WO2015194484A1 - Liquid level gauge and transmission device used in liquid level gauge - Google Patents

Liquid level gauge and transmission device used in liquid level gauge Download PDF

Info

Publication number
WO2015194484A1
WO2015194484A1 PCT/JP2015/067068 JP2015067068W WO2015194484A1 WO 2015194484 A1 WO2015194484 A1 WO 2015194484A1 JP 2015067068 W JP2015067068 W JP 2015067068W WO 2015194484 A1 WO2015194484 A1 WO 2015194484A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
distance
displacer
length
measuring cable
Prior art date
Application number
PCT/JP2015/067068
Other languages
French (fr)
Japanese (ja)
Inventor
哲 北澤
Original Assignee
有限会社北沢技術事務所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014138095A external-priority patent/JP5663755B1/en
Priority claimed from JP2014190498A external-priority patent/JP5699399B1/en
Application filed by 有限会社北沢技術事務所 filed Critical 有限会社北沢技術事務所
Publication of WO2015194484A1 publication Critical patent/WO2015194484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/40Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using bands or wires as transmission elements
    • G01F23/44Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using bands or wires as transmission elements using electrically actuated indicating means

Definitions

  • the present invention relates to a liquid level gauge and a transmission device used for the liquid level gauge.
  • a pressure type water level gauge is a water level gauge that measures water pressure proportional to water depth. In the pressure type water level gauge, since the measurement is performed in a state where the pressure sensor is in contact with the water to be measured, there is a problem that an error increases with time.
  • Patent Document 1 describes a liquid level gauge using a displacer.
  • the liquid level meter described in Patent Document 1 includes a spring that suspends and holds a displacer, a displacer that is partly or entirely disposed in the liquid to be measured, a magnet that is linked to the movement of the displacer, and a moving direction of the magnet.
  • detection circuits Based on a plurality of magnetic detectors arranged along, detection circuits connected to each of the magnetic detectors, and output signals from the respective detection circuits, in which section the liquid level of the liquid to be measured is located And a gate circuit for outputting a section display signal representing.
  • Non-Patent Document 1 describes a JIS standard (Japan Industrial Standards) for an automatic level meter for liquid level measurement.
  • the object of the present invention is first to provide a water level meter that does not require a large-diameter water measuring tube as in a float type water level meter. Secondly, it provides a water level gauge that does not cause deterioration in measurement accuracy over time, such as a pressure type water level gauge.
  • a displacer-based measurement method is employed as a distance measurement method between the measurement reference point height and the vicinity of the measurement liquid surface. In this method, the displacer is attached to the tip of the length measuring cable, and tension is applied to the length measuring cable so that a part of the displacer protrudes from the liquid surface and balances. First, the length of the length measurement cable from the height of the measurement reference point to the displacer is measured.
  • the length from the displacer to the measurement liquid level is measured by a non-contact type liquid level gauge such as an ultrasonic method.
  • the length from the height of the measurement reference point to the measurement liquid surface is obtained by adding the measurement value of the length measurement cable length and the measurement value of the length from the displacer to the measurement liquid surface.
  • a float type water level gauge and a pressure type water level gauge is provided.
  • Configuration diagram schematically showing an example of a displacer method for reading the calibrated length measurement cable with the length measurement cable length measurement unit The block diagram which shows typically an example of the displacer which used the ultrasonic distance meter for the liquid level measurement part
  • the block diagram which shows an example of the displacer system which transmits the 1st distance measured with the liquid level measurement part to the arithmetic unit with a radio signal
  • Configuration diagram showing an example of a displacer system using a protective tube Configuration diagram showing an example of a liquid level meter that supplies power to the liquid level meter via a length measurement cable and a slip ring and transmits the first distance to the arithmetic unit
  • first to seventh embodiments exemplify devices for embodying the technical idea of the present invention. Therefore, the technical idea of the present invention should not be construed as limiting the specific configuration, the material, shape, structure, arrangement, and the like of each component to the first to seventh embodiments shown below. The technical idea of the present invention can be variously modified within the technical scope specified by the claims.
  • Displacer means to exclude liquid.
  • the displacer 1 is suspended by a length measuring cable 9 to which tension is applied.
  • the position where the displacer 1 is suspended is a position where a part of the displacer 1 protrudes above the liquid level.
  • Tension is applied to the length measuring cable 9 so that a part of the displacer 1 protrudes above the liquid level. That is, the weight of the displacer 1 is reduced by the liquid volume excluding the liquid according to Archimedes' principle.
  • the distance from the connection point 6 between the length measurement cable and the displacer to the measuring liquid level 5 is measured by the liquid level meter 2 mounted on the displacer 1. To do.
  • the above method is abbreviated as a displacer method.
  • the displacer method the long distance from the measurement reference point height 10 to the connection point 6 between the length measurement cable and the displacer is obtained by measuring the length of the length measurement cable 9 and the connection between the length measurement cable and the displacer. A short distance between the point 6 and the measurement liquid level 5 is obtained by measurement with the liquid level meter 2. Then, the position of the liquid surface is accurately measured by adding both the long distance and the short distance.
  • FIG. 1 which is a block diagram showing an example of a displacer system
  • the displacer 1 is connected to the length measuring cable 9 by a connection point 6 between the length measuring cable and the displacer, and is suspended by the length measuring cable 9.
  • the length measuring cable 9 is applied with tension by the tension applying unit 13 via the length measuring cable winding unit 12.
  • the value of this tension is set to a value that balances the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5.
  • the tension F applied to the measuring cable 9 by the tension applying unit 13 is measured by measuring the volume below the liquid level of the displacer 1 (the volume in which the displacer 1 is immersed in the liquid level) as V and the mass of the displacer 1 as W. If the density of the liquid is ⁇ and the acceleration of gravity is g, the following formula (1) is satisfied.
  • the value of the tension F does not need to be a constant value, and the value of the tension F may vary. That is, the tension F to be applied for balancing the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5 does not have to be a constant tension.
  • the tension automatically changes, so that the tension can be easily controlled.
  • the length measurement cable length (second distance) 7 can be measured by the length measurement cable length measurement unit 14.
  • the distance between the connection point 6 of the length measurement cable and the displacer and the measurement liquid level 5 is defined as a first distance 8 in this specification, and the first distance 8 is a liquid level measurement mounted on the displacer 1. It is measured by a total of two liquid level measuring units 4.
  • the length measuring cable length 7 described above is defined as the second distance.
  • the measured cable length (second distance) 7 and the first distance 8 are added by the arithmetic unit 15, and the added value is the distance between the measurement reference point height 10 and the measurement liquid surface 5, That is, it becomes a measured value of the liquid level gauge.
  • the displacer 1 comes into contact with water (measurement liquid), but the sensor portion for liquid level measurement can be of a non-contact type that does not come into contact with the measurement liquid by using an ultrasonic liquid level gauge or the like. .
  • An example of the measuring method of the length measuring cable length 7 is shown below.
  • the length measuring cable winding unit 12 is constituted by a drum.
  • the length measuring cable length measuring unit 14 includes a rotary encoder connected to the rotating shaft 21 of the drum.
  • the length measurement cable length 7 is measured by utilizing the linear relationship between the rotation angle indicated by the rotary encoder and the length measurement cable length 7.
  • a scale is given to the length measuring cable 9, and the length 7 is measured by reading the scale at the reference position.
  • An example is given below as a method of grading.
  • a tape shape, a circular cross-sectional shape, or the like is employed as the shape of the length measuring cable 9.
  • (A) Method of providing a scale by providing a magnetic scale on the length measuring cable 9 (B) By providing an RFID (Radio Frequency IDentifier) on the length measuring cable 9 (ie, chip position), Method of giving scale ⁇ Character code that can be read by OCR (Optical Character Recognition) or mark code that can be read by OMR (Optical Mark Reader) is printed on the measuring cable 9
  • OCR Optical Character Recognition
  • OMR Optical Mark Reader
  • the liquid level meter 2 requires power supply.
  • the first distance 8 measured by the liquid level meter 2 needs to be transmitted from the liquid level meter 2 (signal transmitter 3 of the liquid level meter) to the arithmetic device 15 (signal receiver 16 of the arithmetic device).
  • the arithmetic device 15 signal receiver 16 of the arithmetic device.
  • a power supply method to the liquid level meter 2 there is a supply method using a secondary battery.
  • transmission of the first distance 8 from the liquid level meter 2 to the computing device 15 can be performed using a radio signal.
  • the power supply by the secondary battery is inconvenient in that the battery needs to be replaced as the battery is discharged.
  • some embodiments relate to improvements in a transmission device for supplying power to the liquid level meter 2 and a transmission device that transmits the first distance 8 from the liquid level meter 2 to the computing device 15.
  • the length measuring cable 9 is constituted by a flat tape on which a conductor can be mounted or a cable having a circular cross section.
  • the length measuring cable 9 and the liquid level meter 2 are connected by a conductor (cable).
  • the length measurement cable 9 is wound up by a length measurement cable winding portion 12 such as a reel or a drum which is a rotating body.
  • the conductor 30 mounted on the length measurement cable is wound around the rotating body, it cannot be directly connected to the power source or the arithmetic unit 15.
  • the conductor 30 mounted on the length measuring cable and the power source or the arithmetic unit 15 are connected to each other through a slip ring.
  • FIG. (1) A configuration example of the first embodiment is shown in FIG. (1)
  • the length measuring cable winding unit 12 is configured by a drum having the rotation shaft 21 as an axis.
  • the tension applying unit 13 is configured by an elastic body such as a spring, and the tension applying unit 13 applies tension to the length measuring cable 9 via the length measuring cable winding unit 12.
  • the length measurement cable length measurement unit 14 is configured by a rotary encoder with the rotation shaft 21 as an axis, and the rotation angle of the encoder and the measurement value of the length measurement cable length 7 have a linear correspondence relationship.
  • a unit in which the length measuring cable 9, the length measuring cable winding portion 12, the tension applying portion 13, and the length measuring cable length measuring portion 14 are integrally formed is commercially available from a plurality of companies under the name of “wire scale linear encoder”. Has been. These products can be used in the first embodiment.
  • the length measuring cable length 7 which is the distance from the measurement reference point height 10 to the connection point 6 between the length measuring cable and the displacer is measured by the rotary encoder. .
  • a first distance 8 which is a distance from the connection point 6 between the length measurement cable and the displacer and the measurement liquid level 5, is measured by the liquid level meter 2.
  • the liquid level meter calculates the distance to the measurement reference point height 10 and the measurement liquid level 5 by adding the length of the measurement cable 7 and the first distance 8.
  • FIG. 1 A configuration example of the second embodiment is shown in FIG.
  • a scale is given to the length measuring cable 9, and the length 7 is obtained by reading the scale.
  • the displacer 1 is connected to the length measuring cable 9 by a connection point 6 between the length measuring cable and the displacer, and is suspended by the length measuring cable 9.
  • the length measuring cable 9 is applied with tension by the tension applying unit 13 via the length measuring cable winding unit 12. The value of this tension is set to a value that balances the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5.
  • the length of the measurement cable 9 in this balanced state is the distance between the measurement reference point height 10 and the connection point 6 between the measurement cable and the displacer.
  • the length measurement cable length 7 can be measured by the length measurement cable length measurement unit 14.
  • the distance between the connection point 6 between the measuring cable and the displacer and the measurement liquid level 5 is defined as a first distance 8, and the first distance 8 is the liquid of the liquid level meter 2 mounted on the displacer 1. It is measured by the surface measuring unit 4.
  • the measured length measurement cable length 7 and the first distance 8 are added by the calculation device 15 (more specifically, the calculation unit 17 of the calculation device), and the added value becomes the measurement reference point height 10 And the measured liquid level 5, that is, the measured value of the liquid level meter.
  • Examples of the scale applied to the measuring cable 9 and the scale reading method are shown in the following (1) to (3).
  • (1) Scale by magnetic scale A tape-shaped magnetic body is attached to the measuring cable 9, and the tape-shaped magnetic body is magnetized by a scale having N-pole and S-pole patterns.
  • the magnetic sensor of the length measurement cable length measurement unit 14 obtains the distance between the measurement reference point height 10 and the connection point 6 between the length measurement cable and the displacer by reading the magnetized scale.
  • the scale reading by the magnetic sensor can be read with an accuracy of 1 mm or less.
  • (2) Scale with the position of the RFID chip as a scale RFID chips are provided on the measuring cable 9 at regular intervals. Using the RFID chip position as a scale, the scale (scale data) stored in the RFID chip is read.
  • the RFID chip may be a passive RFID. Passive RFID receives a wireless power supply from a reader. The passive RFID returns a signal corresponding to the scale stored in the chip as a response signal, and the reader receives the response signal as a length measurement signal.
  • RFID chips are arranged at regular intervals on a tape-shaped insulator constituting the length measuring cable 9. Each RFID chip stores scale data. The distance between the measurement reference point height 10 and the connection point 6 between the length measurement cable and the displacer is read by an RFID reader constituting the length measurement cable length measurement unit 14.
  • RFID chips can be arranged on a tape-shaped measuring cable at intervals of several mm. In reading RFID, information of a plurality of adjacent RFID chips may be read.
  • (A) Characters or mark codes printed at intervals of 5 mm or more or 10 mm or more in the length measurement direction of the length measurement cable are read as a scale.
  • the readable interval is a character or mark code printing interval. Therefore, it is difficult to read an interval of 5 mm or less or 10 mm or less.
  • the scale reading height portion L6 of the length measurement cable 9 is photographed by the camera constituting the length measurement cable length measurement unit 14 shown in FIG. L6 includes at least one readable scale for characters, codes, and the like. The distance between the position of the character or code on the image and the measurement reference point height 10 on the image is obtained from the captured image.
  • the length measurement cable length 7 corresponding to the measurement reference point height 10 can be obtained.
  • L6 is set to 100 mm, the length measurement cable length 7 can be obtained with an accuracy of 1 mm or less.
  • the third embodiment is an embodiment relating to a measurement method in which the first distance 8 is measured by the liquid level meter 2 mounted on the displacer 1.
  • a schematic side view of the displacer 1 is shown. 4 corresponds to the top view of the displacer, and the circle described below in FIG. 4 corresponds to the bottom view of the displacer.
  • the example described in FIG. 4 is an example in which the liquid level measurement unit 4 is an ultrasonic measurement unit.
  • the ultrasonic transmitter / receiver 26 of the ultrasonic distance meter is disposed below the liquid level meter 2.
  • the transmission wave from the ultrasonic transmitter / receiver 26 of the ultrasonic distance meter is reflected by the liquid surface located in the cylinder, and the reflected wave is received by the ultrasonic transmitter / receiver 26. In this way, the distance to the liquid level is measured.
  • a cylindrical displacer mass adjusting unit 27 is employed.
  • the displacer mass adjusting unit 27 has an outer diameter 28, an inner diameter 29, and a height L4.
  • the position where the displacer 1 is balanced with respect to the liquid surface can be changed.
  • the position at which the displacer 1 is balanced with respect to the liquid level can be changed by the tension applied to the length measuring cable 1.
  • the tension applied to the length measuring cable 9 is determined by the winding length of the length measuring cable and the spring coefficient of an elastic body such as a spring and is within a predetermined range.
  • the upper limit A of the liquid level in this balanced state corresponds to the balance liquid level 34 when the minimum tension is applied to the length measurement cable, and the lower limit B of the liquid level is the maximum tension applied to the length measurement cable. This corresponds to the balance liquid level 36 at the time.
  • the balance liquid level range is represented by L3 in FIG.
  • the distance measurable range L5 of the ultrasonic distance meter is determined by the performance of the ultrasonic distance meter.
  • E The balance liquid level range L3 and the distance measurable range L5 are set such that the upper limit A and the lower limit B are within the distance measurable range L5 of the ultrasonic rangefinder.
  • symbol L1 is known height (liquid level measuring meter height) previously
  • symbol L2 shows the range (distance measurement impossible distance) which cannot be measured with a distance meter.
  • the example described in FIG. 5 is an example where the liquid level measuring unit 4 is a guide pulse type measuring unit.
  • the ultrasonic method is the same as that described above except that the probe 37 needs to contact the measurement liquid. That is, the displacer mass adjustment unit 27 is cylindrical, the distance measurement possible range, the relationship between the tension application range of the length measurement cable and the balance liquid level, and the like are the same as in the ultrasonic method.
  • the fourth embodiment is an embodiment that adopts a system that transmits a first distance 8 measured by the liquid level meter 2 to the arithmetic device 15 using a radio signal.
  • FIG. 6 shows a configuration example of radio signal transmission.
  • a radio signal transmitter 24 is provided in the liquid level meter 2
  • a radio signal receiver 25 is provided in the arithmetic device 15, and the first distance 8 is transmitted from the radio signal transmitter 24 to the radio signal receiver 25.
  • the fifth embodiment is an embodiment that employs a configuration in which a protective tube 39 is disposed around a liquid level gauge, particularly around the displacer 1.
  • the measurement liquid level 5 is not a static liquid level but a liquid level that fluctuates due to flow and waves.
  • the displacer 1 and the length measuring cable 9 are subjected to wind pressure load.
  • the liquid level height fluctuates due to these effects. Further, dust or the like may collide with the displacer 1 and affect the measurement value of the first distance 8. For this reason, as shown in FIG. 7, a protective tube 39 is provided around the level gauge.
  • the protective tube 39 is provided with a measurement liquid inlet / outlet hole 40.
  • the inner diameter of the protective tube 39 can be about 150 mm.
  • the inner diameter of the protective tube 39 can be made smaller than in the case of a float type water level meter (in the float type water level meter, the inner diameter of the protective tube needs to be about 600 mm).
  • the sixth embodiment is an embodiment of a transmission device.
  • the sixth embodiment will be described with reference to FIG.
  • the sixth embodiment is a liquid level gauge equipped with a transmission device that transmits electric power to the liquid level meter 2 and transmits the first distance 8 measured by the liquid level meter 2 to the arithmetic unit 15.
  • the power supply of the liquid level meter 2 can generally be realized by a battery. However, for example, in a water level meter that continuously measures the water level outdoors, it is necessary to replace the battery by lifting the displacer 1 from the water surface.
  • power supply to the liquid level meter 2 is performed by a conductor 30 mounted on a length measurement cable.
  • transmission of the first distance 8 is performed in the same manner as the power supply. This is done by the conductor 30 mounted on the length measurement cable.
  • the conductor is mounted on the length measuring cable 9 by integrally mounting a plurality of conductor tapes or wires. Electric power and a signal corresponding to the first distance 8 are transmitted by the conductor 30 mounted on the measurement cable.
  • the conductor 30 mounted on the measuring cable is electrically connected to the liquid level meter 2 via the liquid level meter connection line 47.
  • the conductor 30 mounted on the length measurement cable is wound around the length measurement cable winding portion 12 by a reel or a drum, and is fixed to the length measurement cable winding portion 12 at the conductor fixing portion 41 mounted on the length measurement cable. ing.
  • the conductor fixing portion 41 mounted on the length measuring cable rotates together with the rotating shaft 21.
  • the conductor fixing part 41 mounted on the length measuring cable In order to transmit the signal transmitted by the conductor signal line fixed and rotating to the conductor fixing part 41 mounted on the length measuring cable to the conductor signal line not rotating, the conductor fixing part 41 mounted on the length measuring cable.
  • the slip ring rotating body connection line 48 connected to the is connected to the rotating body 43 of the slip ring 42. A signal from the rotating body 43 is received by the stationary body 44.
  • Power supply to the liquid level meter 2 is performed by a power supply line 45 connected to the stationary body 44 of the slip ring 42, and a signal corresponding to the first distance 8 measured by the liquid level meter 2 is supplied from the slip ring 42.
  • the signal is transmitted to the arithmetic device 15 via the first distance output signal line 46 connected to the stationary body 44.
  • the slip ring 42 transmits signals between the rotating body 43 and the stationary body 44 by mechanical contact.
  • Slip ring 42 is defined to include these products.
  • FIG. 9 is a configuration diagram schematically showing an example of a balancer type liquid level gauge. The difference between them is as follows.
  • A In the example of the balancer system shown in FIG. 9, a balancer 18 is provided instead of the displacer 1. The configurations of the displacer 1 and the balancer 18 are the same.
  • B The displacer 1 shown in FIG. 1 is balanced by a part of the displacer 1 protruding above the measuring liquid surface 5 by the length measuring cable 9 to which the tension is applied by the tension applying unit 13.
  • the balancer 18 shown in FIG. 9 is a state in which a part or the whole of the balancer 18 is positioned above the measurement liquid surface 5 by the length measuring cable 9 given tension by the length measuring cable position control unit 20. Is balanced.
  • C In the case of the displacer 1, the tension is applied by an elastic body.
  • the tension is applied by the length measuring cable position control unit 20.
  • D In the balancer method, the distance between the connection point 19 between the length measurement cable and the balancer and the measurement liquid level 5 is measured by the liquid level meter 2 mounted on the balancer 18, and the length measurement cable position control unit 20 The winding amount of the length measuring cable 9 is automatically controlled using the motor 22 (see FIG.
  • the distance between the connection point 19 between the length measurement cable and the balancer and the measurement liquid surface 5 is defined as a first distance 8.
  • the length of the length measurement cable 7 which is the distance between the height 10 of the measurement reference point and the connection point 19 between the length measurement cable and the balancer is defined as the second distance.
  • the second distance is measured by the length measurement cable length measurement unit 14.
  • the measured cable length (second distance) 7 and the first distance 8 are added by the arithmetic unit 15, and the added value is the distance between the measurement reference point height 10 and the measurement liquid surface 5, that is, the liquid.
  • FIG. 10 shows a configuration example of a transmission apparatus that performs power transmission and transmission of the first distance 8 signal in the balancer system.
  • the configuration of the transmission apparatus in the balancer system is the same as that of the transmission apparatus in the displacer system in the sixth embodiment except for the following points.
  • the stationary body 44 and the length measuring cable position control unit 20 are connected to the first distance output signal line 46.
  • the signal is transmitted through the connector.
  • the signal received by the signal receiving unit 16 is transmitted to a motor drive circuit 23 that is a position control circuit that controls the position of the balancer 18.
  • connection point between the conductor 30 mounted on the length measuring cable and the balancer 18 is represented by reference numeral 32 (in the displacer system, the conductor 30 mounted on the length measuring cable and the displacer 1 Is represented by reference numeral 31).
  • reference numeral 11 represents a fixing portion for fixing and supporting each member or each element.
  • a non-contact liquid level gauge such as an ultrasonic type is adopted as a liquid level meter mounted on the displacer or balancer.
  • a sensor part for example, ultrasonic transceiver
  • it is possible to perform stable measurement over a long period of time as compared with the pressure type liquid level meter in which the sensor unit contacts the measurement liquid. For this reason, it can be used for a wide range of applications including the following applications.
  • (1) Water level measurement where the distance from the measurement reference point height to the measurement water surface is about several to 100 meters. In the embodiment, when the distance from the height of the measurement reference point to the measurement water level is large, measurement can be performed with high accuracy and low cost.
  • Liquid level measurement for purposes other than water level measurement (measurement of liquid level in industrial tanks, etc.)

