WO2015194425A1 - Liquid discharge device - Google Patents

Liquid discharge device Download PDF

Info

Publication number
WO2015194425A1
WO2015194425A1 PCT/JP2015/066695 JP2015066695W WO2015194425A1 WO 2015194425 A1 WO2015194425 A1 WO 2015194425A1 JP 2015066695 W JP2015066695 W JP 2015066695W WO 2015194425 A1 WO2015194425 A1 WO 2015194425A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
liquid
pump
control unit
load
Prior art date
Application number
PCT/JP2015/066695
Other languages
French (fr)
Japanese (ja)
Inventor
智明 須藤
一彦 船橋
和隆 岩田
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2015194425A1 publication Critical patent/WO2015194425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Definitions

  • the present invention relates to a liquid discharge apparatus including a pump that discharges liquid.
  • the liquid ejection device described in Patent Document 1 is a high-pressure washing machine that cleans an object by spraying liquid onto the object.
  • This high-pressure washing machine includes an apparatus main body, a pump provided in the apparatus main body, a tank attached to the apparatus main body for storing liquid to be supplied to the pump, a motor for driving the pump, and a battery pack for supplying electric power to the motor. And.
  • a connection plug is attached to the discharge port of the pump, and the connection plug is connected to the cleaning gun via a hose. When the motor is driven, the pump sucks and discharges the cleaning liquid in the tank, and the cleaning liquid discharged from the pump is sprayed from the nozzle of the cleaning gun through the hose so that the cleaning operation can be performed.
  • the high pressure washer described in Patent Document 1 drives the motor with the hose removed from the connection plug after the cleaning operation, and drains the cleaning liquid remaining in the pump from the connection plug to the outside. It can be carried out. Further, in Patent Document 1, a cleaning liquid detection sensor for detecting the presence or absence of cleaning liquid in the tank is provided at the lower end of the tank, and when the cleaning liquid detection sensor detects that the cleaning liquid in the tank has run out, a draining operation is performed. It is described.
  • the liquid ejection device described in Patent Document 1 needs to provide a dedicated cleaning liquid detection sensor in order to detect the presence or absence of the cleaning liquid in the tank, and there is a problem that the cost of the liquid ejection apparatus increases.
  • An object of the present invention is to provide a liquid ejection device capable of suppressing an increase in cost.
  • the liquid discharge apparatus of the present invention is a liquid discharge apparatus including a pump for sucking and discharging liquid, and a motor for driving the pump, and detects a load of the motor for driving the pump; and A liquid amount detection unit that estimates the amount of liquid sucked by the pump based on the load of the motor, and a motor that stops the motor when it is estimated that the amount of liquid sucked by the pump is equal to or less than a predetermined amount And a control unit.
  • a liquid discharge apparatus is a liquid discharge apparatus including a pump that sucks and discharges liquid, a motor that drives the pump, and a tank that stores the liquid sucked by the pump.
  • a load detection unit that detects a load of the motor; detects the amount of the liquid in the tank based on the load of the motor; and stops the motor when the amount of the liquid is equal to or less than a predetermined amount
  • a motor control unit that controls the motor to or less than a predetermined amount
  • a liquid discharge apparatus in another embodiment, includes a pump that sucks and discharges liquid, a motor that drives the pump, a tank that stores the liquid sucked by the pump, and a flow of the liquid discharged from the pump.
  • a liquid ejection device having a trigger for opening and closing a path, and a cleaning gun for discharging the liquid to the outside, wherein the liquid is ejected from the cleaning gun when the flow path is opened
  • a motor control unit is provided for stopping the motor when the load of the motor becomes a predetermined value or less.
  • the amount of liquid sucked by the pump can be estimated based on the load of the motor when the pump is being driven. Therefore, it is not necessary to provide a dedicated sensor for detecting the amount of liquid sucked by the pump, and it is possible to suppress an increase in the cost of the liquid ejection device.
  • FIG. 1 It is a schematic diagram which shows the high-pressure washing machine which is embodiment of the liquid discharge apparatus of this invention, and a washing
  • the high-pressure washing machine 10 includes a washing machine main body 11, a pump 12 provided in the washing machine main body 11, a tank 13 that stores a cleaning liquid supplied to the pump 12, and a brushless motor 14 that drives the pump 12. And a control unit 15 that controls the brushless motor 14 and a battery pack 16 that supplies power to the brushless motor 14. Further, a hose 18 for supplying the cleaning liquid discharged from the pump 12 to the cleaning gun 17 is provided.
  • the tank 13 is disposed on the upper part of the cleaning machine main body 11, and the tank 13 is detachable from the cleaning machine main body 11.
  • the cleaning liquid injected into the tank 13 may be either water or water containing a surfactant.
  • the pump 12 includes an operating member that is operated by the power of the brushless motor 14, a suction port 12a connected to the tank 13, and a discharge port 12b connected to the flow path 12c.
  • the flow path 12 c is connected to the hose 18.
  • a plunger pump can be used as the pump 12, for example, a plunger pump can be used. In the pump 12, the plunger reciprocates to suck and discharge the cleaning liquid.
  • the cleaning gun 17 is an injection device that injects the cleaning liquid discharged from the pump 12.
  • the cleaning gun 17 includes a gun main body 19, a nozzle 20 attached to the gun main body 19, a flow path 21 provided in the gun main body 19 and connecting the hose 18 and the nozzle 20, and a flow path 21.
  • the trigger 23 is operated by an operator. When no operating force is applied to the trigger 23, the valve 22 is closed and no cleaning liquid is ejected from the nozzle 20. When an operating force is applied to the trigger 23, the valve 22 is opened and the cleaning liquid is sprayed from the nozzle 20 to the outside of the cleaning gun 17.
  • the battery pack 16 is detachable from the washing machine body 11, and the battery pack 16 has a plurality of battery cells housed in a housing case.
  • the battery cell includes a secondary battery that can be repeatedly charged and discharged, for example, a lithium ion battery.
  • the brushless motor 14 is a type of DC motor, and the brushless motor 14 includes a stator 14a and a rotor 14b.
  • the stator 14a includes three coils U1, V1, and W1 corresponding to the U phase, the V phase, and the W phase, and the stator 14a does not rotate.
  • the stator 14a is annularly arranged, and the rotor 14b is rotatably arranged inside the stator 14a.
  • a plurality of permanent magnets 14c are attached to the outer peripheral surface of the rotor 14b at intervals in the circumferential direction.
  • the plurality of permanent magnets 14c include a plurality of types of permanent magnets 14c having different polarities, and the permanent magnets 14c having different polarities are alternately arranged.
  • a power transmission mechanism that transmits the rotational force of the rotor 14b to the plunger is provided.
  • FIG. 2 is a block diagram showing a control system of the high pressure washer 10.
  • An operation panel 24 is provided in the cleaning machine main body 11, and the operation panel 24 includes a pressure setting dial 25, a remaining amount display unit 26, and a main power switch 27.
  • An operator can set the discharge pressure of the cleaning liquid by operating the pressure setting dial 25.
  • the remaining amount display unit 26 displays the remaining amount of the battery pack 16, that is, the voltage.
  • the operator switches between turning on and off the main power switch 27 and selects starting and stopping of the high-pressure washing machine 10.
  • Hall ICs 28a to 28c for detecting the rotational position of the rotor 14b of the brushless motor 14 are provided.
  • Three Hall ICs 28a to 28c are provided at different positions in the rotational direction of the rotor 14b, corresponding to the U phase, V phase, and W phase.
  • the Hall ICs 28a to 28c are non-contact sensors that do not contact the rotor 14b, and the Hall ICs 28a to 28c detect a magnetic field formed by the permanent magnet 14c attached to the rotor 14b and correspond to the magnitude of the magnetic field. It is a magnetic sensor that outputs a signal.
  • the control unit 15 has an inverter circuit 29 for controlling the drive current supplied to the three coils U1, V1, W1 constituting the stator 14a.
  • the inverter circuit 29 controls the drive current supplied to the coils U1, V1, and W1.
  • the inverter circuit 51 is a three-phase full-bridge inverter circuit, and includes two switching elements 29a and 29b connected in series, two switching elements 29c and 29d connected in series, and two switching elements connected in series. It has elements 29e and 29f.
  • the three switching elements 29a, 29c, and 29e are connected to the positive electrode 16a of the battery pack 16, and the three switching elements 29b, 29d, and 29f are connected to the negative electrode 16b of the battery pack 16.
  • the three switching elements 29a, 29c, 29e connected to the positive electrode 16a of the battery pack 16 are on the high side, and the three switching elements 29b, 29d, 29f connected to the negative electrode 16b of the battery pack 16 are It is on the low side.
  • connection terminal of the coil U1 is connected between the switching element 29a and the switching element 29b.
  • One connection terminal of the coil V1 is connected between the switching element 29c and the switching element 29d.
  • One connection terminal of the coil W1 is connected between the switching element 29e and the switching element 29f.
  • the other connection terminals of the coils U1, V1, and W1 are connected to each other, and the coils U1, V1, and W1 are star-connected.
  • the connection system of the coils U1, V1, and W1 may be delta connection. For example, when a gate signal is turned on to the switching element 29a on the high side and the switching element 29d on the low side, current is supplied to the coils U1 and V1. By adjusting the timing of the gate signal supplied to each of the switching elements 29a to 29f, the direction and current value of the current passing through the coils U1, V1, and W1 are controlled.
  • control unit 15 includes a driver circuit 30, and the driver circuit 30 outputs gate signals for turning on and off the switching elements 29a to 29f of the inverter circuit 29, respectively.
  • control unit 15 includes a microcomputer 31.
  • the microcomputer 31 includes an input port and an output port, a storage unit, and a calculation unit, and a signal output from the pressure setting dial 25 and a signal output from the Hall ICs 28a, 28b, and 28c are input to the microcomputer 31.
  • a pressure detection switch 32 for detecting the pressure in the flow path 12c is provided.
  • the pressure detection switch 32 is provided in the cleaning machine body 11.
  • the pressure detection switch 32 is, for example, a switch provided with a diaphragm.
  • the pressure detection switch 32 is turned on when the pressure in the flow path 12c is lower than the first predetermined pressure, and the pressure in the flow path 12c increases to increase the first pressure. When the pressure exceeds a predetermined level, the switch is switched from on to off.
  • the pressure detection switch 32 is switched from off to on when the pressure in the flow path 12c decreases to be equal to or lower than the second predetermined pressure.
  • the first predetermined pressure is higher than the second predetermined pressure.
  • the first predetermined pressure is 5 [MPa]
  • the second predetermined pressure is 3.5 [MPa].
  • the difference between the first predetermined pressure and the second predetermined pressure is hysteresis.
  • the reason why the pressure detection switch 32 has hysteresis in the characteristic of switching between on and off is to prevent the pressure in the flow path 12c from fluctuating by a minute amount and frequently switching between on and off.
  • the pressure detection switch 32 outputs a detection signal corresponding to ON or OFF, and the signal output from the pressure detection switch 32 is input to the microcomputer 31.
  • the control unit 15 includes a current detection resistor 33 provided in the electric circuit E ⁇ b> 1 that supplies power from the battery pack 16 to the inverter circuit 29.
  • the control unit 15 includes a current detection circuit 34.
  • the current detection circuit 34 detects the current value supplied to the coils U1, V1, W1 of the stator 14a from the voltage drop of the current detection resistor 33, and according to the detection result. The signal is output to the microcomputer 31.
  • the control unit 15 includes a control system power circuit 35 connected between the battery pack 16 and the inverter circuit 29, and the control system power circuit 35 converts the voltage of the battery pack 16 into a drive voltage of the microcomputer 31. And supply.
  • the control unit 15 further includes a power on / off circuit 36 to which a signal output from the main power switch 27 is input.
  • the power on / off circuit 36 controls the control system power circuit 35 based on the input signal.
  • the microcomputer 31 receives a signal for maintaining a signal input from the power on / off circuit 36 to the control system power circuit 35.
  • the microcomputer 31 detects the voltage of the battery pack 16 and outputs a signal indicating the result of detecting the voltage of the battery pack 16 to the remaining amount display unit 26.
  • control unit 15 includes a motor operation stop circuit 37 provided between the battery pack 16 and the inverter circuit 29 in the electric circuit E1.
  • the motor operation stop circuit 37 includes a semiconductor switch, and the motor operation stop circuit 37 turns on or off the electric circuit E1 that supplies the power of the battery pack 16 to the brushless motor 14 according to a signal input from the control system power supply circuit 35. To do.
  • the motor operation stop circuit 37 is switched on and off by a signal input from the pressure detection switch 32 without passing through the microcomputer 31 in addition to a signal input from the control system power supply circuit 35.
  • the motor operation stop circuit 37 is turned off by an off signal input from the pressure detection switch 32, and the motor operation stop circuit 37 is turned on by an on signal input from the pressure detection switch 32.
  • the electric circuit E 1 connects the battery pack 16 and the brushless motor 14, and a fuse 38 is provided between the motor operation stop circuit 37 and the battery pack 16.
  • the fuse 38 is an electronic component that protects the electric circuit E1 from a large current exceeding the rating.
  • Various types of data are stored in the storage unit of the microcomputer 31.
  • the data stored in the storage unit includes a map representing the relationship between the target pressure set by operating the pressure setting dial 25 and the rotational speed of the rotor 14b of the brushless motor 14.
  • the data stored in the storage unit includes a map representing the relationship between the rotational speed of the rotor 14b of the brushless motor 14 and the duty ratio that is the ON ratio of the switching elements 29a to 29f. Further, the data stored in the storage unit includes a map representing the relationship between the target pressure set by operating the pressure setting dial 25 and the current value supplied to the brushless motor 14.
  • the main power switch 27 When the main power switch 27 is turned on in the high pressure washer 10 having the above configuration, the power of the battery pack 16 is supplied to the microcomputer 31 via the control system power circuit 35, and the microcomputer 31 is activated. Further, a signal is input from the control system power supply circuit 35 to the motor operation stop circuit 37, and the motor operation stop circuit 37 is turned on.
  • a signal is input from the microcomputer 31 to the driver circuit 30, and the switching elements 29 a to 29 f of the inverter circuit 29 are turned on / off by the signal output from the driver circuit 30, and the power of the battery pack 16 is passed through the inverter circuit 29. Is supplied to the coils U1, V1, W1 of the stator 14a to form a rotating magnetic field, and the rotor 14b rotates. Thus, the brushless motor 14 is driven.
  • the control unit 15 When the main power switch 27 is turned on and no operating force is applied to the trigger 23, the control unit 15 once sets the pressure in the flow path 12c detected by the pressure detection switch 32 to 5.0 [MPa].
  • the rotational speed of the rotor 14b is controlled so as to increase to the above.
  • the control unit 15 obtains the target rotational speed of the rotor 14b so that the flow path 12c is 5.0 [MPa] or more, and the actual rotational speed of the rotor 14b is brought close to the target rotational speed.
  • Feedback control Specifically, the duty ratio that is the ratio of turning on the plurality of switching elements 29a to 29f constituting the inverter circuit 29 is controlled. Increasing the duty ratio increases the actual rotational speed of the rotor 14b.
  • the control unit 15 determines the timing for turning on the switching elements 29a to 29f based on the rotational position of the rotor 14b. In this way, the control unit 15 controls the current value supplied to the brushless motor 14 so that the pressure in the flow path 12c once becomes 5.0 [MPa].
