WO2015192752A1 - 一种电极管电渗排水固结的方法 - Google Patents

一种电极管电渗排水固结的方法 Download PDF

Info

Publication number
WO2015192752A1
WO2015192752A1 PCT/CN2015/081464 CN2015081464W WO2015192752A1 WO 2015192752 A1 WO2015192752 A1 WO 2015192752A1 CN 2015081464 W CN2015081464 W CN 2015081464W WO 2015192752 A1 WO2015192752 A1 WO 2015192752A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current
electrodes
voltage
boundary layer
Prior art date
Application number
PCT/CN2015/081464
Other languages
English (en)
French (fr)
Inventor
庄艳峰
陈文�
王有成
杨宏武
Original Assignee
武汉河海泽地电渗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉河海泽地电渗科技有限公司 filed Critical 武汉河海泽地电渗科技有限公司
Publication of WO2015192752A1 publication Critical patent/WO2015192752A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means

Definitions

  • the invention relates to the technical field of geotechnical engineering, in particular to a method for electroosmotic drainage consolidation of an electrode tube.
  • the traditional method of drainage consolidation is vacuum preloading and preloading, but for fine particle media with high water content and low water permeability, the traditional method is slow, the depth of action is limited, and the bearing capacity is not improved.
  • Electroosmosis is a very promising method for soft soils composed of such media. Electroosmosis has been known for more than two hundred years since its first discovery. The specific method is to insert a metal electrode into the soil and pass a direct current. Due to the action of the direct current electric field, the water in the soil flows from the anode to the cathode, and then the water is removed from the cathode without allowing the water to be replenished near the anode, and the electroosmosis can be gradually Remove water from the soil.
  • the traditional electroosmosis method although electrode conversion and intermittent energization are sometimes used, the electrode conversion and intermittent energization time are determined by experience; due to the complex nature of the soil, the experience of a site is not applicable.
  • An object of the present invention is to solve the above-mentioned deficiencies of the prior art and to provide a method of electroosmotic drainage consolidation.
  • the technical solution of the present invention is: a method for electroosmotic drainage consolidation of an electrode tube, comprising the following steps:
  • Electrode arrangement a plurality of electrodes are vertically inserted into the drainage area, and the electrodes are uniformly arranged with a spacing of 0.8 to 1.2 m; the electrodes surround the drainage area to form an outermost layer, and the outermost electrodes are connected to the negative pole of the power source.
  • the second layer electrode inward of the outermost layer is a boundary layer, and the boundary layer electrodes are connected to the positive electrode of the power source; the electrodes in the boundary layer are alternately connected from the positive and negative sides of the power supply to the positive and negative electrodes of the power supply, and all the positive electrode in the boundary layer are connected. Collecting, all negative electrode electrodes in the boundary layer are collected;
  • Pipe arrangement connect the electrode to the horizontal drain pipe laid on the ground surface, and then connect the horizontal drain pipe to the vacuum pump;
  • Electrode energization start the vacuum pump to discharge the free water in part of the soil. After the vacuum is stabilized, start the DC power supply and start energizing the electrode.
  • the electrode energization mode is:
  • Interval commutation The direction of the connection of the electrodes in the boundary layer to the power supply is reversed every 10 to 30 minutes, and the DC power supply adopts a voltage-stabilized or steady current mode;
  • step (2) if the current or voltage change in the steady state or steady current state is less than or equal to the stationary value ⁇ 5%, according to the soil resistivity to water content curve, in the TDR (using electromagnetic wave time domain reflection method)
  • the device for measuring the moisture content in the region) stops after the soil moisture content reaches the set value.
  • step c (2) if the current or voltage change in step c (2) is greater than the stationary value ⁇ 5%, the soil moisture content does not reach the set value, and the power is continuously supplied to the TDR to monitor the soil moisture content to reach the set value and then stop.
  • the potential gradient of the outermost layer and the boundary layer is 1.5 to 2.0 times the potential gradient in the boundary layer.
  • the distance between the electrodes of the outermost layer and the boundary layer is 2/3 to 1/2 of the distance between the electrodes in the boundary layer.
  • the current continues to decrease in step c (2) in the regulated state, and the energization is stopped when the current begins to increase.
  • step c (c) continues to increase in the steady state, and the energization is stopped when the voltage begins to decrease.
  • the electrode arrangement connects the outermost electrode to the negative electrode of the power source, the boundary layer electrode is connected to the positive electrode of the power source, and the inner electrode of the boundary layer is alternately connected with the positive and negative electrodes in turn, and water molecules are easily formed by using water molecules, and the potential is low.
  • the directional movement that is, the principle of moving to the electrode connected to the negative electrode, causes the water outside the boundary to spread to the surroundings, and the water in the boundary is collected to the cathode in the region and is removed by a vacuum pump.
  • the positive and negative commutation of a particular land can determine the direction of the current or voltage plateau, which is more accurate and practical than the traditional empirical judgment.
  • TDR is used to monitor the set value of soil resistivity to water content curve to judge the power-on time after steering, which is more accurate and practically targeted than the traditional empirical judgment.