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

A liquid level gauge is provided with a displacer (1) or a balancer (18). The displacer (1) or balancer (18) is attached to the leading end of a length measurement cable (9) subjected to tension. All or a portion of the displacer (1) or balancer (18) is positioned above a liquid level. The position of the liquid level is measured through the addition of a measured value of the length-measurement-cable length (second distance) (7) from a measurement reference point height (10) to the displacer (1) or balancer (18) and a measured value measured by a liquid level meter (2) positioned near the liquid level of the distance (first distance) (8) from the displacer (1) or balancer (18) to a liquid level to be measured (5).

Description

液面計、および、液面計に用いられる伝送装置Liquid level gauge and transmission device used for liquid level gauge
 本発明は、液面計、および、液面計に用いられる伝送装置に関する。 The present invention relates to a liquid level gauge and a transmission device used for the liquid level gauge.
 液面計として、水面レベルを測定する水位計を例示する。水位計として、従来では、一般的に、フロート式水位計が使用されていた。
 フロート式水位計では、大きな浮力を必要するために、フロートの径を大きくする必要がある。また、フロート式水位計は、土木構造物として大きな測水筒が必要であるため、建設コストが高価となる。このために、最近では、フロート式水位計は、ダム、大河川などにおいて用いる場合を除き、あまり使用されていない。
 最近では、一般的に、圧力式水位計が使用されている。圧力式水位計は、水深に比例した水圧を測定する水位計である。圧力式水位計では、圧力センサが測定水に接触した状態で測定が行われるために、経年的に誤差が大きくなるとの課題がある。
As a liquid level gauge, a water level gauge for measuring the water level is exemplified. Conventionally, a float type water level gauge has been generally used as the water level gauge.
Since the float type water level meter requires a large buoyancy, it is necessary to increase the diameter of the float. Moreover, since the float type water level meter requires a large water measuring tube as a civil engineering structure, the construction cost is expensive. For this reason, recently, float type water level meters have not been used much except when used in dams and large rivers.
Recently, a pressure type water level gauge is generally used. A pressure-type water level gauge is a water level gauge that measures water pressure proportional to water depth. In the pressure type water level gauge, since the measurement is performed in a state where the pressure sensor is in contact with the water to be measured, there is a problem that an error increases with time.
 液面計に関連する技術として、特許文献1には、ディスプレーサを用いた液面計が記載されている。特許文献1に記載の液面計は、ディスプレーサを吊り下げ保持するバネと、一部または全部が被測定液体中に配置されるディスプレーサと、ディスプレーサの移動に連動する磁石と、磁石の移動方向に沿って配置された複数の磁気検出器と、磁気検出器の各々に接続された検出回路と、各々の検出回路からの出力信号に基づき、被測定液体の液位がいずれの区間に位置するかを表す区間表示信号を出力するゲート回路とを備える。また、非特許文献1には、液位測定用自動レベル計についてのJIS規格(Japanese Industrial Standards)が記載されている。 As a technique related to the liquid level gauge, Patent Document 1 describes a liquid level gauge using a displacer. The liquid level meter described in Patent Document 1 includes a spring that suspends and holds a displacer, a displacer that is partly or entirely disposed in the liquid to be measured, a magnet that is linked to the movement of the displacer, and a moving direction of the magnet. Based on a plurality of magnetic detectors arranged along, detection circuits connected to each of the magnetic detectors, and output signals from the respective detection circuits, in which section the liquid level of the liquid to be measured is located And a gate circuit for outputting a section display signal representing. Non-Patent Document 1 describes a JIS standard (Japan Industrial Standards) for an automatic level meter for liquid level measurement.
特開平7-294316号公報JP 7-294316 A
 本発明の目的は、第1に、フロート式水位計のように、大きな口径の測水筒を必要としない水位計を提供することである。第2に、圧力式水位計のように、経年的な測定精度劣化を発生しない水位計の提供である。
 いくつかの実施形態では、測定基準点高さと測定液面近傍との間の距離測定方法として、ディスプレーサ方式による測定方法を採用する。当該方法では、ディスプレーサが測長ケーブルの先端に取り付けられるとともに、ディスプレーサの一部が液面から突出してバランスするように測長ケーブルに張力が付与される。第1に、測定基準点高さからディスプレーサまでの測長ケーブル長さが測定される。第2に、ディスプレーサから測定液面までの長さが、超音波方式等の非接触型液面計で測定される。測定基準点高さから測定液面までの長さは、測長ケーブル長さの測定値とディスプレーサから測定液面までの長さの測定値とを加算することにより得られる。
 いくつかの実施形態により、フロート式水位計、圧力式水位計に代わる液面計が提供される。
The object of the present invention is first to provide a water level meter that does not require a large-diameter water measuring tube as in a float type water level meter. Secondly, it provides a water level gauge that does not cause deterioration in measurement accuracy over time, such as a pressure type water level gauge.
In some embodiments, a displacer-based measurement method is employed as a distance measurement method between the measurement reference point height and the vicinity of the measurement liquid surface. In this method, the displacer is attached to the tip of the length measuring cable, and tension is applied to the length measuring cable so that a part of the displacer protrudes from the liquid surface and balances. First, the length of the length measurement cable from the height of the measurement reference point to the displacer is measured. Second, the length from the displacer to the measurement liquid level is measured by a non-contact type liquid level gauge such as an ultrasonic method. The length from the height of the measurement reference point to the measurement liquid surface is obtained by adding the measurement value of the length measurement cable length and the measurement value of the length from the displacer to the measurement liquid surface.
According to some embodiments, an alternative to a float type water level gauge and a pressure type water level gauge is provided.
ディスプレーサ方式の一例を模式的に示す構成図Configuration diagram schematically showing an example of a displacer system 測長ケーブル長の測定機構としてロータリーエンコーダを用いたディスプレーサ方式の一例を模式的に示す構成図Configuration diagram schematically showing an example of a displacer system using a rotary encoder as a measuring mechanism for measuring cable length 目盛り付けした測長ケーブルを測長ケーブル長測定部で読み取るディスプレーサ方式の一例を模式的に示す構成図Configuration diagram schematically showing an example of a displacer method for reading the calibrated length measurement cable with the length measurement cable length measurement unit 液面測定部に超音波距離計を用いたディスプレーサの一例を模式的に示す構成図The block diagram which shows typically an example of the displacer which used the ultrasonic distance meter for the liquid level measurement part ガイドパルス方式の液面測定部を用いたディスプレーサの一例を模式的に示す構成図Configuration diagram schematically showing an example of a displacer using a guide pulse type liquid level measuring unit 液面測定部で測定した第1距離を無線信号で演算装置に伝送するディスプレーサ方式の一例を示す構成図The block diagram which shows an example of the displacer system which transmits the 1st distance measured with the liquid level measurement part to the arithmetic unit with a radio signal 保護管を用いたディスプレーサ方式の一例を示す構成図Configuration diagram showing an example of a displacer system using a protective tube 測長ケーブルとスリップリングとを介して液面測定計に対して電力供給をおこない、第1距離を演算装置に伝送する液面計の一例を示す構成図Configuration diagram showing an example of a liquid level meter that supplies power to the liquid level meter via a length measurement cable and a slip ring and transmits the first distance to the arithmetic unit バランサー方式の液面計の一例を模式的に示す構成図Configuration diagram schematically showing an example of a balancer type liquid level gauge 測長ケーブルとスリップリングとを介して液面測定計に対して電力供給をおこない、第1距離を演算装置および測長ケーブル位置制御部に伝送する伝送装置の一例を模式的に示す構成図Configuration diagram schematically showing an example of a transmission device that supplies power to the liquid level meter via a length measurement cable and a slip ring and transmits the first distance to the arithmetic device and the length measurement cable position control unit.
 図面を参照して、第1~第7の実施形態を説明する。以下の図面の記載において、同一または類似の要素または部分には同一の符号を付している。 The first to seventh embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar elements or portions are denoted by the same reference numerals.
 以下に示す第1~第7の実施形態は、本発明の技術的思想を具体化するための装置を例示するものである。よって、本発明の技術的思想は、具体的構成、各構成要素の材質、形状、構造、配置等を下記に示す第1~第7の実施形態に限定して解釈されるべきではない。本発明の技術的思想は、特許請求の範囲によって特定される技術的範囲において、種々の変更を加えることができる。 The following first to seventh embodiments exemplify devices for embodying the technical idea of the present invention. Therefore, the technical idea of the present invention should not be construed as limiting the specific configuration, the material, shape, structure, arrangement, and the like of each component to the first to seventh embodiments shown below. The technical idea of the present invention can be variously modified within the technical scope specified by the claims.
 ディスプレーサ(Displacer)とは液体を排除するものという意味を有する。
 ディスプレーサ1は張力を付与された測長ケーブル9で吊り下げられる。
 ディスプレーサ1の吊り下げ位置は、ディスプレーサ1の一部が液面より上部に突出する位置である。ディスプレーサ1の一部が液面より上部に突出するように、測長ケーブル9に張力が付与される。
 すなわち、ディスプレーサ1の重さはアルキメデスの原理により、液体を排除した液体体積だけ軽くなる。ディスプレーサ1の一部が液面より上部に突出する状態を保持して、測長ケーブルとディスプレーサとの接続点6から測定液面5までの距離をディスプレーサ1に実装した液面測定計2で測定する。
 上記方式をディスプレーサ方式と略称する。
 ディスプレーサ方式では、測定基準点高さ10から測長ケーブルとディスプレーサとの接続点6までの長い距離は、測長ケーブル9の長さを測定することにより取得され、測長ケーブルとディスプレーサとの接続点6と測定液面5間の短い距離は、液面測定計2による測定により取得される。そして、上述の長い距離と短い距離の両者を加算することにより、正確に液面の位置を測定する。
 ここで、ディスプレーサ方式では、ディスプレーサ1の一部分が液面上に位置する状態を保持する必要がある。一部分が液面上に位置する状態の保持は、ディスプレーサ1を所定の範囲の張力により吊り下げれば容易に実現できる。
 すなわち、ディスプレーサ1の一部が液面上に突出することとなる一定範囲の吊り下げ張力で、ディスプレーサ1を吊り下げれば良い。このため、ゼンマイスプリング、バネなどの弾性体によって、安価に、張力付与部13を実現できる。
 ディスプレーサ方式の一例を示す構成図である図1において、
(1)ディスプレーサ1は、測長ケーブルとディスプレーサとの接続点6により測長ケーブル9と接続され、測長ケーブル9により、吊り下げられている。
(2)測長ケーブル9は、測長ケーブル巻き取り部12を介して、張力付与部13により張力を付与される。この張力の値は、ディスプレーサ1の一部分が、測定液面5から突出する位置となるように、ディスプレーサ1がバランスする値に設定される。
 なお、張力付与部13によって測長ケーブル9に付与される張力Fは、ディスプレーサ1の液面下部の容積(ディスプレーサ1が液面に浸かっている容積)をV、ディスプレーサ1の質量をW、測定液の密度をγ、重力の加速度をg、とすれば、下記式(1)を満たすように設定される。
   W×g-V×γ<F<W×g ・・・ (1)
 よって、張力Fの値は、一定の値である必要はなく、張力Fの値は、変動してもよい。
 すなわち、ディスプレーサ1の一部分が、測定液面5から突出する位置となるように、ディスプレーサ1がバランスするために付与されるべき張力Fは、一定張力である必要がない。ディスプレーサ1の液面下部の容積Vが変動する時、張力も自動的に変動するため、張力の制御が容易である。
(3)ディスプレーサ1の一部分が、測定液面5から突出する位置となるように、ディスプレーサ1がバランスした状態における測長ケーブル9の長さ、すなわち、測長ケーブル長さ(第2距離)7は、測定基準点高さ10と測長ケーブルとディスプレーサとの接続点6との距離である。そして、測長ケーブル長さ(第2距離)7は、測長ケーブル長測定部14によって測定可能である。
(4)測長ケーブルとディスプレーサとの接続点6と測定液面5との距離は本明細書では第1距離8と定義し、当該第1距離8は、ディスプレーサ1に実装された液面測定計2の液面測定部4によって測定される。上述の測長ケーブル長さ7を、第2距離と定義する。
(5)測定された測長ケーブル長さ(第2距離)7と第1距離8とは演算装置15によって加算され、加算値が、測定基準点高さ10と測定液面5間の距離、すなわち、液面計の測定値となる。
 ディスプレーサ1は水(測定液)に接触するが、液面測定のためのセンサ部分は、超音波式液面計などを利用すれば、測定液に接触しない非接触方式とすることが可能である。
 測長ケーブル長さ7の測定方法の例を下記に示す。
 第1の例では、測長ケーブル巻き取り部12がドラムにより構成される。測長ケーブル長測定部14は、このドラムの回転軸21に連結したロータリーエンコーダを含む。ロータリーエンコーダによって示される回転角と測長ケーブル長さ7とが、リニアな関係であることを利用して、測長ケーブル長さ7が測定される。
 第2の例では、測長ケーブル9に目盛りが付与され、目盛りを基準位置で読み取ることにより測長ケーブル長さ7が測定される。目盛り付けの方法として、下記に例を示す。