  • the control unit 15 stops supplying power to the coils U1, V1, W1 of the stator 14a, and the brushless motor. 14 rotors 14b are temporarily stopped.
  • the cleaning liquid is discharged from the nozzle 20.
  • the pressure in the flow path 12c detected by the pressure detection switch 32 decreases.
  • the control unit 15 supplies current to the stator 14a and rotates the rotor 14b of the brushless motor 14.
  • the controller 15 controls the brushless motor 14 so that the pressure detected by the pressure detection switch 32 is maintained at the target pressure set by operating the pressure setting dial 25 while the cleaning liquid is being discharged from the nozzle 20.
  • the number of rotations of the rotor 14b is controlled.
  • the control unit 15 obtains the target rotational speed of the rotor 14b according to the target pressure set by operating the pressure setting dial 25, and the brushless motor 14 so as to bring the actual rotational speed of the rotor 14b closer to the target rotational speed. Feedback control of the current value supplied to.
  • the control unit 15 when the operation force applied to the trigger 23 is released after the cleaning liquid is ejected from the nozzle 20, the control unit 15 once detects the pressure detected by the pressure detection switch 32 at 5.0 [MPa]. The rotational speed of the rotor 14b is controlled so that it becomes above. Thereafter, when the operating force is again applied to the trigger 23, the control unit 15 executes the same control as described above.
  • the main power switch 27 When the main power switch 27 is turned off, the control unit 15 causes the control system power supply circuit 35 to move to the motor.
  • the operation stop circuit 37 is turned off and the brushless motor 14 is stopped.
  • the control unit 15 can execute control to stop the brushless motor 14 when the brushless motor 14 is in an idle state, and refer to the flowchart of FIG. 3 for an example of the control.
  • “the brushless motor 14 is in an idle state” means that the rotor 14b of the brushless motor 14 rotates when the amount of the cleaning liquid in the tank 13 is equal to or less than a predetermined amount.
  • the amount of the cleaning liquid in the tank 13 is equal to or less than the predetermined amount when the cleaning liquid is not in the tank 13 and when the amount of the cleaning liquid in the tank 13 can maintain the target pressure set by operating the pressure setting dial 25. And the following cases.
  • step S3 the control unit 15 determines whether or not the pressure detection switch 32 is on. For example, if the main power switch 27 is turned on and before the first driving of the brushless motor 14, the pressure in the flow path 12c is lower than the first predetermined pressure, and the pressure detection switch 32 is turned on. . Then, the control part 15 determines Yes in step S3, and performs control of step S4.
  • step S 4 the motor operation stop circuit 37 is turned on by a signal from the control system power supply circuit 35, and the microcomputer 31 controls on / off of the switching elements 29 a to 29 f of the inverter circuit 29 to supply current to the brushless motor 14. Is done.
  • the current value of the brushless motor 14 is controlled so that the pressure in the flow path 12c once becomes 5.0 [MPa] or more. Is done.
  • step S5 the control unit 15 determines whether or not the current value supplied to the brushless motor 14 is equal to or less than a predetermined value.
  • the control unit 15 detects the current value supplied to the brushless motor 14 based on the signal from the current detection circuit 34.
  • the predetermined value used in the determination in step S5 is a threshold value for indirectly determining whether or not the brushless motor 14 is idling from the current value.
  • Data representing the relationship between the target rotational speed and the current value supplied to the brushless motor 14 in order to set the pressure in the flow path 12 c as the target pressure is stored in the storage unit of the microcomputer 31.
  • the control unit 15 can use a current value for satisfying the target rotational speed as a predetermined value.
  • the control unit 15 feedback-controls the current value so that the actual rotational speed of the brushless motor 14 approaches the target rotational speed. If the current value of the brushless motor 14 is the same, when the amount of cleaning liquid sucked by the pump 12 decreases, the load decreases and the rotation speed increases. For this reason, in controlling the actual number of revolutions of the brushless motor 14, if the amount of the cleaning liquid sucked into the pump 12 decreases, the load of the brushless motor 14 decreases and the current value decreases.
  • step S5 the control unit 15 can determine that “the brushless motor 14 is idling”. If it is determined No in step S5, the control unit 15 returns to step S3. If the determination is Yes in step S5, the control unit 15 proceeds to step S6 and determines that “the brushless motor 14 is in an idle state”.
  • step S9 If the controller 15 determines No in step S9, it returns to step S3.
  • step S10 the control unit 15 proceeds to step S10, turns off all the switching elements 29a to 29f of the inverter circuit 29, and stops the supply of current to the brushless motor 14.
  • the process of step S10 is expressed as “microcomputer power supply OFF” in the flowchart of FIG. As described above, when the brushless motor 14 is driven for the first time, the control unit 15 stops the brushless motor 14 when the process proceeds from step S9 to step S10 via step S8.
  • Step S11 when the trigger 23 is operated and the cleaning liquid is discharged, the pressure in the flow path 12c decreases. And if the pressure of the flow path 12c becomes below 2nd predetermined pressure (3.5 [MPa]), the pressure detection switch 32 will switch from OFF to ON. For this reason, it is judged as Yes in Step S3, and it progresses to Step S4, and the drive after the 2nd time of brushless motor 14 is performed.
  • 2nd predetermined pressure 3.5 [MPa]
  • control unit 15 When the control unit 15 proceeds to step S7 via steps S11 and S12, it determines No in step S7, executes the process of step S13, and proceeds to step S9.
  • the predetermined time t2 is shorter than the predetermined time t1.
  • the motor operation stop circuit 37 is turned on by the control system power supply circuit 35, and current is supplied to the brushless motor 14 by the control of the inverter circuit 29. Start driving.
  • the brushless motor 14 starts the first driving, the pump 12 sucks and discharges the cleaning liquid, and the pressure in the flow path 12c increases.
  • the current value supplied to the brushless motor 14 is not more than a predetermined value between time t10 and time t11, and the current value exceeds the predetermined value after time t11.
  • the time chart of FIG. 4 shows an example in which the predetermined value is 5 [A].
  • the current value supplied to the brushless motor 14 is not more than a predetermined value from time t10 to time t11.
  • the elapsed time from time t10 to time t11 is less than the predetermined time t1. For this reason, the control part 15 supplies an electric current to the brushless motor 14 from the time t10 to the time t11.
  • the value of the current supplied to the brushless motor 14 increases after time t11.
  • the pressure detection switch 32 is switched from on to off. Then, the motor operation stop circuit 37 is turned off, and the current value supplied to the brushless motor 14 becomes 0 [A].
  • the pressure in the flow path 12c is lowered due to leakage of the cleaning liquid.
  • the trigger 23 is turned on at time t13, the cleaning liquid is discharged from the nozzle 20, and the pressure in the flow path 12c is further decreased.
  • the control unit 15 feedback-controls the current value supplied to the brushless motor 14 in order to maintain the actual pressure in the flow path 12c above the target pressure after time t13. For this reason, the current value exceeds the predetermined value after time t13.
  • the cleaning liquid in the tank 13 becomes equal to or less than the predetermined amount at time t14, the cleaning liquid is not ejected from the nozzle 20. That is, the pump 12 does not perform the pressurizing operation, and the current value supplied from the battery pack 16 to the brushless motor 14 decreases. Furthermore, the current value supplied to the brushless motor 14 is 5 [A] or less, which is a predetermined value at time t15. Then, the control unit 15 determines that “the brushless motor 14 is idling” at time t15.
  • control unit 15 turns off all the switching elements 29a to 29f of the inverter circuit 29 after time t16, and the current to the brushless motor 14 is reduced. Shut off the supply.
  • Step 3 of step S5 is determined.
  • the control unit 15 estimates the presence / absence of the cleaning liquid in the tank 13 based on the current value supplied to the brushless motor 14, determines that there is no cleaning liquid in the tank 13, and then determines the predetermined value.
  • the predetermined time t has elapsed, the supply of current to the brushless motor 14 is cut off. Therefore, it is possible to prevent the brushless motor 14 from spinning, and it is possible to suppress wasteful power consumption by the brushless motor 14.
  • the controller 15 automatically stops the brushless motor 14 when a predetermined time has elapsed after determining that there is no cleaning liquid in the tank 13. For this reason, the operator does not have to turn off the main power switch 27 after he / she notices that there is no cleaning liquid in the tank 13, and the operation burden on the operator can be reduced.
  • the controller 15 indirectly determines the presence or absence of the cleaning liquid in the tank 11 from the current value supplied to the brushless motor 14. For this reason, it is not necessary to provide a dedicated sensor for detecting the presence or absence of the cleaning liquid in the tank 13. Therefore, the number of parts of the high pressure washer 10 can be reduced, and an increase in manufacturing cost can be suppressed.
  • step S5 of the flowchart can be “whether or not the actual rotational speed of the rotor 14b is equal to or greater than a predetermined value”.
  • control unit 15 can also detect the load of the pump 12 based on the rotation speed of the rotor 14b of the brushless motor 14.
  • step S5 the control unit 15 determines Yes in step S5
  • the state where the actual rotational speed of the rotor 14b is equal to or greater than the predetermined value is the predetermined time t [ s]
  • the control unit 15 estimates that the amount of the cleaning liquid in the tank 13 is equal to or less than a predetermined amount when the rotation speed of the rotor 14b is continuously equal to or greater than the predetermined value, and stops the brushless motor 14.
  • the control unit 15 determines that “the brushless motor 14 is idling” based on the rotational speed of the rotor 14 b of the brushless motor 14. If the cleaning liquid disappears and the load on the brushless motor 14 decreases, the actual rotational speed of the rotor 14b increases. That is, the determination content of step S5 in FIG. 4 can be “whether or not the actual rotational speed of the rotor 14b is equal to or higher than a predetermined value”. In this case, data representing the relationship between the target pressure of the flow path 12c and the actual rotational speed of the rotor 14b is stored in advance in the storage unit of the microcomputer 31.
  • control unit 15 can also detect the load of the pump 12 based on the rotational speed of the rotor 14b of the brushless motor 14.
  • the microcomputer 31 can process the signals from the Hall ICs 28a to 28c to obtain the actual rotational speed and the actual rotational speed of the rotor 14b.
  • the cleaning liquid corresponds to the liquid of the present invention
  • the pump 12 corresponds to the pump of the present invention
  • the brushless motor 14 corresponds to the motor and the electric motor of the present invention
  • the high-pressure cleaning machine 10 corresponds to the liquid discharge of the present invention. It corresponds to the apparatus, and the presence or absence of the cleaning liquid in the tank 13 corresponds to the “amount of liquid sucked by the pump” in the present invention.
  • the control unit 15 corresponds to a liquid amount detection unit, a load detection unit, a motor control unit, and a motor load control unit of the present invention.
  • the case where there is no cleaning liquid in the tank 13 corresponds to “the amount of liquid is equal to or less than a predetermined amount” in the present invention
  • the pressure setting dial 25 corresponds to a pressure setting unit of the present invention, and “the current value is equal to or less than a predetermined value” corresponds to “the motor load is equal to or less than a value corresponding to the target pressure” according to the present invention.
  • step S4 without driving steps S11 and S12 in FIG. 3 and driving the brushless motor 14 corresponds to the “first driving” in the present invention. Further, the process proceeds to step S4 via steps S11 and S12 in FIG. 3 to drive the brushless motor 14 corresponds to the “second drive” in the present invention. Furthermore, the pressure detection switch 32 corresponds to the pressure detection unit of the present invention, and the tank 13 corresponds to the tank of the present invention.
  • the motor operation stop circuit 37 may not be provided.
  • the microcomputer 31 turns off all the switching elements 29a to 29f of the inverter circuit 29 when the main power switch 27 is turned off.
  • the liquid discharge apparatus includes a structure for sucking water supplied from a water tap with a pump in addition to a structure for sucking liquid in a tank with a pump.
  • a liquid discharge device that sucks water discharged from a water tap with a pump. The water discharged from a water pump is disconnected when the water supply is cut off or the hose connecting the water tap and the pump is disconnected. The presence or absence can be determined based on the current value, and the supply of current to the motor can be stopped based on the determination result.
  • a hydraulic motor, a pneumatic motor, and an engine can be used as the motor for driving the pump instead of the electric motor.
  • a sensor for detecting the rotational speed or rotational speed of the output shaft of the hydraulic motor, a sensor for detecting the rotational speed or rotational speed of the output shaft of the pneumatic motor, and a sensor for detecting the engine rotational speed or rotational speed are provided.
  • step S5 the rotational speed or rotational speed of the output shaft of the hydraulic motor, The idle rotation of the brushless motor is determined using the rotation speed or rotation speed of the output shaft and the engine rotation speed or rotation speed. Further, in step S10, a process for stopping the hydraulic motor, a process for stopping the pneumatic motor, or a process for stopping the engine is executed.
  • the liquid discharge device of the present invention is a device that pressurizes and discharges the liquid sucked into the pump, and the liquid discharge device of the present invention makes water mist in addition to a high-pressure washing machine that removes dirt on an object.
  • the secondary battery which supplies electric power to an electric motor is provided. That is, the cleaning machine according to the embodiment is portable.
  • the secondary battery may be a battery other than a lithium ion battery, for example, a nickel cadmium battery, a nickel hydrogen battery, or a lithium ion polymer battery.
  • the liquid discharge apparatus of the present invention includes a structure capable of supplying power to the electric motor from both the secondary battery and the commercial power source.
  • the liquid ejection device of the present invention includes a structure that can supply power to the electric motor only from a commercial power source.
  • the electric motor may be either a direct current brushless motor or an alternating current brushless motor. It is also possible to provide a power supply mechanism that supplies power from the AC power source to the electric motor.
  • the pressure detection switch may be provided in the cleaning gun.
  • a signal cable is provided for transferring signals between a pressure detection switch provided in the cleaning gun and a control unit provided in the cleaning machine main body.
  • the signal cable may be bundled together with a hose.
  • the pressure setting unit includes a dial, a touch panel, and a lever.
  • the pressure detection unit includes a pressure sensor including a diaphragm, a pressure sensor including a Bourdon tube, and a pressure sensor including a bellows.
  • the pressure detection unit may be configured to be turned on when the pressure of the cleaning liquid is equal to or higher than the first predetermined pressure and turned off when equal to or lower than the second predetermined pressure.
  • the first predetermined pressure is higher than the second predetermined pressure. That is, the pressure detection unit only needs to output different signals depending on whether the pressure of the cleaning liquid is equal to or higher than the first predetermined pressure and lower than the second predetermined pressure, and can turn on and off the motor operation stop circuit. .
  • Trigger 24 , Operation panel, 25 pressure setting dial, 26 remaining amount display section, 27 main power switch, 29 inverter circuit, 29a to 29f switching element, 30 driver circuit, 31 microcomputer, 32 pressure detection switch , 33 ... current detection resistor, 34 ... current detection circuit, 35 ... control system power supply circuit, 36 ... power supply on / off circuit, 37 ... motor operation stop circuit, 38 Fuse, 51 ... inverter circuits, 28a ⁇ 28c ... Hall IC, E1 ... electrical circuits, U1, V1, W1 ... coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

