WO2015192332A1 - 一种通信的方法、装置及系统 - Google Patents

一种通信的方法、装置及系统 Download PDF

Info

Publication number
WO2015192332A1
WO2015192332A1 PCT/CN2014/080152 CN2014080152W WO2015192332A1 WO 2015192332 A1 WO2015192332 A1 WO 2015192332A1 CN 2014080152 W CN2014080152 W CN 2014080152W WO 2015192332 A1 WO2015192332 A1 WO 2015192332A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
technical specification
olt
band
management channel
Prior art date
Application number
PCT/CN2014/080152
Other languages
English (en)
French (fr)
Inventor
彭桂开
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016573786A priority Critical patent/JP2017520188A/ja
Priority to EP14894867.2A priority patent/EP3148115A4/en
Priority to PCT/CN2014/080152 priority patent/WO2015192332A1/zh
Priority to RU2017101193A priority patent/RU2017101193A/ru
Priority to AU2014398122A priority patent/AU2014398122B2/en
Priority to CN201480009870.3A priority patent/CN105409163A/zh
Priority to CA2952666A priority patent/CA2952666C/en
Publication of WO2015192332A1 publication Critical patent/WO2015192332A1/zh
Priority to US15/381,813 priority patent/US20170117960A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/344Out-of-band transfers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/34Network arrangements or protocols for supporting network services or applications involving the movement of software or configuration parameters 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for communication.
  • FTTx Fiber To The X, Guangxiang Qianji J x, than the mouth FTTh is Guangxiang thousand people, FTTB is fiber to the building
  • PON Passive Optical Network
  • the PON central office uses a backbone fiber, which can be divided into dozens or more optical fiber to connect users, greatly reducing the cost of network construction. It is the most economical and effective technical means of FTTx.
  • EPON Error Network Passive Optical Network
  • GPON Gigabit Passive Optical Network
  • IP Internet Protocol
  • the next generation of EPON is divided into two types, one is asymmetric 10G-EPON, the downlink rate is 10Gb/s, and the uplink rate is 1.25Gb/s; the other is symmetric 10G-EPON, the uplink and downlink rates are all 10Gb/s, currently 10G -
  • the EPON standard has been developed and the trial office is started.
  • NG-P0N 1 Next Generation Passive Optical Network
  • the downlink rate is 10Gb/s and the uplink rate is 2.5Gb/. s
  • the other type is NG-P0N2, which uses the TWDM-P0N (Time Wavelength Division Multiplexing) scheme for higher speed, longer distance, and more support for users.
  • TWDM-P0N Time Wavelength Division Multiplexing
  • Embodiments of the present invention provide a passive optical network PON system for solving the prior art.
  • the modulation format and MAC protocol of the PON of the PON system are fixed, poorly flexible, and difficult to maintain.
  • a communication method includes: downloading the user element ONU from a server according to a user instruction; configuring according to the technical specification; and sending a control message to the ONU through an outband management channel, for indicating the ONU Configuring the technical specification; communicating with the ONU via the in-band data channel based on a mode supported by the technical specification.
  • the modulated signal is sent to the ONU by using the inband data channel, and the message reported by the ONU is received by using the outband management channel.
  • Noise ratio SNR is the Noise ratio
  • the technical specification is that, when receiving a prompt that is not supported by the ONU, the technical specification is sent to the ONU through the out-of-band management channel.
  • the message supported by the ONU feedback is received.
  • the fourth aspect in the first aspect may receive the registration request of the ONU; and send, by the out-of-band management channel, an ONU identifier assigned to the ONU to the ONU.
  • the method further includes that the bandwidth of the outband management channel is smaller than the bandwidth of the inband data channel.
  • the spectrum range of the out-of-band management channel and the in-band data channel may be free according to an operator's requirement. set up.
  • a communication method includes: receiving, by an optical network unit, an ONU, a control message sent by an optical line terminal OLT through an inband management channel, where the control message is used to indicate that the ONU is configured with the same technical specification as the OLT;
  • the ONU is configured according to the technical specification
  • the ONU communicates with the OLT over a data channel based on the technical specifications of the configuration.
  • the query message is received by using an outband management channel, where the query message is used to query whether the ONU supports the same technical specification as the OLT;
  • the modulated signal is received by the in-band data channel, and the signal-to-noise ratio of the entire downlink is evaluated according to the constellation recovered by the received signal, by using the out-of-band management channel.
  • the signal to noise ratio is fed back to the OLT.
  • the method further includes: sending, by the outband management channel, the registration request of the ONU Receiving, by the out-of-band management channel, an ONU identifier allocated by the OLT to the ONU.
  • the bandwidth of the outband management channel is smaller than the bandwidth of the inband data channel.
  • the spectrum range of the out-of-band management channel and the in-band data channel may be operated according to The requirements of the business are freely set.
  • an apparatus for reconfiguring comprising: a control unit, configured to download, according to a user instruction, a technical specification indicated by the user instruction from a server, and load the technical specification into an optical network unit ONU through an outband management channel And configuring the technical specification to the data unit; sending, by the out-of-band management pipeline, a control message to the ONU, instructing the ONU to configure the technical specification; and the data unit, configured to pass the in-band data channel and the The ONU communicates based on the modes supported by the technical specifications.
  • the apparatus further includes a storage unit configured to store the technical specification.
  • control unit is further configured to send, by using the inband data channel, the modulated The signal is sent to the ONU, and the signal-to-noise ratio SNR reported by the ONU is received through an out-of-band management channel.
  • control unit is further configured to: Whether the ONU supports the technical specifications.
  • the bandwidth of the outband management channel is smaller than the bandwidth of the inband data channel.
  • the spectrum range of the out-of-band management channel and the in-band data channel may be operated according to The requirements of the business are freely set.
  • control unit is further configured to complete the ONU by using the outband management channel registered.
  • a device for reconfiguration comprising: a control unit, configured to receive a control message sent by an optical line terminal OLT through an outband management channel, and configure the same technology as the OLT according to the indication of the control message Specification to data unit;
  • a data unit configured to communicate with the OLT based on a mode supported by the specification by an in-band data channel.
  • the device further includes a storage unit, configured to store the technical specification.
  • control unit is further configured to receive an inquiry message by using an outband management channel, for querying Whether the optical network unit ONU supports the same technical specifications as the OLT, and if the ONU supports, sends an acknowledgement message to the OLT.
  • control unit is further configured to receive the modulated signal by using the in-band data channel. And comparing the ideal modulation mode constellation with the constellation recovered according to the received signal, and evaluating the signal to noise ratio of the entire downlink, and feeding back to the OLT through the outband management channel.
  • control unit is further configured to receive, by using an outband management channel, an inquiry message, to query whether the optical network unit ONU supports the same technical specification as the OLT, if the ONU does not support, Sending an unsupported prompt to the OLT; receiving a technical specification sent by the OLT, storing to the storage unit or configuring to the data unit.
  • the bandwidth of the outband management channel is smaller than the bandwidth of the inband data channel.
  • the spectrum range of the outband management channel and the inband data channel may be according to operation The requirements of the business are freely set.
  • a PON system comprising: an optical line terminal OLT, configured to download the technical specification of the user instruction indication from a server according to a user instruction, and load the technical specification into an optical network unit ONU through an outband management channel;
  • the out-of-band management channel sends a control message to the ONU, where the ONU is configured to instruct the ONU to configure the technical specification, and communicates with the ONU based on a mode supported by the technical specification by using an in-band data channel, where
  • the downlink channel is divided into the out-of-band management channel and the in-band data channel according to the spectrum.
  • the ONU is configured to receive, by using the out-of-band management channel, a control message delivered by the OLT, to configure the technical specification, and communicate with the OLT according to a mode supported by the technical specification by using the in-band data channel. .
  • the OLT is further configured to send, by using the inband data channel, the modulated signal to the ONU, by using the outband management channel Receiving a signal to noise ratio reported by the ONU.
  • the ONU in the fifth aspect supports the technical specification, and if not, loading the technical specification to the ONU through an out-of-band management channel.
  • the OLT is further configured to receive a registration request of the ONU by using an outband management channel.
  • the bandwidth of the outband management channel is smaller than the bandwidth of the inband data channel.
  • the spectrum range of the outband management channel and the inband data channel may be according to operation The requirements of the business are freely set.
  • an optical line terminal OLT comprising a processor, wherein the processor is operative to perform the method of any one of the possible implementations of the first aspect or the first aspect.
  • a seventh aspect an optical network unit ONU, comprising a processor, wherein the processor is operative to perform the method of any one of the possible implementations of the second aspect or the second aspect.
  • Figure 1 is a system architecture diagram of a passive optical network PON
  • FIG. 2a is a schematic structural diagram of an optical line terminal OLT according to an embodiment of the present invention
  • FIG. 2b is a schematic structural diagram of an optical line terminal 0 LT according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an optical network unit ONU according to an embodiment of the present invention
  • FIG. 3b is a schematic structural diagram of an optical network unit ONU according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another optical network unit ONU according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an out-of-band management channel and an in-band data channel spectrum division according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of a passive optical network system OLT interacting with an external server through a network according to an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of a PON system according to an embodiment of the present invention.
  • FIG. 7 is a process interaction diagram of configuration reconstruction of 0 LT and 0 NU according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an OLT according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an ONU according to an embodiment of the present invention.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • a Passive Optical Network consists of an optical line terminal (OLT) on the central office, an Optical Network Unit (ONU) on the user side, or an Optical Network Terminal (ONT). And the Optical Distribute Network (ODN).
  • ONT optical line terminal
  • ONT Optical Network Terminal
  • ODN Optical Distribute Network
  • representative PON technologies are GPON (Gigabit-Capable Passive Optical Network), EPON (Ethernet Passive Optical Network), 10G-GPON (also known as XG-PON), 10G-EPON.
  • the OLT provides a network side interface to the PON system, connecting one or more ODNs.
  • the ONU provides a user-side interface to the PON system and is connected to the ODN. If the ONU directly provides user port functions, such as an Ethernet user port for personal computers (PCs), it is called ONT. Unless otherwise stated, the ONUs mentioned below refer to ONUs and ONTs.
  • the ODN is a network of optical fibers and passive optical splitters used to connect OLT devices and ONU devices to distribute or reuse data signals between the OLT and the ONU. In a PON system, the OLT to the ONU is called a downlink; conversely, it is an uplink from the ONU to the OLT.
  • the PON 100 can include an OLT 110, a plurality of ONUs 120, and an ODN 130 that can be coupled to the OLT 110 and each of the ONUs 120.
  • PON 100 may be a communication network that does not require any active components to distribute data between OLT 110 and each ONU 120. Instead, PON 100 can use passive optical components in ODN 130 to distribute data between OLT 110 and each ONU 120.
  • the PON 100 may be an NGA (Next Generation Access) system such as XGPON (10Gigabit PON, also referred to as a 10 Gigabit Passive Optical Network), which may have a downlink bandwidth of approximately 10 Gbps and a minimum of approximately 2.5 Gbps.
  • NGA Next Generation Access
  • Uplink bandwidth can also be 10G-EPON (10Gigabit Ethernet PON, 10 Gigabit Ethernet passive optical network).
  • PON 100 include Asynchronous Transfer Mode PON (APON) and broadband as defined by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) G.983 standard.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • PON Broadband PON, BPON
  • GPON defined by the ITU-T G.984 standard
  • EPON defined by the Institute of Electrical and Electronics Engineers (IEEE) 802.3ah standard
  • WDM-PON Wavelength Division Multiplexed-PON
  • the PON 100 can also have multiple wavelength capabilities, wherein multiple downlink and/or upstream wavelengths (or wavelength channels) can be used.
  • the PON protocol can be used to support any of the above multi-wavelength technologies/systems.
  • OLT 110 may be any device for communicating with each ONU 120 and another network (not shown).
  • OLT 110 can act as an intermediary between another network and each ONU 120. For example, OLT 110 may forward data received from the network to each ONU 120 and forward data received from each ONU 120 to another network. Although the specific configuration of OLT 110 may vary depending on the type of PON 100, in one embodiment, OLT 110 may include one transmitter and one receiver. When another network is using a different network protocol than the P0N protocol used in the P0N 100, for example, Ethernet or Synchronous Optical Networking (SONET)/Synchronous Digital Hierarchy (SDH), OLT 110 may include a converter that converts the network protocol to a PON protocol. The OLT 110 converter can also convert the PON protocol into the network protocol. The 0LT 110 can typically be placed at a central location, such as a central office, but can be placed at other locations as well.
  • SONET Synchronous Optical Networking
  • SDH Synchronous Digital Hierarchy
  • OLT 110 may include a converter that converts the network protocol to a PON protocol.