  • the water content, pH value and charge distribution around the positive and negative electrodes in the drainage area are unevenly changed: after the electricity is supplied, the water flows to the negative electrode, and the water content around the positive electrode is lower than that of the negative electrode; the positive electrode is connected to the positive electrode of the electrode.
  • the surrounding water generates electricity to resolve hydrogen ions, so that the area around the positive electrode is acidic, and the area around the negative electrode is alkaline.
  • the migration speed of the positive and negative ions in the soil to the cathode and the anode are different and the soil There is an interface resistance between the electrode and the electrode, so that the charge in the soil is redistributed, and the positive and negative charges are accumulated in the regions near the cathode and the anode.
  • the electrode reversal adjusts the charge distribution in the drainage area to distribute it to an equilibrium state, thereby making more efficient use of electrical energy during the next energization process.
  • Intermittent energization can naturally adjust the water content, pH value and charge distribution in the area. Since electroosmosis tends to cause different water content in the area around the positive and negative electrodes, stopping the energization for a period of time can balance the water content in the area. The current approaches zero.
  • the electroosmosis In the energized mode of steady voltage or steady current, when the current or voltage reaches the set value, the electroosmosis is stopped.
  • the steady-state energization mode when the current approaches zero, the resistance has approached infinity. At this time, the limit of the soil drainage has been reached, and it is meaningless to continue energizing, and the electroosmosis is stopped.
  • the power flow mode is stabilized, the whole soil resistivity increases and the voltage gradually increases. For the safety of construction workers, the electroosmosis is stopped when the voltage reaches 80V.
  • the unique electrode arrangement is used to isolate the drainage area from the surrounding area, which avoids the permeation and replenishment of the surrounding area water to the drainage area, and improves the consolidation efficiency of electroosmotic drainage.
  • the combination of electrode reversal and intermittent energization is more accurate than traditional empirical judgment of commutation and intermittent time, and is more targeted to complex land.
  • Figure 1 is a schematic diagram of electrode arrangement
  • Drainage area 2.
  • the outermost layer 3.
  • the electrode and the vacuum pipeline are arranged such that the plastic electrode tube is vertically inserted into the underground soil, the upper end of the plastic electrode tube is connected with the power line; the plastic electrode tube is connected with the horizontal drain pipe laid on the ground surface, and then the horizontal drain pipe is connected. Connected to a vacuum pump.
  • the drainage area 1 is circular, and the plastic electrode tubes are uniformly arranged in a square shape.
  • the outermost layer 2 electrode is negatively charged, the boundary layer 3 is positively charged, the outermost layer 2 and the boundary layer 3 electrode are spaced apart by 0.5 m, and the inner layer of the boundary layer 3 is alternately positively and alternately energized from the outside to the inside, and the boundary layer 3 is in the inner electrode.
  • the power supply adopts a steady current mode with a current of 300A.
  • all of the positive electrode and the negative electrode are combined and connected to a voltmeter.
  • the soil resistivity was measured by a test device Miller Soil Box and a curve was drawn. As shown in Fig. 4, the water content was set to 52%;
  • Electrode energization Start the vacuum pump and discharge the free water in part of the soil. After the vacuum is stabilized, start the DC power supply and start energizing the electrode.
  • the electrode energization mode is:
  • Interval commutation The electrode in the boundary layer 3 is connected to the power source for commutation every 30 minutes;
  • the voltage does not continue to rise at 0.6 hours, so the electrode should be turned at 0.6 hours, but the TDR data indicates that the negative phase is energized for 0.6 hours, and the soil moisture near the anode. Still above 52%, the set value of Figure 4 is to the right, so the power-on time should be extended.
  • the TDR data test showed that after 3 hours of negative energization, the soil moisture near the anode was less than 52%, and reached the left side of the curve set value, so it was determined that the negative energization time was 3 hours;
  • the drainage area 1 is circular
  • the plastic electrode tube is uniformly arranged in a square
  • the outermost layer 2 electrode is negatively charged
  • the boundary layer 3 is positively charged
  • the distance between the outermost layer and the boundary layer electrode is 0.75 m
  • the area electrode is inside.
  • Negative positive alternating current is applied from the outside to the inside, and the electrode spacing in the boundary layer 3 region is 1 m.
  • the power supply adopts a regulated power-on mode with a voltage of 80V. In the boundary layer, all of the positive electrode and the negative electrode are combined and connected to an ammeter.
  • the soil resistivity was measured by a test device Miller Soil Box and a curve was drawn. As shown in Fig. 4, the water content was set to 52%;
  • Electrode energization Start the vacuum pump and discharge the free water in part of the soil. After the vacuum is stabilized, start the DC power supply and start energizing the electrode.
  • the electrode energization mode is:
  • Interval commutation The electrode in the boundary layer 3 is connected to the power source for commutation every 30 minutes;
  • the electrode should be performed at 0.6 hours.
  • the water content of the soil near the anode is still above 52%, and the set value of Figure 4 is to the right, so the power-on time should be extended.
  • the TDR data test showed that after 3 hours of negative energization, the soil moisture near the anode was less than 52%, so it was confirmed that the negative energization time was 3 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种电极管电渗排水固结的方法,包括以下步骤:电极布置、管路布置、电极通电、停止电渗。其中电极通电步骤包括:间隔换向通电、持续通电、间歇通电,并重复持续通电和间歇通电。

