WO2015190517A1 - 基地局装置、端末装置、および通信方法 - Google Patents

基地局装置、端末装置、および通信方法 Download PDF

Info

Publication number
WO2015190517A1
WO2015190517A1 PCT/JP2015/066717 JP2015066717W WO2015190517A1 WO 2015190517 A1 WO2015190517 A1 WO 2015190517A1 JP 2015066717 W JP2015066717 W JP 2015066717W WO 2015190517 A1 WO2015190517 A1 WO 2015190517A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
signal
frame
base station
station apparatus
Prior art date
Application number
PCT/JP2015/066717
Other languages
English (en)
French (fr)
Inventor
宏道 留場
淳悟 後藤
中村 理
若原 史郎
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580031324.4A priority Critical patent/CN106465043B/zh
Priority to US15/318,019 priority patent/US10341874B2/en
Priority to JP2016527840A priority patent/JP6516265B2/ja
Priority to EP15807047.4A priority patent/EP3157273B1/en
Publication of WO2015190517A1 publication Critical patent/WO2015190517A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • the LTE (Long Term Evolution) system which is the 3.9th generation mobile phone radio communication system, has been standardized, and is now one of the 4th generation radio communication systems. Standardization of A (also referred to as LTE-Advanced, IMT-A, etc.) systems is being carried out.
  • one system band of the LTE system is a component carrier (also referred to as CC: Component Carrier, serving cell), and carrier aggregation (CA: Carrier Aggregation) technology is adopted.
  • CC Component Carrier, serving cell
  • CA carrier aggregation
  • Pcell PrimaryPrimcell
  • Scell Secondary cell
  • the frequency band (frequency band) that the LTE system has assumed so far is a so-called licensed band that can be used because it is licensed from the country or region where the wireless service provider provides the service.
  • the frequency band is limited.
  • Non-Patent Document 1 a frequency band called an unlicensed band that does not require use permission from the country or region.
  • the LTE-A system simply uses the CA technology for the unlicensed band, the throughput deteriorates due to interference from other systems.
  • the present invention has been made in view of such circumstances, and an object thereof is to realize an LTE-A system that improves throughput by performing CA technology including an unlicensed band while suppressing interference from an existing system.
  • An object of the present invention is to provide a possible base station apparatus, terminal apparatus and communication method.
  • the base station apparatus, terminal apparatus, and communication method according to the present invention for solving the above-described problems are as follows.
  • the base station apparatus of the present invention applies a communication method applied to a first frequency band that can be used exclusively to a second frequency band different from the first frequency band.
  • a base station apparatus capable of communicating with a terminal apparatus using the second frequency band together with the second frequency band, wherein the second signal is transmitted using the second frequency band.
  • the frame of at least includes a null period of the signal, and the frame length of the signal frame included in the frame of the second signal transmitted using the second frequency band uses the first frequency band.
  • the frame length of the signal frame included in the frame of the first signal to be transmitted is shorter.
  • the base station apparatus of the present invention is the base station apparatus described in (1) above, characterized in that information indicating a frame configuration of the second signal is signaled to the terminal apparatus. To do.
  • the base station apparatus of the present invention is the base station apparatus according to (2), wherein information indicating a plurality of the frame configurations and information indicating a priority order of the plurality of frame configurations are: Signaling to the terminal device.
  • the base station apparatus of the present invention is the base station apparatus according to (2) or (3) above, wherein at least a part of the null period includes carrier sense in the second frequency band. And changing the frame configuration of the second signal based on the result of the carrier sense, and signaling information indicating the change of the frame configuration to the terminal device.
  • the base station apparatus of this invention is a base station apparatus as described in said (4), Comprising: Based on the result of the said carrier sense, a resource reservation signal is transmitted to a said 2nd frequency band. It is characterized by.
  • the base station apparatus of this invention is a base station apparatus as described in said (5), Comprising:
  • the timing which transmits the said resource reservation signal is the time when the transmission of the said resource reservation signal is completed, The timing is the same as the previous time for a specific period from the time indicating the beginning of the frame of the first signal.
  • the base station apparatus of the present invention is the base station apparatus according to (2) or (3) described above, wherein carrier sense is performed in the second frequency band in at least a part of the null period. And determining whether the second frequency band is usable based on the result of the carrier sense, and when determining that the second frequency band is usable, Signaling information indicating permission to use the second frequency band is characterized.
  • the base station apparatus of the present invention is the base station apparatus described in (1) above, wherein at least a part of the null period is an Almost blank subframe.
  • the base station apparatus of this invention is a base station apparatus as described in said (1), Comprising: Said 2nd frequency band is a frequency band which the said communication system cannot use exclusively.
  • a communication system that applies a communication method applied to a first frequency band that can be used exclusively to a second frequency band different from the first frequency band is provided.
  • a terminal device capable of communicating with a base station apparatus using the second frequency band together with the first frequency band, wherein the second signal transmitted using the second frequency band Information indicating a frame configuration is signaled, and control signals based on the communication method are monitored in the second frequency band based on the signaling.
  • the terminal device of the present invention is the terminal device according to (10) above, based on information indicating permission to use the second frequency band, which is signaled from the base station device, The communication method is applied to the second frequency band.
  • the terminal device according to the present invention is the terminal device according to (11), wherein the second frequency band is a frequency band that cannot be used exclusively by the communication system. To do.
  • the communication method of the present invention is a communication system that applies a communication method applied to a first frequency band that can be used exclusively to a second frequency band different from the first frequency band.
  • a communication method of a base station apparatus capable of communicating with a terminal apparatus using the second frequency band together with the second frequency band, wherein the second frequency band is transmitted using the second frequency band.
  • a communication system that applies a communication method applied to a first frequency band that can be used exclusively to a second frequency band different from the first frequency band.
  • a terminal device communication method capable of communicating with a base station apparatus using the second frequency band together with the second frequency band, wherein the second frequency band is transmitted using the second frequency band.
  • a step of signaling information indicating a frame structure of the signal of the control signal and a step of monitoring a control signal based on the communication method in the second frequency band based on the signaling.
  • the CA technology using the unlicensed band in addition to the license band is realized while minimizing interference from the existing system. As a result, it is possible to improve the throughput of the communication system.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, evolved Node B (eNB)) and terminal device (terminal, mobile terminal, receiving point). , Receiving terminal, receiving device, receiving antenna group, receiving antenna port group, User Equipment (UE)).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, evolved Node B (eNB)
  • eNB evolved Node B
  • terminal device terminal, mobile terminal, receiving point
  • UE User Equipment
  • FIG. 1 is a schematic diagram showing an example of a downlink (downlink or downlink) of a cellular system according to the first embodiment of the present invention.
  • a base station device (eNB) 1 with a wide coverage (a cell radius is large), and there are a terminal device UE1 and a terminal device UE2 connected to the base station device 1.
  • STA (Station) 4 and STA 5 that perform existing 802.11 communication also exist in the coverage range of the base station apparatus 1, and the STA 4 and STA 5 are in an unlicensed band and are simply referred to as an IEEE 802.11 system (hereinafter simply referred to as “STA”). It is assumed that communication may be performed based on the 802.11 system).
  • STA IEEE 802.11 system
  • the unlicensed band refers to a frequency band in which a wireless provider can provide a service without requiring use permission from the country or region. That is, the unlicensed band is a frequency band that cannot be used exclusively by a specific wireless operator.
  • downlink transmission is mainly used, but the method of the present embodiment can also be applied to transmission (uplink line, uplink, uplink) from each terminal apparatus to the base station apparatus 1. It is.
  • the terminal apparatus UE1 and the terminal apparatus UE2 connect one of the component carriers for communicating with the base station apparatus 1 as Pcell (Primary cell), and the frequency band used is a license band
  • the license band refers to a frequency band for which use permission is obtained from the country or region where the wireless provider provides the service. That is, the license band is a frequency band that can be used exclusively by a specific wireless operator.
  • the base station apparatus 1 performs data communication between the terminal apparatus UE1 and the terminal apparatus UE2 by a CA in which a part of the unlicensed band is Scell (Secondary cell). Therefore, the terminal device UE1 and the terminal device UE2 add monitoring of PDCCH (Physical Downlink Control Channel) and EPDCCH (Enhanced Physical Downlink Control Channel) to which the base station device 1 transmits control information for downlink data transmission to the license band. You can also do it with an unlicensed band.
  • the monitoring of the PDCCH includes synchronization processing and blind decoding of a search space in order to decode DCI (Downlink control information) that is downlink control information.
  • FIG. 2 is a block diagram showing a configuration example of the base station apparatus 1 according to the first embodiment of the present invention.
  • the base station apparatus 1 includes an upper layer unit 101, a control unit 102, a transmission unit 103, a reception unit 104, and an antenna 105.
  • the upper layer 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio Resource) Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • Upper layer section 101 generates information for controlling transmission section 103 and reception section 104, and outputs the information to control section 102. Further, the upper layer unit 101 may generate information for signaling the frame configuration of a signal set by the frame control unit 1031 described later to each terminal device.
  • the transmission unit 103 includes a frame control unit 1031, a physical channel signal generation unit 1032, and a wireless transmission unit 1034.
  • the frame control unit 1031 determines the frame configuration of the signal generated by the physical channel signal generation unit 1032 based on an instruction from the control unit 102 or the like. Details of the operation of the frame control unit 1031 will be described later.
  • the physical channel signal generation unit 1032 Based on the frame configuration determined by the frame control unit 1031, the physical channel signal generation unit 1032 generates a baseband signal that the base station device 1 transmits to the terminal device UE1 and the terminal device UE2 using Pcell and Scell.
  • the signal generated by the physical channel signal generation unit 1031 includes a Pcell and Scell PDCCH and a signal transmitted by PDSCH (Physical downlink shared channel) that transmits downlink data.
  • PDSCH Physical downlink shared channel
  • the radio transmission unit 1034 performs a process of converting the baseband signal generated by the physical channel signal generation unit 1032 into a radio frequency (Radio frequency (RF)) band signal.
  • the processing performed by the wireless transmission unit 1034 includes digital / analog conversion, filtering, frequency conversion from the baseband to the RF band, and the like.
  • the antenna 105 transmits the signal generated by the transmission unit 103 to the terminal device UE1 and the terminal device UE2.
  • the base station device 1 also has a function of receiving signals transmitted from the terminal device UE1 and the terminal device UE2.
  • the antenna 105 receives signals transmitted from the terminal device UE1 and the terminal device UE2, and outputs the signals to the reception unit 104.
  • the receiving unit 104 includes a physical channel signal demodulating unit 1041 and a wireless receiving unit 1042.
  • the wireless reception unit 1042 converts the RF band signal input from the antenna 105 into a baseband band.
  • the processing performed by the wireless reception unit 1042 includes frequency conversion from RF band to baseband, filtering, analog / digital conversion, and the like.
  • the processing performed by the receiving unit 104 includes a function of measuring peripheral interference and securing the radio resources (including time resources, frequency resources, and spatial resources) (for example, carrier sense and listen before talk (LBT)). It may be included.
  • the physical channel signal demodulator 1041 demodulates the baseband signal output from the wireless receiver 1042.
  • the signal demodulated by the physical channel signal demodulator 1041 includes PUCCH (Physical uplink control channel) in which the terminal device UE1 and the terminal device UE2 transmit control information for uplink data transmission and PUSCH (Physical uplink) in which uplink data is transmitted.
  • PUCCH Physical uplink control channel
  • PUSCH Physical uplink
  • the physical channel signal demodulation unit 1041 can demodulate the uplink data transmitted on the PUSCH based on the control information on the uplink transmitted on the PDCCH. Further, the physical channel signal demodulator 1041 may include a carrier sense function and the like.
  • FIG. 3 is a block diagram illustrating one configuration example of the terminal device UE1 and the terminal device UE2 according to the present embodiment.
  • the terminal device UE1 and the terminal device UE2 include an upper layer unit 201, a control unit 202, a transmission unit 203, a reception unit 204, and an antenna 205.
  • the upper layer unit 201 performs processing of the MAC layer, PDCP layer, RLC layer, and RRC layer. In addition, upper layer section 201 generates information for controlling transmission section 203 and reception section 204 and outputs the information to control section 202.
  • the antenna 205 receives the signal transmitted from the base station apparatus 1 and outputs it to the receiving unit 204.
  • the number of antennas 205 included in the terminal device UE1 and the terminal device UE2 is one for transmission and reception, but the terminal device UE1 and the terminal device UE2 may use a plurality of antennas for transmission and reception. I do not care.
  • the terminal device UE1 and the terminal device UE2 may include an antenna used for transmission and reception for each frequency band. The same applies to the antenna 204 provided in the base station apparatus 1.
  • the receiving unit 104 includes a physical channel signal demodulating unit 2041, a PDCCH monitoring unit 2042, and a radio receiving unit 2043.
