WO2015190117A1 - Crankshaft of reciprocating engine - Google Patents

Crankshaft of reciprocating engine Download PDF

Info

Publication number
WO2015190117A1
WO2015190117A1 PCT/JP2015/002958 JP2015002958W WO2015190117A1 WO 2015190117 A1 WO2015190117 A1 WO 2015190117A1 JP 2015002958 W JP2015002958 W JP 2015002958W WO 2015190117 A1 WO2015190117 A1 WO 2015190117A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
crankshaft
journal
thrust
arm
Prior art date
Application number
PCT/JP2015/002958
Other languages
French (fr)
Japanese (ja)
Inventor
吉野 健
訓宏 薮野
広一郎 石原
位直 石井
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Publication of WO2015190117A1 publication Critical patent/WO2015190117A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/08Crankshafts made in one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/14Features relating to lubrication

Definitions

  • the present invention relates to a crankshaft mounted on a reciprocating engine.
  • crankshaft In reciprocating engines such as automobiles, motorcycles, agricultural machinery, and ships, a crankshaft is indispensable for converting the reciprocating motion of a piston in a cylinder into a rotational motion to extract power.
  • Crankshafts are roughly classified into those manufactured by die forging and those manufactured by casting. In particular, when high strength and high rigidity are required, the former forged crankshaft having excellent characteristics is often used.
  • FIGS. 1A and 1B are diagrams schematically showing an example of a conventional crankshaft.
  • FIG. 1A is a side view of the entire crankshaft
  • FIG. 1B is a plan view when the crank arm portion is viewed from the pin portion side.
  • a crankshaft 1 illustrated in FIGS. 1A and 1B is mounted on a four-cylinder engine.
  • the crankshaft 1 has five journal portions J1 to J5, four pin portions P1 to P4, a front portion Fr, a flange portion Fl, and eight crank arms connecting the journal portions J1 to J5 and the pin portions P1 to P4, respectively.
  • Such a crankshaft 1 is a crankshaft of a four-cylinder-8-counterweight having counterweights on all eight arm portions A1 to A8.
  • journal portions J1 to J5 when each of the journal portions J1 to J5, the pin portions P1 to P4, and the arm portions A1 to A8 are collectively referred to, the reference numerals are “J” for the journal portion, “P” for the pin portion, and “P” for the arm portion. Also referred to as “A”.
  • the pin portion P, the pair of arm portions A connected to the pin portion P, and the journal portion J connected to each of the arm portions A are collectively referred to as “slow”.
  • the journal part J, the front part Fr, and the flange part Fl are arranged coaxially with the rotation center CL of the crankshaft 1. Further, the pin portion P is arranged eccentric from the rotation center CL of the crankshaft 1 by a length that is half the piston stroke, that is, the length of the crank radius Rc.
  • the journal portion J is supported by the engine block via a sliding bearing (also referred to as “metal”) and serves as a rotation center shaft.
  • a large end portion of a connecting rod (hereinafter also referred to as “connecting rod”) is connected to the pin portion P via a sliding bearing, and a piston is connected to a small end portion of the connecting rod.
  • the arm part A is provided with a journal thrust part Jt concentrically with the journal part J, and the journal thrust part Jt is adjacent to the journal part J.
  • the journal thrust part Jt mainly contributes to the axial positioning of the crankshaft 1 in the engine block.
  • the arm portion A is provided with a pin thrust portion Pt concentrically with the pin portion P, and the pin thrust portion Pt is adjacent to the pin portion P.
  • the pin thrust part Pt mainly contributes to the positioning of the connecting rod in the axial direction.
  • crankshaft which is a basic part of a reciprocating engine, is also required to be lighter. Examples of conventional techniques for reducing the weight of the crankshaft include the following.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-7726 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2010-230027 (Patent Document 2) describe an arm portion in which a hole is formed on the surface on the journal portion side.
  • the hole portion is recessed deeply and deeply toward the pin portion, and is formed on a straight line (hereinafter also referred to as “arm portion center line”) connecting the axis of the journal portion and the axis of the pin portion.
  • arm portion center line a straight line connecting the axis of the journal portion and the axis of the pin portion.
  • the weight reduction of the arm part leads to a reduction in the weight of the counterweight, which in turn leads to a reduction in the weight of the entire crankshaft.
  • rigidity torsional rigidity and bending rigidity
  • crankshaft disclosed in Patent Documents 1 and 2 has the above-mentioned unique shape of the arm portion, it is not easy to manufacture by a general manufacturing method.
  • the manufacturing method using die forging when a hole is formed on the surface of the arm portion in the die forging process, the die cutting gradient of the die is reversed at the portion corresponding to the hole, and the formed forging A situation occurs in which the material cannot be removed from the mold.
  • the die forging process a forged material is formed without forming a hole on the surface of the arm part, and after the deburring process, an additional process is required in which a punch is pushed into the surface of the arm part to form a hole.
  • additional processing for forming the hole by machining using a drill or the like is required.
  • the manufacturing method by casting requires additional processing.
  • the present invention has been made in view of such circumstances, can reduce the weight while ensuring the rigidity of the arm portion, and can dramatically reduce the center-of-gravity radius of the arm portion.
  • An object of the present invention is to provide a crankshaft of a reciprocating engine that can be easily manufactured.
  • a crankshaft of a reciprocating engine includes a journal part serving as a rotation center axis, a pin part eccentric with respect to the journal part, a crank arm part connecting the journal part and the pin part, Is provided.
  • the crank arm portion includes a journal thrust portion and a pin thrust portion. Further, the crank arm portion is configured such that the maximum radial length from the rotation center to the outer periphery of the pin top portion is smaller than the crank radius plus the radius of the pin thrust portion.
  • the crank arm portion has a configuration in which a maximum radial length from the rotation center to the outer periphery of the pin top portion coincides with a length obtained by adding the radius of the pin portion to the crank radius. can do.
  • the top portion of the pin thrust portion is centered on the axis of the pin thrust portion with respect to an arm centerline connecting the axis of the journal portion and the axis of the pin portion.
  • a configuration lacking within an angle range of ⁇ 75 ° is preferable.
  • a linear oil hole is formed from the pin portion to the journal portion through the arm portion.
  • the diameter of the oil hole is preferably 5 mm or less.
  • the volume is reduced at the pin top portion of the arm portion as compared with the conventional arm portion. Accordingly, it is possible to reduce the weight while ensuring the rigidity of the arm portion, and it is possible to dramatically reduce the center-of-gravity radius of the arm portion. Moreover, it can also be manufactured easily without requiring additional processing.
  • FIG. 1A is a diagram schematically showing an example of a conventional crankshaft, and shows a side view of the entire crankshaft.
  • FIG. 1B is a diagram schematically showing an example of a conventional crankshaft, and shows a plan view when the crank arm portion is viewed from the pin portion side.
  • FIG. 2A is a diagram schematically showing an example of the crankshaft of the first embodiment, and shows a side view of the entire crankshaft.
  • FIG. 2B is a diagram schematically showing an example of the crankshaft of the first embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side.
  • FIG. 3A is a diagram schematically illustrating an example of the crankshaft of the second embodiment, and shows a side view of the entire crankshaft.
  • FIG. 3B is a diagram schematically showing an example of the crankshaft of the second embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side.
  • FIG. 4 is a schematic view for explaining a chipped range of the top portion of the pin thrust portion in the crankshaft of each embodiment.
  • FIG. 5 is a diagram schematically illustrating the correlation between the chipping range of the top portion of the pin thrust portion, the mass moment, and the torsional rigidity of the crankshaft of each embodiment.
  • FIG. 6A is a schematic diagram showing a preferred mode of oil holes in the crankshaft of each embodiment, and shows a one-throw side view of the crankshaft.
  • FIG. 6B is a schematic diagram showing a preferred aspect of the oil hole in the crankshaft of each embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side.
  • crankshaft of the reciprocating engine of the present invention will be described in detail.
  • FIGS. 2A and 2B are diagrams schematically illustrating an example of the crankshaft according to the first embodiment.
  • FIG. 2A is a side view of the entire crankshaft
  • FIG. 2B is a view of the crank arm portion as viewed from the pin portion side. Each of the plan views is shown.
  • the crankshaft 1 illustrated in FIGS. 2A and 2B is mounted on a four-cylinder engine, similar to the conventional crankshaft 1 shown in FIGS. 1A and 1B.
  • parts common to the conventional crankshaft 1 shown in FIGS. 1A and 1B are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
  • the arm portion A connects the journal portion J, which is the rotation center axis, and the pin portion P that is eccentric from the rotation center CL by the length of the crank radius Rc.