Description

一种电极管电渗排水固结的方法 技术领域
本发明涉及岩土工程技术领域,具体地指一种电极管电渗排水固结的方法。
背景技术
软土、淤泥、污泥、尾矿等高含水量低水力渗透性细颗粒介质,其排水固结非常困难。传统的排水固结方法是真空预压和堆载预压,但是对于高含水量低水力渗透性的细颗粒介质,传统的方法速度慢、作用深度有限、对承载力的提高也不足。
对于此类介质组成的软土地基,电渗法是一种非常有潜力的方法,电渗法自第一次被发现至今已有两百多年历史。具体方法为在土中插入金属电极并通以直流电,由于直流电场作用,土中的水从阳极流向阴极,然后将水从阴极排除,而不让水在阳极附近补充,借助电渗作用可逐渐排除土中水。传统电渗法通电方式,虽然有时采用了电极转换和间歇通电这两种方法,但是电极转换和间歇通电时间的确定完全是凭经验;由于土体特性复杂,因此一个场地的经验并不适用于另一个场地,这使得传统电渗通电方式缺乏一个明确的通电模式设计方法,电渗的效率和效果难以保证,使得电渗的优势无法充分发挥出来。
发明内容
本发明的目的就是要解决上述背景技术的不足,提供一种电渗排水固结的方法。
本发明的技术方案为:一种电极管电渗排水固结的方法,包括以下步骤:
a.电极布置:将多个电极竖直插入排水区域,电极采用均匀布置,间距为0.8~1.2m;所述电极将排水区域包围形成最外层,所述最外层电极均与电源负极连接;所述最外层向内的第二层电极为边界层,所述边界层电极均与电源正极连接;边界层内电极由外向内依次与电源正负极交替连接,边界层内所有正极电极汇集,边界层内所有负极电极汇集;
b.管路布置:将电极与地表铺设的水平排水管连通,再将水平排水管与真空泵连接;
c.电极通电:启动真空泵,排出部分土体中的自由水,真空稳定后,启动直流电源开始对电极进行通电,电极通电方式为:
(1)间隔换向通电:每隔10~30分钟将边界层内电极连接电源的方向进行换向,直流电源采用稳压或稳流的通电模式;
(2)持续通电:根据电流、电压传感器测得的数据,选择电流或电压~时间曲线保持平稳的方向为平稳段;对平稳段进行持续通电;当电流或电压开始变化大于平稳值±5%时将电极转向;转向后持续通电,直到电流或电压变化趋势改变时停止;
(3)间歇通电:通电停止后将正负极电极相连接,监测电路中的电流,当电流趋近于零时结束;
(4)重复步骤(2)和(3);
d.稳压或稳流的通电模式下当电流或电压到达设定值时,停真空泵停电渗卸载。
优选的,c步骤(2)中若稳压或稳流状态下电流或电压变化小于或等于平稳值±5%时,根据土体电阻率~含水量曲线,在TDR(利用电磁波时域反射法测定区域内含水率的装置)监测土体含水率达到设定值后停止。
优选的,c步骤(2)中若电流或电压变化大于平稳值±5%时土体含水率未达到设定值,继续通电至TDR监测土体含水率达到设定值后停止。
优选的,最外层与边界层的电势梯度为边界层内电势梯度1.5~2.0倍。
优选的,最外层与边界层的电极间距离为边界层内电极间距离的2/3~1/2。
优选的,稳压状态下c步骤(2)中电流持续减小,当电流开始增大时停止通电。
优选的,稳流状态下c步骤(2)中电压持续增大,当电压开始减小时停止通电。
电极布置将最外层电极与电源负极连接、边界层电极与电源正极连接、边界层内电极向内依次与正负极交替连接,利用水分子易形成水化阳离子,向电势低 的方向运动,也就是向连接负极的电极运动的原理,使边界外的水向四周扩散,边界内的水向区域内的阴极汇集,并通过真空泵排除。
对特定的土地进行正负极换向可以确定电流或电压平稳段的方向,比传统的凭经验判断换向更精确、更有实际针对性。
采用TDR监控土体电阻率~含水量曲线设定值判断转向后通电时间,比传统的凭经验判断换向更精确、更有实际针对性。
通电一段时间后排水区域内正负电极周围的含水率、pH值、电荷分布都发生不均匀变化:通电后水流向负极电极,正极电极周围含水率比负极电极低;正极电极与电极正极相连,周围水发生电解析出氢离子,使正极电极周围区域呈酸性,负极电极周围区域呈碱性;在电场力作用下,土体中的正、负离子分别向阴极和阳极的迁移速度不同以及土体和电极之间存在界面电阻,使得土体中的电荷发生重分布,正、负电荷分别在靠近阴、阳两极的区域中累积。电极反向可以调整排水区域内电荷分布,使其向平衡状态分布,从而在下次通电过程中更有效地利用电能。
间歇通电可以自然调整区域内含水率、pH值、电荷分布,由于电渗往往会造成正负电极周围区域含水量不同,停止通电一段时间可使区域内含水率平衡,此时监测电路中的电流趋近于零。
稳压或稳流的通电模式下当电流或电压到达设定值时,停止电渗。在采用稳压通电模式时,当电流趋近为零时,电阻已经趋近无穷大,此时已经到达土体排水的极限,继续通电无意义,停止电渗。同时,当稳流通电模式时,整个土体电阻率升高导致电压逐渐增大,出于对施工人员安全考虑在电压达到80V时停止电渗。
