacF1ファージ感染菌株は、未感染宿主菌株と比較して、菌体外多糖の生産が1/10ほどになり、ほとんど菌体外多糖、特に図7に示すように黄色に観察されるキサンタンを生産しないことが示された。カンキツかいよう病菌が生産する菌体外多糖は、カンキツかいよう病の病原因子である。このため、XacF1ファージ感染菌は、病原性が大幅に低下していることが示された。
(result)
In the XacF1 phage-infected strain, 0.6 mg of exopolysaccharide was recovered from 10 mL of the culture solution. On the other hand, in the uninfected host strain, 6.7 mg of exopolysaccharide was recovered from 10 mL of the culture solution. The XacF1 phage-infected strain produces about 1/10 of the exopolysaccharide compared to the uninfected host strain, producing almost exopolysaccharide, particularly xanthan, which is observed in yellow as shown in FIG. It was shown not to. The exopolysaccharide produced by citrus canker is a virulence factor for citrus canker. For this reason, it was shown that the pathogenicity of the XacF1 phage-infected bacteria is greatly reduced.
 (実施例6:XacF1ファージ感染菌株の病原性の評価)
 XacF1ファージ感染菌株の病原性を次の方法で評価した。レモンの葉を水道水で丁寧に洗浄した後、葉を完全に広げ、次亜塩素酸ナトリウムに2分間浸すことで殺菌し、滅菌水で洗浄した。背軸表面を上に向けて濾紙表面上に葉を置いた。XacF1ファージ感染菌株および未感染宿主菌株の各懸濁液を、針刺し法および浸透法で葉に接種した(滅菌水で10cfu/mL)。針刺し法では、葉を針で刺し、刺した箇所に各懸濁液10μLを滴下した。浸透法では、葉の表側を指で支えて、裏側に各懸濁液を含む注射筒を圧迫接種した。観察のために、接種後、処置した領域に直接印をつけておいた。
(Example 6: Evaluation of pathogenicity of XacF1 phage-infected strain)
The pathogenicity of the XacF1 phage-infected strain was evaluated by the following method. After the lemon leaf was carefully washed with tap water, the leaf was completely spread, sterilized by soaking in sodium hypochlorite for 2 minutes, and washed with sterile water. Leaves were placed on the filter paper surface with the spine surface facing up. Each suspension of the XacF1 phage-infected strain and the uninfected host strain was inoculated into the leaves by a needle stick method and an osmotic method (10 8 cfu / mL with sterile water). In the needle stab method, the leaves were stabbed with a needle, and 10 μL of each suspension was added dropwise to the puncture site. In the permeation method, the front side of the leaf was supported with a finger, and a syringe containing each suspension was pressure-inoculated on the back side. For observation, the treated area was marked directly after inoculation.
 上記針刺し法および浸透法では、感染を促進するため、接種した葉をビニール袋で48時間覆った。12時間の明期と12時間の暗期の光周期で、4週間、葉を28℃の栽培箱内に置いた。 In the needle stab method and the penetrating method, inoculated leaves were covered with a plastic bag for 48 hours in order to promote infection. Leaves were placed in a 28 ° C. cultivation box for 4 weeks with a photoperiod of 12 hours light and 12 hours dark.
 (結果)
 図8は、針刺し法の結果を示す。未感染宿主菌株では、1週間後に病斑が顕著になり、時間経過とともに病斑が拡大、隆起し、2週間後には典型的なかいよう病徴を示した。その後、かいようがさらに拡大した。一方、XacF1ファージ感染菌株では、4週間後も明確な病変がほとんど見られなかった。それぞれ20枚の葉における病変領域を定量した結果を図9に示す。XacF1ファージ感染菌株による病変は、ほとんど現れず、XacF1ファージ感染菌株には、病原性がないことが示された。
(result)
FIG. 8 shows the results of the needle stick method. In the uninfected host strain, lesions became prominent after 1 week, and the lesions expanded and raised over time, and typical symptom after 2 weeks. After that, Kaiyo further expanded. On the other hand, in the XacF1 phage-infected strain, clear lesions were hardly seen even after 4 weeks. The result of quantifying the lesion area in each of the 20 leaves is shown in FIG. The lesion caused by the XacF1 phage-infected strain hardly appeared, indicating that the XacF1 phage-infected strain was not pathogenic.
 図10は、浸透法の結果を示す。上段は、葉の裏側を示し、左側の2箇所に未感染宿主菌株を接種し、右側の1箇所にXacF1ファージ感染菌株を接種している。下段は、上段の葉の表側を示す。未感染宿主菌株では、1週間後、接種箇所が脱色し、明らかな病徴が見られた。2週間後には、接種箇所が褐変し、組織の崩壊が始まった。4週間後には、かいよう化がさらに進展した。一方、XacF1ファージ感染菌株では、3週間後でも特に目立った変化は見られず、4週間後に、接種箇所周辺に少し黄変境界が出現した。XacF1ファージ感染菌株を接種した葉では、かいよう病の病徴は見られなかった。この結果からも、XacF1ファージ感染菌株には、病原性がないことが示された。 FIG. 10 shows the results of the infiltration method. The upper row shows the back side of the leaf, and the left two sites are inoculated with an uninfected host strain, and the right side is inoculated with a XacF1 phage-infected strain. The lower row shows the front side of the upper leaf. In the uninfected host strain, the inoculated site was decolored after 1 week, and clear symptom was observed. Two weeks later, the inoculation site turned brown and the tissue began to collapse. Four weeks later, further progress was made in tying. On the other hand, in the XacF1 phage-infected strain, no noticeable change was observed even after 3 weeks, and a slight yellowing boundary appeared around the inoculation site after 4 weeks. In the leaves inoculated with the XacF1 phage-infected strain, no symptoms of scab disease were observed. This result also indicates that the XacF1 phage-infected strain has no pathogenicity.
 (実施例7:XacF1ファージのカンキツかいよう病予防効果)
