WO2015192379A1 - Synthesis method of tale repeated segments for genetic site-specific modification - Google Patents

Synthesis method of tale repeated segments for genetic site-specific modification Download PDF

Info

Publication number
WO2015192379A1
WO2015192379A1 PCT/CN2014/080423 CN2014080423W WO2015192379A1 WO 2015192379 A1 WO2015192379 A1 WO 2015192379A1 CN 2014080423 W CN2014080423 W CN 2014080423W WO 2015192379 A1 WO2015192379 A1 WO 2015192379A1
Authority
WO
WIPO (PCT)
Prior art keywords
tale
template
pcr
bsmbi
primer
Prior art date
Application number
PCT/CN2014/080423
Other languages
French (fr)
Chinese (zh)
Inventor
魏文胜
杨君娇
郭生杰
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to PCT/CN2014/080423 priority Critical patent/WO2015192379A1/en
Publication of WO2015192379A1 publication Critical patent/WO2015192379A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • the present invention relates to biological genetic engineering techniques, and in particular to the application of fixed-point modification to genes (especially eukaryotic genes)
  • TALEs Transcription activator like effectors
  • Xanthomonas to activate host gene expression or promote self-community in nature
  • the TALEs protein contains a highly conserved tandem repeat sequence consisting of 33-35 amino acids.
  • the 12- and 13-position amino acids are responsible for recognizing and binding a specific DNA base (such as NI recognition A, HD recognition C, NG recognition ⁇ , NN recognition G and A, etc.).
  • TALEs can specifically bind to target DNA (Boch et al., 2009; Moscou and Bogdanove, 2009). TALEs successfully solved the problem that zinc finger proteins could not recognize any target gene sequence, and the recognition sequence was often affected by upstream and downstream sequences, and it is one of the most effective methods to bring effector proteins to specific nucleic acid sequences ( Bogdanove and Voytas, 2011). ).
  • TALE Tranuclease chimeras
  • Miller et al., 2011 TALE-nuclease chimeras
  • TALE-mediated transcriptional activation of specific genes Miller et al., 2011
  • inhibition Cong et al., 2012; Garg et al., 2012; Mahfouz et al., 2012
  • TALE is fused to a fluorescent protein to indicate the position of the target DNA, etc.
  • any custom TALE typically contains more than ten highly repeating fragments (34 amino acid residues per fragment), the synthesis of its expression vector is difficult.
  • a number of research institutions have used this amino acid to correspond to nucleic acid sequences, modularly assembling TALEs, and specifically binding to the nucleic acid sequence of interest (Brigs et al., 2012; Cermak et al., 2011; Garg Et al., 2012; Huang et al., 2011; Li et al., 2012; Li et al., 2011; Morbitzer et al., 2011; Reyon et al., 2012; Sanjana et al., 2012; Weber et Al., 2011; Zhang et al., 2011; Schmid-Burgk et al., 2013), but there are still various problems such as low efficiency, long cycle time, cumbersome operation, various types of precursor materials or high cost.
  • the Rene Geibler team established a synthetic method called "Golden TALE Technology", which reduced the number of vectors using subclones to produce cohesive ends at specific positions to six, and optimized the cloning vectors between different groups. To achieve a more efficient and accurate method without prolonging the time (Geissler et al., 2011).
  • the Bing Yang team proposed a synthesis method called "modular assembly", which uses dense Degeneracy of the code
  • the BsmBI digestion method allows eight different sticky ends to be obtained for each repeating unit, so the TALE synthesis is based on eight groups of repeating units that differ from each other in position, which improves efficiency to some extent. (Li et al., 2011). All of the above methods have their own advantages and disadvantages, but at the same time, one problem is that it is difficult to achieve mass production of TALE.
  • connection-independent TALE cloning method developed by Schmid-Burgk and colleagues was published in Nature-Biotechnology, which uses longer sticky ends and can be used without connection.
  • the fragments are integrated and more than 600 TALEN genes can be synthesized in one day, provided that 3072 precursors containing five repeat units are synthesized (Schmid-Burgk et al., 2013).
  • the object of the present invention is to provide a method for synthesizing a TALE repeat of a gene (especially a eukaryotic gene), and to provide 512 TALE four repeat unit templates based on the Chinese patent (ZL201210380206.2). And related PCR primers for high throughput production.
  • the 512 TALE four-repeat unit template of the present invention is a uracil-specific excision reagent (USER) manufactured by uracil-specific excision reagent (USER) using a uracil deoxyribonucleotide excision reagent (USER) to make the sticky ends of the DNA fragments, and is used for PCR.
  • the amplified DNA template and primer design were used to synthesize 512 template plasmids containing four TALE repeat units based on 16 monomers containing the TALE repeat.
  • the present invention utilizes 512 template plasmids containing four TALE repeat units to synthesize TALE coding sequences using two technical routes: 1. Amplification of tetrameric templates using a set of immobilized PCR primers containing uracil deoxyribonucleotides Using a uracil excision reagent to make a cohesive end of the DNA fragment, and ligating multiple DNA fragments containing four or fewer TALE repeat units into a TALE protein coding sequence; 2. using a fixed set of BsmBI-containing cleavage sites The PCR primers amplify the tetrameric template, and the multiple fragments are combined into a TALE coding sequence by a B smBI digestion-ligation cycle. After the complete TALE coding sequence of multiple vectors is introduced into the cell, the target gene locus can be specifically combined to complete target gene knockout, knock-in, expression regulation, fluorescent labeling and the like.
  • TALE repeat means that the amino acid sequence of each TALE repeat sequence is the same except for the region of variable di-nucleotides (RVDs).
  • TALE repeat A DNA fragment used to encode a TALE repeat.
  • the present invention utilizes the characteristics of codon degeneracy to design four DNA monomer templates, which are named W, X, Y and Z, respectively. Outside the RVDs coding region, these four sequences differ greatly, but the amino acid sequences they encode are identical.
  • linking monomer a monomer for synthesizing a TALE repeat sequence, which is designed to amplify the above four DNA monomer templates by using 16 pairs of primers designed to obtain a uracil deoxyribonucleotide or A nucleotide sequence containing a BsmBI recognition site.
  • quadruplet the above four linking monomers are sequentially joined to form a quadruplet, which can be used as a PCR template.
  • the present invention pre-assembles 512 quadruplexes based on 16 monomers used to synthesize TALE repeats.
  • the monomer and the quadruplet encode a TALE repeat sequence containing RVDs, and after PCR by the uracil-containing primer, the uracil deoxyribonucleotides are present at both ends; after cleavage by uracil cleavage reagent, adjacent two
  • the body/quadruplex has mutually matching cohesive ends and one-to-one correspondence.
  • the monomer and the quadruplex are subjected to primers containing the BsmBI recognition site without uracil deoxyribonucleotides, and the two segments have a BsmBI cleavage site; after BsmBI digestion, the phase
  • the adjacent two monomers/quadruplex have mutually matching sticky ends and one-to-one correspondence.
  • the monomer of the present invention is the same as the Chinese patent ZL201210380206.2. Except for the intermediate DNA base recognition region, the amino acid sequence of each TALE fragment is the same, so the DNA sequence encoding TALE can be serially and sequentially synthesized.
  • the present invention utilizes the characteristics of codon degeneracy to design four DNA sequences, which are named W, X, Y and Z, respectively. Outside the RVDs coding region, these four sequences differ greatly, but the amino acid sequences they encode are identical.
  • the specific sequences of the W, X, Y and Z types are shown in Table 1 of the Chinese patent ZL201210380206.2.
  • the four repeating units in the quadruplet are WXYZ or XYZW, each with 256 quadruplets, including all possible four RVD combinations.
  • the plasmid vector shown in Fig. 2 conforming to Chinese Patent ZL201210380206.2 can be applied to the method of the present invention.
  • dUTP uracil deoxyribonucleotides
  • dUTP uracil deoxyribonucleotides
  • the nucleotide sequence of the primer containing the BsmBI restriction endonuclease recognition site is shown in Table 1.
  • the underlined sequence is the BsmBI recognition site, and the italicized bold sequence is the sticky end of the BsmBI cut.
  • F-W5, R-W3, R-X3, R-Y3, and R-Z3 are used to link TALE repeats and vectors, and other primers in the table are used to connect the individual TALE repeats.
  • the invention is based on the Chinese patent ZL201210380206.2, using TALE repeat monomer as a template, using uracil-containing primers for PCR, USER enzyme cleavage, T4 DNA ligase ligation, pre-assembled 512 tetramer templates .
  • there are 256 tetramers of WXYZ structure and XYZW structure, covering TALE repeat sequences for all four-base DNA fragments see Table 2 and Table 3). Table 2 Tetramer of WXYZ structure
  • T, C, and G indicate the DNA bases bound by each TALE monomer in the tetramer, as shown in Table 3.
  • All tetramers in the table are XYZW structures, that is, the first monomer is the X structure, the second is the Y structure, and the rest is analogous.
  • two different techniques can be used to construct complete TALE repeats: (1) using uracil deoxyribonucleotides Primer PCR amplification of the tetrameric template, and continued construction of sticky ends between different tetramers using uracil deoxyribonucleotide-specific cleavage, constructing complete repeats by BsmBI digestion-ligation cycle; (2) The tetramer template was PCR-amplified using BsmBI-recognizing site primers, the cohesive ends were digested by BsmBI digestion, and the complete repeats were constructed by BsmBI digestion-ligation cycle.
  • the primers used in the construction of the TALE sequence with the same number of repeating units are fixed, and therefore are very suitable for large-scale, high-throughput TALE construction.
  • the time, cost and sequencing mutation rate of the TALE sequence of the present invention are also lower than the previous Chinese patent ZL201210380206.2.
  • Using the first technical route to construct a TALE sequence specifically includes the following steps (see Figure 3):
  • the primer pair shown by the shade is used to amplify the most downstream TALE repeat, in which the BsmBI cleavage site carried by the R primer matches the sticky end to the vector, and the repeat length may be 1/2/3/4 Repeat the unit, and the remaining primer pairs are amplified into fragments containing four repeating units.
  • PCR amplification reaction The reaction can only be carried out using PfuTurbo Cx (Agilent) or Taq polymerase, 30 cycles (95 ° C, 30 s denaturation; 60 ° C, 30 s annealing; 72 ° C, 30 s extension).
  • the fourth step of the ligation product can be purified by ordinary PCR products. If the vector also carries ampicillin resistance, the ligation product in the fourth step is subjected to agarose gel electrophoresis and recovered.
  • the use of the second technical route to construct the TALE sequence specifically includes the following steps (see Figure 4):
  • PCR amplification reaction Commonly used high-fidelity PCR enzymes can be used in the PCR amplification reaction of the second route. Take TaqHiFi enzyme (Transgen) as an example, the reaction is 30 cycles (95 C, 30 s denaturation; 60 C, 30 s annealing; 72 ° C, 30 s extension).
  • the ligation product of the third step only needs to be purified by ordinary PCR products; if the vector is only resistant to ampicillin, the ligation product in the third step is subjected to agar. Glycogel electrophoresis and recovery.
  • the general steps of the second technical route are similar to the first one, except that (1) the primers used in the PCR are the same as the first route except for the primers of the ligation vector, and the other primers are all containing the BsmBI site. GG version (see Table 1); (2) PCR enzyme has no special requirements, common high-fidelity enzymes can be; (3) no need to use USERTM enzyme treatment, PCR reaction directly after purification of mixed PCR products.
  • the present invention retains the advantages of the TALE repeating unit having a long adhesive end, high connection accuracy, easy expansion, simple steps, high efficiency and rapidity in the Chinese patent ZL201210380206.2.
  • the TALE sequence is mainly connected by a fragment containing four repeating units, requiring fewer fragments and a lower error rate.
  • each PCR template structure and primer are fixed, and it is not necessary to separately design a template and a primer pair for each TALE, and is more suitable for high-throughput, automated operation than the Chinese patent ZL201210380206.2.
  • Figure 1 is a diagram of the pIRES2-EGFP-TALEN vector
  • Figure 2 is a diagram of the pGL3 - TALE- Venus carrier
  • FIG. 3 is a flow chart of constructing a TALE sequence by using the first technical route of the present invention
  • FIG. 5 is a PCR result of a TALEN fragment according to Embodiment 1 of the present invention.
  • Figure 6 shows the results of treatment with diphtheria toxin by wild type and HBEGF knockout cells.
  • Example 1 Using TALENs to achieve knockout of HBEGF gene in human cells
  • the human HBEGF gene also known as DTR3 ⁇ 4, is a receptor for diphtheria toxin in host cells. After the gene is knocked out, the host cell should be completely resistant to diphtheria toxin.
  • the exon sequence information of the human HBEGF gene was searched in the NCBI (http://www.ncbi.nlm.nih.gov/gene/) database, and the TALENs used were designed for the sequence. This region is located at positions 81-126 of the second exon of the HBEGF gene.
  • the sequence is as follows:
  • the uppercase letters are TALENs combined with the lowercase letters and the lowercase letters are Spacer.
  • the required synthesis TALE is CCCACTGTATCCACG, CCCGGCCGCCTCCTA.
  • the Spacer region contains a PvuII restriction site (underlined).
  • the TALE repeat region to be synthesized can be split into four four-unit segments: CCCA CTGT ATCC ACG; CCCG GCCG CCTC CTA.
  • the DNA marker followed by the left to right, is the four fragments of TALEN-L and TALEN-R. Two different TALEN fragments were separately mixed, treated with USER enzyme, and the PCR product was purified using a PCR product purification kit (Transgen).
  • the ligation product and the pIRES2-EGFP-TALEN vector were treated with BsmBI endonuclease and T4 ligase, and then transformed into E. coli competent DH50 PCR to identify the recombinant, and the plasmid was extracted and verified by sequencing.
  • This experiment used HeLa cells cultured in DMEM (Invitrogen) medium. Transfect 0.9 upstream TALEN, 0.9 downstream TALEN, and 0.2 eGFP plasmid to 1 ⁇ using the AAD-1001S Nucleofector II ( Lonza ) electrocycler
  • the cells were cultured at 37 ° C for 24 hours (C 0 2 5% ), and then transferred to 30 ° C for further 72 hours. Subsequently, the cells were cultured in a medium containing 2 ⁇ ⁇ / ⁇ 1 puromycin for 48 hours at 37 ° C, and the cells not transfected into the plasmid were killed, and the next detection was carried out.
  • the genomic DNA of the HeLa cells obtained in the previous step was extracted, and primers were designed for genomic PCR amplification.
  • TALEN binding region The genomic DNA of the HeLa cells obtained in the previous step was extracted, and primers were designed for genomic PCR amplification.
  • Upstream primer GTGGCCGCCGCTTCGAAAGTGAC
  • Downstream primer GTCCAAGGATGGGGGGCCTCCA; annealing temperature 65 °C, product length 503 bp, and only contains a PvuII restriction site in Spacer, and digested to produce two fragments of 104 bp and 399 bp.
  • PvuII TAKARA
  • agarose gel electrophoresis determined that the probability of fragment deletion in the designed Spacer region was more than 50%.
  • HeLa cells were cultured using a medium containing 50 ng/ml of diphtheria toxin (this concentration was 5 times the lethal concentration of diphtheria toxin in HeLa cells), and the resistant phenotype was observed. The results are shown in Fig. 6.
  • A is the result of toxin treatment of wild-type HeLa cells, and all the cells are dead.
  • B is the result of treatment of HeLa cells transfected with HBEGF TALEN, and there are many healthy cells. Cells successfully knocked out for HBEGF.
  • telomere structure A highly repetitive sequence in human telomeres was found: TTAGGGTTAGGG...TTAGGG, TALE- Venus fusion fluorescent protein with target site TAGGGTTAGGGTTAGG was prepared to indicate telomere structure.
  • the TALE sequence to be synthesized contains 16 repeating units and can be separated into four tetramers of TAGG GTTA GGGT TAGG. According to Table 5, the structure of the four tetramers and the desired primers were found, and the primers with the GG type in Table 1 were used, and the specific templates were determined according to Table 2 and Table 3. The results are shown in Table 8. Table 8 TALE- Venus template, primer selection table
  • the PCR amplification was carried out by TaqHiFi, and the PCR products were mixed and subjected to agarose electrophoresis, and the 400 bp band obtained by PCR was removed and purified.
  • the purified fragment and the pGL3-TALE-Venus vector were co-transformed into a BsmBI digestion-ligation cycle, transformed into Trans-1-T1 E. coli competent (Transgen), coated with an ampicillin plate, and cultured overnight at 37 °C.
  • the method for synthesizing a TALE repeat sequence for gene (especially eukaryotic gene) site-directed modification disclosed in the present invention uses a uracil deoxyribonucleotide excision method to produce a sticky end of a DNA fragment at both ends of a DNA fragment by using a uracil excision reagent. Based on the DNA template amplified by P CR and the design of the primers, 512 template plasmids containing four TALE repeat units were synthesized on the basis of 16 monomers containing TALE repeats, which can be used for high-throughput production.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a high-efficiency synthesis method of TALE repeated segments for genetic site-specific modification, which provides 512 TALE quadruplicate unit templates and related PCR primers and can be used in high-throughput production. In the present invention, a TALE coding sequence is synthesized by using 512 template plasmids comprising four TALE repeated units and using two technical means: 1. expanding a tetramer template by using a set of fixed PCR primers comprising uracil deoxyribonucleotide, manufacturing adhesive tail ends at two ends of DNA segments by using a uracil excision reagent, and connecting multiple DNA segments comprising four or less TALE repeated units to form a TALE protein coding sequence; and 2. expanding the tetramer template by using a set of fixed PCR primers comprising BsmBI enzyme cutting sites, and combining multiple segments into a TALE coding sequence by means of a cycle of BsmBI enzyme cutting and connection. After the TALE coding sequences fully connected to multiple carriers are introduced into cells, applications of knockout, knockin, expression and regulation and fluorescent making and the like of target genes are completed by specifically binding to loci of the target genes.