本发明的有益效果为:
(1)采用独特的电极布置将排水区域与周围隔离开来,避免了周围区域水对排水区域的渗透补充,提高了电渗排水固结效率。
(2)采用连接电流、电压和TDR传感器的方法,通过电路中反馈的电场、土体含水率时空分布情况,适时调整电场的强度和方向,保证了电渗排水固结的速度和效果。
(3)采用一种明确的通电模式调整方法,将电极反向和间歇通电结合使用,比传统的凭经验判断换向和间歇时间具有更精确、对复杂土地针对性更强的特点。
附图说明
图1为电极布置示意图
图2正向通电电压~时间曲线
图3反向通电电压~时间曲线
图4土体电阻率~含水率曲线
图5正向通电电流~时间曲线
图6反向通电电流~时间曲线
其中:1.排水区域2.最外层3.边界层。
具体实施方式
本发明实施例中电极与真空管路布置为:将塑料电极管竖直插入地下土内,塑料电极管上端与电源线连接;塑料电极管与地表铺设好的水平排水管连通,再将水平排水管与真空泵连接。
实施例1
如图1所示,排水区域1为圆形,塑料电极管采用正方形均匀布置。最外层2电极通负电,边界层3通正电,最外层2与边界层3电极间距0.5m,边界层3内电极由外向内依次采用负正交替式通电,边界层3区域内电极间距1m,电源采用稳流通电模式,电流300A。边界层内3所有正极电极和负极各自汇集后连接电压表。
采用测试装置Miller Soil Box测定土体电阻率并绘制曲线,如图4所示,含水率设定为52%;
电极通电:启动真空泵,排出部分土体中的自由水,真空稳定后,启动直流电源开始对电极进行通电,电极通电方式为:
(1)间隔换向通电:每隔30分钟将边界层3内电极连接电源方向进行换向;
(2)持续通电:根据电压传感器测得的数据,如图2和图3所示,从电压~ 时间曲线来看,正向曲线保持平稳为平稳段;对正向进行持续通电,当正向电压从平稳值开始变化大于±5%时将电极转向,图中得出正向电压在通电12小时时出现突变,此时进行换向;对负向通电进行持续通电,若根据图3,负向通电后电压持续上升,0.1小时时电压有波动,波动在±5%内均属正常现象,因为换向之前电极中存在严重的极化现象,0.6小时时电压不再继续上升,所以在0.6小时即应进行电极转向,但此时TDR数据表明,负向通电0.6小时,阳极附近土体含水量仍然在52%以上,图4的设定值右侧,因此应该延长通电时间。TDR数据测试表明,经过3小时负向通电之后,靠近阳极附近的土体含水量小于52%,此时到达曲线设定值左侧,因此确定负向通电时间为3小时;
(3)间歇通电:负向通电停止后将正负电极相连接,监测电路中的电流,电流约3小时后趋近于零;
(4)重复步骤(2)和(3);
稳流情况下,出于施工安全考虑,本实施例中电压达到80V时,停真空泵停电渗卸载。本实施例中,电渗总共持续了约16天。
实施例2
如图1所示,排水区域1为圆形,塑料电极管采用正方形均匀布置,最外层2电极通负电,边界层3通正电,最外层与边界层电极间距0.75m,区域电极内由外向内依次采用负正交替式通电,边界层3区域内电极间距1m。电源采用稳压通电模式,电压80V。边界层内3所有正极电极和负极各自汇集后连接电流表。
采用测试装置Miller Soil Box测定土体电阻率并绘制曲线,如图4所示,含水率设定为52%;
电极通电:启动真空泵,排出部分土体中的自由水,真空稳定后,启动直流电源开始对电极进行通电,电极通电方式为:
(1)间隔换向通电:每隔30分钟将边界层3内电极连接电源方向进行换向;
(2)持续通电:根据电流传感器测得的数据,如图5和图6所示,从电流~时间曲线来看,正向曲线保持平稳为平稳段;对正向进行持续通电,当正向电流从平稳值开始变化大于±5%时将电极转向,图中得出正向电流在通电12小时时出现突变,此时进行换向;对负向通电进行持续通电,根据图6,负向通电后电流持 续下降,0.1小时时电流有波动,波动在±5%内均属正常现象,因为换向之前电极中存在严重的极化现象,0.6小时时电流不再继续下降,在0.6小时即应进行电极转向,但根据TDR监测的含水量数据表明,阳极附近土体含水量仍然在52%以上,图4的设定值右侧,因此应该延长通电时间。TDR数据测试表明,经过3小时负向通电之后,靠近阳极附近的土体含水量小于52%,因此确定,负向通电时间为3小时。
(3)间歇通电:负向通电停止后将正负电极相连接,监测电路中的电流,电流约3.5小时后趋近于零;
(4)重复步骤(2)和(3);
(5)稳压情况下,当通电电流接近于零时,电渗停止。此时土地电阻趋近无穷大,达到排水极限,电渗总共持续了约21天。