  • the wireless reception unit 2043 converts an RF band signal input from the antenna 205 into a baseband band.
  • the processing performed by the wireless reception unit 2043 includes frequency conversion from RF band to baseband, filtering, analog / digital conversion, and the like.
  • the PDCCH monitoring unit 2042 performs monitoring of the PDCCH and EPDCCH on the baseband signal output from the radio reception unit 2043, and acquires control information that the base station apparatus 1 transmits on the PDCCH and EPDCCH.
  • the PDCCH monitoring unit 2042 may perform synchronization processing based on a synchronization channel signal (for example, Primary synchronization signal (PSS) or Secondary synchronization signal (SSS)) transmitted from the base station apparatus 1.
  • PSS Primary synchronization signal
  • SSS Secondary synchronization signal
  • the physical channel signal demodulation unit 2041 demodulates the baseband signal output from the radio reception unit 2043 based on the control information acquired by the PDCCH monitoring unit 2042.
  • the signal demodulated by the physical channel signal demodulator 2041 includes a signal transmitted from the base station apparatus 1 using the PDSCH.
  • the physical channel signal demodulation unit 2041 can demodulate downlink data transmitted on the PDSCH based on DCI transmitted on the PDCCH.
  • the terminal device UE1 and the terminal device UE2 also have a function of transmitting a signal.
  • the antenna 205 transmits the RF band signal generated by the transmission unit 203 toward the base station apparatus 1.
  • the transmission unit 203 includes a physical channel signal generation unit 2031 and a wireless transmission unit 2032.
  • the physical channel signal generation unit 2031 generates a baseband signal that the terminal apparatus UE1 and the terminal apparatus UE2 transmit to the base station apparatus 1.
  • the signal generated by the physical channel signal generation unit 2031 includes a signal transmitted by the terminal device UE1 and the terminal device UE2 using PUCCH and PUSCH.
  • the wireless transmission unit 2032 converts the baseband signal generated by the physical channel signal generation unit 2031 into an RF band signal.
  • the processing performed by the wireless transmission unit 2032 includes digital / analog conversion, filtering, frequency conversion from the baseband to the RF band, and the like.
  • the base station device 1 performs CA (Carrier aggregation) on the terminal device UE1 and the terminal device UE2 with a part of the unlicensed band as Scell (Secondary cell).
  • CA Carrier aggregation
  • Scell Secondary cell
  • the communication system continuously occupies the unlicensed band based on the LTE system, other apparatuses that communicate with other existing communication systems represented by the 802.11 system can use the unlicensed band. Can no longer communicate.
  • the base station device 1 cannot perform carrier sense in the frequency band while performing communication using a part of the unlicensed band as a Scell.
  • the frame control unit 1031 of the base station apparatus 1 has different frame configurations for the signal transmitted by the base station apparatus 1 using Pcell and the signal transmitted using Scell based on the LTE scheme. Control.
  • FIG. 4A is a diagram illustrating an example of a frame configuration set by the frame control unit 1031 according to the present embodiment. Since a frame based on the LTE scheme (LTE frame) is composed of 10 subframes (LTE subframes) each having a length of 1 millisecond (ms), the length thereof is 10 ms.
  • LTE frame is composed of 10 subframes (LTE subframes) each having a length of 1 millisecond (ms), the length thereof is 10 ms.
  • the signal transmitted by the base station device 1 using the Pcell of the license band has an LTE frame configuration.
  • the frame configuration of the signal transmitted by the base station device 1 using the Scell of the unlicensed band is 10 ms as in the LTE frame, while the number of subframes constituting the frame is less than 10 And That is, the frame control unit 1031 gives a non-signal period during which there is no signal (a null period in FIG. 4) for a frame of a signal transmitted by the base station apparatus 1 using an unlicensed band Scell.
  • the number of subframes constituting a frame is not a natural number, and may be a number expressed by a decimal point, such as “8.5 frames”.
  • the frame control unit 1031 performs control so that the total period of the period in which the LTE subframe is arranged and the no-signal period is the same as the frame length of the LTE frame transmitted by the base station apparatus 1 using the Pcell of the license band. That is, the frame length of the Scell signal set by the frame control unit 1031 is always a fixed length (for example, 10 ms), and the number of LTE subframes included in one signal frame, the length of the no-signal period, and the position where it is arranged. Does not depend on the frame length of the signal.
  • each device included in the communication system including the base station device 1 can perform carrier sense in the null period. For example, STA4 and STA5 can start communication based on an access method called CSMA / CA (CarrierCarsense multiple access with collision avoidance).
  • CSMA / CA CarrierCarsense multiple access with collision avoidance
  • the frame control unit 1031 controls the frame of the signal transmitted by the Scell to be configured with a plurality of signal frames and a null frame. Also good.
  • the null frame is a frame that does not include a signal.
  • the signal frame is a frame (for example, LTE subframe) including a signal.
  • the null frame length is not limited to anything, for example, the frame control unit 1031 can make the null frame length and the LTE subframe length the same.
  • the frame control unit 1031 sets the frame of the signal transmitted by the Scell so that the total period of the plurality of LTE subframes and the null frame is the same as the LTE frame length transmitted by the base station apparatus 1 using the Pcell of the license band.
  • the null period is not necessarily set at the end of the LTE frame, but may be set at the beginning of the LTE frame.
  • the no-signal period in the present embodiment refers to the case where each device transmits a signal transmitted from each device to a device other than its own device in addition to the case where each device completely stops transmitting signals in the radio resource.
  • the case where each apparatus transmits a signal with transmission power or channel configuration that is received with reception power equal to or lower than power (for example, carrier sense level) is also included.
  • the base station apparatus 1 may perform control such that only the synchronization channel signal (for example, PSS or SSS) is transmitted during the no-signal period.
  • the base station apparatus 1 uses the system information of its own apparatus (for example, broadcast information that the base station apparatus 1 transmits on a physical broadcast channel (PBCH) or the IEEE802.11 system during the no-signal period. (Beacon frame to be transmitted) may be controlled to be transmitted.
  • PBCH physical broadcast channel
  • Beacon frame to be transmitted may be controlled to be transmitted.
  • the base station apparatus 1 does not transmit a synchronization channel signal such as PSS or SSS in the unlicensed band Scell, whereas the license band Pcell does not transmit a synchronization channel signal such as PSS or SSS. You may control to transmit a signal.
  • a null period of 1 ms is provided for every four subframes, that is, every 4 ms.
  • the length of the null period and the number of subframes until the null period are as shown in FIG. 4A. It is not limited. However, the length of the null period is preferably an integral multiple of the subframe length, but is not limited thereto.
  • the frame control unit 1031 may periodically give a null period to the Scell signal frame, or may adaptively give it based on the traffic amount of the communication system.
  • the upper layer unit 101 includes the frame configuration of the signal transmitted by the Scell of the unlicensed band set by the frame control unit 1031 in the upper layer signal to each terminal device such as an RRC (Radio resource control) signal. it can. Further, the upper layer unit 101 may operate so as to previously signal information indicating a plurality of frame configurations that the frame control unit 1031 may set to each terminal device. Furthermore, information indicating the priority set by the frame control unit 1031 for the plurality of frame configurations may be operated so as to be signaled to each terminal device in advance.
  • RRC Radio resource control
  • the base station apparatus 1 uses information indicating the frame configuration actually used by the frame control unit 1031 among a plurality of frame configurations signaled to each terminal device by the higher layer unit 101 as other control information (for example, Pcell And control information transmitted on SDC PDCCH and EPDCCH).
  • the control information may also be information indicating the position of the null period given to the frame of the signal transmitted by the frame control unit 1031 using the Scell of the unlicensed band, or information indicating the position of the LTE subframe transmitted in the frame. good.
  • the base station apparatus 1 may not explicitly notify each terminal apparatus of the frame configuration set by the frame control unit 1031.
  • the terminal device UE1 and the terminal device UE2 are information (for example, the base station device 1 to which the device is connected) from another signal (for example, a signal transmitted by PSS or SSS) transmitted by the base station device 1. Cell ID (cell ID), etc.).
  • the terminal device UE1 and the terminal device UE2 can grasp the frame configuration set by the frame control unit 1031. is there.
  • the base station device 1 can signal each terminal device in advance a table indicating the relationship between the frame configuration set by the frame control unit 1031 and the cell ID.
  • the radio reception unit 1042 or the physical channel signal demodulation unit 1041 can perform carrier sense in the null period.
  • the frame control unit 1031 can change the frame configuration based on the result of carrier sense. For example, when the unlicensed band cannot be secured by carrier sense, the frame control unit 1031 may set the period of the LTE subframe arranged following the null period as the null period.
  • the base station device 1 When the frame control unit 1031 further adds a null to the Scell signal frame based on the result of the carrier sense, the base station device 1 reconfigures the frame configuration set by the frame control unit 1031 for each terminal device. Signaling can be performed by a higher layer signal or control information transmitted by PDCCH. Further, when signaling the frame configuration set by the frame control unit 1031 by the control information transmitted by the base station device 1 using the PDCCH, only the difference information from the frame configuration previously notified to each terminal device by higher layer signaling is obtained. Can be signaled.
  • the frame control unit 1031 can apply ABS (Almost blank subframe) standardized by LTE in order to give a null period to a frame of a signal transmitted by Scell.
  • ABS Almost blank subframe
  • the base station apparatus or terminal apparatus reduces a part of transmission power of a physical channel (for example, PDSCH or PDCCH) in a part of subframe, or transmission itself. It is a technology to stop.
  • the frame control unit 1031 may create a null period by stopping transmission of some subframes of a signal frame transmitted by Scell by ABS or reducing transmission power.
  • the frame control unit 1031 may periodically arrange the null period by applying ABS periodically (for example, every 4 ms) to the frame of the signal transmitted by Scell.
  • the null period set by the frame control unit 1031 is not necessarily for suppressing interference between adjacent cells. Therefore, when the communication system according to the present embodiment includes a plurality of base station apparatuses, and each base station apparatus gives a null period by an ABS to a frame of a signal transmitted by Scell of an unlicensed band, between adjacent base station apparatuses There is no need to shift the timing for giving the null period to the signal frame. In order to suppress the influence of interference and interference on other systems typified by the IEEE 802.11 system, it is preferable to align timings for giving null periods to signal frames between adjacent base station apparatuses.
  • the terminal device UE1 and the terminal device UE2 demodulate the signal transmitted in the unlicensed band based on the information indicating the frame configuration of the signal transmitted in the Scell of the unlicensed band signaled from the base station device 1. Perform processing.
  • the PDCCH monitoring unit 2042 may stop monitoring the control information in the null period given to the frame of the signal transmitted by Scell. Further, when the base station apparatus 1 transmits only the synchronization channel in the null period, the PDCCH monitoring unit 2042 may perform only the synchronization process in the null period.
  • the frequency band in which the base station apparatus 1 according to the present embodiment performs CA is not limited to the license band and the unlicensed band described so far.
  • the frequency band targeted by the present embodiment is not actually used for the purpose of preventing interference between frequencies even though the use permission for the specific service is given from the country or region.
  • a frequency band called a white band (for example, a frequency band that has been allocated for television broadcasting but is not used in some regions) or has been allocated exclusively to a specific operator until now.
  • This also includes a shared frequency band that is expected to be shared by other operators.
  • this embodiment also includes a case where the base station apparatus 1 sets Pcell as a license band while setting Scell as part of a white band.
  • the frame control unit 1031 can change the frame configuration of the Scell signal according to the frequency band in which the base station apparatus 1 sets the Scell.
  • the base station apparatus 1 can give a null period to a frame of a signal transmitted using an unlicensed band Scell.
  • each device included in the communication system can perform communication based on a communication method (for example, CSMA / CA) of another system. Therefore, since a specific apparatus does not occupy the unlicensed band for a long period of time, the base station apparatus 1 can communicate with the communication system by CA using the unlicensed band while minimizing the influence on other systems. Throughput can be improved.
  • the terminal device UE1 and the terminal device UE2 connect the base station device 1 as a Pcell, and the frequency band being used is a license band. .
  • FIG. 5 is a block diagram showing one configuration example of the base station apparatus 1 according to the present embodiment.
  • the difference between the base station apparatus 1 according to the present embodiment and the base station apparatus 1 according to the first embodiment is that the transmission unit 103 further includes a control signal generation unit 1035 and a multiplexing unit 1036.
  • summary of the communication system which concerns on this embodiment, and the structure of terminal device UE1 and terminal device UE2 shall be the same as 1st Embodiment.
  • the control signal generation unit 1035 generates a signal including control information (for example, control information transmitted by PDCCH of Pcell and Scell) sent from the base station apparatus 1 to the terminal apparatus UE1 and the terminal apparatus UE2.
  • the multiplexing unit 1036 multiplexes the signal generated by the physical channel signal generation unit 1031 and the signal generated by the control signal generation unit 1035.