Description

用于基因定点修饰的 TALE重复片段的合成方法 技术领域  Method for synthesizing TALE repeats for genetic site-directed modification
本发明涉及生物基因工程技术, 具体地说涉及应用于基因 (特别是真核基因) 定点修饰的 The present invention relates to biological genetic engineering techniques, and in particular to the application of fixed-point modification to genes (especially eukaryotic genes)
TALE重复片段的合成方法。 背景技术 The method of synthesizing TALE repeats. Background technique
TALEs ( Transcription activator like effectors )在自然界中,是多种黄单胞菌属 ( Xanthomonas ) 产生的用于激活宿主基因表达或促进自身群落化的第三类分泌蛋白 (Boch and Bonas, 2010; Bogdanove et al., 2010; Scholze and Boch, 2011 )。 有报道证明 TALEs蛋白核酸结合域的氨基酸序 列与其靶位点的核酸序列有较恒定的关系, TALEs蛋白中含有高度保守、 以 33-35个氨基酸为单 元组成的串联重复序列,每个单元中第 12、 13位氨基酸负责识别和结合特异的一位 DNA碱基(比 如 NI识别 A, HD识别 C, NG识别 Τ, NN识别 G以及 A等等)。 通过这种关系, TALEs可以特异性 结合靶点 DNA ( Boch et al., 2009; Moscou and Bogdanove, 2009 )。 TALEs成功解决了锌指蛋白不 能识别任意目标基因序列, 以及识别序列经常受上下游序列影响识别特性的问题, 是目前将效 应蛋白带到特定核酸序列的最有效方法之一( Bogdanove and Voytas, 2011 )。 基于 TALE的这一特 性, 已经发展出多种应用, 用于定点修饰、 调控或指示真核基因表达, 包括 TALE核酸酶嵌合体 ( TALE-nuclease chimeras, TALENs )技术 (用于基因敲除)( Miller et al., 2011 )、 TALE介导的 特定基因的转录激活(Miller et al., 2011 )或者抑制 ( Cong et al., 2012; Garg et al., 2012; Mahfouz et al., 2012 )、 TALE与荧光蛋白融合后指示靶 DNA位置等 ( Miyanari, Y. et al., 2013 )。  TALEs ( Transcription activator like effectors) is a third type of secreted protein produced by Xanthomonas to activate host gene expression or promote self-community in nature (Boch and Bonas, 2010; Bogdanove et Al., 2010; Scholze and Boch, 2011). It has been reported that the amino acid sequence of the TALEs protein nucleic acid binding domain has a relatively constant relationship with the nucleic acid sequence of its target site. The TALEs protein contains a highly conserved tandem repeat sequence consisting of 33-35 amino acids. The 12- and 13-position amino acids are responsible for recognizing and binding a specific DNA base (such as NI recognition A, HD recognition C, NG recognition Τ, NN recognition G and A, etc.). Through this relationship, TALEs can specifically bind to target DNA (Boch et al., 2009; Moscou and Bogdanove, 2009). TALEs successfully solved the problem that zinc finger proteins could not recognize any target gene sequence, and the recognition sequence was often affected by upstream and downstream sequences, and it is one of the most effective methods to bring effector proteins to specific nucleic acid sequences ( Bogdanove and Voytas, 2011). ). Based on this feature of TALE, a variety of applications have been developed for site-directed modification, regulation or expression of eukaryotic gene expression, including TALE-nuclease chimeras (TALENs) technology (for gene knockout) ( Miller et al., 2011), TALE-mediated transcriptional activation of specific genes (Miller et al., 2011) or inhibition (Cong et al., 2012; Garg et al., 2012; Mahfouz et al., 2012), TALE is fused to a fluorescent protein to indicate the position of the target DNA, etc. (Miyanari, Y. et al., 2013).
由于任一定制的 TALE通常包含大约十个以上的高度重复片段(34个氨基酸残基 /片段), 其 表达载体的合成难度很大。 在此前的研究中, 已有多个科研机构利用这种氨基酸与核酸序列的 对应关系,模块化组装 TALEs,特异性结合目的核酸序列( Briggs et al., 2012; Cermak et al., 2011 ; Garg et al., 2012; Huang et al., 2011 ; Li et al., 2012; Li et al., 2011 ; Morbitzer et al., 2011 ; Reyon et al., 2012; Sanjana et al., 2012; Weber et al., 2011 ; Zhang et al., 2011 ; Schmid-Burgk et al., 2013 ), 但依然存在效率低、 周期长、 操作繁瑣、 前体材料种类繁多或花费大等各种不同的问题。  Since any custom TALE typically contains more than ten highly repeating fragments (34 amino acid residues per fragment), the synthesis of its expression vector is difficult. In previous studies, a number of research institutions have used this amino acid to correspond to nucleic acid sequences, modularly assembling TALEs, and specifically binding to the nucleic acid sequence of interest (Brigs et al., 2012; Cermak et al., 2011; Garg Et al., 2012; Huang et al., 2011; Li et al., 2012; Li et al., 2011; Morbitzer et al., 2011; Reyon et al., 2012; Sanjana et al., 2012; Weber et Al., 2011; Zhang et al., 2011; Schmid-Burgk et al., 2013), but there are still various problems such as low efficiency, long cycle time, cumbersome operation, various types of precursor materials or high cost.
具体来说, 2011年 Tomas Cermak发表在 《核酸研究》( Nucleic Acids Research ) 上的文章借 助亚克隆手段通过不同载体构建粘性末端, 根据 TALE的不同重复单元所处不同位置选择亚克隆 的载体, 通过酶切制造唯一位置上特异的粘性末端, 这样就可以实现不同的重复单元按照一定 顺序进行连接。 由于受到连接效率和载体构建的限制只能设计 1-10位置的重复单元, 所以合成 TALE只能分两步进行。另外,此方法准备工作非常复杂,至少需要五天时间( Cermak et al., 2011 )。  Specifically, in 2011, Tomas Cermak published an article in Nucleic Acids Research to construct sticky ends by different vectors by means of subcloning, and to select subcloned vectors according to the different positions of different repeating units of TALE. Enzymatic digestion produces a uniquely viscous end at a unique position, so that different repeat units can be joined in a certain order. Due to the limitation of connection efficiency and vector construction, only repeat units of positions 1-10 can be designed, so the synthesis of TALE can only be performed in two steps. In addition, the preparation of this method is very complicated and requires at least five days (Cermak et al., 2011).
Rene Geibler小组在上一方法的基础上建立了名为 "Golden TALE Technology" 的合成方法, 将利用亚克隆制造特定位置粘性末端的载体数量缩减为六个, 而优化了不同分组之间的克隆载 体, 从而实现更加高效率更加准确而又不延长时间的方法 ( Geissler et al., 2011 )。  Based on the previous method, the Rene Geibler team established a synthetic method called "Golden TALE Technology", which reduced the number of vectors using subclones to produce cohesive ends at specific positions to six, and optimized the cloning vectors between different groups. To achieve a more efficient and accurate method without prolonging the time (Geissler et al., 2011).
北京大学张博教授发表了一个名为 "单元合成" 的方法, 该方法利用 Spel和 Nhel两个核酸酶 的位点特性设计了两两一组的合成单元, 此法准确性高, 但是耗时较长 ( Huang et al., 2011 )。  Professor Zhang Bo of Peking University published a method called "unit synthesis", which uses the site characteristics of two nucleases of Spel and Nhel to design a two-two synthesis unit. This method is highly accurate, but time consuming. Longer (Huang et al., 2011).
Bing Yang小组提出了名为 "模块化组装 ( modular assembly )" 的合成方法, 该方法利用密 码子的简并性通过 BsmBI酶切的方法使得每个重复单元可以获得八个不同的粘性末端, 所以 TALE合成就以位置互相区别的八个组的重复单元为基础进行,一定程度上提高了效率(Li et al., 2011 )。 以上方法均有各自不同的优缺点, 但是同时面临的一个问题就是难以实现 TALE的大批 量生产。 The Bing Yang team proposed a synthesis method called "modular assembly", which uses dense Degeneracy of the code The BsmBI digestion method allows eight different sticky ends to be obtained for each repeating unit, so the TALE synthesis is based on eight groups of repeating units that differ from each other in position, which improves efficiency to some extent. (Li et al., 2011). All of the above methods have their own advantages and disadvantages, but at the same time, one problem is that it is difficult to achieve mass production of TALE.
2012年 4月,《自然一生物技术》刊登了来自美国麻省总医院研究人员的最新研究成果, Joung 和同事开发了一种称为 FLASH ( fast ligation based automatable solid-phase high-throughput )的快 速连接自动化固相高通量的系统, 通过在磁珠上装配编码 TALEN的基因片段, 借助外部磁铁保 持位置实现固定化的连接, 所需要时间大大缩短, 有利于合成的自动化。 该方法具有前期准备 工作量非常大和前处理比较麻烦等劣势 (Reyon et al., 2012 )。  In April 2012, Nature-Biotech published the latest research from researchers at the Massachusetts General Hospital. Joung and colleagues developed a fast called FLASH (fast ligation based automatable solid-phase high-throughput). By connecting an automated solid-phase high-throughput system, by assembling a gene fragment encoding TALEN on a magnetic bead and maintaining an immobilized connection by means of an external magnet, the time required is greatly shortened, which facilitates the automation of the synthesis. This method has the disadvantages of very high initial workload and cumbersome pre-processing (Reyon et al., 2012).
2013年, Schmid-Burgk和同事开发的一种不依赖于连接的 TALE克隆方法发表在 《自然一 生物技术》 上, 该方法利用较长的粘性末端, 在不需连接的情况下就可以把多个片段整合在一 起, 一天可以合成大于 600个 TALEN基因, 但前提是先合成 3072个含五个重复单元的前体 ( Schmid-Burgk et al., 2013 )。  In 2013, a connection-independent TALE cloning method developed by Schmid-Burgk and colleagues was published in Nature-Biotechnology, which uses longer sticky ends and can be used without connection. The fragments are integrated and more than 600 TALEN genes can be synthesized in one day, provided that 3072 precursors containing five repeat units are synthesized (Schmid-Burgk et al., 2013).
2013年, 本实验室发表的一种 ULti MATE合成方法利用含尿嘧啶的 P CR引物和尿嘧啶切除试 剂在 DNA片段上产生较长的粘性末端, 并利用 64个含三个重复单元的前体, 能够在几小时内完 成 TALE编码序列的构建( Yang, J., et al. 2013 )。 该方法具有快速、 简便, 正确率高的特点, 但 由于每个 TALE序列合成中需要的模板和 PCR引物都不一样, 在进行高通量合成时工作量相对较 大。 发明内容  In 2013, a ULti MATE synthesis method published in our laboratory used uracil-containing PCR primers and uracil excision reagents to generate longer sticky ends on DNA fragments and 64 precursors containing three repeat units. The construction of the TALE coding sequence can be completed in a few hours (Yang, J., et al. 2013). The method is fast, simple, and has a high correct rate. However, since the template and PCR primers required for each TALE sequence synthesis are different, the workload is relatively large when performing high-throughput synthesis. Summary of the invention