Claims (6)

  1. 一种电极管电渗排水固结的方法,包括以下步骤:
    a.电极布置:将多个电极竖直插入排水区域(1),电极采用均匀布置,间距为0.8~1.2m;所述电极将排水区域(1)包围形成最外层(2),所述最外层电极均与电源负极连接;所述最外层向内的第二层电极为边界层(3),所述边界层(3)电极均与电源正极连接;边界层(3)内电极由外向内依次与电源正负极交替连接,边界层内(3)所有正极电极汇集,边界层内(3)所有负极电极汇集;
    b.管路布置:将电极与地表铺设的水平排水管连通,再将水平排水管与真空泵连接;
    c.电极通电:启动真空泵,排出部分土体中的自由水,真空稳定后,启动直流电源开始对电极进行通电,电极通电方式为:
    (1)间隔换向通电:每隔10~30分钟将边界层内电极连接电源的方向进行换向,直流电源采用稳压或稳流的通电模式;
    (2)持续通电:根据电流、电压传感器测得的数据,选择电流或电压~时间曲线保持平稳的方向为平稳段;对平稳段进行持续通电;当电流或电压开始变化大于平稳值±5%时将电极转向;转向后持续通电,直到电流或电压变化趋势改变时停止;
    (3)间歇通电:通电停止后将正负极电极相连接,监测电路中的电流,当电流趋近于零时结束;
    (4)重复步骤(2)和(3);
    d.稳压或稳流的通电模式下当电流或电压到达设定值时,停真空泵停电渗卸载。
  2. 如权利要求1所述的电极管电渗排水固结的方法,其特征在于:c步骤(2)中若转向电流或电压变化趋势改变时土体含水率未达到设定值,继续通电至TDR监测土体含水率达到设定值后停止。
  3. 如权利要求1所述的电极管电渗排水固结的方法,其特征在于:最外层与边界层的电势梯度为边界层内电势梯度1.5~2.0倍。
  4. 如权利要求1所述的电极管电渗排水固结的方法,其特征在于:最外层与边界层的电极间距离为边界层内电极间距离的2/3~1/2。
  5. 如权利要求1所述的电极管电渗排水固结的方法,其特征在于:稳压状态下c步骤(2)中电流持续减小,当电流开始增大时停止通电。
  6. 如权利要求1所述的电极管电渗排水固结的方法,其特征在于:稳流状态下c步骤(2)中电压持续增大,当电压开始减小时停止通电。
PCT/CN2015/081464 2014-06-16 2015-06-15 一种电极管电渗排水固结的方法 WO2015192752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410270062.4 2014-06-16
CN201410270062.4A CN104131549B (zh) 2014-06-16 2014-06-16 一种电极管电渗排水固结的方法

Publications (1)

Publication Number Publication Date
WO2015192752A1 true WO2015192752A1 (zh) 2015-12-23

Family

ID=51804388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081464 WO2015192752A1 (zh) 2014-06-16 2015-06-15 一种电极管电渗排水固结的方法

Country Status (2)

Country Link
CN (1) CN104131549B (zh)
WO (1) WO2015192752A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108560533A (zh) * 2018-02-11 2018-09-21 浙江大学 一种电极板上下布置的电渗联合真空预压装置
CN112903807A (zh) * 2021-01-22 2021-06-04 辽宁工程技术大学 一种利用霍尔效应测含水软土载流子浓度的仪器及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131549B (zh) * 2014-06-16 2016-04-13 庄艳峰 一种电极管电渗排水固结的方法
CN106192982B (zh) * 2016-07-11 2019-05-31 河海大学 一种基于管状ekg电极的电渗土桩处理软基的方法
CN106894531B (zh) * 2016-12-23 2019-11-26 温州大学 弱电电渗排水法治理建筑物漏水装置和治理漏水的方法
CN108181197B (zh) * 2018-01-17 2023-12-12 湖北水总水利水电建设股份有限公司 一种用于判断淤、污泥土电渗最佳介入时机的装置和方法
