WO2015192273A1 - Appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé, et algorithme de simulation correspondant - Google Patents

Appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé, et algorithme de simulation correspondant Download PDF

Info

Publication number
WO2015192273A1
WO2015192273A1 PCT/CN2014/000879 CN2014000879W WO2015192273A1 WO 2015192273 A1 WO2015192273 A1 WO 2015192273A1 CN 2014000879 W CN2014000879 W CN 2014000879W WO 2015192273 A1 WO2015192273 A1 WO 2015192273A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc furnace
electric arc
model
phase
tester
Prior art date
Application number
PCT/CN2014/000879
Other languages
English (en)
Chinese (zh)
Inventor
王金浩
王康宁
吴玉龙
穆广祺
雷达
徐龙
杨超颖
宋述勇
杜慧杰
田翰臻
肖莹
张悦
李慧蓬
李胜文
张敏
Original Assignee
国家电网公司
国网山西省电力公司电力科学研究院
王金浩
王康宁
吴玉龙
穆广祺
雷达
徐龙
杨超颖
宋述勇
杜慧杰
田翰臻
肖莹
张悦
李慧蓬
李胜文
张敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网山西省电力公司电力科学研究院, 王金浩, 王康宁, 吴玉龙, 穆广祺, 雷达, 徐龙, 杨超颖, 宋述勇, 杜慧杰, 田翰臻, 肖莹, 张悦, 李慧蓬, 李胜文, 张敏 filed Critical 国家电网公司
Publication of WO2015192273A1 publication Critical patent/WO2015192273A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the invention relates to the field of power quality analysis and control, in particular to a three-phase alternating current arc furnace adaptive modeling device and a simulation algorithm thereof.
  • AC arc furnaces are typically non-linear loads and one of the most influential on power quality.
  • Electric arc furnace modeling is the premise of electric energy quality analysis work of electric arc furnace. Whether the model is accurate or not, whether it is reasonable or not, whether the applicability is strong or not determines whether the follow-up work can be carried out smoothly.
  • the operating conditions of the electric arc furnace are complex and variable, so it is necessary to establish an electric arc furnace modeling device suitable for various working conditions.
  • the current EAF model often assumes three-phase balance, and the single-phase arc furnace represents three-phase research, mainly including nonlinear time-varying resistance model, nonlinear time-varying voltage source model, time-varying resistance model based on energy conservation.
  • the actual three-phase power of the electric arc furnace is not equal, and the three-phase unbalance problem is serious.
  • the electric arc furnace model obtained by the above assumption is difficult to reflect the actual operating state of the electric arc furnace.
  • such a single-phase electric arc furnace model cannot be adjusted according to the change of the electric arc furnace working condition, and cannot correspond to the actual working condition.
  • the present invention provides an adaptive modeling device for a three-phase AC arc furnace, characterized in that the three-phase AC arc furnace adaptive modeling device comprises: a bus bar 1, an electric arc furnace 3, a tester 6.
  • the secondary side of the voltage transformer 5 is electrically connected to the voltage waveform input end of the tester 6; the secondary side of the current transformer 4 and the tester 6
  • the current waveform input terminal is electrically connected;
  • the data output end of the tester 6 is connected to the operational data acquisition end of the integrated modeling machine 7; the model communication end of the basic modeling machine 8 is connected to the Ethernet line 9
  • the model communication terminal of the integrated modeler 7 is connected.
  • the present invention provides a method for adaptive modeling and simulation of a three-phase AC arc furnace using an adaptive modeling device for a three-phase AC arc furnace, the method being divided into the following steps:
  • the simplified model of the electric arc furnace contains parameters to be determined and can reflect Output characteristics of the electric arc furnace;
  • the three-phase operating power of the electric arc furnace and the mathematical model in the second step the three-phase electric arc furnace adaptive algorithm is determined to obtain the electric arc furnace model parameters;
  • the present invention provides a three-phase alternating current arc furnace adaptive modeling method using the three-phase alternating current arc furnace adaptive modeling device according to claim 1, the method comprising the following steps:
  • the secondary side of the voltage transformer 5 is electrically connected to the voltage waveform input end of the tester 6; the secondary side of the current transformer 9 and the current waveform of the tester 6 are input.
  • the data output end of the tester 6 is connected to the operational data acquisition end of the integrated modeling machine 7; the tester 6 tests and counts the real-time operational data of the electric arc furnace 2, and The test data results are transmitted to the integrated modeling machine 7;
  • the collected electric arc furnace parameters are input into the basic modeling machine 8; the basic modeling machine 8 establishes an equivalent model according to the basic model of the electric arc furnace 3 and the input parameters.
  • the obtained equivalent model is subjected to simplified calculation to form a corresponding mathematical model, and the established mathematical model is transmitted to the integrated modeling machine 7 through two-way communication;
  • the integrated modeler 7 calculates a comprehensive model suitable for the operating system of the electric arc furnace and The parameter finally leads to a simulation model close to the actual operating condition of the electric arc furnace 3, and realizes the derivation of the model data.
  • the function is the
  • the adaptive modeling device of the three-phase electric arc furnace can not only reflect the three-phase unbalance problem of the electric arc furnace, but also can correspondingly change the model parameters according to the change of the working condition to correspond thereto.
  • the invention optimizes and adjusts the parameters of the simulation model according to the actual operating conditions, and can more accurately reflect the actual electrical characteristics of the electric arc furnace, thereby improving the power quality phenomenon of the electric arc furnace under different operating conditions and improving the load capacity of the electric arc furnace to receive the electric arc furnace. Provide a theoretical basis.
  • FIG. 1 is a schematic structural view of an embodiment of a three-phase alternating current arc furnace adaptive modeling apparatus according to the present invention
  • FIG. 2 is a graph showing an output I-V characteristic of an electric arc furnace according to an embodiment of an adaptive modeling apparatus for a three-phase alternating current arc furnace according to the present invention