 まず、測長ケーブル9の形状として、テープ形状、円形断面の形状等が採用される。
(A)測長ケーブル9に磁気スケールを設けることにより、目盛りを付与する方法
(B)測長ケーブル9にRFID(Radio Frequency IDentifier:無線自動認識)チップを設けること(すなわち、チップ位置)により、目盛りを付与する方法
・測長ケーブル9にOCR(Optical Character Recognition:光学的文字読み取り)によって読み取り可能な文字、または、OMR(Optical Mark Reader:光学的マークリーダ)によって読み取り可能なマークコードを印刷したスケールにより目盛りを付与する方法
 なお、上記第2の例では、測長ケーブル巻き取り部12の回転軸21を省略して、測長ケーブル巻き取り部12の固定軸に弾性体を接続して、スプリング力により測長ケーブル9を巻き取る構成とすることも可能である。
 第1距離8の測定方法の例を下記に示す。
(A)超音波距離計による測定
(B)ガイドパルスを用いるTOF(Time Of Flight)方法による測定
(C)静電容量電極を用いる測定
Displacer means to exclude liquid.
The displacer 1 is suspended by a length measuring cable 9 to which tension is applied.
The position where the displacer 1 is suspended is a position where a part of the displacer 1 protrudes above the liquid level. Tension is applied to the length measuring cable 9 so that a part of the displacer 1 protrudes above the liquid level.
That is, the weight of the displacer 1 is reduced by the liquid volume excluding the liquid according to Archimedes' principle. While maintaining a state in which a part of the displacer 1 protrudes above the liquid level, the distance from the connection point 6 between the length measurement cable and the displacer to the measuring liquid level 5 is measured by the liquid level meter 2 mounted on the displacer 1. To do.
The above method is abbreviated as a displacer method.
In the displacer method, the long distance from the measurement reference point height 10 to the connection point 6 between the length measurement cable and the displacer is obtained by measuring the length of the length measurement cable 9 and the connection between the length measurement cable and the displacer. A short distance between the point 6 and the measurement liquid level 5 is obtained by measurement with the liquid level meter 2. Then, the position of the liquid surface is accurately measured by adding both the long distance and the short distance.
Here, in the displacer system, it is necessary to maintain a state where a part of the displacer 1 is positioned on the liquid surface. Holding in a state where a portion is located on the liquid level can be easily realized by suspending the displacer 1 with a predetermined range of tension.
That is, the displacer 1 may be suspended with a certain range of suspension tension that causes part of the displacer 1 to protrude above the liquid level. For this reason, the tension | tensile_strength provision part 13 is realizable at low cost with elastic bodies, such as a mainspring spring and a spring.
In FIG. 1 which is a block diagram showing an example of a displacer system,
(1) The displacer 1 is connected to the length measuring cable 9 by a connection point 6 between the length measuring cable and the displacer, and is suspended by the length measuring cable 9.
(2) The length measuring cable 9 is applied with tension by the tension applying unit 13 via the length measuring cable winding unit 12. The value of this tension is set to a value that balances the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5.
The tension F applied to the measuring cable 9 by the tension applying unit 13 is measured by measuring the volume below the liquid level of the displacer 1 (the volume in which the displacer 1 is immersed in the liquid level) as V and the mass of the displacer 1 as W. If the density of the liquid is γ and the acceleration of gravity is g, the following formula (1) is satisfied.
W × g−V × γ <F <W × g (1)
Therefore, the value of the tension F does not need to be a constant value, and the value of the tension F may vary.
That is, the tension F to be applied for balancing the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5 does not have to be a constant tension. When the volume V below the liquid level of the displacer 1 changes, the tension automatically changes, so that the tension can be easily controlled.
(3) The length of the length measuring cable 9 in a state where the displacer 1 is balanced, that is, the length of the length measuring cable (second distance) 7 so that a part of the displacer 1 protrudes from the measurement liquid surface 5. Is the distance between the measurement reference point height 10 and the connection point 6 between the length measurement cable and the displacer. The length measurement cable length (second distance) 7 can be measured by the length measurement cable length measurement unit 14.
(4) The distance between the connection point 6 of the length measurement cable and the displacer and the measurement liquid level 5 is defined as a first distance 8 in this specification, and the first distance 8 is a liquid level measurement mounted on the displacer 1. It is measured by a total of two liquid level measuring units 4. The length measuring cable length 7 described above is defined as the second distance.
(5) The measured cable length (second distance) 7 and the first distance 8 are added by the arithmetic unit 15, and the added value is the distance between the measurement reference point height 10 and the measurement liquid surface 5, That is, it becomes a measured value of the liquid level gauge.
The displacer 1 comes into contact with water (measurement liquid), but the sensor portion for liquid level measurement can be of a non-contact type that does not come into contact with the measurement liquid by using an ultrasonic liquid level gauge or the like. .
An example of the measuring method of the length measuring cable length 7 is shown below.
In the first example, the length measuring cable winding unit 12 is constituted by a drum. The length measuring cable length measuring unit 14 includes a rotary encoder connected to the rotating shaft 21 of the drum. The length measurement cable length 7 is measured by utilizing the linear relationship between the rotation angle indicated by the rotary encoder and the length measurement cable length 7.
In the second example, a scale is given to the length measuring cable 9, and the length 7 is measured by reading the scale at the reference position. An example is given below as a method of grading.
First, as the shape of the length measuring cable 9, a tape shape, a circular cross-sectional shape, or the like is employed.
(A) Method of providing a scale by providing a magnetic scale on the length measuring cable 9 (B) By providing an RFID (Radio Frequency IDentifier) on the length measuring cable 9 (ie, chip position), Method of giving scale ・ Character code that can be read by OCR (Optical Character Recognition) or mark code that can be read by OMR (Optical Mark Reader) is printed on the measuring cable 9 In the second example, the rotating shaft 21 of the length measuring cable winding portion 12 is omitted, and an elastic body is connected to the fixed shaft of the length measuring cable winding portion 12, Spring force It is also possible to adopt a configuration in which the length measuring cable 9 is wound more.
An example of a method for measuring the first distance 8 is shown below.
(A) Measurement using an ultrasonic distance meter (B) Measurement using a TOF (Time Of Flight) method using a guide pulse (C) Measurement using a capacitance electrode
 実施形態において、液面測定計2は電力供給を必要とする。また、液面測定計2によって測定された第1距離8を、液面測定計2(液面測定計の信号送信部3)から演算装置15(演算装置の信号受信部16)へ伝送する必要がある。
 液面測定計2への電力供給方法としては、2次電池による供給方法がある。また、液面測定計2から演算装置15への第1距離8の伝送は、無線信号を用いて行うことが可能である。
 しかし、2次電池による電力供給は、電池の放電に伴い電池交換を必要とする点で不便である。
 また、無線伝送に関しては、測長ケーブル9を金属製の保護管の内側に収容した場合、電波伝搬の障害が発生する恐れがある。
 このため、いくつかの実施形態は、液面測定計2に電力供給を行うための伝送装置、および、液面測定計2から演算装置15に第1距離8を伝送する伝送装置の改良に関する。
 いくつかの実施形態では、
(1)測長ケーブル9を、導電体の実装が可能なフラットテープまたは断面が円形のケーブル等により構成する。
(2)測長ケーブル9と液面測定計2とは導電体(ケーブル)により接続される。
(3)測長ケーブル9は、回転体であるリールまたはドラムなどの測長ケーブル巻き取り部12により巻き取られている。測長ケーブルに実装した導電体30は回転体に巻き取られているために、電源または演算装置15に直接接続することができない。このために、測長ケーブルに実装した導電体30と、電源または演算装置15とをスリップリングを介して信号伝達可能な接続とする。
In the embodiment, the liquid level meter 2 requires power supply. In addition, the first distance 8 measured by the liquid level meter 2 needs to be transmitted from the liquid level meter 2 (signal transmitter 3 of the liquid level meter) to the arithmetic device 15 (signal receiver 16 of the arithmetic device). There is.
As a power supply method to the liquid level meter 2, there is a supply method using a secondary battery. Further, transmission of the first distance 8 from the liquid level meter 2 to the computing device 15 can be performed using a radio signal.
However, the power supply by the secondary battery is inconvenient in that the battery needs to be replaced as the battery is discharged.
As for wireless transmission, when the length measuring cable 9 is accommodated inside a metal protective tube, there is a risk of interference with radio wave propagation.
For this reason, some embodiments relate to improvements in a transmission device for supplying power to the liquid level meter 2 and a transmission device that transmits the first distance 8 from the liquid level meter 2 to the computing device 15.
In some embodiments,
(1) The length measuring cable 9 is constituted by a flat tape on which a conductor can be mounted or a cable having a circular cross section.
(2) The length measuring cable 9 and the liquid level meter 2 are connected by a conductor (cable).
(3) The length measurement cable 9 is wound up by a length measurement cable winding portion 12 such as a reel or a drum which is a rotating body. Since the conductor 30 mounted on the length measurement cable is wound around the rotating body, it cannot be directly connected to the power source or the arithmetic unit 15. For this purpose, the conductor 30 mounted on the length measuring cable and the power source or the arithmetic unit 15 are connected to each other through a slip ring.
(第1の実施形態)
 第1の実施形態の構成例を図2に示す。
(1)本構成例では、測長ケーブル巻き取り部12は、回転軸21を軸としたドラムにより構成される。また、張力付与部13はゼンマイバネ等の弾性体により構成され、張力付与部13は、測長ケーブル巻き取り部12を介して測長ケーブル9に張力を付与している。測長ケーブル長測定部14は、回転軸21を軸としたロータリーエンコーダにより構成されており、エンコーダの回転角と測長ケーブル長さ7の測定値とはリニアな対応関係を有する。
 なお、測長ケーブル9、測長ケーブル巻き取り部12、張力付与部13、測長ケーブル長測定部14を一体的に構成したユニットが「ワイヤスケールリニアエンコーダ」等の名称で複数の会社から市販されている。これらの製品を第1の実施形態では利用することができる。
(2)ディスプレーサ1の構成の具体例は、液面測定計2の液面測定部4による測定方式に応じて異なる。ディスプレーサ1の構成の具体例は、後述の第3の実施形態において説明される。
(3)第1の実施形態の液面計では、ロータリーエンコーダにより、測定基準点高さ10から測長ケーブルとディスプレーサとの接続点6までの距離である測長ケーブル長さ7が測定される。