  • the base station apparatus 1 performs CA using the unlicensed band as a Scell, as in the first embodiment. Then, the base station apparatus 1 secures resources for securing an unlicensed band in advance in at least a part of the coverage range of the own apparatus in the null period given to the frame of the signal transmitted by the frame control unit 1031 using Scell. Send a signal.
  • FIG. 4B is a diagram illustrating an example of a frame configuration set by the frame control unit 1031 according to the present embodiment.
  • the signal transmitted by the base station device 1 using the Pcell of the license band has the same configuration as in FIG. 4A.
  • the frame configuration of the signal transmitted by the Scell of the unlicensed band set by the frame control unit 1031 is given a fixed null period as in FIG. 4A, but the frame control unit 1031 further includes A period (radio resource) for transmitting a resource securing signal to the unlicensed band is given to the null period.
  • the base station apparatus 1 can ensure the unlicensed band in a period after the null period.
  • the resource securing signal transmitted by the base station apparatus 1 is not limited to anything.
  • a resource reservation signal can be generated and transmitted based on an interference protection technique used in the IEEE 802.11 system.
  • each terminal apparatus senses a carrier and performs communication when no interference is measured, thereby realizing autonomous multiple access.
  • carrier sense area since there is a limit to the distance where carrier sense is possible (referred to as carrier sense area), two terminal devices that are out of each other's carrier sense area transmit at the same time, causing interference to other terminal devices. Sometimes it ends up. For this reason, some interference protection techniques are employed in the IEEE 802.11 system.
  • a terminal device that desires transmission transmits an RTS to the terminal device destined for transmission.
  • the RTS destination terminal device performs carrier sense after receiving the RTS, and transmits CTS to the RTS transmitting terminal device if interference is not measured (observed).
  • NAV Network (allocation vector) period
  • CTS-to-self is a function in which a terminal device that wishes to transmit data transmits CTS addressed to itself.
  • the terminal device since terminal devices other than the CTS destination terminal device that has received the CTS stop transmitting packets during the NAV, the terminal device transmits at least CTS-to-self, thereby at least CTS-to-self. Interference from areas that reach is no longer generated.
  • the control signal generation unit 1035 generates CTS-to-self as a resource reservation signal. Then, the multiplexing unit 1036 is generated by the physical channel signal generation unit 1032 so that the resource reservation signal generated by the control signal generation unit 1035 is arranged in the radio resource that transmits the resource reservation signal set by the frame control unit 1031. Multiplex with signal. Note that the control signal generation unit 1035 can transmit RTS or CTS as a resource securing signal instead of CTS-to-self. Further, in RTS and CTS (including CTS-to-self), the value of NAV can be notified to a device capable of receiving RTS (or CTS). In the case of generating RTS and CTS, the value of NAV can be described in the RTS (or CTS) based on the number of subframes transmitted after the null period.
  • the timing for transmitting the resource securing signal set by the frame control unit 1031 is not limited to anything as long as it is within the null period, but at least the base station apparatus 1 seems to be capable of carrier sense in the null period. It is desirable to set to.
  • the control signal generation unit 1035 when the control signal generation unit 1035 generates CTS-to-self as a resource securing signal, the IEEE 802.11 system transmits the next signal after a SIFS (Short interframe space) period after the completion of CTS reception. Is assumed.
  • SIFS Short interframe space
  • the frame control information 1031 can control the transmission timing of the LTE subframe transmitted after the resource reservation signal is transmitted by controlling the transmission timing of the resource reservation signal.
  • the frame control information 1031 can also control the transmission timing of the resource securing signal so as to improve the synchronization accuracy between the frame of the signal transmitted by Pcell and the frame of the signal transmitted by Scell.
  • FIG. 6 is a schematic diagram showing an example of a method for transmitting a resource securing signal in the null period according to the present embodiment.
  • the radio receiving unit 1042 or the physical channel signal demodulating unit 1941 of the base station apparatus 1 starts carrier sense in the unlicensed band simultaneously with the start of the null period of the frame transmitted in the Scell of the unlicensed band. If it is determined that the unlicensed band can be secured, the frame control unit 1031 transmits the LTE subframe transmission start timing transmitted by the base station apparatus 1 using the license cell Pcell after the resource securing signal transmission period and the SIFS period. Thus, the transmission timing of the resource securing signal is determined.
  • the frame control unit 1031 When the control signal generation unit 1035 generates an appropriate signal (any signal such as an impulse signal) as the resource reservation signal, the frame control unit 1031 performs resource reservation signal transmission and DIFS (Distributed coordination).
  • the transmission timing of the resource securing signal can be determined so that the transmission start time of the LTE subframe transmitted by the base station apparatus 1 using the Pcell of the license band is after the function (IFS) period.
  • IFS function
  • the frame control unit 1031 may perform the transmission timing of the resource securing signal as shown in FIG. 6 in all null periods. Further, the frame control unit 1031 may control to transmit a resource securing signal in the null period so that the heads of the LTE frames transmitted by the Pcell and Scell are synchronized, and the frame control unit 1031
  • the null period for transmitting the resource securing signal may be determined adaptively. For example, the frame control unit 1031 needs to synchronize LTE frames transmitted in Pcell and Scell (for example, the base station apparatus 1 demodulates the control information of the Scell PDSCH using the Pcell PDCCH). Control information may be transmitted during the null period.
  • the base station apparatus 1 can transmit a resource securing signal to the unlicensed band in the null period given to the frame of the signal transmitted by the Scell of the unlicensed band. Therefore, since the base station apparatus 1 can ensure the unlicensed band with higher efficiency, the CA of the unlicensed band can improve the throughput of the communication system.
  • the terminal device UE1 and the terminal device UE2 connect the base station device 1 as a Pcell, and the frequency band being used is a license band.
  • wireless communications system which concerns on this embodiment, the structure of the base station apparatus 1, and the structure of the terminal device UE1 and the terminal device UE2 shall be the same as 1st Embodiment.
  • the base station apparatus 1 performs CA using the unlicensed band as a Scell, as in the first embodiment. And a null period is given to the frame of the signal which base station apparatus 1 transmits by Scell. In the null period, the radio reception unit 1042 or the physical channel signal demodulation unit 1041 performs carrier sense in the unlicensed band.
  • the base station apparatus 1 In the null period, if the base station apparatus 1 cannot secure the unlicensed band as a result of performing carrier sense, the base station apparatus 1 will not transmit a signal in the Scell of the unlicensed band even after the null period. . On the other hand, the base station apparatus 1 can continue to transmit a signal in the Pcell of the license band regardless of the result of the carrier sense of the unlicensed band. In this case, there arises a problem that the number of frames of the signal transmitted by the base station apparatus 1 using the license cell Pcell differs from the number of frames of the signal transmitted by the unlicensed band Scell.
  • the frame control unit 1031 measures the number of signal frames regardless of the result of the carrier sense performed in the null period given to the frame transmitted by the base station apparatus 1 using the Scell of the unlicensed band. .
  • FIG. 4C is a diagram illustrating an example of a frame configuration set by the frame control unit 1031 according to the present embodiment.
  • the signal transmitted by the base station device 1 using the Pcell of the license band has the same configuration as in FIG. 4A.
  • the frame configuration of the signal transmitted by the Scell of the unlicensed band set by the frame control unit 1031 is that in which a null period of a certain length (1 ms) is given at a certain period (every 4 ms), as in FIG. is there.
  • the radio reception unit 1042 or the physical channel signal demodulation unit 1041 performs carrier sense in the unlicensed band.
  • FIG. 4C shows an example of the result of carrier sense.
  • base station apparatus 1 cannot secure the unlicensed band, and other apparatuses (for example, STA4 and STA5) communicate with the unlicensed band.
  • the case where it is performing is shown.
  • the non-transmission period of the signal transmitted by the Scell of the unlicensed band originally set by the frame control unit 1031 is called a null period, while the non-transmission period generated as a result of the use of the unlicensed band by another system Is called an idle period in this embodiment.
  • the frame control unit 1031 counts up the frame number (System frame number: SFN) on the unlicensed band, assuming that the LTE frame can be transmitted during the period 1 and the period 2.
  • LTE frame n indicates that SFN is n.
  • LTE frame 1 indicates that SFN is 1.
  • one LTE frame (10 ms cycle) is composed of 10 LTE subframes. Therefore, when 10 LTE subframes are transmitted, the frame control unit 1031 sets SFN to 1. Will increase.
  • the frame control unit 1031 counts up the SFN in accordance with the SFN of the signal transmitted by the Pcell of the license band.
  • the SFN of the signal transmitted in the Scell of the unlicensed band is 2 That is, according to the method of the present embodiment, the frame control unit 1031 gives the SFN to the frame transmitted in the Pcell of the license band in the period, regardless of whether or not the base station apparatus 1 actually transmits in the Scell. SFN given to a frame to be transmitted by Scell of the unlicensed band can be increased at the timing of increasing. Therefore, the base station apparatus 1 can make the SFN of the signal transmitted by Pcell and the SFN of the signal transmitted by Scell the same.
  • the base station device 1 While the base station device 1 is transmitting the LTE frame 2 with the Pcell of the license band, the base station device 1 can secure the unlicensed band, but due to the null period given by the frame control unit 1031, the base station device 1 The number of LTE subframes that can be transmitted by the device 1 using the Scell of the unlicensed band is less than ten. Even in this case, the frame control unit 1031 controls the SFN of the frame transmitted by the base station apparatus 1 using the Scell of the unlicensed band as 2 during the period.
  • the base station apparatus 1 uses the unlicensed band. No signal can be transmitted with Scell. Even in this case, the frame control unit 1031 controls that the base station apparatus 1 transmits an LTE frame with an SFN of 3 using the Scell of the unlicensed band during the period. The frame control unit 1031 performs the same processing during the period in which the base station apparatus 1 transmits the LTE frame 4 using the Pcell of the license band.
  • the frequency band in which the base station apparatus 1 according to the present embodiment sets the Scell is not limited to the unlicensed band, and includes, for example, a frequency band called white space and a frequency band shared by a plurality of operators. Since these frequency bands have different characteristics, the frame control unit 1031 can change the frame structure of the Scell signal according to the frequency band for setting the Scell.
  • frequency band characteristics include characteristics characterized by legal restrictions such as allowable signal burst length.
  • the frame control unit 1031 can also change the frequency of transmitting the LTE frame according to the frequency band for setting the Scell.
  • the base station apparatus 1 selects a frequency band to be set in the Scell from a plurality of frequency bands including the unlicensed band, and the frame control unit 1031 determines the frame configuration of the Scell signal according to the frequency band. Even in the case of setting, the frame control unit 1031 can align the SFN of the signal transmitted by Pcell and the SFN of the signal transmitted by Scell.
  • the base station apparatus 1 can determine in advance the priority order for applying the CA to the plurality of frequency bands. Moreover, the base station apparatus 1 can notify each terminal apparatus in advance of the priority order by higher layer signaling or the like. In addition, the base station apparatus 1 measures the usage status of a plurality of frequency bands (for example, the base station apparatus 1 can perform carrier sense and measure the interference power of the frequency band), and based on the measurement results Thus, it is possible to determine which of a plurality of frequency bands is used for CA. In addition, the base station apparatus 1 may signal information indicating the frequency band to which the CA determined based on the measurement result is applied to each terminal apparatus (for example, higher layer signaling or PDCCH signaling). Is possible.
  • the PDCCH monitoring unit 2042 of the terminal device UE1 and the terminal device UE2 can monitor a control signal for a plurality of frequency bands. Further, the PDCCH monitoring unit 2042 of the terminal device UE1 and the terminal device UE2 can monitor the control signal only for the frequency band notified in advance from the base station device 1 by a higher layer signal or the like.
  • the base station apparatus 1 always transmits the SFN of the signal frame transmitted by the Pcell of the license band and the Scell of the unlicensed band, regardless of the result of securing the resource of the unlicensed band.
  • the SFNs of the frames of the signals to be processed can be made the same. Therefore, the base station apparatus 1 can easily perform processing such as cross-carrier scheduling for transmitting control information for demodulating a signal transmitted on the Scell PDSCH using the Pcell PDCCH. It is possible to efficiently perform CA using a part of the unlicensed band as a Scell.
  • the terminal device UE1 and the terminal device UE2 connect the base station device 1 as a Pcell, and the frequency band being used is a license band.
  • wireless communications system which concerns on this embodiment, the structure of the base station apparatus 1, and the structure of the terminal device UE1 and the terminal device UE2 are the same as 2nd Embodiment.
  • time division duplex (TDD) is used as the duplex method.
  • the base station apparatus 1 performs CA using an unlicensed band as a Scell, as in the first embodiment.
  • the base station apparatus 1 which concerns on this embodiment allocates a part of this unlicensed band to Scell of communication (uplink) from a terminal device to a base station apparatus.
  • FIG. 4D is a diagram illustrating an example of a frame configuration set by the frame control unit 1031 according to the present embodiment.