 XacF1ファージ感染菌株のカンキツかいよう病予防効果を次の方法で評価した。レモンの葉を水道水で丁寧に洗浄した後、葉を完全に広げ次亜塩素酸ナトリウム液に2分浸すことで殺菌し、滅菌水で洗浄した。背軸表面を上に向けて濾紙表面上に葉を置いた。XacF1感染菌株(Xanthomonas pv.citri MAFF301080)の滅菌水懸濁液(10細胞/mL)を葉の表面に霧吹き器で吹き付けた(1mL/葉)。対照として未感染宿主菌株(MAFF301080)を同じ条件で葉の表面に吹き付けた。吹き付け後、湿度調整したシャーレ内で葉を、12時間明期、12時間暗期の光周期で28℃、4週間保存し観察した。
(Example 7: Preventing citrus canker disease of XacF1 phage)
The citrus canker prevention effect of the XacF1 phage-infected strain was evaluated by the following method. After the lemon leaf was carefully washed with tap water, the leaf was completely spread and sterilized by immersing it in a sodium hypochlorite solution for 2 minutes, followed by washing with sterile water. Leaves were placed on the filter paper surface with the spine surface facing up. A sterile water suspension (10 8 cells / mL) of XacF1-infected strain (Xanthomonas pv. Citri MAFF301080) was sprayed onto the leaf surface with a nebulizer (1 mL / leaf). As a control, an uninfected host strain (MAFF301080) was sprayed on the leaf surface under the same conditions. After spraying, the leaves were stored in a petri dish adjusted for humidity at a photoperiod of 12 hours light period and 12 hours dark period at 28 ° C. for 4 weeks and observed.
 (結果)
 図11(A)に示すように、未感染宿主菌株を吹き付けたレモンの葉では、3週間後、菌の感染が明瞭となり、4週間後では葉面広領域に感染が拡大した。一方、図11(B)に示すように、XacF1感染菌株を吹き付けたレモンの葉では、4週間後でも葉面において変化は全く見られなかった。なお、各実験5枚のレモンの葉を用いて、すべての葉において同じ結果が得られた。
(result)
As shown in FIG. 11 (A), in the lemon leaves sprayed with the uninfected host strain, the infection of the bacteria became clear after 3 weeks, and the infection spread in a wide leaf area after 4 weeks. On the other hand, as shown in FIG. 11 (B), in the leaves of the lemon sprayed with the XacF1-infected strain, no change was observed on the leaf surface even after 4 weeks. In addition, the same result was obtained in all leaves using five lemon leaves for each experiment.
 (実施例8:XacF1ファージ感染菌株のカンキツかいよう病予防効果)
 XacF1ファージ感染菌株の噴霧処理を行なったレモンの葉について、噴霧2日後、針でレモンの葉を刺し、MAFF301080野生株の滅菌水懸濁液(10細胞/mL)を、刺した個所に滴下した(1箇所あたり10μL)。対照として噴霧処理を行なわないレモンの葉に対して、上記滅菌水懸濁液を同様に接種した。接種後、上記実施例7と同様にレモンの葉を保存し観察した。
(Example 8: Prevention effect of citrus canker disease of XacF1 phage-infected strain)
Lemon leaves that had been sprayed with XacF1 phage-infected strains were stabbed with a needle two days after spraying, and MAFF301080 wild strain sterilized water suspension (10 8 cells / mL) was dropped into the stabbed area. (10 μL per location). As a control, the above-mentioned sterilized water suspension was similarly inoculated on a lemon leaf that was not sprayed. After inoculation, lemon leaves were stored and observed in the same manner as in Example 7 above.
 (結果)
 噴霧処理をしない場合は、明らかな病徴が2週間後から発生した。図12(A)に示すように、3週間後には褐変と組織の崩壊が顕著となった。さらに4週間後には、病徴の進展が見られた。一方、噴霧処理をしたレモンの葉では、図12(B)に示すように、3週間後、接種部分に傷が若干見られるが、病徴は見られない。4週間後でも変化はなく、病徴と認められるものは皆無であった。なお、各実験5枚のレモンの葉を用いて、すべての葉において同じ結果が得られた。
(result)
In the absence of spray treatment, obvious symptom occurred after 2 weeks. As shown in FIG. 12 (A), browning and tissue collapse became prominent after 3 weeks. Four weeks later, the progression of symptoms was observed. On the other hand, as shown in FIG. 12 (B), the sprayed lemon leaves show some wounds on the inoculated portion after 3 weeks, but no symptoms are observed. There was no change after 4 weeks, and there was no symptom. In addition, the same result was obtained in all leaves using five lemon leaves for each experiment.
 実施例8に示すように、XacF1ファージ感染菌株を接種したレモンの葉では、病原性を有するカンキツかいよう病菌の野生株に暴露されても、カンキツかいよう病の兆候が現れなかった。したがって、XacF1ファージ感染菌株は、カンキツかいよう病予防剤として有用である。 As shown in Example 8, the lemon leaves inoculated with the XacF1 phage-infected strain showed no signs of citrus scab even when exposed to wild strains of pathogenic citrus scab. Therefore, the XacF1 phage-infected strain is useful as a preventive agent for citrus canker disease.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態および変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2014年6月20日に出願された、日本国特許出願特願2014-126782号に基づく。本明細書中に日本国特許出願特願2014-126782号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2014-126782 filed on June 20, 2014. The specification, claims, and entire drawings of Japanese Patent Application No. 2014-126782 are incorporated herein by reference.
 本発明は、果樹、主にカンキツ類に対するかいよう病の予防、拡大防止またはカンキツかいよう病菌の防除に好適である。特に、かいよう病に感受性のあるレモン、ネーブルオレンジなどの高級カンキツ類におけるかいよう病の予防および拡大防止に好適である。 The present invention is suitable for prevention, expansion prevention, or control of citrus canker against fruit trees, mainly citrus. In particular, it is suitable for prevention and prevention of scabies in high-grade citrus fruits such as lemon and navel orange which are susceptible to scabies.