 測長ケーブルとディスプレーサとの接続点6と測定液面5までの距離である第1距離8は液面測定計2で測定される。液面計は、測長ケーブル長さ7と第1距離8とを加算することにより、測定基準点高さ10と測定液面5までの距離を算出する。
(First embodiment)
A configuration example of the first embodiment is shown in FIG.
(1) In this configuration example, the length measuring cable winding unit 12 is configured by a drum having the rotation shaft 21 as an axis. The tension applying unit 13 is configured by an elastic body such as a spring, and the tension applying unit 13 applies tension to the length measuring cable 9 via the length measuring cable winding unit 12. The length measurement cable length measurement unit 14 is configured by a rotary encoder with the rotation shaft 21 as an axis, and the rotation angle of the encoder and the measurement value of the length measurement cable length 7 have a linear correspondence relationship.
A unit in which the length measuring cable 9, the length measuring cable winding portion 12, the tension applying portion 13, and the length measuring cable length measuring portion 14 are integrally formed is commercially available from a plurality of companies under the name of “wire scale linear encoder”. Has been. These products can be used in the first embodiment.
(2) The specific example of the configuration of the displacer 1 varies depending on the measurement method by the liquid level measuring unit 4 of the liquid level measuring meter 2. A specific example of the configuration of the displacer 1 will be described in a third embodiment described later.
(3) In the liquid level meter of the first embodiment, the length measuring cable length 7 which is the distance from the measurement reference point height 10 to the connection point 6 between the length measuring cable and the displacer is measured by the rotary encoder. .
A first distance 8, which is a distance from the connection point 6 between the length measurement cable and the displacer and the measurement liquid level 5, is measured by the liquid level meter 2. The liquid level meter calculates the distance to the measurement reference point height 10 and the measurement liquid level 5 by adding the length of the measurement cable 7 and the first distance 8.
(第2の実施形態)
 第2の実施形態の構成例を図3に示す。
 第2の実施形態では、測長ケーブル9に目盛りが付与され、目盛りを読み取ることにより、測長ケーブル長さ7が求められる。
(1)ディスプレーサ1は、測長ケーブルとディスプレーサとの接続点6により測長ケーブル9と接続され、測長ケーブル9により、吊り下げられている。
(2)測長ケーブル9は、測長ケーブル巻き取り部12を介して、張力付与部13により張力を付与される。この張力の値は、ディスプレーサ1の一部分が、測定液面5から突出する位置となるように、ディスプレーサ1がバランスする値に設定される。
(3)このバランスした状態における測長ケーブル9の長さ、すなわち、測長ケーブル長さ7は、測定基準点高さ10と測長ケーブルとディスプレーサとの接続点6との距離である。そして、測長ケーブル長さ7は、測長ケーブル長測定部14によって測定可能である。
(4)測長ケーブルとディスプレーサとの接続点6と測定液面5との距離は第1距離8と定義され、当該第1距離8は、ディスプレーサ1に実装された液面測定計2の液面測定部4によって測定される。
(5)測定された測長ケーブル長さ7と第1距離8とは演算装置15(より具体的には、演算装置の演算部17)によって加算され、加算値が、測定基準点高さ10と測定液面5間の距離、すなわち、液面計の測定値となる。
(Second Embodiment)
A configuration example of the second embodiment is shown in FIG.
In the second embodiment, a scale is given to the length measuring cable 9, and the length 7 is obtained by reading the scale.
(1) The displacer 1 is connected to the length measuring cable 9 by a connection point 6 between the length measuring cable and the displacer, and is suspended by the length measuring cable 9.
(2) The length measuring cable 9 is applied with tension by the tension applying unit 13 via the length measuring cable winding unit 12. The value of this tension is set to a value that balances the displacer 1 so that a part of the displacer 1 protrudes from the measurement liquid surface 5.
(3) The length of the measurement cable 9 in this balanced state, that is, the measurement cable length 7 is the distance between the measurement reference point height 10 and the connection point 6 between the measurement cable and the displacer. The length measurement cable length 7 can be measured by the length measurement cable length measurement unit 14.
(4) The distance between the connection point 6 between the measuring cable and the displacer and the measurement liquid level 5 is defined as a first distance 8, and the first distance 8 is the liquid of the liquid level meter 2 mounted on the displacer 1. It is measured by the surface measuring unit 4.
(5) The measured length measurement cable length 7 and the first distance 8 are added by the calculation device 15 (more specifically, the calculation unit 17 of the calculation device), and the added value becomes the measurement reference point height 10 And the measured liquid level 5, that is, the measured value of the liquid level meter.
 測長ケーブル9に付与する目盛りと目盛り読み取り方法の例を下記の(1)~(3)に示す。
(1)磁気スケールによる目盛り
 測長ケーブル9には、テープ形状の磁性体が取り付けられ、テープ形状の磁性体には、N極、S極のパターンによるスケールが着磁されている。測長ケーブル長測定部14の磁気センサーは、着磁されたスケールを読み取ることにより、測定基準点高さ10と測長ケーブルとディスプレーサとの接続点6との距離を求める。磁気センサーによるスケール読み取りは、1mm以下の精度で読み取ることが可能である。
(2)RFIDチップの位置をスケールとした目盛り
 測長ケーブル9に一定間隔でRFIDチップが設けられる。RFIDチップ位置をスケールとして利用し、RFIDチップに記憶されている目盛り(目盛りデータ)を読みとる。
 RFIDチップはパッシブRFIDであってもよい。パッシブRFIDは、リーダから無線による電力供給を受ける。パッシブRFIDは、チップが記憶している目盛りに対応する信号を応答信号として返信し、リーダが、当該応答信号を測長信号として受け取ることになる。
 測長ケーブル9を構成するテープ形状の絶縁体に、一定間隔でRFIDチップが配置される。各RFIDチップは、目盛りデータを記憶している。測定基準点高さ10と測長ケーブルとディスプレーサとの接続点6との距離が、測長ケーブル長測定部14を構成するRFIDリーダにより読み取られる。RFIDチップはテープ状の測長ケーブルに数mm間隔で配置することが可能である。
 RFIDの読み取りにおいて、隣接した複数のRFIDチップの情報が読み取られることがある。このため、RFIDチップ(測長ケーブル)とリーダ間に電波を通過するスリットを設けて、同時に読み取られるチップの数を、1~2個に制限する。2個のチップのスケールが同時に読み取られる場合は、両者の平均値を目盛り値とする。
(3)OCRによって読み取り可能な文字またはOMRによって読み取り可能なマークコードの印刷による目盛り
 測長ケーブル9には、文字、コード等が印刷される。印刷位置が目盛りとして読み取られる。
 読み取りは、コードリーダ、カメラ等により行われる。
 テープ状の測長ケーブル9に文字またはマークコードを印刷したスケールの読み取り方法として下記の方法がある。
(a)測長ケーブルの測長方向に5mm以上、または、10mm以上の間隔で印刷した文字またはマークコードがスケールとして読み取られる。
 この方法では、読み取り可能間隔は、文字またはマークコードの印刷間隔となる。よって、5mm以下または10mm以下の間隔の読み取りは困難である。
(b)カメラにより撮影した画像上での補間による測長
 図3に記載の測長ケーブル長測定部14を構成するカメラにより、測長ケーブル9の目盛り読み取り高さ部分L6を撮影する。L6には文字、コード等の読み取り可能なスケールが少なくとも1個含まれている。
 この文字、コードの画像上の位置と画像上での測定基準点高さ10との距離は撮影画像から求められる。結果として、測定基準点高さ10に対応する測長ケーブル長さ7を求めることができる。この方法では目盛り読み取り高さ部分L6に少なくとも1個の文字、コード等の印刷目盛りが配置されている必要がある。例として、L6を100mmとすれば1mm以下の精度で測長ケーブル長さ7を求めることができる。
Examples of the scale applied to the measuring cable 9 and the scale reading method are shown in the following (1) to (3).
(1) Scale by magnetic scale A tape-shaped magnetic body is attached to the measuring cable 9, and the tape-shaped magnetic body is magnetized by a scale having N-pole and S-pole patterns. The magnetic sensor of the length measurement cable length measurement unit 14 obtains the distance between the measurement reference point height 10 and the connection point 6 between the length measurement cable and the displacer by reading the magnetized scale. The scale reading by the magnetic sensor can be read with an accuracy of 1 mm or less.
(2) Scale with the position of the RFID chip as a scale RFID chips are provided on the measuring cable 9 at regular intervals. Using the RFID chip position as a scale, the scale (scale data) stored in the RFID chip is read.
The RFID chip may be a passive RFID. Passive RFID receives a wireless power supply from a reader. The passive RFID returns a signal corresponding to the scale stored in the chip as a response signal, and the reader receives the response signal as a length measurement signal.
RFID chips are arranged at regular intervals on a tape-shaped insulator constituting the length measuring cable 9. Each RFID chip stores scale data. The distance between the measurement reference point height 10 and the connection point 6 between the length measurement cable and the displacer is read by an RFID reader constituting the length measurement cable length measurement unit 14. RFID chips can be arranged on a tape-shaped measuring cable at intervals of several mm.
In reading RFID, information of a plurality of adjacent RFID chips may be read. For this reason, a slit that allows radio waves to pass between the RFID chip (length measurement cable) and the reader is provided, and the number of chips that can be read simultaneously is limited to one or two. When the scales of two chips are read at the same time, the average value of both is used as the scale value.
(3) Scale by printing characters readable by OCR or mark codes readable by OMR Characters, codes, etc. are printed on the measuring cable 9. The printing position is read as a scale.
Reading is performed by a code reader, a camera, or the like.
There are the following methods for reading a scale in which characters or mark codes are printed on a tape-shaped measuring cable 9.
(A) Characters or mark codes printed at intervals of 5 mm or more or 10 mm or more in the length measurement direction of the length measurement cable are read as a scale.
In this method, the readable interval is a character or mark code printing interval. Therefore, it is difficult to read an interval of 5 mm or less or 10 mm or less.
(B) Length measurement by interpolation on an image photographed by the camera The scale reading height portion L6 of the length measurement cable 9 is photographed by the camera constituting the length measurement cable length measurement unit 14 shown in FIG. L6 includes at least one readable scale for characters, codes, and the like.
The distance between the position of the character or code on the image and the measurement reference point height 10 on the image is obtained from the captured image. As a result, the length measurement cable length 7 corresponding to the measurement reference point height 10 can be obtained. In this method, it is necessary that at least one print scale such as a character and a code is arranged at the scale reading height portion L6. As an example, if L6 is set to 100 mm, the length measurement cable length 7 can be obtained with an accuracy of 1 mm or less.
(第3の実施形態)
 第3の実施形態は、ディスプレーサ1に実装した液面測定計2で第1距離8を測定する測定方式に関する実施形態である。
 図4の中央には、ディスプレーサ1の概略側面図が記載されている。また、図4の上方に記載の円は、ディスプレーサの上面図に対応し、図4の下方に記載の円は、ディスプレーサの底面図に対応する。図4に記載の例は、液面測定部4が超音波方式の測定部である場合の例である。超音波距離計の超音波送受信器26は液面測定計2の下部に配置されている。
 超音波距離計の超音波送受信器26からの送信波は円筒内に位置する液面で反射され、反射波は、超音波送受信器26で受信される。このようにして、液面までの距離が測定される。
(a)ディスプレーサ1の一部分は液面より上方に突出して、ディスプレーサ1がバランスしているため、図4に記載の例では、円筒型のディスプレーサ質量調整部27が採用されている。ディスプレーサ質量調整部27の外径は符号28、内径は符号29、高さは符号L4によって表されている。
 ディスプレーサ質量調整部27の外径28、内径29、高さL4の大きさまたは質量調整部を構成する物質の密度を変えることにより、ディスプレーサ1が液面に対してバランスする位置を変えることができる。
(b)また、測長ケーブル1に付与する張力により、ディスプレーサ1が液面に対してバランスする位置を変えることができる。測長ケーブル9に付与される張力は、測長ケーブルの巻き取り長さと、スプリング等の弾性体のバネ係数により定められ、所定の範囲内にある。