  • a downlink subframe Downlink subframe: DL SF
  • a downlink signal for example, a signal transmitted by PDCCH or PDSCH
  • An uplink subframe (Uplink subframe: UL SF) in which an uplink signal (for example, a signal transmitted by PUCCH or PUSCH) is transmitted, a downlink signal and an uplink signal in one subframe
  • an uplink A special subframe (Special subframe: SP SF) including a period for adjusting the transmission timing of the link is included.
  • the order and ratio of the SFs constituting the frame are not limited to anything, and the frame control unit 1031 depends on the state of the propagation path with the terminal device and the status of data traffic in the communication system.
  • the frame configuration may be changed adaptively. Note that the frame configuration of the signal set by the frame control unit 1031 is notified in advance from the base station apparatus 1 to each terminal apparatus, for example, by higher layer signaling or L1 / L2 signaling.
  • the frame control unit 1031 sets a non-signal period (null period) in addition to the DL SF and UL SF as a frame of a signal transmitted by the base station apparatus 1 using an unlicensed band Scell.
  • the base station device 1, the terminal device UE1, and the terminal device UE2 can perform carrier sense in the unlicensed band, and therefore efficiently secure the unlicensed band. Can do.
  • the signal transmitted by Scell does not include SP SF, but it goes without saying that the signal transmitted by Scell includes SP SF. .
  • all devices included in the communication system may perform carrier sense, but only specific devices may perform carrier sense. For example, only a device that transmits a signal after a null period may perform carrier sense.
  • the base station apparatus 1 performs carrier sense
  • the terminal apparatus UE1 And the terminal device UE2 can perform carrier sense.
  • the base station apparatus 1 may always perform carrier sense. For example, when the base station apparatus 1 performs carrier sense in the null period set before the UL SF by the frame control unit 1031 and determines that the unlicensed band can be secured, the base station apparatus 1 determines for the terminal apparatus UE1 and the terminal apparatus UE2 The terminal device can be signaled to permit transmission of UL SF after the null period. Note that the base station apparatus 1 may transmit a resource reservation signal (for example, CTS-to-self) for securing the unlicensed band after carrier sense, as in the second embodiment. The above operation may be performed mainly by the terminal device.
  • a resource reservation signal for example, CTS-to-self
  • each terminal here, base station
  • Signaling to the station device 1 and the terminal device UE2) is also possible.
  • each device transmits the SFN of the signal frame transmitted by the Scell of the unlicensed band using the Pcell of the license band, regardless of the transmission state of the DL SF or UL SF. You may synchronize with SFN of the frame of the signal to do. Further, when the terminal device UE1 and the terminal device UE2 perform carrier sense and only the terminal device UE1 can secure the unlicensed band, only the terminal device UE1 may transmit the UL SF.
  • the base station device 1, the terminal device UE1, and the terminal device UE2 can efficiently secure an unlicensed band even in a wireless communication system that uses TDD as a duplex method. Further, since only the base station apparatus 1 may perform carrier sense in the unlicensed band, the complexity of the terminal apparatus 1 and the terminal apparatus UE2 can be reduced.
  • the program that operates in the base station apparatus and the terminal apparatus according to the present invention is a program that controls a CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • LSI which is typically an integrated circuit.
  • Each functional block of the terminal device and the base station device may be individually chipped, or a part or all of them may be integrated into a chip.
  • an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • a part of the dedicated circuit is configured by a general-purpose processor, and a part of each process or function is realized by using the general-purpose processor, and is configured to be realized by both the dedicated circuit unit and the software processing. Be good.
  • an integrated circuit based on the technology can also be used.
  • the terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 既存システムからの干渉を抑えつつ、アンライセンスバンドを含めたCA技術を行なうことでスループット改善するLTE-Aシステムを実現可能な基地局装置、端末装置、および通信方法を提供する。本発明の基地局装置は、専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して端末装置と通信が可能であり、前記第2の周波数帯域を使用して送信する第2の信号のフレームには少なくとも、信号のヌル期間を与え、前記第2の周波数帯域を使用して送信する第2の信号のフレームに含まれる信号フレームのフレーム長を、前記第1の周波数帯域を使用して送信する第1の信号のフレームに含まれる信号フレームのフレーム長より短くする。

Description

基地局装置、端末装置、および通信方法
 本発明は、基地局装置、端末装置、および通信方法に関する。
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システムの標準化が完了し、現在は第4世代の無線通信システムの1つとして、LTEシステムをより発展させたLTE-A(LTE-Advanced、IMT-Aなどとも称する。)システムの標準化が行なわれている。
 LTE-Aシステム(LTE Rel.10以降)では、LTEシステムの1つのシステム帯域をコンポーネントキャリア(CC:Component Carrier、serving cellとも称される)とし、複数のCCを同時に使用するキャリアアグリゲーション(CA:Carrier Aggregation)技術が採用されている。CAを行なう場合には、1つのCCはすべての機能を実現できるプライマリセル(Pcell:Primary cell)として用いられ、その他のCCはセカンダリセル(Scell:Secondary cell)として用いられる。
 LTEシステムがデータトラフィックの急増に対処していく上で、周波数資源の確保は重要な課題である。これまでLTEシステムが想定した周波数バンド(周波数帯域)は、無線事業者がサービスを提供する国や地域から使用許可が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンドであり、利用可能な周波数帯域には限りがある。
 そこで最近、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドを用いたLTEシステムの提供が議論されている(非特許文献1参照)。LTE-Aシステムより採用されているCA技術をアンライセンスバンドにも適用することで、LTE-Aシステムは高効率にデータトラフィックの急増に対処できるものとして期待されている。
RP-140259、"Study on Licensed-Assisted Access using LTE、" 3GPP TSG RAN Meeting #63、2014年 3月。
 しかし、アンライセンスバンドでは、IEEE802.11システムに代表されるように、LTEとは異なるRAT(Radio access technology)による通信が行なわれる可能性がある。したがって、LTE-Aシステムが単純にCA技術をアンライセンスバンドに対して用いれば、他システムからの干渉等により、スループットは劣化してしまう。
 本発明はこのような事情を鑑みてなされたものであり、その目的は、既存システムからの干渉を抑えつつ、アンライセンスバンドを含めたCA技術を行なうことでスループット改善するLTE-Aシステムを実現可能な基地局装置、端末装置および通信方法を提供することにある。
 上述した課題を解決するための本発明に係る基地局装置、端末装置、および通信方法は、次の通りである。
 (1)すなわち、本発明の基地局装置は、専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して端末装置と通信が可能な基地局装置であって、前記第2の周波数帯域を使用して送信する第2の信号のフレームには少なくとも、信号のヌル期間が含まれ、前記第2の周波数帯域を使用して送信する第2の信号のフレームに含まれる信号フレームのフレーム長は、前記第1の周波数帯域を使用して送信する第1の信号のフレームに含まれる信号フレームのフレーム長より短いことを特徴とする。
 (2)また、本発明の基地局装置は、上記(1)に記載の基地局装置であって、前記第2の信号のフレーム構成を示す情報を、前記端末装置にシグナリングすることを特徴とする。
 (3)また、本発明の基地局装置は、上記(2)に記載の基地局装置であって、複数の前記フレーム構成を示す情報と、前記複数のフレーム構成の優先順位を示す情報を、前記端末装置にシグナリングすることを特徴とする。
 (4)また、本発明の基地局装置は、上記(2)または上記(3)に記載の基地局装置であって、少なくとも一部の前記ヌル期間において、前記第2の周波数帯域においてキャリアセンスを行ない、前記キャリアセンスの結果に基づいて、前記第2の信号のフレーム構成を変更し、前記フレーム構成の変更を示す情報を、前記端末装置にシグナリングすることを特徴とする。
 (5)また、本発明の基地局装置は、上記(4)に記載の基地局装置であって、前記キャリアセンスの結果に基づいて、前記第2の周波数帯域にリソース確保信号を送信することを特徴とする。
 (6)また、本発明の基地局装置は、上記(5)に記載の基地局装置であって、前記リソース確保信号を送信するタイミングは、前記リソース確保信号の送信が完了する時刻が、前記第1の信号のフレームの先頭を示す時刻から特定の期間だけ先の時刻と一致するタイミングであることを特徴とする。
 (7)また、本発明の基地局装置は、上記(2)または上記(3)に記載の基地局装置であって、少なくとも一部の前記ヌル期間において、前記第2の周波数帯域においてキャリアセンスを行ない、前記キャリアセンスの結果に基づいて、前記第2の周波数帯域が使用可能か否かを判断し、前記第2の周波数帯域を使用可能と判断した場合、前記端末装置に対して、前記第2の周波数帯域の使用許可を示す情報をシグナリングすることを特徴とする。
 (8)また、本発明の基地局装置は、上記(1)に記載の基地局装置であって、少なくとも一部の前記ヌル期間は、Almost blank subframeであることを特徴とする。
 (9)また、本発明の基地局装置は、上記(1)に記載の基地局装置であって、前記第2の周波数帯域は、前記通信システムが専用的に使用できない周波数帯域であることを特徴とする。
 (10)また、本発明の端末装置は、専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第1の周波数帯域と共に前記第2の周波数帯域を使用して基地局装置と通信が可能な端末装置であって、前記第2の周波数帯域を使用して送信する第2の信号のフレーム構成を示す情報がシグナリングされ、前記シグナリングに基づいて、前記第2の周波数帯域において、前記通信方式に基づいた制御信号のモニタリングを行なうことを特徴とする。
 (11)また、本発明の端末装置は、上記(10)に記載の端末装置であって、前記基地局装置よりシグナリングされる、前記第2の周波数帯域の使用許可を示す情報に基づいて、前記第2の周波数帯域に前記通信方式を適用することを特徴とする。
 (12)また、本発明の端末装置は、上記(11)に記載の端末装置であって、前記第2の周波数帯域は、前記通信システムが専用的に使用できない周波数帯域であることを特徴とする。
 (13)また、本発明の通信方法は、専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して端末装置と通信が可能な基地局装置の通信方法であって、前記第2の周波数帯域を使用して送信する第2の信号のフレームには少なくとも、信号のヌル期間を含めるステップと、前記第2の周波数帯域を使用して送信する第2の信号のフレームに含まれる信号フレームのフレーム長を、前記第1の周波数帯域を使用して送信する第1の信号のフレームに含まれる信号フレームのフレーム長より短くするステップと、を備えることを特徴とする。
 (14)また、本発明の通信方法は、専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して基地局装置と通信が可能な端末装置の通信方法であって、前記第2の周波数帯域を使用して送信する第2の信号のフレーム構成を示す情報がシグナリングされるステップと、前記シグナリングに基づいて、前記第2の周波数帯域において、前記通信方式に基づいた制御信号のモニタリングを行なうステップと、を備えることを特徴とする。
 本発明によれば、既存システムからの干渉を最小限としつつ、ライセンスバンドに加えて、アンライセンスバンドを用いたCA技術が実現される。この結果、通信システムのスループットを改善することが可能となる。
本発明に係る通信システムの例を示す図である。 本発明の基地局装置の一構成例を示す概略ブロック図である。 本発明の端末装置の一構成例を示す概略ブロック図である。 本発明の信号のフレーム構成の一例を示す図である。 本発明の信号のフレーム構成の一例を示す図である。 本発明の信号のフレーム構成の一例を示す図である。 本発明の信号のフレーム構成の一例を示す図である。 本発明の基地局装置の一構成例を示す概略ブロック図である。 本発明の信号のフレーム構成の一例を示す図である。
 [第1の実施形態]
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、evolved Node B(eNB))および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、User Equipment(UE))を備える。
 図1は、本発明の第1の実施形態に係るセルラシステムの下り回線(ダウンリンク、または下りリンク)の一例を示す概略図である。図1のセルラシステムでは、広いカバレッジ(セル半径が大きい)の基地局装置(eNB)1が存在し、基地局装置1と接続する端末装置UE1と端末装置UE2が存在する。また、基地局装置1のカバレッジ範囲には、既存の802.11通信を行なうSTA(Station)4とSTA5も存在するものとし、STA4とSTA5はアンライセンスバンドにおいて、IEEE802.11システム(以下では単に802.11システムとも称する)に基づいて通信を行なう可能性があるものとする。ここで、アンライセンスバンドとは、無線事業者が国や地域から使用許可を必要とせずにサービスの提供が可能な周波数バンドを指す。つまり、アンライセンスバンドとは特定の無線事業者が専用的に使用することができない周波数バンドである。なお、以下の説明では、下りリンクの伝送を中心とするが、各端末装置から基地局装置1への伝送(上りリンク回線、アップリンク、上りリンク)にも、本実施形態の方法は適用可能である。
 端末装置UE1と端末装置UE2は、基地局装置1と通信を行なうためのコンポーネントキャリアのうちの一つをPcell(Primary cell)として接続しており、使用されている周波数バンドはライセンスバンドであるものとする。ここで、ライセンスバンドとは、無線事業者がサービスを提供する国や地域から使用許可が得られた周波数バンドを指す。つまり、ライセンスバンドとは特定の無線事業者が専用的に使用することが可能な周波数バンドである。
 本実施形態に係る基地局装置1は、アンライセンスバンドの一部をScell(Secondary cell)としたCAにより端末装置UE1と端末装置UE2とのデータ通信を行なう。よって、端末装置UE1と端末装置UE2は、基地局装置1が下りリンクデータ伝送の制御情報を送信するPDCCH(Physical Downlink Control Channel)やEPDCCH(Enhanced Physical Downlink Control Channel)のモニタリングを、ライセンスバンドに加えて、アンライセンスバンドでも行なうことができる。PDCCHのモニタリングには、同期処理と、下りリンク制御情報であるDCI(Downlink control information)を復号するためにサーチスペースのブラインドデコーディングが含まれる。
 図2は、本発明の第1の実施形態に係る基地局装置1の1構成例を示すブロック図である。図2に示す通り、基地局装置1は、上位層部101と、制御部102と、送信部103と、受信部104と、アンテナ105と、を備える。
 上位層部101は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol:PDCP)層、無線リンク制御(Radio Link Control:RLC)層、無線リソース制御(Radio Resource Control:RRC)層の処理を行なう。上位層部101は、送信部103と、受信部104の制御を行なうための情報を生成し、制御部102に出力する。また、上位層部101は、後述するフレーム制御部1031が設定する信号のフレーム構成を各端末装置にシグナリングするための情報を生成しても良い。
 送信部103は、フレーム制御部1031と、物理チャネル信号生成部1032と、無線送信部1034を備える。フレーム制御部1031は、制御部102からの指示等に基づいて、物理チャネル信号生成部1032が生成する信号のフレーム構成を決定する。フレーム制御部1031の動作詳細については後述する。
 物理チャネル信号生成部1032は、フレーム制御部1031が決定したフレーム構成に基づいて、基地局装置1がPcellおよびScellで、端末装置UE1および端末装置UE2に送信するベースバンド信号を生成する。物理チャネル信号生成部1031が生成する信号は、PcellおよびScellのPDCCHと、下りリンクデータを送信するPDSCH(Physical downlink shared channel)で送信する信号を含む。なお、図1において端末装置数を2としたため、端末装置UE1および端末装置UE2に送信するベースバンド信号を生成する例を示したが、本実施形態はこれに限定されない。
 無線送信部1034は、物理チャネル信号生成部1032が生成するベースバンド信号を無線周波数(Radio frequency(RF))帯の信号に変換する処理を行なう。無線送信部1034が行なう処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
 アンテナ105は、送信部103が生成した信号を、端末装置UE1および端末装置UE2に向けて送信する。
 基地局装置1は、端末装置UE1および端末装置UE2から送信された信号を受信する機能も備える。アンテナ105は、端末装置UE1および端末装置UE2から送信された信号を受信し、受信部104に出力する。
 受信部104は、物理チャネル信号復調部1041と無線受信部1042を備える。無線受信部1042は、アンテナ105から入力されたRF帯の信号をベースバンド帯に変換する。無線受信部1042が行なう処理には、RF帯からベースバンド帯への周波数変換、フィルタリング、アナログ・デジタル変換等が含まれる。また、受信部104が行なう処理には、周辺の干渉を測定し、該無線リソース(時間リソース、周波数リソースおよび空間リソースを含む)を確保する(例えばキャリアセンスやlisten before talk(LBT))機能が含まれていても良い。
 物理チャネル信号復調部1041は、無線受信部1042が出力するベースバンド帯の信号を復調する。物理チャネル信号復調部1041が復調する信号には、端末装置UE1および端末装置UE2が上りリンクデータ伝送の制御情報を送信するPUCCH(Physical uplink control channel)と、上りリンクデータを送信するPUSCH(Physical uplink shared channel)で送信する信号が含まれる。物理チャネル信号復調部1041は、PDCCHで送信された上りリンクに関する制御情報に基づいて、PUSCHで送信される上りリンクデータを復調することができる。また、物理チャネル信号復調部1041には、キャリアセンス機能等が含まれていても良い。
 図3は、本実施形態に係る端末装置UE1および端末装置UE2の1構成例を示すブロック図である。図3に示すように、端末装置UE1および端末装置UE2は、上位層部201と、制御部202と、送信部203と、受信部204と、アンテナ205を備える。
 上位層部201は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。また、上位層部201は、送信部203と、受信部204の制御を行なうための情報を生成し、制御部202に出力する。
 アンテナ205は、基地局装置1が送信した信号を受信し、受信部204に出力する。なお、以下の説明では端末装置UE1および端末装置UE2が備えるアンテナ205のアンテナ本数は、送受信で1本であるものとするが、端末装置UE1および端末装置UE2は送受信で複数のアンテナを用いても構わない。また、端末装置UE1および端末装置UE2は、周波数バンド毎に送受信に用いるアンテナを備えても良い。このことは、基地局装置1が備えるアンテナ204に対しても同様である。
 受信部104は、物理チャネル信号復調部2041とPDCCHモニタリング部2042と無線受信部2043を備える。無線受信部2043は、アンテナ205から入力されたRF帯の信号をベースバンド帯に変換する。無線受信部2043が行なう処理には、RF帯からベースバンド帯への周波数変換、フィルタリング、アナログ・デジタル変換等が含まれる。
 PDCCHモニタリング部2042は、無線受信部2043が出力するベースバンド帯の信号に対してPDCCHやEPDCCHのモニタリングを行ない、基地局装置1がPDCCHやEPDCCHで送信する制御情報を取得する。また、PDCCHモニタリング部2042は、基地局装置1より送信される同期チャネルの信号(例えばPrimary synchronization signal(PSS)やSecondary synchronization signal(SSS))に基づいた同期処理を行なっても良い。
 物理チャネル信号復調部2041は、PDCCHモニタリング部2042が取得した制御情報に基づいて無線受信部2043が出力するベースバンド帯の信号を復調する。物理チャネル信号復調部2041が復調する信号には、基地局装置1がPDSCHで送信する信号が含まれる。物理チャネル信号復調部2041は、PDCCHで送信されるDCIに基づいて、PDSCHで送信される下りリンクデータを復調することができる。
 端末装置UE1および端末装置UE2は、信号を送信する機能も備える。アンテナ205は、送信部203が生成したRF帯の信号を、基地局装置1に向けて送信する。
 送信部203は、物理チャネル信号生成部2031と、無線送信部2032を備える。物理チャネル信号生成部2031は、端末装置UE1および端末装置UE2が基地局装置1に送信するベースバンド帯の信号を生成する。物理チャネル信号生成部2031が生成する信号は、端末装置UE1および端末装置UE2がPUCCHおよびPUSCHで送信する信号を含む。
 無線送信部2032は、物理チャネル信号生成部2031が生成したベースバンド帯の信号をRF帯の信号に変換する。無線送信部2032が行なう処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
 本実施形態において、基地局装置1は、端末装置UE1と端末装置UE2に対して、さらにアンライセンスバンドの一部をScell(Secondary cell)としてCA(Carrier aggregation)を行なうことを考える。しかし、通信システムがLTE方式に基づいてアンライセンスバンドを連続的に占有してしまうと、802.11システムに代表される他の既存通信システムによって通信を行なう他の装置が、該アンライセンスバンドでの通信を行なうことができなくなる。また、基地局装置1は、アンライセンスバンドの一部をScellとして用いて通信を行なっている間、該周波数バンドにてキャリアセンスを行なうことが出来ない。
 そこで、本実施形態に係る基地局装置1のフレーム制御部1031は、基地局装置1がLTE方式に基づいてPcellで送信する信号と、Scellで送信する信号とで、異なるフレーム構成となるように制御する。
 図4Aは本実施形態に係るフレーム制御部1031が設定するフレーム構成の一例を示す図である。LTE方式に基づくフレーム(LTEフレーム)は、長さ1ミリ秒(ms)のサブフレーム(LTEサブフレーム)10個から構成されるから、その長さは10msとなる。本実施形態において、基地局装置1が、ライセンスバンドのPcellで送信する信号は、LTE方式のフレーム構成とする。
 一方、本実施形態において、基地局装置1がアンライセンスバンドのScellで送信する信号のフレーム構成は、フレーム長はLTEフレームと同様に10msとする一方で、フレームを構成するサブフレーム数は10未満とする。すなわち、基地局装置1がアンライセンスバンドのScellで送信する信号のフレームに対して、フレーム制御部1031は信号がない無信号期間(図4中でヌルとしている期間)を与える。なお、フレームを構成するサブフレーム数は自然数でなく、「8.5フレーム」のように、小数点で表現される数であっても良い。フレーム制御部1031は、LTEサブフレームを配置する期間と無信号期間の合計期間が、基地局装置1がライセンスバンドのPcellで送信するLTEフレームのフレーム長と同じになるように制御する。つまり、フレーム制御部1031が設定するScellの信号のフレーム長は常に一定長(例えば10ms)であり、1つの信号のフレームに含まれるLTEサブフレーム数や無信号期間の長さや配置される位置には、信号のフレーム長は依存しない。フレーム制御部1031がこのようなフレーム構成を設定することで、該ヌル(Null)期間においては、基地局装置1を含め、通信システムが備える各装置は、キャリアセンスを行なうことが可能となる。例えばSTA4やSTA5は、CSMA/CA(Carrier sense multiple access with collision avoidance)と呼ばれるアクセス方式に基づいて通信を開始することが可能となる。
 フレーム制御部1031は、基地局装置1がScellで送信する信号のフレームにヌル期間を与える方法として、Scellで送信する信号のフレームを複数の信号フレームとヌルフレームとで構成するように制御しても良い。ここでヌルフレームとは信号が含まれないフレームであるものとする。また、信号フレームとは、信号が含まれるフレーム(例えばLTEサブフレーム)であるものとする。ヌルフレーム長は何かに限定されるものではないが、例えば、フレーム制御部1031はヌルフレーム長とLTEサブフレーム長を同じにすることができる。フレーム制御部1031は、複数のLTEサブフレームとヌルフレームの合計期間が、基地局装置1がライセンスバンドのPcellで送信するLTEフレーム長と同じになるように、Scellで送信する信号のフレームを設定する。なお、ヌル期間は必ずしもLTEフレームの最後に設定される必要はなく、LTEフレームの先頭に設定されても良い。
 なお、本実施形態における無信号期間とは、該無線リソースにおいて、各装置が完全に信号の送信を止める場合に加えて、各装置が送信する信号が、自装置以外の装置に対して、所定電力(例えばキャリアセンスレベル)以下の受信電力で受信されるような送信電力やチャネル構成で各装置が信号を送信する場合も含まれる。例えば、基地局装置1は、該無信号期間において、同期チャネルの信号(例えばPSSやSSS)だけを送信するように制御しても良い。また、基地局装置1は、該無信号期間において、自装置のシステム情報(例えば、基地局装置1が物理報知チャネル(Physical Broadcast Channel:PBCH)で送信する報知情報や、IEEE802.11システムで用いられるBeaconフレーム)のみを送信するように制御しても良い。