  • the arm part A is provided with a journal thrust part Jt and a pin thrust part Pt.
  • the journal thrust part Jt is adjacent to the journal part J and is concentric with the journal part J.
  • the pin thrust portion Pt is adjacent to the pin portion P and is concentric with the pin portion P.
  • the maximum radial length y from the rotation center CL to the outer periphery of the pin top part Apt is smaller than the crank radius Rc plus the radius Rpt of the pin thrust part Pt.
  • the maximum length y is the length from the rotation center CL to the outer periphery of the pin top portion Apt of the arm portion A in the direction along the arm portion center line Ac in a cross section perpendicular to the rotation center CL of the crankshaft 1. That's it.
  • the arm part center line Ac is a straight line that connects the axis (rotation center CL) of the journal part J and the axis of the pin part P.
  • the arm portion A enters a state in which the outline of the outer periphery of the pin top portion Apt enters the region of the top portion of the pin thrust portion Pt and a part of the pin thrust portion Pt (the region of the top portion) is missing.
  • the volume of the arm portion A having such a shape is reduced in the pin top portion Apt including the region of the top portion of the pin thrust portion Pt as compared with the conventional arm portion A. Since the volume change of the pin top part Apt of the arm part A does not affect the rigidity (torsional rigidity and bending rigidity), the rigidity of the arm part A can be ensured. Further, the portion where the volume of the arm part A is reduced is the pin top part Apt farthest from the rotation center CL. For this reason, the weight reduction in the pin top part Apt accompanying the volume reduction can dramatically reduce the center-of-gravity radius of the arm part, and as a result, the mass moment can be reduced. Accordingly, the weight of the counterweight can be greatly reduced based on the appropriateness of the static balance, dynamic balance, and balance ratio. As a result, the overall weight of the crankshaft 1 is significantly reduced.
  • crankshaft 1 of the present embodiment can be easily manufactured by a general forging or casting manufacturing method. This is because the arm portion A in the present embodiment has a shape in which the contour of the outer periphery of the pin top portion Apt has just entered the region of the top portion of the pin thrust portion Pt, so that the situation where the die cutting gradient becomes a reverse gradient does not occur. For this reason, the additional process like the case where the crankshaft disclosed by the said patent documents 1 and 2 is manufactured is not required at all.
  • FIGS. 3A and 3B are diagrams schematically showing an example of the crankshaft according to the second embodiment.
  • FIG. 3A is a side view of the entire crankshaft
  • FIG. 3B is a view of the crank arm portion as viewed from the pin portion side. Each of the plan views is shown.
  • the crankshaft 1 illustrated in FIGS. 3A and 3B is a modification of the crankshaft 1 of the first embodiment shown in FIGS. 2A and 2B.
  • symbol is attached
  • the maximum radial length y from the rotation center CL to the outer periphery of the pin top portion Apt coincides with the crank radius Rc plus the radius Rp of the pin portion P.
  • the arm portion A has a contour of the outer periphery of the pin top portion Ap entering the region of the top portion of the pin thrust portion Pt and a part of the pin thrust portion Pt (the region of the top portion). ) Is missing.
  • the pin thrust part Pt does not exist as long as it is on the arm part center line Ac.
  • the volume of the pin top portion Apt including the region of the top portion of the pin thrust portion Pt is reduced as compared with the conventional arm portion A. The same effect is produced.
  • FIG. 4 is a schematic diagram for explaining the notch range of the top part of the pin thrust part in the crankshaft of each embodiment. As shown in FIG. 4, the situation where the top portion of the pin thrust portion Pt is missing in the range of an angle of ⁇ ⁇ ° centered on the axis of the pin thrust portion Pt with respect to the arm center line Ac is examined. To do.
  • FIG. 5 is a diagram schematically showing the correlation between the chipping range of the top portion of the pin thrust portion, the mass moment, and the torsional rigidity of the crankshaft of each embodiment.
  • the correlation shown in FIG. 5 summarizes the results of FEM analysis.
  • the mass range and the torsional rigidity of the arm portion were calculated by changing various chipping ranges (angle ⁇ ⁇ ° range) of the top portion of the pin thrust portion shown in FIG.
  • the notch range of the top portion of the pin thrust portion is preferably within an angle range of ⁇ 75 ° from the viewpoint of simultaneously ensuring the rigidity of the arm portion and reducing the mass moment. It should be noted that if the chipping range of the top portion of the pin thrust part is too small, the effect of reducing the mass moment is not effectively exhibited, and therefore the chipping range preferably exceeds the range of angle ⁇ 3 °.
  • the connecting rod is connected to the pin portion of the crankshaft via a sliding bearing, and lubricating oil exists between the outer peripheral surface of the pin portion and the sliding bearing to ensure the lubricity of both.
  • Lubricating oil is supplied to the pin part through oil holes formed from the pin part to the journal part through the arm part. At that time, the lubricating oil is first discharged from the engine block toward the journal portion by the driving force of the oil pump. Lubricating oil discharged toward the journal part becomes lubricating oil between the outer peripheral surface of the journal part and the sliding bearing of the engine block, and enters the oil hole from the inlet of the oil hole opened in the outer peripheral surface of the journal part. Inflow.
  • the lubricating oil that has flowed into the oil hole flows out of the outlet of the oil hole that opens in the outer peripheral surface of the pin portion due to the driving force of the oil pump and the centrifugal force that accompanies the rotation of the crankshaft. Supplied between the bearings.
  • the lubricating oil existing between the outer peripheral surface of the pin part and the sliding bearing is a part where the pin thrust part is missing.
  • the driving force of the oil pump is increased to compensate for the amount of leakage.
  • the fuel consumption of the engine deteriorates. This is because the driving force of the oil pump is brought about by utilizing the rotational force of the crankshaft.
  • FIG. 6A and 6B are schematic views showing a preferred aspect of the oil hole in the crankshaft of each embodiment, FIG. 6A is a side view of one throw of the crankshaft, and FIG. 6B is the pin side of the crank arm portion. Plan views when viewed from above are shown.
  • a linear oil hole 2 is formed from the pin portion P to the journal portion J through the arm portion A.
  • This oil hole 2 is called I-type, and one end serving as an outlet opens to the outer peripheral surface of the top portion of the pin portion P, and the other end serving as an inlet opens to the outer peripheral surface of the journal portion J at one location.
  • a general-purpose oil hole called V-type is the same as I-type in that one end serving as an outlet opens to the outer peripheral surface of the top portion of the pin portion P, but the other end serving as an inlet is a journal. There are two openings in the outer peripheral surface of the part J.
  • the inlet of the oil hole 2 is one place. Therefore, the inflow place of the lubricating oil into the oil hole 2 is compared with the V-type oil hole. Decrease. For this reason, if the I-type oil hole 2 is employed, the supply amount of the lubricating oil to the pin portion P can be reduced. Thereby, an increase in driving force of the oil pump can be suppressed and deterioration of fuel consumption can be suppressed.
  • the diameter of the oil hole 2 is preferably limited to 5 mm or less. This is because the supply amount of the lubricating oil to the pin portion P can be further reduced. However, if the diameter of the oil hole 2 is too small, the supply amount of the lubricating oil to the pin portion P may be insufficient. Therefore, the diameter is preferably 3 mm or more.
  • crankshaft of the present invention is intended for a crankshaft mounted on any reciprocating engine. That is, the number of cylinders of the engine may be any of one cylinder, two cylinders, three cylinders, six cylinders, eight cylinders, and ten cylinders in addition to four cylinders, or may be larger.
  • the arrangement of the engine cylinders is not particularly limited, such as an in-line arrangement, a V-type arrangement, and an opposed arrangement.
  • the fuel for the engine is not limited to gasoline, diesel, biofuel, etc.
  • the engine also includes a hybrid engine formed by combining an internal combustion engine and an electric motor.
  • the present invention can be effectively used for a crankshaft mounted on any reciprocating engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 A crankshaft (1) is provided with a journal part (J) as a rotational center axis, a pin part (P) eccentric from the journal part (J), and a crank arm part (A) joining the journal part (J) and the pin part (P). The arm part (A) includes a journal thrust part (Jt) and a pin thrust part (Pt). In the arm part (A), the maximum diametrical length (y) from the rotational center (CL) to the outer periphery of a pin top part (Apt) is less than the combined length of the crank radius (Rc) and the radius (Rpt) of the pin thrust part (Pt). The weight can thereby be reduced while the rigidity of the crank arm part is ensured, and the gravity center radius of the crank arm part can be dramatically reduced. Additionally, the crankshaft can be easily manufactured.