In the present invention, in order to provide a high pressure washing device for which it is possible to mitigate an increase in cost, a high pressure washing device (10) is provided with a pump (12) that takes in and discharges a washing fluid, and a brushless motor (14) that drives the pump (12). The high pressure washing device is further provided with a control unit (15) that detects a load on the brushless motor (14) when driving the pump (12) and estimates the amount of washing fluid that the pump (12) has taken in on the basis of the detected load on the brushless motor (14), and the control unit (15) stops the brushless motor (14) if it is estimated that there is no more washing fluid to be taken in by the pump (12).

Description

液体吐出装置Liquid ejection device
本発明は、液体を吐出するポンプを備えた液体吐出装置に関する。 The present invention relates to a liquid discharge apparatus including a pump that discharges liquid.
従来、液体を吐出するポンプを備えた液体吐出装置が知られており、その液体吐出装置が特許文献1に記載されている。特許文献1に記載された液体吐出装置は、液体を対象物に吹き付けて対象物を洗浄する高圧洗浄機である。この高圧洗浄機は、装置本体と、装置本体に設けられたポンプと、装置本体に取り付けられてポンプに供給する液体を貯めるタンクと、ポンプを駆動するモータと、モータに電力を供給する電池パックと、を備えている。また、ポンプの吐出口に接続プラグが取り付けられており、接続プラグはホースを介して洗浄ガンに接続される。モータを駆動すると、ポンプがタンク内の洗浄液を吸い込んで吐出し、ポンプから吐出された洗浄液は、ホースを介して洗浄ガンのノズルから噴射され、洗浄作業を行うことができる。 2. Description of the Related Art Conventionally, a liquid ejecting apparatus including a pump that ejects liquid is known, and the liquid ejecting apparatus is described in Patent Document 1. The liquid ejection device described in Patent Document 1 is a high-pressure washing machine that cleans an object by spraying liquid onto the object. This high-pressure washing machine includes an apparatus main body, a pump provided in the apparatus main body, a tank attached to the apparatus main body for storing liquid to be supplied to the pump, a motor for driving the pump, and a battery pack for supplying electric power to the motor. And. A connection plug is attached to the discharge port of the pump, and the connection plug is connected to the cleaning gun via a hose. When the motor is driven, the pump sucks and discharges the cleaning liquid in the tank, and the cleaning liquid discharged from the pump is sprayed from the nozzle of the cleaning gun through the hose so that the cleaning operation can be performed.
特許文献1に記載された高圧洗浄機は、洗浄作業の後に、ホースを接続プラグから取り外した状態でモータを駆動し、ポンプ内に残っている洗浄液を、接続プラグから外部に排出する水抜きを行うことができる。また、特許文献1には、タンク内の洗浄液の有無を検出する洗浄液検出センサをタンクの下端に設け、洗浄液検出センサによりタンク内の洗浄液が無くなったことが検出されると、水抜き動作を行うことが記載されている。 The high pressure washer described in Patent Document 1 drives the motor with the hose removed from the connection plug after the cleaning operation, and drains the cleaning liquid remaining in the pump from the connection plug to the outside. It can be carried out. Further, in Patent Document 1, a cleaning liquid detection sensor for detecting the presence or absence of cleaning liquid in the tank is provided at the lower end of the tank, and when the cleaning liquid detection sensor detects that the cleaning liquid in the tank has run out, a draining operation is performed. It is described.
特開2014-46282号公報JP 2014-46282 A
しかし、特許文献1に記載された液体吐出装置は、タンク内の洗浄液の有無を検出するために、専用の洗浄液検出センサを設ける必要があり、液体吐出装置のコストが上昇する問題があった。 However, the liquid ejection device described in Patent Document 1 needs to provide a dedicated cleaning liquid detection sensor in order to detect the presence or absence of the cleaning liquid in the tank, and there is a problem that the cost of the liquid ejection apparatus increases.
本発明の目的は、コストの上昇を抑制可能な液体吐出装置を提供することにある。 An object of the present invention is to provide a liquid ejection device capable of suppressing an increase in cost.
本発明の液体吐出装置は、液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、を備えた液体吐出装置であって、前記ポンプを駆動する前記モータの負荷を検出し、かつ、前記モータの負荷に基づいて前記ポンプが吸入する液体の量を推定する液体量検出部と、前記ポンプが吸入する液体の量が所定量以下であると推定されると、前記モータを停止するモータ制御部と、を備えている。 The liquid discharge apparatus of the present invention is a liquid discharge apparatus including a pump for sucking and discharging liquid, and a motor for driving the pump, and detects a load of the motor for driving the pump; and A liquid amount detection unit that estimates the amount of liquid sucked by the pump based on the load of the motor, and a motor that stops the motor when it is estimated that the amount of liquid sucked by the pump is equal to or less than a predetermined amount And a control unit.
他の実施形態の液体吐出装置は、液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、前記ポンプが吸入する前記液体を貯留するタンクと、を備えた液体吐出装置であって、前記モータの負荷を検出する負荷検出部と、前記モータの負荷に基づいて前記タンク内における前記液体の量を検出し、かつ、前記液体の量が所定量以下である場合に前記モータを停止するモータ制御部と、を備えている。 A liquid discharge apparatus according to another embodiment is a liquid discharge apparatus including a pump that sucks and discharges liquid, a motor that drives the pump, and a tank that stores the liquid sucked by the pump. A load detection unit that detects a load of the motor; detects the amount of the liquid in the tank based on the load of the motor; and stops the motor when the amount of the liquid is equal to or less than a predetermined amount A motor control unit.
他の実施形態の液体吐出装置は、液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、前記ポンプが吸入する前記液体を貯留するタンクと、前記ポンプから吐出された前記液体の流路を開閉するトリガを有し、かつ、前記液体を外部に吐出する洗浄ガンと、を備えた液体吐出装置であって、前記流路が開いて前記洗浄ガンから前記液体が吐出されている際に、前記モータの負荷が所定値以下になると、前記モータを停止するモータ制御部が設けられている。 In another embodiment, a liquid discharge apparatus includes a pump that sucks and discharges liquid, a motor that drives the pump, a tank that stores the liquid sucked by the pump, and a flow of the liquid discharged from the pump. A liquid ejection device having a trigger for opening and closing a path, and a cleaning gun for discharging the liquid to the outside, wherein the liquid is ejected from the cleaning gun when the flow path is opened In addition, a motor control unit is provided for stopping the motor when the load of the motor becomes a predetermined value or less.
本発明によれば、ポンプを駆動している際におけるモータの負荷に基づいてポンプが吸入する液体の量を推定することができる。したがって、ポンプが吸入する液体の量を検出するセンサを専用で設けずに済み、液体吐出装置のコストが上昇することを抑制できる。 According to the present invention, the amount of liquid sucked by the pump can be estimated based on the load of the motor when the pump is being driven. Therefore, it is not necessary to provide a dedicated sensor for detecting the amount of liquid sucked by the pump, and it is possible to suppress an increase in the cost of the liquid ejection device.
本発明の液体吐出装置の実施形態である高圧洗浄機と、洗浄ガンとを示す模式図である。It is a schematic diagram which shows the high-pressure washing machine which is embodiment of the liquid discharge apparatus of this invention, and a washing | cleaning gun. 図1に示す高圧洗浄機の制御系統を示すブロック図である。It is a block diagram which shows the control system of the high pressure washer shown in FIG. 図2の高圧洗浄機で実行可能な制御例を示すフローチャートである。It is a flowchart which shows the example of control which can be performed with the high pressure washer of FIG. 図3のフローチャートに対応するタイムチャートである。It is a time chart corresponding to the flowchart of FIG.
以下、本発明の液体吐出装置を高圧洗浄機に適用した実施形態について、図面を参照して説明する。本実施形態に係る高圧洗浄機10は、洗浄機本体11と、洗浄機本体11に設けられたポンプ12と、ポンプ12に供給する洗浄液を貯留するタンク13と、ポンプ12を駆動するブラシレスモータ14と、ブラシレスモータ14を制御する制御部15と、ブラシレスモータ14に電力を供給する電池パック16と、を有する。また、ポンプ12から吐出された洗浄液を洗浄ガン17に供給するホース18が設けられている。 Hereinafter, an embodiment in which a liquid discharge apparatus of the present invention is applied to a high pressure washer will be described with reference to the drawings. The high-pressure washing machine 10 according to the present embodiment includes a washing machine main body 11, a pump 12 provided in the washing machine main body 11, a tank 13 that stores a cleaning liquid supplied to the pump 12, and a brushless motor 14 that drives the pump 12. And a control unit 15 that controls the brushless motor 14 and a battery pack 16 that supplies power to the brushless motor 14. Further, a hose 18 for supplying the cleaning liquid discharged from the pump 12 to the cleaning gun 17 is provided.
タンク13は、洗浄機本体11の上部に配置されており、タンク13は、洗浄機本体11に対して着脱可能である。タンク13に注入される洗浄液は、水、界面活性剤を含む水のいずれでもよい。ポンプ12は、ブラシレスモータ14の動力で動作する動作部材と、タンク13に接続された吸入口12aと、流路12cに接続された吐出口12bと、を備えている。流路12cはホース18に接続される。ポンプ12は、例えばプランジャポンプを用いることが可能である。ポンプ12は、プランジャが往復動作して洗浄液の吸入及び吐出を行う。 The tank 13 is disposed on the upper part of the cleaning machine main body 11, and the tank 13 is detachable from the cleaning machine main body 11. The cleaning liquid injected into the tank 13 may be either water or water containing a surfactant. The pump 12 includes an operating member that is operated by the power of the brushless motor 14, a suction port 12a connected to the tank 13, and a discharge port 12b connected to the flow path 12c. The flow path 12 c is connected to the hose 18. As the pump 12, for example, a plunger pump can be used. In the pump 12, the plunger reciprocates to suck and discharge the cleaning liquid.
洗浄ガン17は、ポンプ12から吐出された洗浄液を噴射する噴射装置である。洗浄ガン17は、ガン本体19と、ガン本体19に取り付けられたノズル20と、ガン本体19内に設けられ、かつ、ホース18とノズル20とを接続する流路21と、流路21に設けたバルブ22と、バルブ22を開閉するトリガ23と、を備えている。トリガ23は、作業者により操作される。トリガ23に操作力が加えられていない場合は、バルブ22は閉じられており、ノズル20から洗浄液は噴射されない。トリガ23に操作力が加えられるとバルブ22が開き、洗浄液がノズル20から洗浄ガン17の外部に噴射される。 The cleaning gun 17 is an injection device that injects the cleaning liquid discharged from the pump 12. The cleaning gun 17 includes a gun main body 19, a nozzle 20 attached to the gun main body 19, a flow path 21 provided in the gun main body 19 and connecting the hose 18 and the nozzle 20, and a flow path 21. And a trigger 23 for opening and closing the valve 22. The trigger 23 is operated by an operator. When no operating force is applied to the trigger 23, the valve 22 is closed and no cleaning liquid is ejected from the nozzle 20. When an operating force is applied to the trigger 23, the valve 22 is opened and the cleaning liquid is sprayed from the nozzle 20 to the outside of the cleaning gun 17.
電池パック16は、洗浄機本体11に対して着脱可能であり、電池パック16は、収容ケース内に電池セルを複数収容したものである。電池セルは、充電及び放電を繰り返し行える二次電池、例えば、リチウムイオン電池を含む。 The battery pack 16 is detachable from the washing machine body 11, and the battery pack 16 has a plurality of battery cells housed in a housing case. The battery cell includes a secondary battery that can be repeatedly charged and discharged, for example, a lithium ion battery.
ブラシレスモータ14は、直流モータの一種であり、ブラシレスモータ14は、ステータ14aとロータ14bとを備えている。ステータ14aは、U相,V相,W相に対応する3本のコイルU1,V1,W1を備えており、ステータ14aは回転しない。ステータ14aは環状に配置されており、ロータ14bは、ステータ14aの内側に回転可能に配置されている。ロータ14bの外周面に、円周方向に間隔をおいて、複数の永久磁石14cが取り付けられている。複数の永久磁石14cは、極性が異なる複数種類の永久磁石14cを含み、極性が異なる永久磁石14c同士が交互に配置されている。さらに、ロータ14bの回転力をプランジャに伝達する動力伝達機構が設けられている。 The brushless motor 14 is a type of DC motor, and the brushless motor 14 includes a stator 14a and a rotor 14b. The stator 14a includes three coils U1, V1, and W1 corresponding to the U phase, the V phase, and the W phase, and the stator 14a does not rotate. The stator 14a is annularly arranged, and the rotor 14b is rotatably arranged inside the stator 14a. A plurality of permanent magnets 14c are attached to the outer peripheral surface of the rotor 14b at intervals in the circumferential direction. The plurality of permanent magnets 14c include a plurality of types of permanent magnets 14c having different polarities, and the permanent magnets 14c having different polarities are alternately arranged. Furthermore, a power transmission mechanism that transmits the rotational force of the rotor 14b to the plunger is provided.
図2は、高圧洗浄機10の制御系統を示すブロック図である。洗浄機本体11に操作パネル24が設けられており、操作パネル24は、圧力設定ダイヤル25と残量表示部26と主電源スイッチ27とを備えている。作業者は、圧力設定ダイヤル25を操作し、洗浄液の吐出圧力を設定することができる。残量表示部26は、電池パック16の残量、つまり電圧を表示する。作業者は、主電源スイッチ27のオンとオフとを切り替え操作して、高圧洗浄機10の起動及び停止を選択する。主電源スイッチ27は、公知のタクタイルスイッチを用いることができる。 FIG. 2 is a block diagram showing a control system of the high pressure washer 10. An operation panel 24 is provided in the cleaning machine main body 11, and the operation panel 24 includes a pressure setting dial 25, a remaining amount display unit 26, and a main power switch 27. An operator can set the discharge pressure of the cleaning liquid by operating the pressure setting dial 25. The remaining amount display unit 26 displays the remaining amount of the battery pack 16, that is, the voltage. The operator switches between turning on and off the main power switch 27 and selects starting and stopping of the high-pressure washing machine 10. As the main power switch 27, a known tactile switch can be used.
また、ブラシレスモータ14のロータ14bの回転位置を検出するホールIC28a~28cが設けられている。ホールIC28a~28cは、U相,V相,W相に対応させて、ロータ14bの回転方向で異なる位置に3個設けられている。ホールIC28a~28cは、ロータ14bに接触しない非接触式のセンサであり、ホールIC28a~28cは、ロータ14bに取り付けた永久磁石14cが形成する磁界を検出し、かつ、磁界の大きさに応じた信号を出力する磁気センサである。 In addition, Hall ICs 28a to 28c for detecting the rotational position of the rotor 14b of the brushless motor 14 are provided. Three Hall ICs 28a to 28c are provided at different positions in the rotational direction of the rotor 14b, corresponding to the U phase, V phase, and W phase. The Hall ICs 28a to 28c are non-contact sensors that do not contact the rotor 14b, and the Hall ICs 28a to 28c detect a magnetic field formed by the permanent magnet 14c attached to the rotor 14b and correspond to the magnitude of the magnetic field. It is a magnetic sensor that outputs a signal.
制御部15は、ステータ14aを構成する3本のコイルU1,V1,W1に供給する駆動電流を制御するためのインバータ回路29を有する。インバータ回路29は、コイルU1,V1,W1に供給する駆動電流を制御する。インバータ回路51は、3相フルブリッジインバータ回路であり、直列に接続された2つのスイッチング素子29a,29bと、直列に接続された2つのスイッチング素子29c,29dと、直列に接続された2つのスイッチング素子29e,29fとを有する。3つのスイッチング素子29a,29c,29eは、電池パック16の正極16aに接続され、3つのスイッチング素子29b,29d,29fは、電池パック16の負極16bに接続される。電池パック16の正極16aに接続される3つのスイッチング素子29a,29c,29eは、ハイサイド側となっており、電池パック16の負極16bに接続される3つのスイッチング素子29b,29d,29fは、ロウサイド側となっている。 The control unit 15 has an inverter circuit 29 for controlling the drive current supplied to the three coils U1, V1, W1 constituting the stator 14a. The inverter circuit 29 controls the drive current supplied to the coils U1, V1, and W1. The inverter circuit 51 is a three-phase full-bridge inverter circuit, and includes two switching elements 29a and 29b connected in series, two switching elements 29c and 29d connected in series, and two switching elements connected in series. It has elements 29e and 29f. The three switching elements 29a, 29c, and 29e are connected to the positive electrode 16a of the battery pack 16, and the three switching elements 29b, 29d, and 29f are connected to the negative electrode 16b of the battery pack 16. The three switching elements 29a, 29c, 29e connected to the positive electrode 16a of the battery pack 16 are on the high side, and the three switching elements 29b, 29d, 29f connected to the negative electrode 16b of the battery pack 16 are It is on the low side.