本发明目的是提供一种用于基因(特别是真核基因)定点修饰的 TALE重复序列的合成方法, 在我们已授权中国专利 (ZL201210380206.2 ) 的基础上提供了 512个 TALE四重复单元模板及相 关 PCR引物, 可用于高通量生产。  The object of the present invention is to provide a method for synthesizing a TALE repeat of a gene (especially a eukaryotic gene), and to provide 512 TALE four repeat unit templates based on the Chinese patent (ZL201210380206.2). And related PCR primers for high throughput production.
本发明所述的 512个 TALE四重复单元模板是使用尿嘧啶脱氧核糖核苷酸切除法用尿嘧啶切 除试剂( uracil-specific excision reagent: USER )制造 DNA片段两端的粘性末端, 通过对用于 PCR 扩增的 DNA模板以及引物的设计, 在 16个含 TALE重复序列的单体基础上, 合成 512个含四个 TALE重复单元的模板质粒。  The 512 TALE four-repeat unit template of the present invention is a uracil-specific excision reagent (USER) manufactured by uracil-specific excision reagent (USER) using a uracil deoxyribonucleotide excision reagent (USER) to make the sticky ends of the DNA fragments, and is used for PCR. The amplified DNA template and primer design were used to synthesize 512 template plasmids containing four TALE repeat units based on 16 monomers containing the TALE repeat.
本发明利用 512种含四个 TALE重复单位的模板质粒, 釆用两种技术路线合成 TALE编码序 列: 1. 使用一套固定的含尿嘧啶脱氧核糖核苷酸的 PCR引物扩增四聚体模板, 用尿嘧啶切除试 剂制造 DNA片段两端的粘性末端, 将含四个或更少 TALE重复单位的多个 DNA片段连接成为 TALE蛋白编码序列; 2. 使用一套固定的含 BsmBI酶切位点的 PCR引物扩增四聚体模板, 通过 B smBI酶切 -连接的循环将多个片段组合成为 TALE编码序列。 完整的连入多种载体的 TALE编码 序列导入细胞后, 可特异性结合靶基因位点, 完成靶基因敲除、 敲入、 表达调控、 荧光标记等 应用。  The present invention utilizes 512 template plasmids containing four TALE repeat units to synthesize TALE coding sequences using two technical routes: 1. Amplification of tetrameric templates using a set of immobilized PCR primers containing uracil deoxyribonucleotides Using a uracil excision reagent to make a cohesive end of the DNA fragment, and ligating multiple DNA fragments containing four or fewer TALE repeat units into a TALE protein coding sequence; 2. using a fixed set of BsmBI-containing cleavage sites The PCR primers amplify the tetrameric template, and the multiple fragments are combined into a TALE coding sequence by a B smBI digestion-ligation cycle. After the complete TALE coding sequence of multiple vectors is introduced into the cell, the target gene locus can be specifically combined to complete target gene knockout, knock-in, expression regulation, fluorescent labeling and the like.
本发明中, 术语 "TALE重复序列": 除了中间 DNA碱基识别区域( RVDs: region of variable di-nucleotides ) 外, 每个 TALE重复序列的氨基酸序列都相同。  In the present invention, the term "TALE repeat" means that the amino acid sequence of each TALE repeat sequence is the same except for the region of variable di-nucleotides (RVDs).
术语 "TALE重复片段": 用于编码 TALE重复序列的 DNA片段。 术语 "单体", 编码单个 TALE重复单元的 DNA片段。 本发明利用密码子简并性的特点, 设 计了四种 DNA单体模板, 分别命名为 W、 X、 Y和 Z类型。 在 RVDs编码区域外, 这四种序列有较 大的差异, 但是它们所编码的氨基酸序列则完全相同。 The term "TALE repeat": A DNA fragment used to encode a TALE repeat. The term "monomer", a DNA fragment encoding a single TALE repeat unit. The present invention utilizes the characteristics of codon degeneracy to design four DNA monomer templates, which are named W, X, Y and Z, respectively. Outside the RVDs coding region, these four sequences differ greatly, but the amino acid sequences they encode are identical.
术语 "连接单体", 用于合成 TALE重复序列的单体, 所述连接单体利用设计的 16对引物, PCR扩增上述四种 DNA单体模板, 得到含有尿嘧啶脱氧核糖核苷酸或含 BsmBI识别位点的核苷 酸序列。  The term "linking monomer", a monomer for synthesizing a TALE repeat sequence, which is designed to amplify the above four DNA monomer templates by using 16 pairs of primers designed to obtain a uracil deoxyribonucleotide or A nucleotide sequence containing a BsmBI recognition site.
术语 "四联体", 上述四个连接单体按顺序连接形成四联体, 可用作 PCR模板。  The term "quadruplex", the above four linking monomers are sequentially joined to form a quadruplet, which can be used as a PCR template.
本发明在用于合成 TALE重复序列的 16个单体基础上, 预组装了 512个四联体。 所述单体及 四联体编码含有 RVDs的 TALE重复序列,经含尿嘧啶引物的 PCR后,其两端具有尿嘧啶脱氧核糖 核苷酸; 经尿嘧啶裂解试剂酶切后,相邻两单体 /四联体间具有相互匹配的粘性末端且一一对应。 使用另一套技术路线, 单体及四联体经不含尿嘧啶脱氧核糖核苷酸而含 BsmBI识别位点的引物 PCR后, 两段具有 BsmBI酶切位点; 经 BsmBI酶切后, 相邻两单体 /四联体间具有相互匹配的粘性 末端且一一对应。  The present invention pre-assembles 512 quadruplexes based on 16 monomers used to synthesize TALE repeats. The monomer and the quadruplet encode a TALE repeat sequence containing RVDs, and after PCR by the uracil-containing primer, the uracil deoxyribonucleotides are present at both ends; after cleavage by uracil cleavage reagent, adjacent two The body/quadruplex has mutually matching cohesive ends and one-to-one correspondence. Using another set of technical routes, the monomer and the quadruplex are subjected to primers containing the BsmBI recognition site without uracil deoxyribonucleotides, and the two segments have a BsmBI cleavage site; after BsmBI digestion, the phase The adjacent two monomers/quadruplex have mutually matching sticky ends and one-to-one correspondence.
本发明所述单体与中国专利 ZL201210380206.2相同, 除了中间 DNA碱基识别区域外, 每个 TALE片段的氨基酸序列都相同, 所以可按顺序串联及合成编码 TALE的 DNA序列。 本发明利用 密码子简并性的特点, 设计了四种 DNA序列, 分别命名为 W、 X、 Y和 Z类型。 在 RVDs编码区域 外, 这四种序列有较大的差异, 但是它们所编码的氨基酸序列则完全相同。 W、 X、 Y和 Z类型 的具体序列参见中国专利 ZL201210380206.2的表 1。 四联体中四个重复单元的结构为 WXYZ或 XYZW, 每种结构各有 256个四联体, 包含所有可能的四种 RVD组合。  The monomer of the present invention is the same as the Chinese patent ZL201210380206.2. Except for the intermediate DNA base recognition region, the amino acid sequence of each TALE fragment is the same, so the DNA sequence encoding TALE can be serially and sequentially synthesized. The present invention utilizes the characteristics of codon degeneracy to design four DNA sequences, which are named W, X, Y and Z, respectively. Outside the RVDs coding region, these four sequences differ greatly, but the amino acid sequences they encode are identical. The specific sequences of the W, X, Y and Z types are shown in Table 1 of the Chinese patent ZL201210380206.2. The four repeating units in the quadruplet are WXYZ or XYZW, each with 256 quadruplets, including all possible four RVD combinations.
符合中国专利 ZL201210380206.2图 2所示的质粒载体都可应用于本发明所述方法。  The plasmid vector shown in Fig. 2 conforming to Chinese Patent ZL201210380206.2 can be applied to the method of the present invention.
本发明除中国专利 ZL201210380206.2所述的 32个含尿嘧啶脱氧核糖核苷酸(下称 dUTP或简 称 U )的引物(序列见中国专利 ZL201210380206.2 SEQ ID N0.17-48 )外,另提供了 17个含 BsmBI 限制性内切酶识别位点的引物, 使用这些引物 PCR扩增 TALE重复序列后, 再经 BsmBI酶切, 可 产生片段间互补的粘性末端, 且各对互补粘性末端之间至少有 2个碱基的差别。 不同片段、 片段 与载体间可经由这些粘性末端连接成为整体。  In addition to the primers of the uracil deoxyribonucleotides (hereinafter referred to as dUTP or U for short) described in Chinese Patent No. ZL201210380206.2 (see the Chinese patent ZL201210380206.2 SEQ ID N0.17-48 for the sequence), Provided 17 primers containing a BsmBI restriction endonuclease recognition site, using these primers to PCR-amplify the TALE repeat sequence, and then digesting with BsmBI to generate complementary sticky ends between the fragments, and each pair of complementary sticky ends There are at least 2 base differences between them. Different fragments, fragments and vectors can be joined together via these sticky ends.
所述含 BsmBI限制性内切酶识别位点的引物的核苷酸序列如表 1所示。  The nucleotide sequence of the primer containing the BsmBI restriction endonuclease recognition site is shown in Table 1.
表 1 含有 BsmBI识别位点的引物表  Table 1 Primer table containing BsmBI recognition sites
引物 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛議瞧 i篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 瞧 瞧 篛 篛 篛 瞧 瞧 篛 篛 篛 瞧 瞧 篛 篛 篛 瞧 瞧 篛 篛 篛 篛 瞧 篛 篛 篛 篛 瞧 篛 篛 篛 瞧 瞧 篛 篛 篛 瞧 篛 篛 篛 篛 瞧 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 篛 瞧 篛 篛 篛
F-W5 TATACGTCTCAGAACCTGACACCAGAGCAAGTAGTGGCTATTG F-W5 TATACGTCTCAGAACCTGACACCAGAGCAAGTAGTGGCTATTG
F-Wz-GG TCTCGTCTCTCTOACACCAGAGCAAGTAGTGG  F-Wz-GG TCTCGTCTCTCTOACACCAGAGCAAGTAGTGG
F-Xz-GG GTCCGTCTCATOGGCTCACTCCGGAACA  F-Xz-GG GTCCGTCTCATOGGCTCACTCCGGAACA
F-Xw-GG ATACGTCTCACAAGCACACGGTCTCACTCCGGAACAGGTGGT  F-Xw-GG ATACGTCTCACAAGCACACGGTCTCACTCCGGAACAGGTGGT
F-Ww-GG GTCCGTCTCCAGAGCAAGTAGTGGCTAT  F-Ww-GG GTCCGTCTCCAGAGCAAGTAGTGGCTAT
F-Wy-GG GTCCGTCTCCCCACGGACTGACACCAGAGCAAGTAGT  F-Wy-GG GTCCGTCTCCCCACGGACTGACACCAGAGCAAGTAGT
F-Xy-GG GTGCGTCTCCCACGGACTCACTCCGGAACAGGTGG  F-Xy-GG GTGCGTCTCCCACGGACTCACTCCGGAACAGGTGG
R-Zw-GG TATCGTCTCArCAGCCCATGAGCCTGACACAGTACT  R-Zw-GG TATCGTCTCArCAGCCCATGAGCCTGACACAGTACT
R-Zx-GG CCGCGTCTCGCCCATGAGCCTGACACAG  R-Zx-GG CCGCGTCTCGCCCATGAGCCTGACACAG
R-Wx-GG AGACGTCTCGCTTOGCAGAGCACCGGAA R-Ww-GG TATCGTCTCACTCTGGTGTCAGACCGTGTGCTTGGCAGAGCA R-Wx-GG AGACGTCTCGCTTOGCAGAGCACCGGAA R-Ww-GG TATCGTCTCACTCTGGTGTCAGACCGTGTGCTTGGCAGAGCA
R-Yw-GG TATCGTCTCCGTOGGCTTGGCACAAAACGGGCAGC  R-Yw-GG TATCGTCTCCGTOGGCTTGGCACAAAACGGGCAGC
R-Yx-GG GGGCGTCTCCCGTOGGCTTGGCACAAAACGGGCAGCAACCG  R-Yx-GG GGGCGTCTCCCGTOGGCTTGGCACAAAACGGGCAGCAACCG
R-W3 TATACGTCTCATOCTCTCCAGCGCTTGTTTGCCACC  R-W3 TATACGTCTCATOCTCTCCAGCGCTTGTTTGCCACC
R-X3 TATACGTCTCATOCrCTCAAGGGCTTGCTTGCCGC  R-X3 TATACGTCTCATOCrCTCAAGGGCTTGCTTGCCGC
R-Y3 TATACGTCTCATOCTTTCCAAAGCCTGTTTTCCGCC  R-Y3 TATACGTCTCATOCTTTCCAAAGCCTGTTTTCCGCC
R-Z3 TATACGTCTCATOCrTTCCAGTGCCTGCTTACCTCC  R-Z3 TATACGTCTCATOCrTTCCAGTGCCTGCTTACCTCC
注:  Note:
1、 下划线序列为 BsmBI识别位点, 斜体加粗序列为 BsmBI切割后的粘性末端。  1. The underlined sequence is the BsmBI recognition site, and the italicized bold sequence is the sticky end of the BsmBI cut.
2、 F-W5、 R-W3、 R-X3、 R-Y3、 R-Z3用于连接 TALE重复片段和载体,表中的其他引物用于连接各个 TALE 重复片段。 本发明在中国专利 ZL201210380206.2的基础上, 以 TALE重复序列单体为模板, 用含尿嘧啶 引物进行 PCR,经 USER酶剪切、 T4 DNA连接酶连接, 预组装了 512个四聚体模板。其中, WXYZ 结构和 XYZW结构的四聚体各有 256个, 涵盖了针对所有四碱基 DNA片段的 TALE重复序列 (见 表 2和表 3 )。 表 2 WXYZ结构的四聚体  2. F-W5, R-W3, R-X3, R-Y3, and R-Z3 are used to link TALE repeats and vectors, and other primers in the table are used to connect the individual TALE repeats. The invention is based on the Chinese patent ZL201210380206.2, using TALE repeat monomer as a template, using uracil-containing primers for PCR, USER enzyme cleavage, T4 DNA ligase ligation, pre-assembled 512 tetramer templates . Among them, there are 256 tetramers of WXYZ structure and XYZW structure, covering TALE repeat sequences for all four-base DNA fragments (see Table 2 and Table 3). Table 2 Tetramer of WXYZ structure
Figure imgf000005_0001
Figure imgf000005_0001
注:  Note:
1、 A、 T、 C、 G指示四聚体中的每个 TALE单体所结合的 DNA碱基, 表 3同。  1. A, T, C, and G indicate the DNA bases bound by each TALE monomer in the tetramer, as shown in Table 3.
、 表中所有四聚体均为 WXYZ结构, 即第一个单体为 W结构, 第二个为 X结构, 余类推。 表 3 XYZW结构的四聚体 All tetramers in the table are WXYZ structures, that is, the first monomer is W structure, the second is X structure, and the like. Table 3 Tetramer of XYZW structure
Figure imgf000006_0001
Figure imgf000006_0001
注: 表中所有四聚体均为 XYZW结构, 即第一个单体为 X结构, 第二个为 Y结构, 余类推。 本发明应用尿嘧啶特异性剪切试剂构建 512个四聚体模板后, 在此基础上可使用两种不同的 技术路线构建完整的 TALE重复序列: (1 )使用含尿嘧啶脱氧核糖核苷酸引物 PCR扩增四聚体模 板, 并继续使用尿嘧啶脱氧核糖核苷酸特异性剪切酶在不同四聚体之间构建粘性末端, 通过 BsmBI酶切-连接循环构建完整重复序列; ( 2 )使用含 BsmBI识别位点引物 PCR扩增四聚体模板, 经 BsmBI酶切构建粘性末端, 通过 BsmBI酶切-连接循环构建完整重复序列。 由于已有 512个四聚 体模板, 本发明在构建重复单元个数相同的 TALE序列时, 所使用的引物是固定的, 因此非常适 应于大规模、 高通量的 TALE构建。 同时, 本发明构建 TALE序列的用时、 耗费以及测序突变率 也都低于此前的中国专利 ZL201210380206.2。  Note: All tetramers in the table are XYZW structures, that is, the first monomer is the X structure, the second is the Y structure, and the rest is analogous. After constructing 512 tetramer templates using uracil-specific cleavage reagents, two different techniques can be used to construct complete TALE repeats: (1) using uracil deoxyribonucleotides Primer PCR amplification of the tetrameric template, and continued construction of sticky ends between different tetramers using uracil deoxyribonucleotide-specific cleavage, constructing complete repeats by BsmBI digestion-ligation cycle; (2) The tetramer template was PCR-amplified using BsmBI-recognizing site primers, the cohesive ends were digested by BsmBI digestion, and the complete repeats were constructed by BsmBI digestion-ligation cycle. Since there are 512 tetramer templates, the primers used in the construction of the TALE sequence with the same number of repeating units are fixed, and therefore are very suitable for large-scale, high-throughput TALE construction. At the same time, the time, cost and sequencing mutation rate of the TALE sequence of the present invention are also lower than the previous Chinese patent ZL201210380206.2.
使用第一种技术路线构建 TALE序列具体包括以下步骤(见图 3 ):  Using the first technical route to construct a TALE sequence specifically includes the following steps (see Figure 3):
1 )序列确定和模板及引物选择: 根据需要构建的 TALE重复单元个数, 查阅表 4确定模板结 构和所需引物, 然后根据表 2、 表 3确定具体所使用的模板。  1) Sequence determination and template and primer selection: According to the number of TALE repeat units constructed, refer to Table 4 to determine the template structure and the required primers, and then determine the specific template to be used according to Table 2 and Table 3.
表 4 根据 TALE重复单元个数选择模板和引物 (技术路线一)  Table 4 Selecting Templates and Primers Based on the Number of TALE Repeat Units (Technical Route 1)
1st PCR 2nd PCR 3rd PCR 4th PCR 5th PCR 6th PCR 1 st PCR 2 nd PCR 3 rd PCR 4 th PCR 5 th PCR 6 th PCR
Figure imgf000006_0002
st PCR 2nd PCR 3rd PCR 4th PCR 5th PCR 6th PCR
Figure imgf000006_0002
St PCR 2 nd PCR 3 rd PCR 4 th PCR 5 th PCR 6 th PCR
Figure imgf000007_0001
Figure imgf000007_0001
注: 阴影所示的引物对用来扩增最下游的 TALE重复序列, 其中 R引物带有的 BsmBI切割位点产生的粘性 末端与载体匹配, 重复序列长度可能是 1/2/3/4个重复单元, 其余引物对扩增出的都是含四个重复单元的片段。  Note: The primer pair shown by the shade is used to amplify the most downstream TALE repeat, in which the BsmBI cleavage site carried by the R primer matches the sticky end to the vector, and the repeat length may be 1/2/3/4 Repeat the unit, and the remaining primer pairs are amplified into fragments containing four repeating units.
2 ) PCR扩增反应:反应只能使用 PfuTurbo Cx ( Agilent )或者 Taq polymerase, 30 循环(95。C, 30 s变性; 60°C, 30 s退火; 72°C, 30 s延伸)。 2) PCR amplification reaction: The reaction can only be carried out using PfuTurbo Cx (Agilent) or Taq polymerase, 30 cycles (95 ° C, 30 s denaturation; 60 ° C, 30 s annealing; 72 ° C, 30 s extension).
PCR扩增:  PCR amplification:
四聚体模板(5 ng/l ) 3μ1  Tetramer template (5 ng/l) 3μ1
上游引物 ( 1 mM ) 3μ1  Upstream primer ( 1 mM ) 3μ1
下游引物 ( 1 mM ) 3μ1  Downstream primer ( 1 mM ) 3μ1
PfuTurbo Cx ( 2.5U/1 ) 0.15μ1  PfuTurbo Cx ( 2.5U/1 ) 0.15μ1
10 PfuTurbo Cx Buffer 1.5μ1  10 PfuTurbo Cx Buffer 1.5μ1
dNTP (每种 2.5 mM ) 1.2μ1  dNTP (2.5 mM each) 1.2μ1
dd¾0 补至 ΙΟμΙ  Dd3⁄40 to ΙΟμΙ
3 ) USER处理及连接反应: 混合 PCR产物, 直接进行 USER™酶处理 (37°C , 15分钟)。 3) USER treatment and ligation reaction: Mix the PCR product and directly perform USERTM enzyme treatment (37 ° C, 15 minutes).
4 ) 纯化连接产物, 然后和含有 ccdB的表达载体进行 BsmBI酶切 -连接循环。 循环重复六次4) Purification of the ligation product, followed by BsmBI digestion-ligation cycle with an expression vector containing ccdB. Repeat six times in a loop
( 37°C, 5 min; 16°C, 5 min; 6个循环) 转化大肠杆菌感受态细胞, 用菌落 PCR、 质粒酶切等 方法鉴定重组子并测序无误后, 即完成了重组 TALE蛋白的质粒构建。 (37°C, 5 min; 16°C, 5 min; 6 cycles) Transformation of E. coli competent cells, identification of recombinants by colony PCR, plasmid digestion, etc., and sequencing of the recombinant TALE protein Plasmid construction.
由于四聚体模板是基于带有氨苄抗性基因的质粒构建的, 若使用的含 ccdB载体带有除氨苄 以外的抗性基因, 第四步的连接产物只需进行普通 PCR产物纯化即可。 若载体也只带有氨苄抗 性, 第四步中的连接产物需进行琼脂糖凝胶电泳并回收。  Since the tetramer template is constructed based on a plasmid carrying an ampicillin resistance gene, if the ccdB-containing vector is used with a resistance gene other than ampicillin, the fourth step of the ligation product can be purified by ordinary PCR products. If the vector also carries ampicillin resistance, the ligation product in the fourth step is subjected to agarose gel electrophoresis and recovered.
用针对特定基因构建的重组质粒转染细胞系, 可完成对靶基因的敲除、 敲入或过表达、 抑 制表达。 使用第二种技术路线构建 TALE序列具体包括以下步骤(见图 4): By transfecting a cell line with a recombinant plasmid constructed against a specific gene, knockdown, knock-in or overexpression of the target gene, and inhibition of expression can be accomplished. The use of the second technical route to construct the TALE sequence specifically includes the following steps (see Figure 4):
1)序列确定和模板及引物选择: 根据需要构建的 TALE重复单元个数, 查阅表 5确定模板结 构和所需引物, 然后根据表 2、 表 3确定具体所使用的模板。 表 5 根据 TALE重复单元个数选择模板和引物 (技术路线二)  1) Sequence determination and template and primer selection: According to the number of TALE repeat units constructed, refer to Table 5 to determine the template structure and the required primers, and then determine the specific template to be used according to Table 2 and Table 3. Table 5 Selecting Templates and Primers Based on the Number of TALE Repeat Units (Technical Route 2)
1st PCR 2nd PCR 3rd PCR 4th PCR 5th PCR 6th PCR 1 st PCR 2 nd PCR 3 rd PCR 4 th PCR 5 th PCR 6 th PCR
Figure imgf000008_0001
Figure imgf000008_0001
2) PCR扩增反应: 常用的高保真 PCR酶均可用于技术路线二的 PCR扩增反应, 以 TaqHiFi 酶 ( Transgen ) 为例, 反应 30个循环 (95 C, 30 s变性; 60 C, 30 s退火; 72°C, 30 s延伸)。 2) PCR amplification reaction: Commonly used high-fidelity PCR enzymes can be used in the PCR amplification reaction of the second route. Take TaqHiFi enzyme (Transgen) as an example, the reaction is 30 cycles (95 C, 30 s denaturation; 60 C, 30 s annealing; 72 ° C, 30 s extension).
PCR扩增:  PCR amplification:
四聚体模板(5ng/l) 3μ1  Tetramer template (5ng/l) 3μ1
上游引物 ( 1 mM) 3μ1  Upstream primer ( 1 mM) 3μ1
下游引物 ( 1 mM) 3μ1  Downstream primer ( 1 mM) 3μ1