Description

レシプロエンジンのクランク軸Reciprocating engine crankshaft
 本発明は、レシプロエンジンに搭載されるクランク軸に関する。 The present invention relates to a crankshaft mounted on a reciprocating engine.
 自動車、自動二輪車、農業機械、船舶等のレシプロエンジンは、シリンダ(気筒)内でのピストンの往復運動を回転運動に変換して動力を取り出すために、クランク軸が不可欠である。クランク軸は、型鍛造によって製造されるものと、鋳造によって製造されるものとに大別される。特に、高強度と高剛性が要求される場合は、それらの特性に優れた前者の鍛造クランク軸が多用される。 In reciprocating engines such as automobiles, motorcycles, agricultural machinery, and ships, a crankshaft is indispensable for converting the reciprocating motion of a piston in a cylinder into a rotational motion to extract power. Crankshafts are roughly classified into those manufactured by die forging and those manufactured by casting. In particular, when high strength and high rigidity are required, the former forged crankshaft having excellent characteristics is often used.
 図1A及び図1Bは、従来のクランク軸の一例を模式的に示す図であり、図1Aはクランク軸全体の側面図を、図1Bはクランクアーム部をピン部側から見たときの平面図をそれぞれ示す。図1A及び図1Bに例示するクランク軸1は、4気筒エンジンに搭載されるものである。そのクランク軸1は、5つのジャーナル部J1~J5、4つのピン部P1~P4、フロント部Fr、フランジ部Fl、及びジャーナル部J1~J5とピン部P1~P4をそれぞれつなぐ8枚のクランクアーム部(以下、単に「アーム部」ともいう)A1~A8から構成される。このようなクランク軸1は、8枚の全てのアーム部A1~A8にカウンターウエイトを有する4気筒-8枚カウンターウエイトのクランク軸である。 1A and 1B are diagrams schematically showing an example of a conventional crankshaft. FIG. 1A is a side view of the entire crankshaft, and FIG. 1B is a plan view when the crank arm portion is viewed from the pin portion side. Respectively. A crankshaft 1 illustrated in FIGS. 1A and 1B is mounted on a four-cylinder engine. The crankshaft 1 has five journal portions J1 to J5, four pin portions P1 to P4, a front portion Fr, a flange portion Fl, and eight crank arms connecting the journal portions J1 to J5 and the pin portions P1 to P4, respectively. Part (hereinafter also simply referred to as “arm part”) A1 to A8. Such a crankshaft 1 is a crankshaft of a four-cylinder-8-counterweight having counterweights on all eight arm portions A1 to A8.
 以下では、ジャーナル部J1~J5、ピン部P1~P4、及びアーム部A1~A8のそれぞれを総称するとき、その符号は、ジャーナル部で「J」、ピン部で「P」、アーム部で「A」とも記す。ピン部P、このピン部Pにつながる一組のアーム部A、及びこれらの各アーム部Aにつながるジャーナル部Jをまとめて「スロー」ともいう。 Hereinafter, when each of the journal portions J1 to J5, the pin portions P1 to P4, and the arm portions A1 to A8 are collectively referred to, the reference numerals are “J” for the journal portion, “P” for the pin portion, and “P” for the arm portion. Also referred to as “A”. The pin portion P, the pair of arm portions A connected to the pin portion P, and the journal portion J connected to each of the arm portions A are collectively referred to as “slow”.
 ジャーナル部J、フロント部Fr及びフランジ部Flは、クランク軸1の回転中心CLと同軸上に配置される。また、ピン部Pは、クランク軸1の回転中心CLからピストンストロークの半分の長さ、すなわちクランク半径Rcの長さだけ偏心して配置される。ジャーナル部Jは、滑り軸受(『メタル』とも称される)を介してエンジンブロックに支持され、回転中心軸となる。ピン部Pには、滑り軸受を介してコネクティングロッド(以下、「コンロッド」ともいう)の大端部が連結され、このコンロッドの小端部にピストンが連結される。 The journal part J, the front part Fr, and the flange part Fl are arranged coaxially with the rotation center CL of the crankshaft 1. Further, the pin portion P is arranged eccentric from the rotation center CL of the crankshaft 1 by a length that is half the piston stroke, that is, the length of the crank radius Rc. The journal portion J is supported by the engine block via a sliding bearing (also referred to as “metal”) and serves as a rotation center shaft. A large end portion of a connecting rod (hereinafter also referred to as “connecting rod”) is connected to the pin portion P via a sliding bearing, and a piston is connected to a small end portion of the connecting rod.
 アーム部Aには、ジャーナル部Jと同心状にジャーナルスラスト部Jtが設けられ、ジャーナルスラスト部Jtはジャーナル部Jに隣接する。ジャーナルスラスト部Jtは、主にエンジンブロック内でのクランク軸1の軸方向の位置決めに寄与する。また、アーム部Aには、ピン部Pと同心状にピンスラスト部Ptが設けられ、ピンスラスト部Ptはピン部Pに隣接する。ピンスラスト部Ptは、主にコンロッドの軸方向の位置決めに寄与する。 The arm part A is provided with a journal thrust part Jt concentrically with the journal part J, and the journal thrust part Jt is adjacent to the journal part J. The journal thrust part Jt mainly contributes to the axial positioning of the crankshaft 1 in the engine block. The arm portion A is provided with a pin thrust portion Pt concentrically with the pin portion P, and the pin thrust portion Pt is adjacent to the pin portion P. The pin thrust part Pt mainly contributes to the positioning of the connecting rod in the axial direction.
 近年、特に自動車用のレシプロエンジンには、燃費の向上のために軽量化が求められている。このため、レシプロエンジンの基幹部品であるクランク軸にも、軽量化の要求が著しくなっている。クランク軸の軽量化を図る従来技術としては、下記のものがある。 In recent years, reciprocating engines for automobiles in particular have been required to be lighter in order to improve fuel efficiency. For this reason, the crankshaft, which is a basic part of a reciprocating engine, is also required to be lighter. Examples of conventional techniques for reducing the weight of the crankshaft include the following.
 特開2012-7726号公報(特許文献1)及び特開2010-230027号公報(特許文献2)には、ジャーナル部側の表面に穴部が形成されたアーム部が記載されている。その穴部は、ピン部に向けて大きく深く窪み、ジャーナル部の軸心とピン部の軸心とを結ぶ直線(以下、「アーム部中心線」ともいう)上に形成される。同文献に記載されたアーム部は、穴部の体積分が軽量化される。アーム部の軽量化は、カウンターウエイトの重量軽減につながり、ひいてはクランク軸全体の軽量化につながる。また、同文献に開示されたアーム部は、アーム部中心線を間に挟むピン部近傍の両側部で厚みが厚く維持されていることから、剛性(ねじり剛性及び曲げ剛性)も確保される。 Japanese Patent Application Laid-Open No. 2012-7726 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2010-230027 (Patent Document 2) describe an arm portion in which a hole is formed on the surface on the journal portion side. The hole portion is recessed deeply and deeply toward the pin portion, and is formed on a straight line (hereinafter also referred to as “arm portion center line”) connecting the axis of the journal portion and the axis of the pin portion. In the arm part described in the document, the volume of the hole part is reduced in weight. The weight reduction of the arm part leads to a reduction in the weight of the counterweight, which in turn leads to a reduction in the weight of the entire crankshaft. Further, since the arm portion disclosed in the same document is maintained thick at both side portions in the vicinity of the pin portion sandwiching the arm portion center line, rigidity (torsional rigidity and bending rigidity) is also ensured.
特開2012-7726号公報JP 2012-7726 A 特開2010-230027号公報JP 2010-230027 A