 なお、基地局装置1は、該無信号期間において、アンライセンスバンドのScellでは、PSSやSSS等の同期チャネルの信号を送信しない一方で、ライセンスバンドのPcellでは、PSSやSSS等の同期チャネルの信号を送信するように制御しても良い。
 なお、図4Aにおいては、4個のサブフレーム毎、すなわち4ms毎に1msのヌル期間を設けているが、ヌル期間の長さや、ヌル期間までのサブフレームの数は、図4Aに示す方法に限定されない。しかし、ヌル期間の長さはサブフレーム長の整数倍であることが好適であるがこれに限定されない。また、フレーム制御部1031は、Scellの信号のフレームに周期的にヌル期間を与えても良いし、通信システムのトラフィック量等に基づいて、適応的に与えても良い。
 上位層部101はフレーム制御部1031が設定する、アンライセンスバンドのScellで送信する信号のフレーム構成を、RRC(Radio resource control)シグナル等の、各端末装置への上位レイヤのシグナルに含めることができる。また、上位層部101は、フレーム制御部1031が設定する可能性のある複数のフレーム構成を示す情報を各端末装置にあらかじめシグナリングするように動作しても良いし、更に上位層部101は、更に該複数のフレーム構成に対するフレーム制御部1031が設定する優先度を示す情報を、各端末装置にあらかじめシグナリングするように動作しても良い。また基地局装置1は、上位層部101が各端末装置にシグナリングする複数のフレーム構成の中で、フレーム制御部1031が実際に用いたフレーム構成を示す情報を、別の制御情報(例えば、PcellおよびScellのPDCCHおよびEPDCCHで送信される制御情報)に含めても良い。また、該制御情報は、フレーム制御部1031がアンライセンスバンドのScellで送信する信号のフレームに与えたヌル期間の位置を示す情報、もしくは該フレームで送信されるLTEサブフレームの位置を示す情報でも良い。
 なお、基地局装置1はフレーム制御部1031が設定するフレーム構成を、明示的に各端末装置に通知しなくても良い。例えば、端末装置UE1および端末装置UE2は、基地局装置1が送信する別の信号(例えばPSSやSSSで送信する信号)から、自装置が接続している基地局装置1を示す情報(例えば、セルID(cell ID)等)を把握することができる。このとき、フレーム制御部1031が設定するフレーム構成と、セルIDとを予め関連付けておくことで、端末装置UE1と端末装置UE2は、フレーム制御部1031が設定するフレーム構成を把握することが可能である。基地局装置1は、フレーム制御部1031が設定するフレーム構成と、セルIDの関係を示すテーブルを、予め各端末装置にシグナリングすることが可能である。
 無線受信部1042、または物理チャネル信号復調部1041は、ヌル期間においてキャリアセンスを行なうことができる。フレーム制御部1031は、キャリアセンスの結果に基づいて、フレーム構成を変更することが可能である。例えば、キャリアセンスによって該アンライセンスバンドが確保できなかった場合、フレーム制御部1031はヌル期間に続いて配置されているLTEサブフレームの期間をヌル期間としても良い。
 フレーム制御部1031が、キャリアセンスの結果に基づいて、Scellの信号のフレームに更にヌルを加える場合、基地局装置1は、フレーム制御部1031が設定したフレーム構成を、改めて各端末装置に対して、上位レイヤのシグナルや、PDCCHで送信する制御情報によってシグナリングすることができる。また、基地局装置1がPDCCHで送信する制御情報によってフレーム制御部1031が設定したフレーム構成をシグナリングする場合、上位レイヤのシグナリングであらかじめ各端末装置に通知していたフレーム構成との差分情報だけをシグナリングすることができる。
 また、フレーム制御部1031は、Scellで送信する信号のフレームにヌル期間を与えるために、LTEで規格化されているABS(Almost blank subframe)を応用することができる。ABSは、主に隣接セル間干渉を抑えるために、基地局装置(または端末装置)が一部のサブフレームにおける物理チャネル(例えばPDSCHやPDCCH)の一部の送信電力を小さくする、または送信自体を止める技術である。フレーム制御部1031は、ABSによりScellで送信する信号のフレームの一部のサブフレームの送信を止める、もしくは送信電力を小さくすることで、ヌル期間を作っても良い。フレーム制御部1031は、Scellで送信する信号のフレームに対して周期的にABSを適用することで(例えば4ms毎)、ヌル期間が周期的に配置されるようにしても良い。
 なお、本実施形態において、フレーム制御部1031が設定するヌル期間は、必ずしも隣接セル間干渉を抑えるためのものではない。よって、本実施形態に係る通信システムが複数の基地局装置を備え、各基地局装置がアンライセンスバンドのScellで送信する信号のフレームにABSでヌル期間を与える場合、隣接する基地局装置間で信号のフレームにヌル期間を与えるタイミングをずらす必要はない。IEEE802.11システムに代表される他システムに対する与干渉および被干渉の影響を抑えるためには、隣接する基地局装置間で、信号のフレームにヌル期間を与えるタイミングを揃えることが好適である。
 一方、端末装置UE1と端末装置UE2は、基地局装置1よりシグナリングされるアンライセンスバンドのScellで送信される信号のフレーム構成を示す情報に基づいて、該アンライセンスバンドで送信される信号に対する復調処理を行なう。このとき、PDCCHモニタリング部2042は、Scellで送信される信号のフレームに与えられているヌル期間においては、制御情報のモニタリングを停止しても良い。また、基地局装置1が該ヌル期間において同期チャネルのみ送信しているような場合、PDCCHモニタリング部2042は、該ヌル期間においては、同期処理のみを行なっても良い。
 なお、本実施形態に係る基地局装置1がCAを行なう周波数バンドは、これまで説明してきたライセンスバンドやアンライセンスバンドには限らない。本実施形態が対象とする周波数バンドには、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンドと呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、これまで特定の事業者に排他的に割り当てられていたものの、将来的に複数の事業者で共用することが見込まれる共用周波数バンドも含まれる。例えば、基地局装置1はPcellをライセンスバンドに設定する一方で、Scellをホワイトバンドの一部に設定する場合も本実施形態には含まれる。フレーム制御部1031は、基地局装置1がScellを設定する周波数バンドに応じて、Scellの信号のフレームの構成を変更することができる。
 本実施形態の方法によれば、基地局装置1は、アンライセンスバンドのScellで送信する信号のフレームにヌル期間を与えることができる。そして該ヌル期間において、通信システムが備える各装置は他システムの通信方法(例えば、CSMA/CA)も基づいて、通信を行なうことができる。よって、特定の装置が該アンライセンスバンドを長期間にわたって占有することがなくなるから、基地局装置1は、他システムへの影響を最小限にとどめながら、アンライセンスバンドを用いたCAにより、通信システムのスループットを改善できる。
 [第2の実施形態]
 本実施形態においても、第1の実施形態と同様に、端末装置UE1と端末装置UE2は、基地局装置1をPcellとして接続しており、使用されている周波数バンドはライセンスバンドであるものとする。
 図5は本実施形態に係る基地局装置1の1構成例を示すブロック図である。本実施形態に係る基地局装置1と第1の実施形態に係る基地局装置1との違いは送信部103が、制御信号生成部1035と、多重部1036を更に備えている点である。なお、本実施形態に係る通信システムの概要、端末装置UE1と端末装置UE2の構成は、第1の実施形態と同じとする。
 制御信号生成部1035は、基地局装置1が端末装置UE1および端末装置UE2に送る制御情報(例えば、PcellおよびScellのPDCCHで送信される制御情報)を含む信号を生成する。また、多重部1036は、物理チャネル信号生成部1031が生成する信号と、制御信号生成部1035が生成する信号を多重する。
 本実施形態において、基地局装置1は、第1の実施形態と同様に、アンライセンスバンドをScellとしたCAを行なう。そして、基地局装置1は、フレーム制御部1031がScellで送信する信号のフレームに与えるヌル期間において、自装置のカバレッジ範囲の少なくとも一部の範囲で、予めアンライセンスバンドを確保するためのリソース確保信号を送信する。
 図4Bは本実施形態に係るフレーム制御部1031が設定するフレーム構成の一例を示す図である。基地局装置1が、ライセンスバンドのPcellで送信する信号は、図4Aと同じ構成である。一方、フレーム制御部1031が設定するアンライセンスバンドのScellで送信する信号のフレーム構成は、図4Aと同様に、一定期間のヌル期間が与えられたものであるが、フレーム制御部1031は、さらに該ヌル期間に該アンライセンスバンドに対してリソース確保信号を送信する期間(無線リソース)を与える。このように制御することで、基地局装置1は、該ヌル期間より後の期間で、該アンライセンスバンドを確保することができる。
 本実施形態に係る基地局装置1が送信するリソース確保信号は何かに限定されるものではない。例えば、IEEE802.11システムで用いられている干渉プロテクション技術に基づいて、リソース確保信号を生成し、送信することができる。
 IEEE802.11システムで採用されているCSMA/CAでは、各端末装置がキャリアセンスし、干渉が測定されない場合に通信を行なうことで自律的な多重アクセスを実現している。しかし、キャリアセンスが可能な距離(キャリアセンスエリアと呼ぶ)には限界があるため、お互いのキャリアセンスエリアから外れている2つの端末装置が同時に送信してしまい、他端末装置に干渉を引き起こしてしまう場合もある。そのため、IEEE802.11システムにはいくつかの干渉プロテクション技術が採用されている。
 RTS/CTS(Request-to-send/clear-to-send)では、送信を所望する端末装置が、送信宛ての端末装置に対してRTSを送信する。RTS宛先端末装置は、RTSを受信後、キャリアセンスを行ない、干渉が測定(観測)されなければ、CTSをRTS送信端末装置に送信する。このとき、RTSを受信したRTS宛先端末装置以外の端末装置と、CTSを受信したCTS宛先端末装置以外の端末装置は、予め設定されるNAV(Network allocation vector)の期間は、パケットの送信を止める。よって、少なくともRTS宛先端末装置とCTS宛先端末装置のキャリアセンスエリアでは、干渉は発生しない。
 一方、CTS-to-selfとは、これから送信を希望する端末装置が、CTSを自分宛てとして送信する機能である。前述したように、CTSを受信したCTS宛先端末装置以外の端末装置は、NAVの間はパケットの送信を止めるから、端末装置はCTS-to-selfを送信することで、少なくともCTS-to-selfが届くエリアからの干渉は発生しなくなる。
 そこで、本実施形態に係る制御信号生成部1035は、CTS-to-selfをリソース確保信号として生成する。そして、多重部1036は、制御信号生成部1035が生成したリソース確保信号を、フレーム制御部1031が設定したリソース確保信号を送信する無線リソースに配置するように、物理チャネル信号生成部1032が生成した信号と多重する。なお、制御信号生成部1035は、CTS-to-selfではなく、RTSやCTSをリソース確保信号として送信することができる。また、RTSやCTS(CTS-to-selfを含む)ではNAVの値を、RTS(またはCTS)を受信可能な装置に通知することが可能となるから、制御信号生成部1035は、リソース確保信号としてRTSやCTSを生成する場合、該ヌル期間の後に送信されるサブフレーム数に基づいて、NAVの値を該RTS(またはCTS)に記載することができる。
 フレーム制御部1031が設定するリソース確保信号を送信するタイミングは、ヌル期間内であれば、何かに限定されるものではないが、少なくとも基地局装置1が該ヌル期間においてキャリアセンスが可能なように設定するのが望ましい。また、制御信号生成部1035がリソース確保信号としてCTS-to-selfを生成する場合、IEEE802.11システムでは、CTSの受信完了後、SIFS(Short interframe space)期間後に次の信号が送信されることを想定している。このことは、フレーム制御情報1031がリソース確保信号の送信タイミングを制御することで、リソース確保信号送信後に送信されるLTEサブフレームの送信タイミングも制御可能なことを示唆している。例えば、フレーム制御情報1031は、Pcellで送信する信号のフレームと、Scellで送信する信号のフレームとの間の同期精度を高めるように、リソース確保信号の送信タイミングを制御することも可能である。
 図6は本実施形態に係るヌル期間におけるリソース確保信号の送信方法の一例を示す概要図である。基地局装置1の無線受信部1042もしくは物理チャネル信号復調部1941は、アンライセンスバンドのScellで送信されるフレームのヌル期間の開始と同時にキャリアセンスを該アンライセンスバンドにて開始する。そして、該アンライセンスバンドを確保可能と判断した場合、フレーム制御部1031はリソース確保信号送信期間とSIFS期間後が、基地局装置1がライセンスバンドのPcellで送信するLTEサブフレームの送信開始タイミングとなるように、リソース確保信号の送信タイミングを決定する。なお、制御信号生成部1035がリソース確保信号として、適当な信号(インパルス信号等どのような信号であっても良い)を生成する場合、フレーム制御部1031は、リソース確保信号送信とDIFS(Distributed coordination function IFS)期間後が、基地局装置1がライセンスバンドのPcellで送信するLTEサブフレームの送信開始時間となるように、リソース確保信号の送信タイミングを決定することができる。このように制御することで、基地局装置1は、より効率的に該無線リソースを確保することができ、また、ライセンスバンドのPcellで送信するLTEフレームとアンライセンスバンドのScellで送信するLTEフレームとを、高精度に同期させることが可能となる。
 なお、フレーム制御部1031は、図6に示すようなリソース確保信号の送信タイミングを、すべてのヌル期間において行なっても良い。また、フレーム制御部1031は、PcellとScellで送信されるLTEフレームの先頭が同期するように、該ヌル期間においてリソース確保信号を送信するように制御しても良い、また、フレーム制御部1031は、リソース確保信号を送信するヌル期間を適応的に決定しても良い。例えば、フレーム制御部1031は、PcellとScellで送信されるLTEフレームの同期が必要とされる場合(例えば基地局装置1が、PcellのPDCCHを用いて、ScellのPDSCHの制御情報を復調するために制御情報を送信する場合)に、ヌル期間にリソース確保信号を送信するように制御しても良い。
 本実施形態の方法によれば、基地局装置1は、アンライセンスバンドのScellで送信する信号のフレームに与えるヌル期間において、該アンライセンスバンドにリソース確保信号を送信することができる。よって、基地局装置1は、該アンライセンスバンドを、より高効率に確保することができるから、アンライセンスバンドを用いたCAにより、通信システムのスループットを改善できる。
 [第3の実施形態]
 本実施形態においても、第1の実施形態と同様に、端末装置UE1と端末装置UE2は、基地局装置1をPcellとして接続しており、使用されている周波数バンドはライセンスバンドであるものとする。なお、本実施形態に係る無線通信システムの概要、基地局装置1の構成、端末装置UE1と端末装置UE2の構成は、第1の実施形態と同じとする。
 本実施形態において、基地局装置1は、第1の実施形態と同様に、アンライセンスバンドをScellとしたCAを行なう。そして、基地局装置1がScellで送信する信号のフレームにはヌル期間を与える。そして、該ヌル期間において、無線受信部1042または物理チャネル信号復調部1041は、該アンライセンスバンドにおいてキャリアセンスを行なうものとする。
 該ヌル期間において、基地局装置1がキャリアセンスを行なった結果、該アンライセンスバンドを確保できなかった場合、基地局装置1はヌル期間後もアンライセンスバンドのScellでは信号を送信しないことになる。一方、基地局装置1は、ライセンスバンドのPcellでは、アンライセンスバンドのキャリアセンスの結果にかかわらず信号を送信し続けることが可能である。この場合、基地局装置1がライセンスバンドのPcellで送信する信号のフレーム数と、アンライセンスバンドのScellで送信する信号のフレーム数とが異なってしまう問題が生じてしまう。
 そこで、本実施形態においては、フレーム制御部1031は、基地局装置1がアンライセンスバンドのScellで送信するフレームに与えたヌル期間に行なうキャリアセンスの結果に関わらず、信号のフレーム数を計測する。
 図4Cは本実施形態に係るフレーム制御部1031が設定するフレーム構成の一例を示す図である。基地局装置1が、ライセンスバンドのPcellで送信する信号は、図4Aと同じ構成である。一方、フレーム制御部1031が設定するアンライセンスバンドのScellで送信する信号のフレーム構成は、図4Aと同様に、一定周期(4ms毎)に一定長(1ms)のヌル期間が与えられたものである。そして、各ヌル期間において、無線受信部1042または物理チャネル信号復調部1041は、該アンライセンスバンドにおいてキャリアセンスを行なう。図4Cは、キャリアセンスの結果の一例として、期間1と期間2においては、基地局装置1は該アンライセンスバンドを確保できず、他の装置(例えばSTA4やSTA5)が該アンライセンスバンドで通信を行なっている場合を示している。なお、フレーム制御部1031がもともと設定していたアンライセンスバンドのScellで送信する信号の無送信期間をヌル期間と呼ぶ一方で、他システムによる該アンライセンスバンドの利用により結果として発生した無送信期間を、本実施形態ではアイドル期間と呼ぶこととする。
 この場合、フレーム制御部1031は、該アンライセンスバンドにおいて、期間1および期間2の間も、LTEフレームが送信できたものとして、フレーム番号(System frame number:SFN)のカウントアップを行なう。図4C中で、LTEフレームnは、SFNがnであることを示している。例えばLTEフレーム1はSFNが1であることを示している。
 LTEシステムでは、基本的にはひとつのLTEフレーム(10ms周期)は10個のLTEサブフレームで構成されているから、10個のLTEサブフレームが送信されると、フレーム制御部1031はSFNを1増加させることになる。
 しかし、図4Cにおいて、アンライセンスバンドのScellで送信する信号は、期間1に他システムが該アンライセンスバンドを用いているため、最初の10msでは、4個のLTEサブフレームしか送信されていない。この場合においても、フレーム制御部1031は、ライセンスバンドのPcellで送信する信号のSFNに合わせてSFNをカウントアップする。よって、該他システムによる通信後のアイドル期間における基地局装置1のキャリアセンスにより、アイドル期間後の該アンライセンスバンドが確保可能となったとき、該アンライセンスバンドのScellで送信する信号のSFNは2となる。つまり、本実施形態の方法によれば、フレーム制御部1031は、基地局装置1が実際に該Scellで送信したか否かに関わらず、該期間におけるライセンスバンドのPcellで送信するフレームに与えるSFNを増加させるタイミングで、アンライセンスバンドのScellで送信するフレームに与えるSFNも増加させることができる。よって、基地局装置1はPcellで送信される信号のSFNと、Scellで送信される信号のSFNを同一とすることができる。
 基地局装置1がライセンスバンドのPcellでLTEフレーム2を送信している期間、基地局装置1はアンライセンスバンドを確保可能であるが、フレーム制御部1031が与えたヌル期間のために、基地局装置1がアンライセンスバンドのScellで送信可能なLTEサブフレーム数は10個に満たない。この場合でも、フレーム制御部1031は、該期間で基地局装置1がアンライセンスバンドのScellで送信するフレームのSFNを2として制御する。
 さらに、基地局装置1がライセンスバンドのPcellでLTEフレーム3を送信している期間は、全期間にわたって、該アンライセンスバンドが他システムに用いられているため、基地局装置1は該アンライセンスバンドのScellでは信号を送信できない。この場合でも、フレーム制御部1031は、該期間において基地局装置1はSFNが3のLTEフレームを該アンライセンスバンドのScellで送信したものとして制御する。基地局装置1がライセンスバンドのPcellでLTEフレーム4を送信している期間も、フレーム制御部1031は同様の処理を行なう。
 本実施形態に係る基地局装置1がScellを設定する周波数バンドは、アンライセンスバンドに限定されるものではなく、例えばホワイトスペースと呼ばれる周波数バンドや、複数事業者が共用する周波数バンドも含まれる。これらの周波数バンドは、それぞれ特性が異なるため、フレーム制御部1031はScellの信号のフレーム構成を、Scellを設定する周波数バンドに応じて変更することが可能である。ここで周波数バンドの特性には、チャネル品質等に代表される物理的な特性に加えて、許容される信号バースト長等、法規制によって特徴づけられる特性も含まれる。また、フレーム制御部1031は、Scellを設定する周波数バンドに応じて、LTEフレームを送信する頻度を変更することも可能である。このように基地局装置1が、Scellに設定する周波数バンドを、アンライセンスバンドを含めた複数の周波数バンドから選択し、またフレーム制御部1031が該周波数バンドに応じて、Scellの信号のフレーム構成を設定するような場合においても、フレーム制御部1031は、Pcellで送信する信号のSFNと、Scellで送信する信号のSFNを揃えることが可能である。
 また、基地局装置1が複数の周波数バンドを使用可能であった場合、基地局装置1は、複数の周波数バンドに対して、CAを適用する優先順位をあらかじめ決めておくことができる。また、基地局装置1は、その優先順位を上位レイヤのシグナリング等によって、各端末装置にあらかじめ通知することが可能である。また、基地局装置1は、複数の周波数バンドの使用状況を測定し(例えば、基地局装置1はキャリアセンスを行なって該周波数バンドの干渉電力を測定することができる)、該測定結果に基づいて、複数の周波数バンドのいずれをCAに用いるかを決定することができる。また、基地局装置1は、該測定結果に基づいて決定したCAを適用する周波数バンドを示す情報を、各端末装置に対して、シグナリング(例えば上位レイヤのシグナリングや、PDCCHによるシグナリング)することが可能である。
 端末装置UE1と端末装置UE2のPDCCHモニタリング部2042は、複数の周波数バンドに対して、制御信号のモニタリングを行なうことが可能である。また、端末装置UE1および端末装置UE2のPDCCHモニタリング部2042は、基地局装置1から上位レイヤのシグナル等によってあらかじめ通知された周波数バンドに対してのみ、制御信号のモニタリングを行なうことが可能である。
 本実施形態の方法によれば、基地局装置1は、アンライセンスバンドのリソース確保の結果によらず、常に、ライセンスバンドのPcellで送信する信号のフレームのSFNと、アンライセンスバンドのScellで送信する信号のフレームのSFNを同一とすることができる。よって、基地局装置1は、PcellのPDCCHを用いて、ScellのPDSCHで送信される信号を復調するための制御情報を送信するクロスキャリアスケジューリング等の処理を容易に行なうことができるため、より高効率に、アンライセンスバンドの一部をScellとしたCAを行なうことができる。
 [第4の実施形態]
 本実施形態においても、第1の実施形態と同様に、端末装置UE1と端末装置UE2は、基地局装置1をPcellとして接続しており、使用されている周波数バンドはライセンスバンドであるものとする。なお、本実施形態に係る無線通信システムの概要、基地局装置1の構成、端末装置UE1と端末装置UE2の構成は、第2の実施形態と同じとする。また、本実施形態に係る無線通信システムでは、複信方式として、時間分割複信(Time division duplex:TDD)を用いるものとする。
 基地局装置1は、第1の実施形態と同様に、アンライセンスバンドをScellとしたCAを行なう。本実施形態に係る基地局装置1は、該アンライセンスバンドの一部を、端末装置から基地局装置への通信(上りリンク)のScellに割り当てる。
 図4Dは本実施形態に係るフレーム制御部1031が設定するフレーム構成の一例を示す図である。基地局装置1が、ライセンスバンドのPcellで送信する信号のフレームには、下りリンクの信号(例えば、PDCCHやPDSCHで送信される信号)が送信される下りリンクサブフレーム(Downlink subframe:DL SF)と、上りリンクの信号(例えば、PUCCHやPUSCHで送信される信号)が送信される上りリンクサブフレーム(Uplink subframe:UL SF)と、ひとつのサブフレームに下りリンク信号と上りリンク信号と、上りリンクの送信タイミングを調整するための期間が含まれるスペシャルサブフレーム(Special subframe:SP SF)が含まれている。なお、フレームを構成する各SFの順番や比率は、何かに限定されるものではなく、フレーム制御部1031は、端末装置との間の伝搬路状態や、通信システムのデータトラフィックの状況に応じて、適応的にフレーム構成を変更しても良い。なお、フレーム制御部1031が設定する信号のフレーム構成は、基地局装置1から各端末装置に対して、例えば上位レイヤのシグナリングやL1/L2シグナリング等により、あらかじめ通知される。
 一方、基地局装置1が、アンライセンスバンドのScellで送信する信号のフレームとして、フレーム制御部1031は、DL SFやUL SFに加えて無信号期間(ヌル期間)を設定する。該ヌル期間において、本実施形態に係る基地局装置1、端末装置UE1および端末装置UE2は該アンライセンスバンドでキャリアセンスを行なうことが可能となるから、該アンライセンスバンドを効率的に確保することができる。なお、図4Dでは、Scellで送信される信号にはSP SFが含まれていないが、Scellで送信される信号にSP SFが含まれる場合も、本実施形態の方法に含まれることは言うまでもない。
 アンライセンスバンドのScellで送信する信号のフレームに含まれるヌル期間では、通信システムが備える各装置がすべてキャリアセンスを行なっても良いが、特定の装置のみがキャリアセンスを行なっても良い。例えば、ヌル期間後に信号を送信する装置のみがキャリアセンスを行なっても良い。この場合、フレーム制御部1031がDL SFの前に設定するヌル期間においては、基地局装置1がキャリアセンスを行ない、フレーム制御部1031がUL SFの前に設定するヌル期間においては、端末装置UE1と端末装置UE2がキャリアセンスを行なうことができる。
 また、ヌル期間においては、常に基地局装置1がキャリアセンスを行なっても良い。例えば、基地局装置1は、フレーム制御部1031がUL SFの前に設定するヌル期間においてキャリアセンスを行ない、該アンライセンスバンドを確保可能と判断した場合、端末装置UE1および端末装置UE2に対して、該ヌル期間後のUL SFの送信を許可する旨を、各端末装置に対してシグナリングすることができる。なお、基地局装置1は、第2の実施形態と同様に、キャリアセンス後に、該アンライセンスバンドを確保するリソース確保信号(例えばCTS-to-self)を送信しても良い。以上の動作は、端末装置が主体となって行なっても良い。すなわち、端末装置UE1がヌル期間において、アンライセンスバンドにキャリアセンスを行ない、該アンライセンスバンドを確保可能と判断した場合、該ヌル期間後の該アンライセンスバンドの使用許可を各装置(ここでは基地局装置1と端末装置UE2)にシグナリングすることも可能である。
 基地局装置1、端末装置UE1および端末装置UE2がヌル期間においてアンライセンスバンドに対してキャリアセンスを行なった結果、該アンライセンスバンドを確保できなかった場合、各装置はフレーム制御部1031が該ヌル期間後に設定しているDL SFやUL SFは送信しない。このとき、各装置は、第3の実施形態と同様に、DL SFやUL SFの送信状態に関わらず、該アンライセンスバンドのScellで送信する信号のフレームのSFNを、ライセンスバンドのPcellで送信する信号のフレームのSFNと同期させても良い。また、端末装置UE1および端末装置UE2がキャリアセンスを行ない、端末装置UE1のみが該アンライセンスバンドを確保可能となった場合、端末装置UE1のみがUL SFを送信しても良い。
 本実施形態の方法によれば、複信方式としてTDDを用いる無線通信システムにおいても、基地局装置1、端末装置UE1および端末装置UE2は効率的にアンライセンスバンドを確保することが可能である。また、該アンライセンスバンドでキャリアセンスを行なうのは、基地局装置1だけでも良いから、端末装置1および端末装置UE2の複雑性を小さくできる。
 [全実施形態共通]
 本発明に係る基地局装置及び端末装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における端末装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。端末装置および基地局装置の各機能ブロックは個別にチップ化しても良いし、一部、または全部を集積してチップ化しても良い。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。あるいは、専用回路の一部を汎用処理プロセッサで構成し、各処理あるいは機能の一部は当該汎用プロセッサを使用して実現するようにして、専用回路部とソフトウェア処理の両方によって実現するように構成されていて良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の端末装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も請求の範囲に含まれる。
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。
 なお、本国際出願は、2014年6月13日に出願した日本国特許出願第2014-122303号に基づく優先権を主張するものであり、日本国特許出願第2014-122303号の全内容を本国際出願に援用する。
1 基地局装置
UE1、UE2 端末装置
4、5 STA
101、201 上位層部
102、202 制御部
103、203 送信部
104、204 受信部
105、205 アンテナ
1031 フレーム制御部
1032、2031 物理チャネル信号生成部
1034、2032 無線送信部
1035 制御信号生成部
1036 多重部
1041、2041 物理チャネル信号復調部
1042、2043 無線受信部
2042 PDCCHモニタリング部

Claims (14)

  1.  専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して端末装置と通信が可能な基地局装置であって、
     前記第2の周波数帯域を使用して送信する第2の信号のフレームには少なくとも、信号のヌル期間が含まれ、
     前記第2の周波数帯域を使用して送信する第2の信号のフレームに含まれる信号フレームのフレーム長は、前記第1の周波数帯域を使用して送信する第1の信号のフレームに含まれる信号フレームのフレーム長より短いことを特徴とする基地局装置。
  2.  前記第2の信号のフレーム構成を示す情報を、前記端末装置にシグナリングすることを特徴とする、請求項1に記載の基地局装置。
  3.  複数の前記フレーム構成を示す情報と、前記複数のフレーム構成の優先順位を示す情報を、前記端末装置にシグナリングすることを特徴とする、請求項2に記載の基地局装置。
  4.  少なくとも一部の前記ヌル期間において、前記第2の周波数帯域においてキャリアセンスを行ない、
     前記キャリアセンスの結果に基づいて、前記第2の信号のフレーム構成を変更し、
     前記フレーム構成の変更を示す情報を、前記端末装置にシグナリングすることを特徴とする請求項2または請求項3に記載の基地局装置。
  5.  前記キャリアセンスの結果に基づいて、前記第2の周波数帯域にリソース確保信号を送信することを特徴とする、請求項4に記載の基地局装置。
  6.  前記リソース確保信号を送信するタイミングは、前記リソース確保信号の送信が完了する時刻が、前記第1の信号のフレームの先頭を示す時刻から特定の期間だけ先の時刻と一致するタイミングであることを特徴とする請求項5に記載の基地局装置。
  7.  少なくとも一部の前記ヌル期間において、前記第2の周波数帯域においてキャリアセンスを行ない、