Claims (10)

  1.  ファージ粒子の構造が線状で、カンキツかいよう病菌に感染する、
     バクテリオファージ。
    The structure of the phage particle is linear and infects citrus canker.
    Bacteriophage.
  2.  ゲノムサイズが7000~8000bである、
     請求項1に記載のバクテリオファージ。
    The genome size is 7000-8000b,
    The bacteriophage according to claim 1.
  3.  ゲノム構成がDNA複製モジュール、構造タンパク質モジュール、会合・分泌モジュールおよび制御領域を含む、
     請求項1または2に記載のバクテリオファージ。
    The genomic organization includes a DNA replication module, a structural protein module, an association / secretion module and a control region,
    The bacteriophage according to claim 1 or 2.
  4.  ゲノムの塩基配列が、配列番号1に示す塩基配列からなる、
     請求項1から3のいずれか一項に記載のバクテリオファージ。
    The genomic base sequence consists of the base sequence shown in SEQ ID NO: 1.
    The bacteriophage according to any one of claims 1 to 3.
  5.  前記カンキツかいよう病菌は、Xanthomonas axonopodis pv.citri、Xanthomonas campestris pv.citri、またはXanthomonas citriである、
     請求項1から4のいずれか一項に記載のバクテリオファージ。
    The citrus canker can be obtained from Xanthomonas axonopodis pv. citri, Xanthomonas campestris pv. citri, or Xanthomonas citri,
    The bacteriophage according to any one of claims 1 to 4.
  6.  請求項1から5のいずれか一項に記載のバクテリオファージを含むカンキツかいよう病予防剤。 A citrus canker prevention agent comprising the bacteriophage according to any one of claims 1 to 5.
  7.  請求項1から5のいずれか一項に記載のバクテリオファージが感染したカンキツかいよう病菌を含むカンキツかいよう病予防剤。 A citrus canker prevention agent comprising a citrus canker disease fungus infected with the bacteriophage according to any one of claims 1 to 5.
  8.  前記カンキツかいよう病菌は、Xanthomonas campestris pv.citri MAFF301080株に前記バクテリオファージを感染させた菌株(寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター、寄託機関のあて名:〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室、寄託日:2014年6月16日、受託番号:NITE BP-01875)である、
     請求項7に記載のカンキツかいよう病予防剤。
    The citrus canker can be obtained from Xanthomonas campestris pv. Citri MAFF301080 strain infected with the bacteriophage (name of depositary organization: National Institute of Technology and Evaluation, Patent Microorganism Depositary, Address of depositary organization: 2 Kazusa Kamashishi, Kisarazu City, Chiba Prefecture, Japan 292-0818 -5-8 Room 122, Deposit Date: June 16, 2014, Deposit Number: NITE BP-01875)
    The citrus canker prevention agent according to claim 7.
  9.  請求項6から8のいずれか一項に記載のカンキツかいよう病予防剤を、植物または植物成長媒体に投与する工程、を含む、
     カンキツかいよう病の予防方法。
    Administering the citrus scab prevention agent according to any one of claims 6 to 8 to a plant or a plant growth medium.
    How to prevent citrus canker disease.
  10.  前記植物は、カンキツ類である、
     請求項9に記載のカンキツかいよう病の予防方法。
    The plant is a citrus.
    The method for preventing citrus canker according to claim 9.
PCT/JP2015/067282 2014-06-20 2015-06-16 Bacteriophage, agent for preventing xanthomonas campestris disease, and method for preventing xanthomonas campestris disease WO2015194540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529365A JPWO2015194540A1 (en) 2014-06-20 2015-06-16 Bacteriophage, citrus canker prevention agent and citrus canker prevention method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126782 2014-06-20
JP2014-126782 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194540A1 true WO2015194540A1 (en) 2015-12-23