TaqHiFi ( lOU/1 ) 0.15μ1  TaqHiFi ( lOU/1 ) 0.15μ1
10 TaqHiFi Buffer 1.5μ1  10 TaqHiFi Buffer 1.5μ1
dNTP (每种 2.5 mM) 1.2μ1  dNTP (2.5 mM each) 1.2μ1
dd¾0 补至 ΙΟμΙ 3 )混合 PCR产物, 直接纯化, 和含有 ccdB的表达载体进行 BsmBI酶切 -连接循环, 循环重复 20次 (37°C, 5 min; 16°C, 5 min; 20个循环)。 转化大肠杆菌感受态细胞, 菌落 PCR、 质粒酶 切并测序鉴定得到正确的重组子。 Dd3⁄40 to ΙΟμΙ 3) The PCR product was mixed, directly purified, and subjected to a BsmBI digestion-ligation cycle with an expression vector containing ccdB, and the cycle was repeated 20 times (37 ° C, 5 min; 16 ° C, 5 min; 20 cycles). E. coli competent cells were transformed, and the correct recombinants were identified by colony PCR, plasmid digestion and sequencing.
若使用的含 ccdB载体带有除氨苄以外的抗性基因, 第三步的连接产物只需进行普通 PCR产 物纯化; 若载体也只带有氨苄抗性, 第三步中的连接产物需进行琼脂糖凝胶电泳并回收。 综上所述, 第二种技术路线的大致步骤与第一种类似, 区别在于(1 ) PCR时所用引物除连 接载体的引物与第一种路线相同外, 其余引物均为含 BsmBI位点的 GG版本 (见表 1 ); ( 2 ) PCR 酶无特殊要求, 常见高保真酶均可; (3 )无需釆用 USER™酶处理, PCR反应后直接纯化混合的 PCR产物即可。 本发明的有益效果:  If the ccdB-containing vector is used with a resistance gene other than ampicillin, the ligation product of the third step only needs to be purified by ordinary PCR products; if the vector is only resistant to ampicillin, the ligation product in the third step is subjected to agar. Glycogel electrophoresis and recovery. In summary, the general steps of the second technical route are similar to the first one, except that (1) the primers used in the PCR are the same as the first route except for the primers of the ligation vector, and the other primers are all containing the BsmBI site. GG version (see Table 1); (2) PCR enzyme has no special requirements, common high-fidelity enzymes can be; (3) no need to use USERTM enzyme treatment, PCR reaction directly after purification of mixed PCR products. The beneficial effects of the invention:
( 1 )本发明保留了中国专利 ZL201210380206.2中, TALE重复单位间粘性末端长、 连接准 确性高、 易于扩展、 步骤简单、 高效迅速等优点。  (1) The present invention retains the advantages of the TALE repeating unit having a long adhesive end, high connection accuracy, easy expansion, simple steps, high efficiency and rapidity in the Chinese patent ZL201210380206.2.
( 2 )本发明由于预先构建了 512个四聚体模板, 构建 TALE序列时主要由含四个重复单元的 片段相连接, 需要的片段数更少, 错误率更低。  (2) Since the present invention constructs 512 tetramer templates in advance, the TALE sequence is mainly connected by a fragment containing four repeating units, requiring fewer fragments and a lower error rate.
( 3 ) 由于连接时片段数少, 可以固定所需模板的结构和每个片段所需的 PCR引物, 仅需 12 个含尿嘧啶脱氧核糖核苷酸或 BsmBI酶切位点的引物就可满足所有的片段间连接需求,引物相对 于中国专利 ZL201210380206.2得到了进一步优化选择, PCR的特异性和粘性末端相互间的差异 都得到了更好的保证。  (3) Since the number of fragments at the time of ligation is small, the structure of the desired template and the PCR primers required for each fragment can be immobilized, and only 12 primers containing uracil deoxyribonucleotides or BsmBI cleavage sites can be satisfied. All the inter-fragment linkage requirements, the primers were further optimized compared to the Chinese patent ZL201210380206.2, and the specificity of the PCR and the difference between the sticky ends were better ensured.
( 4 )釆用第二种技术路线构建 TALE序列时, 使用普通 PCR酶即可, 使构建成本大幅度降 低。  (4) When the TALE sequence is constructed using the second technical route, the common PCR enzyme can be used, and the construction cost is greatly reduced.
( 5 )整个构建过程仅需一次 PCR产物纯化, 且用于构建同一个 TALE序列的所有 PCR产物可 以混合为一管后进行纯化, 操作非常简便、 省时, 几小时内就可完成从选择靶序列到转化感受 态细胞的 TALE构建过程, 其中实际需要操作的时间则更少。  (5) Only one PCR product purification is required for the entire construction process, and all PCR products used to construct the same TALE sequence can be mixed into one tube for purification. The operation is very simple and time-saving, and the selective target can be completed within a few hours. The TALE construction process from sequence to transformed competent cells, which actually requires less time to operate.
( 6 ) 实际操作中, 菌落 PCR验证表明, 本发明所得的 TALE克隆几乎全部正确, 测序验证 错误率同样极低。  (6) In actual operation, colony PCR verification showed that the TALE clones obtained by the present invention were almost all correct, and the sequencing verification error rate was also extremely low.
( 8 )本发明中各个 PCR模板结构、 引物是固定的, 无需针对每条 TALE分别设计所需模板 和引物对, 相对于中国专利 ZL201210380206.2更加适应于高通量、 自动化操作。 附图说明  (8) In the present invention, each PCR template structure and primer are fixed, and it is not necessary to separately design a template and a primer pair for each TALE, and is more suitable for high-throughput, automated operation than the Chinese patent ZL201210380206.2. DRAWINGS
图 1为 pIRES2-EGFP-TALEN载体图;  Figure 1 is a diagram of the pIRES2-EGFP-TALEN vector;
图 2为 pGL3 -TALE- Venus载体图;  Figure 2 is a diagram of the pGL3 - TALE- Venus carrier;
图 3为釆用本发明的第一种技术路线构建 TALE序列流程图;  3 is a flow chart of constructing a TALE sequence by using the first technical route of the present invention;
图 4为釆用本发明的第二种技术路线构建 TALE序列流程图;  4 is a flow chart of constructing a TALE sequence by using the second technical route of the present invention;
图 5为本发明实施例 1 TALEN片段 PCR结果;  5 is a PCR result of a TALEN fragment according to Embodiment 1 of the present invention;
图 6为野生型与 HBEGF敲除细胞经白喉毒素处理结果。 具体实施方式 Figure 6 shows the results of treatment with diphtheria toxin by wild type and HBEGF knockout cells. detailed description
以下实施例用于说明本发明, 但不用来限制本发明的范围。 在不背离本发明精神和实质的 情况下, 对本发明方法、 步骤或条件所作的修改或替换, 均属于本发明的范围。  The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. Modifications or substitutions of the methods, steps or conditions of the invention are intended to be within the scope of the invention.
除非特别指明, 实施例中所用的技术手段为本领域技术人员所熟知的常规手段。 实施例 1 利用 TALENs实现人类细胞中 HBEGF基因的敲除  Unless otherwise indicated, the technical means used in the examples are conventional means well known to those skilled in the art. Example 1 Using TALENs to achieve knockout of HBEGF gene in human cells
1. 针对特定基因选择需合成的 TALENs序列。  1. Select the TALENs sequence to be synthesized for a specific gene.
人类 HBEGF基因又被称为 DTR¾因, 该基因产物是白喉毒素在宿主细胞中的受体。 该基因 被敲除后, 宿主细胞应该会对白喉毒素产生完全抗性。  The human HBEGF gene, also known as DTR3⁄4, is a receptor for diphtheria toxin in host cells. After the gene is knocked out, the host cell should be completely resistant to diphtheria toxin.
在 NCBI ( http://www.ncbi.nlm.nih.gov/gene/ )数据库中查找人类 HBEGF基因的外显子序列信 息, 并针对该序列设计所用的 TALENs。 该区域位于 HBEGF基因第二个外显子的第 81-126位。 序 列如下:  The exon sequence information of the human HBEGF gene was searched in the NCBI (http://www.ncbi.nlm.nih.gov/gene/) database, and the TALENs used were designed for the sequence. This region is located at positions 81-126 of the second exon of the HBEGF gene. The sequence is as follows:
CCCACTGTATCCACGgaccagctgctaccccTAGGAGGCGGCCGGG  CCCACTGTATCCACGgaccagctgctaccccTAGGAGGCGGCCGGG
其中大写字母为 TALENs结合区域, 小写字母为 Spacer区域。 所需合成 TALE为 CCCACTGTATCCACG、 CCCGGCCGCCTCCTA。 Spacer区域中含有一个 PvuII酶切位点 (下划 线标注)。  The uppercase letters are TALENs combined with the lowercase letters and the lowercase letters are Spacer. The required synthesis TALE is CCCACTGTATCCACG, CCCGGCCGCCTCCTA. The Spacer region contains a PvuII restriction site (underlined).
2. 利用技术路线一合成 TALENs。  2. Synthesize TALENs using the technical route.
要合成的 TALE重复区域可拆分为四个四单位片段: CCCA CTGT ATCC ACG; CCCG GCCG CCTC CTA。  The TALE repeat region to be synthesized can be split into four four-unit segments: CCCA CTGT ATCC ACG; CCCG GCCG CCTC CTA.
在表 4中查找到这几个片段的序列结构和引物,并在表 2和表 3中选择具体模板。左、右 TALEN ( TALEN-L, TALEN-R )对应的选择结果分别如表 6、 表 7所示。  The sequence structure and primers of these fragments were found in Table 4, and specific templates were selected in Tables 2 and 3. The selection results of the left and right TALEN (TALEN-L, TALEN-R) are shown in Table 6 and Table 7, respectively.
表 6 TALEN-L模板、 引物选择表  Table 6 TALEN-L template, primer selection table
Figure imgf000010_0001
用 Taq HiFi DNA Polymerase ( Transgen ) PCR扩增以上八个片段。 取 1 PCR产物加入上样 缓冲液, 琼脂糖凝胶电泳, 验证产物为所需的大小正确的 DNA片段。 结果如图 5所示, 最左道为
Figure imgf000010_0001
The above eight fragments were PCR amplified using Taq HiFi DNA Polymerase (Transgen). Take 1 PCR product into the loading buffer and perform agarose gel electrophoresis to verify that the product is the correct size DNA fragment. The result is shown in Figure 5. The leftmost track is
DNA marker, 其次从左到右依次为 TALEN-L和 TALEN-R的四个片段。 分别混合两个不同的 TALEN片段, USER酶处理, 之后利用 PCR产物纯化试剂盒( Transgen ) 对 PCR产物进行纯化。 The DNA marker, followed by the left to right, is the four fragments of TALEN-L and TALEN-R. Two different TALEN fragments were separately mixed, treated with USER enzyme, and the PCR product was purified using a PCR product purification kit (Transgen).
用 BsmBI内切酶和 T4连接酶处理连接产物与 pIRES2-EGFP-TALEN载体(见图 1 ), 之后转化 大肠杆菌感受态 DH50 PCR鉴定重组子, 提质粒并测序验证。  The ligation product and the pIRES2-EGFP-TALEN vector (see Fig. 1) were treated with BsmBI endonuclease and T4 ligase, and then transformed into E. coli competent DH50 PCR to identify the recombinant, and the plasmid was extracted and verified by sequencing.