CN110293125A (zh) * 2019-04-28 2019-10-01 南通大学 一种原位电动修复及加固超软污染土的装置和方法
CN111270566A (zh) * 2020-03-24 2020-06-12 固远晨通科技发展有限公司 铁路路基排水装置、修复结构以及翻浆冒泥整治方法
CN113846656B (zh) * 2021-09-16 2022-12-13 沈阳建筑大学 一种加固露天矿多层软岩边坡的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970059398A (ko) * 1996-01-31 1997-08-12 정순착 전기삼투 하중드레인 압밀장치 및 공법
CN102535432A (zh) * 2011-12-26 2012-07-04 河海大学 一种真空-电渗-堆载联合加固软基的系统和方法
EP2520724A1 (en) * 2011-05-06 2012-11-07 Novatek S.r.l. Method and plant for treating foundation soils by means of electro-osmosis
CN102995620A (zh) * 2012-12-27 2013-03-27 大连理工大学 一种真空/电渗/磁场/堆载联合预压加固软基的方法
CN103541348A (zh) * 2013-10-10 2014-01-29 河海大学 真空电渗联合加固含砂土夹层软土地基的系统和方法
CN104131549A (zh) * 2014-06-16 2014-11-05 武汉河海泽地电渗科技有限公司 一种电极管电渗排水固结的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516873B2 (ja) * 1993-03-04 1996-07-24 良雄 古池 軟弱地盤の改良方法
CN101016739A (zh) * 2007-02-15 2007-08-15 张志铁 真空电渗降水及低能量强夯的深层加固方法
CN100526563C (zh) * 2007-10-25 2009-08-12 郁玫 一种复合真空预压软土地基加固方法
CN101182708B (zh) * 2007-11-30 2011-11-02 陈江涛 覆盖式复合真空电渗与强夯加固地基方法及其装置
CN101245592A (zh) * 2008-03-26 2008-08-20 张志铁 基于真空电渗复合预压法的软土地基加固方法
CN101824819A (zh) * 2010-04-27 2010-09-08 天津大学 一种基于电渗和筒型基础负压技术的地基加固方法
CN103321208B (zh) * 2013-06-26 2015-05-06 上海大学 长短型阴极间隔布置的真空-电渗联合加固软土地基的处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970059398A (ko) * 1996-01-31 1997-08-12 정순착 전기삼투 하중드레인 압밀장치 및 공법
EP2520724A1 (en) * 2011-05-06 2012-11-07 Novatek S.r.l. Method and plant for treating foundation soils by means of electro-osmosis
CN102535432A (zh) * 2011-12-26 2012-07-04 河海大学 一种真空-电渗-堆载联合加固软基的系统和方法
CN102995620A (zh) * 2012-12-27 2013-03-27 大连理工大学 一种真空/电渗/磁场/堆载联合预压加固软基的方法
CN103541348A (zh) * 2013-10-10 2014-01-29 河海大学 真空电渗联合加固含砂土夹层软土地基的系统和方法
CN104131549A (zh) * 2014-06-16 2014-11-05 武汉河海泽地电渗科技有限公司 一种电极管电渗排水固结的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108560533A (zh) * 2018-02-11 2018-09-21 浙江大学 一种电极板上下布置的电渗联合真空预压装置
CN112903807A (zh) * 2021-01-22 2021-06-04 辽宁工程技术大学 一种利用霍尔效应测含水软土载流子浓度的仪器及方法
CN112903807B (zh) * 2021-01-22 2023-10-20 辽宁工程技术大学 一种利用霍尔效应测含水软土载流子浓度的仪器及方法