(c)このバランス状態における液面の上限Aは、測長ケーブルに最小張力が付与される時のバランス液面34に対応し、液面の下限Bは、測長ケーブルに最大張力が付与される時のバランス液面36に対応する。バランス液面範囲は図4のL3によって表されている。
(d)超音波距離計の距離測定可能範囲L5は超音波距離計の性能により定められる。
(e)バランス液面範囲L3、および、距離測定可能範囲L5は、超音波距離計の距離測定可能範囲L5の中に、上限Aおよび下限Bが入るように設定される。
 なお、符号L1は、予め既知の高さ(液面測定計高さ)であり、符号L2は、距離計によって、測定不能な範囲(距離測定不可距離)を示す。
 図5に記載の例は、液面測定部4がガイドパルス方式の測定部である場合の例である。ガイドパルス方式の液面計は、プローブ37上またはプローブ37内部にパルス信号を送信し、液面で反射するパルス信号を受信し、パルス信号の送信から受信までの時間から距離を算出する。検出距離をL、送信から受信までの時間をT、光速をCとすると、検出距離はL=(1/2)×T×Cの計算式により、求められる。プローブ37を測定液に接触させる必要があること以外については、上述の超音波方式と同様である。すなわち、ディスプレーサ質量調整部27が円筒形であること、距離測定可能範囲、測長ケーブルの張力付与範囲とバランス液面との関係等は超音波方式の場合と同様である。
(Third embodiment)
The third embodiment is an embodiment relating to a measurement method in which the first distance 8 is measured by the liquid level meter 2 mounted on the displacer 1.
In the center of FIG. 4, a schematic side view of the displacer 1 is shown. 4 corresponds to the top view of the displacer, and the circle described below in FIG. 4 corresponds to the bottom view of the displacer. The example described in FIG. 4 is an example in which the liquid level measurement unit 4 is an ultrasonic measurement unit. The ultrasonic transmitter / receiver 26 of the ultrasonic distance meter is disposed below the liquid level meter 2.
The transmission wave from the ultrasonic transmitter / receiver 26 of the ultrasonic distance meter is reflected by the liquid surface located in the cylinder, and the reflected wave is received by the ultrasonic transmitter / receiver 26. In this way, the distance to the liquid level is measured.
(A) Since part of the displacer 1 protrudes upward from the liquid level and the displacer 1 is balanced, in the example shown in FIG. 4, a cylindrical displacer mass adjusting unit 27 is employed. The displacer mass adjusting unit 27 has an outer diameter 28, an inner diameter 29, and a height L4.
By changing the size of the outer diameter 28, inner diameter 29 and height L4 of the displacer mass adjusting unit 27 or the density of the substance constituting the mass adjusting unit, the position where the displacer 1 is balanced with respect to the liquid surface can be changed. .
(B) Further, the position at which the displacer 1 is balanced with respect to the liquid level can be changed by the tension applied to the length measuring cable 1. The tension applied to the length measuring cable 9 is determined by the winding length of the length measuring cable and the spring coefficient of an elastic body such as a spring and is within a predetermined range.
(C) The upper limit A of the liquid level in this balanced state corresponds to the balance liquid level 34 when the minimum tension is applied to the length measurement cable, and the lower limit B of the liquid level is the maximum tension applied to the length measurement cable. This corresponds to the balance liquid level 36 at the time. The balance liquid level range is represented by L3 in FIG.
(D) The distance measurable range L5 of the ultrasonic distance meter is determined by the performance of the ultrasonic distance meter.
(E) The balance liquid level range L3 and the distance measurable range L5 are set such that the upper limit A and the lower limit B are within the distance measurable range L5 of the ultrasonic rangefinder.
In addition, the code | symbol L1 is known height (liquid level measuring meter height) previously, and code | symbol L2 shows the range (distance measurement impossible distance) which cannot be measured with a distance meter.
The example described in FIG. 5 is an example where the liquid level measuring unit 4 is a guide pulse type measuring unit. The guide pulse type level gauge transmits a pulse signal on or inside the probe 37, receives a pulse signal reflected on the liquid level, and calculates a distance from the time from transmission to reception of the pulse signal. Assuming that the detection distance is L, the time from transmission to reception is T, and the speed of light is C, the detection distance can be obtained by the equation L = (1/2) × T × C. The ultrasonic method is the same as that described above except that the probe 37 needs to contact the measurement liquid. That is, the displacer mass adjustment unit 27 is cylindrical, the distance measurement possible range, the relationship between the tension application range of the length measurement cable and the balance liquid level, and the like are the same as in the ultrasonic method.
(第4の実施形態)
 第4の実施形態は、ディスプレーサ方式において、液面測定計2により測定された第1距離8を演算装置15に送信する手段として、無線信号により伝送する方式を採用した実施形態である。
 図6に無線信号伝送の構成例を示す。液面測定計2に無線信号送信部24、演算装置15に無線信号受信部25を設けて、無線信号送信部24から無線信号受信部25に、第1距離8を伝送する。
(Fourth embodiment)
In the displacer system, the fourth embodiment is an embodiment that adopts a system that transmits a first distance 8 measured by the liquid level meter 2 to the arithmetic device 15 using a radio signal.
FIG. 6 shows a configuration example of radio signal transmission. A radio signal transmitter 24 is provided in the liquid level meter 2, and a radio signal receiver 25 is provided in the arithmetic device 15, and the first distance 8 is transmitted from the radio signal transmitter 24 to the radio signal receiver 25.
(第5の実施形態)
  第5の実施形態は、液面計、特に、ディスプレーサ1の周囲に、保護管39を配置する構成を採用した実施形態である。実施形態の液面計を、河川などの水位測定用の液面計として使用する場合、測定液面5は静止した液面でなく、流れ、波浪により変動している液面である。
 また、ディスプレーサ1、測長ケーブル9は風圧加重を受ける。これらの影響により液面高さが変動する。
 また、塵介物などがディスプレーサ1に衝突して第1距離8の測定値に影響を与える可能性がある。このため、図7に示されるように、液面計の周囲に保護管39を設ける。保護管39には、測定液出入穴40が設けられる。
 なお、第5の実施形態において、保護管39の内径は、150mm程度とすることが可能である。フロート式水位計(フロート式水位計では、保護管の内径は、600mm程度とすることが必要)の場合と比較して、実施形態では、保護管39の内径を小さくすることが可能である。
(Fifth embodiment)
The fifth embodiment is an embodiment that employs a configuration in which a protective tube 39 is disposed around a liquid level gauge, particularly around the displacer 1. When the liquid level gauge according to the embodiment is used as a liquid level gauge for measuring a water level in a river or the like, the measurement liquid level 5 is not a static liquid level but a liquid level that fluctuates due to flow and waves.
The displacer 1 and the length measuring cable 9 are subjected to wind pressure load. The liquid level height fluctuates due to these effects.
Further, dust or the like may collide with the displacer 1 and affect the measurement value of the first distance 8. For this reason, as shown in FIG. 7, a protective tube 39 is provided around the level gauge. The protective tube 39 is provided with a measurement liquid inlet / outlet hole 40.
In the fifth embodiment, the inner diameter of the protective tube 39 can be about 150 mm. In the embodiment, the inner diameter of the protective tube 39 can be made smaller than in the case of a float type water level meter (in the float type water level meter, the inner diameter of the protective tube needs to be about 600 mm).
(第6の実施形態)
 第6の実施形態は、伝送装置の実施形態である。図8を参照して、第6の実施形態を説明する。
 第6の実施形態は、ディスプレーサ方式において、液面測定計2へ電力を伝送し、液面測定計2で測定された第1距離8を演算装置15に送信する伝送装置を実装した液面計に関する。
 液面測定計2の電力供給は、一般に、電池によって実現することが可能である。しかし、例えば、屋外で連続的に水位を測定する水位計においては、電池の交換は、ディスプレーサ1を水面から引き上げて実施する必要がある。代替例として、第6の実施形態では、液面測定計2への電力供給は、測長ケーブルに実装した導電体30により行われる。また、液面測定計2で測定された第1距離8を、無線を用いて伝送することも可能であるが、第6の実施形態では、電力供給と同様に、第1距離8の伝送を測長ケーブルに実装した導電体30によりおこなう。
 導電体の測長ケーブル9への実装は、複数の導電体のテープまたはワイヤーを一体的に実装することにより行われる。測長ケーブルに実装した導電体30により、電力と第1距離8に対応する信号とが伝送される。
 測長ケーブルに実装した導電体30は、液面測定計2と液面測定計接続線47を介して電気的に接続される。測長ケーブルに実装した導電体30は、測長ケーブル巻き取り部12でリールまたはドラムにより巻き取られ、測長ケーブルに実装した導電体固定部41において、測長ケーブル巻き取り部12に固定されている。
 測長ケーブルに実装した導電体固定部41は、回転軸21と共に回転する。測長ケーブルに実装した導電体固定部41に固定され回転する導電体信号線によって伝送される信号を、回転しない導電体信号線に伝達するために、測長ケーブルに実装した導電体固定部41に接続されたスリップリング回転体接続線48をスリップリング42の回転体43に接続する。回転体43からの信号は、静止体44によって受け取られる。液面測定計2への給電はスリップリング42の静止体44に接続された電力給電線45により行われ、液面測定計2で測定された第1距離8に対応する信号はスリップリング42の静止体44に接続された第1距離出力信号線46を介して、演算装置15に送信される。
 スリップリング42は、一般的には、機械的接点により、回転体43と静止体44間の信号伝達をおこなうものである。しかし、ロータリーリンクコネクタ等の名称を有し、機械的接点を用いることなく電磁誘導または光結合により、回転体43と静止体44間の信号伝達をおこなう製品も存在するため、本明細書では、スリップリング42は、これらの製品を含むものとして定義される。
(Sixth embodiment)
The sixth embodiment is an embodiment of a transmission device. The sixth embodiment will be described with reference to FIG.
In the displacer method, the sixth embodiment is a liquid level gauge equipped with a transmission device that transmits electric power to the liquid level meter 2 and transmits the first distance 8 measured by the liquid level meter 2 to the arithmetic unit 15. About.
The power supply of the liquid level meter 2 can generally be realized by a battery. However, for example, in a water level meter that continuously measures the water level outdoors, it is necessary to replace the battery by lifting the displacer 1 from the water surface. As an alternative example, in the sixth embodiment, power supply to the liquid level meter 2 is performed by a conductor 30 mounted on a length measurement cable. In addition, although it is possible to transmit the first distance 8 measured by the liquid level meter 2 by radio, in the sixth embodiment, transmission of the first distance 8 is performed in the same manner as the power supply. This is done by the conductor 30 mounted on the length measurement cable.
The conductor is mounted on the length measuring cable 9 by integrally mounting a plurality of conductor tapes or wires. Electric power and a signal corresponding to the first distance 8 are transmitted by the conductor 30 mounted on the measurement cable.
The conductor 30 mounted on the measuring cable is electrically connected to the liquid level meter 2 via the liquid level meter connection line 47. The conductor 30 mounted on the length measurement cable is wound around the length measurement cable winding portion 12 by a reel or a drum, and is fixed to the length measurement cable winding portion 12 at the conductor fixing portion 41 mounted on the length measurement cable. ing.