     前記キャリアセンスの結果に基づいて、前記第2の周波数帯域が使用可能か否かを判断し、
     前記第2の周波数帯域を使用可能と判断した場合、前記端末装置に対して、前記第2の周波数帯域の使用許可を示す情報をシグナリングすることを特徴とする、請求項2または請求項3に記載の基地局装置。
  8.  少なくとも一部の前記ヌル期間は、Almost blank subframeであることを特徴とする、請求項1に記載の基地局装置。
  9.  前記第2の周波数帯域は、前記通信システムが専用的に使用できない周波数帯域であることを特徴とする、請求項1に記載の基地局装置。
  10.  専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第1の周波数帯域と共に前記第2の周波数帯域を使用して基地局装置と通信が可能な端末装置であって、
     前記第2の周波数帯域を使用して送信する第2の信号のフレーム構成を示す情報がシグナリングされ、
     前記シグナリングに基づいて、前記第2の周波数帯域において、前記通信方式に基づいた制御信号のモニタリングを行なうことを特徴とする端末装置。
  11.  前記基地局装置よりシグナリングされる、前記第2の周波数帯域の使用許可を示す情報に基づいて、前記第2の周波数帯域に前記通信方式を適用することを特徴とする、請求項10に記載の端末装置。
  12.  前記第2の周波数帯域は、前記通信システムが専用的に使用できない周波数帯域であることを特徴とする、請求項10に記載の端末装置。
  13.  専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して端末装置と通信が可能な基地局装置の通信方法であって、
     前記第2の周波数帯域を使用して送信する第2の信号のフレームには少なくとも、信号のヌル期間を含めるステップと、
     前記第2の周波数帯域を使用して送信する第2の信号のフレームに含まれる信号フレームのフレーム長を、前記第1の周波数帯域を使用して送信する第1の信号のフレームに含まれる信号フレームのフレーム長より短くするステップと、を備えることを特徴とする通信方法。
  14.  専用的に使用できる第1の周波数帯域に適用される通信方式を、前記第1の周波数帯域とは異なる第2の周波数帯域に適用する通信システムが備え、前記第2の周波数帯域と共に前記第2の周波数帯域を使用して基地局装置と通信が可能な端末装置の通信方法であって、
     前記第2の周波数帯域を使用して送信する第2の信号のフレーム構成を示す情報がシグナリングされるステップと、
     前記シグナリングに基づいて、前記第2の周波数帯域において、前記通信方式に基づいた制御信号のモニタリングを行なうステップと、を備えることを特徴とする通信方法。
PCT/JP2015/066717 2014-06-13 2015-06-10 基地局装置、端末装置、および通信方法 WO2015190517A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580031324.4A CN106465043B (zh) 2014-06-13 2015-06-10 基站装置、终端装置以及通信方法
US15/318,019 US10341874B2 (en) 2014-06-13 2015-06-10 Base station apparatus, terminal apparatus, and communication method
JP2016527840A JP6516265B2 (ja) 2014-06-13 2015-06-10 基地局装置、端末装置、および通信方法
EP15807047.4A EP3157273B1 (en) 2014-06-13 2015-06-10 Base-station device, terminal device, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014122303 2014-06-13
JP2014-122303 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190517A1 true WO2015190517A1 (ja) 2015-12-17

Family

ID=54833607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066717 WO2015190517A1 (ja) 2014-06-13 2015-06-10 基地局装置、端末装置、および通信方法

Country Status (5)

Country Link
US (1) US10341874B2 (ja)
EP (1) EP3157273B1 (ja)
JP (1) JP6516265B2 (ja)
CN (1) CN106465043B (ja)
WO (1) WO2015190517A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169125A (ja) * 2016-03-17 2017-09-21 Kddi株式会社 通信装置、制御方法及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465379A (zh) * 2014-06-13 2017-02-22 夏普株式会社 基站装置、终端装置以及通信方法
JP6516265B2 (ja) 2014-06-13 2019-05-22 シャープ株式会社 基地局装置、端末装置、および通信方法
EP3200541B1 (en) * 2014-09-26 2021-10-27 LG Electronics Inc. Method for receiving signal by terminal in wireless communication system supporting carrier aggregation and device for same
US20160381563A1 (en) * 2015-06-29 2016-12-29 Freescale Semiconductor, Inc. Low interference cellular data commnunication in unlicensed frequency spectrum
CN106686738A (zh) * 2015-11-05 2017-05-17 索尼公司 基站侧和用户设备侧的装置及方法、无线通信系统
CN109150456B (zh) * 2017-06-16 2023-05-12 华为技术有限公司 一种无线通信方法和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061001A1 (en) * 2012-10-21 2014-04-24 Mariana Goldhamer Improved utilization of the uplink fdd channel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958475B2 (en) * 2009-07-02 2015-02-17 Qualcomm Incorporated Transmitter quieting and null data encoding
US8902995B2 (en) * 2009-07-02 2014-12-02 Qualcomm Incorporated Transmitter quieting and reduced rate encoding
US8537772B2 (en) * 2009-07-02 2013-09-17 Qualcomm Incorporated Transmitter quieting during spectrum sensing
US8923189B2 (en) * 2009-08-06 2014-12-30 Truepath Technologies, Llc System and methods for scalable processing of received radio frequency beamform signal
CN103416017B (zh) * 2010-11-12 2016-11-16 交互数字专利控股公司 用于执行信道聚合和媒介访问控制重传的方法和设备
BR112013022758A2 (pt) * 2011-03-07 2016-12-06 Intel Corp método implementado por computador, dispositivo de máquina para máquina, sistema de computador e sistema de máquina para máquina
WO2012134567A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
WO2013048567A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
CN104094623B (zh) * 2011-12-15 2018-06-05 诺基亚通信公司 载波聚合系统中的无线电操作
WO2013131257A1 (en) 2012-03-07 2013-09-12 Renesas Mobile Corporation Methods and apparatuses for facilitating multiple operator coordination for transmissions in an unlicensed band
CN104205688B (zh) * 2012-04-05 2018-01-09 Lg 电子株式会社 用于在无线通信系统中聚合载波的方法和设备
US9184886B2 (en) * 2012-08-10 2015-11-10 Blackberry Limited TD LTE secondary component carrier in unlicensed bands
EP2891262A4 (en) * 2012-08-31 2016-04-13 Nokia Solutions & Networks Oy METHOD, DEVICE, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR THE COORDINATION OF WIRELESS TRANSMISSION IN A FREQUENCY BAND
WO2014051606A1 (en) 2012-09-28 2014-04-03 Nokia Corporation Null subframe indication for coexistence between different network types
CN113133077A (zh) * 2012-10-05 2021-07-16 瑞典爱立信有限公司 蜂窝网络中的干扰减轻
US9220115B2 (en) * 2013-10-23 2015-12-22 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
WO2015172114A1 (en) * 2014-05-09 2015-11-12 Huawei Technologies Co., Ltd. Device, network, and method for communications with dynamic adaptation
JP6516265B2 (ja) 2014-06-13 2019-05-22 シャープ株式会社 基地局装置、端末装置、および通信方法
CN106465379A (zh) * 2014-06-13 2017-02-22 夏普株式会社 基站装置、终端装置以及通信方法
US10334618B2 (en) 2014-10-31 2019-06-25 Samsung Electronics Co., Ltd. Methods for efficient operation of LTE cells on unlicensed spectrum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061001A1 (en) * 2012-10-21 2014-04-24 Mariana Goldhamer Improved utilization of the uplink fdd channel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "STUDY ON LICESED-ASSISTED ACCESS USING LTE", 3GPP TSG RAN MEETING #63 RP- 140260, XP050780386 *
See also references of EP3157273A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169125A (ja) * 2016-03-17 2017-09-21 Kddi株式会社 通信装置、制御方法及びプログラム

Also Published As

Publication number Publication date
US10341874B2 (en) 2019-07-02
EP3157273B1 (en) 2019-10-23
CN106465043A (zh) 2017-02-22
US20170105124A1 (en) 2017-04-13
EP3157273A1 (en) 2017-04-19
EP3157273A4 (en) 2018-01-31
JPWO2015190517A1 (ja) 2017-04-20
CN106465043B (zh) 2020-05-15
JP6516265B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
US11949632B2 (en) Selection of grant and CSI
EP3324566B1 (en) Electronic equipment in wireless communication system
KR102080982B1 (ko) 비면허 무선 주파수 대역에서의 시분할 lte 전송을 위한 방법 및 장치
WO2015166801A1 (ja) 基地局装置、端末装置、および通信方法
JP6516131B2 (ja) 基地局装置、端末装置、および通信方法
JP6516265B2 (ja) 基地局装置、端末装置、および通信方法
JP6649481B2 (ja) 無線通信方法及びユーザ装置
TWI697245B (zh) 用於使用衝突避免訊號傳遞以與未授權網路共存的技術
EP3099125B1 (en) Method, apparatus and device for scheduling data by using unlicensed spectrum
CN112753194A (zh) Nr-u中的csi反馈
EP3357184B1 (en) Method, apparatus and computer program for transmitting physical layer signals
WO2015166792A1 (ja) 基地局装置、端末装置、および通信方法
US20230041484A1 (en) Receiver Assisted Directional Channel Sensing for NR-U
US10536936B2 (en) Control information transmission method and apparatus for use in mobile communication system
US10694391B2 (en) Device and method for controlling use of a frequency band shared by a cellular system and wireless system among multiple base stations
WO2021071834A1 (en) System and method for scheduling an uplink transmission assignment
CN115211060A (zh) 用于下行链路广播信道的覆盖增强
KR20180108351A (ko) 비면허대역 통신을 위한 다양한 dl전송 구조하에서의 데이터/제어채널의 할당 및 수신 방법, 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015807047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015807047

Country of ref document: EP