スイッチング素子29aとスイッチング素子29bとの間には、コイルU1の一方の接続端子が接続される。スイッチング素子29cとスイッチング素子29dとの間には、コイルV1の一方の接続端子が接続される。スイッチング素子29eとスイッチング素子29fとの間には、コイルW1の一方の接続端子が接続される。それぞれのコイルU1,V1,W1の他方の接続端子は、相互に接続されており、各コイルU1,V1,W1はスター結線となっている。なお、コイルU1,V1,W1の結線方式は、デルタ結線でもよい。例えば、ハイサイド側のスイッチング素子29aと、ロウサイド側のスイッチング素子29dとにゲート信号がオンされると、コイルU1,V1に電流が供給される。それぞれのスイッチング素子29a~29fに通電されるゲート信号のタイミングを調整することにより、各コイルU1,V1,W1を通る電流の向き及び電流値が制御される。 One connection terminal of the coil U1 is connected between the switching element 29a and the switching element 29b. One connection terminal of the coil V1 is connected between the switching element 29c and the switching element 29d. One connection terminal of the coil W1 is connected between the switching element 29e and the switching element 29f. The other connection terminals of the coils U1, V1, and W1 are connected to each other, and the coils U1, V1, and W1 are star-connected. In addition, the connection system of the coils U1, V1, and W1 may be delta connection. For example, when a gate signal is turned on to the switching element 29a on the high side and the switching element 29d on the low side, current is supplied to the coils U1 and V1. By adjusting the timing of the gate signal supplied to each of the switching elements 29a to 29f, the direction and current value of the current passing through the coils U1, V1, and W1 are controlled.
また、制御部15は、ドライバ回路30を有し、ドライバ回路30は、インバータ回路29のスイッチング素子29a~29fをそれぞれオンオフするゲート信号を出力する。さらに、制御部15は、マイクロコンピュータ31を備えている。マイクロコンピュータ31は、入力ポート及び出力ポート、記憶部、演算部を備えており、圧力設定ダイヤル25から出力された信号、ホールIC28a,28b,28cから出力された信号が、マイクロコンピュータ31に入力される。 Further, the control unit 15 includes a driver circuit 30, and the driver circuit 30 outputs gate signals for turning on and off the switching elements 29a to 29f of the inverter circuit 29, respectively. Further, the control unit 15 includes a microcomputer 31. The microcomputer 31 includes an input port and an output port, a storage unit, and a calculation unit, and a signal output from the pressure setting dial 25 and a signal output from the Hall ICs 28a, 28b, and 28c are input to the microcomputer 31. The
さらに、流路12cの圧力を検出する圧力検出スイッチ32が設けられている。圧力検出スイッチ32は、洗浄機本体11に設けられている。圧力検出スイッチ32は、例えば、ダイヤフラムを備えたスイッチであり、圧力検出スイッチ32は、流路12cの圧力が第1の所定圧未満ではオンされ、流路12cの圧力が上昇して第1の所定圧以上になると、オンからオフに切り替わる。 Further, a pressure detection switch 32 for detecting the pressure in the flow path 12c is provided. The pressure detection switch 32 is provided in the cleaning machine body 11. The pressure detection switch 32 is, for example, a switch provided with a diaphragm. The pressure detection switch 32 is turned on when the pressure in the flow path 12c is lower than the first predetermined pressure, and the pressure in the flow path 12c increases to increase the first pressure. When the pressure exceeds a predetermined level, the switch is switched from on to off.
これに対して、圧力検出スイッチ32は、流路12cの圧力が低下して第2の所定圧以下になると、オフからオンに切り替わる。第1の所定圧は第2の所定圧よりも高圧であり、例えば、第1の所定圧は5[MPa]であり、第2の所定圧は3.5[MPa]である。第1の所定圧と第2の所定圧との差は、ヒステリシスである。圧力検出スイッチ32は、オンとオフとが切り替わる特性にヒステリシスがある理由は、流路12cの圧力が微小量変動して、オンとオフとで頻繁に切り替わることを防止するためである。圧力検出スイッチ32はオンまたはオフに対応する検出信号を出力し、圧力検出スイッチ32から出力された信号は、マイクロコンピュータ31に入力される。 On the other hand, the pressure detection switch 32 is switched from off to on when the pressure in the flow path 12c decreases to be equal to or lower than the second predetermined pressure. The first predetermined pressure is higher than the second predetermined pressure. For example, the first predetermined pressure is 5 [MPa], and the second predetermined pressure is 3.5 [MPa]. The difference between the first predetermined pressure and the second predetermined pressure is hysteresis. The reason why the pressure detection switch 32 has hysteresis in the characteristic of switching between on and off is to prevent the pressure in the flow path 12c from fluctuating by a minute amount and frequently switching between on and off. The pressure detection switch 32 outputs a detection signal corresponding to ON or OFF, and the signal output from the pressure detection switch 32 is input to the microcomputer 31.
制御部15は、電池パック16からインバータ回路29に電力を供給する電気回路E1に設けた電流検出抵抗33を有する。制御部15は電流検出回路34を有し、電流検出回路34は、電流検出抵抗33の電圧降下から、ステータ14aのコイルU1,V1,W1に供給される電流値を検出し、検出結果に応じた信号をマイクロコンピュータ31へ出力する。さらに、制御部15は、電池パック16とインバータ回路29との間に接続した制御系電源回路35を備え、制御系電源回路35は、電池パック16の電圧をマイクロコンピュータ31の駆動電圧に変換して供給する。 The control unit 15 includes a current detection resistor 33 provided in the electric circuit E <b> 1 that supplies power from the battery pack 16 to the inverter circuit 29. The control unit 15 includes a current detection circuit 34. The current detection circuit 34 detects the current value supplied to the coils U1, V1, W1 of the stator 14a from the voltage drop of the current detection resistor 33, and according to the detection result. The signal is output to the microcomputer 31. Further, the control unit 15 includes a control system power circuit 35 connected between the battery pack 16 and the inverter circuit 29, and the control system power circuit 35 converts the voltage of the battery pack 16 into a drive voltage of the microcomputer 31. And supply.
さらに、制御部15は、主電源スイッチ27から出力された信号が入力される電源オンオフ回路36を備え、電源オンオフ回路36は、入力された信号に基づいて制御系電源回路35を制御する。また、マイクロコンピュータ31からは、電源オンオフ回路36から制御系電源回路35に入力される信号を維持する信号が入力される。マイクロコンピュータ31は、電池パック16の電圧を検出し、電池パック16の電圧を検出した結果を示す信号を残量表示部26に出力する。 The control unit 15 further includes a power on / off circuit 36 to which a signal output from the main power switch 27 is input. The power on / off circuit 36 controls the control system power circuit 35 based on the input signal. The microcomputer 31 receives a signal for maintaining a signal input from the power on / off circuit 36 to the control system power circuit 35. The microcomputer 31 detects the voltage of the battery pack 16 and outputs a signal indicating the result of detecting the voltage of the battery pack 16 to the remaining amount display unit 26.
さらに、制御部15は、電気回路E1において電池パック16とインバータ回路29との間に設けたモータ動作停止回路37を備えている。モータ動作停止回路37は半導体スイッチを有し、モータ動作停止回路37は、制御系電源回路35から入力される信号により、電池パック16の電力をブラシレスモータ14に供給する電気回路E1をオンまたはオフする。モータ動作停止回路37は、制御系電源回路35から入力される信号の他、圧力検出スイッチ32からマイクロコンピュータ31を介さずに入力される信号により、オン及びオフが切り替えられる。モータ動作停止回路37は、圧力検出スイッチ32から入力されるオフ信号でオフされ、モータ動作停止回路37は、圧力検出スイッチ32から入力されるオン信号でオンされる。 Further, the control unit 15 includes a motor operation stop circuit 37 provided between the battery pack 16 and the inverter circuit 29 in the electric circuit E1. The motor operation stop circuit 37 includes a semiconductor switch, and the motor operation stop circuit 37 turns on or off the electric circuit E1 that supplies the power of the battery pack 16 to the brushless motor 14 according to a signal input from the control system power supply circuit 35. To do. The motor operation stop circuit 37 is switched on and off by a signal input from the pressure detection switch 32 without passing through the microcomputer 31 in addition to a signal input from the control system power supply circuit 35. The motor operation stop circuit 37 is turned off by an off signal input from the pressure detection switch 32, and the motor operation stop circuit 37 is turned on by an on signal input from the pressure detection switch 32.
さらに、電池パック16とブラシレスモータ14とを接続する電気回路E1であって、モータ動作停止回路37と電池パック16との間にヒューズ38が設けられている。ヒューズ38は、定格以上の大電流から電気回路E1を保護する電子部品である。なお、マイクロコンピュータ31の記憶部には、各種のデータが記憶されている。記憶部に記憶されるデータは、圧力設定ダイヤル25の操作で設定される目標圧とブラシレスモータ14のロータ14bの回転数との関係を表すマップを含む。 Further, the electric circuit E 1 connects the battery pack 16 and the brushless motor 14, and a fuse 38 is provided between the motor operation stop circuit 37 and the battery pack 16. The fuse 38 is an electronic component that protects the electric circuit E1 from a large current exceeding the rating. Various types of data are stored in the storage unit of the microcomputer 31. The data stored in the storage unit includes a map representing the relationship between the target pressure set by operating the pressure setting dial 25 and the rotational speed of the rotor 14b of the brushless motor 14.
また、記憶部に記憶されるデータは、ブラシレスモータ14のロータ14bの回転数と、スイッチング素子29a~29fのオン割合であるデューティ比と、の関係を表すマップを含む。さらに、記憶部に記憶されるデータは、圧力設定ダイヤル25の操作で設定される目標圧と、ブラシレスモータ14に供給される電流値との関係を表すマップを含む。 The data stored in the storage unit includes a map representing the relationship between the rotational speed of the rotor 14b of the brushless motor 14 and the duty ratio that is the ON ratio of the switching elements 29a to 29f. Further, the data stored in the storage unit includes a map representing the relationship between the target pressure set by operating the pressure setting dial 25 and the current value supplied to the brushless motor 14.
上記構成の高圧洗浄機10は、主電源スイッチ27がオンされると、電池パック16の電力が制御系電源回路35を経由してマイクロコンピュータ31に供給され、マイクロコンピュータ31が起動する。また、制御系電源回路35からモータ動作停止回路37に信号が入力され、モータ動作停止回路37がオンされる。 When the main power switch 27 is turned on in the high pressure washer 10 having the above configuration, the power of the battery pack 16 is supplied to the microcomputer 31 via the control system power circuit 35, and the microcomputer 31 is activated. Further, a signal is input from the control system power supply circuit 35 to the motor operation stop circuit 37, and the motor operation stop circuit 37 is turned on.
さらに、マイクロコンピュータ31からドライバ回路30に信号が入力され、ドライバ回路30から出力される信号により、インバータ回路29のスイッチング素子29a~29fがそれぞれオンオフされ、電池パック16の電力がインバータ回路29を介してステータ14aのコイルU1,V1,W1に供給されて回転磁界が形成され、ロータ14bが回転する。このように、ブラシレスモータ14が駆動される。 Further, a signal is input from the microcomputer 31 to the driver circuit 30, and the switching elements 29 a to 29 f of the inverter circuit 29 are turned on / off by the signal output from the driver circuit 30, and the power of the battery pack 16 is passed through the inverter circuit 29. Is supplied to the coils U1, V1, W1 of the stator 14a to form a rotating magnetic field, and the rotor 14b rotates. Thus, the brushless motor 14 is driven.
制御部15は、主電源スイッチ27がオンされ、かつ、トリガ23に操作力が加えられていない場合、圧力検出スイッチ32で検出される流路12cの圧力が、一旦、5.0[MPa]以上まで上昇するように、ロータ14bの回転数を制御する。制御部15は、流路12cを5.0[MPa]以上にするためにロータ14bの目標回転数を求め、ロータ14bの実回転数を目標回転数に近づけるように、ロータ14bの実回転数をフィードバック制御する。具体的には、インバータ回路29を構成する複数のスイッチング素子29a~29fをオンする割合であるデューティ比を制御する。デューティ比を高めると、ロータ14bの実回転数が上昇する。デューティ比を低下させると、ロータ14bの実回転数が低下する。また、制御部15は、ロータ14bの回転位置に基づいて、スイッチング素子29a~29fをオンするタイミングを決定する。このように、制御部15は、流路12cの圧力が、一旦5.0[MPa]となるように、ブラシレスモータ14に供給される電流値を制御する。 When the main power switch 27 is turned on and no operating force is applied to the trigger 23, the control unit 15 once sets the pressure in the flow path 12c detected by the pressure detection switch 32 to 5.0 [MPa]. The rotational speed of the rotor 14b is controlled so as to increase to the above. The control unit 15 obtains the target rotational speed of the rotor 14b so that the flow path 12c is 5.0 [MPa] or more, and the actual rotational speed of the rotor 14b is brought close to the target rotational speed. Feedback control. Specifically, the duty ratio that is the ratio of turning on the plurality of switching elements 29a to 29f constituting the inverter circuit 29 is controlled. Increasing the duty ratio increases the actual rotational speed of the rotor 14b. When the duty ratio is lowered, the actual rotational speed of the rotor 14b is lowered. Further, the control unit 15 determines the timing for turning on the switching elements 29a to 29f based on the rotational position of the rotor 14b. In this way, the control unit 15 controls the current value supplied to the brushless motor 14 so that the pressure in the flow path 12c once becomes 5.0 [MPa].
さらに、制御部15は、圧力検出スイッチ32で検出される流路12cの圧力が5.0[MPa]以上になると、ステータ14aのコイルU1,V1,W1に対する電力の供給を停止し、ブラシレスモータ14のロータ14bを一旦停止する。 Further, when the pressure in the flow path 12c detected by the pressure detection switch 32 becomes 5.0 [MPa] or higher, the control unit 15 stops supplying power to the coils U1, V1, W1 of the stator 14a, and the brushless motor. 14 rotors 14b are temporarily stopped.
その後、トリガ23に操作力が加えられてバルブ22が開くと、ノズル20から洗浄液が吐出される。洗浄液がノズル20から吐出されると、圧力検出スイッチ32で検出される流路12cの圧力が低下する。制御部15は、圧力検出スイッチ32で検出される圧力が3.5[MPa]以下になると、ステータ14aに電流を供給し、ブラシレスモータ14のロータ14bを回転させる。 Thereafter, when an operating force is applied to the trigger 23 and the valve 22 is opened, the cleaning liquid is discharged from the nozzle 20. When the cleaning liquid is discharged from the nozzle 20, the pressure in the flow path 12c detected by the pressure detection switch 32 decreases. When the pressure detected by the pressure detection switch 32 becomes 3.5 [MPa] or less, the control unit 15 supplies current to the stator 14a and rotates the rotor 14b of the brushless motor 14.
制御部15は、ノズル20から洗浄液が吐出されている間、圧力検出スイッチ32で検出される圧力が、圧力設定ダイヤル25の操作で設定された目標圧に維持されるように、ブラシレスモータ14のロータ14bの回転数を制御する。この場合、制御部15は、圧力設定ダイヤル25の操作で設定された目標圧に応じてロータ14bの目標回転数を求め、ロータ14bの実回転数を目標回転数に近づけるように、ブラシレスモータ14に供給する電流値をフィードバック制御する。 The controller 15 controls the brushless motor 14 so that the pressure detected by the pressure detection switch 32 is maintained at the target pressure set by operating the pressure setting dial 25 while the cleaning liquid is being discharged from the nozzle 20. The number of rotations of the rotor 14b is controlled. In this case, the control unit 15 obtains the target rotational speed of the rotor 14b according to the target pressure set by operating the pressure setting dial 25, and the brushless motor 14 so as to bring the actual rotational speed of the rotor 14b closer to the target rotational speed. Feedback control of the current value supplied to.
さらに、制御部15は、ノズル20から洗浄液が噴射された後に、トリガ23に加わっている操作力が解除されると、圧力検出スイッチ32で検出される圧力が、一旦、5.0[MPa]以上となるように、ロータ14bの回転数を制御する。以後、制御部15は、再度、トリガ23に操作力が加えられると、上記と同様の制御を実行し、制御部15は、主電源スイッチ27がオフされると、制御系電源回路35がモータ動作停止回路37をオフし、ブラシレスモータ14を停止する。 Further, when the operation force applied to the trigger 23 is released after the cleaning liquid is ejected from the nozzle 20, the control unit 15 once detects the pressure detected by the pressure detection switch 32 at 5.0 [MPa]. The rotational speed of the rotor 14b is controlled so that it becomes above. Thereafter, when the operating force is again applied to the trigger 23, the control unit 15 executes the same control as described above. When the main power switch 27 is turned off, the control unit 15 causes the control system power supply circuit 35 to move to the motor. The operation stop circuit 37 is turned off and the brushless motor 14 is stopped.
本実施形態の高圧洗浄機10において、制御部15は、ブラシレスモータ14が空回し状態にあると、ブラシレスモータ14を停止する制御を実行可能であり、その制御例を、図3のフローチャートを参照して説明する。ここで、「ブラシレスモータ14が空回し状態にある」とは、タンク13内の洗浄液の量が所定量以下である際に、ブラシレスモータ14のロータ14bが回転することである。また、タンク13内の洗浄液の量が所定量以下とは、洗浄液がタンク13に無い場合と、タンク13内の洗浄液の量が、圧力設定ダイヤル25の操作で設定された目標圧を維持できる量以下である場合と、を含む。 In the high pressure washer 10 of the present embodiment, the control unit 15 can execute control to stop the brushless motor 14 when the brushless motor 14 is in an idle state, and refer to the flowchart of FIG. 3 for an example of the control. To explain. Here, “the brushless motor 14 is in an idle state” means that the rotor 14b of the brushless motor 14 rotates when the amount of the cleaning liquid in the tank 13 is equal to or less than a predetermined amount. The amount of the cleaning liquid in the tank 13 is equal to or less than the predetermined amount when the cleaning liquid is not in the tank 13 and when the amount of the cleaning liquid in the tank 13 can maintain the target pressure set by operating the pressure setting dial 25. And the following cases.