The conductor fixing portion 41 mounted on the length measuring cable rotates together with the rotating shaft 21. In order to transmit the signal transmitted by the conductor signal line fixed and rotating to the conductor fixing part 41 mounted on the length measuring cable to the conductor signal line not rotating, the conductor fixing part 41 mounted on the length measuring cable. The slip ring rotating body connection line 48 connected to the is connected to the rotating body 43 of the slip ring 42. A signal from the rotating body 43 is received by the stationary body 44. Power supply to the liquid level meter 2 is performed by a power supply line 45 connected to the stationary body 44 of the slip ring 42, and a signal corresponding to the first distance 8 measured by the liquid level meter 2 is supplied from the slip ring 42. The signal is transmitted to the arithmetic device 15 via the first distance output signal line 46 connected to the stationary body 44.
In general, the slip ring 42 transmits signals between the rotating body 43 and the stationary body 44 by mechanical contact. However, since there is a product having a name such as a rotary link connector and performing signal transmission between the rotating body 43 and the stationary body 44 by electromagnetic induction or optical coupling without using a mechanical contact, in this specification, Slip ring 42 is defined to include these products.
(第7の実施形態)
 第7の実施形態は、バランサー方式の液面計に関する。
(1)バランサー方式の液面計
 バランサー方式の液面計と、ディスプレーサ方式の液面計との相違点について説明する。図9は、バランサー方式の液面計の一例を模式的に示す構成図である。
 両者の違いは以下のとおりである
(a)図9に記載のバランサー方式の例では、ディスプレーサ1の代わりに、バランサー18が設けられている。ディスプレーサ1とバランサー18の構成は同様である。
(b)図1に記載のディスプレーサ1は、張力付与部13により張力を付与された測長ケーブル9により、ディスプレーサ1の一部が測定液面5の上部に突出して、バランスしている。
 これに対し、図9に記載のバランサー18は、測長ケーブル位置制御部20により張力を付与された測長ケーブル9により、バランサー18の一部または全体が測定液面5の上部に位置した状態でバランスしている。
(c)張力の付与は、ディスプレーサ1の場合は、弾性体により行われる。他方、バランサー18の場合、張力の付与は、測長ケーブル位置制御部20により行われる。
(d)バランサー方式においては、バランサー18に実装した液面測定計2により、測長ケーブルとバランサーとの接続点19と測定液面5との距離が測定され、測長ケーブル位置制御部20により、測定された距離が一定範囲に入るように、モータ22(必要であれば、図10を参照)を用いて測長ケーブル9の巻き上げ量が自動制御される。詳細については、特願2014-138095号の第8段落および第9段落に記載されているのと同様である。
(e)バランサー方式においては測長ケーブルとバランサーとの接続点19と測定液面5との距離を第1距離8と定義する。また、測定基準点高さ10と測長ケーブルとバランサーとの接続点19との距離である測長ケーブル長さ7を第2距離と定義する。第2距離は測長ケーブル長測定部14により測定される。測定された測長ケーブル長さ(第2距離)7と第1距離8とは演算装置15によって加算され、加算値が、測定基準点高さ10と測定液面5間の距離、すなわち、液面計の測定値となる。
(2)バランサー方式において使用される伝送装置  
(a)ディスプレーサ方式においては、伝送装置は、液面測定計2へ電力を伝送し、液面測定計2で測定された第1距離8を演算装置15に送信する。これに対して、バランサー方式では、液面測定計2で測定された第1距離8を演算装置15に送信するのに加え、バランサー18の位置自動制御のために、当該第1距離8を測長ケーブル位置制御部20に送信する。
(b)図10は、バランサー方式において、電力の伝送と、第1距離8信号の伝送とを行う伝送装置の構成例を示す。バランサー方式における伝送装置の構成は、第6の実施形態におけるディスプレーサ方式における伝送装置と、下記の点を除き同様である。
 第1に、バランサー方式では、静止体44と、測長ケーブル位置制御部20(より具体的には、測長ケーブル位置制御部20の信号受信部16)とが、第1距離出力信号線46を介して、信号伝達可能なように接続されている。信号受信部16によって受信された信号は、バランサー18の位置を制御する位置制御回路であるモータ駆動回路23に伝達される。第2に、バランサー方式では、測長ケーブルに実装した導電体30とバランサー18との接続点が符号32で表されている(ディスプレーサ方式では、測長ケーブルに実装した導電体30とディスプレーサ1との接続点が符号31で表されている)。
(Seventh embodiment)
The seventh embodiment relates to a balancer type liquid level gauge.
(1) Balancer type liquid level gauge The difference between a balancer type liquid level gauge and a displacer type liquid level gauge will be described. FIG. 9 is a configuration diagram schematically showing an example of a balancer type liquid level gauge.
The difference between them is as follows. (A) In the example of the balancer system shown in FIG. 9, a balancer 18 is provided instead of the displacer 1. The configurations of the displacer 1 and the balancer 18 are the same.
(B) The displacer 1 shown in FIG. 1 is balanced by a part of the displacer 1 protruding above the measuring liquid surface 5 by the length measuring cable 9 to which the tension is applied by the tension applying unit 13.
On the other hand, the balancer 18 shown in FIG. 9 is a state in which a part or the whole of the balancer 18 is positioned above the measurement liquid surface 5 by the length measuring cable 9 given tension by the length measuring cable position control unit 20. Is balanced.
(C) In the case of the displacer 1, the tension is applied by an elastic body. On the other hand, in the case of the balancer 18, the tension is applied by the length measuring cable position control unit 20.
(D) In the balancer method, the distance between the connection point 19 between the length measurement cable and the balancer and the measurement liquid level 5 is measured by the liquid level meter 2 mounted on the balancer 18, and the length measurement cable position control unit 20 The winding amount of the length measuring cable 9 is automatically controlled using the motor 22 (see FIG. 10 if necessary) so that the measured distance falls within a certain range. The details are the same as those described in the eighth and ninth paragraphs of Japanese Patent Application No. 2014-138095.
(E) In the balancer method, the distance between the connection point 19 between the length measurement cable and the balancer and the measurement liquid surface 5 is defined as a first distance 8. Further, the length of the length measurement cable 7 which is the distance between the height 10 of the measurement reference point and the connection point 19 between the length measurement cable and the balancer is defined as the second distance. The second distance is measured by the length measurement cable length measurement unit 14. The measured cable length (second distance) 7 and the first distance 8 are added by the arithmetic unit 15, and the added value is the distance between the measurement reference point height 10 and the measurement liquid surface 5, that is, the liquid. It becomes the measurement value of the surface meter.
(2) Transmission equipment used in the balancer system
(A) In the displacer method, the transmission device transmits electric power to the liquid level meter 2 and transmits the first distance 8 measured by the liquid level meter 2 to the arithmetic device 15. On the other hand, in the balancer method, in addition to transmitting the first distance 8 measured by the liquid level meter 2 to the arithmetic unit 15, the first distance 8 is measured for automatic position control of the balancer 18. The data is transmitted to the long cable position control unit 20.
(B) FIG. 10 shows a configuration example of a transmission apparatus that performs power transmission and transmission of the first distance 8 signal in the balancer system. The configuration of the transmission apparatus in the balancer system is the same as that of the transmission apparatus in the displacer system in the sixth embodiment except for the following points.
First, in the balancer system, the stationary body 44 and the length measuring cable position control unit 20 (more specifically, the signal receiving unit 16 of the length measuring cable position control unit 20) are connected to the first distance output signal line 46. The signal is transmitted through the connector. The signal received by the signal receiving unit 16 is transmitted to a motor drive circuit 23 that is a position control circuit that controls the position of the balancer 18. Second, in the balancer system, the connection point between the conductor 30 mounted on the length measuring cable and the balancer 18 is represented by reference numeral 32 (in the displacer system, the conductor 30 mounted on the length measuring cable and the displacer 1 Is represented by reference numeral 31).
 なお、上記の各実施形態において、符号11は、各部材または各要素を固定して支持するための固定部を表している。 In each of the above embodiments, reference numeral 11 represents a fixing portion for fixing and supporting each member or each element.
 いくつかの実施形態においては、ディスプレーサまたはバランサーに実装される液面測定計として、超音波式等の非接触液面計を採用している。そして、センサ部(例えば、超音波送受信器)は、測定液に接触して使用する必要はない。このため、実施形態における液面計では、センサ部が測定液に接触する圧力式液面計と比較して、長期に亘って安定的な測定を行うことができる。このため、以下の用途等を含め、広範な用途に利用できる。
(1)測定基準点高さから測定水面までの距離が数m~100m程度の水位測定。実施形態では、測定基準点高さから測定水位までの距離が大きい場合において、高精度、低コストで測定を行うことができる。
(2)水位測定以外の目的での液面位置測定(産業用途のタンクなどの液面位置測定)
In some embodiments, a non-contact liquid level gauge such as an ultrasonic type is adopted as a liquid level meter mounted on the displacer or balancer. And it is not necessary to use a sensor part (for example, ultrasonic transceiver) in contact with measurement liquid. For this reason, in the liquid level meter in the embodiment, it is possible to perform stable measurement over a long period of time as compared with the pressure type liquid level meter in which the sensor unit contacts the measurement liquid. For this reason, it can be used for a wide range of applications including the following applications.
(1) Water level measurement where the distance from the measurement reference point height to the measurement water surface is about several to 100 meters. In the embodiment, when the distance from the height of the measurement reference point to the measurement water level is large, measurement can be performed with high accuracy and low cost.
(2) Liquid level measurement for purposes other than water level measurement (measurement of liquid level in industrial tanks, etc.)
 本発明は上記各実施形態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変形又は変更され得ることは明らかである。また、実施形態で用いられる種々の技術は、技術的矛盾が生じない限り、他の実施形態に適用可能である。 The present invention is not limited to the above embodiments, and it is obvious that the embodiments can be appropriately modified or changed within the scope of the technical idea of the present invention. In addition, various techniques used in the embodiments can be applied to other embodiments as long as no technical contradiction occurs.
 本出願は、2014年6月17日に出願された日本国特許出願第2014-138095号、および、2014年9月2日に出願された日本国特許出願第2014-190498号を基礎とする優先権を主張し、当該基礎出願の開示の全てを引用により本出願に取り込む。 This application is based on Japanese Patent Application No. 2014-138095 filed on June 17, 2014, and Japanese Patent Application No. 2014-190498 filed on September 2, 2014. Claim the right and incorporate the entire disclosure of the basic application into this application by reference.
1  ディスプレーサ、2 液面測定計、3 信号送信部、4 液面測定部、5 測定液面、
6 測長ケーブルとディスプレーサとの接続点、7 測長ケーブル長さ(第2距離)、
8 第1距離、9 測長ケーブル、10 測長基準点高さ、11 固定部、
12 測長ケーブル巻き取り部、13 張力付与部、14 測長ケーブル長測定部、
15 演算装置、16 信号受信部、17 演算部、18 バランサー、
19 測長ケーブルとバランサーとの接続点、20 測長ケーブル位置制御部、
21 回転軸、22 モータ、23 位置制御回路(モータ駆動回路)、
24 無線信号送信部、25 無線信号受信部、26 超音波距離計超音波送受信器、
27 ディスプレーサ質量調整部、28 ディスプレーサ質量調整部外径、
29 ディスプレーサ質量調整部内径、30 測長ケーブルに実装した導電体
31 導電体を実装した測長ケーブルとディスプレーサとの接続点、
32 導電体を実装した測長ケーブルとバランサーとの接続点、
34 測長ケーブル最小張力のバランス液面A、
36 測長ケーブル最大張力のバランス液面B、
37 プローブ、39 保護管、40 測定液出入穴、
41 測長ケーブルに実装した導電体固定部、42 スリップリング、43 回転体、
44 静止体、45 電力給電線、46 第1距離出力信号線、47 液面測定計接続線、
48 スリップリング回転体接続線、L1 液面測定計高さ、L2 距離測定不可距離、
L3 バランス液面範囲、L4 ディスプレーサ質量調整部高さ、
L5 距離測定可能範囲、L6 目盛り読み取り高さ部分
 