Family

ID=54935523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067282 WO2015194540A1 (en) 2014-06-20 2015-06-16 Bacteriophage, agent for preventing xanthomonas campestris disease, and method for preventing xanthomonas campestris disease

Country Status (2)

Country Link
JP (1) JPWO2015194540A1 (en)
WO (1) WO2015194540A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102025403B1 (en) * 2018-04-27 2019-09-25 경희대학교 산학협력단 Novel bacteriophage ΦEaP-8 effective for fire blight bacteria and use thereof
CN113151192A (en) * 2021-03-05 2021-07-23 菲吉乐科(南京)生物科技有限公司 Cross-species lytic xanthomonas phage, composition, kit and application thereof
CN113201504A (en) * 2021-02-19 2021-08-03 青岛诺安百特生物技术有限公司 Bacteriophage for preventing and treating plant xanthomonas infection and application thereof
CZ309960B6 (en) * 2022-09-20 2024-03-06 Biologické centrum AV ČR, v. v. i. The Xe_NED111 bacteriophage strain, a preparation based on this bacteriophage strain and their use against bacterial spot on tomatoes and peppers
CZ309961B6 (en) * 2022-09-20 2024-03-06 Biologické centrum AV ČR, v. v. i. The Xe_PB119 bacteriophage strain, a preparation based on this bacteriophage strain and their use against bacterial spot on tomatoes and peppers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231731A (en) * 2011-04-28 2012-11-29 Hiroshima Univ Agent for preventing bacterial wilt, and method for preventing bacterial wilt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231731A (en) * 2011-04-28 2012-11-29 Hiroshima Univ Agent for preventing bacterial wilt, and method for preventing bacterial wilt