図3のフローチャートにおいて、制御部15は、ステップS1で主電源スイッチ27がオンされると、ステップS2において、「空回し検出時間設定フラグ=0」とする処理を行う。さらに、「空回し検出時間」は、制御部15が「ブラシレスモータ14は空回し状態にある」と判断した時点から、制御部15がブラシレスモータ14を停止するまでの経過時間である。 In the flowchart of FIG. 3, when the main power switch 27 is turned on in step S <b> 1, the control unit 15 performs processing for setting “idle detection time setting flag = 0” in step S <b> 2. Furthermore, the “idle rotation detection time” is an elapsed time from when the control unit 15 determines that “the brushless motor 14 is in the idling state” until the control unit 15 stops the brushless motor 14.
制御部15は、ステップS2に次ぐステップS3において、圧力検出スイッチ32がオンであるか否かを判断する。例えば、主電源スイッチ27がオンされてから、ブラシレスモータ14の第1回目の駆動前であれば、流路12cの圧力は第1の所定圧未満であり、圧力検出スイッチ32がオンされている。すると、制御部15は、ステップS3でYesと判断し、ステップS4の制御を実行する。ステップS4では、制御系電源回路35の信号によりモータ動作停止回路37がオンされ、かつ、マイクロコンピュータ31が、インバータ回路29のスイッチング素子29a~29fのオンオフを制御し、ブラシレスモータ14に電流が供給される。ブラシレスモータ14が第1回目に駆動される場合、トリガ23がオフされていると、流路12cの圧力が、一旦5.0[MPa]以上になるように、ブラシレスモータ14の電流値が制御される。 In step S3 following step S2, the control unit 15 determines whether or not the pressure detection switch 32 is on. For example, if the main power switch 27 is turned on and before the first driving of the brushless motor 14, the pressure in the flow path 12c is lower than the first predetermined pressure, and the pressure detection switch 32 is turned on. . Then, the control part 15 determines Yes in step S3, and performs control of step S4. In step S 4, the motor operation stop circuit 37 is turned on by a signal from the control system power supply circuit 35, and the microcomputer 31 controls on / off of the switching elements 29 a to 29 f of the inverter circuit 29 to supply current to the brushless motor 14. Is done. When the brushless motor 14 is driven for the first time, if the trigger 23 is turned off, the current value of the brushless motor 14 is controlled so that the pressure in the flow path 12c once becomes 5.0 [MPa] or more. Is done.
制御部15は、ステップS4に次ぐステップS5において、ブラシレスモータ14に供給される電流値が、所定値以下であるか否かを判断する。制御部15は、電流検出回路34の信号に基づいて、ブラシレスモータ14に供給される電流値を検出する。ステップS5の判断で用いる所定値は、ブラシレスモータ14が空回し状態にあるか否かを、電流値から間接的に判断するための閾値である。流路12cの圧力を目標圧とするため目標回転数と、ブラシレスモータ14に供給する電流値との関係を表すデータが、マイクロコンピュータ31の記憶部に記憶されている。制御部15は、例えば、目標回転数を満たすための電流値を所定値として用いることができる。 In step S5 following step S4, the control unit 15 determines whether or not the current value supplied to the brushless motor 14 is equal to or less than a predetermined value. The control unit 15 detects the current value supplied to the brushless motor 14 based on the signal from the current detection circuit 34. The predetermined value used in the determination in step S5 is a threshold value for indirectly determining whether or not the brushless motor 14 is idling from the current value. Data representing the relationship between the target rotational speed and the current value supplied to the brushless motor 14 in order to set the pressure in the flow path 12 c as the target pressure is stored in the storage unit of the microcomputer 31. For example, the control unit 15 can use a current value for satisfying the target rotational speed as a predetermined value.
制御部15は、ブラシレスモータ14の実回転数を目標回転数に近づけるように、電流値をフィードバック制御する。ブラシレスモータ14は、電流値が同じであれば、ポンプ12で吸入される洗浄液の量が減少すると、負荷が低下して回転数が上昇することとなる。このため、ブラシレスモータ14の実回転数を制御するにあたり、ポンプ12に吸入される洗浄液の量が減少すれば、ブラシレスモータ14の負荷が低下して、電流値は低下する。 The control unit 15 feedback-controls the current value so that the actual rotational speed of the brushless motor 14 approaches the target rotational speed. If the current value of the brushless motor 14 is the same, when the amount of cleaning liquid sucked by the pump 12 decreases, the load decreases and the rotation speed increases. For this reason, in controlling the actual number of revolutions of the brushless motor 14, if the amount of the cleaning liquid sucked into the pump 12 decreases, the load of the brushless motor 14 decreases and the current value decreases.
つまり、ブラシレスモータ14に供給される電流値が、目標圧に応じた所定値以下であれば、制御部15は、「ブラシレスモータ14が空回し状態にある」と判断できる。制御部15は、ステップS5でNoと判断すると、ステップS3に戻り、ステップS5でYesと判断すると、ステップS6に進み「ブラシレスモータ14が空回し状態にある」と判断する。 That is, if the current value supplied to the brushless motor 14 is equal to or less than a predetermined value corresponding to the target pressure, the control unit 15 can determine that “the brushless motor 14 is idling”. If it is determined No in step S5, the control unit 15 returns to step S3. If the determination is Yes in step S5, the control unit 15 proceeds to step S6 and determines that “the brushless motor 14 is in an idle state”.
制御部15は、ステップS6に次ぐステップS7において、「空回し時間設定フラグ=0」であるか否かを判断する。制御部15は、ステップS7でYesと判断すると、ステップS8に進み、「所定時間t=t1」とする処理を行う。制御部15は、ステップS9に進み、ブラシレスモータ14が空回し状態にあると判断してから、所定時間t[s]が経過したか否かを判断する。制御部15は、ステップS8を経由してステップS9に進むと、ステップS9の判断にあたり「所定時間t=t1」を用いる。 In step S7 subsequent to step S6, the controller 15 determines whether or not “idle time setting flag = 0”. If the control unit 15 determines Yes in step S7, the control unit 15 proceeds to step S8 and performs a process of “predetermined time t = t1”. The control unit 15 proceeds to step S9 and determines whether or not the predetermined time t [s] has elapsed after determining that the brushless motor 14 is in the idling state. When the control unit 15 proceeds to step S9 via step S8, the “predetermined time t = t1” is used in the determination of step S9.
制御部15は、ステップS9でNoと判断するとステップS3に戻る。制御部15は、ステップS9でYesと判断すると、ステップS10に進み、インバータ回路29のスイッチング素子29a~29fを全てオフし、ブラシレスモータ14に対する電流の供給を停止する。ステップS10の処理は、図3のフローチャートにおいて「マイコン電源-OFF」と表す。このように、制御部15は、ブラシレスモータ14を第1回目に駆動している際に、ステップS8を経由してステップS9からステップS10に進むと、ブラシレスモータ14を停止する。 If the controller 15 determines No in step S9, it returns to step S3. When the control unit 15 determines Yes in step S9, the control unit 15 proceeds to step S10, turns off all the switching elements 29a to 29f of the inverter circuit 29, and stops the supply of current to the brushless motor 14. The process of step S10 is expressed as “microcomputer power supply OFF” in the flowchart of FIG. As described above, when the brushless motor 14 is driven for the first time, the control unit 15 stops the brushless motor 14 when the process proceeds from step S9 to step S10 via step S8.
一方、主電源スイッチ27がオンされてから、ブラシレスモータ14の第1回目の駆動が行われて、流路12cの圧力が一旦第1の所定圧(5.0[MPa])以上となって圧力検出スイッチ32がオフされていると、制御部15は、ステップS3でNoと判断し、ステップS11に進む。ステップS11では、モータ動作停止回路37がオフされてブラシレスモータ14に電流が供給されなくなり、ブラシレスモータ14が停止する。また、制御部15は、ステップS12で「空回し検出時間設定フラグ=1」とする処理を実行し、ステップS3に戻る。 On the other hand, after the main power switch 27 is turned on, the brushless motor 14 is driven for the first time, and the pressure in the flow path 12c once becomes equal to or higher than the first predetermined pressure (5.0 [MPa]). If the pressure detection switch 32 is turned off, the control unit 15 determines No in step S3 and proceeds to step S11. In step S11, the motor operation stop circuit 37 is turned off so that no current is supplied to the brushless motor 14, and the brushless motor 14 stops. Further, the control unit 15 executes a process of setting “idle detection time setting flag = 1” in step S12, and returns to step S3.
また、ステップS11でブラシレスモータ14が停止された後、トリガ23が操作されて洗浄液を吐出すると、流路12cの圧力が低下する。そして、流路12cの圧力が第2の所定圧(3.5[MPa])以下になると、圧力検出スイッチ32がオフからオンに切り替わる。このため、ステップS3でYesと判断されてステップS4に進み、ブラシレスモータ14の第2回目以降の駆動が行われる。 Further, after the brushless motor 14 is stopped in step S11, when the trigger 23 is operated and the cleaning liquid is discharged, the pressure in the flow path 12c decreases. And if the pressure of the flow path 12c becomes below 2nd predetermined pressure (3.5 [MPa]), the pressure detection switch 32 will switch from OFF to ON. For this reason, it is judged as Yes in Step S3, and it progresses to Step S4, and the drive after the 2nd time of brushless motor 14 is performed.
制御部15は、ステップS11,12を経由してステップS7に進むと、そのステップS7でNoと判断し、ステップS13の処理を実行してステップS9に進む。制御部15は、ステップS13で「所定時間t=t2」とする処理を実行する。ここで、所定時間t2は所定時間t1よりも短い。そして、制御部15は、ステップS13を経由してステップS9に進むと、「所定時間t=t2」を用いてステップS9の判断を行う。 When the control unit 15 proceeds to step S7 via steps S11 and S12, it determines No in step S7, executes the process of step S13, and proceeds to step S9. The controller 15 executes a process of setting “predetermined time t = t2” in step S13. Here, the predetermined time t2 is shorter than the predetermined time t1. Then, when the control unit 15 proceeds to step S9 via step S13, the control unit 15 performs the determination of step S9 using “predetermined time t = t2”.
図3のフローチャートに対応するタイムチャートの例を、図4を参照して説明する。まず、時刻t10以前においては、主電源スイッチ27がオフされており、モータ動作停止回路37はオフされている。このため、ブラシレスモータ14に供給される電流値は0[A]である。また、トリガ23はオフされており、バルブ22が閉じられている。 An example of a time chart corresponding to the flowchart of FIG. 3 will be described with reference to FIG. First, before time t10, the main power switch 27 is turned off, and the motor operation stop circuit 37 is turned off. For this reason, the current value supplied to the brushless motor 14 is 0 [A]. The trigger 23 is turned off and the valve 22 is closed.
時刻t10で主電源スイッチ27がオンされると、制御系電源回路35によりモータ動作停止回路37がオンされ、かつ、インバータ回路29の制御により、ブラシレスモータ14に電流が供給されて第1回目の駆動を開始する。ブラシレスモータ14が第1回目の駆動を開始すると、ポンプ12が洗浄液を吸入及び吐出し、流路12cの圧力が上昇する。 When the main power switch 27 is turned on at time t10, the motor operation stop circuit 37 is turned on by the control system power supply circuit 35, and current is supplied to the brushless motor 14 by the control of the inverter circuit 29. Start driving. When the brushless motor 14 starts the first driving, the pump 12 sucks and discharges the cleaning liquid, and the pressure in the flow path 12c increases.
ブラシレスモータ14に供給される電流値は、時刻t10から時刻t11の間で所定値以下となっており、電流値は、時刻t11以降で所定値を超えている。図4のタイムチャートでは、所定値が5[A]である例を示す。また、ブラシレスモータ14に供給される電流値は、時刻t10から時刻t11までの間、所定値以下である。時刻t10から時刻t11までの経過時間は、所定時間t1未満である。このため、制御部15は、時刻t10から時刻t11の間、ブラシレスモータ14に電流を供給する。 The current value supplied to the brushless motor 14 is not more than a predetermined value between time t10 and time t11, and the current value exceeds the predetermined value after time t11. The time chart of FIG. 4 shows an example in which the predetermined value is 5 [A]. The current value supplied to the brushless motor 14 is not more than a predetermined value from time t10 to time t11. The elapsed time from time t10 to time t11 is less than the predetermined time t1. For this reason, the control part 15 supplies an electric current to the brushless motor 14 from the time t10 to the time t11.
ブラシレスモータ14に供給される電流値は、時刻t11以降で増加しており、時刻t12で流路12cの圧力が第1の所定圧以上となって、圧力検出スイッチ32がオンからオフに切り替わると、モータ動作停止回路37がオフされ、ブラシレスモータ14に供給される電流値が0[A]となる。 The value of the current supplied to the brushless motor 14 increases after time t11. When the pressure in the flow path 12c becomes equal to or higher than the first predetermined pressure at time t12, the pressure detection switch 32 is switched from on to off. Then, the motor operation stop circuit 37 is turned off, and the current value supplied to the brushless motor 14 becomes 0 [A].
その後、流路12cの圧力は洗浄液の漏れにより低下しており、時刻t13でトリガ23がオンされると、ノズル20から洗浄液が吐出され、流路12cの圧力が更に低下する。制御部15は、時刻t13以降において、流路12cの実際の圧力を目標圧以上に維持するため、ブラシレスモータ14に供給する電流値をフィードバック制御する。このため、電流値は、時刻t13以降も所定値を超えている。 Thereafter, the pressure in the flow path 12c is lowered due to leakage of the cleaning liquid. When the trigger 23 is turned on at time t13, the cleaning liquid is discharged from the nozzle 20, and the pressure in the flow path 12c is further decreased. The control unit 15 feedback-controls the current value supplied to the brushless motor 14 in order to maintain the actual pressure in the flow path 12c above the target pressure after time t13. For this reason, the current value exceeds the predetermined value after time t13.
そして、時刻t14でタンク13内の洗浄液の量が所定量以下になると、洗浄液がノズル20から噴射されなくなる。つまり、ポンプ12は加圧動作を行わず、電池パック16からブラシレスモータ14に供給する電流値が低下する。さらに、ブラシレスモータ14に供給する電流値は、時刻t15で所定値である5[A]以下となっている。すると、制御部15は時刻t15で「ブラシレスモータ14が空回し状態にある」と判断する。そして、制御部15は、時刻t15から「所定時間t=t2」が経過して時刻t16になると、時刻t16以降、インバータ回路29のスイッチング素子29a~29fを全てオフし、ブラシレスモータ14に対する電流の供給を遮断する。 When the amount of the cleaning liquid in the tank 13 becomes equal to or less than the predetermined amount at time t14, the cleaning liquid is not ejected from the nozzle 20. That is, the pump 12 does not perform the pressurizing operation, and the current value supplied from the battery pack 16 to the brushless motor 14 decreases. Furthermore, the current value supplied to the brushless motor 14 is 5 [A] or less, which is a predetermined value at time t15. Then, the control unit 15 determines that “the brushless motor 14 is idling” at time t15. Then, when “predetermined time t = t2” has elapsed from time t15 and time t16 has elapsed, the control unit 15 turns off all the switching elements 29a to 29f of the inverter circuit 29 after time t16, and the current to the brushless motor 14 is reduced. Shut off the supply.
図4のタイムチャートにおいて、ブラシレスモータ14に供給される電流値は、微視的に所定の幅で上下しているが、制御部15は、電流値のピークと所定値とを比べて、図3のステップS5の判断を行う。 In the time chart of FIG. 4, the current value supplied to the brushless motor 14 fluctuates microscopically with a predetermined width, but the control unit 15 compares the peak of the current value with the predetermined value, Step 3 of step S5 is determined.
上記のように、制御部15は、ブラシレスモータ14に供給される電流値に基づいて、タンク13内の洗浄液の有無を推定し、タンク13内に洗浄液が無いと判断してから、予め定めた所定時間tが経過すると、ブラシレスモータ14に対する電流の供給を遮断する。したがって、ブラシレスモータ14の空回しを防止でき、ブラシレスモータ14で無駄な電力が消費されることを抑制できる。また、制御部15は、タンク13内に洗浄液が無いと判断してから、予め定めた所定時間が経過すると、自動的にブラシレスモータ14を停止する。このため、作業者は、タンク13に洗浄液が無いと気づいてから自分で主電源スイッチ27をオフせずに済み、作業者の操作負担を軽減できる。 As described above, the control unit 15 estimates the presence / absence of the cleaning liquid in the tank 13 based on the current value supplied to the brushless motor 14, determines that there is no cleaning liquid in the tank 13, and then determines the predetermined value. When the predetermined time t has elapsed, the supply of current to the brushless motor 14 is cut off. Therefore, it is possible to prevent the brushless motor 14 from spinning, and it is possible to suppress wasteful power consumption by the brushless motor 14. In addition, the controller 15 automatically stops the brushless motor 14 when a predetermined time has elapsed after determining that there is no cleaning liquid in the tank 13. For this reason, the operator does not have to turn off the main power switch 27 after he / she notices that there is no cleaning liquid in the tank 13, and the operation burden on the operator can be reduced.
さらに、制御部15は、ブラシレスモータ14に供給する電流値から、タンク内11の洗浄液の有無を間接的に判断する。このため、タンク13内の洗浄液の有無を検出するために専用のセンサを設けずに済む。したがって、高圧洗浄機10の部品点数を低減でき、製造コストの上昇を抑制できる。 Further, the controller 15 indirectly determines the presence or absence of the cleaning liquid in the tank 11 from the current value supplied to the brushless motor 14. For this reason, it is not necessary to provide a dedicated sensor for detecting the presence or absence of the cleaning liquid in the tank 13. Therefore, the number of parts of the high pressure washer 10 can be reduced, and an increase in manufacturing cost can be suppressed.