1 Displacer, 2 Liquid Level Meter, 3 Signal Transmitter, 4 Liquid Level Measuring Unit, 5 Measuring Liquid Level,
6 Connection point between measuring cable and displacer, 7 Measuring cable length (second distance),
8 First distance, 9 measuring cable, 10 measuring reference point height, 11 fixing part,
12 measuring cable winding part, 13 tension applying part, 14 measuring cable length measuring part,
15 arithmetic units, 16 signal receivers, 17 arithmetic units, 18 balancers,
19 Connection point between measuring cable and balancer, 20 Measuring cable position controller,
21 Rotating shaft, 22 Motor, 23 Position control circuit (Motor drive circuit),
24 wireless signal transmitter, 25 wireless signal receiver, 26 ultrasonic rangefinder ultrasonic transmitter / receiver,
27 Displacer mass adjustment part, 28 Displacer mass adjustment part outer diameter,
29 Displacer mass adjustment part inner diameter, 30 Conductor mounted on the measuring cable 31 Connection point between the measuring cable mounted with the conductor and the displacer,
32 Connection point between measuring cable and balancer mounted with conductor,
34 Measuring cable minimum tension balance liquid surface A,
36 Measuring cable Maximum tension balance liquid surface B,
37 Probe, 39 Protection tube, 40 Measuring solution access hole,
41 Conductor fixing part mounted on the measuring cable, 42 slip ring, 43 rotating body,
44 stationary body, 45 power feed line, 46 first distance output signal line, 47 liquid level meter connection line,
48 Slip ring rotating body connection line, L1 liquid level meter height, L2 distance not measurable distance,
L3 balance liquid level range, L4 displacer mass adjustment unit height,
L5 distance measurable range, L6 scale reading height part