3. 转染细胞, 检测 HBEGF基因敲除效率。  3. Transfect the cells and detect the knockdown efficiency of HBEGF gene.
本实验使用由 DMEM ( Invitrogen )培养基培养的 HeLa细胞。使用 AAD-1001S Nucleofector II ( Lonza ) 电转仪, 将 0.9 上游 TALEN、 0.9 下游 TALEN以及 0.2 eGFP质粒转染至 1 χ This experiment used HeLa cells cultured in DMEM (Invitrogen) medium. Transfect 0.9 upstream TALEN, 0.9 downstream TALEN, and 0.2 eGFP plasmid to 1 使用 using the AAD-1001S Nucleofector II ( Lonza ) electrocycler
106个 HeLa细胞。 转染完成后在 37°C培养 24小时 ( C02 5% ), 然后转移至 30°C继续培养 72小时。 随后将细胞培养至含有 2 μ§/ιη1嘌呤霉素的培养基中 37°C培养 48小时,杀死未转染进质粒的细胞, 即可进行下一步检测。 10 6 HeLa cells. After the completion of the transfection, the cells were cultured at 37 ° C for 24 hours (C 0 2 5% ), and then transferred to 30 ° C for further 72 hours. Subsequently, the cells were cultured in a medium containing 2 μ § /ιη1 puromycin for 48 hours at 37 ° C, and the cells not transfected into the plasmid were killed, and the next detection was carried out.
提取上一步骤获得的 HeLa细胞的基因组 DNA, 设计引物进行基因组 PCR扩增 TALEN结合区 域:  The genomic DNA of the HeLa cells obtained in the previous step was extracted, and primers were designed for genomic PCR amplification. TALEN binding region:
上游引物: GTGGCCGCCGCTTCGAAAGTGAC;  Upstream primer: GTGGCCGCCGCTTCGAAAGTGAC;
下游引物: GTCCAAGGATGGGGGGCCTCCA; 退火温度 65 °C , 产物全长 503 bp, 并且只 在 Spacer中含有一个 PvuII酶切位点, 酶切后产生 104 bp和 399 bp两个片段。 产物纯化后 (全式金 PCR产物纯化试剂盒), 使用 PvuII ( TAKARA )进行酶切, 琼脂糖凝胶电泳确定在设计的 Spacer 区域出现片段缺失的概率在 50%以上。  Downstream primer: GTCCAAGGATGGGGGGCCTCCA; annealing temperature 65 °C, product length 503 bp, and only contains a PvuII restriction site in Spacer, and digested to produce two fragments of 104 bp and 399 bp. After purification of the product (full-scale gold PCR product purification kit), PvuII (TAKARA) was used for digestion, and agarose gel electrophoresis determined that the probability of fragment deletion in the designed Spacer region was more than 50%.
使用含 50 ng/ml 的白喉毒素的培养基(该浓度为白喉毒素在 HeLa细胞中致死浓度的 5倍 )培 养 HeLa细胞, 观察抗性表型。 结果如图 6所示, A为野生型 HeLa细胞经毒素处理的结果, 可见所 有细胞都已死亡; B为转染了 HBEGF TALEN的 HeLa细胞经处理的结果, 可见其中有较多健康细 胞, 即为 HBEGF成功敲除的细胞。  HeLa cells were cultured using a medium containing 50 ng/ml of diphtheria toxin (this concentration was 5 times the lethal concentration of diphtheria toxin in HeLa cells), and the resistant phenotype was observed. The results are shown in Fig. 6. A is the result of toxin treatment of wild-type HeLa cells, and all the cells are dead. B is the result of treatment of HeLa cells transfected with HBEGF TALEN, and there are many healthy cells. Cells successfully knocked out for HBEGF.
结果表明, 通过 ULtiMATE技术路线合成的针对白喉毒素受体基因的 TALENs表达载体可以 实现有效的 HBEGF基因敲除, 而且敲除结果在功能性检测中得到证实。 实施例 2 构建用于标记人类细胞端粒重复区域的 TALE-Vemis荧光蛋白  The results showed that the TALENs expression vector for the diphtheria toxin receptor gene synthesized by the ULtiMATE technology pathway can achieve efficient HBEGF gene knockout, and the knockout results were confirmed in the functional assay. Example 2 Construction of a TALE-Vemis fluorescent protein for labeling human cell telomere repeat regions
1. 查到人细胞端粒中的高度重复序列: TTAGGGTTAGGG...TTAGGG, 准备构建靶位点为 TAGGGTTAGGGTTAGG的 TALE- Venus融合荧光蛋白来指示端粒结构。  1. A highly repetitive sequence in human telomeres was found: TTAGGGTTAGGG...TTAGGG, TALE- Venus fusion fluorescent protein with target site TAGGGTTAGGGTTAGG was prepared to indicate telomere structure.
2. 利用技术路线二合成 TALE序列。 要合成的 TALE序列含 16个重复单元, 可拆分成 TAGG GTTA GGGT TAGG四个四聚体。 根据表 5查到四个四聚体的结构和所需引物, 并使用表 1中带有 GG字样的引物, 再根据表 2和表 3确定具体模板, 结果如表 8所示。 表 8 TALE- Venus模板、 引物选择表  2. Synthesize the TALE sequence using Technical Route 2. The TALE sequence to be synthesized contains 16 repeating units and can be separated into four tetramers of TAGG GTTA GGGT TAGG. According to Table 5, the structure of the four tetramers and the desired primers were found, and the primers with the GG type in Table 1 were used, and the specific templates were determined according to Table 2 and Table 3. The results are shown in Table 8. Table 8 TALE- Venus template, primer selection table
Figure imgf000011_0001
用 TaqHiFi进行 PCR扩增, 将 PCR产物混合进行琼脂糖电泳, 切下 PCR所得的 400 bp左右条带 纯化。 将纯化片段和 pGL3-TALE- Venus载体共同进行 BsmBI酶切 -连接循环, 转化 Trans 1 -T 1大肠 杆菌感受态 (Transgen ), 涂布含氨苄平板, 37°C过夜培养。
Figure imgf000011_0001
The PCR amplification was carried out by TaqHiFi, and the PCR products were mixed and subjected to agarose electrophoresis, and the 400 bp band obtained by PCR was removed and purified. The purified fragment and the pGL3-TALE-Venus vector were co-transformed into a BsmBI digestion-ligation cycle, transformed into Trans-1-T1 E. coli competent (Transgen), coated with an ampicillin plate, and cultured overnight at 37 °C.
菌落 PCR及测序鉴定得到正确克隆, 提取质粒, 转染 293T细胞, 观察到细胞端粒部位的黄 色荧光。 虽然, 上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述, 但在本发明基 础上, 可以对之作一些修改或改进, 这对本领域技术人员而言是显而易见的。 因此, 在不偏离 本发明精神的基础上所做的这些修改或改进, 均属于本发明要求保护的范围。  The colonies were correctly cloned by PCR and sequencing, and the plasmid was extracted and transfected into 293T cells. The yellow fluorescence of the telomere was observed. Although the present invention has been described in detail with reference to the preferred embodiments of the present invention, it will be apparent to those skilled in the art. Therefore, such modifications or improvements made without departing from the spirit of the invention are intended to be within the scope of the invention.
参考文献 references
[1] Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48, 419-436.  [1] Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48, 419-436.
[2] Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors.  [2] Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors.
Science 326, 1509-1512. Science 326, 1509-1512.
[3] Bogdanove, A. J., Schornack, S., and Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current opinion in plant biology 13, 394-401.  [3] Bogdanove, A. J., Schornack, S., and Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current opinion in plant biology 13, 394-401.
[4] Bogdanove, AJ., and Voytas, D.F. (2011). TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846.  [4] Bogdanove, AJ., and Voytas, D.F. (2011). TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846.
[5] Briggs, A.W., Rios, X., Chari, R., Yang, L., Zhang, F., Mali, P., and Church, G.M. (2012). Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic acids research.  [5] Briggs, AW, Rios, X., Chari, R., Yang, L., Zhang, F., Mali, P., and Church, GM (2012). Iterative capped assembly: rapid and acknowledge synthesis of repeat -module DNA such as TAL effectors from individual monomers. Nucleic acids research.
[6] Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C, Bailer, J.A., Somia, N.V., Bogdanove, AJ., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research 39, e82.  [6] Cermak, T., Doyle, EL, Christian, M., Wang, L., Zhang, Y., Schmidt, C, Bailer, JA, Somia, NV, Bogdanove, AJ., and Voytas, DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research 39, e82.
[7] Cong, L., Zhou, R., Kuo, Y.C., Cunniff, M., and Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3, 968. [7] Cong, L., Zhou, R., Kuo, YC, Cunniff, M., and Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3, 968 .
[8] Garg, A., Lohmueller, J. J., Silver, P. A., and Armel, T.Z. (2012). Engineering synthetic TAL effectors with orthogonal target sites. Nucleic acids research. [8] Garg, A., Lohmueller, J. J., Silver, P. A., and Armel, T.Z. (2012). Engineering synthetic TAL effectors with orthogonal target sites. Nucleic acids research.
Geissler, R., Scholze, H., Hahn, S., Streubel, J" Bonas, U., Behrens, S.E., and Boch, J. (2011).  Geissler, R., Scholze, H., Hahn, S., Streubel, J" Bonas, U., Behrens, S.E., and Boch, J. (2011).
Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6, el9509. [9] Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (201 1). Heritable gene targeting in zebrafish using customized TALENs. Nature biotechnology 29, 699-700. Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6, el9509. [9] Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (201 1). Heritable gene targeting in zebrafish using customized TALENs. Nature biotechnology 29 , 699-700.
[10] Li, L., Piatek, MJ., Atef, A., Piatek, A., Wibowo, A" Fang, X , Sabir, S., Zhu, J.K" and [10] Li, L., Piatek, MJ., Atef, A., Piatek, A., Wibowo, A" Fang, X, Sabir, S., Zhu, J.K" and
Mahfouz, M.M. (2012). Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant molecular biology. Mahfouz, M.M. (2012). Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant molecular biology.
[1 1] Li, T., Huang, S., Zhao, X , Wright, D.A., Carpenter, S., Spalding, M.H" Weeks, D P., and Yang, B. (201 1). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic acids research 39, 6315-6325.  [1 1] Li, T., Huang, S., Zhao, X, Wright, DA, Carpenter, S., Spalding, MH" Weeks, D P., and Yang, B. (201 1). Modularly TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic acids research 39, 6315-6325.
[12] Mahfouz, M.M., Li, L., Piatek, M., Fang, X., Mansour, H., Bangamsamy, D.K., and Zhu, J.K. (2012). Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant molecular biology 78, 31 1-321.  [12] Mahfouz, MM, Li, L., Piatek, M., Fang, X., Mansour, H., Bangamsamy, DK, and Zhu, JK (2012). Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein Plant molecular biology 78, 31 1-321.
[13] Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, I, Xia, D.F., Meng, X , Paschon, D.E., Leung, E., Hinkley, S J., et al. (201 1). A TALE nuclease architecture for efficient genome editing. Nature biotechnology 29, 143-148.  [13] Miller, JC, Tan, S., Qiao, G., Barlow, KA, Wang, I, Xia, DF, Meng, X, Paschon, DE, Leung, E., Hinkley, S J., et al (201 1). A TALE nuclease architecture for efficient genome editing. Nature biotechnology 29, 143-148.
[14] Morbitzer, R., Elsaesser, J., Hausner, J., and Lahaye, T. (201 1). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic acids research 39, 5790-5799.  [14] Morbitzer, R., Elsaesser, J., Hausner, J., and Lahaye, T. (201 1). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic acids research 39, 5790-5799.
[15] Moscou, MJ., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501. [15] Moscou, MJ., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501.
[16] Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, D., and Joung, J.K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature biotechnology.  [16] Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, D., and Joung, J.K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature biotechnology.
[17] Sanjana, N.E., Cong, L., Zhou, Y., Cunniff, M.M., Feng, G., and Zhang, F. (2012). A [17] Sanjana, N.E., Cong, L., Zhou, Y., Cunniff, M.M., Feng, G., and Zhang, F. (2012). A
transcription activator-like effector toolbox for genome engineering. Nature protocols 7, 171-192. Transcription activator-like effector toolbox for genome engineering. Nature protocols 7, 171-192.
[18] Scholze, H., and Boch, J. (201 1). TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14, 47-53. [18] Scholze, H., and Boch, J. (201 1). TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14, 47-53.
[19] Weber, E., Gruetzner, R., Werner, S., Engler, C., and Marillonnet, S. (201 1). Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6, el9722.  [19] Weber, E., Gruetzner, R., Werner, S., Engler, C., and Marillonnet, S. (201 1). Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6, el9722.
[20] Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G.M., and Arlotta, P. (201 1). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature biotechnology 29, 149-153.  [20] Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, GM, and Arlotta, P. (201 1). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature biotechnology 29, 149-153.
[21] Schmid-Burgk, J. L., T. Schmidt, et al. (2013). "A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. " Nat Biotechnol 31(1): 76-81. [22] Yang, J., P. Yuan, et al. (2013). "ULtiMATE system for rapid assembly of customized TAL effectors." PLoS One 8(9): e75649. 工业实用性 [21] Schmid-Burgk, JL, T. Schmidt, et al. (2013). "A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes." Nat Biotechnol 31(1): 76- 81. [22] Yang, J., P. Yuan, et al. (2013). "ULtiMATE system for rapid assembly of customized TAL effectors." PLoS One 8(9): e75649. Industrial applicability
本发明公开的用于基因 (特别是真核基因)定点修饰的 TALE重复序列的合成方法, 使用 尿嘧啶脱氧核糖核苷酸切除法用尿嘧啶切除试剂制造 DNA片段两端的粘性末端, 通过对用于 P CR扩增的 DNA模板以及引物的设计, 在 16个含 TALE重复序列的单体基础上, 合成 512个含 四个 TALE重复单元的模板质粒, 可用于高通量生产。 The method for synthesizing a TALE repeat sequence for gene (especially eukaryotic gene) site-directed modification disclosed in the present invention uses a uracil deoxyribonucleotide excision method to produce a sticky end of a DNA fragment at both ends of a DNA fragment by using a uracil excision reagent. Based on the DNA template amplified by P CR and the design of the primers, 512 template plasmids containing four TALE repeat units were synthesized on the basis of 16 monomers containing TALE repeats, which can be used for high-throughput production.
序列表 Sequence table
<110> 北京大学  <110> Peking University
<120> 用于基因定点修饰的 TALE重复片段的新型高效合成方法 <120> New and efficient synthesis method for TALE repeats for gene-fixed modification
〈130〉 KHP143111750 <130> KHP143111750
〈160〉 24  <160> 24
<170> Patentln version 3. 5  <170> Patentln version 3. 5
<210> 1  <210> 1
<211> 43  <211> 43
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 1  <400> 1
tatacgtctc agaacctgac accagagcaa gtagtggcta ttg 43Tatacgtctc agaacctgac accagagcaa gtagtggcta ttg 43
<210> 2 <210> 2
<211> 32  <211> 32
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 2  <400> 2
tctcgtctct ctgacaccag agcaagtagt gg 32Tctcgtctct ctgacaccag agcaagtagt gg 32
<210> 3 <210> 3
<211> 28  <211> 28
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 3  <400> 3
gtccgtctca tgggctcact ccggaaca 28Gtccgtctca tgggctcact ccggaaca 28
<210> 4 <210> 4
<211> 42  <211> 42
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 4  <400> 4
atacgtctca caagcacacg gtctcactcc ggaacaggtg gt 42Atacgtctca caagcacacg gtctcactcc ggaacaggtg gt 42
<210> 5 <210> 5
<211> 28  <211> 28
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 5  <400> 5
gtccgtctcc agagcaagta gtggctat 28Gtccgtctcc agagcaagta gtggctat 28
<210> 6 <210> 6
<211> 37  <211> 37
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 6  <400> 6
gtccgtctcc ccacggactg acaccagagc aagtagt 37Gtccgtctcc ccacggactg acaccagagc aagtagt 37
<210> 7 <210> 7
<211> 35  <211> 35
<212> DNA  <212> DNA
<213> 人工序列 〈400〉 7 <213> Artificial sequence <400> 7
gtgcgtctcc cacggactca ctccggaaca ggtgg 35Gtgcgtctcc cacggactca ctccggaaca ggtgg 35
<210> 8 <210> 8
<211> 36  <211> 36
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 8  <400> 8
tatcgtctca tcagcccatg agcctgacac agtact 36Tatcgtctca tcagcccatg agcctgacac agtact 36
<210> 9 <210> 9
<211> 28  <211> 28
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 9  <400> 9
ccgcgtctcg cccatgagcc tgacacag 28Ccgcgtctcg cccatgagcc tgacacag 28
<210> 10 <210> 10
<211> 28  <211> 28
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 10  <400> 10
agacgtctcg cttggcagag caccggaa 28Agacgtctcg cttggcagag caccggaa 28
<210> 11 <210> 11
<211> 42  <211> 42
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 11  <400> 11
tatcgtctca ctctggtgtc agaccgtgtg cttggcagag ca 42Tatcgtctca ctctggtgtc agaccgtgtg cttggcagag ca 42
<210> 12 <210> 12
<211> 35  <211> 35
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 12  <400> 12
tatcgtctcc gtgggcttgg cacaaaacgg gcagc 35Tatcgtctcc gtgggcttgg cacaaaacgg gcagc 35
<210> 13 <210> 13
<211> 41  <211> 41
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 13  <400> 13
gggcgtctcc cgtgggcttg gcacaaaacg ggcagcaacc g 41Gggcgtctcc cgtgggcttg gcacaaaacg ggcagcaacc g 41
<210> 14 <210> 14
<211> 36  <211> 36
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 14  <400> 14
tatacgtctc atgctctcca gcgcttgttt gccacc 36Tatacgtctc atgctctcca gcgcttgttt gccacc 36
<210> 15 <210> 15
<211> 35 <211> 35
<212> DNA 15 <213> 人工序列 <212> DNA 15 <213> Artificial sequence
〈400〉 15  <400> 15
tatacgtctc atgctctcaa gggcttgctt gccgc Tatacgtctc atgctctcaa gggcttgctt gccgc
<210> 16  <210> 16
<211> 36  <211> 36
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 16  <400> 16
tatacgtctc atgctttcca aagcctgttt tccgcc Tatacgtctc atgctttcca aagcctgttt tccgcc
<210> 17  <210> 17
<211> 36  <211> 36
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 17  <400> 17
tatacgtctc atgctttcca gtgcctgctt acctcc Tatacgtctc atgctttcca gtgcctgctt acctcc
<210> 18  <210> 18
<211> 46  <211> 46
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 18  <400> 18
cccactgtat ccacggacca gctgctaccc ctaggaggcg gccgggCccactgtat ccacggacca gctgctaccc ctaggaggcg gccggg
<210> 19 <210> 19
<211> 15  <211> 15
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 19  <400> 19
cccactgtat ccacg Cccactgtat ccacg
<210> 20  <210> 20
<211> 15  <211> 15
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
<400> 20  <400> 20
cccggccgcc tccta Cccggccgcc tccta
<210> 21  <210> 21
<211> 23  <211> 23
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 21  <400> 21
gtggccgccg cttcgaaagt gac Gtggccgccg cttcgaaagt gac
<210> 22  <210> 22
<211> 22  <211> 22
<212> DNA  <212> DNA
<213> 人工序列 <213> Artificial sequence
〈400〉 22  <400> 22
gtccaaggat ggggggcctc ca Gtccaaggat ggggggcctc ca
<210> 23 16 OC <210> 23 16 OC
Figure imgf000018_0001
Figure imgf000018_0001