  • FIG. 3 is a three-phase AC arc furnace model equivalent circuit of an embodiment of a three-phase AC arc furnace adaptive modeling apparatus according to the present invention.
  • the invention provides an adaptive modeling device for a three-phase alternating current arc furnace, comprising a busbar 1, an electric arc furnace 3, a tester 6, an integrated modeling machine 7, and a basic modeling machine 8.
  • a transformer 2, an electric arc furnace 3 and a voltage transformer 5 are electrically connected to the busbar 1, and a current transformer 4 is arranged on the electric arc furnace 3.
  • the secondary side of the voltage transformer 5 is electrically connected to the voltage waveform input end of the tester 6, and the secondary side of the current transformer 9 is electrically connected to the current waveform input end of the tester 6, and the data output end of the tester 6 is integrated.
  • the operating data acquisition end of the molding machine 7 is connected, and the model communication end of the basic modeling machine 8 is connected to the model communication end of the integrated modeling machine 7 through the Ethernet line 9. Achieve two-way communication.
  • the invention provides an adaptive modeling method for a three-phase alternating current arc furnace, comprising the following steps:
  • the secondary side of the voltage transformer 5 is electrically connected to the voltage waveform input end of the tester 6, and the secondary side of the current transformer 9 is electrically connected to the current waveform input end of the tester 6, and the data of the tester 6
  • the output is connected to the operational data acquisition end of the integrated modeler 7.
  • the tester 6 tests and counts the real-time operational data of the electric arc furnace 2, and transmits the test data results to the integrated modeler 7.
  • the collected electric arc furnace parameters are input into the basic modeling machine 8, and the basic modeling machine 8 establishes an equivalent model according to the basic model of the electric arc furnace 3 and the input parameters, and is simplified.
  • a corresponding mathematical model is formed, and the mathematical model is transmitted to the integrated modeling machine 7 through two-way communication.
  • the comprehensive modeling machine 7 calculates a comprehensive model and parameters suitable for the operating system of the electric arc furnace, and finally obtains A simulation model close to the operating condition of the electric arc furnace 3 is provided, and a model data export function is provided.
  • An adaptive modeling simulation algorithm for a three-phase AC arc furnace includes the following steps:
  • the first step is to establish an equivalent model of a three-phase AC arc furnace that comprehensively reflects the power quality problem of the electric arc furnace.
  • the equivalent model contains parameters that need to be obtained according to actual working conditions.
  • the output characteristic curve of the electric arc furnace is shown in Fig. 2. It can be seen from the figure that the relationship between the voltage and current of the electric arc furnace is nonlinear, which makes modeling very difficult. For this purpose, it is segmented.
  • the first stage the arc begins to ignite, and when the arc voltage rises to zero, the current also crosses zero.
  • the equivalent circuit can be regarded as an open circuit, and leakage current is present.
  • a constant resistance (V g /i g ) is used to describe the relationship between voltage and current.
  • I m is the amplitude of the current in amperes; i g is a constant current, in amperes, V g is a constant voltage; B1 and b2 is the time constant; V a (t) is the A phase voltage electric arc furnace, the unit In volts, i a (t) is the phase A current in amps; V d1 is the arc furnace voltage value in volts when the current tends to the maximum.
  • the second step is to equilibrate the power supply system and simplify the electric arc furnace model in the first step to facilitate calculation, and then establish a mathematical model of the electric arc furnace and its power supply system.
  • the electric arc furnace simplified model contains parameters to be determined and can reflect the output characteristics of the electric arc furnace.
  • V a (t), V b (t), V c (t) respectively, arc furnace A, B, C phase voltage in volts; V d1, V d2, V d3 respectively A, B, The corresponding arc furnace voltage in units of volts when the C-phase current tends to the maximum value.
  • R and L respectively represent the line resistance and inductance of the power supply system are calculated to the secondary side of the transformer, and the units are ohm and hen.
  • U A, U B, U C the power supply voltage is scaled to the three-phase voltage of the secondary side of the transformer, the expression:
  • the third step according to the power supply line and transformer parameters, the three-phase operating power of the electric arc furnace and the mathematical model in the second step, determine the adaptive algorithm of the three-phase electric arc furnace to obtain the parameters of the electric arc furnace model.
  • Va, Vb, and Vc are discrete functions with respect to time, it is inconvenient to calculate, and Fourier decomposition is performed and the first four items are taken:
  • P a , P b , P c be equal to the three-phase actual operating power P a,n , P b,n ,P c,n of the electric arc furnace , and the other three descriptions V d1 , V d2 , V d3 , Equation:
  • the values of V d1 , V d2 , and V d3 corresponding to the actual operating power can be obtained.
  • an adaptive determination of the parameters corresponding to the actual operating conditions is achieved.
  • This algorithm can be used to obtain the corresponding model parameters whenever the operating conditions change.
  • Part IV Substituting the model parameter values obtained in the third step into equation (1), and obtaining a three-phase model reflecting the actual operating state of the electric arc furnace.
  • the above-established model can be used to analyze the power quality related problems of the electric arc furnace under different working conditions.
  • the modeling device and the simulation method thereof are based on a conventional power quality testing instrument and a modeling analysis system, and the wiring form is simple, and the simulation calculation is combined with the measured data, and the modeling simulation result is intuitive and accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Discharge Heating (AREA)