Claims (3)

  1.  測長ケーブルとディスプレーサとの接続点と液面間の第1距離を測定して第1距離測定値を送信する液面測定計を実装したディスプレーサと、
     該ディスプレーサを吊り下げる測長ケーブルと、
     測長ケーブル巻き取り部と、
     前記ディスプレーサの一部が液面より上部に突出してバランスするように前記測長ケーブルに対して、張力を付与する張力付与部と、
     測定基準点高さから前記ディスプレーサの前記測長ケーブルとの前記接続点までの測長ケーブル長さである第2距離を測定する測長ケーブル長測定部と、
     前記液面測定計で測定した前記第1距離測定値を受信し、該第1距離測定値を前記第2距離の測定値と加算することにより測定基準点高さと液面間の距離を求める演算装置と、
     を具備する液面計。
    A displacer equipped with a liquid level meter that measures the first distance between the connecting point of the measuring cable and the displacer and the liquid level and transmits the first distance measurement value;
    A measuring cable for suspending the displacer;
    A measuring cable winding part;
    A tension applying section that applies tension to the length measuring cable so that a part of the displacer protrudes above the liquid level and balances;
    A length measuring cable length measuring unit for measuring a second distance that is a length of the length measuring cable from a height of a measurement reference point to the connection point with the length measuring cable of the displacer;
    An operation for receiving the first distance measurement value measured by the liquid level meter and adding the first distance measurement value to the measurement value of the second distance to obtain the distance between the measurement reference point height and the liquid level. Equipment,
    A liquid level gauge comprising:
  2.  請求項1に記載の液面計において、
     前記測長ケーブル巻き取り部の回転軸に連結したスリップリングと、
     前記液面測定計に電力を伝送し、前記第1距離測定値に対応する信号を伝送する前記測長ケーブルに実装した導電体と、
     該導電体を前記液面測定計に接続する液面測定計接続線と、
     前記導電体を前記スリップリングの回転体に接続するスリップリング回転体接続線と、
     前記スリップリングの静止体に接続する電力給電線および第1距離出力信号線と、
     を具備する
     液面計。
    The liquid level meter according to claim 1,
    A slip ring connected to the rotary shaft of the measuring cable winding portion;
    A conductor mounted on the length measuring cable for transmitting power to the liquid level meter and transmitting a signal corresponding to the first distance measurement value;
    A liquid level meter connection line for connecting the conductor to the liquid level meter;
    A slip ring rotating body connection line connecting the conductor to the rotating body of the slip ring;
    A power feed line and a first distance output signal line connected to the stationary body of the slip ring;
    A liquid level gauge.
  3.  測長ケーブルとバランサーとの接続点と液面間の第1距離を測定して第1距離測定値を送信する液面測定計を実装した前記バランサーと、
     該バランサーを吊り下げる前記測長ケーブルと、
     測長ケーブル巻き取り部と、
     前記バランサーの一部または全体が液面より上部に突出した位置でバランスするように前記測長ケーブルに対して張力を付与して、前記第1距離測定値を被制御量として巻き取り位置を制御する測長ケーブル位置制御部と、
     測定基準点高さから前記バランサーの前記測長ケーブルとの接続点までの測長ケーブル長さである第2距離を測定する測長ワイヤー長測定部と、
     前記液面測定計で測定した前記第1距離測定値を受信し、該第1距離測定値を前記第2距離の測定値と加算することにより測定基準点高さと液面間の距離を求める演算装置と、
     を具備する液面計に用いられる伝送装置であって、
     前記測長ケーブル巻き取り部の回転軸に連結したスリップリングと、
     前記液面測定計に電力を伝送し、前記第1距離測定値に対応する信号を伝送する前記測長ケーブルに実装した導電体と、
     該導電体を前記液面測定計に接続する液面測定計接続線と、
     該導電体を前記スリップリングの回転体に接続するスリップリング回転体接続線と、
     前記スリップリングの静止体に接続する電力給電線および第1距離出力信号線と、
     を具備する
     伝送装置。
    The balancer mounted with a liquid level meter that measures the first distance between the connection point between the measuring cable and the balancer and the liquid level and transmits the first distance measurement value;
    The length measuring cable for suspending the balancer;
    A measuring cable winding part;
    Tension is applied to the measuring cable so that a part or the whole of the balancer is balanced at a position protruding above the liquid level, and the winding position is controlled using the first distance measurement value as a controlled amount. A measuring cable position control unit,
    A length measuring wire length measuring unit for measuring a second distance which is a length of a length measuring cable from a height of a measurement reference point to a connection point of the balancer with the length measuring cable;
    An operation for receiving the first distance measurement value measured by the liquid level meter and adding the first distance measurement value to the measurement value of the second distance to obtain the distance between the measurement reference point height and the liquid level. Equipment,
    A transmission device used in a level gauge comprising:
    A slip ring connected to the rotary shaft of the measuring cable winding portion;
    A conductor mounted on the length measuring cable for transmitting power to the liquid level meter and transmitting a signal corresponding to the first distance measurement value;
    A liquid level meter connection line for connecting the conductor to the liquid level meter;
    A slip ring rotating body connection line connecting the conductor to the rotating body of the slip ring;
    A power feed line and a first distance output signal line connected to the stationary body of the slip ring;
    A transmission apparatus comprising:
PCT/JP2015/067068 2014-06-17 2015-06-12 Liquid level gauge and transmission device used in liquid level gauge WO2015194484A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014138095A JP5663755B1 (en) 2014-06-17 2014-06-17 Liquid level indicator
JP2014-138095 2014-06-17
JP2014-190498 2014-09-02
JP2014190498A JP5699399B1 (en) 2014-09-02 2014-09-02 Liquid level indicator

Publications (1)

Publication Number Publication Date
WO2015194484A1 true WO2015194484A1 (en) 2015-12-23

Family

ID=54935471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067068 WO2015194484A1 (en) 2014-06-17 2015-06-12 Liquid level gauge and transmission device used in liquid level gauge

Country Status (1)

Country Link
WO (1) WO2015194484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580932B (en) * 2016-05-19 2017-05-01 China Steel Corp Discharge flow measurement method and flow measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738600Y2 (en) * 1976-10-28 1982-08-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738600Y2 (en) * 1976-10-28 1982-08-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580932B (en) * 2016-05-19 2017-05-01 China Steel Corp Discharge flow measurement method and flow measurement device

Similar Documents

Publication Publication Date Title
CN102519349A (en) Magnet displacement sensor
CN103380355A (en) Electromechanical fill level measurement unit
CN104061983A (en) Tilting pendulum type float ball liquid level meter
US9435679B2 (en) Tethered float liquid level sensor
EP1815257B1 (en) Wind and water speed and direction measurement device
JP2009236615A (en) Magnetic type level gage
WO2015194484A1 (en) Liquid level gauge and transmission device used in liquid level gauge
WO2019193453A1 (en) A magnetostrictive level transmitter with orientation sensor
CN104655524A (en) Electronic liquid densimeter
KR101435104B1 (en) Hybrid detecting apparatus for sensin solinity and liquid level
JP3216384U (en) Liquid level indicator
WO2017115949A1 (en) Taper pipe-shaped area flow meter using magnetostrictive distance measurement
JP5699400B1 (en) Liquid level indicator
CN104121968B (en) Material level measuring device and measuring method based on magnetoelectric effect
JP5699399B1 (en) Liquid level indicator
JP5663755B1 (en) Liquid level indicator
CN108195432A (en) A kind of electronic floating unit
RU2710007C1 (en) Bypass level gauge
US3370462A (en) Water current meter
CN210109138U (en) Calibration system of ship accelerometer
CN208012712U (en) A kind of mangneto water-level gauge
RU178685U1 (en) Autonomous device for measuring the speed of water flow in small streams
CN209745373U (en) Electronic water gauge
JP6218739B2 (en) Specific gravity measuring method and specific gravity measuring apparatus
RU121569U1 (en) TORQUE MEASUREMENT DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15808942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15808942

Country of ref document: EP

Kind code of ref document: A1