Also Published As

Publication number Publication date
CN104131549B (zh) 2016-04-13
CN104131549A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2015192752A1 (zh) 一种电极管电渗排水固结的方法
US11072901B2 (en) Foundation for a structure
AU2018102179A4 (en) Electro-osmosis treatment method for reducing moisture content of roadbed, and road structure
CN106192982B (zh) 一种基于管状ekg电极的电渗土桩处理软基的方法
CN101457521B (zh) 一种用于大面积高含水率土体脱水的电渗方法和设备
CN101319612B (zh) 软岩的电化学加固方法
CN103374910B (zh) 电渗联合气压劈裂装置及其工艺
CN103207136B (zh) 水力—电力渗透系数测量装置及测量方法
CN104594333A (zh) 环状电渗单井排水的软黏土地基处理方法
CN101838740A (zh) 一种原位脱除可溶性重金属离子的方法
CN104532263A (zh) 基于脉冲电流供电的油井套管阴极保护系统及其构建方法
CN105603964B (zh) 中心对称电渗电极装置及其电渗减小大直径钢圆筒上拔阻力方法
CN104088272A (zh) 一种用于电渗排水法的塑料电极管
TW200909643A (en) Construction method for ground modification by solar electro-osmosis
CN208586600U (zh) 一种软土地基处理结构
CN105923956B (zh) 可移动式太阳能电渗加固软土装置系统及其使用方法
Zhuang et al. Case study on hydraulic reclaimed sludge consolidation using electrokinetic geosynthetics
CN205475196U (zh) 中心对称电渗电极装置
CN108797560B (zh) 玻璃纤维排水锚杆
CN211347855U (zh) 一种尾矿砂的电渗法加速排水试验设备
CN203324149U (zh) 一种快速测量不同深度土壤腐蚀速率的装置
KR101340450B1 (ko) 해수의 흐름을 이용한 담수화 장치 및 담수화 방법
CN105945063B (zh) 一种维持污染土壤电动修复效率的在线补水装置及其方法
CN204000833U (zh) 一种用于电渗排水法的塑料电极管
Shen et al. Electro-osmosis drainage effect of a new type of EKG electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809715

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15809715

Country of ref document: EP

Kind code of ref document: A1