Abstract

L'invention concerne un appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé et un algorithme de simulation correspondant, qui se rapportent au domaine de l'analyse et du contrôle de la qualité d'alimentation. L'appareil de modélisation auto-adaptatif pour un four électrique à arc triphasé peut refléter le problème de déséquilibrage triphasé du four électrique à arc, et peut changer de manière correspondante des paramètres de modèle selon le changement des conditions de fonctionnement de telle sorte que les paramètres de modèle correspondent aux conditions de fonctionnement. Selon l'appareil et l'algorithme de simulation correspondant, des paramètres de modèle de simulation sont optimisés et actualisés selon des conditions de fonctionnement réelles, et des caractéristiques d'utilisation d'alimentation réelle du four électrique à arc peuvent être reflétées de manière plus précise, de telle sorte qu'une base théorique est fournie pour la recherche sur des phénomènes de qualité d'alimentation du four électrique à arc dans différentes conditions de fonctionnement et pour l'amélioration de la réceptivité d'un réseau électrique par rapport à la charge de four électrique à arc.
PCT/CN2014/000879 2014-06-19 2014-09-28 Appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé, et algorithme de simulation correspondant WO2015192273A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410274434.0 2014-06-19
CN201410274434.0A CN105205192B (zh) 2014-06-19 2014-06-19 一种三相交流电弧炉自适应建模装置及其仿真算法

Publications (1)

Publication Number Publication Date
WO2015192273A1 true WO2015192273A1 (fr) 2015-12-23

Family

ID=54934639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000879 WO2015192273A1 (fr) 2014-06-19 2014-09-28 Appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé, et algorithme de simulation correspondant

Country Status (2)