  • Each 0NU 120 can be any device used to communicate with the 0LT 110 and the customer or user (not shown). Each 0NU 120 can act as an intermediary between the 0LT 110 and the customer. For example, each ONU 120 may forward data received from the OLT 110 to the client and forward the data received from the client to the OLT 110. Although the specific configuration of each ONU 120 may vary depending on the type of PON 100, in one embodiment, each ONU 120 may include a light emitter for transmitting optical signals to OLT 110 and for receiving light from OLT 110 The light receiver of the signal. Different 0NU 120 transmitters and receivers can transmit and receive optical signals carrying data using different wavelengths. The same - the transmitter and receiver of the ONU 120 can use the same wavelength or different wavelengths.
  • each ONU 120 can include: a converter that converts optical signals into electrical signals for a customer, such as signals in an Ethernet protocol; and a second transmitter and/or reception that can transmit and/or receive electrical signals to client devices.
  • a converter that converts optical signals into electrical signals for a customer, such as signals in an Ethernet protocol
  • a second transmitter and/or reception that can transmit and/or receive electrical signals to client devices.
  • client devices such as signals in an Ethernet protocol
  • each ONU 120 and each Optical Network Terminal (ONT) are similar, and thus these terms are used interchangeably herein.
  • Each ONU can usually be placed at an assigned location, such as a customer premises, but can be placed elsewhere.
  • the ODN 130 can be a data distribution system that can include fiber optic cables, couplers, splitters, splitters, and/or other devices.
  • the fiber optic cable, coupler, separation The splitter, splitter and/or other device may be passive optical components, and the passive optical device may not require any electrical energy to distribute data signals between the OLT 110 and each of the ONUs 120.
  • the ODN 130 may include one or more processing devices, such as optical amplifiers.
  • the ODN 130 may typically extend from the OLT 110 to each ONU 120 in a branched configuration as shown in Figure 1, but another option may be in any other point-to-multipoint configuration.
  • the embodiment of the invention provides an optical line terminal OLT, as shown in FIG. 2a, which specifically includes: a signal processor 201, which can use a high-performance DSP (Digital Signal Processor) and can also be used.
  • a high-performance FPGA Filed-Programmable Gate Array
  • ASIC Application Specific Integrated
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • MCU Micro Controller Unit
  • PLD Programmable Logic Device
  • DAC Digital Analog Converter
  • One end is coupled to the signal processor 201 via a bus interface 205, and is coupled to an optical transceiver 203 for converting data transmitted by the signal processor 201 into an analog signal. And sent to the optical transceiver 203.
  • Analog Digital Convert (ADC) 204 One end through the bus interface
  • the 205 is coupled to the signal processor 201, and is coupled to the optical transceiver 203 for converting the analog signal transmitted by the optical transceiver 203 into a digital signal for transmission to the signal processor 201.
  • Optical transceiver 203 Also referred to as an optical module, includes an optical transmitter and an optical receiver.
  • the optical transmitter is configured to perform electro-optical conversion of the analog signal received from the digital-to-analog converter 202 to the optical distribution network ODN; and the optical receiver is configured to perform photoelectric conversion on the optical signal received from the optical distribution network ODN.
  • An analog signal is formed and sent to analog to digital converter 204 for processing.
  • Bus interface 205 A channel for information transmission by each of the above devices.
  • the signal in the signal processor 201 is modulated, and then enters the DAC through the bus interface 205 to form an electrical analog signal.
  • the optical transceiver 203 performs electro-optical conversion, and the optical signal is sent to the ONU through the ODN.
  • the optical signal of the ONU uplink is photoelectrically converted by the optical transceiver 203 to form an electrical analog signal, and finally passes through the ADC and enters the signal processor 201 for demodulation and the like.
  • the signal processor 201 includes a control unit and a data unit.
  • the control unit is configured to centrally manage and register each ONU through the outband management channel, create and deregister various PH Y and MAC instances in the OLT, and implement the reconstruction of the ONU modulation format and the MAC protocol.
  • the control unit specifically includes a configuration module, a PON component management module, and an ONU registration module.
  • control unit is configured to download the technical specification indicated by the user instruction from the server according to the user instruction, load the technical specification to the optical network unit ONU through an outband management channel, and configure the technical specification to the data unit; And sending, by the out-of-band management channel, a control message to the ONU, instructing the ONU to configure the technical specification;
  • the data unit includes various processing modules for performing specific services, such as a MAC processing module, a PHY processing module, and the like.
  • the data unit is further configured to communicate with the ONU via a data channel supported by the technical specification via an in-band data channel.
  • the signal processor 201 also includes a storage unit for storing the technical specifications.
  • control unit is further configured to send the modulated signal to the ONU by using the inband data channel, and receive the signal to noise ratio SNR reported by the ONU by using an outband management channel. Hold the technical specifications.
  • the bandwidth of the out-of-band management channel is smaller than the bandwidth of the in-band data channel.
  • the spectrum of the out-of-band management channel and the in-band data channel are independent, and the range of the spectrum can be freely set according to the requirements of the operator. registered.
  • the OLT will be further described in conjunction with the specific application scenario and the third embodiment.
  • the embodiment of the present invention further provides an optical network unit ONU 22, as shown in FIG. 3a, which specifically includes:
  • the signal processor 221 can use a high-performance DSP (Digital Signal Processor), and can also use a high-performance FPGA (Filed-Programmable Gate Array). High-performance multi-core CPUs, such as dual-core, quad-core, and eight-core, can be used. Application Specific Integrated Circuits (ASICs) can be used. System on Chips (SoCs) can also be used. Using a Central Processor Unit (CPU), you can also use a Network Processor (NP), you can also use a Micro Controller Unit (MCU), or you can use a programmable controller. (Programmable Logic Device, PLD) or other integrated chip.
  • CPU Central Processor Unit
  • NP Network Processor
  • MCU Micro Controller Unit
  • PLD Programmable Logic Device
  • Digital-to-analog converter DAC 222 One end is coupled to the signal processor 221 via a bus interface 225, and one end is coupled to an optical transceiver 223 for converting data transmitted by the signal processor 221 into an analog signal for transmission to the optical transceiver 223 in.
  • An analog-to-digital converter ADC 224 is coupled to the signal processor 221 via a bus interface 225 and coupled to an optical transceiver 223 at one end for converting an analog signal transmitted by the optical transceiver 223 into a digital signal for transmission to a signal processing In the 221.
  • Optical transceiver 223 Also referred to as an optical module, including an optical transmitter and an optical receiver.
  • the optical receiver is configured to perform photoelectric conversion on the optical signal received from the optical distribution network ODN to form an analog signal, which is sent to an analog-to-digital converter ADC 224 for processing; the optical transmitter is used to convert from the digital to analog
  • the analog signal received by the DAC 222 is electro-optically converted, sent to the ODN 21, and then transmitted to the OLT 20 for processing.
  • Bus interface 225 A channel for information transmission by each of the above devices.
  • the signal in the signal processor 221 is modulated, and then enters the digital-to-analog converter 222 through the bus interface 225 to form an electrical analog signal.
  • the optical transceiver converts the optical signal through the optical transceiver 223, and the optical signal is sent through the ODN 21 to OLT 20.
  • the OLT 20 downstream optical signal is photoelectrically converted by the optical transceiver 223 to form an electrical analog signal, and passes through the DAC 224 to enter the signal processor 221 for demodulation and the like.
  • the signal processor 221 includes a control unit and a data unit.
  • Control unit used to manage the ONU. Specifically, it includes: a configuration module, a PON component management module, and an ONU registration module.
  • a data unit is in communication with the control unit via a programming interface. Specifically, it includes modules for processing various specific services, such as a MAC processing module and a PHY processing module.
  • control unit is configured to receive, by using an outband management channel, a control message sent by the optical line terminal OLT, and configure the same technical specification as the OLT to the data unit according to the indication of the control message;
  • a data unit configured to communicate with the control unit through the programming interface, configure the technical specification, run the technical specification, and communicate with the OLT according to a mode supported by the technical specification through an in-band data channel.
  • the device further includes a storage unit, configured to store the technical specification.
  • control unit is further configured to receive, by using an outband management channel, an inquiry message, to query whether the optical network unit ONU supports the same technical specification as the OLT, and if the ONU supports, send an acknowledgement message to the OLT.
  • control unit is further configured to receive, by using the inband data channel, the modulated signal sent by the OLT, and compare the ideal constellation pattern according to the modulation mode with the constellation image recovered according to the received signal, The signal to noise ratio of the entire downlink is evaluated and fed back to the OLT through the out-of-band management channel.
  • control unit is further configured to receive, by using an outband management channel, an inquiry message, to query whether the optical network unit ONU supports the same technical specification as the OLT, and if the ONU does not support, feedback does not support the prompt. Giving the OLT; receiving a technical specification sent by the OLT, Stored to the storage unit or configured to the data unit.
  • the bandwidth of the out-of-band management channel is smaller than the bandwidth of the in-band data channel.
  • the spectral range of the out-of-band management channel and the in-band data channel can be freely set according to the operator's requirements.
  • the entire downlink channel is divided into a management channel and a data channel according to the spectrum.
  • the frequency channel planning of the management channel and the data channel is as follows:
  • Fs is the sampling rate of D/A and A/D
  • DC to FS/2 is the first Nyquist domain
  • Management spectra and Data Spectra are located in the first set.
  • the domain is independent of each other.
  • the management spectrum and the data spectrum can be located not only in the first Nyquist domain but in the entire Fs domain.
  • the bandwidth of the management channel is smaller than the bandwidth of the data channel, and the ratio of the two and the range of the spectrum can be freely set or planned by the operator.
  • the total bandwidth of the downlink channel is lOGhz (gigahertz), wherein the management channel has a bandwidth of lOOMhz (megahertz) and the data channel is 9Ghz.
  • the control unit of the OLT and the control unit of the ONU communicate through the out-of-band management channel.
  • the ONU registers through the out-of-band management channel to form a lightweight small system outside the band.
  • the function of the small system enables the 0 LT to manage the ONU. .
  • the function of the PHY layer or the MAC layer can be reconstructed for the in-band data channel.
  • both the OLT and the ONU's signal processor are programmable hardware and are a general-purpose processor. Therefore, the function reconstruction does not require hardware replacement, and only needs to be based on the user's needs.
  • the PON layer and MAC layer function reconstruction is performed on the original PON system by loading or upgrading.
  • the PHY layer reconstruction may be a modification of some modulation formats of the PHY layer, and the modulation format may be QAM (Quadature Amplitude Modulation) or QPSK (Quadature Phase Shift Keying), or OFDM (Orthogonal Frequency Division Multiplexing), or ASK (Amplitude Shift Keying, Amplitude Shift Keying Modulation), or FSK (Frequency-Shift Keying Modulation), etc., can also use other known modulation techniques in the prior art, and are not listed here.
  • the modulation format of the PHY layer is changed to OOK modulation to a PAM-4 (Pulse Amplitude Modulation 4) modulation format.
  • the MAC layer reconfiguration may be a modification of a protocol working at the MAC layer, and the MAC protocol includes a GPON MAC protocol, an EPON MAC protocol, a 10G-GPON MAC protocol, a 10G-EPON MAC protocol, a Wireless MAC protocol, or a 40G-PON, A MAC protocol with a higher transmission rate such as 100G-PON, or one of MAC protocols such as Ethernet protocol, CPRI (Common Public Radio Interface), OBSAI (Open Base Station Architecture Initiative).
  • the user commands the MAC protocol to be changed from the GPON MAC protocol to the 10G-GPON MAC protocol.
  • users can also customize the MAC protocol according to their needs.
  • Figure 5 shows an architectural diagram of a passive optical network system interacting with a remote server over a network.
  • the database of the server in the database of the server, one or more wired (such as PON) or wireless (such as CPRI) technical specifications are stored, and the technical specifications refer to the corresponding standard executable code and/or parameters, OLT and The ONU downloads the required technical specifications from the server to its own memory through the network.
  • the ONU can communicate with the OLT through the out-of-band management channel (when the PON system PHY and MAC functions are not configured), or through the in-band data channel and the OLT. Communication (when the PHY and MAC functions of the PON system are fully built).
  • the technical specification can be regarded as a collection of software program codes conforming to a certain standard.
  • the OLT or ONU can communicate according to the modulation format or MAC protocol set in this technical specification. For example, if the OLT adjusts from the OOK modulation format to the PAM modulation format, the technical specification supporting the PAM modulation format needs to be downloaded from the remote server to the local storage, and the configuration is successful. The configuration is performed on the ONU side through the outband management channel, and the technical specification is run. The OLT and the ONU can communicate based on the PAM modulation format.
  • FIG. 2c and 3c respectively show a schematic diagram of the structure of a passive optical network system OLT and ONU.
  • the structure of the OLT and the ONU is as described in Embodiment 1 or Embodiment 2, and details are not described herein again. among them,
  • the signal processor of the OLT and the signal processor of the ONU are logically divided in FIG. 2c and FIG. 3c, respectively, including a storage unit, a control unit and a data unit.