Claims

权 利 要 求 书 Claim
1、 一种用于基因定点修饰的 TALE重复片段的合成方法, 其特征在于: A method for synthesizing a TALE repeat for genetic site modification, characterized in that:
1 ) 预组装 512个四聚体模板, 模板如表 2和表 3所示;  1) Pre-assembled 512 tetramer templates, as shown in Table 2 and Table 3;
2 )根据 TALE单体选择模板, 并选择 PCR扩增引物;  2) selecting a template according to the TALE monomer, and selecting a PCR amplification primer;
3 ) PCR扩增;  3) PCR amplification;
4 ) 处理 PCR产物, 连接, 得到 TALE重复片段。  4) Process the PCR product and connect to obtain a TALE repeat.
2、 如权利要求 1所述的合成方法, 其特征在于, 所述 PCR扩增是使用含尿嘧啶脱氧核糖核 苷酸引物 PCR扩增四聚体模板, 并继续使用尿嘧啶脱氧核糖核苷酸特异性剪切试剂在不同四聚 体之间构建粘性末端, 通过 BsmBI酶切-连接循环构建完整重复序列。  2. The method of synthesizing according to claim 1, wherein the PCR amplification is to PCR-amplify a tetramer template using a uracil-deoxyribonucleotide-containing primer, and continue to use uracil deoxyribonucleotides. Specific cleavage reagents construct sticky ends between different tetramers, and complete repeats are constructed by BsmBI digestion-ligation cycle.
3、 如权利要求 1所述的合成方法, 其特征在于, 所述 PCR扩增是使用含 BsmBI识别位点引物 PCR扩增四聚体模板, 经 BsmBI酶切构建粘性末端, 通过 BsmBI酶切 -连接循环构建完整重复序 列。  3. The method according to claim 1, wherein the PCR amplification is a PCR amplification of a tetramer template using a BsmBI-containing recognition site primer, and the sticky end is constructed by BsmBI digestion, and cleaved by BsmBI- The join loop constructs a complete repeat sequence.
4、 如权利要求 2所述的合成方法, 其特征在于, 步骤 2 )包括:  4. The method of synthesizing according to claim 2, wherein the step 2) comprises:
根据需要构建的 TALE重复单元个数, 查阅表 4确定模板结构和所需引物, 然后根据表 2、 表 3确定具体所使用的模板。  According to the number of TALE repeating units constructed as needed, refer to Table 4 to determine the template structure and the required primers, and then determine the specific template to be used according to Table 2 and Table 3.
5、 如权利要求 3所述的合成方法, 其特征在于, 步骤 2 )包括:  5. The method of synthesizing according to claim 3, wherein the step 2) comprises:
根据需要构建的 TALE重复单元个数, 查阅表 5确定模板结构和所需引物, 然后根据表 2、 表 3确定具体所使用的模板。  According to the number of TALE repeating units constructed as needed, refer to Table 5 to determine the template structure and the required primers, and then determine the specific template to be used according to Table 2 and Table 3.
6、 权利要求 3中所述的含 BsmBI识别位点引物, 其特征在于, 所述引物的序列如 SEQ ID NO: 1-17所示。  The BsmBI-containing recognition site primer according to claim 3, wherein the sequence of the primer is as shown in SEQ ID NOS: 1-17.
7、 权利要求 6所述的引物在基因敲除、 敲入、 表达调控、 荧光标记中的应用。  7. The use of the primer of claim 6 in gene knockout, knock-in, expression regulation, fluorescent labeling.
PCT/CN2014/080423 2014-06-20 2014-06-20 Synthesis method of tale repeated segments for genetic site-specific modification WO2015192379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080423 WO2015192379A1 (en) 2014-06-20 2014-06-20 Synthesis method of tale repeated segments for genetic site-specific modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080423 WO2015192379A1 (en) 2014-06-20 2014-06-20 Synthesis method of tale repeated segments for genetic site-specific modification

Publications (1)

Publication Number Publication Date
WO2015192379A1 true WO2015192379A1 (en) 2015-12-23

Family

ID=54934731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080423 WO2015192379A1 (en) 2014-06-20 2014-06-20 Synthesis method of tale repeated segments for genetic site-specific modification

Country Status (1)

Country Link
WO (1) WO2015192379A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864158A (en) * 2012-09-29 2013-01-09 北京大学 High-efficiency synthesis method of TALE (transcription activator like effectors) repeated segments for genetic fixed-point modification
CN103146735A (en) * 2012-12-28 2013-06-12 西北农林科技大学 Construction method of TALE repetitive unit tetramer library and construction method and application of TALEN expression vector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864158A (en) * 2012-09-29 2013-01-09 北京大学 High-efficiency synthesis method of TALE (transcription activator like effectors) repeated segments for genetic fixed-point modification
CN103146735A (en) * 2012-12-28 2013-06-12 西北农林科技大学 Construction method of TALE repetitive unit tetramer library and construction method and application of TALEN expression vector

Similar Documents

Publication Publication Date Title
Weber et al. Assembly of designer TAL effectors by Golden Gate cloning
US20200332273A1 (en) Enzymes with ruvc domains
JP2019534704A (en) Epigenetically regulated site-specific nuclease
WO2018013990A1 (en) Scarless dna assembly and genome editing using crispr/cpf1 and dna ligase
WO2016130697A1 (en) Methods and kits for generating vectors that co-express multiple target molecules
WO2016135507A1 (en) Nucleic acid editing systems
WO2013152220A2 (en) Tal-effector assembly platform, customized services, kits and assays
US10696963B2 (en) Selective optimization of a ribosome binding site for protein production
van Tol et al. Artificial transcription factor-mediated regulation of gene expression
Oh et al. Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics
WO2013143438A1 (en) Nucleic acid molecular cloning method based on homologous recombination, and related reagent kit
CA3177828A1 (en) Enzymes with ruvc domains
CN110835635B (en) Plasmid construction method for promoting expression of multiple tandem sgRNAs by different promoters
CA2939541C (en) Hybrid proteins and uses thereof
WO2022046662A1 (en) Systems and methods for transposing cargo nucleotide sequences
US10752905B2 (en) Methods and materials for assembling nucleic acid constructs
CN113584064B (en) Construction method of rapid TALE expression vector based on codon degeneracy
US20220220460A1 (en) Enzymes with ruvc domains
US20210187102A1 (en) Method of obtaining a polyepitopic protein and polyepitopic dna vector
WO2015192379A1 (en) Synthesis method of tale repeated segments for genetic site-specific modification
JP6590333B2 (en) DNA binding domain integration vector and set thereof, fusion protein coding vector and set thereof and production method thereof, destination vector, plant cell expression vector and production method thereof, plant cell expression vector preparation kit, transformation method, and Genome editing method
JP2021151200A (en) Methods for producing linked dna and vector combinations for use therein
Hegazy et al. TALENs construction: Slowly but surely
US20120115208A1 (en) Modular method for rapid assembly of dna
JP7502537B2 (en) Enzymes with RUVC domains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895272

Country of ref document: EP

Kind code of ref document: A1