さらに、所定時間t=t1は所定時間t=t2よりも長い。このため、ブラシレスモータ14の第1回目の駆動時において、ステップS8を経由してステップS9に進んだ場合に、ブラシレスモータ14が不用意に停止されることを抑制できる。したがって、流路12cの圧力を5.0[MPa]まで速やかに上昇することができる。 Further, the predetermined time t = t1 is longer than the predetermined time t = t2. For this reason, at the time of the 1st drive of the brushless motor 14, when progressing to step S9 via step S8, it can suppress that the brushless motor 14 is stopped carelessly. Therefore, the pressure in the flow path 12c can be quickly increased to 5.0 [MPa].
図3に示すステップS5,S6において、制御部15が「ブラシレスモータ14は空回し状態にある」と判断する他の判断例を説明する。第1の判断例は、制御部15がブラシレスモータ14のロータ14bの回転数に基づいて、「ブラシレスモータ14は空回し状態にある」と判断する。ロータ14bの回転数は、単位時間当たりの回転数である。洗浄液が無くなってブラシレスモータ14の負荷が低下すれば、ロータ14bの実回転数が上昇する。つまり、フローチャートのステップS5の判断内容を、「ロータ14bの実回転数が所定値以上であるか否か」とすることもできる。この場合、流路12cの目標圧と、ロータ14bの実回転数との関係を表すデータを、予めマイクロコンピュータ31の記憶部に記憶しておく。このように、制御部15は、ブラシレスモータ14のロータ14bの回転数に基づいて、ポンプ12の負荷を検出することも可能である。 Another determination example in which the control unit 15 determines that “the brushless motor 14 is in the idling state” in steps S5 and S6 illustrated in FIG. 3 will be described. In the first determination example, the control unit 15 determines that “the brushless motor 14 is idling” based on the number of rotations of the rotor 14 b of the brushless motor 14. The rotation speed of the rotor 14b is the rotation speed per unit time. If the cleaning liquid disappears and the load on the brushless motor 14 decreases, the actual rotational speed of the rotor 14b increases. That is, the determination content of step S5 of the flowchart can be “whether or not the actual rotational speed of the rotor 14b is equal to or greater than a predetermined value”. In this case, data representing the relationship between the target pressure of the flow path 12c and the actual rotational speed of the rotor 14b is stored in advance in the storage unit of the microcomputer 31. Thus, the control unit 15 can also detect the load of the pump 12 based on the rotation speed of the rotor 14b of the brushless motor 14.
そして、制御部15は、ロータ14bの実回転数が所定値以上であるために、ステップS5でYesと判断し、かつ、ロータ14bの実回転数が所定値以上である状態が所定時間t[s]経過すると、ステップS9でYesと判断してブラシレスモータ14を停止する。つまり、制御部15は、ロータ14bの回転数が連続して所定値以上である場合に、タンク13内の洗浄液の量が所定量以下であると推定し、ブラシレスモータ14を停止する。 Then, since the actual rotational speed of the rotor 14b is equal to or greater than the predetermined value, the control unit 15 determines Yes in step S5, and the state where the actual rotational speed of the rotor 14b is equal to or greater than the predetermined value is the predetermined time t [ s] When the time has elapsed, it is determined Yes in step S9, and the brushless motor 14 is stopped. That is, the control unit 15 estimates that the amount of the cleaning liquid in the tank 13 is equal to or less than a predetermined amount when the rotation speed of the rotor 14b is continuously equal to or greater than the predetermined value, and stops the brushless motor 14.
次に、第2の判断例は、制御部15がブラシレスモータ14のロータ14bの回転速度に基づいて、「ブラシレスモータ14は空回し状態にある」と判断する。洗浄液が無くなってブラシレスモータ14の負荷が低下すれば、ロータ14bの実回転速度が上昇する。つまり、図4のステップS5の判断内容を、「ロータ14bの実回転速度が所定値以上であるか否か」とすることもできる。この場合、流路12cの目標圧と、ロータ14bの実回転速度との関係を表すデータを、予めマイクロコンピュータ31の記憶部に記憶しておく。このように、制御部15は、ブラシレスモータ14のロータ14bの回転速度に基づいて、ポンプ12の負荷を検出することも可能である。なお、マイクロコンピュータ31は、ホールIC28a~28cの信号を処理して、ロータ14bの実回転数及び実回転速度を求めることができる。 Next, in the second determination example, the control unit 15 determines that “the brushless motor 14 is idling” based on the rotational speed of the rotor 14 b of the brushless motor 14. If the cleaning liquid disappears and the load on the brushless motor 14 decreases, the actual rotational speed of the rotor 14b increases. That is, the determination content of step S5 in FIG. 4 can be “whether or not the actual rotational speed of the rotor 14b is equal to or higher than a predetermined value”. In this case, data representing the relationship between the target pressure of the flow path 12c and the actual rotational speed of the rotor 14b is stored in advance in the storage unit of the microcomputer 31. Thus, the control unit 15 can also detect the load of the pump 12 based on the rotational speed of the rotor 14b of the brushless motor 14. The microcomputer 31 can process the signals from the Hall ICs 28a to 28c to obtain the actual rotational speed and the actual rotational speed of the rotor 14b.
本実施形態で説明した構成と、本発明の構成との対応関係を説明する。洗浄液が、本発明の液体に相当し、ポンプ12が、本発明のポンプに相当し、ブラシレスモータ14が、本発明のモータ及び電動モータに相当し、高圧洗浄機10が、本発明の液体吐出装置に相当し、タンク13における洗浄液の有無が、本発明における「ポンプが吸入する液体の量」に相当する。また、制御部15が、本発明の液体量検出部、負荷検出部、モータ制御部、モータ負荷制御部に相当する。さらに、タンク13内に洗浄液が無い場合が、本発明における「液体の量が所定量以下」に相当し、所定時間t=t1及び所定時間t=t2が、本発明の所定時間に相当し、所定時間t=t1が、本発明の第1所定時間に相当し、所定時間t=t2が、本発明の第2所定時間に相当する。圧力設定ダイヤル25が、本発明の圧力設定部に相当し、「電流値が所定値以下である」が、本発明の「モータの負荷が目標圧力に応じた値以下である」に相当する。 A correspondence relationship between the configuration described in this embodiment and the configuration of the present invention will be described. The cleaning liquid corresponds to the liquid of the present invention, the pump 12 corresponds to the pump of the present invention, the brushless motor 14 corresponds to the motor and the electric motor of the present invention, and the high-pressure cleaning machine 10 corresponds to the liquid discharge of the present invention. It corresponds to the apparatus, and the presence or absence of the cleaning liquid in the tank 13 corresponds to the “amount of liquid sucked by the pump” in the present invention. The control unit 15 corresponds to a liquid amount detection unit, a load detection unit, a motor control unit, and a motor load control unit of the present invention. Further, the case where there is no cleaning liquid in the tank 13 corresponds to “the amount of liquid is equal to or less than a predetermined amount” in the present invention, and the predetermined time t = t1 and the predetermined time t = t2 correspond to the predetermined time of the present invention, The predetermined time t = t1 corresponds to the first predetermined time of the present invention, and the predetermined time t = t2 corresponds to the second predetermined time of the present invention. The pressure setting dial 25 corresponds to a pressure setting unit of the present invention, and “the current value is equal to or less than a predetermined value” corresponds to “the motor load is equal to or less than a value corresponding to the target pressure” according to the present invention.
さらに、図3のステップS11,12を経由せずにステップS4に進んでブラシレスモータ14を駆動することが、本発明における「第1回目の駆動」に相当する。また、図3のステップS11,12を経由してステップS4に進んでブラシレスモータ14を駆動することが、本発明における「第2回目の駆動」に相当する。さらに、圧力検出スイッチ32が、本発明の圧力検出部に相当し、タンク13が、本発明のタンクに相当する。 Further, proceeding to step S4 without driving steps S11 and S12 in FIG. 3 and driving the brushless motor 14 corresponds to the “first driving” in the present invention. Further, the process proceeds to step S4 via steps S11 and S12 in FIG. 3 to drive the brushless motor 14 corresponds to the “second drive” in the present invention. Furthermore, the pressure detection switch 32 corresponds to the pressure detection unit of the present invention, and the tank 13 corresponds to the tank of the present invention.
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、モータ動作停止回路37は設けられていなくてもよい。この場合、マイクロコンピュータ31は、主電源スイッチ27がオフであると、インバータ回路29の全てのスイッチング素子29a~29fをオフする。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, the motor operation stop circuit 37 may not be provided. In this case, the microcomputer 31 turns off all the switching elements 29a to 29f of the inverter circuit 29 when the main power switch 27 is turned off.
本発明の液体吐出装置は、タンク内の液体をポンプで吸入する構造の他、水道の蛇口から供給された水をポンプで吸い込む構造を含む。水道の蛇口から吐出された水をポンプで吸い込む構造の液体吐出装置は、水道が断水となるか、または、水道の蛇口とポンプとを接続するホースが外れることにより、ポンプで吸入される水の有無を電流値に基づいて判断でき、かつ、その判断結果に基づいて、モータに対する電流の供給を停止できる。 The liquid discharge apparatus according to the present invention includes a structure for sucking water supplied from a water tap with a pump in addition to a structure for sucking liquid in a tank with a pump. A liquid discharge device that sucks water discharged from a water tap with a pump. The water discharged from a water pump is disconnected when the water supply is cut off or the hose connecting the water tap and the pump is disconnected. The presence or absence can be determined based on the current value, and the supply of current to the motor can be stopped based on the determination result.
また、ポンプを駆動するモータは、電動モータに代えて、油圧モータ、空気圧モータ、エンジンを用いることも可能である。この場合、油圧モータの出力軸の回転数または回転速度を検出するセンサ、空気圧モータの出力軸の回転数または回転速度を検出するセンサ、エンジン回転数または回転速度を検出するセンサが設けられる。そして、油圧モータまたは空気圧モータまたはエンジンの動力でポンプを駆動する構造の液体吐出装置において、図3のフローチャートを実行すると、ステップS5において、油圧モータの出力軸の回転数または回転速度、空気圧モータの出力軸の回転数または回転速度、エンジン回転数または回転速度を用いて、ブラシレスモータの空回しを判断する。さらに、ステップS10において、油圧モータを停止する処理、または空気圧モータを停止する処理、またはエンジンを停止する処理を実行する。 Further, a hydraulic motor, a pneumatic motor, and an engine can be used as the motor for driving the pump instead of the electric motor. In this case, a sensor for detecting the rotational speed or rotational speed of the output shaft of the hydraulic motor, a sensor for detecting the rotational speed or rotational speed of the output shaft of the pneumatic motor, and a sensor for detecting the engine rotational speed or rotational speed are provided. When the flow chart of FIG. 3 is executed in the hydraulic discharge device having the structure in which the pump is driven by the power of the hydraulic motor, the pneumatic motor, or the engine, in step S5, the rotational speed or rotational speed of the output shaft of the hydraulic motor, The idle rotation of the brushless motor is determined using the rotation speed or rotation speed of the output shaft and the engine rotation speed or rotation speed. Further, in step S10, a process for stopping the hydraulic motor, a process for stopping the pneumatic motor, or a process for stopping the engine is executed.
本発明の液体吐出装置は、ポンプに吸入された液体を加圧して吐出する装置であり、本発明の液体吐出装置は、対象物の汚れを除去する高圧洗浄機の他、水を霧状にして畑に散布する噴霧装置、薬液を霧状にして、野菜または植木に散布して害虫を駆除する噴霧装置を含む。つまり、本発明において、ポンプから吐出される液体は、水、洗浄液、薬液を含む。 The liquid discharge device of the present invention is a device that pressurizes and discharges the liquid sucked into the pump, and the liquid discharge device of the present invention makes water mist in addition to a high-pressure washing machine that removes dirt on an object. Spraying device for spraying on the field, spraying device for spraying chemicals in the form of mist and spraying on vegetables or planted trees to control pests. That is, in the present invention, the liquid discharged from the pump includes water, a cleaning liquid, and a chemical liquid.
本発明において、電動モータに電力を供給する二次電池を備えている。すなわち、実施形態に係る洗浄機は携帯型である。二次電池は、リチウムイオン電池以外の電池、例えば、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオンポリマー電池であってもよい。本発明の液体吐出装置は、二次電池および商用電源の双方から、電動モータに電力を供給可能な構造を含む。また、本発明の液体吐出装置は、商用電源のみから電動モータに電力を供給可能な構造を含む。 In this invention, the secondary battery which supplies electric power to an electric motor is provided. That is, the cleaning machine according to the embodiment is portable. The secondary battery may be a battery other than a lithium ion battery, for example, a nickel cadmium battery, a nickel hydrogen battery, or a lithium ion polymer battery. The liquid discharge apparatus of the present invention includes a structure capable of supplying power to the electric motor from both the secondary battery and the commercial power source. In addition, the liquid ejection device of the present invention includes a structure that can supply power to the electric motor only from a commercial power source.
電動モータは、直流ブラシレスモータ、交流ブラシレスモータのいずれでもよい。電動モータに交流電源の電力を供給する電力供給機構を設けることも可能である。圧力検出スイッチは、洗浄ガンに設けられていてもよい。この場合、洗浄ガンに設けられた圧力検出スイッチと、洗浄機本体に設けた制御部との間で信号を行き来させる信号ケーブルが設けられる。信号ケーブルは、例えば、ホースと一緒に束ねてもよい。さらに、無線で信号を送る構成を採用してもよい。 The electric motor may be either a direct current brushless motor or an alternating current brushless motor. It is also possible to provide a power supply mechanism that supplies power from the AC power source to the electric motor. The pressure detection switch may be provided in the cleaning gun. In this case, a signal cable is provided for transferring signals between a pressure detection switch provided in the cleaning gun and a control unit provided in the cleaning machine main body. For example, the signal cable may be bundled together with a hose. Furthermore, you may employ | adopt the structure which transmits a signal wirelessly.
圧力設定部は、ダイヤル、タッチパネル、レバーを含む。圧力検出部は、ダイヤフラムを備えた圧力センサの他、ブルドン管を備えた圧力センサ、ベローズを備えた圧力センサを含む。また、圧力検出部は、洗浄液の圧力が第1の所定圧以上でオンされ、第2の所定圧以下でオフされる構成であってもよい。第1の所定圧は第2の所定圧よりも高い。つまり、圧力検出部は、洗浄液の圧力が第1の所定圧以上である場合と、第2の所定圧以下である場合とで、異なる信号を出力し、かつ、モータ動作停止回路をオンオフできればよい。 The pressure setting unit includes a dial, a touch panel, and a lever. The pressure detection unit includes a pressure sensor including a diaphragm, a pressure sensor including a Bourdon tube, and a pressure sensor including a bellows. The pressure detection unit may be configured to be turned on when the pressure of the cleaning liquid is equal to or higher than the first predetermined pressure and turned off when equal to or lower than the second predetermined pressure. The first predetermined pressure is higher than the second predetermined pressure. That is, the pressure detection unit only needs to output different signals depending on whether the pressure of the cleaning liquid is equal to or higher than the first predetermined pressure and lower than the second predetermined pressure, and can turn on and off the motor operation stop circuit. .
10…高圧洗浄機、11…洗浄機本体、12…ポンプ、12a…吸入口、12b…吐出口、12c,21…流路、13…タンク、14…ブラシレスモータ、14a…ステータ、14b…ロータ、14c…永久磁石、15…制御部、16…電池パック、16a…正極、16b…負極、17…洗浄ガン、18…ホース、19…ガン本体、20…ノズル、22…バルブ、23…トリガ、24…操作パネル、25…圧力設定ダイヤル、26…残量表示部、27…主電源スイッチ、29…インバータ回路、29a~29f…スイッチング素子、30…ドライバ回路、31…マイクロコンピュータ、32…圧力検出スイッチ、33…電流検出抵抗、34…電流検出回路、35…制御系電源回路、36…電源オンオフ回路、37…モータ動作停止回路、38…ヒューズ、51…インバータ回路、28a~28c…ホールIC、E1…電気回路、U1,V1,W1…コイル。 DESCRIPTION OF SYMBOLS 10 ... High pressure washing machine, 11 ... Washing machine main body, 12 ... Pump, 12a ... Suction port, 12b ... Discharge port, 12c, 21 ... Flow path, 13 ... Tank, 14 ... Brushless motor, 14a ... Stator, 14b ... Rotor, 14c ... Permanent magnet, 15 ... Control unit, 16 ... Battery pack, 16a ... Positive electrode, 16b ... Negative electrode, 17 ... Cleaning gun, 18 ... Hose, 19 ... Gun body, 20 ... Nozzle, 22 ... Valve, 23 ... Trigger, 24 , Operation panel, 25 pressure setting dial, 26 remaining amount display section, 27 main power switch, 29 inverter circuit, 29a to 29f switching element, 30 driver circuit, 31 microcomputer, 32 pressure detection switch , 33 ... current detection resistor, 34 ... current detection circuit, 35 ... control system power supply circuit, 36 ... power supply on / off circuit, 37 ... motor operation stop circuit, 38 Fuse, 51 ... inverter circuits, 28a ~ 28c ... Hall IC, E1 ... electrical circuits, U1, V1, W1 ... coils.