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHMAD, A. A. ET AL.: "The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv.citri, the causative agent of citrus canker disease", FRONTIERS IN MICROBIOLOGY, vol. 5, pages 1 - 11, XP055247192 *
BALOGH, B. ET AL.: "Control of Citrus Canker and Citrus Bacterial Spot with Bacteriophages", PLANT DISEASE, vol. 92, no. 7, 2008, pages 1048 - 1052, XP055247201 *
KUO, T. ET AL.: "Complete nucleotide sequence of filamentous phage Cf1c from Xanthomonas campestris pv. citri", NUCLEIC ACIDS RESEARCH, vol. 19, no. 9, 1991, pages 2498, XP055247199 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102025403B1 (en) * 2018-04-27 2019-09-25 경희대학교 산학협력단 Novel bacteriophage ΦEaP-8 effective for fire blight bacteria and use thereof
CN113201504A (en) * 2021-02-19 2021-08-03 青岛诺安百特生物技术有限公司 Bacteriophage for preventing and treating plant xanthomonas infection and application thereof
CN113151192A (en) * 2021-03-05 2021-07-23 菲吉乐科(南京)生物科技有限公司 Cross-species lytic xanthomonas phage, composition, kit and application thereof
CN113151192B (en) * 2021-03-05 2023-11-24 菲吉乐科(南京)生物科技有限公司 Xanthomonas phage capable of cross-species lysis, composition, kit and application thereof
CZ309960B6 (en) * 2022-09-20 2024-03-06 Biologické centrum AV ČR, v. v. i. The Xe_NED111 bacteriophage strain, a preparation based on this bacteriophage strain and their use against bacterial spot on tomatoes and peppers
CZ309961B6 (en) * 2022-09-20 2024-03-06 Biologické centrum AV ČR, v. v. i. The Xe_PB119 bacteriophage strain, a preparation based on this bacteriophage strain and their use against bacterial spot on tomatoes and peppers

Also Published As

Publication number Publication date
JPWO2015194540A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
Guardado-Valdivia et al. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana)
US9380786B2 (en) Agent for preventing bacterial wilt disease, and method for preventing bacterial wilt disease
CN105907680B (en) A kind of bacillus subtilis J-5 and its bacteria agent and application
WO2015194540A1 (en) Bacteriophage, agent for preventing xanthomonas campestris disease, and method for preventing xanthomonas campestris disease
Mulero-Aparicio et al. A non-pathogenic strain of Fusarium oxysporum as a potential biocontrol agent against Verticillium wilt of olive
CN103160442B (en) Paecilomyceslilacinus strain having strong pathogenicity for diaphorina citri
CN1952117A (en) Bacillus subtilis strain and application thereof
CN106635922A (en) Salt-tolerant biocontrol bacterium B268 for bacterial wilt of horsetail beefwood and application of salt-tolerant biocontrol bacterium B268
Kalpage et al. Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato.
Zhao et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode
CN106479943A (en) The Java Isaria BE01 of one plant height effect preventing and treating fall webworms and its application
Munir et al. Bacillus subtilis L1-21 possible assessment of inhibitory mechanism against phytopathogens and colonization in different plant hosts
CN102586120B (en) Endophytic fungi CEF08111 of cotton and application thereof in prevention and treatment of cotton verticillium wilt
EP3305892B1 (en) Method for the prevention and/or the biological control of wilt caused by ralstonia solanacearum
CN103361294A (en) Phytophthora-resistant actinomyces and application thereof
Zou et al. Biocontrol and plant growth promotion potential of endophytic Bacillus subtilis JY-7-2L on Aconitum carmichaelii Debx.
Li et al. Compositional and functional comparison on the rhizosphere microbial community between healthy and Sclerotium rolfsii-infected monkshood (Aconitum carmichaelii) revealed the biocontrol potential of healthy monkshood rhizosphere microorganisms
CN105255746B (en) One plant of Paecilonyces variotii strain and its application for having High pathogenicity to diaphorina citri
Meliah et al. Preliminary study of myxobacteria as biocontrol agents for panama disease pathogen, tropical race 4 Fusarium odoratissimum
CN105112315B (en) A kind of tobacco mosaic viruses biological and ecological methods to prevent plant disease, pests, and erosion endophyte Alcaligenes faecalis bacterial strain
CN107142211A (en) The tangerine green trichoderma Snef1910 and metabolite of a kind of killing root-knot nematode and application
CN103289932B (en) Geobacillus stearothermophilus LJ-2 and application thereof for preparing antiviral agent and fertilizer
JP2018024589A (en) Wilt disease control agent and control method
KR101584214B1 (en) Composition for preventing or controlling bacterial brown blotch of mushroom using bacteriophages
CN104263660A (en) Biocontrol Trichoderma F18, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809319

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016529365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809319

Country of ref document: EP

Kind code of ref document: A1