 特許文献1及び2に開示されるクランク軸は、上記した特異な形状のアーム部を有することから、一般的な製造手法で製造することは容易でない。例えば、型鍛造による製造手法では、型鍛造工程においてアーム部の表面に穴部を形成しようとすると、その穴部に対応する部位で金型の型抜き勾配が逆勾配になり、成形された鍛造材が金型から抜けなくなる事態が生じる。このため、型鍛造工程ではアーム部表面に穴部を形成することなく鍛造材を成形し、バリ抜き工程の後に、アーム部の表面にパンチを押し込んで穴部を形成する追加の加工が必要となる。あるいは、バリ抜き工程の後に、ドリル等を用いた機械加工により穴部を形成する追加の加工が必要となる。鋳造による製造手法でも同様に、追加の加工が必要となる。 Since the crankshaft disclosed in Patent Documents 1 and 2 has the above-mentioned unique shape of the arm portion, it is not easy to manufacture by a general manufacturing method. For example, in the manufacturing method using die forging, when a hole is formed on the surface of the arm portion in the die forging process, the die cutting gradient of the die is reversed at the portion corresponding to the hole, and the formed forging A situation occurs in which the material cannot be removed from the mold. For this reason, in the die forging process, a forged material is formed without forming a hole on the surface of the arm part, and after the deburring process, an additional process is required in which a punch is pushed into the surface of the arm part to form a hole. Become. Alternatively, after the deburring process, additional processing for forming the hole by machining using a drill or the like is required. Similarly, the manufacturing method by casting requires additional processing.
 また、クランク軸の軽量化を検討する際、アーム部の剛性を確保しつつ重量を軽減することのみならず、質量モーメントを小さくすることが求められる。質量モーメントを小さくするためには、静バランス、動バランス及びバランス率の適性化をも考慮し、アーム部の重心半径を小さくすればよい。しかし、特許文献1及び2に記載されるようなアーム部表面に穴部を形成したクランク軸では、アーム部の重心半径を小さくことに限界があり、その技術革新が強く望まれる。 Also, when considering reducing the weight of the crankshaft, it is required not only to reduce the weight while ensuring the rigidity of the arm portion, but also to reduce the mass moment. In order to reduce the mass moment, the center of gravity radius of the arm portion may be reduced in consideration of appropriateness of static balance, dynamic balance, and balance ratio. However, in the crankshaft in which a hole is formed on the surface of the arm as described in Patent Documents 1 and 2, there is a limit to reducing the center of gravity radius of the arm, and its technical innovation is strongly desired.
 本発明は、このような実情に鑑みてなされたものであり、アーム部の剛性を確保しつつ重量を軽減することができ、しかも、アーム部の重心半径を飛躍的に小さくすることが可能で、容易に製造することができるレシプロエンジンのクランク軸を提供することを目的とする。 The present invention has been made in view of such circumstances, can reduce the weight while ensuring the rigidity of the arm portion, and can dramatically reduce the center-of-gravity radius of the arm portion. An object of the present invention is to provide a crankshaft of a reciprocating engine that can be easily manufactured.
 本発明の一実施形態であるレシプロエンジンのクランク軸は、回転中心軸となるジャーナル部と、前記ジャーナル部に対して偏心したピン部と、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、を備える。前記クランクアーム部は、ジャーナルスラスト部及びピンスラスト部を含む。また、前記クランクアーム部は、回転中心からピントップ部の外周までの径方向の最大長さが、クランク半径に前記ピンスラスト部の半径を加えた長さよりも小さい構成である。 A crankshaft of a reciprocating engine according to an embodiment of the present invention includes a journal part serving as a rotation center axis, a pin part eccentric with respect to the journal part, a crank arm part connecting the journal part and the pin part, Is provided. The crank arm portion includes a journal thrust portion and a pin thrust portion. Further, the crank arm portion is configured such that the maximum radial length from the rotation center to the outer periphery of the pin top portion is smaller than the crank radius plus the radius of the pin thrust portion.
 上記のクランク軸において、前記クランクアーム部は、前記回転中心から前記ピントップ部の外周までの径方向の最大長さが、前記クランク半径に前記ピン部の半径を加えた長さと一致する構成とすることができる。 In the above crankshaft, the crank arm portion has a configuration in which a maximum radial length from the rotation center to the outer periphery of the pin top portion coincides with a length obtained by adding the radius of the pin portion to the crank radius. can do.
 上記のクランク軸において、前記ピンスラスト部のトップ部は、前記ジャーナル部の軸心と前記ピン部の軸心とを結ぶアーム部中心線を基準にして前記ピンスラスト部の軸心を中心とする角度±75°の範囲内で欠けている構成であることが好ましい。 In the above crankshaft, the top portion of the pin thrust portion is centered on the axis of the pin thrust portion with respect to an arm centerline connecting the axis of the journal portion and the axis of the pin portion. A configuration lacking within an angle range of ± 75 ° is preferable.
 上記のクランク軸において、直線状の油孔が前記ピン部から前記アーム部を経て前記ジャーナル部にわたり形成されていることが好ましい。この場合、前記油孔の直径が5mm以下であることが好ましい。 In the crankshaft described above, it is preferable that a linear oil hole is formed from the pin portion to the journal portion through the arm portion. In this case, the diameter of the oil hole is preferably 5 mm or less.
 本発明のクランク軸によれば、従来のアーム部と比較してアーム部のピントップ部で体積が削減される。これにより、アーム部の剛性を確保しつつ重量を軽減することができるとともに、アーム部の重心半径を飛躍的に小さくすることが可能である。また、追加の加工を要することなく容易に製造することもできる。 According to the crankshaft of the present invention, the volume is reduced at the pin top portion of the arm portion as compared with the conventional arm portion. Accordingly, it is possible to reduce the weight while ensuring the rigidity of the arm portion, and it is possible to dramatically reduce the center-of-gravity radius of the arm portion. Moreover, it can also be manufactured easily without requiring additional processing.
図1Aは、従来のクランク軸の一例を模式的に示す図であり、クランク軸全体の側面図を示す。FIG. 1A is a diagram schematically showing an example of a conventional crankshaft, and shows a side view of the entire crankshaft. 図1Bは、従来のクランク軸の一例を模式的に示す図であり、クランクアーム部をピン部側から見たときの平面図を示す。FIG. 1B is a diagram schematically showing an example of a conventional crankshaft, and shows a plan view when the crank arm portion is viewed from the pin portion side. 図2Aは、第1実施形態のクランク軸の一例を模式的に示す図であり、クランク軸全体の側面図を示す。FIG. 2A is a diagram schematically showing an example of the crankshaft of the first embodiment, and shows a side view of the entire crankshaft. 図2Bは、第1実施形態のクランク軸の一例を模式的に示す図であり、クランクアーム部をピン部側から見たときの平面図を示す。FIG. 2B is a diagram schematically showing an example of the crankshaft of the first embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side. 図3Aは、第2実施形態のクランク軸の一例を模式的に示す図であり、クランク軸全体の側面図を示す。FIG. 3A is a diagram schematically illustrating an example of the crankshaft of the second embodiment, and shows a side view of the entire crankshaft. 