  • the control unit of the OLT communicates with the control unit of the ONU through the out-of-band management channel
  • the data unit of the OLT communicates with the data unit of the ONU through the in-band data channel, which are independent at the spectrum level (in the figure) Not shown).
  • the data units in the OLT and the ONU all contain modules related to specific service processing, such as a PHY processing module and a MAC processing module.
  • the functions of these modules can be reconfigured or defined by the control unit. Both modules have corresponding programming interfaces. These interfaces can be publicly released, such as Openflow or specially developed interfaces.
  • the configuration modules in the control unit are responsible for interacting with these programming interfaces.
  • the signal processors of the OLT and the ONU respectively comprise one or more storage units for storing various PON technical specifications.
  • the technical specifications of the OLT can be downloaded from the server or obtained by other means, such as loading locally through a data card.
  • ONU's technical specifications can be downloaded from the server through the out-of-band management channel and OLT communication (when the PON system data unit is not built), or through the in-band data channel (when the data unit of the PON system is built), It can be obtained in other ways, such as loading it locally via data card.
  • the storage unit in the physical entity, may be a random access memory (RAM), a read only memory (ROM), an erasable programmable read only memory (EPROM or flash memory), an optical fiber, a portable only A read memory (CD-ROM), a high speed RAM memory, or a non-volatile memory, for example, may be used. Flash flash, or at least one disk storage.
  • the embodiment of the invention discloses a device for reconstruction, which may be a high performance DSP (Signal Processor) or a high performance FPGA (Filed-Programmable Gate Array).
  • Field programmable logic gate array can also be a high-performance multi-core CPU, such as dual-core, quad-core, eight-core, etc., can be an Application Integrated Integrated Circuit (ASIC), or a system chip (System) On Chip , SoC ), it can also be a Central Processor Unit (CPU), a Network Processor (NP), or a micro-controller.
  • Micro Controller Unit MCU
  • the device is applied on the OLT side.
  • the device comprises a storage unit, a control unit and a data unit.
  • control unit configured to download the technical specification indicated by the user instruction from a server according to a user instruction, and load the technical specification into a storage unit of the optical network unit ONU through an outband management channel;
  • a data unit configured to communicate with the ONU via an in-band data channel based on a mode supported by the technical specification.
  • user commands can be input through a command line or a network management system.
  • control unit receives the user instruction, parses the user instruction, and downloads the technical specification indicated by the user instruction from the external server to the storage unit according to the instruction of the user instruction; converting the technical specification to the optical signal by using the DAC and the optical module , transmitted to the ONU through the spectrum range corresponding to the management channel.
  • control unit includes a PON component management module 52 and a configuration module 54.
  • the PON component management module is configured to determine, according to an instruction of the user, whether there is a corresponding technical specification in the storage unit 53, and if yes, instruct the ONU registration module 51 to query whether the ONU supports the corresponding technical specification through the outband management channel; No, feedback is not supported.
  • the PON component management module 52 is further configured to: when receiving the message of the ONU feedback supporting the technical specification, select the corresponding technical specification from the storage unit 53 and send it to the configuration module 54;
  • the configuration module 54 is configured to interact with the programming interfaces of the data unit, and deliver the components of the various layers supporting the technical specifications to the service modules in the data unit.
  • the first application scenario is: OLT and ONU are just shipped, in-band
  • the data channel modulation format is undetermined. You can also set a default modulation format, such as QPSK (Quadature Phase Shift Keying) modulation or OOK (On-Off Keying) modulation. Specifically include:
  • the ONU registration module of the OLT control unit obtains the ONU SN (ONU serial number) just after power-on through the outband management channel, completes the ONU registration in the OLT, and performs ranging to obtain the distance between the OLT and the ONU.
  • ONU SN ONU serial number
  • the ONU registration module 51 sends an ONU registration request message through the outband management channel.
  • the ONU After the ONU receives the registration request message through the outband management channel, the ONU reports the serial number SN through the outband management channel;
  • the ONU registration module 51 receives the SN reported by the ONU that has just been online, and verifies whether the SN is legal. If it is legal, the registration of the ONU is completed, and ranging is performed.
  • the SN is the same as the SN configured on the OLT. Otherwise, it is illegal. If the legal ONU is successfully registered, the OLT kicks the illegal ONU off the line.
  • modulation format of the out-of-band management channel is fixed.
  • QPSK modulation or OOK modulation can be used, and other modulation methods disclosed in the prior art can also be used.
  • the OLT and the ONU measure a Signal Noise Ratio (SNR) of the uplink and downlink data channels.
  • SNR Signal Noise Ratio
  • the OLT sends a signal of a fixed modulation format to the ONU through the in-band data channel, taking the QPSK modulation mode as an example (of course, other known modulation methods in the prior art can also be used.
  • the ONU compares the ideal QPSK constellation map with the received recovered QPSK constellation map to evaluate the SNR of the data channel in the entire downlink band, and the result can be fed back to the OLT through an out-of-band management channel or an in-band data channel;
  • the ONU sends a signal of a fixed modulation format to the OLT through the data channel, taking the QPSK modulation mode as an example (of course, other known modulation methods in the prior art can also be used)
  • the OLT compares the ideal QPSK constellation map with the recovered QPSK constellation map to evaluate the SNR of the uplink in-band data channel.
  • the result can be fed back to the ONU via an out-of-band management channel or an in-band data channel.
  • the OLT can control the ONU through the outband management channel and communicate with the ONU.
  • the PON component management module 52 of the OLT determines whether there is a corresponding technical specification in the storage unit 53 according to the user's instruction (if one or some technical specifications are to be selected) (the current data unit of the OLT may also be acquired through the configuration module 54) The existing technical specification), if yes, instructs the ONU registration module 51 to query the ONU whether the ONU also stores the corresponding technical specification in the out-of-band management channel, and if not, downloads the technical specification indicated by the user instruction from the external server, and then passes the outband.
  • the management channel asks the ONU whether to store the corresponding technical specifications;
  • the ONU registration module 61 of the ONU receives the above message for inquiring whether the ONU also supports the corresponding technical specification, and sends the message to the PON component management module 62.
  • the PON component management module 62 determines whether there is a corresponding in the storage unit 63.
  • the technical specifications (the existing technical specifications of the current data unit of the ONU can also be obtained through the configuration module 64). If yes, the support message is sent back to the OLT through the ONU registration module 61. If not, the feedback is not supported. The prompt is given to the OLT.
  • the OLT After receiving the ONU message, the OLT performs corresponding processing. If the ONU does not support, the corresponding technical specification needs to be downloaded from the server to the ONU. If the ONU supports, the PON component management module 52 of the OLT selects the corresponding from the storage unit 53. The technical specifications are then sent to the configuration module 54, and the configuration module 54 interacts with each programming interface in the data unit to deliver the components of the various layers supporting the technical specifications to the service modules (PHY processing module, MAC processing module). It should be noted that when the user instruction is an indication indicating that the PHY layer is reconstructed, then the technical specification is also the code associated with the PHY layer indicated by the user instruction, then in S506, the configuration module 54 sets the components of the various layers supporting the technical specification.
  • the configuration module 54 sends the components of each layer supporting the technical specification to the MAC processing module.
  • the OLT sends a control message to the ONU through the outband management channel to enable the ONU to perform corresponding configuration.
  • the PON component management module of the ONU selects the corresponding technical specification from the storage unit 63, and then sends it to the configuration module 64.
  • the configuration module 64 interacts with each programming interface in the data unit, and delivers the components of each layer supporting the technical specification to each service module (PHY processing module, MAC processing module). Then, an acknowledgement message is reported to the OLT through the out-of-band management channel.
  • the OLT periodically scans the ONU through the outband management channel to perform unified registration control and data unit reconstruction parameters negotiation and configuration.
  • the second application scenario is to dynamically reconstruct the PHY and MAC of the OLT and the ONU according to the needs of the user in a normal working state. If it is a single-carrier system, it can be reconfigured as a multi-carrier system. The process can only be S502 ⁇ S506 in the first application scenario.
  • the foregoing technical specifications may be directly saved to the local storage of the OLT and the ONU, and the OLT and the ONU allocate and configure the technical specification, and run the technical specification, so that the OLT and the ONU are based on Mode communication supported by this technical specification.
  • the interaction process between the OLT and the ONU is the same as the step S502 S506.
  • the technical specification saved in the local storage unit is directly sent to ONU.
  • the PHY and MAC can be dynamically reconstructed, and a universal PON system can be defined as different types of PON systems according to user requirements and application scenarios, without requiring hardware replacement, greatly increasing the number of PON systems. Flexibility in PON deployment reduces the cost of deployment and maintenance.
  • the embodiment of the present invention further discloses a passive optical network PON system.
  • the OLT includes an OLT and an ONU.
  • the OLT connects at least one ONU through an ODN, and the OLT is configured to download the user instruction from a server according to a user instruction.
  • the technical specification of the indication the technical specification is loaded into the optical network unit ONU through the out-of-band management channel; the control message is sent to the ONU through the out-of-band management channel, and is used to instruct the ONU to configure the technical specification;
  • the internal data channel communicates with the ONU based on a mode supported by the technical specification, wherein the downlink channel is divided into the out-of-band management channel and the in-band data channel according to the spectrum.
  • the ONU is configured to receive, by using the out-of-band management channel, a control message delivered by the OLT, where Setting the technical specification; communicating with the OLT based on a mode supported by the technical specification through the in-band data channel.
  • the OLT is further configured to send the modulated signal to the ONU by using the inband data channel, and receive the signal to noise ratio reported by the ONU by using the outband management channel.
  • the OLT is further configured to query, by the out-of-band management channel, whether the ONU supports the technical specification, and if not, load the technical specification to the ONU by using an out-of-band management channel.
  • the OLT is further configured to receive the registration request of the ONU by using an outband management channel.
  • the bandwidth of the out-of-band management channel is smaller than the bandwidth of the in-band data channel.
  • the spectral range of the out-of-band management channel and the in-band data channel can be freely set according to the operator's requirements.
  • the embodiment of the present invention discloses an optical line terminal OLT, as shown in FIG. 8, including a processor 801, a memory 802, a communication bus 803, and a communication interface 804.
  • the CPU 801, the memory 802, and the communication interface 804 are connected by a communication bus 803 and communicate with each other.
  • Processor 801 may be a single core or multi-core central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 802 can be a high speed RAM memory, a non-volatile memory, a flash memory, or at least one disk.
  • Memory 802 is used by computer to execute instructions 805.
  • the computer execution instructions 805 can include program code.
  • the processor 801 runs the computer execution instruction 805, and can execute the method flow executed by the OLT in the third embodiment.
  • the embodiment of the present invention discloses an optical line terminal ONU, as shown in FIG. 9, including a processor 901, a memory 902, a communication bus 903, and a communication interface 904.
  • the CPU 901, the memory 902, and the communication interface 904 are connected by a communication bus 903 and complete communication with each other.
  • Processor 901 may be a single core or multi-core central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 902 can be a high speed RAM memory, a non-volatile memory, a flash memory, or at least one disk.
  • Memory 902 is used by computer to execute instructions 905.
  • the program code may be included in the computer execution instruction 905.
  • the processor 901 runs the computer execution instruction 905, and the method flow executed by the ONU in the third embodiment can be executed.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include RAM (Random Access Memory), ROM (Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • disk storage media or other magnetic storage device, or can be used to carry or store desired programs in the form of instructions or data structures. Code and any other medium that can be accessed by a computer. Also. Any connection may suitably be a computer readable medium.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server or other remote source using coaxial cable, fiber optic cable, twisted pair, DSL (Digital Subscriber Line) or wireless technology such as infrared, radio and microwave, then Shaft cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied,
  • the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种通信方法,包括根据用户指令从服务器下载所述用户指令指示的技术规范,通过带外管理通道将所述技术规范发送至光网络单元ONU;配置所述技术规范;通过带外管理通道下发控制消息至所述 ONU,用于指示所述ONU配置所述技术规范;通过带内数据通道与所述 ONU基于所述技术规范所支持的模式进行通信。该方案可以实现对物理层或MAC层进行动态重构,可根据用户的需求和应用场景,采用不同软件定义为不同制式的PON系统,无需更换硬件,大大增加了PON部署时的灵活性,降低了部署和维护的成本。

Description

一种通信的方法、 装置及系统
技术领域
本发明涉及通信领域, 尤其涉及一种通信的方法、 装置及系统。
背景技术
当前, FTTx(Fiber To The X, 光乡千 J x, 比 ^口 FTTh为光乡千人户, FTTB 为光纤到楼)以其高带宽、长距离等优点已成为接入领域备受青睐的对象, 尤其以点到多点传输为特征的光接入技术 PON ( Passive Optical Network, 无源光网络)受到业界的瞩目。 与点到点光接入相比, PON局端用一根主 干光纤, 即可分成数十甚至更多路光纤连接用户, 大大降低建网成本, 是 FTTx最为经济有效的技术手段。
目前 PON技术主要有 EPON ( Ethernet Passive Optical Network, 以太 网无源光网络)、 GPON ( Gigabit Passive Optical Network, 吉比特无源光 网络) 几种, 其中, EPON可以支持 1.25Gbps对称速率, 将来速率还能升 级到 10Gbps。 EPON产品得到了更大程度的商用, 由于其将以太网技术与 PON技术完美结合, 因此成为了非常适合因特网协议 ( Internet Protocol, IP ) 业务的带宽接入技术。 下一代 EPON分为两种, 一种是非对称 10G-EPON , 下行速率 10Gb/s , 上行速率 1.25Gb/s; 另一种是对称 10G-EPON, 上、 下行速率均为 10Gb/s , 目前 10G-EPON标准已经制定, 开始进行试验局。
在以太网接入研究联盟 EFMA提出 EPON概念的同时, 全业务接入网 论坛 ( Full Service Access Networks , FSAN ) 又提出 GPON, FSAN与国际 电信联盟 ITU已对其进行了标准化, 其技术特色是在二层釆用 ITU-T定义 的通用成帧规程 GFP对以太网 Ethernet, TDM( Time Division Multiplexing, 时分复用 )等多种业务进行封装映射, 能提供 2.5Gb/s下行速率和 1.25Gb/s 上行速率, 并具有强大 OAM ( Operation Administration Management, 操 作管理) 功能。 在高速率和支持多业务方面, GPON有明显优势, 但成本 要略高于 EPON。 下一代的 GP0N技术也分为两类, 一类是 NG-P0N 1 ( Next Generation Passive Optical Network, 下一代无源光网络) 即 10G-GPON, 下行速率为 10Gb/s , 上行速率为 2.5Gb/s; 另一类是 NG-P0N2 , 其釆用的 TWDM-P0N ( Time Wavelength Division Multiplexing, 时分波分复用 ) 方案, 面向速 率更高、 距离更长、 支持的用户更多这一目标。
然而,上述这些传统的 P0N系统,均存在一个固有的缺陷,他们的 PH Y ( Physical Layer Device , 物理层器件)的调制格式和 MAC ( Media Access Control, 介质访问控制) 协议都是固定的, 如 EPON的 PHY层的调制方式 只能是 OOK(On-Off Key, 开关键控, 又名二进制振幅键控 2ASK) , MAC 层固定为基于以太网帧的协议; GPON的 PHY层的调制格式只能是 OOK, MAC层固定为基于 GEM ( GPON Encapsulation Method, 吉比特无源光网 络封装方法)帧的协议, 针对不同的应用要釆用不同的芯片和系统, 灵活 性差, 维护管理困难。
发明内容
本发明的实施例提供一种无源光网络 PON系统,用以解决现有技术中
PON系统的 PHY的调制格式和 MAC协议都是固定的、 灵活性差、 维护管 理困难的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 一种通信方法, 包括根据用户指令从服务器下载所述用户 元 ONU; 根据所述技术规范进行配置; 通过带外管理通道下发控制消息至 所述 ONU, 用于指示所述 ONU配置所述技术规范; 通过带内数据通道与 所述 ONU基于所述技术规范所支持的模式进行通信。
结合第一方面, 在第一方面的第一种可能的实现方式中, 通过所述带 内数据通道发送调制后的信号至所述 ONU; 通过所述带外管理通道接收所 述 ONU上报的信噪比 SNR。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第 述技术规范, 当接收到所述 ONU不支持的提示, 通过所述带外管理通道将 所述技术规范发送至所述 ONU。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第 述技术规范, 接收所述 ONU反馈支持的消息。
结合第一方面及任意一种可能的实现方式, 在第一方面的第四种可能 收所述 ONU 的注册请求; 通过所述带外管理通道将为所述 ONU 分配的 ONU标识发送至所述 ONU。
结合第一方面及任意一种可能的实现方式, 在第一方面的第五种可能 的实现方式中, 所述方法还包括所述带外管理通道的带宽小于带内数据通 道的带宽。
结合第一方面及任意一种可能的实现方式, 在第一方面的第六种可能 的实现方式中, 所述带外管理通道和所述带内数据通道的频谱范围可以根 据运营商的要求自由设定。
第二方面, 一种通信的方法, 包括光网络单元 ONU通过带内管理通 道接收光线路终端 OLT发送的控制消息,所述控制消息用于指示所述 ONU 配置与所述 OLT相同的技术规范;
所述 ONU根据所述技术规范进行配置;
所述 ONU基于配置的所述技术规范,通过数据通道与所述 OLT通信。 结合第二方面, 在第二方面的第一种可能的实现方式中, 通过带外管 理通道接收询问消息, 所述询问消息用于询问所述 ONU 是否支持与所述 OLT相同的技术规范;
当所述 ONU不支持时, 反馈不支持的提示至所述 OLT;
接收所述 OLT发送的所述技术规范, 并保存。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第 二种可能的实现方式中, 通过所述带内数据通道接收已调制的信号, 根据 所述接收的信号恢复出的星座图, 评估整个下行链路的信噪比, 通过所述 带外管理通道反馈所述信噪比至所述 OLT。
结合第二方面或第二方面的任意一种可能的实现方式, 在第二方面的 第三种可能的实现方式中, 所述方法还包括通过所述带外管理通道发送所 述 ONU的注册请求; 通过所述带外管理通道接收所述 OLT为所述 ONU 分配的 ONU标识。
结合第二方面或第二方面的任意一种可能的实现方式, 在第二方面的 第四种可能的实现方式中, 所述带外管理通道的带宽小于带内数据通道的 带宽。
结合第二方面或第二方面的任意一种可能的实现方式, 在第二方面的 第五种可能的实现方式中, 所述带外管理通道和所述带内数据通道的频谱 范围可以根据运营商的要求自由设定。
第三方面, 一种用于重构的装置, 包括控制单元, 用于根据用户指令 从服务器下载所述用户指令指示的技术规范, 通过带外管理通道将所述技 术规范加载到光网络单元 ONU; 将所述技术规范配置到数据单元; 通过所 述带外管理通管道下发控制消息至所述 ONU, 指示所述 ONU配置所述技术 规范; 数据单元, 用于通过带内数据通道与所述 ONU基于所述技术规范所 支持的模式通信。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述装置还 包括存储单元, 用于存储所述技术规范。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第 二种可能的实现方式中, 所述控制单元还用于通过所述带内数据通道发送 经过调制后的信号至所述 ONU, 通过带外管理通道接收所述 ONU上报的信 噪比 SNR。
结合第三方面或第三方面的任意一种可能的实现方式, 在第三方面的 第三种可能的实现方式中, 所述控制单元还用于通过带外管理通道询问所 述 ONU是否支持所述技术规范。
结合第三方面或第三方面的任意一种可能的实现方式, 在第三方面的 第四种可能的实现方式中, 所述带外管理通道的带宽小于带内数据通道的 带宽。
结合第三方面或第三方面的任意一种可能的实现方式, 在第三方面的 第五种可能的实现方式中, 所述带外管理通道和所述带内数据通道的频谱 范围可以根据运营商的要求自由设定。
结合第三方面或第三方面的任意一种可能的实现方式, 在第三方面的 第六种可能的实现方式中, 所述控制单元还用于通过所述带外管理通道完 成所述 ONU的注册。
第四方面, 一种用于重构的装置, 包括控制单元, 用于通过带外管理 通道接收光线路终端 OLT发送的控制消息, 根据所述控制消息的指示, 配 置与所述 OLT相同的技术规范到数据单元;
数据单元, 用于通过带内数据通道与所述 OLT基于所述技术规范所支 持的模式进行通信。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述装置还 包括存储单元, 用于存储所述技术规范。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面的第 二种可能的实现方式中, 所述控制单元还用于通过带外管理通道接收询问 消息, 用于询问光网络单元 ONU是否支持与所述 OLT相同的技术规范, 如 果所述 ONU支持, 发送确认消息至所述 OLT。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的 第三种可能的实现方式中, 所述控制单元还用于通过所述带内数据通道接 收已调制的信号, 根据理想的调制方式星座图和根据所述接收的信号恢复 出的星座图进行对比, 评估整个下行链路的信噪比, 通过所述带外管理通 道反馈给所述 OLT。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的 第四种可能的实现方式中, 所述控制单元还用于通过带外管理通道接收询 问消息, 用于询问光网络单元 ONU是否支持与所述 OLT相同的技术规范, 如果所述 ONU不支持, 反馈不支持的提示给所述 OLT; 接收所述 OLT发送 的技术规范, 存储到所述存储单元或者配置到所述数据单元。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的 第五种可能的实现方式中, 所述带外管理通道的带宽小于带内数据通道的 带宽。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的 第六种可能的实现方式中, 所述带外管理通道和所述带内数据通道的频谱 范围可以根据运营商的要求自由设定。
第五方面, 一种 PON 系统, 包括光线路终端 OLT , 用于根据用户指 令从服务器下载所述用户指令指示的技术规范, 通过带外管理通道将所述 技术规范加载到光网络单元 ONU; 通过带外管理通道下发控制消息至所述 ONU, 用于指示所述 ONU 配置所述技术规范; 通过带内数据通道与所述 ONU基于所述技术规范所支持的模式进行通信, 其中, 其中, 根据频谱将 下行通道划分为所述带外管理通道与所述带内数据通道。
所述 ONU , 用于通过所述带外管理通道接收所述 OLT下发的控制消 息, 配置所述技术规范; 通过所述带内数据通道与所述 OLT基于所述技术 规范所支持的模式通信。
结合第五方面, 在第五方面的第一种可能的实现方式中, 所述 OLT还 用于通过所述带内数据通道发送经过调制后的信号至所述 ONU, 通过所述 带外管理通道接收所述 ONU上报的信噪比。
结合第五方面或第五方面的第一种可能的实现方式, 在第五方面的第 ONU是否支持所述技术规范, 如果否, 通过带外管理通道将所述技术规范 加载到所述 ONU。
结合第五方面或第五方面的任意一种可能的实现方式,在第五方面的 第三种可能的实现方式中, 所述 OLT还用于通过带外管理通道接收所述 ONU的注册请求。
结合第五方面或第五方面的任意一种可能的实现方式,在第五方面的 第四种可能的实现方式中, 所述带外管理通道的带宽小于带内数据通道的 带宽。
结合第五方面或第五方面的任意一种可能的实现方式,在第五方面的 第五种可能的实现方式中, 所述带外管理通道和所述带内数据通道的频谱 范围可以根据运营商的要求自由设定。
第六方面, 一种光线路终端 OLT , 包括处理器, 其中处理器用于执行 如第一方面或第一方面的任意一种可能的实现方式所述的方法。
第七方面, 一种光网络单元 ONU, 包括处理器, 其中处理器用于执行 如第二方面或第二方面的任意一种可能的实现方式所述的方法。
通过根据用户的指令, 下载该用户指令指示的技术规范, 配置该技术 规范并运行, 可以实现对物理层和 MAC的动态重构, 根据用户的需求和 应用场景定义不同制式的 PON系统, 无需更换硬件, 大大增加了 PON部署 时的灵活性, 降低了部署和维护的成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为无源光网络 PON的系统架构图;
图 2a为本发明实施例提供的一种光线路终端 OLT的结构示意图; 图 2 b为本发明实施例提供的一种光线路终端 0 LT的结构示意图; 图 2c为本发明实施例提供的另一种光线路终端 OLT的结构示意图; 图 3a为本发明实施例提供的一种光网络单元 ONU的结构示意图; 图 3b为本发明实施例提供的一种光网络单元 ONU的结构示意图; 图 3c为本发明实施例提供的另一种光网络单元 0NU的结构示意图; 图 4为本发明实施提供的一种带外管理通道和带内数据通道频谱划分 的示意图;
图 5为本发明实施例提供的一种无源光网络系统 OLT通过网络与外部 服务器交互的架构图;
图 6为本发明实施例提供的一种 PON系统结构图;
图 7为本发明实施例提供的一种 0 LT和 0 NU实现配置重构的流程交互 图;
图 8为本发明实施例提供的一种 OLT的结构示意图;
图 9为本发明实施例提供的一种 ONU的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
另外, 本文中术语 "系统" 和 "网络" 在本文中常被可互换使用。 本 文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在 三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单 独存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是 一种 "或" 的关系。
无源光网络 ( Passive Optical Network, PON ) 由局侧的光线路终端 ( Optical Line Terminal , OLT )、 用户侧的光网络单元 ( Optical Network Unit , ONU ) 或者光网络终端 ( Optical Network Terminal , ONT ) 以及光 分配网络 ( Optical Distribute Network, ODN ) 组成。 目前, 具有代表性 的 PON技术是 GPON ( Gigabit-Capable Passive Optical Network, 千兆无源 光网络)、 EPON(Ethernet Passive Optical Network , 以太网无源光网络)、 10G-GPON (也可以称为 XG-PON )、 10G-EPON。
OLT为 PON系统提供网络侧接口, 连接一个或多个 ODN。 ONU为 PON 系统提供用户侧接口, 与 ODN相连。 如果 ONU直接提供用户端口功能, 如个人电脑( Personal Computer, PC )上网用的以太网用户端口, 则称为 ONT。 无特殊说明, 下文提到的 ONU统指 ONU和 ONT。 ODN是由光纤和 无源分光器件组成的网络, 用于连接 OLT设备和 ONU设备, 用于分发或复 用 OLT和 ONU之间的数据信号。 在 PON系统中, 从 OLT到 ONU称为下行; 反之, 从 ONU到 OLT为上行。
图 1所示为 PON 100的一项实施例。 所述 PON 100可以包括一个 OLT 110、 多个 ONU 120 , 以及一个 ODN 130 , 所述 ODN 130可耦合到所述 OLT 110和各 ONU 120。 PON 100可以是不需要任何有源部件来在 OLT 110与各 ONU 120之间分配数据的通信网络。 相反, PON 100可在 ODN 130中使用 无源光部件以在 OLT 110与各 ONU 120之间分配数据。 PON 100可以是 NGA ( Next Generation Access , 下一代接入 ) 系统, 如 XGPON ( lOGigabit PON, 也可称为 10吉比特无源光网络), 其可具有大约 10 Gbps的下行带宽 和至少约 2.5 Gbps的上行带宽; 还可以是 10G-EPON ( lOGigabit Ethernet PON, 10吉比特以太网无源光网络)。 适合的 PON 100的其他例子包括由 国 际电联电信标准 ^匕 门 ( International Telecommunication Union Telecommunication Standardization Sector, ITU-T ) G.983标准定义的异步 传输模式的 PON ( Asynchronous Transfer Mode PON, APON )和宽带 PON ( Broadband PON, BPON )、 由 ITU-T G.984标准定义的 GPON、 由电气和 电子工程师学会 ( Institute of Electrical and Electronics Engineers , IEEE ) 802.3ah标准定义的 EPON、 在 IEEE 802.3av标准中所描述的 10GEPON、 和 波分复用 PON ( Wavelength Division Multiplexed-PON, WDM-PON )„ 此 外, PON 100还可以具有多波长能力, 其中, 多个下行和 /或上行波长(或 波长信道)可用于来承载数据, 如为不同的 ONU 120或客户承载数据。 因 此, PON协议可以用来支持任何上述的多波长技术 /系统。 OLT 110可以是用于与各 ONU 120和另一网络 (未图示) 进行通信的 任何设备。 OLT 110可担当另一网络与各 0NU 120之间的中介。 例如, OLT 110可将从网络接收的数据转发到各 ONU 120 , 并且将从各 ONU 120接收 的数据转发到另一网络上。 尽管 OLT 110的具体配置可根据 PON 100的类 型而变化, 但在一项实施例中, OLT 110可包括一个发射器和一个接收器。 当另一网络在使用不同于用于 P0N 100中的 P0N协议的网络协议, 例如, 以太网或同步光网络 ( Ethernet or Synchronous Optical Networking , SONET)/同步数字系统( Synchronous Digital Hierarchy, SDH )时, OLT 110 可包括一个将所述网络协议转换成 PON协议的转换器。 所述 0LT 110转换 器还可将 P0N协议转换成所述网络协议。 0LT 110通常可放置在中心位置 处, 例如中心局, 但也可放置在其他位置处。
各 0NU 120可以是用于与 0LT 110以及客户或用户 (未图示) 进行通 信的任何设备。 各 0NU 120可担当 0LT 110与客户之间的中介。 例如, 各 0NU 120可将从 0LT 110接收的数据转发到客户, 并且将从客户接收的数 据转发到 0LT 110上。 尽管各 0NU 120的具体配置可根据 P0N 100的类型 而变化, 但在一项实施例中, 各 0NU 120可包括用于将光信号发送到 0LT 110的光发射器和用于从 0LT 110接收光信号的光接收器。 不同 0NU 120 的发射器和接收器可以使用不同的波长发送和接收承载数据的光信号。同 — ONU 120的发射器和接收器可以使用相同的波长或不同的波长。 此外, 各 ONU 120可包括: 为客户将光信号转换成电信号的转换器, 例如以太网 协议中的信号; 以及可对客户设备发送和 /或接收电信号的第二发射器和 / 或接收器。在一些实施例中,各 ONU 120和各光网络终端( Optical Network Terminal, ONT ) 是类似的, 并且因此这些术语在本文中可互换地进行使 用。 各 ONU通常可放置在分配的位置处, 例如客户驻地, 但也可放置在 其他位置处。
所述 ODN 130可以是一个数据分配系统, 其中可包括光纤电缆、 耦合 器、 分离器、 分配器以及 /或者其他设备。 所述光纤电缆、 耦合器、 分离 器、 分配器和 /或其他设备可以是无源光部件, 且所述无源光器件可能不 需要任何电能以在 OLT 110与各 ONU 120之间分配数据信号。 或者, 所述 ODN 130可以包括一个或多个处理设备, 如光放大器。 所述 ODN 130通常 可以以图 1所示的分支配置从 OLT 110延伸到各 ONU 120 ,但另一种选择可 以是以任何其他一点到多点的配置的形式进行。
实施例一
本发明实施例提供一种光线路终端 OLT , 如图 2a所示, 具体包括: 信号处理器 201 , 该信号处理器可以釆用高性能的 DSP ( Digital Signal Processor, 信号处理器),还可以釆用高性能的 FPGA ( Filed-Programmable Gate Array, 现场可编程逻辑门阵列), 还可以釆用高性能的多核 CPU, 如 双核、 四核、 八核等, 可以釆用专用集成芯片 ( Application Specific Integrated Circuit , ASIC ), 还可以釆用系统芯片 ( System on Chip , SoC ), 还可以釆用中央处理器 (Central Processor Unit , CPU ), 还可以釆用网络 处理器( Network Processor, NP ), 还可以釆用微控制器( Micro Controller Unit , MCU ), 还可以釆用可编程控制器 (Programmable Logic Device , PLD ) 或其他集成芯片。
数模转换器(Digital Analog Convert , DAC ) 202 : 一端通过总线接口 205耦合到所述信号处理器 201 , —端耦合到光收发机 203 , 用于将信号处 理器 201传输的数据转换为模拟信号, 发送到光收发机 203中。
模数转换器(Analog Digital Convert, ADC) 204: 一端通过总线接口
205耦合到所述信号处理器 201 , —端耦合到光收发机 203 , 用于将光收发 机 203发送的模拟信号转化为数字信号, 发送到信号处理器 201中。
光收发机 203 : 也可称为光模块, 包括光发射机和光接收机。 其中, 所述光发射机用于将从数模转换器 202接收的模拟信号进行电光转化, 发 送到光分配网络 ODN; 光接收机用于将从光分配网络 ODN接收的光信号 进行光电转化, 形成模拟信号, 发送到模数转换器 204进行处理。
总线接口 205:用于上述各个器件进行信息传输的通道。 下行时, 信号处理器 201中的信号经过调制处理后, 通过总线接口 205 进入到 DAC中, 形成电模拟信号, 最后经由光收发机 203进行电光转换, 光信号经过 ODN发至 ONU。
上行时, ONU上行的光信号经过光收发机 203进行光电转换, 形成电 模拟信号, 最后经过 ADC进入到信号处理器 201进行解调等处理。
其中, 所述信号处理器 201 , 如图 2b所示, 包括控制单元和数据单元。 控制单元, 用于通过带外管理通道集中负责对各个 ONU的管理、 注 册、 在 OLT中创建和注销各种 PH Y和 MAC实例、 实现对 ONU调制格式和 MAC协议的重构等功能。 所述控制单元具体包括配置模块、 PON组件管 理模块、 ONU注册模块。
具体地, 控制单元, 用于根据用户指令从服务器下载所述用户指令指 示的技术规范, 通过带外管理通道将所述技术规范加载到光网络单元 ONU; 将所述技术规范配置到数据单元; 通过所述带外管理通道下发控制 消息至所述 ONU, 指示所述 ONU配置所述技术规范;
数据单元, 通过编程接口与所述控制单元通信, 配置所述技术规范, 并运行该技术规范。 所述数据单元包括各种用于执行具体业务的处理模 块, 如 MAC处理模块、 PHY处理模块等。
数据单元, 还用于通过带内数据通道与所述 ONU基于所述技术规范所 支持的模式通信。
所述信号处理器 201还包括存储单元, 用于存储所述技术规范。
可选地, 所述控制单元还用于通过所述带内数据通道发送经过调制后 的信号至所述 ONU, 通过带外管理通道接收所述 ONU上报的信噪比 SNR。 持所述技术规范。
其中, 所述带外管理通道的带宽小于带内数据通道的带宽。
所述带外管理通道和所述带内数据通道的频谱是独立的, 频谱的范围 可以根据运营商的要求自由设定。 注册。
后续将结合具体应用场景和实施例三对 OLT进一步描述。
实施例二
本发明实施例还提供一种光网络单元 ONU 22 , 如图 3a所示, 具体包 括:
信号处理器 221 , 该信号处理器可以釆用高性能的 DSP ( Digital Signal Processor, 信号处理器),还可以釆用高性能的 FPGA ( Filed-Programmable Gate Array, 现场可编程逻辑门阵列), 还可以釆用高性能的多核 CPU, 如 双核、 四核、 八核等, 可以釆用专用集成芯片 ( Application Specific Integrated Circuit , ASIC ), 还可以釆用系统芯片 ( System on Chip , SoC ), 还可以釆用中央处理器 (Central Processor Unit , CPU ), 还可以釆用网络 处理器( Network Processor, NP ), 还可以釆用微控制器( Micro Controller Unit , MCU ), 还可以釆用可编程控制器 (Programmable Logic Device , PLD ) 或其他集成芯片。
数模转换器 DAC 222 : 一端通过总线接口 225耦合到所述信号处理器 221 , 一端耦合到光收发机 223 , 用于将信号处理器 221传输的数据转换为 模拟信号, 发送到光收发机 223中。
模数转换器 ADC 224: —端通过总线接口 225耦合到所述信号处理器 221 , 一端耦合到光收发机 223 , 用于将光收发机 223发送的模拟信号转换 为数字信号, 发送到信号处理器 221中。
光收发机 223 : 也可称为光模块, 包括光发射机和光接收机。 其中, 所述光接收机用于将从光分配网络 ODN接收的光信号进行光电转化, 形 成模拟信号, 发送到模数转换器 ADC 224进行处理; 所述光发射机用于将 从数模转换器 DAC 222接收的模拟信号进行电光转化, 发送到 ODN 21 , 进而传输给 OLT 20进行处理。
总线接口 225: 用于上述各个器件进行信息传输的通道。 上行时, 信号处理器 221中的信号经过调制处理后, 通过总线接口 225 进入到数模转换器 222中, 形成电模拟信号, 最后经由光收发机 223进行电 光转换, 光信号经过 ODN 21发至 OLT 20。
下行时, OLT 20下行光信号经过光收发机 223进行光电转换, 形成电 模拟信号, 经过 DAC 224 , 进入信号处理器 221进行解调等处理。
其中, 所述信号处理器 221 , 如图 3b所示, 包括控制单元和数据单元。 控制单元, 用于对 ONU的管理功能。 具体包括: 配置模块、 PON组件 管理模块、 ONU注册模块。
数据单元, 通过编程接口与所述控制单元通信。 具体包括用于处理各 种具体业务的模块, 如 MAC处理模块、 PHY处理模块。
具体地,控制单元, 用于通过带外管理通道接收光线路终端 OLT发送 的控制消息, 根据所述控制消息的指示, 配置与所述 OLT相同的技术规范 到数据单元;
数据单元, 用于通过编程接口与控制单元通信, 配置所述技术规范, 运行该技术规范, 通过带内数据通道与所述 OLT基于所述技术规范所支持 的模式进行通信。
可选地, 所述装置还包括存储单元, 用于存储所述技术规范。
可选地, 所述控制单元还用于通过带外管理通道接收询问消息, 用于 询问光网络单元 ONU是否支持与所述 OLT相同的技术规范, 如果所述 ONU 支持, 发送确认消息至所述 OLT。
可选地, 所述控制单元还用于通过所述带内数据通道接收 OLT发送的 已调制的信号, 根据理想的该调制方式星座图和根据所述接收的信号恢复 出的星座图进行对比, 评估整个下行链路的信噪比, 通过所述带外管理通 道反馈给所述 OLT。
可选地, 所述控制单元还用于通过带外管理通道接收询问消息, 用于 询问光网络单元 ONU是否支持与所述 OLT相同的技术规范, 如果所述 ONU 不支持, 反馈不支持的提示给所述 OLT; 接收所述 OLT发送的技术规范, 存储到所述存储单元或者配置到所述数据单元。
其中, 所述带外管理通道的带宽小于带内数据通道的带宽。 所述带外 管理通道和所述带内数据通道的频谱范围可以根据运营商的要求自由设 定。
后续将结合具体应用场景和实施例三对 ONU进一步描述。
实施例三
本发明实施例根据频谱将整个下行通道划分为管理通道和数据通道, 如图 4所示, 管理通道和数据通道的频语规划如下:
示例性的, Fs是 D/A和 A/D的釆样率, DC至 FS/2是第一奈奎斯特 域, 管理频谱 (Management spectra)和数据频谱 (Data Spectra)位于第一奈套 斯特域, 频谱相互独立。 当然地, 管理频谱和数据频谱也可以不只位于第 一奈奎斯特域, 而是在整个 Fs域上。 通常地, 管理通道的带宽小于数据通 道的带宽, 两者的比例和频谱的范围可以由运营商自由设定或规划。 举例 说明, 一种实施方式中, 下行通道的总带宽为 lOGhz (吉赫兹) , 其中, 管理通道的带宽为 lOOMhz (兆赫兹) , 数据通道为 9Ghz。 OLT的控制单 元和 ONU的控制单元通过带外的管理通道进行通信, ONU通过带外管理 通道进行注册,在带外形成一个轻量级的小系统,该小系统的作用使得 0 L T 可以管理 ONU。基于这个小系统,可以对带内数据通道进行 PHY层或 MAC 层的功能重构。
值得说明的是,无论 OLT还是 ONU的信号处理器, 均为可编程硬件, 是一种通用的处理器, 所以所述功能重构是不需要更换硬件的, 只需要根 据用户的需求,通过软件加载或升级的方式,对原来的 PON系统进行 PHY 层和 MAC层功能重构。
所述的 PHY层重构可以是 PHY层的一些调制格式的更改, 调制格式 可以是 QAM ( Quadrature Amplitude Modulation, 正交振幅调制) , 或者 QPSK ( Quadrature Phase Shift Keying , 键控移相调制) , 或者 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分调制), 或者 ASK ( Amplitude Shift Keying,幅移键控调制),或者 FSK( Frequency-shift keying 频移键控调制) 等, 还可以釆用现有技术中其他已知的调制技术, 这里不 再——列举。 示例性的, 将 PHY层的调制格式有 OOK调制更改为 PAM-4 ( Pulse Amplitude Modulation 4 , 4阶脉冲幅度调制) 调制格式。
所述的 MAC 层重构可以是对 MAC 层工作的协议进行更改, MAC 协议包括 GPON MAC协议、 EPON MAC协议、 10G-GPON MAC协议、 10G-EPON MAC协议、 Wireless MAC协议、 或者 40G-PON、 100G-PON 等更高传输速率的 MAC协议, 或者以太网协议、 CPRI ( Common Public Radio Interface ,公共无线电接口 )、 OBSAI ( Open Base Station Architecture Initiative , 开放基站架构协议) 等 MAC协议中的一种。 比如, 用户指令 MAC协议由 GPON MAC协议更改为 10G-GPON MAC协议。 另外, 用户 还可以根据自己的需求进行自定义 MAC协议。
图 5 示出了一种无源光网络系统通过网络与远程服务器交互的架构 图。 如图 5所示, 在服务器的数据库中, 存储有一种或多种有线 (如 PON)) 或无线(如 CPRI)技术规范, 技术规范是指相应标准的可执行码和 /或参数, OLT和 ONU通过网络从服务器下载所需的技术规范到自己的存储器中, ONU可以通过带外管理通道和 OLT通信(当 PON系统 PHY和 MAC功能 未构建好时),也可以通过带内数据通道和 OLT通信(当 PON系统的 PHY 和 MAC功能完全构建时) 。
在本发明中, 所述技术规范可以被视为一种符合某种标准的软件程序 代码的集合。 OLT或 ONU可以根据该技术规范中设置的调制格式或 MAC 协议来通信。 比如, OLT从 OOK调制格式调整到 PAM调制格式, 需要 从所述远程服务器上下载支持 PAM调制格式的技术规范到本地存储器,配 置成功, 通过带外管理通道配置到 ONU 侧, 运行该技术规范, 即可实现 OLT与 ONU基于 PAM调制格式通信。
图 2c和图 3c分别示出了一种无源光网络系统 OLT和 ONU结构示意 图。 OLT和 ONU的结构如实施一或实施例二所述, 这里不再赘述。 其中, 在图 2c和图 3c中分别对 OLT的信号处理器和 ONU的信号处理器进行了 逻辑划分, 分别包括存储单元、 控制单元和数据单元。 如图 6所示, OLT 的控制单元通过带外管理通道与 ONU的控制单元通信, OLT 的数据单元 通过带内数据通道与 ONU 的数据单元通信, 两者在频谱级别上是独立的 (图中未示出) 。
其中, OLT和 ONU中的数据单元都包含一些与具体业务处理相关的 模块, 比如 PHY处理模块、 MAC处理模块。 这些模块的功能可以通过控 制单元进行重新配置或者定义的, 两个模块都具有相应的编程接口, 这些 接口可以是公开发布的, 比如 Openflow, 也可以是专门开发的接口。 控制 单元中的配置模块负责和这些编程接口进行交互信息。
OLT和 ONU的信号处理器分别包含一个或多个存储单元, 用于存储 各种 PON技术规范, OLT 的技术规范可以从服务器中下载或通过其他方 式获取, 如在本地上通过数据卡方式加载, ONU的技术规范可以通过带外 管理通道和 OLT通信 (当 PON系统数据单元未构建好时) 从服务器中下 载, 也可以通过带内数据通道 (当 PON系统的数据单元构建好时) 下载, 也可以通过其他方式获取, 如在本地上通过数据卡方式加载。 其中, 所述 的存储单元, 在物理实体上, 可以是随机存取存储器 (RAM)、 只读存储 器 (ROM)、 可擦除可编程只读存储器 (EPROM或者快闪存储器)、 光纤、 便携式只读存储器(CD-ROM)、 高速 RAM存储器, 也可以是非易失性存 4诸器 ( non- volatile memory ), 例 ¾。闪存 flash, 或至少一个磁盘存 4诸器。
本发明实施例公开了一种用于重构的装置,该装置在物理实体上可以 是高性能的 DSP ( Digital Signal Processor, 信号处理器), 还可以是高性 能的 FPGA ( Filed-Programmable Gate Array, 现场可编程逻辑门阵列;), 还可以是高性能的多核 CPU, 如双核、 四核、 八核等, 可以是专用集成 芯片 ( Application Specific Integrated Circuit, ASIC ), 还可以是系统芯片 ( System on Chip , SoC ), 还可以是中央处理器 ( Central Processor Unit, CPU ), 还可以是网络处理器 (Network Processor, NP ), 还可以是微控制 器( Micro Controller Unit, MCU ),还可以是可编程控制器( Programmable
Logic Device , PLD ) 或其他集成芯片。 所述装置应用在 OLT侧。
其中, 所述装置包括存储单元、 控制单元和数据单元。
控制单元, 用于根据用户指令从服务器下载所述用户指令指示的技术 规范,通过带外管理通道将所述技术规范加载到光网络单元 ONU的存储单 元;
将所述技术规范配置到数据单元;
通过带外管理通道下发控制消息至该 ONU, 该控制消息用于指示该 ONU配置与所述技术规范相同的技术规范到 ONU的数据单元;
数据单元, 用于通过带内数据通道与所述 ONU基于所述技术规范所 支持的模式进行通信。
可选地, 用户指令可以通过命令行或者网管系统输入。
具体地, 控制单元接收到用户指令, 解析该用户指令, 根据该用户指 令的指示从外部服务器下载该用户指令指示的技术规范到存储单元; 将该 技术规范釆用 DAC、 光模块转换为光信号, 通过管理通道对应的频谱范围 传输到 ONU。
具体地, 所述控制单元包括 PON组件管理模块 52、 配置模块 54。 其 中, PON组件管理模块用于根据用户的指令, 判断存储单元 53 中是否有 相应的技术规范, 如果是, 则指示 ONU注册模块 51通过带外管理通道询 问 ONU是否也支持相应的技术规范; 如果否, 则反馈不支持的提示信息。
在一个具体的实现方式中, PON组件管理模块 52还用于, 当接收到 ONU反馈的支持该技术规范的消息, 从存储单元 53 中选取相应的技术规 范, 发送给配置模块 54;
配置模块 54 用于和数据单元的各编程接口进行交互, 把支持技术规 范的各个层的组件下发至数据单元中的业务模块。
下面结合具体的应用场景和图 7 , 详细介绍本发明实施例如何进行 PHY层、 MAC层重构。 第一种应用场景为: OLT和 ONU刚刚出厂, 带内 数据通道调制格式未定, 也可以设置一个缺省的调制格式, 如 QPSK ( Quadrature Phase Shift Keying , 正交相移键控) 调制或 OOK(On-Off Keying, 二进制启闭键控)调制等。 具体包括:
S500: OLT控制单元的 ONU注册模块 51通过带外管理通道获取刚上 电的 ONU SN(ONU序列号), 完成 ONU在 OLT中注册, 并进行测距, 获 得 OLT和 ONU的距离。
具体地, ONU注册模块 51通过带外管理通道下发 ONU注册请求消 息;
某一个刚上线的 ONU通过该带外管理通道收到该注册请求消息后, 通过该带外管理通道上报序列号 SN;
ONU注册模块 51收到所述刚上线的 ONU上报的 SN, 验证该 SN是 否合法, 如果合法, 完成该 ONU的注册, 并进行测距。
其中, 所述 SN与 OLT端配置的 SN—致, 即为合法, 否则为非法; 只有合法的 ONU注册成功, OLT将非法的 ONU踢下线。
需要说明的是, 带外管理通道的调制格式是固定不变的, 如可以釆用 QPSK调制或 OOK调制, 还可以釆用现有技术中公开的其他调制方式。
可选地, OLT 和 ONU 测量上、 下行带内数据通道的信噪比 (Signal Noise Ratio, SNR ) 。
测量下行数据通道 SNR可以釆用如下方法: OLT通过带内数据通道 发送固定调制格式的信号给 ONU, 以釆用 QPSK调制方式为例(当然还可 以釆用现有技术中其他已知的调制方式), ONU根据理想的 QPSK星座图 和接收恢复出来的 QPSK星座图进行对比, 以评估整个下行带内数据通道 的 SNR, 结果可通过带外管理通道或带内数据通道反馈给 OLT;
测量上行数据通道 SNR可以釆用如下方法: ONU的通过数据通道发 送固定调制格式的信号给 OLT , 以釆用 QPSK调制方式为例 (当然还可以 釆用现有技术中其他已知的调制方式) , OLT根据理想的 QPSK星座图和 接收恢复出来的 QPSK星座图进行对比,以评估上行带内数据通道的 SNR , 结果可通过带外管理通道或带内数据通道反馈给 ONU。
完成 ONU的注册上线过程, 此后 OLT可以通过带外管理通道来控制 ONU, 并和 ONU进行通信。
S502 : OLT的 PON组件管理模块 52根据用户的指令(如要选择某种 或某几种技术规范) , 判断存储单元 53 中是否有相应的技术规范(也可以 通过配置模块 54获取 OLT当前数据单元已有的技术规范), 如果有, 则指 示 ONU注册模块 51在带外管理通道询问 ONU是否也存储相应的技术规 范, 如果无, 则从外部服务器下载用户指令指示的技术规范, 然后通过带 外管理通道询问 ONU是否存储相应的技术规范;
S504 : ONU的 ONU注册模块 61收到上述用于询问 ONU是否也支持 相应的技术规范的消息后, 将该消息送往 PON组件管理模块 62 , PON组 件管理模块 62判断存储单元 63中是否有相应的技术规范(也可以通过配置 模块 64获取 ONU当前数据单元已有的技术规范), 如果有, 则通过 ONU 注册模块 61在带外管理通道反馈确认支持消息给 OLT , 如果无, 则反馈 不支持的提示给 OLT。
S506 : OLT收到 ONU消息后, 做相应的处理, 如果 ONU不支持, 则 需要从服务器中下载相应的技术规范给 ONU ,如果 ONU支持, OLT的 PON 组件管理模块 52从存储单元 53中选取相应的技术规范, 然后发送给配置 模块 54 , 配置模块 54和数据单元中的各编程接口进行交互, 把支持技术 规范的各个层的组件下发至各业务模块 (PHY处理模块、 MAC处理模块)。 需要指出的是, 当用户指令是指示重构 PHY层的指示, 那么技术规范也是 跟该用户指令指示的 PHY层相关的代码, 那么在 S506 中, 配置模块 54 把支持技术规范的各个层的组件下发给 PHY处理模块; 同理地, 可知当用 户指令时指示 MAC层协议重构的指令, 那么配置模块 54把支持技术规范 的各个层的组件下发给 MAC处理模块。 OLT通过带外管理通道下发控制 消息给 ONU让 ONU进行相应的配置, ONU的 PON组件管理模块收到该 消息后, 从存储单元 63 中选取相应的技术规范, 然后送给配置模块 64 , 配置模块 64和数据单元中的各编程接口进行交互,把支持技术规范的各个 层的组件下发至各业务模块 (PHY处理模块、 MAC处理模块)。 然后通过带 外管理通道上报确认消息给 OLT。
在正常工作状态时, OLT周期性通过带外管理通道扫描是否有新上电 的 ONU, 进行注册上线统一控制以及数据单元重构参数的协商和配置。
第二种应用场景为在正常工作状态根据用户的需求对 OLT和 ONU的 PHY和 MAC进行动态重构。 如原来是单载波系统, 可以重构为多载波系 统, 其过程可以只需要是第一种应用场景下的 S502~S506。
需要值得说明的是, 在一种实现方式中, 也可以直接将上述技术规范 直接保存到 OLT和 ONU本地存储器中, OLT和 ONU分配配置该技术规 范, 并运行该技术规范, 使得 OLT与 ONU基于该技术规范所支持的模式 通信。 在这种方式下, OLT与 ONU的交互流程与步骤 S502 S506相同, 在 S506中不同的是, 如果 OLT收到从 ONU发送的不支持的指示, 直接将 本地存储单元中保存的技术规范发送给 ONU。
通过以上方案, 可以实现对 PHY和 MAC进行动态重构, 一套通用的 PON系统, 可根据用户的需求和应用场景, 釆用不同软件定义为不同制式 的 PON系统, 无需更换硬件, 大大增加了 PON部署时的灵活性, 降低了 部署和维护的成本。
实施例四
本发明实施例还公开了一种无源光网络 PON 系统, 如图 6所示, 包 括 OLT和 ONU , 其中 OLT通过 ODN连接至少一个 ONU, 该 OLT用于根 据用户指令从服务器下载所述用户指令指示的技术规范, 通过带外管理通 道将所述技术规范加载到光网络单元 ONU; 通过带外管理通道下发控制消 息至所述 ONU, 用于指示所述 ONU配置所述技术规范; 通过带内数据通 道与所述 ONU基于所述技术规范所支持的模式进行通信, 其中, 其中, 根 据频谱将下行通道划分为所述带外管理通道与所述带内数据通道。
ONU用于通过所述带外管理通道接收所述 OLT下发的控制消息, 配 置所述技术规范;通过所述带内数据通道与所述 OLT基于所述技术规范所 支持的模式通信。
可选地,所述 OLT还用于通过所述带内数据通道发送经过调制后的信 号至所述 ONU, 通过所述带外管理通道接收所述 ONU上报的信噪比。
可选地, 所述 OLT还用于通过所述带外管理通道询问所述 ONU是否 支持所述技术规范, 如果否, 通过带外管理通道将所述技术规范加载到所 述 ONU。
可选地, 所述 OLT还用于通过带外管理通道接收所述 ONU的注册请 求。
其中, 所述带外管理通道的带宽小于带内数据通道的带宽。 所述带外 管理通道和所述带内数据通道的频谱范围可以根据运营商的要求自由设 定。
该 OLT与 ONU交互的流程, 请具体参照实施例三的描述, 这里不再 赘述。
通过上述技术方案, 可以实现对 PON系统的物理层或 MAC层的动态 重构, 根据用户的需求和应用场景定义不同制式的 PON系统, 而无需更换 硬件, 大大增加了 PON部署时的灵活性, 降低了部署和维护的成本。
实施例五
本发明实施例公开一种光线路终端 OLT ,如图 8所示,包括处理器 801、 存储器 802、 通信总线 803和通信接口 804。 CPU801、 存储器 802和通信接 口 804之间通过通信总线 803连接并完成相互间的通信。
处理器 801可能为单核或多核中央处理单元, 或者为特定集成电路, 或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器 802可以为高速 RAM存储器, 也可以为非易失性存储器 ( non-volatile memory ), 例 ¾口闪存 flash, 或至少一个磁盘存 4诸器。
存储器 802用于计算机执行指令 805。 具体的, 计算机执行指令 805中 可以包括程序代码。 当计算机运行时, 处理器 801运行计算机执行指令 805 , 可以执行如实 施例三中 OLT执行的方法流程。
实施例六
本发明实施例公开一种光线路终端 ONU , 如图 9所示, 包括处理器 901、 存储器 902、 通信总线 903和通信接口 904。 CPU901、 存储器 902和通 信接口 904之间通过通信总线 903连接并完成相互间的通信。
处理器 901可能为单核或多核中央处理单元, 或者为特定集成电路, 或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器 902可以为高速 RAM存储器, 也可以为非易失性存储器 ( non-volatile memory ), 例 ¾口闪存 flash, 或至少一个磁盘存 4诸器。
存储器 902用于计算机执行指令 905。 具体的, 计算机执行指令 905中 可以包括程序代码。
当计算机运行时, 处理器 901运行计算机执行指令 905 , 可以执行如 实施例三中 ONU执行的方法流程。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到 本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用 软件实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读 介质上的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存 储介质和通信介质, 其中通信介质包括便于从一个地方向另一个地方传送 计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计算机可读介质可以包括 RAM ( Random Access Memory, 随机存储器)、 ROM ( Read Only Memory, 只读内存)、 EEPROM ( Electrically Erasable Programmable Read Only Memory, 电可擦可编程只 读存储器) 、 CD-ROM ( Compact Disc Read Only Memory, 即只读光盘) 或其他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带 或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的 任何其他介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、光纤光缆、双绞线、 DSL( Digital Subscriber Line , 数字用户专线) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL 或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。 如本发明所使用的, 盘和碟包括 CD ( Compact Disc , 压缩光碟)、 激光碟、 光碟、 DVD碟 (Digital Versatile Disc , 数字通用光) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面的组 合也应当包括在计算机可读介质的保护范围之内。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种通信方法, 其特征在于, 包括:
根据用户指令从服务器下载所述用户指令指示的技术规范, 通过带外 配置所述技术规范;
通过带外管理通道下发控制消息至所述 ONU, 用于指示所述 ONU配 置所述技术规范;
通过带内数据通道与所述 ONU基于所述技术规范所支持的模式进行 通信。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 通过所述带内数据通道发送调制后的信号至所述 ONU;
通过所述带外管理通道接收所述 ONU上报的信噪比 SNR。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 通过所述带外管理通道询问所述 ONU是否支持所述技术规范, 当接 收到所述 ONU不支持的提示,通过所述带外管理通道将所述技术规范发送 至所述 ONU。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 通过所述带外管理通道询问所述 ONU 是否支持所述技术规范, 接收所述 ONU反馈支持的消息。
5、 根据权利要求 1~4 任意一项所述的方法, 其特征在于, 所述方法 还包括:
通过所述带外管理通道接收所述 ONU的注册请求;
通过所述带外管理通道将为所述 ONU分配的 ONU标识发送至所述 ONU。
6、 根据权利要求 1~5 任意一项所述的方法, 其特征在于, 所述带外 管理通道的带宽小于带内数据通道的带宽。
7、 根据权利要求 1~6 任意一项所述的方法, 其特征在于, 所述带外 管理通道和所述带内数据通道的频谱相互独立, 所述频谱范围根据运营商 的要求设定。
8、 一种通信的方法, 其特征在于, 包括:
光网络单元 ONU通过带外管理通道接收光线路终端 OLT发送的控制 消息,所述控制消息用于指示所述 ONU配置与所述 OLT相同的技术规范; 配置所述技术规范;
所述 ONU基于配置的所述技术规范, 通过带内数据通道与所述 OLT 通信。
9、 根据权利要求 8所述的方法, 其特征在于, 所述方法还包括: 所述 ONU通过带外管理通道接收询问消息, 所述询问消息用于询问 所述 ONU是否支持与所述 OLT相同的技术规范;
当所述 ONU不支持时, 反馈不支持的提示至所述 OLT;
接收所述 OLT发送的所述技术规范, 并保存。
10、 根据权利要求 8或 9所述的方法, 其特征在于, 所述方法还包括: 所述 ONU通过所述带内数据通道接收已调制的信号, 根据所述接收 的信号恢复出的星座图, 评估所述带内数据通道的信噪比, 通过所述带外 管理通道反馈所述信噪比至所述 OLT。
11、 根据权利要求 8~10 任意一项所述的方法, 其特征在于, 所述方 法还包括:
通过所述带外管理通道发送所述 ONU的注册请求;
通过所述带外管理通道接收所述 OLT为所述 ONU分配的 ONU标识。
12、 根据权利要求 8~11 任意一项所述的方法, 其特征在于, 所述带 外管理通道的带宽小于所述带内数据通道的带宽。
13、 根据权利要求 8~12 任意一项所述的方法, 其特征在于, 所述带 外管理通道和所述带内数据通道的频谱相互独立, 所述频谱范围可以根据 运营商的要求自由设定。
14、 一种用于重构的装置, 其特征在于, 包括: 控制单元, 用于根据用户指令从服务器下载所述用户指令指示的技术 规范, 通过带外管理通道将所述技术规范加载到光网络单元 ONU; 将所述 技术规范配置到数据单元; 通过所述带外管理通道下发控制消息至所述 ONU, 指示所述 ONU配置所述技术规范;
数据单元, 用于配置所述技术规范, 通过带内数据通道与所述 ONU 基于所述技术规范所支持的模式通信。
15、 根据权利要求 14 所述的装置, 其特征在于, 所述装置还包括存 储单元, 用于存储所述技术规范。
16、 根据权利要求 14或 15所述的装置, 其特征在于, 所述控制单元 还用于通过所述带内数据通道发送经过调制后的信号至所述 ONU, 通过所 述带外管理通道接收所述 ONU上报的信噪比 SNR。
17、 根据权利要求 14~16所述的装置, 其特征在于, 所述控制单元还 用于通过带外管理通道询问所述 ONU是否支持所述技术规范,如果接收到 所述 ONU不支持的提示,通过所述带外管理通道将所述技术规范发送到所 述 ONU。
18、 根据权利要求 14~17所述的装置, 其特征在于, 所述带外管理通 道的带宽小于所述带内数据通道的带宽。
19、 根据权利要求 14~18所述的装置, 其特征在于, 所述带外管理通 道和所述带内数据通道的频谱相互独立, 所述频谱范围根据运营商的要求 设定。
20、 根据权利要求 14~19所述的装置, 其特征在于, 所述控制单元还 用于通过所述带外管理通道完成所述 ONU的注册。
21、 一种用于重构的装置, 其特征在于, 包括:
控制单元,用于通过带外管理通道接收光线路终端 OLT发送的控制消 息, 根据所述控制消息的指示, 配置与所述 OLT相同的技术规范到数据单 元;
数据单元, 用于配置所述技术规范, 通过带内数据通道与所述 OLT基 于所述技术规范所支持的模式进行通信。
22、 根据权利要求 21 所述的装置, 其特征在于, 所述装置还包括存 储单元, 用于存储所述技术规范。
23、 根据权利要求 21或 22所述的装置, 其特征在于, 所述控制单元 还用于通过所述带外管理通道接收询问消息, 用于询问光网络单元 ONU 是否支持与所述 OLT相同的技术规范, 如果所述 ONU支持, 发送确认消 息至所述 OLT。
24、 根据权利要求 21~23所述的装置, 其特征在于, 所述控制单元还 用于通过所述带内数据通道接收已调制的信号, 根据所述接收的信号恢复 出的星座图, 评估所述带内数据通道的信噪比, 通过所述带外管理通道反 馈所述信噪比至所述 OLT。
25、 根据权利要求 21~24所述的装置, 其特征在于, 所述控制单元还 用于通过所述带外管理通道接收询问消息, 所述询问消息用于询问光网络 单元 ONU是否支持与所述 OLT相同的技术规范, 如果所述 ONU不支持, 反馈不支持的提示给所述 OLT; 接收所述 OLT发送的技术规范,存储到所 述存储单元或者配置到所述数据单元。
26、 根据权利要求 21~25所述的装置, 其特征在于, 所述带外管理通 道的带宽小于所述带内数据通道的带宽。
27、 根据权利要求 21~26所述的装置, 其特征在于, 所述带外管理通 道和所述带内数据通道的频谱相互独立, 所述频谱范围根据运营商的要求 设定。
28、 一种无源光网络 PON系统, 其特征在于, 包括:
光线路终端 OLT , 用于根据用户指令从服务器下载所述用户指令指示 的技术规范, 通过带外管理通道将所述技术规范加载到光网络单元 ONU; 通过所述带外管理通道下发控制消息至所述 ONU, 所述控制消息用于指示 所述 ONU配置所述技术规范; 通过带内数据通道与所述 ONU基于所述技 术规范所支持的模式进行通信, 其中, 根据频谱将下行通道划分为所述带 外管理通道与所述带内数据通道。
所述 ONU, 用于通过所述带外管理通道接收所述 OLT下发的控制消 息, 配置所述技术规范; 通过所述带内数据通道与所述 OLT基于所述技术 规范所支持的模式通信。
29、 根据权利要求 28所述的系统, 其特征在于, 所述 OLT还用于通 过所述带内数据通道发送经过调制后的信号至所述 ONU, 通过所述带外管 理通道接收所述 ONU上报的信噪比。
30、 根据权利要求 28或 29所述的系统, 其特征在于, 所述 OLT还用 于通过所述带外管理通道询问所述 ONU是否支持所述技术规范,当接收到 所述 ONU反馈的不支持的指示,通过所述带外管理通道将所述技术规范发 送到所述 ONU。
31、根据权利要求 28~30任意一项所述的系统,其特征在于,所述 OLT 还用于通过所述带外管理通道接收所述 ONU的注册请求。
32、 根据权利要求 28~31任意一项所述的系统, 其特征在于, 所述带 外管理通道的带宽小于所述带内数据通道的带宽。
33、 根据权利要求 28~32任意一项所述的系统, 其特征在于, 所述带 外管理通道和所述带内数据通道的频谱相互独立, 所述频谱范围根据运营 商的要求设定。
34、 一种光线路终端 OLT, 包括处理器, 其中处理器用于执行如权利 要求 1~7任意一项所述的方法。
35、 一种光网络单元 ONU, 包括处理器, 其中处理器用于执行如权利 要求 8~13任意一项所述的方法。
PCT/CN2014/080152 2014-06-18 2014-06-18 一种通信的方法、装置及系统 WO2015192332A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016573786A JP2017520188A (ja) 2014-06-18 2014-06-18 通信方法、装置及びシステム
EP14894867.2A EP3148115A4 (en) 2014-06-18 2014-06-18 Communication method, apparatus and system
PCT/CN2014/080152 WO2015192332A1 (zh) 2014-06-18 2014-06-18 一种通信的方法、装置及系统
RU2017101193A RU2017101193A (ru) 2014-06-18 2014-06-18 Способ, устройство и система связи
AU2014398122A AU2014398122B2 (en) 2014-06-18 2014-06-18 Communication method, apparatus and system
CN201480009870.3A CN105409163A (zh) 2014-06-18 2014-06-18 一种通信的方法、装置及系统
CA2952666A CA2952666C (en) 2014-06-18 2014-06-18 Communication method, apparatus, and system
US15/381,813 US20170117960A1 (en) 2014-06-18 2016-12-16 Communication Method, Apparatus, and System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080152 WO2015192332A1 (zh) 2014-06-18 2014-06-18 一种通信的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/381,813 Continuation US20170117960A1 (en) 2014-06-18 2016-12-16 Communication Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2015192332A1 true WO2015192332A1 (zh) 2015-12-23

Family

ID=54934687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080152 WO2015192332A1 (zh) 2014-06-18 2014-06-18 一种通信的方法、装置及系统

Country Status (8)

Country Link
US (1) US20170117960A1 (zh)
EP (1) EP3148115A4 (zh)
JP (1) JP2017520188A (zh)
CN (1) CN105409163A (zh)
AU (1) AU2014398122B2 (zh)
CA (1) CA2952666C (zh)
RU (1) RU2017101193A (zh)
WO (1) WO2015192332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547232A (zh) * 2016-06-28 2018-01-05 中兴通讯股份有限公司 网元设备及其传输模式配置装置和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156718A1 (en) * 2014-04-11 2015-10-15 Telefonaktiebolaget L M Ericsson (Publ) Controlling time division duplex operation
US10721011B2 (en) 2015-05-20 2020-07-21 II-VI Deleware, Inc. Method and apparatus for hardware-configured network
US20170329296A1 (en) * 2016-05-13 2017-11-16 Chibitronics PTE LTD Method and apparatus of provisioning a microcontroller via acoustic signaling
CN113396560B (zh) * 2018-12-28 2022-12-27 华为技术有限公司 一种建立光缆连接的方法及装置
CN115361088A (zh) * 2019-01-09 2022-11-18 菲尼萨公司 对光学网络中的光电收发器进行调谐的方法
WO2020168657A1 (en) * 2019-02-20 2020-08-27 Huawei Technologies Co., Ltd. Communication in passive optical networks (pons) related to digital signal processing for optical signal (odsp)
US11329727B1 (en) * 2020-11-26 2022-05-10 Kookmin Univ. Ind. Academy Cooperation Foundation Device for communicating signal of hybrid waveform based on M-FSK and OFDM
CN113660034B (zh) * 2021-08-17 2022-07-08 上海欣诺通信技术股份有限公司 一种手持式pon模拟系统的分析方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247258A (zh) * 2007-02-12 2008-08-20 华为技术有限公司 一种业务发放方法及系统
CN101442438A (zh) * 2008-10-17 2009-05-27 深圳华为通信技术有限公司 接入系统中终端设备的管理方法、局端设备以及接入系统
US20090142059A1 (en) * 2006-05-25 2009-06-04 Immenstar Inc. System control and management of passive optical networks
CN102739426A (zh) * 2011-04-13 2012-10-17 中兴通讯股份有限公司 一种dpoe系统及基于该系统业务自动配置方法和网络

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599623B2 (en) * 2006-02-10 2009-10-06 Tellabs Petaluma, Inc. Apparatus and method of managing POTS lines in a PON network
US8036530B2 (en) * 2007-03-20 2011-10-11 Arris Group, Inc. Method and system for transporting DOCSIS communication signals over a passive optical network
US20080253771A1 (en) * 2007-04-13 2008-10-16 Noel Jeffrey A Method and apparatus for configuring Optical Network Terminals (ONT) in a network
US8160447B2 (en) * 2007-10-17 2012-04-17 Hitachi, Ltd. Communication system using passive optical network and passive optical network
US8254386B2 (en) * 2010-03-26 2012-08-28 Verizon Patent And Licensing, Inc. Internet protocol multicast on passive optical networks
US20110302283A1 (en) * 2010-06-03 2011-12-08 Niclas Nors Methods And Arrangements In A Passive Optical Network
JP5682249B2 (ja) * 2010-11-12 2015-03-11 三菱電機株式会社 光通信システム
CA2773027C (en) * 2011-03-28 2017-06-20 Zte Corporation Seamless configuration update for optical network unit in ethernet passive optical network
JP5650866B2 (ja) * 2012-04-20 2015-01-07 三菱電機株式会社 通信システム、親局装置、子局装置、制御装置、および通信制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142059A1 (en) * 2006-05-25 2009-06-04 Immenstar Inc. System control and management of passive optical networks
CN101247258A (zh) * 2007-02-12 2008-08-20 华为技术有限公司 一种业务发放方法及系统
CN101442438A (zh) * 2008-10-17 2009-05-27 深圳华为通信技术有限公司 接入系统中终端设备的管理方法、局端设备以及接入系统
CN102739426A (zh) * 2011-04-13 2012-10-17 中兴通讯股份有限公司 一种dpoe系统及基于该系统业务自动配置方法和网络

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148115A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547232A (zh) * 2016-06-28 2018-01-05 中兴通讯股份有限公司 网元设备及其传输模式配置装置和方法
CN107547232B (zh) * 2016-06-28 2021-08-31 中兴通讯股份有限公司 网元设备及其传输模式配置装置和方法

Also Published As

Publication number Publication date
CN105409163A (zh) 2016-03-16
JP2017520188A (ja) 2017-07-20
CA2952666A1 (en) 2015-12-23
AU2014398122A1 (en) 2017-01-12
EP3148115A4 (en) 2017-05-10
CA2952666C (en) 2018-10-23
RU2017101193A (ru) 2018-07-18
EP3148115A1 (en) 2017-03-29
AU2014398122B2 (en) 2018-08-02
RU2017101193A3 (zh) 2018-07-18
US20170117960A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2015192332A1 (zh) 一种通信的方法、装置及系统
US20190268225A1 (en) Service distribution method, device and system
US9219566B2 (en) Wavelength management in multiple-wavelength passive optical networks
EP3545635B1 (en) Optical network unit wavelength tuning
US10333911B2 (en) Flashless optical network unit
US9391734B2 (en) Network system
JP2017516406A (ja) 波長切り換えのための方法、装置、及びシステム
TW201304469A (zh) 一種同軸電纜媒體轉換器及流量交換的方法
WO2014004714A1 (en) Access equipment that runs ethernet passive optical network (pon) or ethernet pon over coax network
WO2015139218A1 (zh) 一种应用于无源光网络pon通信的方法、装置及系统
CN110073672B (zh) 一种管理光网络单元onu的方法、装置及系统
Cvijetic Software-defined optical access networks for multiple broadband access solutions
WO2019141037A1 (zh) 通信网络及相关设备
JP6459588B2 (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
Chanclou et al. Technical options for NGPON2 beyond 10G PON
Ansari et al. PON architectures
JP7122914B2 (ja) 光通信システム、光通信装置、制御方法、及び制御プログラム
Elragaiee Residential CO Re-Architected Datacenter, Services, Platforms, Architecture and Use Cases
JP6827435B2 (ja) 光通信装置、制御方法、及び制御プログラム
Chung et al. Recent Trends in High-Speed and Virtualized Optical Access Technologies
WO2019056371A1 (zh) 数据包处理方法、光线路终端、光网络单元及系统
WO2016157626A1 (ja) 局側装置および通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009870.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573786

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2952666

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014894867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894867

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014398122

Country of ref document: AU

Date of ref document: 20140618

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017101193

Country of ref document: RU

Kind code of ref document: A