Claims (13)

  1. 液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、を備えた液体吐出装置であって、
    前記ポンプを駆動する前記モータの負荷を検出し、かつ、前記モータの負荷に基づいて前記ポンプが吸入する液体の量を推定する液体量検出部と、
    前記ポンプが吸入する液体の量が所定量以下であると推定されると、前記モータを停止するモータ制御部と、
    を備えている液体吐出装置。
    A liquid discharge apparatus comprising: a pump that sucks and discharges liquid; and a motor that drives the pump,
    A liquid amount detection unit that detects a load of the motor that drives the pump and estimates an amount of liquid sucked by the pump based on the load of the motor;
    When it is estimated that the amount of liquid sucked by the pump is equal to or less than a predetermined amount, a motor control unit that stops the motor;
    A liquid ejection apparatus comprising:
  2. 前記モータ制御部は、前記ポンプが吸入する液体の量が所定量以下であると推定された時点から所定時間が経過した後、前記モータを停止する、請求項1に記載の液体吐出装置。 The liquid ejecting apparatus according to claim 1, wherein the motor control unit stops the motor after a predetermined time has elapsed from a time when it is estimated that the amount of liquid sucked by the pump is equal to or less than a predetermined amount.
  3. 前記ポンプから吐出される液体の目標圧力を設定する圧力設定部と、前記目標圧力に基づいて前記モータの負荷を制御するモータ負荷制御部と、が設けられ、
    前記液体量検出部は、前記モータの負荷が前記目標圧力に応じた値以下である場合に、前記ポンプが吸入する液体の量が所定量以下であると推定する、請求項1または2に記載の液体吐出装置。
    A pressure setting unit that sets a target pressure of the liquid discharged from the pump, and a motor load control unit that controls a load of the motor based on the target pressure,
    The said liquid amount detection part estimates that the quantity of the liquid which the said pump suck | inhales below a predetermined amount when the load of the said motor is below the value according to the said target pressure. Liquid discharge device.
  4. 前記モータ制御部は、前記モータを第1回目に駆動して前記ポンプで液体を吸入及び吐出してから前記モータを停止する際に用いる第1所定時間と、
    停止している前記モータを第2回目に駆動して前記ポンプで液体を吸入及び吐出した後に、前記モータを停止する際に用い、かつ、前記第1所定時間よりも短い第2所定時間と、
    を設定する、請求項1~3のいずれか1項に記載の液体吐出装置。
    The motor control unit drives the motor for the first time, sucks and discharges liquid with the pump, and then uses the first predetermined time to stop the motor;
    A second predetermined time that is used when stopping the motor after the stopped motor is driven a second time and the pump sucks and discharges the liquid, and is shorter than the first predetermined time;
    The liquid ejection device according to any one of claims 1 to 3, wherein:
  5. 前記ポンプから吐出される液体の圧力を検出する圧力検出部が設けられ、
    前記モータ制御部は、前記圧力検出部により検出される圧力の検出結果に基づいて、前記モータが第1回目の駆動であるか第2回目の駆動であるかを判断する、請求項4に記載の液体吐出装置。
    A pressure detector for detecting the pressure of the liquid discharged from the pump;
    The said motor control part judges whether the said motor is the 1st drive or the 2nd drive based on the detection result of the pressure detected by the said pressure detection part. Liquid discharge device.
  6. 前記モータは、電流が供給されて回転する電動モータであり、
    前記液体量検出部は、前記電動モータに供給される電流値に基づいて、前記電動モータの負荷を検出する、請求項1~5のいずれか1項に記載の液体吐出装置。
    The motor is an electric motor that rotates when supplied with an electric current,
    6. The liquid ejection device according to claim 1, wherein the liquid amount detection unit detects a load of the electric motor based on a current value supplied to the electric motor.
  7. 前記ポンプは、前記液体が貯留されているタンクから前記液体を吸入する、請求項1~6のいずれか1項に記載の液体吐出装置。 The liquid discharge apparatus according to claim 1, wherein the pump sucks the liquid from a tank in which the liquid is stored.
  8. 液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、前記ポンプが吸入する前記液体を貯留するタンクと、を備えた液体吐出装置であって、
    前記モータの負荷を検出する負荷検出部と、前記モータの負荷に基づいて前記タンク内における前記液体の量を検出し、かつ、前記液体の量が所定量以下である場合に前記モータを停止するモータ制御部と、を備えている液体吐出装置。
    A liquid discharge apparatus comprising: a pump that sucks and discharges liquid; a motor that drives the pump; and a tank that stores the liquid sucked by the pump,
    A load detection unit that detects a load of the motor; detects the amount of the liquid in the tank based on the load of the motor; and stops the motor when the amount of the liquid is equal to or less than a predetermined amount A liquid ejection device comprising: a motor control unit;
  9. 前記モータは、電流が供給されて回転する電動モータであり、
    前記負荷検出部は、前記電動モータに供給される電流に基づいて前記電動モータの負荷を検出し、
    前記モータ制御部は、前記電動モータに供給される電流が連続して所定値以下であると、前記タンク内の前記液体の量が所定量以下であると推定する、請求項8に記載の液体吐出装置。
    The motor is an electric motor that rotates when supplied with an electric current,
    The load detection unit detects a load of the electric motor based on a current supplied to the electric motor,
    The liquid according to claim 8, wherein the motor control unit estimates that the amount of the liquid in the tank is equal to or less than a predetermined amount when a current supplied to the electric motor is continuously equal to or less than a predetermined value. Discharge device.
  10. 前記負荷検出部は、前記モータの回転数に基づいて前記モータの負荷を検出し、
    前記モータ制御部は、前記モータの回転数が連続して所定値以上である場合に、前記タンク内の前記液体の量が所定量以下であると推定する、請求項8に記載の液体吐出装置。
    The load detection unit detects the load of the motor based on the number of rotations of the motor,
    The liquid ejecting apparatus according to claim 8, wherein the motor control unit estimates that the amount of the liquid in the tank is equal to or less than a predetermined amount when the rotation speed of the motor is continuously equal to or greater than a predetermined value. .
  11. 液体を吸入及び吐出するポンプと、前記ポンプを駆動するモータと、前記ポンプが吸入する前記液体を貯留するタンクと、前記ポンプから吐出された前記液体の流路を開閉するトリガを有し、かつ、前記液体を外部に吐出する洗浄ガンと、を備えた液体吐出装置であって、
    前記流路が開いて前記洗浄ガンから前記液体が吐出されている際に、前記モータの負荷が所定値以下になると、前記モータを停止するモータ制御部が設けられている、液体吐出装置。
    A pump for sucking and discharging liquid, a motor for driving the pump, a tank for storing the liquid sucked by the pump, a trigger for opening and closing the flow path of the liquid discharged from the pump, and A liquid discharge device comprising a cleaning gun for discharging the liquid to the outside,
    A liquid ejecting apparatus, comprising: a motor control unit that stops the motor when a load of the motor becomes a predetermined value or less when the flow path is opened and the liquid is ejected from the cleaning gun.
  12. 前記モータは、電流が供給されて回転する電動モータであり、
    前記モータ制御部は、前記流路が開いて前記洗浄ガンから前記液体が吐出されている際に、前記モータに供給される電流値が所定値以下になると、前記モータの負荷が所定値以下になったと判断して前記モータを停止する、請求項11に記載の液体吐出装置。
    The motor is an electric motor that rotates when supplied with an electric current,
    When the flow rate is opened and the liquid is discharged from the cleaning gun, the motor control unit reduces the load of the motor to a predetermined value or less when the current value supplied to the motor becomes a predetermined value or less. The liquid ejection device according to claim 11, wherein the motor is stopped when it is determined that the motor has become.
  13. 前記モータ制御部は、前記電動モータに供給される電流値が所定値以下である状態が所定時間経過すると、前記電動モータの負荷が所定値以下になったと判断して前記電動モータを停止する、請求項12に記載の液体吐出装置。 The motor control unit determines that the load of the electric motor has become a predetermined value or less and stops the electric motor when a state in which a current value supplied to the electric motor is a predetermined value or less has elapsed for a predetermined time; The liquid ejection apparatus according to claim 12.
PCT/JP2015/066695 2014-06-20 2015-06-10 Liquid discharge device WO2015194425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126860 2014-06-20
JP2014-126860 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194425A1 true WO2015194425A1 (en) 2015-12-23