図3Bは、第2実施形態のクランク軸の一例を模式的に示す図であり、クランクアーム部をピン部側から見たときの平面図を示す。FIG. 3B is a diagram schematically showing an example of the crankshaft of the second embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side. 図4は、各実施形態のクランク軸におけるピンスラスト部のトップ部の欠け範囲を説明するための模式図である。FIG. 4 is a schematic view for explaining a chipped range of the top portion of the pin thrust portion in the crankshaft of each embodiment. 図5は、各実施形態のクランク軸におけるピンスラスト部のトップ部の欠け範囲と質量モーメント及び捩り剛性との相関を模式的に示す図である。FIG. 5 is a diagram schematically illustrating the correlation between the chipping range of the top portion of the pin thrust portion, the mass moment, and the torsional rigidity of the crankshaft of each embodiment. 図6Aは、各実施形態のクランク軸における油孔の好適な態様を示す模式図であり、クランク軸の1スローの側面図を示す。FIG. 6A is a schematic diagram showing a preferred mode of oil holes in the crankshaft of each embodiment, and shows a one-throw side view of the crankshaft. 図6Bは、各実施形態のクランク軸における油孔の好適な態様を示す模式図であり、クランクアーム部をピン部側から見たときの平面図を示す。FIG. 6B is a schematic diagram showing a preferred aspect of the oil hole in the crankshaft of each embodiment, and shows a plan view when the crank arm portion is viewed from the pin portion side.
 以下に、本発明のレシプロエンジンのクランク軸について、その実施形態を詳述する。 Hereinafter, embodiments of the crankshaft of the reciprocating engine of the present invention will be described in detail.
 [第1実施形態]
 図2A及び図2Bは、第1実施形態のクランク軸の一例を模式的に示す図であり、図2Aはクランク軸全体の側面図を、図2Bはクランクアーム部をピン部側から見たときの平面図をそれぞれ示す。図2A及び図2Bに例示するクランク軸1は、前記図1A及び図1Bに示す従来のクランク軸1と同様に、4気筒エンジンに搭載されるものである。以下では、前記図1A及び図1Bに示す従来のクランク軸1と共通する部分には同一の符号を付し、重複する説明は適宜省略する。
[First Embodiment]
2A and 2B are diagrams schematically illustrating an example of the crankshaft according to the first embodiment. FIG. 2A is a side view of the entire crankshaft, and FIG. 2B is a view of the crank arm portion as viewed from the pin portion side. Each of the plan views is shown. The crankshaft 1 illustrated in FIGS. 2A and 2B is mounted on a four-cylinder engine, similar to the conventional crankshaft 1 shown in FIGS. 1A and 1B. In the following, parts common to the conventional crankshaft 1 shown in FIGS. 1A and 1B are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
 図2A及び図2Bに示すように、アーム部Aは、回転中心軸であるジャーナル部Jと、その回転中心CLからクランク半径Rcの長さだけ偏心したピン部Pとをつなぐ。アーム部Aには、ジャーナルスラスト部Jt及びピンスラスト部Ptが設けられる。ジャーナルスラスト部Jtは、ジャーナル部Jに隣接し、かつ、ジャーナル部Jと同心状である。ピンスラスト部Ptは、ピン部Pに隣接し、かつ、ピン部Pと同心状である。 2A and 2B, the arm portion A connects the journal portion J, which is the rotation center axis, and the pin portion P that is eccentric from the rotation center CL by the length of the crank radius Rc. The arm part A is provided with a journal thrust part Jt and a pin thrust part Pt. The journal thrust part Jt is adjacent to the journal part J and is concentric with the journal part J. The pin thrust portion Pt is adjacent to the pin portion P and is concentric with the pin portion P.
 本実施形態におけるアーム部Aは、回転中心CLからピントップ部Aptの外周までの径方向の最大長さyが、クランク半径Rcにピンスラスト部Ptの半径Rptを加えた長さよりも小さい。ここでいう最大長さyとは、クランク軸1の回転中心CLに直角な断面において、アーム部中心線Acに沿った方向での回転中心CLからアーム部Aのピントップ部Apt外周までの長さである。アーム部中心線Acは、ジャーナル部Jの軸心(回転中心CL)とピン部Pの軸心とを結ぶ直線である。これにより、アーム部Aは、ピントップ部Apt外周の輪郭がピンスラスト部Ptのトップ部の領域に進入するとともに、ピンスラスト部Ptの一部(トップ部の領域)が欠けた状態となる。 In the arm part A in the present embodiment, the maximum radial length y from the rotation center CL to the outer periphery of the pin top part Apt is smaller than the crank radius Rc plus the radius Rpt of the pin thrust part Pt. The maximum length y here is the length from the rotation center CL to the outer periphery of the pin top portion Apt of the arm portion A in the direction along the arm portion center line Ac in a cross section perpendicular to the rotation center CL of the crankshaft 1. That's it. The arm part center line Ac is a straight line that connects the axis (rotation center CL) of the journal part J and the axis of the pin part P. As a result, the arm portion A enters a state in which the outline of the outer periphery of the pin top portion Apt enters the region of the top portion of the pin thrust portion Pt and a part of the pin thrust portion Pt (the region of the top portion) is missing.
 このような形状のアーム部Aは、従来のアーム部Aと比較し、ピンスラスト部Ptのトップ部の領域を含めてピントップ部Aptで体積が削減される。アーム部Aのピントップ部Aptの体積変化は剛性(ねじり剛性及び曲げ剛性)に影響しないので、アーム部Aの剛性は確保することができる。また、アーム部Aの体積が削減される部分が回転中心CLから最も遠いピントップ部Aptである。このため、体積削減に伴うピントップ部Aptでの重量低減により、アーム部の重心半径を飛躍的に小さくすることができ、その結果として質量モーメントを減少することができる。これに伴い、静バランス、動バランス及びバランス率の適性化を踏まえ、カウンターウエイトの重量を大幅に軽減することができる。その結果として、クランク軸1全体の顕著な軽量化につながる。 The volume of the arm portion A having such a shape is reduced in the pin top portion Apt including the region of the top portion of the pin thrust portion Pt as compared with the conventional arm portion A. Since the volume change of the pin top part Apt of the arm part A does not affect the rigidity (torsional rigidity and bending rigidity), the rigidity of the arm part A can be ensured. Further, the portion where the volume of the arm part A is reduced is the pin top part Apt farthest from the rotation center CL. For this reason, the weight reduction in the pin top part Apt accompanying the volume reduction can dramatically reduce the center-of-gravity radius of the arm part, and as a result, the mass moment can be reduced. Accordingly, the weight of the counterweight can be greatly reduced based on the appropriateness of the static balance, dynamic balance, and balance ratio. As a result, the overall weight of the crankshaft 1 is significantly reduced.
 しかも、本実施形態のクランク軸1は、一般的な鍛造又は鋳造による製造手法により、容易に製造することができる。本実施形態におけるアーム部Aは、ピントップ部Apt外周の輪郭がピンスラスト部Ptのトップ部の領域に進入しただけの形状なので、型抜き勾配が逆勾配になる状況は起こらないからである。このため、前記特許文献1及び2に開示されるクランク軸を製造するときのような追加の加工は全く要しない。 Moreover, the crankshaft 1 of the present embodiment can be easily manufactured by a general forging or casting manufacturing method. This is because the arm portion A in the present embodiment has a shape in which the contour of the outer periphery of the pin top portion Apt has just entered the region of the top portion of the pin thrust portion Pt, so that the situation where the die cutting gradient becomes a reverse gradient does not occur. For this reason, the additional process like the case where the crankshaft disclosed by the said patent documents 1 and 2 is manufactured is not required at all.