Country Link
CN (1) CN105205192B (fr)
WO (1) WO2015192273A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096109A (zh) * 2016-06-03 2016-11-09 江苏大学 一种离心式撒肥盘工作参数优化方法
CN109472063A (zh) * 2018-10-19 2019-03-15 中国地质大学(武汉) 一种热镀锌机组能量效率模型的建模方法
CN113868817A (zh) * 2021-09-30 2021-12-31 山东大学 基于工业电力负荷仿真模型预测电力系统稳定的方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579940A (zh) * 2020-05-06 2020-08-25 国网山东省电力公司电力科学研究院 一种电弧炉建模和谐波分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429774A1 (fr) * 1989-11-30 1991-06-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Four électrique à arc à courant continu alimenté par du courant commandé et procédé d'alimentation d'un four à arc à courant continu en courant commandé
CN2166395Y (zh) * 1992-06-19 1994-05-25 沈阳市建通开关厂 电弧炉电气特性测试仪
CN1719171A (zh) * 2005-06-23 2006-01-11 西安理工大学 电弧炉控制系统的智能优化控制方法
CN200965634Y (zh) * 2006-10-13 2007-10-24 西安重鑫电炉设备有限公司 一种电弧炉的控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991327A (en) * 1995-10-26 1999-11-23 Inverpower Controls Ltd. Smart predictive line controller for AC and DC electric arc furnaces
JP4786952B2 (ja) * 2005-07-14 2011-10-05 スチールプランテック株式会社 交流アーク炉の電極昇降制御装置
CN100412732C (zh) * 2005-12-22 2008-08-20 安徽工业大学 基于模型参考自适应控制的多变量系统神经网络解耦的简捷方法
CN203222598U (zh) * 2013-04-12 2013-10-02 国家电网公司 一种钢包精炼炉自适应建模装置
CN204009909U (zh) * 2014-06-19 2014-12-10 国网山西省电力公司电力科学研究院 一种三相交流电弧炉自适应建模装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429774A1 (fr) * 1989-11-30 1991-06-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Four électrique à arc à courant continu alimenté par du courant commandé et procédé d'alimentation d'un four à arc à courant continu en courant commandé
CN2166395Y (zh) * 1992-06-19 1994-05-25 沈阳市建通开关厂 电弧炉电气特性测试仪
CN1719171A (zh) * 2005-06-23 2006-01-11 西安理工大学 电弧炉控制系统的智能优化控制方法
CN200965634Y (zh) * 2006-10-13 2007-10-24 西安重鑫电炉设备有限公司 一种电弧炉的控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, JIANJUN ET AL.: "Research on Modeling and Simulating of AC Electric Arc Furnace System", METALLURGICAL POWER, vol. 2, 28 February 2010 (2010-02-28), pages 2, ISSN: 1006-6764 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096109A (zh) * 2016-06-03 2016-11-09 江苏大学 一种离心式撒肥盘工作参数优化方法
CN109472063A (zh) * 2018-10-19 2019-03-15 中国地质大学(武汉) 一种热镀锌机组能量效率模型的建模方法
CN109472063B (zh) * 2018-10-19 2023-06-30 中国地质大学(武汉) 一种热镀锌机组能量效率模型的建模方法
CN113868817A (zh) * 2021-09-30 2021-12-31 山东大学 基于工业电力负荷仿真模型预测电力系统稳定的方法及系统

Also Published As

Publication number Publication date
CN105205192B (zh) 2019-02-12
CN105205192A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2012034528A1 (fr) Procédé de calcul de la constante de temps primaire d'un réseau électrique
CN111521919A (zh) 一种低压台区零线带电故障诊断装置及诊断与定位方法
CN104374988B (zh) 一种考虑相位跳变的电压暂降分类方法
WO2015192273A1 (fr) Appareil de modélisation auto-adaptatif pour un four électrique à arc à courant alternatif triphasé, et algorithme de simulation correspondant
CN104316894A (zh) 一种电能表实际运行环境的仿真校验方法
CN103149471A (zh) 一种充电机、充电桩的校验方法及设备
CN106483397B (zh) 一种高精度高带宽的电能质量检测装置和测量方法
CN103293504A (zh) 现场电流互感器综合检测装置及其测试方法
CN104793082A (zh) 基于谐波相关分析的电力系统谐波源识别装置
CN105259414A (zh) 一种基于逆变器的电网阻抗在线检测方法
CN110703176A (zh) 一种极限温度下电流互感器误差测试系统及测试方法
Silsüpür et al. Flicker source detection methods based on IEC 61000-4-15 and signal processing techniques–a review
CN104375026A (zh) 一种基于特征量分析辨识谐波源类型的方法
CN106096161A (zh) 输电线路工频感应电压及电流的仿真计算方法
CN105223470B (zh) 一种基于故障高频信息的配网故障定位方法
CN202563014U (zh) 一种变压器损耗测量控制台
CN107561410A (zh) 一种分布式电源并网逆变器及电容的在线测试系统
CN108075469A (zh) 一种配电变压器零序阻抗计算方法
CN104240036B (zh) 一种基于临界系统等效阻抗的暂态电压稳定量化评估方法
CN106526365A (zh) 单火线用电数据测量方法及单火线智能断路器
CN205786930U (zh) 一种电子电力变压器电能质量检测装置
Muzi Real-time voltage control to improve automation and quality in power distribution
CN203250017U (zh) 现场电流互感器综合检测装置
CN106339526B (zh) 一种基于权重负荷等效模型的三相不平衡责任溯源方法
CN104065076B (zh) 一种温升试验反送供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895223

Country of ref document: EP

Kind code of ref document: A1