Family

ID=54935412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066695 WO2015194425A1 (en) 2014-06-20 2015-06-10 Liquid discharge device

Country Status (1)

Country Link
WO (1) WO2015194425A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105521962A (en) * 2016-01-27 2016-04-27 安庆市凌康机电产品设计有限公司 Safety protection assembly used during operating of spray gun of high-pressure washing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165521A (en) * 1992-11-18 1994-06-10 Toshiba Corp Inverter device
JP2005313008A (en) * 2004-04-26 2005-11-10 Nidec Shibaura Corp High-pressure washing machine
JP2006263628A (en) * 2005-03-25 2006-10-05 Nagata Seisakusho:Kk Pump idling prevention mechanism for high pressure washer
JP2007211780A (en) * 2007-03-30 2007-08-23 Mitsubishi Electric Corp Motor control apparatus for water supply pump
JP2014046280A (en) * 2012-08-31 2014-03-17 Hitachi Koki Co Ltd Washing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165521A (en) * 1992-11-18 1994-06-10 Toshiba Corp Inverter device
JP2005313008A (en) * 2004-04-26 2005-11-10 Nidec Shibaura Corp High-pressure washing machine
JP2006263628A (en) * 2005-03-25 2006-10-05 Nagata Seisakusho:Kk Pump idling prevention mechanism for high pressure washer
JP2007211780A (en) * 2007-03-30 2007-08-23 Mitsubishi Electric Corp Motor control apparatus for water supply pump
JP2014046280A (en) * 2012-08-31 2014-03-17 Hitachi Koki Co Ltd Washing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105521962A (en) * 2016-01-27 2016-04-27 安庆市凌康机电产品设计有限公司 Safety protection assembly used during operating of spray gun of high-pressure washing machine

Similar Documents

Publication Publication Date Title
WO2015194426A1 (en) Liquid discharge device
JP6446853B2 (en) Liquid ejection device
US7751159B2 (en) Pump controller system and method
US11873807B2 (en) Pressure washer system
US20140262354A1 (en) Fire-Extinguishing System and Method for Operating Servo Motor-Driven Foam Pump
US11378072B2 (en) Air compressor
WO2015194425A1 (en) Liquid discharge device
JP6398618B2 (en) washing machine
KR102564312B1 (en) Operation control apparatus of vacuum pump apparatus and operation control method thereof
EP4268695A1 (en) Vacuum cleaner and method for controlling same
KR100923062B1 (en) Submersible pump
CN111788015B (en) Control method for a high-pressure cleaning appliance and high-pressure cleaning appliance, in particular for carrying out the method
US20180152122A1 (en) Dc-brushless-motor control device
CN111699052A (en) Method for controlling a high-pressure cleaning appliance and high-pressure cleaning appliance, in particular for carrying out the method
JP2018155100A (en) Gas compressor
JP2014046282A (en) Washing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15810158

Country of ref document: EP

Kind code of ref document: A1