 [第2実施形態]
 図3A及び図3Bは、第2実施形態のクランク軸の一例を模式的に示す図であり、図3Aはクランク軸全体の側面図を、図3Bはクランクアーム部をピン部側から見たときの平面図をそれぞれ示す。図3A及び図3Bに例示するクランク軸1は、前記図2A及び図2Bに示す第1実施形態のクランク軸1を変形したものである。以下では、前記図2A及び図2Bに示す第1実施形態のクランク軸1と共通する部分には同一の符号を付し、重複する説明は適宜省略する。
[Second Embodiment]
3A and 3B are diagrams schematically showing an example of the crankshaft according to the second embodiment. FIG. 3A is a side view of the entire crankshaft, and FIG. 3B is a view of the crank arm portion as viewed from the pin portion side. Each of the plan views is shown. The crankshaft 1 illustrated in FIGS. 3A and 3B is a modification of the crankshaft 1 of the first embodiment shown in FIGS. 2A and 2B. Below, the same code | symbol is attached | subjected to the part which is common in the crankshaft 1 of 1st Embodiment shown to the said FIG. 2A and FIG. 2B, and the overlapping description is abbreviate | omitted suitably.
 本実施形態におけるアーム部Aは、回転中心CLからピントップ部Aptの外周までの径方向の最大長さyが、クランク半径Rcにピン部Pの半径Rpを加えた長さと一致している。これにより、アーム部Aは、第1実施形態と同様に、ピントップ部Apt外周の輪郭がピンスラスト部Ptのトップ部の領域に進入するとともに、ピンスラスト部Ptの一部(トップ部の領域)が欠けた状態となる。特に、アーム部Aのピントップ部Aptにおいて、アーム部中心線Ac上に限れば、ピンスラスト部Ptが存在しない状態となる。 In the arm portion A in the present embodiment, the maximum radial length y from the rotation center CL to the outer periphery of the pin top portion Apt coincides with the crank radius Rc plus the radius Rp of the pin portion P. As a result, as in the first embodiment, the arm portion A has a contour of the outer periphery of the pin top portion Ap entering the region of the top portion of the pin thrust portion Pt and a part of the pin thrust portion Pt (the region of the top portion). ) Is missing. In particular, in the pin top part Apt of the arm part A, the pin thrust part Pt does not exist as long as it is on the arm part center line Ac.
 このような形状のアーム部Aでも、従来のアーム部Aと比較し、ピンスラスト部Ptのトップ部の領域を含めてピントップ部Aptで体積が削減されるため、上記した第1実施形態と同様の効果を奏する。 Even in the arm portion A having such a shape, the volume of the pin top portion Apt including the region of the top portion of the pin thrust portion Pt is reduced as compared with the conventional arm portion A. The same effect is produced.
 [第1及び第2実施形態における好適な事項]
 (1)ピンスラスト部のトップ部の欠け範囲
 図4は、各実施形態のクランク軸におけるピンスラスト部のトップ部の欠け範囲を説明するための模式図である。図4に示すように、ピンスラスト部Ptのトップ部が、アーム部中心線Acを基準にしてピンスラスト部Ptの軸心を中心とする±θ°の角度の範囲で欠けている状況を検討する。
[Suitable matters in the first and second embodiments]
(1) Top notch range of pin thrust part FIG. 4 is a schematic diagram for explaining the notch range of the top part of the pin thrust part in the crankshaft of each embodiment. As shown in FIG. 4, the situation where the top portion of the pin thrust portion Pt is missing in the range of an angle of ± θ ° centered on the axis of the pin thrust portion Pt with respect to the arm center line Ac is examined. To do.
 図5は、各実施形態のクランク軸におけるピンスラスト部のトップ部の欠け範囲と質量モーメント及び捩り剛性との相関を模式的に示す図である。図5に示す相関は、FEM解析の結果をまとめたものである。そのFEM解析では、図4に示すピンスラスト部のトップ部の欠け範囲(角度±θ°の範囲)を種々変更して、都度のアーム部の質量モーメントと捩り剛性を算出した。 FIG. 5 is a diagram schematically showing the correlation between the chipping range of the top portion of the pin thrust portion, the mass moment, and the torsional rigidity of the crankshaft of each embodiment. The correlation shown in FIG. 5 summarizes the results of FEM analysis. In the FEM analysis, the mass range and the torsional rigidity of the arm portion were calculated by changing various chipping ranges (angle ± θ ° range) of the top portion of the pin thrust portion shown in FIG.
 図5に示すように、アーム部の質量モーメントは、ピンスラスト部のトップ部の欠け範囲(角度±θ°の範囲)が拡大するのに伴って、減少する。特に、ピンスラスト部のトップ部の欠け範囲が角度±75°の範囲までは、アーム部の質量モーメントの減少傾向が著しい。一方、アーム部の捩り剛性は、ピンスラスト部のトップ部の欠け範囲が角度±75°の範囲までは変化せず、その欠け範囲が角度±75°の範囲を超えると、顕著に減少する。 As shown in FIG. 5, the mass moment of the arm portion decreases as the chipped range (angle ± θ ° range) of the top portion of the pin thrust portion increases. Particularly, the tendency of decreasing the mass moment of the arm portion is remarkable until the chipped portion of the top portion of the pin thrust portion is in the range of angle ± 75 °. On the other hand, the torsional rigidity of the arm part does not change until the chipping range of the top part of the pin thrust part is within the range of angle ± 75 °, and significantly decreases when the chipping range exceeds the range of angle ± 75 °.
 このため、ピンスラスト部のトップ部の欠け範囲は、アーム部の剛性確保と質量モーメントの低減効果を同時に満たす観点から、角度±75°の範囲内であることが好ましい。なお、ピンスラスト部のトップ部の欠け範囲があまりに小さすぎると、質量モーメントの低減効果が有効に発現しないため、その欠け範囲は角度±3°の範囲を超えることが好ましい。 For this reason, the notch range of the top portion of the pin thrust portion is preferably within an angle range of ± 75 ° from the viewpoint of simultaneously ensuring the rigidity of the arm portion and reducing the mass moment. It should be noted that if the chipping range of the top portion of the pin thrust part is too small, the effect of reducing the mass moment is not effectively exhibited, and therefore the chipping range preferably exceeds the range of angle ± 3 °.
 (2)ピンスラスト部のトップ部の欠けに伴う油孔の態様
 上述のとおり、各実施形態のクランク軸ではピンスラスト部の一部が欠けている。このピンスラスト部の欠けはトップ部の領域に限定されていることから、コンロッドの軸方向の位置決めに支障はない。ただし、以下の懸念がある。
(2) Aspect of oil hole due to chipping of top part of pin thrust part As described above, a part of the pin thrust part is missing in the crankshaft of each embodiment. Since the chipping of the pin thrust portion is limited to the region of the top portion, there is no hindrance to the positioning of the connecting rod in the axial direction. However, there are the following concerns.
 クランク軸のピン部には、滑り軸受を介してコンロッドが連結され、ピン部の外周面と滑り軸受との間には、両者の潤滑性を確保するために潤滑油が存在する。ピン部への潤滑油の供給は、ピン部からアーム部を経てジャーナル部にわたり形成された油孔を通じて行われる。その際、潤滑油は、オイルポンプの駆動力により、まずエンジンブロックからジャーナル部に向けて吐出される。ジャーナル部に向けて吐出された潤滑油は、ジャーナル部の外周面とエンジンブロックの滑り軸受との間の潤滑油になるとともに、ジャーナル部の外周面に開口する油孔の入口から油孔内に流入する。油孔に流入した潤滑油は、オイルポンプの駆動力及びクランク軸の回転に伴う遠心力により、ピン部の外周面に開口する油孔の出口から流出し、ピン部の外周面とコンロッドの滑り軸受との間に供給される。 The connecting rod is connected to the pin portion of the crankshaft via a sliding bearing, and lubricating oil exists between the outer peripheral surface of the pin portion and the sliding bearing to ensure the lubricity of both. Lubricating oil is supplied to the pin part through oil holes formed from the pin part to the journal part through the arm part. At that time, the lubricating oil is first discharged from the engine block toward the journal portion by the driving force of the oil pump. Lubricating oil discharged toward the journal part becomes lubricating oil between the outer peripheral surface of the journal part and the sliding bearing of the engine block, and enters the oil hole from the inlet of the oil hole opened in the outer peripheral surface of the journal part. Inflow. The lubricating oil that has flowed into the oil hole flows out of the outlet of the oil hole that opens in the outer peripheral surface of the pin portion due to the driving force of the oil pump and the centrifugal force that accompanies the rotation of the crankshaft. Supplied between the bearings.
 ここで、上記した各実施形態のクランク軸のようにピンスラスト部の一部が欠けている場合、ピン部の外周面と滑り軸受との間に存在する潤滑油がピンスラスト部の欠けた部分から漏れるおそれがある。潤滑油の漏れ量が多いと、その漏れ量を補うためにオイルポンプの駆動力を増すことになる。その結果、エンジンの燃費が悪化する。オイルポンプの駆動力は、クランク軸の回転力を利用してもたらされるからである。 Here, when a part of the pin thrust part is missing like the crankshaft of each of the above-described embodiments, the lubricating oil existing between the outer peripheral surface of the pin part and the sliding bearing is a part where the pin thrust part is missing. There is a risk of leakage. When the amount of leakage of the lubricating oil is large, the driving force of the oil pump is increased to compensate for the amount of leakage. As a result, the fuel consumption of the engine deteriorates. This is because the driving force of the oil pump is brought about by utilizing the rotational force of the crankshaft.
 そこで、上記した各実施形態のクランク軸では、オイルポンプの駆動力の増大を抑えて燃費の悪化を抑制するために、ピン部への潤滑油の供給量を低減することが望ましい。その施策として、油孔の態様を以下のように制限するのが好ましい。 Therefore, in the crankshaft of each of the above-described embodiments, it is desirable to reduce the supply amount of the lubricating oil to the pin portion in order to suppress an increase in driving force of the oil pump and suppress deterioration in fuel consumption. As a measure for this, it is preferable to limit the mode of the oil hole as follows.
 図6A及び図6Bは、各実施形態のクランク軸における油孔の好適な態様を示す模式図であり、図6Aはクランク軸の1スローの側面図を、図6Bはクランクアーム部をピン部側から見たときの平面図をそれぞれ示す。 6A and 6B are schematic views showing a preferred aspect of the oil hole in the crankshaft of each embodiment, FIG. 6A is a side view of one throw of the crankshaft, and FIG. 6B is the pin side of the crank arm portion. Plan views when viewed from above are shown.
 図6A及び図6Bに示すように、各実施形態のクランク軸では、直線状の油孔2がピン部Pからアーム部Aを経てジャーナル部Jにわたり形成されている。この油孔2は、I型と称され、出口となる一端がピン部Pのトップ部の外周面に開口し、入口となる他端がジャーナル部Jの外周面に1箇所で開口する。これに対し、V型と称される汎用の油孔は、出口となる一端がピン部Pのトップ部の外周面に開口するのはI型と同じであるが、入口となる他端がジャーナル部Jの外周面に2箇所で開口する。 As shown in FIGS. 6A and 6B, in the crankshaft of each embodiment, a linear oil hole 2 is formed from the pin portion P to the journal portion J through the arm portion A. This oil hole 2 is called I-type, and one end serving as an outlet opens to the outer peripheral surface of the top portion of the pin portion P, and the other end serving as an inlet opens to the outer peripheral surface of the journal portion J at one location. On the other hand, a general-purpose oil hole called V-type is the same as I-type in that one end serving as an outlet opens to the outer peripheral surface of the top portion of the pin portion P, but the other end serving as an inlet is a journal. There are two openings in the outer peripheral surface of the part J.
 各実施形態のクランク軸において、I型の油孔2を採用すれば、油孔2の入口が1箇所であるので、V型の油孔と比較し、油孔2への潤滑油の流入箇所が減る。このため、I型の油孔2を採用すれば、ピン部Pへの潤滑油の供給量を低減することが可能になる。これにより、オイルポンプの駆動力の増大を抑えて燃費の悪化を抑制することができる。 In the crankshaft of each embodiment, if the I-type oil hole 2 is employed, the inlet of the oil hole 2 is one place. Therefore, the inflow place of the lubricating oil into the oil hole 2 is compared with the V-type oil hole. Decrease. For this reason, if the I-type oil hole 2 is employed, the supply amount of the lubricating oil to the pin portion P can be reduced. Thereby, an increase in driving force of the oil pump can be suppressed and deterioration of fuel consumption can be suppressed.
 更に、各実施形態のクランク軸では、油孔2の直径は5mm以下に制限することが好ましい。より一層、ピン部Pへの潤滑油の供給量を低減することが可能になるからである。もっとも、油孔2の直径が小さすぎると、ピン部Pへの潤滑油の供給量が不足するおそれがあるため、その直径は3mm以上とすることが好ましい。 Furthermore, in the crankshaft of each embodiment, the diameter of the oil hole 2 is preferably limited to 5 mm or less. This is because the supply amount of the lubricating oil to the pin portion P can be further reduced. However, if the diameter of the oil hole 2 is too small, the supply amount of the lubricating oil to the pin portion P may be insufficient. Therefore, the diameter is preferably 3 mm or more.
 その他本発明は上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、本発明のクランク軸は、あらゆるレシプロエンジンに搭載されるクランク軸を対象とする。すなわち、エンジンの気筒数は、4気筒以外にも、1気筒、2気筒、3気筒、6気筒、8気筒及び10気筒のいずれでもよく、さらに多いものであってもよい。エンジン気筒の配列も、直列配置、V型配置、対向配置等を特に問わない。エンジンの燃料も、ガソリン、ディーゼル、バイオ燃料等の種類を問わない。また、エンジンとしては、内燃機関と電気モータを複合してなるハイブリッドエンジンも含む。 Others The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the crankshaft of the present invention is intended for a crankshaft mounted on any reciprocating engine. That is, the number of cylinders of the engine may be any of one cylinder, two cylinders, three cylinders, six cylinders, eight cylinders, and ten cylinders in addition to four cylinders, or may be larger. The arrangement of the engine cylinders is not particularly limited, such as an in-line arrangement, a V-type arrangement, and an opposed arrangement. The fuel for the engine is not limited to gasoline, diesel, biofuel, etc. The engine also includes a hybrid engine formed by combining an internal combustion engine and an electric motor.
 本発明は、あらゆるレシプロエンジンに搭載されるクランク軸に有効に利用できる。 The present invention can be effectively used for a crankshaft mounted on any reciprocating engine.
  1:クランク軸、
  J、J1~J5:ジャーナル部、  Jt:ジャーナルスラスト部、
  P、P1~P4:ピン部、  Pt:ピンスラスト部、
  Fr:フロント部、  Fl:フランジ部、
  A、A1~A8:クランクアーム部、
  Ac:アーム部中心線、  Apt:ピントップ部、
  
    y:最大長さ、
  CL:回転中心、  Rc:クランク半径、
  Rpt:ピンスラスト部の半径、  Rp:ピン部の半径、
  2:油孔
1: crankshaft,
J, J1 to J5: Journal part, Jt: Journal thrust part,
P, P1 to P4: Pin part, Pt: Pin thrust part,
Fr: front part, Fl: flange part,
A, A1-A8: Crank arm part,
Ac: arm part center line, Apt: pin top part,

y: maximum length,
CL: center of rotation, Rc: crank radius,
Rpt: Pin thrust radius, Rp: Pin radius,
2: Oil hole

Claims (5)

  1.  回転中心軸となるジャーナル部と、
     前記ジャーナル部に対して偏心したピン部と、
     ジャーナルスラスト部及びピンスラスト部を含み、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、を備え、
     前記クランクアーム部は、回転中心からピントップ部の外周までの径方向の最大長さが、クランク半径に前記ピンスラスト部の半径を加えた長さよりも小さい、レシプロエンジンのクランク軸。
    A journal part which becomes a rotation center axis;
    A pin part eccentric with respect to the journal part;
    Including a journal thrust part and a pin thrust part, and comprising a crank arm part connecting the journal part and the pin part,
    The crankshaft of a reciprocating engine, wherein the crank arm portion has a maximum radial length from the center of rotation to the outer periphery of the pin top portion that is smaller than the crank radius plus the radius of the pin thrust portion.
  2.  請求項1に記載のクランク軸であって、
     前記クランクアーム部は、前記回転中心から前記ピントップ部の外周までの径方向の最大長さが、前記クランク半径に前記ピン部の半径を加えた長さと一致する、レシプロエンジンのクランク軸。
    The crankshaft according to claim 1, wherein
    The crankshaft of the reciprocating engine, wherein the crank arm portion has a maximum radial length from the rotation center to the outer periphery of the pin top portion that matches a length obtained by adding the radius of the pin portion to the crank radius.
  3.  請求項1又は2に記載のクランク軸であって、
     前記ピンスラスト部のトップ部は、前記ジャーナル部の軸心と前記ピン部の軸心とを結ぶアーム部中心線を基準にして前記ピンスラスト部の軸心を中心とする角度±75°の範囲内で欠けている、レシプロエンジンのクランク軸。
    The crankshaft according to claim 1 or 2,
    The top portion of the pin thrust portion is within a range of an angle of ± 75 ° about the axis of the pin thrust portion with respect to an arm center line connecting the axis of the journal portion and the axis of the pin portion. The crankshaft of the reciprocating engine that is missing inside.
  4.  請求項1~3のいずれか一項に記載のクランク軸であって、
     直線状の油孔が前記ピン部から前記アーム部を経て前記ジャーナル部にわたり形成されている、レシプロエンジンのクランク軸。
    The crankshaft according to any one of claims 1 to 3,
    A crankshaft of a reciprocating engine, wherein a linear oil hole is formed from the pin part to the journal part through the arm part.
  5.  請求項4に記載のクランク軸であって、
     前記油孔の直径が5mm以下である、レシプロエンジンのクランク軸。
    The crankshaft according to claim 4, wherein
    A crankshaft of a reciprocating engine, wherein the oil hole has a diameter of 5 mm or less.
PCT/JP2015/002958 2014-06-12 2015-06-12 Crankshaft of reciprocating engine WO2015190117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014121681 2014-06-12
JP2014-121681 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190117A1 true WO2015190117A1 (en) 2015-12-17

Family

ID=54833228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002958 WO2015190117A1 (en) 2014-06-12 2015-06-12 Crankshaft of reciprocating engine

Country Status (1)

Country Link
WO (1) WO2015190117A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421125Y1 (en) * 1968-12-11 1969-09-08
JPS5973618A (en) * 1982-10-18 1984-04-25 Yamaha Motor Co Ltd Crankshaft of internal combustion engine
JP2002227821A (en) * 2001-01-31 2002-08-14 Yanmar Diesel Engine Co Ltd Crankshaft of engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4421125Y1 (en) * 1968-12-11 1969-09-08
JPS5973618A (en) * 1982-10-18 1984-04-25 Yamaha Motor Co Ltd Crankshaft of internal combustion engine
JP2002227821A (en) * 2001-01-31 2002-08-14 Yanmar Diesel Engine Co Ltd Crankshaft of engine

Similar Documents

Publication Publication Date Title
US20170089423A1 (en) Crankshaft and method of balancing the same
JP6233518B2 (en) Reciprocating engine crankshaft
US10012260B2 (en) Crankshaft for reciprocating engine
EP3171044B1 (en) Crankshaft for reciprocating engine, and design method thereof
US10352352B2 (en) Machining oval cores in crankshafts
JP2015010642A (en) Crank shaft of reciprocating engine
JP6795018B2 (en) Reciprocating engine crankshaft
JP6484955B2 (en) Reciprocating engine crankshaft
WO2015190117A1 (en) Crankshaft of reciprocating engine
CN106609686B (en) A kind of camshaft valve actuating mechanism, engine and vehicle
US10247226B2 (en) Crankshaft for reciprocating engine
WO2008075567A1 (en) Slide bearing for engine
JP2010164074A (en) Crankshaft
CN111561511A (en) Assembled bent axle
CN212272804U (en) Assembled bent axle
JP4683187B2 (en) Manufacturing method of crankshaft with balancer drive gear
CN220488079U (en) Crankshaft
JP6398453B2 (en) Reciprocating engine crankshaft
KR101421018B1 (en) A Crank shaft of multi-Cylinder engine
JP6244690B2 (en) Reciprocating engine crankshaft
JP6374800B2 (en) engine
EP3106652A1 (en) A cover member for a crankcase of an engine
GB2541212A (en) Cover assembly for connecting rod of an engine

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE