WO2015190016A1 - Transceiving device and transceiving method - Google Patents

Transceiving device and transceiving method Download PDF

Info

Publication number
WO2015190016A1
WO2015190016A1 PCT/JP2015/001251 JP2015001251W WO2015190016A1 WO 2015190016 A1 WO2015190016 A1 WO 2015190016A1 JP 2015001251 W JP2015001251 W JP 2015001251W WO 2015190016 A1 WO2015190016 A1 WO 2015190016A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
distortion
reception
output
Prior art date
Application number
PCT/JP2015/001251
Other languages
French (fr)
Japanese (ja)
Inventor
一実 椎熊
友哉 金子
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2015190016A1 publication Critical patent/WO2015190016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a transmission / reception device and a transmission / reception method, and more particularly to a transmission / reception device and a transmission / reception method suitable for downsizing a device by reducing a circuit scale.
  • a wireless communication device such as a mobile phone base station is equipped with a transmission / reception duplexer (filter) shared by a transmission signal and a reception signal.
  • This transmission / reception duplexer is required to have a low loss in the pass band and a steep attenuation characteristic outside the band.
  • the transmission / reception duplexer generally has a resonance with a high Q value (Q value of approximately 1000 or more) such as a semi-coaxial resonator or a TE01 ⁇ mode dielectric resonator (DR (Dielectric Resonator)).
  • DR Dielectric Resonator
  • the transmission / reception duplexer is particularly large when the resonance frequency is lowered. As a result, the circuit scale of the wireless communication device has increased.
  • the attenuation characteristics of the transmission / reception duplexer will deteriorate.
  • the transmission signal component leaking (wrapping around) from the transmission path to the reception path via the transmission / reception demultiplexer and the interference wave mixed into the reception path from the outside via the transmission / reception demultiplexer are not sufficiently attenuated.
  • intermodulation distortion and intermodulation distortion are likely to occur due to the transmission signal component and the interference wave.
  • the quality of the received signal may be degraded.
  • a small block type or monoblock type transmission / reception duplexer is used instead of the cavity type transmission / reception duplexer as the transmission / reception duplexer mounted on the wireless communication device. It is also possible.
  • These small block-type or mono-block type transmission / reception demultiplexers are, for example, small-sized SAW (Surface-Acoustic-Wave), FBAR (Film-Bulk-Acoustic-Resonator), or TEM-DR (Transverse-Electro-Magnetic--Dielectric-Resonator). It is configured using a resonator.
  • a block type or monoblock type transmission / reception duplexer on which these are mounted is a cavity type transmission / reception duplexer. Compared with the withstand voltage and power, the withstand voltage is low.
  • a wireless communication apparatus such as a mobile phone base station called a macro base station wirelessly transmits a high-power transmission signal of about 10 watts or more. Therefore, even if the received signal is very small power in the reception system filter as well as the transmission system filter, for example, due to the deterioration of the reflection coefficient of the transmission / reception antenna or poor connection, the transmission / reception duplexer mounted in the wireless communication device There is a possibility that a high-power transmission signal is applied outside the reception band.
  • the passage loss of the block type or monoblock type transmission / reception duplexer is larger than that of the cavity type transmission / reception duplexer. Therefore, if a block-type or monoblock-type transmission / reception duplexer is used as the transmission / reception duplexer mounted in the wireless communication apparatus, the quality of the received signal may be deteriorated.
  • Patent Document 1 discloses a microwave band configured to provide a transmission / reception duplexer in a common input / output unit of a transmission high-power converter and a reception low-noise converter to prevent a transmission signal from wrapping around to a reception side.
  • a transmission / reception shared wireless device is disclosed.
  • This transmission / reception shared radio device includes a low-noise amplifier provided in a low-noise converter for reception, a first-stage amplifier element and a subsequent-stage amplifier element connected in cascade, and a stage for suppressing a transmission frequency band between the amplifier elements. And an inter-filter.
  • the attenuation amount in the transmission frequency band required to prevent the leakage of the transmission signal to the reception side can be distributed to the transmitter / receiver demultiplexer and the interstage filter. . As a result, the size of the transmitter / receiver duplexer can be reduced.
  • the amplifier is divided into a preamplifier and a main amplifier, an intermediate filter is inserted between them, and a part of required performance for the input side filter and output side filter is shared by this intermediate filter.
  • An apparatus is disclosed.
  • Patent Document 3 discloses a canceller device that cancels a spectral component from a transmitter that enters the bandwidth of a receiver.
  • Patent Document 4 discloses a transceiver that cancels out third-order distortion generated by a transmission signal leaking to the receiver side with the second-order distortion and the transmission signal.
  • Patent Document 1 discloses an example of a transmission / reception shared wireless device that can be miniaturized.
  • the wireless communication device transmission / reception device
  • the wireless communication device still has a circuit without reducing the quality of the received signal.
  • the present invention has been made in order to solve such problems, and by including a low noise amplification unit composed of a plurality of amplifiers provided in parallel, the circuit scale can be reduced without degrading the quality of the received signal. It is an object to provide a transmission / reception apparatus and a transmission / reception method that can reduce the size of the apparatus by reducing the size of the apparatus.
  • the transmission / reception device includes a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside, and the reception signal supplied via the filter A low noise amplification unit, and a demodulation unit that demodulates an output signal of the low noise amplification unit and outputs a reception baseband signal, and the low noise amplification unit includes a plurality of amplifiers provided in parallel Have
  • a transmission / reception method is provided in parallel with the reception signal supplied via a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside. Amplifying using a plurality of amplifiers, demodulating a combined signal of the output signals of the plurality of amplifiers, and outputting a received baseband signal.
  • the circuit size can be reduced and the apparatus can be reduced in size without reducing the quality of the received signal.
  • a possible transmission / reception apparatus and transmission / reception method can be provided.
  • FIG. 1 is a block diagram illustrating an outline of a transmission / reception device according to Embodiment 1.
  • FIG. 3 is a block diagram showing a specific configuration of a transmission / reception device according to Embodiment 1.
  • FIG. 6 is a block diagram illustrating a first modification of the transmission / reception apparatus according to Embodiment 1.
  • FIG. 10 is a block diagram illustrating a first modification of the transmission / reception device according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a transmission / reception device according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a first modification of the transmission / reception device according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device according to Embodiment 3. It is a figure which shows the spectrum of each signal on a receiving path.
  • FIG. 10 is a block diagram illustrating a third modification of the transmission / reception device according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a fourth modification of the transmission / reception device according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a transmission / reception device according to a fourth embodiment.
  • the constituent elements are not necessarily essential unless otherwise specified or apparently essential in principle.
  • the shapes when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
  • FIG. 1 is a block diagram showing a transmitting / receiving apparatus 1 according to the first embodiment.
  • the transmission / reception apparatus 1 according to the present embodiment is used in, for example, a mobile phone base station and the like, and a low-noise amplification that amplifies the reception signal supplied via the filter shared by the transmission signal and the reception signal And a demodulator that demodulates an output signal of the low noise amplifier and outputs a received baseband signal, and the low noise amplifier includes a plurality of amplifiers provided in parallel.
  • the low noise amplification unit is affected by a transmission signal component leaking from the transmission path to the reception path through the filter or an interference wave mixed in the reception path from the outside through the filter. It becomes difficult.
  • the attenuation characteristic required for the filter is relaxed, so that the number of resonator stages (number) provided in the cavity type filter can be reduced and the filter can be downsized.
  • the transmitter / receiver 1 can reduce the size of the device by reducing the circuit scale without degrading the quality of the received signal. This will be specifically described below.
  • the transmission / reception device 1 employs a direct conversion transmission / reception system, and includes a filter 11, a low noise amplification unit 12, and an orthogonal demodulation unit 13.
  • the filter 11 is shared by, for example, a high-frequency transmission signal that is wirelessly transmitted to the outside via an input / output terminal such as an antenna, and a high-frequency reception signal that is wirelessly received from the outside via the input / output terminal.
  • the transmission / reception device 1 can simultaneously transmit and receive via the common input / output terminal.
  • the filter 11 is a filter used in an FDD (Frequency Division Duplexing) system that realizes simultaneous transmission and reception by separating the frequency bands of the transmission signal and the reception signal.
  • the filter 11 constitutes a duplexer that demultiplexes the transmission signal and the reception signal.
  • a case where the filter 11 is a filter used in the FDD method will be described as an example.
  • the filter 11 is a filter used for a TDD (Time Division Duplexing) system that realizes simultaneous simultaneous transmission and reception by time-division multiplexing a transmission signal and a reception signal.
  • the filter 11 constitutes a band pass filter through which the transmission signal and the reception signal pass.
  • a switch circuit (not shown) that switches the filtering path to the transmission signal side and the reception signal side in a time division manner is further provided.
  • the filter 11 is required to have low loss in the pass band and steep attenuation characteristics outside the band.
  • the filter 11 is a cavity type configured by using a plurality of resonators having a high Q value (approximately Q value of approximately 1000 or more) such as a semi-coaxial resonator or a TE01 ⁇ mode dielectric resonator.
  • a filter is used. Since the physical dimension of the cavity type filter 11 is determined by the wavelength of the resonance frequency, the filter 11 becomes large especially when the resonance frequency is lowered. That is, the cavity-type filter 11 is a main factor for increasing the circuit scale of the transceiver 1.
  • the low noise amplifying unit 12 amplifies the received signal supplied through the filter 11 with low noise.
  • the low noise amplification unit 12 includes an amplifier (first amplifier) 121, an amplifier (second amplifier) 122, a distributor 123, and a combiner 124.
  • the distributor 123 distributes and outputs the reception signal supplied via the filter 11. In the present embodiment, distributor 123 distributes and outputs the received signal to two according to the number of amplifiers. Further, in the present embodiment, distributor 123 distributes the received signal into two distributed signals having the same phase and outputs them.
  • the amplifiers 121 and 122 are provided in parallel, and amplify and output the two distribution signals output from the distributor 123, respectively.
  • the synthesizer 124 synthesizes the output signals of the amplifiers 121 and 122 and outputs them as an output signal of the low noise amplifying unit 12.
  • the orthogonal demodulator 13 demodulates the high-frequency signal output from the low noise amplifier 12 and outputs baseband signals Irx and Qrx. More specifically, the quadrature demodulator 13 mixes the high-frequency signal output from the low-noise amplifier 12 and the local oscillation signal LO (not shown), thereby generating a baseband signal (received baseband signal). Irx and Qrx are output. Then, the transmission / reception device 1 executes predetermined calculation processing based on the received baseband signals Irx and Qrx.
  • the low noise amplifying unit 12 not only amplifies the reception signal supplied to the reception path via the filter 11 from the outside, but also transmits a transmission signal component leaked from the transmission path to the reception path via the filter 11, To the interference wave mixed in the reception path through the filter 11.
  • intermodulation distortion and cross modulation distortion may occur due to these transmission signal components and interference waves. If intermodulation distortion and intermodulation distortion occur, the quality of the received signal may deteriorate.
  • the low noise amplifying unit 12 amplifies the received signal using a plurality of (here, two) amplifiers 121 and 122 provided in parallel. Therefore, the intercept point (more specifically, the third-order intercept point) is higher than when the received signal is amplified using one amplifier. Accordingly, the low noise amplifying unit 12 can reduce unnecessary components such as intermodulation distortion and intermodulation distortion caused by transmission signal components and interference waves. It is hard to receive. That is, by providing the low noise amplifier 12 including a plurality of amplifiers 121 and 122, the allowable amount of transmission signal components and interference waves transmitted to the reception path is increased.
  • the transmission / reception device 1 can reduce the size of the device by reducing the circuit scale without degrading the quality of the received signal. Even considering the increase in the number of parts of the low noise amplifying unit 12 and the increase in the circuit scale caused thereby, the merit of downsizing the transmitter / receiver 1 by downsizing the filter 11 is great.
  • the noise figure and gain characteristics of the low noise amplifying unit 12 are comparable to those of the amplifier alone. Actually, the noise figure and gain characteristics of the low noise amplifying unit 12 are slightly deteriorated due to the insertion loss of the distributor 123, but the number (number) of resonators provided in the cavity filter 11 is reduced. Offset or mitigated by a reduction in insertion loss.
  • the distributor 123 distributes the reception signal to two distribution signals having the same phase and outputs them is described as an example, but the present invention is not limited to this.
  • the distributor 123 may distribute and output the received signal into two distribution signals having different phases.
  • the distributor 123 may distribute and output the received signal into two distribution signals having a phase difference of 180 degrees.
  • the low noise amplifying unit 12 operates as a so-called push-pull type amplifier.
  • the push-pull type low noise amplifying unit 12 can not only improve the third-order intercept point but also suppress even-order harmonic components including DC by balancing.
  • the secondary distortion in the quadrature demodulation unit 13 causes a direct current offset, so that the allowable amount of secondary distortion in the quadrature demodulation unit 13 is small. Therefore, the use of the push-pull type low noise amplifying unit 12 is also effective for keeping the quality of the received signal by suppressing the secondary distortion in the orthogonal demodulating unit 13 to be equal to or less than an allowable amount.
  • the distributor 123 may distribute and output the received signal into two distribution signals having a phase difference of 90 degrees.
  • the low noise amplifier 12 operates as a so-called balanced amplifier.
  • the balanced low noise amplifying unit 12 not only improves the intercept point, but also eliminates the need for an isolator (not shown) provided between the low noise amplifying unit 12 and the filter 11.
  • the reason why the isolator is not required in the balanced low noise amplifying unit 12 will be briefly described.
  • an isolator is provided between the low noise amplifier and the transmission / reception duplexer.
  • the balanced low-noise amplifier 12 amplifies distributed signals having a phase difference of 90 degrees using a plurality of amplifiers 121 and 122 provided in parallel. While performing matching, it is possible to improve the impedance matching state when the amplifiers 121 and 122 are viewed from the output of the distributor 123. Therefore, an isolator for performing impedance matching is not necessary. That is, the balanced low noise amplification unit 12 can perform both noise matching and impedance matching without an isolator.
  • the low noise amplifying unit 12 includes two amplifiers 121 and 122 provided in parallel has been described as an example, but the present invention is not limited thereto.
  • the low noise amplification unit 12 can be appropriately changed to a configuration including three or more amplifiers provided in parallel. By increasing the number of amplifiers, the intercept point can be further improved. On the other hand, an increase in the circuit scale is suppressed by reducing the number of amplifiers.
  • FIG. 2 is a block diagram showing a specific configuration of the transmission / reception device 1 as the transmission / reception device 1a.
  • the transmission / reception device 1a employs a direct conversion transmission / reception system, and includes a local oscillator 14, an AD converter 15, an orthogonal modulation unit 21, a DA converter 22, a local oscillator 24, A high-power amplifier 25 and the antenna 10 are further provided.
  • the DA converter 22 converts digital baseband signals (transmission baseband signals) I and Q into analog signals and outputs them.
  • the quadrature modulation unit 21 modulates the analog baseband signals I and Q output from the DA converter 22 and outputs a high frequency signal. More specifically, the quadrature modulation unit 21 mixes the analog baseband signals I and Q output from the DA converter 22 and the local oscillation signal LO output from the local oscillator 24 to thereby generate a high-frequency signal. Is output.
  • the high-power amplifier 25 amplifies the high-frequency signal output from the quadrature modulation unit 21 and outputs a high-frequency transmission signal. This transmission signal is wirelessly transmitted to the outside through the antenna 10 after unnecessary components are removed by passing through the filter 11.
  • a high-frequency reception signal wirelessly received from the outside via the antenna 10 is supplied to the reception path after unnecessary components are removed by passing through the filter 11.
  • the low noise amplifying unit 12 amplifies the received signal supplied through the filter 11 with low noise.
  • the details of the low noise amplifying unit 12 are as described above.
  • the orthogonal demodulator 13 demodulates the high-frequency signal output from the low noise amplifier 12 and outputs baseband signals Irx and Qrx. More specifically, the quadrature demodulator 13 mixes the high-frequency signal output from the low noise amplifier 12 and the local oscillation signal LO output from the local oscillator 14 to thereby generate baseband signals Irx, Qrx. Is output.
  • the AD converter 15 converts the analog digital baseband signals Irx and Qrx output from the quadrature demodulator 13 into digital signals and outputs them. Then, the transmission / reception device 1 executes predetermined arithmetic processing based on the received baseband signals Irx and Qrx.
  • FIG. 3 is a block diagram illustrating a first modification of the transmission / reception device 1a as the transmission / reception device 1b.
  • the transmission / reception device 1b further includes a distortion compensation unit 20 that compensates for distortion of the transmission signal, as compared with the transmission / reception device 1a.
  • the distortion compensation unit 20 has a so-called digital predistortion type distortion compensation function, and distorts the baseband signals I and Q using a distortion compensation coefficient corresponding to the distortion of the output signal of the high-power amplifier 25. Compensation processing is performed. Details will be described below.
  • the distortion compensator 20 generates a distortion compensation component such that an input signal having the opposite phase and the same amplitude as that of the output signal of the high output amplifier 25 before distortion compensation is input to the high output amplifier 25. It is added to Q and output as baseband signals Ia and Qa. For this reason, the distortion that appears in the output signal of the high-power amplifier 25 before the distortion compensation is canceled out by the input signal of opposite phase. As a result, the high-power amplifier 25 can output a high-quality transmission signal (high-frequency radio signal) with suppressed distortion.
  • the distortion compensator 20 includes an orthogonal demodulator 201, a local oscillator 202, an AD converter 203, a distortion calculator 204, a power calculator 205, a memory 206, a signal processor 207, Is provided.
  • the orthogonal demodulator 201 demodulates the transmission signal (high-frequency radio signal) output from the high-power amplifier 25 and outputs baseband signals (feedback signals) Ib and Qb. More specifically, the quadrature demodulator 201 mixes the transmission signal output from the high-power amplifier 25 and the local oscillation signal LO output from the local oscillator 202, thereby obtaining the baseband signals Ib and Qb. Output.
  • the AD converter 203 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 201 into digital signals and outputs the digital signals.
  • the distortion calculation unit 204 compares the baseband signals I and Q with the baseband signals Ib and Qb, and calculates the distortion of the output signal of the high-power amplifier 25 from the difference.
  • the power calculator 205 calculates the power value or amplitude value of the baseband signals I and Q.
  • the memory 206 stores a plurality of distortion compensation coefficients, and outputs any distortion compensation coefficient selected based on the calculation results of the distortion calculation unit 204 and the power calculation unit 205 to the signal processing unit 207. .
  • the signal processing unit 207 performs distortion compensation processing on the baseband signals I and Q using the distortion compensation coefficient read from the memory 206 and outputs the baseband signals Ia and Qa.
  • the signal processing unit 207 adds distortion compensation components for compensating for distortion of the output signal of the high-power amplifier 25 to the baseband signals I and Q, and outputs the baseband signals Ia and Qa.
  • the baseband signals Ia and Qa that have been subjected to the distortion compensation processing are input to the DA converter 22.
  • the high-power amplifier 25 can output a high-quality transmission signal (high-frequency radio signal) in which distortion is suppressed.
  • the transmission / reception device 1b wirelessly transmits a high-quality transmission signal (high-frequency radio signal) by compensating for distortion of the high-frequency transmission signal output from the high-power amplifier 25 using the distortion compensation unit 20. can do.
  • FIG. 4 is a block diagram illustrating a second modification of the transmission / reception device 1a as the transmission / reception device 1c.
  • the transmission / reception device 1a employs a direct conversion transmission / reception system, while the transmission / reception device 1c employs a superheterodyne transmission / reception system.
  • the transmission / reception device 1c further includes frequency conversion units 16 and 23 as compared with the transmission / reception device 1a.
  • the quadrature modulation unit 21 modulates the baseband signals I and Q and outputs an intermediate signal.
  • the DA converter 22 converts the digital intermediate signal output from the quadrature modulation unit 21 into an analog signal and outputs the analog signal.
  • the frequency converter 23 mixes the analog intermediate signal output from the DA converter 22 and the local oscillation signal LO output from the local oscillator 24, and outputs a high-frequency signal.
  • the high-power amplifier 25 amplifies the high-frequency signal output from the frequency conversion unit 23 and outputs a high-frequency transmission signal.
  • the frequency converter 16 mixes the high-frequency signal output from the low noise amplifier 12 and the local oscillation signal LO output from the local oscillator 14 and outputs an intermediate signal.
  • the AD converter 15 converts the analog intermediate signal output from the frequency converter 16 into a digital signal and outputs the digital signal.
  • the quadrature demodulator 13 demodulates the digital intermediate signal output from the AD converter 15 and outputs baseband signals Irx and Qrx.
  • the transmission / reception device 1c employing the superheterodyne reception system can achieve the same effects as the transmission / reception device 1a employing the direct conversion reception system.
  • FIG. 5 is a block diagram showing the transmitting / receiving apparatus 2 according to the second embodiment.
  • the transmission / reception device 2 further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 1a.
  • the interstage filter 17 removes out-of-band spurious, unnecessary noise, and distortion included in the output signal of the low noise amplification unit 12.
  • the interstage filter 17 is arranged after the low noise amplifying unit 12, the noise figure of the entire apparatus is hardly deteriorated even if the insertion loss is large, and a high-power transmission signal is transmitted to the antenna. There is no direct supply to the interstage filter 17 after total reflection at the end.
  • the interstage filter 17 is configured using a small resonator such as SAW (Surface Acoustic Wave), FBAR (Film Bulk Acoustic Resonator), or TEM-DR (Transverse Electro Magnetic Magnetic Resonator).
  • SAW Surface Acoustic Wave
  • FBAR Fin Bulk Acoustic Resonator
  • TEM-DR Transverse Electro Magnetic Magnetic Resonator
  • FIG. 6 is a block diagram illustrating a first modification of the transmission / reception device 2 as the transmission / reception device 2a.
  • the transmission / reception device 2 a further includes a distortion compensation unit 20 that compensates for distortion of the transmission signal, as compared with the transmission / reception device 2. Since the other configuration of the transmission / reception device 2a is the same as that of the transmission / reception device 2, the description thereof is omitted. The details of the distortion compensator 20 are as described above.
  • FIG. 7 is a block diagram illustrating a second modification of the transmission / reception device 2 as the transmission / reception device 2b.
  • the transmission / reception device 2 employs a direct conversion transmission / reception system, whereas the transmission / reception device 2b employs a superheterodyne transmission / reception system.
  • the transmission / reception device 2 b further includes frequency conversion units 16 and 23 as compared with the transmission / reception device 2. Details of the superheterodyne reception system are as described above.
  • FIG. 8 is a block diagram illustrating the transmission / reception device 3 according to the third embodiment.
  • the transmission / reception device 3 includes a distortion compensation unit 30 that compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component, as compared with the transmission / reception device 1a. Further prepare.
  • the distortion compensation unit 30 has a so-called digital post (post) distortion distortion compensation function, and uses a distortion compensation coefficient corresponding to the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12. Distortion compensation processing is performed on the baseband signals Irx and Qrx. Details will be described below. In this example, the distortion of the transmission signal output from the high-power amplifier 25 is assumed to be negligible.
  • the distortion compensator 30 is configured to reduce the distortion of the received signal component included in the output signal of the low noise amplifier 12 (more specifically, the distortion of the transmission signal component generated between the antenna 10 and the output of the low noise amplifier 12).
  • the baseband signals Irx and Qrxa are added to the baseband signals Irx and Qrx and output as baseband signals Irxa and Qrxa, with the signals having the opposite phase and the same amplitude as the distortion of the baseband signals Irx and Qrx caused by the above. Therefore, the distortions of the baseband signals Irx and Qrx are canceled out by the reverse phase signals. As a result, the received signal is demodulated into baseband signals Irxa and Qrxa while maintaining the quality.
  • the distortion compensation unit 30 includes an orthogonal demodulation unit 301, a local oscillator 302, an AD converter 303, a distortion calculation unit 304, a power calculation unit 305, a memory 306, a signal processing unit 307, Is provided.
  • the orthogonal demodulation unit 301 demodulates the transmission signal component included in the output signal (high frequency signal) of the low noise amplification unit 12 and outputs baseband signals (feedback signals) Ib and Qb. More specifically, the quadrature demodulation unit 301 mixes the transmission signal component included in the output signal of the low noise amplification unit 12 and the local oscillation signal LO output from the local oscillator 302 to thereby generate a baseband signal. Ib and Qb are output.
  • the AD converter 303 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 301 into digital signals and outputs them.
  • the distortion calculation unit 304 compares the baseband signals I and Q with the baseband signals Ib and Qb, and calculates the difference as the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12.
  • the power calculator 305 calculates the power value or the amplitude value of the baseband signals Irx and Qrx.
  • the memory 306 stores a plurality of distortion compensation coefficients, and outputs any distortion compensation coefficient selected based on the calculation results of the distortion calculation unit 304 and the power calculation unit 305 to the signal processing unit 307. .
  • the signal processing unit 307 performs distortion compensation processing on the baseband signals Irx and Qrx using the distortion compensation coefficient read from the memory 306, and outputs the baseband signals Irxa and Qrxa. In other words, the signal processing unit 307 adds distortion compensation components for compensating for distortion of the baseband signals Irx and Qrx to the baseband signals Irx and Qrx, and outputs the baseband signals Irxa and Qrxa.
  • the low noise amplifying unit 12 has a configuration capable of amplifying operation in a wide band, such as a balanced amplifier.
  • the low noise amplifying unit 12 can amplify not only the received signal but also a transmission signal component having a different band in a wide band. Therefore, the low noise amplifying unit 12 can amplify the transmission signal component with substantially the same linearity and nonlinearity as in the case of the reception signal. As a result, the relationship between the transmission signal component and its distortion is close to the relationship between the reception signal and its distortion.
  • the distortion compensator 30 calculates the distortion of the received signal component included in the output signal of the low noise amplifier 12 from the distortion of the transmission signal component included in the output signal of the low noise amplifier 12 calculated by the distortion calculator 304. Is estimated. Then, the distortion compensator 30 performs distortion compensation processing on the baseband signals Irx and Qrx so as to compensate for the distortion of the baseband signals Irx and Qrx caused by the estimated distortion of the received signal component. Apply.
  • the transmission / reception device 3 compensates the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the reception signal component by using the distortion compensation unit 30, so that a high-quality reception signal is obtained. Can be received wirelessly. More specifically, cross modulation distortion that occurs when a transmission signal component and a reception signal component are input to the low noise amplification unit 12, and an interference wave and a transmission signal component that are generated when the transmission signal component is input to the low noise amplification unit 12. It is possible to reduce the influence of cross modulation distortion and the like.
  • the allowable amount of transmission signal components and interference waves transmitted to the reception path is further increased. Therefore, further attenuation of the attenuation characteristic of the filter 11 and relaxation of the intercept point of the low noise amplification unit 12 are possible. That is, according to the distortion compensation capability of the distortion compensation unit 30, the number of stages (number) of the plurality of resonators constituting the filter 11 is reduced, or the number of amplifiers provided in the low noise amplification unit 12 is increased from four, for example. It can be reduced to two.
  • the number of amplifiers provided in the low noise amplification unit 12 can be reduced to one.
  • the low noise amplifying unit 12 can be configured by only a single amplifier capable of performing an amplification operation with low noise. As a result, further downsizing and cost reduction of the transmission / reception device 3 can be realized.
  • the distortion compensation unit 30 dynamically switches and outputs the distortion compensation coefficient according to the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12 has been described as an example. Not limited to this.
  • the distortion compensation unit 30 may output a distortion compensation coefficient based on only the power value and the amplitude value of the power calculation unit 205, or may output a predetermined distortion compensation coefficient statically.
  • FIG. 9 is a block diagram illustrating a first modification of the transmission / reception device 3 as the transmission / reception device 3a.
  • the transmission / reception device 3 a includes a distortion compensation unit 30 a in which the distortion compensation units 20 and 30 are combined in place of the distortion compensation unit 30 as compared with the transmission / reception device 3.
  • the distortion compensation unit 30a includes an orthogonal demodulation unit 301, a local oscillator 302, an AD converter 303, a distortion calculation unit 304, a power calculation unit 305, a memory 306, and a signal processing unit 307.
  • a selection unit SW1, a power calculation unit 308, a memory 309, and a signal processing unit 310 are further provided.
  • the power calculation unit 308, the memory 309, and the signal processing unit 310 correspond to the power calculation unit 205, the memory 206, and the signal processing unit 207, respectively.
  • the selection unit SW1 selectively outputs either the output signal of the high output amplifier 25 or the transmission signal component included in the output signal of the low noise amplification unit 12.
  • the selection unit SW1 selects and outputs the output signal of the high-power amplifier 25 at an arbitrary timing at the time of transmission, and the transmission signal component included in the output signal of the low noise amplification unit 12 at an arbitrary timing at the time of reception. Select and output.
  • the quadrature demodulator 301 demodulates one of the signals selected by the selector SW1 out of the output signal component included in the output signal of the high-power amplifier 25 and the output signal of the low-noise amplifier unit 12. Band signals Ib and Qb are output.
  • the AD converter 303 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 301 into digital signals and outputs them.
  • the distortion calculation unit 304 compares the baseband signals I and Q with the baseband signals Ib and Qb, and uses the difference as the distortion of the output signal of the high output amplifier 25 and the output signal of the low noise amplification unit 12. It is calculated as one of the distortions of the included transmission signal component. Since the description of the power calculation unit 305, the memory 306, and the signal processing unit 307 has been described above, a description thereof will be omitted. The descriptions of the power calculation unit 308, the memory 309, and the signal processing unit 310 are the same as those of the power calculation unit 205, the memory 206, and the signal processing unit 207, respectively.
  • the transmission / reception device 3a not only compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component by using the distortion compensation unit 30a, but also the distortion of the transmission signal. Has also compensated.
  • the transmitter / receiver 3a compensates for distortion of the transmission signal using the distortion compensator 30a, thereby accurately compensating for distortion of the demodulated baseband signals Irx and Qrx caused by distortion of the received signal component. is doing.
  • the distortion compensation unit 30a provided in the transmission / reception device 3a is configured by distortion compensation units 20 and 30 in which most of the components are shared. Therefore, the transmission / reception device 3a can reduce the size of the device while suppressing an increase in circuit scale.
  • FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device 3 as the transmission / reception device 3b.
  • the transmission / reception device 3b further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 3a. Since the other configuration of the transmission / reception device 3b is the same as that of the transmission / reception device 3a, the description thereof is omitted.
  • FIG. 11 is a diagram illustrating the spectrum of each signal on the reception path.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • a high-power interference wave and a low-power received signal are supplied to the antenna 10 from the outside, and a high-power transmission signal component is transmitted from the transmission path via the filter 11 (see A in the figure). ).
  • the filter 11 passes the reception signal in the pass band and attenuates the interference wave and the transmission signal component outside the band (see B in the figure). However, the interference wave and the transmission signal component pass through the filter 11 without being completely attenuated (see also B in the figure).
  • the low noise amplifying unit 12 amplifies and outputs the reception signal, interference wave and transmission signal component supplied via the filter 11 (see C in the figure). At this time, distortion occurs in the output signal of the low noise amplifying unit 12 (see C in the figure).
  • the intercept point of the low noise amplifying unit 12 if the intercept point of the low noise amplifying unit 12 is sufficiently high, the distortion of the output signal of the low noise amplifying unit 12 becomes small enough to be ignored.
  • the distortion compensation can be performed using the subsequent distortion compensation unit 30b, the intercept point of the low noise amplification unit 12 is intentionally lowered, or the number of resonator stages constituting the filter 11 is intentionally reduced. ing. As a result, as described above, distortion occurs in the output signal of the low noise amplifying unit 12.
  • the interstage filter 17 removes out-of-band spurious, unnecessary noise, and distortion included in the output signal of the low noise amplification unit 12. Thereby, the interference wave, the transmission signal component and its distortion are removed, but the received signal and its distortion pass without being removed (see D in the figure).
  • the distortion compensator 30b compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component. Thereby, the distortion of the baseband signals Irx and Qrx is removed (see E in the figure). As a result, the transmission / reception device 3b can wirelessly receive a high-quality reception signal.
  • FIG. 12 is a block diagram illustrating a third modification of the transmission / reception device 3 as the transmission / reception device 3c.
  • the transmission / reception device 3a employs a direct conversion transmission / reception system, whereas the transmission / reception device 3c employs a so-called superheterodyne transmission / reception system.
  • the transmission / reception device 3c includes a distortion compensation unit 30b that further includes a frequency conversion unit 311 and further includes frequency conversion units 16 and 23, instead of the distortion compensation unit 30a, as compared with the transmission / reception device 3a.
  • a distortion compensation unit 30b that further includes a frequency conversion unit 311 and further includes frequency conversion units 16 and 23, instead of the distortion compensation unit 30a, as compared with the transmission / reception device 3a.
  • FIG. 13 is a block diagram illustrating a fourth modification of the transmission / reception device 3 as the transmission / reception device 3d.
  • the transmission / reception device 3 d further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 3 c. Since the other configuration of the transmission / reception device 3d is the same as that of the transmission / reception device 3c, description thereof is omitted.
  • FIG. 14 is a block diagram showing a transmission / reception device 4 according to the fourth embodiment.
  • the transmission / reception device 4 includes a filter 41 and a low noise amplification unit 42 that are configured differently from the filter 11 and the low noise amplification unit 12 provided in the transmission / reception device 1a.
  • the filter 41 removes unnecessary components of the received signal (high-frequency radio signal) wirelessly received from the outside via the antenna 10, and then distributes and outputs the two signals.
  • the filter 41 outputs two distribution signals that are 180 degrees out of phase with respect to the received signal.
  • the low noise amplifying unit 42 does not have the distributor 123, and the amplifiers 121 and 122 amplify and output two distribution signals having different 180 phases output directly from the filter 41, respectively.
  • the synthesizer 124 synthesizes the output signals of the amplifiers 121 and 122 and outputs them as an output signal of the low noise amplification unit 42. That is, the low noise amplification unit 42 operates as a push-pull type amplifier.
  • FIG. 15 is a diagram showing an equivalent circuit of the transmission / reception device 4 shown in FIG.
  • the equivalent circuit of the filter 41 includes a filter 11 and a transformer T1 that constitutes an unbalanced / balanced converter.
  • a reception signal (high-frequency radio signal) supplied via the filter 11 flows through the transformer T1.
  • two distributed signals having a phase difference of 180 degrees are generated at both ends of the output of the transformer T1.
  • 16 and 17 are cross-sectional views of the filter 41 as seen from the plane and side, respectively. 16 and 17 show the right-handed xyz coordinates for convenience.
  • the xy plane in FIG. 16 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
  • semi-coaxial resonators 51 to 5n are provided in each of a plurality of cavities 62 formed surrounded by the chassis 61.
  • Each of these semi-coaxial resonators 51 to 5n has a cylindrical shape extending along the z-axis direction.
  • the height (the length in the z-axis direction) of the semi-coaxial resonator 51 provided at the output stage on the reception path side is approximately twice the height of the remaining semi-coaxial resonators 52 to 5n. It is.
  • the semi-coaxial resonator 51 is a ⁇ / 2 resonator
  • each of the semi-coaxial resonators 52 to 5n is a ⁇ / 4 resonator.
  • two distribution signals that are 180 degrees out of phase from the upper and lower ends of the semi-coaxial resonator 51 are output from the terminals OUT1 and OUT2, respectively.
  • the transmission / reception device 4 can also achieve the same effects as the transmission / reception device 1a and the like.
  • the transmission / reception apparatus includes the low noise amplification unit including a plurality of amplifiers provided in parallel on the reception path.
  • the low noise amplification unit is affected by a transmission signal component leaking from the transmission path to the reception path through the filter or an interference wave mixed in the reception path from the outside through the filter. It becomes difficult.
  • the attenuation characteristic required for the filter is relaxed, so that the number of resonator stages (number) provided in the cavity type filter can be reduced and the filter can be downsized.
  • the transmission / reception apparatus can reduce the circuit size and the size of the apparatus without degrading the quality of the received signal.
  • the transmission / reception apparatus compensates for the distortion of the demodulated baseband signal caused by the distortion of the received signal component by using the distortion compensation unit, thereby obtaining a high-quality received signal. Can be received wirelessly.
  • the low noise amplification unit is A transmission / reception apparatus having a plurality of amplifiers provided in parallel.
  • the low noise amplification unit is A distributor for distributing the received signal into first and second distribution signals having the same phase, a phase different by 90 degrees, or a phase different by 180 degrees; First and second amplifiers as the plurality of amplifiers for amplifying the first and second distribution signals, respectively;
  • Supplementary note 1 or 2 further comprising a distortion compensation unit that performs distortion compensation processing on the received baseband signal using a distortion compensation coefficient corresponding to distortion of a transmission signal component included in an output signal of the low noise amplification unit.
  • a distortion compensation unit that performs distortion compensation processing on the received baseband signal using a distortion compensation coefficient corresponding to distortion of a transmission signal component included in an output signal of the low noise amplification unit.
  • the distortion compensation unit A demodulator that demodulates the transmission signal component contained in the output signal of the low noise amplifier and outputs a feedback signal;
  • a distortion calculation unit that calculates distortion of the transmission signal component included in the output signal of the low noise amplification unit based on a comparison result between the feedback signal and a transmission baseband signal before modulation into the transmission signal
  • a signal processing unit that performs distortion compensation processing on the received baseband signal using a distortion compensation coefficient according to the calculation result of the distortion calculation unit;
  • the transmitting / receiving apparatus comprising:
  • Appendix 5 A modulation unit that modulates the transmission baseband signal and outputs a high-frequency signal; A high-power amplifier that amplifies the high-frequency signal and outputs the transmission signal, and The transmission / reception apparatus according to appendix 3, wherein the distortion compensation unit further performs distortion compensation processing on the transmission baseband signal using a distortion compensation coefficient corresponding to distortion of an output signal of the high-power amplifier.
  • the distortion compensation unit A selector that selectively outputs one of the output signal of the high-power amplifier and the transmission signal component included in the output signal of the low-noise amplifier; A demodulator that demodulates the output signal of the selector and outputs a feedback signal; Based on the result of comparing the feedback signal and the transmission baseband signal, distortion of the output signal of the high-power amplifier, and distortion of the transmission signal component included in the output signal of the low-noise amplifier, A distortion calculation unit for calculating any one of Appendix 5 comprising: a signal processing unit that performs distortion compensation processing on either the transmission baseband signal or the reception baseband signal using a distortion compensation coefficient corresponding to the calculation result of the distortion calculation unit.
  • the transmitting / receiving apparatus according to 1.
  • the distortion compensator calculates a distortion of the received signal component included in the output signal of the low noise amplification unit from the distortion of the transmission signal component included in the output signal of the low noise amplification unit calculated by the distortion calculation unit. Additional distortion 4 or 6, wherein the received baseband signal is subjected to a distortion compensation process so as to compensate for the distortion of the received baseband signal caused by the estimated distortion of the received signal component.
  • Appendix 8 The transmission / reception apparatus according to any one of appendices 1 to 7, wherein the demodulation unit outputs the reception baseband signal by mixing an output signal of the low noise amplification unit and a local oscillation signal.
  • Appendix 10 The transmission / reception apparatus according to appendix 9, wherein the interstage filter is a block-type or monoblock-type filter configured using any one of SAW, FBAR, and TEM-DR resonators.
  • Appendix 11 The transmitting / receiving apparatus according to any one of appendices 1 to 10, wherein the filter is a cavity type filter configured using a plurality of resonators.
  • the filter is a cavity-type filter configured using a plurality of semi-coaxial resonators,
  • the axial length of the resonator provided in the output stage on the reception path side among the plurality of resonators is approximately twice the axial length of the remaining resonators,
  • the filter outputs first and second distribution signals that are 180 degrees out of phase from both ends of the resonator provided in the output stage on the reception path side,
  • the low noise amplification unit is First and second amplifiers as the plurality of amplifiers for amplifying the first and second distribution signals, respectively;
  • Appendix 14 Distributing the received signal into first and second distribution signals having the same phase, 90 degrees different phases, or 180 degrees different phases; Amplifying the first and second distribution signals using first and second amplifiers as the plurality of amplifiers, respectively; 14. The transmission / reception method according to appendix 13, wherein the output signals of the first and second amplifiers are combined and output.
  • Appendix 15 15. The transmission / reception method according to appendix 13 or 14, wherein distortion compensation processing is performed on the received baseband signal using a distortion compensation coefficient corresponding to distortion of a transmission signal component included in the synthesized signal.
  • (Appendix 17) Modulate the transmission baseband signal and output a high-frequency signal, Amplifying the high-frequency signal by a high-power amplifier to output the transmission signal;
  • (Appendix 18) In the distortion compensation process, Selectively output one of the output signal of the high-power amplifier and the transmission signal component included in the combined signal; Demodulate the selectively output signal and output a feedback signal, Based on the comparison result between the feedback signal and the transmission baseband signal, one of distortion of the output signal of the high-power amplifier and distortion of the transmission signal component included in the synthesized signal is calculated. And 18. The transmission / reception method according to appendix 17, wherein distortion compensation processing is performed on the received baseband signal using a distortion compensation coefficient corresponding to the calculation result.

Abstract

According to one embodiment of the present invention, a transceiving device (1) is provided with: a filter (11) that is shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside; a low noise amplification unit (12) that amplifies a reception signal supplied via the filter (11); and an orthogonal demodulation unit (13) that demodulates an output signal of the low noise amplification unit (12) to output baseband signals (Irx, Qrx). The low noise amplification unit (12) has a plurality of amplifiers (121, 122) provided in parallel.

Description

送受信装置及び送受信方法Transmission / reception apparatus and transmission / reception method
 本発明は送受信装置及び送受信方法に関し、特に回路規模を小さくして装置を小型化するのに適した送受信装置及び送受信方法に関する。 The present invention relates to a transmission / reception device and a transmission / reception method, and more particularly to a transmission / reception device and a transmission / reception method suitable for downsizing a device by reducing a circuit scale.
 携帯電話基地局等の無線通信装置には、送信信号及び受信信号によって共用される送受信分波器(フィルタ)が搭載されている。この送受信分波器には、通過帯域の低損失性及び帯域外の急峻な減衰特性が求められている。この要求を満たすため、送受信分波器には、一般的に、半同軸共振器やTE01δモード誘電体共振器(DR(Dielectric Resonator))等の高いQ値(概ね1000以上のQ値)の共振器を複数用いて構成されたキャビティ型の送受信分波器が用いられている。 A wireless communication device such as a mobile phone base station is equipped with a transmission / reception duplexer (filter) shared by a transmission signal and a reception signal. This transmission / reception duplexer is required to have a low loss in the pass band and a steep attenuation characteristic outside the band. In order to satisfy this requirement, the transmission / reception duplexer generally has a resonance with a high Q value (Q value of approximately 1000 or more) such as a semi-coaxial resonator or a TE01δ mode dielectric resonator (DR (Dielectric Resonator)). A cavity-type transmission / reception duplexer configured using a plurality of filters is used.
 しかしながら、このキャビティ型の送受信分波器の物理的な寸法は、信号周波数の波長によって決定されるため、特に共振周波数を低くしようとすると送受信分波器が大型化してしまう。その結果、無線通信装置の回路規模が増大してしまっていた。 However, since the physical dimensions of the cavity-type transmission / reception duplexer are determined by the wavelength of the signal frequency, the transmission / reception duplexer is particularly large when the resonance frequency is lowered. As a result, the circuit scale of the wireless communication device has increased.
 仮に、無線通信装置の小型化のため、キャビティ型の送受信分波器を構成する共振器の段数(個数)を減らすと、送受信分波器の減衰特性が劣化してしまう。それにより、送信経路から送受信分波器を介して受信経路にリークする(回り込む)送信信号成分、及び、外部から送受信分波器を介して受信経路に混入する妨害波が十分に減衰されなくなる。そのため、送信信号成分及び妨害波に起因して相互変調歪及び混変調歪が発生しやすくなる。その結果、受信信号の品質が劣化してしまう可能性がある。 Temporarily, if the number of resonators constituting the cavity type transmission / reception duplexer is reduced to reduce the size of the radio communication device, the attenuation characteristics of the transmission / reception duplexer will deteriorate. As a result, the transmission signal component leaking (wrapping around) from the transmission path to the reception path via the transmission / reception demultiplexer and the interference wave mixed into the reception path from the outside via the transmission / reception demultiplexer are not sufficiently attenuated. For this reason, intermodulation distortion and intermodulation distortion are likely to occur due to the transmission signal component and the interference wave. As a result, the quality of the received signal may be degraded.
 また、無線通信装置の小型化のため、無線通信装置に搭載される送受信分波器として、キャビティ型の送受信分波器に代えて、小型のブロック型又はモノブロック型の送受信分波器を用いることも考えられる。これら小型のブロック型又はモノブロック型の送受信分波器は、例えば、SAW(Surface Acoustic Wave)、FBAR(Film Bulk Acoustic Resonator)、又は、TEM-DR(Transverse Electro Magnetic - Dielectric Resonator)等の小型の共振器を用いて構成されている。これら小型の共振器は、微小な間隙や誘電体を充填した小径の共振器であるため、これらが搭載されたブロック型又はモノブロック型の送受信分波器は、キャビティ型の送受信分波器に比べて、耐電圧及び耐電力が低い。 Further, in order to reduce the size of the wireless communication device, a small block type or monoblock type transmission / reception duplexer is used instead of the cavity type transmission / reception duplexer as the transmission / reception duplexer mounted on the wireless communication device. It is also possible. These small block-type or mono-block type transmission / reception demultiplexers are, for example, small-sized SAW (Surface-Acoustic-Wave), FBAR (Film-Bulk-Acoustic-Resonator), or TEM-DR (Transverse-Electro-Magnetic--Dielectric-Resonator). It is configured using a resonator. Since these small resonators are small-diameter resonators filled with a minute gap or a dielectric, a block type or monoblock type transmission / reception duplexer on which these are mounted is a cavity type transmission / reception duplexer. Compared with the withstand voltage and power, the withstand voltage is low.
 ここで、マクロ基地局と呼ばれる携帯電話基地局等の無線通信装置は、概ね10ワット程度かそれ以上の大電力の送信信号を無線送信している。そのため、送信系フィルタはもとより、たとえ受信系フィルタにおいて受信信号が微小電力だとしても、たとえば、送受信アンテナの反射係数の悪化や接続不良により、無線通信装置に搭載された送受信分波器には、受信帯域外において大電力の送信信号が印加される可能性がある。そのため、無線通信装置に搭載される送受信分波器として、概ね数ワット程度の低い耐電力の小型のブロック型又はモノブロック型の送受信分波器を用いると、送受信分波器の性能が劣化したり、送受信分波器が破壊に至ってしまう可能性がある。 Here, a wireless communication apparatus such as a mobile phone base station called a macro base station wirelessly transmits a high-power transmission signal of about 10 watts or more. Therefore, even if the received signal is very small power in the reception system filter as well as the transmission system filter, for example, due to the deterioration of the reflection coefficient of the transmission / reception antenna or poor connection, the transmission / reception duplexer mounted in the wireless communication device There is a possibility that a high-power transmission signal is applied outside the reception band. For this reason, if a small block type or monoblock type transmission / reception duplexer with a low power resistance of about several watts is used as the transmission / reception duplexer mounted in the wireless communication device, the performance of the transmission / reception duplexer deteriorates. Or the transmission / reception duplexer may be destroyed.
 さらに、ブロック型又はモノブロック型の送受信分波器の通過損失はキャビティ型の送受信分波器の場合と比較して大きい。そのため、無線通信装置に搭載される送受信分波器として、ブロック型又はモノブロック型の送受信分波器を用いると、受信信号の品質が劣化してしまう可能性がある。 Furthermore, the passage loss of the block type or monoblock type transmission / reception duplexer is larger than that of the cavity type transmission / reception duplexer. Therefore, if a block-type or monoblock-type transmission / reception duplexer is used as the transmission / reception duplexer mounted in the wireless communication apparatus, the quality of the received signal may be deteriorated.
 これらのことから、無線通信装置に搭載される送受信分波器として、キャビティ型の送受信分波器に代えて、ブロック型又はモノブロック型の送受信分波器を用いることは困難である。 For these reasons, it is difficult to use a block type or monoblock type transmission / reception demultiplexer instead of the cavity type transmission / reception demultiplexer as the transmission / reception demultiplexer mounted on the wireless communication apparatus.
 関連する技術が特許文献1に開示されている。特許文献1には、送信用高出力コンバータと受信用低雑音コンバータとの共通入出力部に送受分波器を設けて送信信号の受信側への回り込みを防止するように構成したマイクロ波帯の送受信共用無線装置が開示されている。この送受信共用無線装置は、受信用低雑音コンバータ内に設けた低雑音増幅部を、縦続接続した初段増幅素子および後段増幅素子と、これら増幅素子の間に介挿して送信周波数帯域を抑圧する段間フィルタと、により構成している。それにより、受信側への送信信号の漏れ込みを防止するために必要とされる送信周波数帯域における減衰量を、送受分波器と段間フィルタとに分散させて受け持たせることが可能となる。その結果、送受分波器の小型化が可能となる。 Related technology is disclosed in Patent Document 1. Patent Document 1 discloses a microwave band configured to provide a transmission / reception duplexer in a common input / output unit of a transmission high-power converter and a reception low-noise converter to prevent a transmission signal from wrapping around to a reception side. A transmission / reception shared wireless device is disclosed. This transmission / reception shared radio device includes a low-noise amplifier provided in a low-noise converter for reception, a first-stage amplifier element and a subsequent-stage amplifier element connected in cascade, and a stage for suppressing a transmission frequency band between the amplifier elements. And an inter-filter. As a result, the attenuation amount in the transmission frequency band required to prevent the leakage of the transmission signal to the reception side can be distributed to the transmitter / receiver demultiplexer and the interstage filter. . As a result, the size of the transmitter / receiver duplexer can be reduced.
 特許文献2には、増幅器を前置増幅器と主増幅器の2つに分けてその間に中間フィルタを挿入し、入力側フィルタ、出力側フィルタに対する要求性能の一部をこの中間フィルタに分担させる中継増幅装置が開示されている。 In Patent Document 2, the amplifier is divided into a preamplifier and a main amplifier, an intermediate filter is inserted between them, and a part of required performance for the input side filter and output side filter is shared by this intermediate filter. An apparatus is disclosed.
 特許文献3には、受信機の帯域幅に入ってくる送信機からのスペクトル成分を打ち消すキャンセラ装置が開示されている。特許文献4には、受信機側にリークする送信信号により発生する3次歪を、2次歪と送信信号とで相殺する送受信機が開示されている。 Patent Document 3 discloses a canceller device that cancels a spectral component from a transmitter that enters the bandwidth of a receiver. Patent Document 4 discloses a transceiver that cancels out third-order distortion generated by a transmission signal leaking to the receiver side with the second-order distortion and the transmission signal.
特許第2666424号明細書Japanese Patent No. 2666424 特許第2875703号明細書Japanese Patent No. 2875703 特表2003-520549号公報Special table 2003-520549 gazette 特開2012-60433号公報JP 2012-60433 A
 上記したように、特許文献1には小型化を実現可能な送受信共用無線装置の一例が開示されているが、依然として、無線通信装置(送受信装置)には、受信信号の品質を落とすことなく回路規模を小さくして装置を小型化することが求められている。 As described above, Patent Document 1 discloses an example of a transmission / reception shared wireless device that can be miniaturized. However, the wireless communication device (transmission / reception device) still has a circuit without reducing the quality of the received signal. There is a demand for downsizing the apparatus by reducing the scale.
 本発明は、このような問題点を解決するためになされたものであり、並列に設けられた複数の増幅器からなる低雑音増幅部を備えることにより、受信信号の品質を落とすことなく、回路規模を小さくして装置を小型化することが可能な送受信装置及び送受信方法を提供することを目的とする。 The present invention has been made in order to solve such problems, and by including a low noise amplification unit composed of a plurality of amplifiers provided in parallel, the circuit scale can be reduced without degrading the quality of the received signal. It is an object to provide a transmission / reception apparatus and a transmission / reception method that can reduce the size of the apparatus by reducing the size of the apparatus.
 一実施の形態によれば、送受信装置は、外部に無線送信される送信信号と、外部から無線受信される受信信号と、により共用されるフィルタと、前記フィルタを介して供給された前記受信信号を増幅する低雑音増幅部と、前記低雑音増幅部の出力信号を復調して受信ベースバンド信号を出力する復調部と、を備え、前記低雑音増幅部は、並列に設けられた複数の増幅器を有する。 According to an embodiment, the transmission / reception device includes a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside, and the reception signal supplied via the filter A low noise amplification unit, and a demodulation unit that demodulates an output signal of the low noise amplification unit and outputs a reception baseband signal, and the low noise amplification unit includes a plurality of amplifiers provided in parallel Have
 一実施の形態によれば、送受信方法は、外部に無線送信される送信信号と外部から無線受信される受信信号とにより共用されるフィルタを介して供給された前記受信信号を、並列に設けられた複数の増幅器を用いて増幅し、前記複数の増幅器のそれぞれの出力信号の合成信号を復調して受信ベースバンド信号を出力する。 According to an embodiment, a transmission / reception method is provided in parallel with the reception signal supplied via a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside. Amplifying using a plurality of amplifiers, demodulating a combined signal of the output signals of the plurality of amplifiers, and outputting a received baseband signal.
 前記一実施の形態によれば、並列に設けられた複数の増幅器からなる低雑音増幅部を備えることにより、受信信号の品質を落とすことなく、回路規模を小さくして装置を小型化することが可能な送受信装置及び送受信方法を提供することができる。 According to the one embodiment, by including the low noise amplifying unit including a plurality of amplifiers provided in parallel, the circuit size can be reduced and the apparatus can be reduced in size without reducing the quality of the received signal. A possible transmission / reception apparatus and transmission / reception method can be provided.
実施の形態1に係る送受信装置の概略を示すブロック図である。1 is a block diagram illustrating an outline of a transmission / reception device according to Embodiment 1. FIG. 実施の形態1に係る送受信装置の具体的構成を示すブロック図である。3 is a block diagram showing a specific configuration of a transmission / reception device according to Embodiment 1. FIG. 実施の形態1に係る送受信装置の第1変形例を示すブロック図である。6 is a block diagram illustrating a first modification of the transmission / reception apparatus according to Embodiment 1. FIG. 実施の形態1に係る送受信装置の第2変形例を示すブロック図である。FIG. 10 is a block diagram showing a second modification of the transmission / reception device according to Embodiment 1. 実施の形態2に係る送受信装置を示すブロック図である。6 is a block diagram showing a transmission / reception device according to Embodiment 2. FIG. 実施の形態2に係る送受信装置の第1変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a first modification of the transmission / reception device according to the second embodiment. 実施の形態2に係る送受信装置の第2変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device according to the second embodiment. 実施の形態3に係る送受信装置を示すブロック図である。FIG. 10 is a block diagram illustrating a transmission / reception device according to a third embodiment. 実施の形態3に係る送受信装置の第1変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a first modification of the transmission / reception device according to Embodiment 3. 実施の形態3に係る送受信装置の第2変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device according to Embodiment 3. 受信経路上の各信号のスペクトラムを示す図である。It is a figure which shows the spectrum of each signal on a receiving path. 実施の形態3に係る送受信装置の第3変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a third modification of the transmission / reception device according to Embodiment 3. 実施の形態3に係る送受信装置の第4変形例を示すブロック図である。FIG. 10 is a block diagram illustrating a fourth modification of the transmission / reception device according to Embodiment 3. 実施の形態4に係る送受信装置を示すブロック図である。FIG. 10 is a block diagram illustrating a transmission / reception device according to a fourth embodiment. 図14に示す送受信装置の等価回路を示す図である。It is a figure which shows the equivalent circuit of the transmission / reception apparatus shown in FIG. 図14に示す送受信装置に設けられたフィルタを平面から見た断面図である。It is sectional drawing which looked at the filter provided in the transmission / reception apparatus shown in FIG. 14 from the plane. 図14に示す送受信装置に設けられたフィルタを側面から見た断面図である。It is sectional drawing which looked at the filter provided in the transmission / reception apparatus shown in FIG. 14 from the side surface.
 以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. Since the drawings are simple, the technical scope of the embodiments should not be narrowly interpreted based on the description of the drawings. Moreover, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Are partly or entirely modified, application examples, detailed explanations, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。 Furthermore, in the following embodiments, the constituent elements (including operation steps and the like) are not necessarily essential unless otherwise specified or apparently essential in principle. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
<実施の形態1>
 図1は、実施の形態1に係る送受信装置1を示すブロック図である。本実施の形態に係る送受信装置1は、例えば、携帯電話基地局等に用いられ、送信信号と受信信号とにより共用されるフィルタと、フィルタを介して供給された受信信号を増幅する低雑音増幅部と、低雑音増幅部の出力信号を復調して受信ベースバンド信号を出力する復調部と、を備え、低雑音増幅部は、並列に設けられた複数の増幅器を有する。それにより、低雑音増幅部は、インターセプトポイントが向上するため、送信経路からフィルタを介して受信経路にリークする送信信号成分や、外部からフィルタを介して受信経路に混入する妨害波の影響を受けにくくなる。それにより、フィルタに対して要求される減衰特性が緩和されるため、キャビティ型のフィルタに設けられた共振器の段数(個数)を少なくして当該フィルタを小型化することができる。その結果、送受信装置1は、受信信号の品質を落とすことなく、回路規模を小さくして装置を小型化することができる。以下、具体的に説明する。
<Embodiment 1>
FIG. 1 is a block diagram showing a transmitting / receiving apparatus 1 according to the first embodiment. The transmission / reception apparatus 1 according to the present embodiment is used in, for example, a mobile phone base station and the like, and a low-noise amplification that amplifies the reception signal supplied via the filter shared by the transmission signal and the reception signal And a demodulator that demodulates an output signal of the low noise amplifier and outputs a received baseband signal, and the low noise amplifier includes a plurality of amplifiers provided in parallel. As a result, since the intercept point is improved, the low noise amplification unit is affected by a transmission signal component leaking from the transmission path to the reception path through the filter or an interference wave mixed in the reception path from the outside through the filter. It becomes difficult. As a result, the attenuation characteristic required for the filter is relaxed, so that the number of resonator stages (number) provided in the cavity type filter can be reduced and the filter can be downsized. As a result, the transmitter / receiver 1 can reduce the size of the device by reducing the circuit scale without degrading the quality of the received signal. This will be specifically described below.
 図1に示すように、送受信装置1は、ダイレクトコンバージョン方式の送受信システムを採用しており、フィルタ11と、低雑音増幅部12と、直交復調部13と、を備える。 As shown in FIG. 1, the transmission / reception device 1 employs a direct conversion transmission / reception system, and includes a filter 11, a low noise amplification unit 12, and an orthogonal demodulation unit 13.
 フィルタ11は、例えばアンテナ等の入出力端子を介して外部に無線送信される高周波の送信信号と、外部から入出力端子を介して無線受信される高周波の受信信号と、によって共用される。それにより、送受信装置1は、共通の入出力端子を介して同時送受信することが可能となる。 The filter 11 is shared by, for example, a high-frequency transmission signal that is wirelessly transmitted to the outside via an input / output terminal such as an antenna, and a high-frequency reception signal that is wirelessly received from the outside via the input / output terminal. As a result, the transmission / reception device 1 can simultaneously transmit and receive via the common input / output terminal.
 例えば、フィルタ11は、送信信号及び受信信号のそれぞれの周波数帯を別にすることで同時送受信を実現するFDD(Frequency Division Duplexing)方式に用いられるフィルタである。この場合、フィルタ11は、送信信号及び受信信号を分波するデュプレクサを構成している。本実施の形態では、フィルタ11がFDD方式に用いられるフィルタである場合を例に説明する。 For example, the filter 11 is a filter used in an FDD (Frequency Division Duplexing) system that realizes simultaneous transmission and reception by separating the frequency bands of the transmission signal and the reception signal. In this case, the filter 11 constitutes a duplexer that demultiplexes the transmission signal and the reception signal. In the present embodiment, a case where the filter 11 is a filter used in the FDD method will be described as an example.
 あるいは、フィルタ11は、送信信号及び受信信号を時分割多重化することで擬似的に同時送受信を実現するTDD(Time Division Duplexing)方式に用いられるフィルタである。この場合、フィルタ11は、送信信号及び受信信号が通過する帯域通過フィルタを構成する。そして、一般的には、フィルタリング経路を送信信号側及び受信信号側に時分割に切り替えるスイッチ回路(不図示)がさらに設けられる。 Alternatively, the filter 11 is a filter used for a TDD (Time Division Duplexing) system that realizes simultaneous simultaneous transmission and reception by time-division multiplexing a transmission signal and a reception signal. In this case, the filter 11 constitutes a band pass filter through which the transmission signal and the reception signal pass. In general, a switch circuit (not shown) that switches the filtering path to the transmission signal side and the reception signal side in a time division manner is further provided.
 なお、フィルタ11には、通過帯域の低損失性及び帯域外の急峻な減衰特性が求められている。この要求を満たすため、フィルタ11には、例えば、半同軸共振器やTE01δモード誘電体共振器等の高いQ値(概ね1000以上のQ値)の共振器を複数用いて構成されたキャビティ型のフィルタが用いられる。このキャビティ型のフィルタ11の物理的な寸法は、共振周波数の波長によって決定されるため、特に共振周波数を低くしようとするとフィルタ11が大型化してしまう。つまり、キャビティ型のフィルタ11は、送受信装置1の回路規模を大型化する主な要因となっている。 The filter 11 is required to have low loss in the pass band and steep attenuation characteristics outside the band. In order to satisfy this requirement, for example, the filter 11 is a cavity type configured by using a plurality of resonators having a high Q value (approximately Q value of approximately 1000 or more) such as a semi-coaxial resonator or a TE01δ mode dielectric resonator. A filter is used. Since the physical dimension of the cavity type filter 11 is determined by the wavelength of the resonance frequency, the filter 11 becomes large especially when the resonance frequency is lowered. That is, the cavity-type filter 11 is a main factor for increasing the circuit scale of the transceiver 1.
 低雑音増幅部12は、フィルタ11を介して供給された受信信号を低雑音で増幅する。 The low noise amplifying unit 12 amplifies the received signal supplied through the filter 11 with low noise.
 具体的には、低雑音増幅部12は、増幅器(第1増幅器)121と、増幅器(第2増幅器)122と、分配器123と、合成器124と、を有する。 Specifically, the low noise amplification unit 12 includes an amplifier (first amplifier) 121, an amplifier (second amplifier) 122, a distributor 123, and a combiner 124.
 分配器123は、フィルタ11を介して供給された受信信号を分配して出力する。本実施の形態では、分配器123が、増幅器の数に合わせて受信信号を2つに分配して出力している。また、本実施の形態では、分配器123が、受信信号を同位相の2つの分配信号に分配して出力している。 The distributor 123 distributes and outputs the reception signal supplied via the filter 11. In the present embodiment, distributor 123 distributes and outputs the received signal to two according to the number of amplifiers. Further, in the present embodiment, distributor 123 distributes the received signal into two distributed signals having the same phase and outputs them.
 増幅器121,122は、並列に設けられ、分配器123から出力された2つ分配信号をそれぞれ増幅して出力する。 The amplifiers 121 and 122 are provided in parallel, and amplify and output the two distribution signals output from the distributor 123, respectively.
 合成器124は、増幅器121,122のそれぞれの出力信号を合成して、低雑音増幅部12の出力信号として出力する。 The synthesizer 124 synthesizes the output signals of the amplifiers 121 and 122 and outputs them as an output signal of the low noise amplifying unit 12.
 直交復調部13は、低雑音増幅部12から出力された高周波信号を復調してベースバンド信号Irx,Qrxを出力する。より具体的には、直交復調部13は、低雑音増幅部12から出力された高周波信号と、局部発振信号LO(不図示)と、を混合することにより、ベースバンド信号(受信ベースバンド信号)Irx,Qrxを出力する。そして、送受信装置1は、受信したベースバンド信号Irx,Qrxに基づき所定の演算処理を実行する。 The orthogonal demodulator 13 demodulates the high-frequency signal output from the low noise amplifier 12 and outputs baseband signals Irx and Qrx. More specifically, the quadrature demodulator 13 mixes the high-frequency signal output from the low-noise amplifier 12 and the local oscillation signal LO (not shown), thereby generating a baseband signal (received baseband signal). Irx and Qrx are output. Then, the transmission / reception device 1 executes predetermined calculation processing based on the received baseband signals Irx and Qrx.
 なお、実際には、受信経路には、外部からフィルタ11を介して受信信号が供給されるだけでなく、送信経路からフィルタ11を介して送信信号成分がリークしたり、外部からフィルタ11を介して妨害波が混入したりする。特に、小型化を目的としてフィルタ11を構成する共振器の段数を減らした設計の場合には、フィルタ11の減衰特性が劣るため、それが顕著になる(後述)。したがって、低雑音増幅部12は、外部からフィルタ11を介して受信経路に供給された受信信号を増幅するだけでなく、送信経路からフィルタ11を介して受信経路にリークした送信信号成分や、外部からフィルタ11を介して受信経路に混入した妨害波等も増幅する。 Actually, not only the reception signal is supplied to the reception path from the outside through the filter 11, but also the transmission signal component leaks from the transmission path through the filter 11 or from the outside through the filter 11. Disturbing waves. In particular, in the case of a design in which the number of resonators constituting the filter 11 is reduced for the purpose of miniaturization, the attenuation characteristic of the filter 11 is inferior, and this becomes remarkable (described later). Therefore, the low noise amplifying unit 12 not only amplifies the reception signal supplied to the reception path via the filter 11 from the outside, but also transmits a transmission signal component leaked from the transmission path to the reception path via the filter 11, To the interference wave mixed in the reception path through the filter 11.
 仮に、一般的な低雑音増幅器では、これら送信信号成分及び妨害波に起因して相互変調歪及び混変調歪が発生する可能性がある。相互変調歪及び混変調歪が発生すると、受信信号の品質が劣化してしまう可能性がある。 Temporarily, in a general low noise amplifier, intermodulation distortion and cross modulation distortion may occur due to these transmission signal components and interference waves. If intermodulation distortion and intermodulation distortion occur, the quality of the received signal may deteriorate.
 それに対し、低雑音増幅部12は、並列に設けられた複数(ここでは2つ)の増幅器121,122を用いて受信信号を増幅している。したがって、1つの増幅器を用いて受信信号を増幅する場合よりも、インターセプトポイント(より詳細には、3次のインターセプトポイント)が高い。それにより、低雑音増幅部12は、送信信号成分や妨害波に起因して発生する相互変調歪及び混変調歪等の不要成分を低減することができるため、これら送信信号成分や妨害波の影響を受けにくい。即ち、複数の増幅器121,122からなる低雑音増幅器12を設けることで、受信経路に伝達される送信信号成分及び妨害波の許容量が大きくなる。 On the other hand, the low noise amplifying unit 12 amplifies the received signal using a plurality of (here, two) amplifiers 121 and 122 provided in parallel. Therefore, the intercept point (more specifically, the third-order intercept point) is higher than when the received signal is amplified using one amplifier. Accordingly, the low noise amplifying unit 12 can reduce unnecessary components such as intermodulation distortion and intermodulation distortion caused by transmission signal components and interference waves. It is hard to receive. That is, by providing the low noise amplifier 12 including a plurality of amplifiers 121 and 122, the allowable amount of transmission signal components and interference waves transmitted to the reception path is increased.
 そのため、フィルタ11に対して要求される減衰特性の緩和が可能である。つまり、キャビティ型のフィルタ11に設けられた共振器の段数(個数)を少なくすることが可能である。それにより、送受信装置1は、受信信号の品質を落とすことなく、回路規模を小さくして装置を小型化することができる。低雑音増幅部12の部品点数の増加やそれによる回路規模の増大分を考慮しても、フィルタ11を小型化することによる送受信装置1の小型化のメリットは大きい。 Therefore, attenuation characteristics required for the filter 11 can be relaxed. That is, it is possible to reduce the number of stages (number) of resonators provided in the cavity type filter 11. As a result, the transmission / reception device 1 can reduce the size of the device by reducing the circuit scale without degrading the quality of the received signal. Even considering the increase in the number of parts of the low noise amplifying unit 12 and the increase in the circuit scale caused thereby, the merit of downsizing the transmitter / receiver 1 by downsizing the filter 11 is great.
 なお、低雑音増幅部12の雑音指数や利得特性は、増幅器単体の場合と同等程度である。実際には、低雑音増幅部12の雑音指数や利得特性は、分配器123の挿入損失の影響で若干劣化するが、キャビティ型のフィルタ11に設けられた共振器の段数(個数)を削減することによる挿入損失の低減により相殺又は緩和される。 Note that the noise figure and gain characteristics of the low noise amplifying unit 12 are comparable to those of the amplifier alone. Actually, the noise figure and gain characteristics of the low noise amplifying unit 12 are slightly deteriorated due to the insertion loss of the distributor 123, but the number (number) of resonators provided in the cavity filter 11 is reduced. Offset or mitigated by a reduction in insertion loss.
 本実施の形態では、分配器123が、受信信号を同位相の2つの分配信号に分配して出力する場合を例に説明したが、これに限られない。分配器123は、受信信号を異なる位相の2つの分配信号に分配して出力してもよい。 In the present embodiment, the case where the distributor 123 distributes the reception signal to two distribution signals having the same phase and outputs them is described as an example, but the present invention is not limited to this. The distributor 123 may distribute and output the received signal into two distribution signals having different phases.
 例えば、分配器123は、受信信号を180度位相の異なる2つの分配信号に分配して出力してもよい。それにより、低雑音増幅部12は、所謂、プッシュプル型の増幅器として動作する。プッシュプル型の低雑音増幅部12は、3次のインターセプトポイントを向上させるだけでなく、平衡化により直流を含む偶数次高調波成分を抑圧することができる。特に、ダイレクトコンバージョン方式の受信システムが採用された送受信装置1では、直交復調部13における2次歪が直流のオフセットを生じさせてしまうため、直交復調部13における2次歪の許容量は小さい。したがって、プッシュプル型の低雑音増幅部12を用いることは、直交復調部13における2次歪を許容量以下に抑えて受信信号の品質を保つためにも有効である。 For example, the distributor 123 may distribute and output the received signal into two distribution signals having a phase difference of 180 degrees. Thereby, the low noise amplifying unit 12 operates as a so-called push-pull type amplifier. The push-pull type low noise amplifying unit 12 can not only improve the third-order intercept point but also suppress even-order harmonic components including DC by balancing. In particular, in the transmission / reception apparatus 1 that employs a direct conversion reception system, the secondary distortion in the quadrature demodulation unit 13 causes a direct current offset, so that the allowable amount of secondary distortion in the quadrature demodulation unit 13 is small. Therefore, the use of the push-pull type low noise amplifying unit 12 is also effective for keeping the quality of the received signal by suppressing the secondary distortion in the orthogonal demodulating unit 13 to be equal to or less than an allowable amount.
 あるいは、分配器123は、受信信号を90度位相の異なる2つの分配信号に分配して出力してもよい。それにより、低雑音増幅部12は、所謂、バランス型増幅器として動作する。バランス型低雑音増幅部12は、インターセプトポイントを向上させるだけでなく、低雑音増幅部12及びフィルタ11との間に設けられるアイソレータ(不図示)を不要とすることができる。以下、バランス型の低雑音増幅部12においてアイソレータが不要になる理由について簡単に説明する。 Alternatively, the distributor 123 may distribute and output the received signal into two distribution signals having a phase difference of 90 degrees. Thereby, the low noise amplifier 12 operates as a so-called balanced amplifier. The balanced low noise amplifying unit 12 not only improves the intercept point, but also eliminates the need for an isolator (not shown) provided between the low noise amplifying unit 12 and the filter 11. Hereinafter, the reason why the isolator is not required in the balanced low noise amplifying unit 12 will be briefly described.
 一般的な低雑音増幅器は、入力整合回路を用いて雑音整合を行うことが多いため、その反射係数は大きくなり、インピーダンス整合状態としては劣化する。この低雑音増幅器の入力側のインピーダンス整合を改善することを目的として、低雑音増幅器と送受信分波器との間には、アイソレータが設けられる。 Since general low noise amplifiers often perform noise matching using an input matching circuit, the reflection coefficient becomes large and the impedance matching state deteriorates. In order to improve impedance matching on the input side of the low noise amplifier, an isolator is provided between the low noise amplifier and the transmission / reception duplexer.
 それに対し、バランス型低雑音増幅部12は、並列に設けられた複数の増幅器121,122を用いて90度位相の異なる分配信号を増幅しているため、各増幅器121,122の入力にて雑音整合を行いながら、分配器123の出力から増幅器121,122側を見たインピーダンス整合状態を改善することができる。そのため、インピーダンス整合を行うためのアイソレータは不要である。つまり、バランス型の低雑音増幅部12は、アイソレータが無くとも雑音整合及びインピーダンス整合を何れも行うことができる。 On the other hand, the balanced low-noise amplifier 12 amplifies distributed signals having a phase difference of 90 degrees using a plurality of amplifiers 121 and 122 provided in parallel. While performing matching, it is possible to improve the impedance matching state when the amplifiers 121 and 122 are viewed from the output of the distributor 123. Therefore, an isolator for performing impedance matching is not necessary. That is, the balanced low noise amplification unit 12 can perform both noise matching and impedance matching without an isolator.
 本実施の形態では、低雑音増幅部12が、並列に設けられた2つの増幅器121,122を備えた場合を例に説明したが、これに限られない。低雑音増幅部12は、並列に設けられた3個以上の増幅器を備えた構成に適宜変更可能である。増幅器の数を増やすことでインターセプトポイントをさらに向上させることができる。他方、増幅器の数を少なくすることで、回路規模の増大が抑制される。 In the present embodiment, the case where the low noise amplifying unit 12 includes two amplifiers 121 and 122 provided in parallel has been described as an example, but the present invention is not limited thereto. The low noise amplification unit 12 can be appropriately changed to a configuration including three or more amplifiers provided in parallel. By increasing the number of amplifiers, the intercept point can be further improved. On the other hand, an increase in the circuit scale is suppressed by reducing the number of amplifiers.
(送受信装置1の具体的な構成)
 図2は、送受信装置1の具体的な構成を送受信装置1aとして示すブロック図である。
(Specific configuration of transmission / reception device 1)
FIG. 2 is a block diagram showing a specific configuration of the transmission / reception device 1 as the transmission / reception device 1a.
 図2に示すように、送受信装置1aは、ダイレクトコンバージョン方式の送受信システムを採用しており、局部発振器14と、ADコンバータ15と、直交変調部21と、DAコンバータ22と、局部発振器24と、高出力増幅器25と、アンテナ10と、をさらに備える。 As shown in FIG. 2, the transmission / reception device 1a employs a direct conversion transmission / reception system, and includes a local oscillator 14, an AD converter 15, an orthogonal modulation unit 21, a DA converter 22, a local oscillator 24, A high-power amplifier 25 and the antenna 10 are further provided.
 まず、送信経路側の回路構成について説明する。
 DAコンバータ22は、デジタルのベースバンド信号(送信ベースバンド信号)I,Qをアナログに変換して出力する。直交変調部21は、DAコンバータ22から出力されたアナログのベースバンド信号I,Qを変調して高周波信号を出力する。より具体的には、直交変調部21は、DAコンバータ22から出力されたアナログのベースバンド信号I,Qと、局部発振器24から出力された局部発振信号LOと、を混合することにより、高周波信号を出力する。
First, the circuit configuration on the transmission path side will be described.
The DA converter 22 converts digital baseband signals (transmission baseband signals) I and Q into analog signals and outputs them. The quadrature modulation unit 21 modulates the analog baseband signals I and Q output from the DA converter 22 and outputs a high frequency signal. More specifically, the quadrature modulation unit 21 mixes the analog baseband signals I and Q output from the DA converter 22 and the local oscillation signal LO output from the local oscillator 24 to thereby generate a high-frequency signal. Is output.
 高出力増幅器25は、直交変調部21から出力された高周波信号を増幅して高周波の送信信号を出力する。この送信信号は、フィルタ11を通過することで不要成分が除去された後、アンテナ10を介して外部に無線送信される。 The high-power amplifier 25 amplifies the high-frequency signal output from the quadrature modulation unit 21 and outputs a high-frequency transmission signal. This transmission signal is wirelessly transmitted to the outside through the antenna 10 after unnecessary components are removed by passing through the filter 11.
 続いて、受信経路側の回路構成について説明する。
 外部からアンテナ10を介して無線受信された高周波の受信信号は、フィルタ11を通過することで不要成分が除去された後、受信経路に供給される。
Next, the circuit configuration on the reception path side will be described.
A high-frequency reception signal wirelessly received from the outside via the antenna 10 is supplied to the reception path after unnecessary components are removed by passing through the filter 11.
 低雑音増幅部12は、フィルタ11を介して供給された受信信号を低雑音で増幅する。低雑音増幅部12の詳細は、前述のとおりである。 The low noise amplifying unit 12 amplifies the received signal supplied through the filter 11 with low noise. The details of the low noise amplifying unit 12 are as described above.
 直交復調部13は、低雑音増幅部12から出力された高周波信号を復調してベースバンド信号Irx,Qrxを出力する。より具体的には、直交復調部13は、低雑音増幅部12から出力された高周波信号と、局部発振器14から出力された局部発振信号LOと、を混合することにより、ベースバンド信号Irx,Qrxを出力する。 The orthogonal demodulator 13 demodulates the high-frequency signal output from the low noise amplifier 12 and outputs baseband signals Irx and Qrx. More specifically, the quadrature demodulator 13 mixes the high-frequency signal output from the low noise amplifier 12 and the local oscillation signal LO output from the local oscillator 14 to thereby generate baseband signals Irx, Qrx. Is output.
 ADコンバータ15は、直交復調部13から出力されたアナログのデジタルベースバンド信号Irx,Qrxをデジタルに変換して出力する。そして、送受信装置1は、受信したベースバンド信号Irx,Qrxに基づいて所定の演算処理を実行する。 The AD converter 15 converts the analog digital baseband signals Irx and Qrx output from the quadrature demodulator 13 into digital signals and outputs them. Then, the transmission / reception device 1 executes predetermined arithmetic processing based on the received baseband signals Irx and Qrx.
(送受信装置1aの第1変形例)
 図3は、送受信装置1aの第1変形例を送受信装置1bとして示すブロック図である。
(First Modification of Transmitting / Receiving Device 1a)
FIG. 3 is a block diagram illustrating a first modification of the transmission / reception device 1a as the transmission / reception device 1b.
 図3に示すように、送受信装置1bは、送受信装置1aと比較して、送信信号の歪を補償する歪補償部20をさらに備える。 As shown in FIG. 3, the transmission / reception device 1b further includes a distortion compensation unit 20 that compensates for distortion of the transmission signal, as compared with the transmission / reception device 1a.
 歪補償部20は、所謂、デジタル型プリディストーション方式の歪補償機能を有し、高出力増幅器25の出力信号の歪に応じた歪補償係数を用いて、ベースバンド信号I,Qに対して歪補償処理を施す。以下、詳細に説明する。 The distortion compensation unit 20 has a so-called digital predistortion type distortion compensation function, and distorts the baseband signals I and Q using a distortion compensation coefficient corresponding to the distortion of the output signal of the high-power amplifier 25. Compensation processing is performed. Details will be described below.
 歪補償部20は、歪補償前の高出力増幅器25の出力信号の歪とは逆相かつ同振幅の入力信号を高出力増幅器25の入力とするような歪補償成分を、ベースバンド信号I,Qに付加して、ベースバンド信号Ia,Qaとして出力する。そのため、歪補償前に高出力増幅器25の出力信号に現れていた歪が逆相の入力信号によって相殺される。その結果、高出力増幅器25は、歪が抑制された高品質の送信信号(高周波無線信号)を出力することができる。 The distortion compensator 20 generates a distortion compensation component such that an input signal having the opposite phase and the same amplitude as that of the output signal of the high output amplifier 25 before distortion compensation is input to the high output amplifier 25. It is added to Q and output as baseband signals Ia and Qa. For this reason, the distortion that appears in the output signal of the high-power amplifier 25 before the distortion compensation is canceled out by the input signal of opposite phase. As a result, the high-power amplifier 25 can output a high-quality transmission signal (high-frequency radio signal) with suppressed distortion.
 より具体的には、歪補償部20は、直交復調部201と、局部発振器202と、ADコンバータ203と、歪算出部204と、電力計算部205と、メモリ206と、信号処理部207と、を備える。 More specifically, the distortion compensator 20 includes an orthogonal demodulator 201, a local oscillator 202, an AD converter 203, a distortion calculator 204, a power calculator 205, a memory 206, a signal processor 207, Is provided.
 直交復調部201は、高出力増幅器25から出力された送信信号(高周波無線信号)を復調してベースバンド信号(フィードバック信号)Ib,Qbを出力する。より具体的には、直交復調部201は、高出力増幅器25から出力された送信信号と、局部発振器202から出力された局部発振信号LOと、を混合することにより、ベースバンド信号Ib,Qbを出力する。 The orthogonal demodulator 201 demodulates the transmission signal (high-frequency radio signal) output from the high-power amplifier 25 and outputs baseband signals (feedback signals) Ib and Qb. More specifically, the quadrature demodulator 201 mixes the transmission signal output from the high-power amplifier 25 and the local oscillation signal LO output from the local oscillator 202, thereby obtaining the baseband signals Ib and Qb. Output.
 ADコンバータ203は、直交復調部201から出力されたアナログのベースバンド信号Ib,Qbをデジタルに変換して出力する。 The AD converter 203 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 201 into digital signals and outputs the digital signals.
 歪算出部204は、ベースバンド信号I,Qとベースバンド信号Ib,Qbとを比較して、その差分から、高出力増幅器25の出力信号の歪を算出する。電力計算部205は、ベースバンド信号I,Qの電力値又は振幅値を算出する。メモリ206は、歪補償係数を複数格納しており、歪算出部204及び電力計算部205のそれぞれの算出結果に基づいて選択された何れかの歪補償係数を信号処理部207に対して出力する。 The distortion calculation unit 204 compares the baseband signals I and Q with the baseband signals Ib and Qb, and calculates the distortion of the output signal of the high-power amplifier 25 from the difference. The power calculator 205 calculates the power value or amplitude value of the baseband signals I and Q. The memory 206 stores a plurality of distortion compensation coefficients, and outputs any distortion compensation coefficient selected based on the calculation results of the distortion calculation unit 204 and the power calculation unit 205 to the signal processing unit 207. .
 信号処理部207は、メモリ206から読み出された歪補償係数を用いて、ベースバンド信号I,Qに対して歪補償処理を施し、ベースバンド信号Ia,Qaとして出力する。換言すると、信号処理部207は、高出力増幅器25の出力信号の歪を補償するための歪補償成分をベースバンド信号I,Qに対して付加して、ベースバンド信号Ia,Qaとして出力する。この歪補償処理が施されたベースバンド信号Ia,QaがDAコンバータ22に入力される。それにより、高出力増幅器25は、歪が抑制された高品質の送信信号(高周波無線信号)を出力することができる。 The signal processing unit 207 performs distortion compensation processing on the baseband signals I and Q using the distortion compensation coefficient read from the memory 206 and outputs the baseband signals Ia and Qa. In other words, the signal processing unit 207 adds distortion compensation components for compensating for distortion of the output signal of the high-power amplifier 25 to the baseband signals I and Q, and outputs the baseband signals Ia and Qa. The baseband signals Ia and Qa that have been subjected to the distortion compensation processing are input to the DA converter 22. Thereby, the high-power amplifier 25 can output a high-quality transmission signal (high-frequency radio signal) in which distortion is suppressed.
 送受信装置1bのその他の構成については、送受信装置1aと同様であるため、その説明を省略する。 Since the other configuration of the transmission / reception device 1b is the same as that of the transmission / reception device 1a, the description thereof is omitted.
 このように、送受信装置1bは、高出力増幅器25から出力された高周波の送信信号の歪を、歪補償部20を用いて補償することにより、高品質の送信信号(高周波無線信号)を無線送信することができる。 As described above, the transmission / reception device 1b wirelessly transmits a high-quality transmission signal (high-frequency radio signal) by compensating for distortion of the high-frequency transmission signal output from the high-power amplifier 25 using the distortion compensation unit 20. can do.
(送受信装置1aの第2変形例)
 図4は、送受信装置1aの第2変形例を送受信装置1cとして示すブロック図である。
(Second Modification of Transmitting / Receiving Device 1a)
FIG. 4 is a block diagram illustrating a second modification of the transmission / reception device 1a as the transmission / reception device 1c.
 図4に示すように、送受信装置1aがダイレクトコンバージョン方式の送受信システムを採用しているのに対し、送受信装置1cは、スーパーヘテロダイン方式の送受信システムを採用している。 As shown in FIG. 4, the transmission / reception device 1a employs a direct conversion transmission / reception system, while the transmission / reception device 1c employs a superheterodyne transmission / reception system.
 具体的には、送受信装置1cは、送受信装置1aと比較して、周波数変換部16,23をさらに備える。 Specifically, the transmission / reception device 1c further includes frequency conversion units 16 and 23 as compared with the transmission / reception device 1a.
 まず、送信経路側の回路構成について説明する。
 直交変調部21は、ベースバンド信号I,Qを変調して中間信号を出力する。DAコンバータ22は、直交変調部21から出力されたデジタルの中間信号をアナログに変換して出力する。周波数変換部23は、DAコンバータ22から出力されたアナログの中間信号と、局部発振器24から出力された局部発振信号LOと、を混合して高周波信号を出力する。そして、高出力増幅器25は、周波数変換部23から出力された高周波信号を増幅して高周波の送信信号を出力する。
First, the circuit configuration on the transmission path side will be described.
The quadrature modulation unit 21 modulates the baseband signals I and Q and outputs an intermediate signal. The DA converter 22 converts the digital intermediate signal output from the quadrature modulation unit 21 into an analog signal and outputs the analog signal. The frequency converter 23 mixes the analog intermediate signal output from the DA converter 22 and the local oscillation signal LO output from the local oscillator 24, and outputs a high-frequency signal. The high-power amplifier 25 amplifies the high-frequency signal output from the frequency conversion unit 23 and outputs a high-frequency transmission signal.
 続いて、受信経路側の回路構成について説明する。
 周波数変換部16は、低雑音増幅部12から出力された高周波信号と、局部発振器14から出力された局部発振信号LOと、を混合して中間信号を出力する。ADコンバータ15は、周波数変換部16から出力されたアナログの中間信号をデジタルに変換して出力する。直交復調部13は、ADコンバータ15から出力されたデジタルの中間信号を復調してベースバンド信号Irx,Qrxを出力する。
Next, the circuit configuration on the reception path side will be described.
The frequency converter 16 mixes the high-frequency signal output from the low noise amplifier 12 and the local oscillation signal LO output from the local oscillator 14 and outputs an intermediate signal. The AD converter 15 converts the analog intermediate signal output from the frequency converter 16 into a digital signal and outputs the digital signal. The quadrature demodulator 13 demodulates the digital intermediate signal output from the AD converter 15 and outputs baseband signals Irx and Qrx.
 送受信装置1cのその他の構成については、送受信装置1aと同様であるため、その説明を省略する。 Since the other configuration of the transmission / reception device 1c is the same as that of the transmission / reception device 1a, the description thereof is omitted.
 スーパーヘテロダイン方式の受信システムが採用された送受信装置1cも、ダイレクトコンバージョン方式の受信システムが採用された送受信装置1aと同等の効果を奏することができる。 The transmission / reception device 1c employing the superheterodyne reception system can achieve the same effects as the transmission / reception device 1a employing the direct conversion reception system.
<実施の形態2>
 図5は、実施の形態2に係る送受信装置2を示すブロック図である。
<Embodiment 2>
FIG. 5 is a block diagram showing the transmitting / receiving apparatus 2 according to the second embodiment.
 図5に示すように、送受信装置2は、送受信装置1aと比較して、低雑音増幅部12と直交復調部13との間に設けられた段間フィルタ17をさらに備える。 As shown in FIG. 5, the transmission / reception device 2 further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 1a.
 段間フィルタ17は、低雑音増幅部12の出力信号に含まれる帯域外のスプリアス、不要雑音及び歪を除去する。 The interstage filter 17 removes out-of-band spurious, unnecessary noise, and distortion included in the output signal of the low noise amplification unit 12.
 送受信装置2のその他の構成については、送受信装置1aと同様であるため、その説明を省略する。 Since the other configuration of the transmission / reception device 2 is the same as that of the transmission / reception device 1a, the description thereof is omitted.
 なお、段間フィルタ17は低雑音増幅部12の後段に配置されているため、その挿入損失が大きくても装置全体の雑音指数はほとんど劣化することはなく、また、大電力の送信信号がアンテナ端にて全反射した後に段間フィルタ17に直接供給されることもない。 Since the interstage filter 17 is arranged after the low noise amplifying unit 12, the noise figure of the entire apparatus is hardly deteriorated even if the insertion loss is large, and a high-power transmission signal is transmitted to the antenna. There is no direct supply to the interstage filter 17 after total reflection at the end.
 そのため、段間フィルタ17には、例えば、SAW(Surface Acoustic Wave)、FBAR(Film Bulk Acoustic Resonator)、又は、TEM-DR(Transverse Electro Magnetic - Dielectric Resonator)等の小型の共振器を用いて構成されたブロック型又はモノブロック型のフィルタが用いられることができる。それにより、回路規模の増大が抑制される。 Therefore, the interstage filter 17 is configured using a small resonator such as SAW (Surface Acoustic Wave), FBAR (Film Bulk Acoustic Resonator), or TEM-DR (Transverse Electro Magnetic Magnetic Resonator). A block or monoblock filter can be used. Thereby, an increase in circuit scale is suppressed.
(送受信装置2の第1変形例)
 図6は、送受信装置2の第1変形例を送受信装置2aとして示すブロック図である。
(First Modification of Transceiver 2)
FIG. 6 is a block diagram illustrating a first modification of the transmission / reception device 2 as the transmission / reception device 2a.
 図6に示すように、送受信装置2aは、送受信装置2と比較して、送信信号の歪を補償する歪補償部20をさらに備える。送受信装置2aのその他の構成については、送受信装置2と同様であるため、その説明を省略する。また、歪補償部20の詳細については、前述のとおりである。 As shown in FIG. 6, the transmission / reception device 2 a further includes a distortion compensation unit 20 that compensates for distortion of the transmission signal, as compared with the transmission / reception device 2. Since the other configuration of the transmission / reception device 2a is the same as that of the transmission / reception device 2, the description thereof is omitted. The details of the distortion compensator 20 are as described above.
(送受信装置2の第2変形例)
 図7は、送受信装置2の第2変形例を送受信装置2bとして示すブロック図である。
(Second Modification of Transmitting / Receiving Device 2)
FIG. 7 is a block diagram illustrating a second modification of the transmission / reception device 2 as the transmission / reception device 2b.
 図7に示すように、送受信装置2がダイレクトコンバージョン方式の送受信システムを採用しているのに対し、送受信装置2bは、スーパーヘテロダイン方式の送受信システムを採用している。 As shown in FIG. 7, the transmission / reception device 2 employs a direct conversion transmission / reception system, whereas the transmission / reception device 2b employs a superheterodyne transmission / reception system.
 具体的には、送受信装置2bは、送受信装置2と比較して、周波数変換部16,23をさらに備える。スーパーヘテロダイン方式の受信システムの詳細については、前述のとおりである。 Specifically, the transmission / reception device 2 b further includes frequency conversion units 16 and 23 as compared with the transmission / reception device 2. Details of the superheterodyne reception system are as described above.
<実施の形態3>
 図8は、実施の形態3に係る送受信装置3を示すブロック図である。
<Embodiment 3>
FIG. 8 is a block diagram illustrating the transmission / reception device 3 according to the third embodiment.
 図8に示すように、送受信装置3は、送受信装置1aと比較して、受信信号成分の歪に起因して生じた復調後のベースバンド信号Irx,Qrxの歪を補償する歪補償部30をさらに備える。 As shown in FIG. 8, the transmission / reception device 3 includes a distortion compensation unit 30 that compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component, as compared with the transmission / reception device 1a. Further prepare.
 歪補償部30は、所謂デジタル型ポスト(後置)ディストーション方式の歪補償機能を有し、低雑音増幅部12の出力信号に含まれる送信信号成分の歪に応じた歪補償係数を用いて、ベースバンド信号Irx,Qrxに対して歪補償処理を施す。以下、詳細に説明する。なお、本例では、高出力増幅器25から出力される送信信号の歪は無視できる程度に小さいものとする。 The distortion compensation unit 30 has a so-called digital post (post) distortion distortion compensation function, and uses a distortion compensation coefficient corresponding to the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12. Distortion compensation processing is performed on the baseband signals Irx and Qrx. Details will be described below. In this example, the distortion of the transmission signal output from the high-power amplifier 25 is assumed to be negligible.
 歪補償部30は、低雑音増幅部12の出力信号に含まれる受信信号成分の歪(より詳しくは、アンテナ10から低雑音増幅部12の出力までの間に発生した送信信号成分の歪)に起因して生じたベースバンド信号Irx,Qrxの歪、とは逆相かつ同振幅の信号を、ベースバンド信号Irx,Qrxに付加して、ベースバンド信号Irxa,Qrxaとして出力する。そのため、ベースバンド信号Irx,Qrxの歪が逆相の信号によって相殺される。その結果、受信信号は品質を保ったままベースバンド信号Irxa,Qrxaに復調される。 The distortion compensator 30 is configured to reduce the distortion of the received signal component included in the output signal of the low noise amplifier 12 (more specifically, the distortion of the transmission signal component generated between the antenna 10 and the output of the low noise amplifier 12). The baseband signals Irx and Qrxa are added to the baseband signals Irx and Qrx and output as baseband signals Irxa and Qrxa, with the signals having the opposite phase and the same amplitude as the distortion of the baseband signals Irx and Qrx caused by the above. Therefore, the distortions of the baseband signals Irx and Qrx are canceled out by the reverse phase signals. As a result, the received signal is demodulated into baseband signals Irxa and Qrxa while maintaining the quality.
 より具体的には、歪補償部30は、直交復調部301と、局部発振器302と、ADコンバータ303と、歪算出部304と、電力計算部305と、メモリ306と、信号処理部307と、を備える。 More specifically, the distortion compensation unit 30 includes an orthogonal demodulation unit 301, a local oscillator 302, an AD converter 303, a distortion calculation unit 304, a power calculation unit 305, a memory 306, a signal processing unit 307, Is provided.
 直交復調部301は、低雑音増幅部12の出力信号(高周波信号)に含まれる送信信号成分を復調してベースバンド信号(フィードバック信号)Ib,Qbを出力する。より具体的には、直交復調部301は、低雑音増幅部12の出力信号に含まれる送信信号成分と、局部発振器302から出力された局部発振信号LOと、を混合することにより、ベースバンド信号Ib,Qbを出力する。 The orthogonal demodulation unit 301 demodulates the transmission signal component included in the output signal (high frequency signal) of the low noise amplification unit 12 and outputs baseband signals (feedback signals) Ib and Qb. More specifically, the quadrature demodulation unit 301 mixes the transmission signal component included in the output signal of the low noise amplification unit 12 and the local oscillation signal LO output from the local oscillator 302 to thereby generate a baseband signal. Ib and Qb are output.
 ADコンバータ303は、直交復調部301から出力されたアナログのベースバンド信号Ib,Qbをデジタルに変換して出力する。 The AD converter 303 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 301 into digital signals and outputs them.
 歪算出部304は、ベースバンド信号I,Qとベースバンド信号Ib,Qbとを比較して、その差分を、低雑音増幅部12の出力信号に含まれる送信信号成分の歪として算出する。電力計算部305は、ベースバンド信号Irx,Qrxの電力値又は振幅値を計算する。メモリ306は、歪補償係数を複数格納しており、歪算出部304及び電力計算部305のそれぞれの算出結果に基づいて選択された何れかの歪補償係数を信号処理部307に対して出力する。 The distortion calculation unit 304 compares the baseband signals I and Q with the baseband signals Ib and Qb, and calculates the difference as the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12. The power calculator 305 calculates the power value or the amplitude value of the baseband signals Irx and Qrx. The memory 306 stores a plurality of distortion compensation coefficients, and outputs any distortion compensation coefficient selected based on the calculation results of the distortion calculation unit 304 and the power calculation unit 305 to the signal processing unit 307. .
 信号処理部307は、メモリ306から読み出された歪補償係数を用いて、ベースバンド信号Irx,Qrxに対して歪補償処理を施し、ベースバンド信号Irxa,Qrxaとして出力する。換言すると、信号処理部307は、ベースバンド信号Irx,Qrxの歪を補償するための歪補償成分を当該ベースバンド信号Irx,Qrxに対して付加して、ベースバンド信号Irxa,Qrxaとして出力する。 The signal processing unit 307 performs distortion compensation processing on the baseband signals Irx and Qrx using the distortion compensation coefficient read from the memory 306, and outputs the baseband signals Irxa and Qrxa. In other words, the signal processing unit 307 adds distortion compensation components for compensating for distortion of the baseband signals Irx and Qrx to the baseband signals Irx and Qrx, and outputs the baseband signals Irxa and Qrxa.
 ここで、低雑音増幅部12は、バランス型増幅器等、広帯域に増幅動作が可能な構成であることが好ましい。それにより、低雑音増幅部12は、受信信号だけでなく帯域の異なる送信信号成分まで広帯域に増幅することができる。そのため、低雑音増幅部12は、送信信号成分を、受信信号の場合とほぼ同等の線形性及び非線形性を持たせて増幅することができる。その結果、送信信号成分とその歪との関係は、受信信号とその歪との関係に近似した状態となる。 Here, it is preferable that the low noise amplifying unit 12 has a configuration capable of amplifying operation in a wide band, such as a balanced amplifier. Thereby, the low noise amplifying unit 12 can amplify not only the received signal but also a transmission signal component having a different band in a wide band. Therefore, the low noise amplifying unit 12 can amplify the transmission signal component with substantially the same linearity and nonlinearity as in the case of the reception signal. As a result, the relationship between the transmission signal component and its distortion is close to the relationship between the reception signal and its distortion.
 そこで、歪補償部30は、歪算出部304によって算出された低雑音増幅部12の出力信号に含まれる送信信号成分の歪から、低雑音増幅部12の出力信号に含まれる受信信号成分の歪を推定する。そして、歪補償部30は、推定された受信信号成分の歪に起因して生じたベースバンド信号Irx,Qrxの歪を補償するように、当該ベースバンド信号Irx,Qrxに対して歪補償処理を施す。 Therefore, the distortion compensator 30 calculates the distortion of the received signal component included in the output signal of the low noise amplifier 12 from the distortion of the transmission signal component included in the output signal of the low noise amplifier 12 calculated by the distortion calculator 304. Is estimated. Then, the distortion compensator 30 performs distortion compensation processing on the baseband signals Irx and Qrx so as to compensate for the distortion of the baseband signals Irx and Qrx caused by the estimated distortion of the received signal component. Apply.
 送受信装置3のその他の構成については、送受信装置1aと同様であるため、その説明を省略する。 Since the other configuration of the transmission / reception device 3 is the same as that of the transmission / reception device 1a, the description thereof is omitted.
 このように、送受信装置3は、受信信号成分の歪に起因して生じた復調後のベースバンド信号Irx,Qrxの歪を、歪補償部30を用いて補償することにより、高品質の受信信号を無線受信することができる。より詳細には、送信信号成分及び受信信号成分が低雑音増幅部12に入力されることで発生する混変調歪や、妨害波及び送信信号成分が低雑音増幅部12に入力されることで発生する混変調歪等の影響を低減することができる。 As described above, the transmission / reception device 3 compensates the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the reception signal component by using the distortion compensation unit 30, so that a high-quality reception signal is obtained. Can be received wirelessly. More specifically, cross modulation distortion that occurs when a transmission signal component and a reception signal component are input to the low noise amplification unit 12, and an interference wave and a transmission signal component that are generated when the transmission signal component is input to the low noise amplification unit 12. It is possible to reduce the influence of cross modulation distortion and the like.
 また、歪補償部30により歪が補償されるため、受信経路に伝達される送信信号成分及び妨害波の許容量はさらに大きくなる。そのため、フィルタ11の減衰特性のさらなる緩和、及び、低雑音増幅部12のインターセプトポイントの緩和が可能となる。つまり、歪補償部30の歪補償能力に応じて、フィルタ11を構成する複数の共振器の段数(個数)を減らしたり、低雑音増幅部12に設けられた増幅器の数を例えば、4個から2個に減らしたりすることが可能となる。あるいは、バランス型とは異なる負帰還型等の手段により広帯域の増幅動作が可能であるならば、低雑音増幅部12に設けられた増幅器の数を1個にすることも可能となる。換言すると、低雑音増幅部12は、低雑音で増幅動作可能な単体の増幅器のみによって構成されることも可能となる。その結果、送受信装置3のさらなる小型化及び低コスト化を実現することができる。 In addition, since distortion is compensated by the distortion compensator 30, the allowable amount of transmission signal components and interference waves transmitted to the reception path is further increased. Therefore, further attenuation of the attenuation characteristic of the filter 11 and relaxation of the intercept point of the low noise amplification unit 12 are possible. That is, according to the distortion compensation capability of the distortion compensation unit 30, the number of stages (number) of the plurality of resonators constituting the filter 11 is reduced, or the number of amplifiers provided in the low noise amplification unit 12 is increased from four, for example. It can be reduced to two. Alternatively, if a wideband amplification operation is possible by means of a negative feedback type or the like different from the balance type, the number of amplifiers provided in the low noise amplification unit 12 can be reduced to one. In other words, the low noise amplifying unit 12 can be configured by only a single amplifier capable of performing an amplification operation with low noise. As a result, further downsizing and cost reduction of the transmission / reception device 3 can be realized.
 本実施の形態では、歪補償部30が、低雑音増幅部12の出力信号に含まれる送信信号成分の歪に応じて、動的に歪補償係数を切り替えて出力する場合を例に説明したが、これに限られない。歪補償部30は、例えば、電力計算部205の電力値や振幅値のみに基づいて歪補償係数を出力してもよいし、静的に所定の歪補償係数を出力してもよい。 In this embodiment, the case where the distortion compensation unit 30 dynamically switches and outputs the distortion compensation coefficient according to the distortion of the transmission signal component included in the output signal of the low noise amplification unit 12 has been described as an example. Not limited to this. For example, the distortion compensation unit 30 may output a distortion compensation coefficient based on only the power value and the amplitude value of the power calculation unit 205, or may output a predetermined distortion compensation coefficient statically.
(送受信装置3の第1変形例)
 図9は、送受信装置3の第1変形例を送受信装置3aとして示すブロック図である。
(First Modification of Transmission / Reception Device 3)
FIG. 9 is a block diagram illustrating a first modification of the transmission / reception device 3 as the transmission / reception device 3a.
 図9に示すように、送受信装置3aは、送受信装置3と比較して、歪補償部30に代えて、歪補償部20,30が組み合わされた歪補償部30aを備える。 As shown in FIG. 9, the transmission / reception device 3 a includes a distortion compensation unit 30 a in which the distortion compensation units 20 and 30 are combined in place of the distortion compensation unit 30 as compared with the transmission / reception device 3.
 具体的には、歪補償部30aは、直交復調部301と、局部発振器302と、ADコンバータ303と、歪算出部304と、電力計算部305と、メモリ306と、信号処理部307と、に加えて、選択部SW1と、電力計算部308と、メモリ309と、信号処理部310と、をさらに備える。なお、電力計算部308、メモリ309及び信号処理部310は、それぞれ、電力計算部205、メモリ206及び信号処理部207に対応する。 Specifically, the distortion compensation unit 30a includes an orthogonal demodulation unit 301, a local oscillator 302, an AD converter 303, a distortion calculation unit 304, a power calculation unit 305, a memory 306, and a signal processing unit 307. In addition, a selection unit SW1, a power calculation unit 308, a memory 309, and a signal processing unit 310 are further provided. The power calculation unit 308, the memory 309, and the signal processing unit 310 correspond to the power calculation unit 205, the memory 206, and the signal processing unit 207, respectively.
 選択部SW1は、高出力増幅器25の出力信号と、低雑音増幅部12の出力信号に含まれる送信信号成分と、の何れかを選択的に出力する。選択部SW1は、送信時における任意のタイミングで、高出力増幅器25の出力信号を選択して出力し、受信時における任意のタイミングで、低雑音増幅部12の出力信号に含まれる送信信号成分を選択して出力する。 The selection unit SW1 selectively outputs either the output signal of the high output amplifier 25 or the transmission signal component included in the output signal of the low noise amplification unit 12. The selection unit SW1 selects and outputs the output signal of the high-power amplifier 25 at an arbitrary timing at the time of transmission, and the transmission signal component included in the output signal of the low noise amplification unit 12 at an arbitrary timing at the time of reception. Select and output.
 直交復調部301は、高出力増幅器25の出力信号、及び、低雑音増幅部12の出力信号に含まれる送信信号成分、のうち、選択部SW1により選択された何れかの信号を復調してベースバンド信号Ib,Qbを出力する。ADコンバータ303は、直交復調部301から出力されたアナログのベースバンド信号Ib,Qbをデジタルに変換して出力する。 The quadrature demodulator 301 demodulates one of the signals selected by the selector SW1 out of the output signal component included in the output signal of the high-power amplifier 25 and the output signal of the low-noise amplifier unit 12. Band signals Ib and Qb are output. The AD converter 303 converts the analog baseband signals Ib and Qb output from the quadrature demodulator 301 into digital signals and outputs them.
 歪算出部304は、ベースバンド信号I,Qとベースバンド信号Ib,Qbとを比較して、その差分を、高出力増幅器25の出力信号の歪、及び、低雑音増幅部12の出力信号に含まれる送信信号成分の歪、の何れかとして算出する。電力計算部305、メモリ306及び信号処理部307の説明は上記したので省略する。また、電力計算部308、メモリ309及び信号処理部310の説明は、それぞれ電力計算部205、メモリ206及び信号処理部207と同様であるため省略する。 The distortion calculation unit 304 compares the baseband signals I and Q with the baseband signals Ib and Qb, and uses the difference as the distortion of the output signal of the high output amplifier 25 and the output signal of the low noise amplification unit 12. It is calculated as one of the distortions of the included transmission signal component. Since the description of the power calculation unit 305, the memory 306, and the signal processing unit 307 has been described above, a description thereof will be omitted. The descriptions of the power calculation unit 308, the memory 309, and the signal processing unit 310 are the same as those of the power calculation unit 205, the memory 206, and the signal processing unit 207, respectively.
 送受信装置3aのその他の構成については、送受信装置3と同様であるため、その説明を省略する。 Since the other configuration of the transmission / reception device 3a is the same as that of the transmission / reception device 3, the description thereof is omitted.
 このように、送受信装置3aは、歪補償部30aを用いて、受信信号成分の歪に起因して生じた復調後のベースバンド信号Irx,Qrxの歪を補償するだけでなく、送信信号の歪も補償している。ここで、受信信号成分の歪に起因して生じた復調後のベースバンド信号の歪を精度よく補償するには、送信信号の歪をできるだけ小さくしておく必要がある。そこで、送受信装置3aは、歪補償部30aを用いて送信信号の歪を補償することにより、受信信号成分の歪に起因して生じた復調後のベースバンド信号Irx,Qrxの歪を精度よく補償している。 As described above, the transmission / reception device 3a not only compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component by using the distortion compensation unit 30a, but also the distortion of the transmission signal. Has also compensated. Here, in order to compensate accurately the distortion of the demodulated baseband signal caused by the distortion of the received signal component, it is necessary to minimize the distortion of the transmission signal. Therefore, the transmitter / receiver 3a compensates for distortion of the transmission signal using the distortion compensator 30a, thereby accurately compensating for distortion of the demodulated baseband signals Irx and Qrx caused by distortion of the received signal component. is doing.
 また、送受信装置3aに設けられた歪補償部30aは、構成要素の大部分が共用された歪補償部20,30により構成されている。そのため、送受信装置3aは、回路規模の増大を抑制して装置を小型化することができる。 Further, the distortion compensation unit 30a provided in the transmission / reception device 3a is configured by distortion compensation units 20 and 30 in which most of the components are shared. Therefore, the transmission / reception device 3a can reduce the size of the device while suppressing an increase in circuit scale.
(送受信装置3の第2変形例)
 図10は、送受信装置3の第2変形例を送受信装置3bとして示すブロック図である。
(Second Modification of Transmitting / Receiving Device 3)
FIG. 10 is a block diagram illustrating a second modification of the transmission / reception device 3 as the transmission / reception device 3b.
 図10に示すように、送受信装置3bは、送受信装置3aと比較して、低雑音増幅部12と直交復調部13との間に設けられた段間フィルタ17をさらに備える。送受信装置3bのその他の構成については、送受信装置3aと同様であるため、その説明を省略する。 As shown in FIG. 10, the transmission / reception device 3b further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 3a. Since the other configuration of the transmission / reception device 3b is the same as that of the transmission / reception device 3a, the description thereof is omitted.
 続いて、図11を参照して、受信経路上の各信号の電力の変化について説明する。図11は、受信経路上の各信号のスペクトラムを示す図である。なお、横軸は周波数を表し、縦軸は電力を表している。 Next, with reference to FIG. 11, changes in the power of each signal on the reception path will be described. FIG. 11 is a diagram illustrating the spectrum of each signal on the reception path. The horizontal axis represents frequency and the vertical axis represents power.
 まず、アンテナ10には、外部から大電力の妨害波及び小電力の受信信号が供給されるとともに、送信経路からフィルタ11を介して大電力の送信信号成分が伝達される(図中のA参照)。 First, a high-power interference wave and a low-power received signal are supplied to the antenna 10 from the outside, and a high-power transmission signal component is transmitted from the transmission path via the filter 11 (see A in the figure). ).
 その後、フィルタ11は、通過帯域の受信信号を通過させ、帯域外の妨害波及び送信信号成分を減衰させる(図中のB参照)。しかしながら、妨害波及び送信信号成分は減衰しきれずにフィルタ11を通過する(同じく図中のB参照)。 Thereafter, the filter 11 passes the reception signal in the pass band and attenuates the interference wave and the transmission signal component outside the band (see B in the figure). However, the interference wave and the transmission signal component pass through the filter 11 without being completely attenuated (see also B in the figure).
 その後、低雑音増幅部12は、フィルタ11を介して供給された受信信号、妨害波及び送信信号成分を、増幅して出力する(図中のC参照)。このとき、低雑音増幅部12の出力信号には歪が発生する(同じく図中のC参照)。 Thereafter, the low noise amplifying unit 12 amplifies and outputs the reception signal, interference wave and transmission signal component supplied via the filter 11 (see C in the figure). At this time, distortion occurs in the output signal of the low noise amplifying unit 12 (see C in the figure).
 なお、実施の形態1等で説明したように、低雑音増幅部12のインターセプトポイントが十分に高ければ、低雑音増幅部12の出力信号の歪は無視できる程度に小さくなることは言うまでもない。本例では、後段の歪補償部30bを用いて歪補償できるため、低雑音増幅部12のインターセプトポイントを意図的に低くしたり、フィルタ11を構成する共振器の段数を意図的に減らしたりしている。その結果、上述のように、低雑音増幅部12の出力信号には歪が発生している。 Of course, as described in the first embodiment, if the intercept point of the low noise amplifying unit 12 is sufficiently high, the distortion of the output signal of the low noise amplifying unit 12 becomes small enough to be ignored. In this example, since the distortion compensation can be performed using the subsequent distortion compensation unit 30b, the intercept point of the low noise amplification unit 12 is intentionally lowered, or the number of resonator stages constituting the filter 11 is intentionally reduced. ing. As a result, as described above, distortion occurs in the output signal of the low noise amplifying unit 12.
 その後、段間フィルタ17は、低雑音増幅部12の出力信号に含まれる帯域外のスプリアス、不要雑音及び歪を除去する。それにより、妨害波、送信信号成分及びその歪は除去されるが、受信信号及びその歪は除去されずに通過する(図中のD参照)。 After that, the interstage filter 17 removes out-of-band spurious, unnecessary noise, and distortion included in the output signal of the low noise amplification unit 12. Thereby, the interference wave, the transmission signal component and its distortion are removed, but the received signal and its distortion pass without being removed (see D in the figure).
 その後、歪補償部30bは、受信信号成分の歪に起因して生じた復調後のベースバンド信号Irx,Qrxの歪を補償する。それにより、ベースバンド信号Irx,Qrxの歪が除去される(図中のE参照)。その結果、送受信装置3bは、高品質の受信信号を無線受信することができる。 Thereafter, the distortion compensator 30b compensates for the distortion of the demodulated baseband signals Irx and Qrx caused by the distortion of the received signal component. Thereby, the distortion of the baseband signals Irx and Qrx is removed (see E in the figure). As a result, the transmission / reception device 3b can wirelessly receive a high-quality reception signal.
(送受信装置3の第3変形例)
 図12は、送受信装置3の第3変形例を送受信装置3cとして示すブロック図である。
(Third Modification of Transceiver 3)
FIG. 12 is a block diagram illustrating a third modification of the transmission / reception device 3 as the transmission / reception device 3c.
 図12に示すように、送受信装置3aがダイレクトコンバージョン方式の送受信システムを採用しているのに対し、送受信装置3cは、所謂スーパーヘテロダイン方式の送受信システムを採用している。 As shown in FIG. 12, the transmission / reception device 3a employs a direct conversion transmission / reception system, whereas the transmission / reception device 3c employs a so-called superheterodyne transmission / reception system.
 具体的には、送受信装置3cは、送受信装置3aと比較して、歪補償部30aに代えて、周波数変換部311をさらに有する歪補償部30bを備えるとともに、周波数変換部16,23をさらに備える。スーパーヘテロダイン方式の送受信システムの詳細については、前述のとおりである。 Specifically, the transmission / reception device 3c includes a distortion compensation unit 30b that further includes a frequency conversion unit 311 and further includes frequency conversion units 16 and 23, instead of the distortion compensation unit 30a, as compared with the transmission / reception device 3a. . Details of the superheterodyne transmission / reception system are as described above.
(送受信装置3の第4変形例)
 図13は、送受信装置3の第4変形例を送受信装置3dとして示すブロック図である。
(Fourth Modification of Transmitting / Receiving Device 3)
FIG. 13 is a block diagram illustrating a fourth modification of the transmission / reception device 3 as the transmission / reception device 3d.
 図13に示すように、送受信装置3dは、送受信装置3cと比較して、低雑音増幅部12と直交復調部13との間に設けられた段間フィルタ17をさらに備える。送受信装置3dのその他の構成については、送受信装置3cと同様であるため、その説明を省略する。 As illustrated in FIG. 13, the transmission / reception device 3 d further includes an interstage filter 17 provided between the low noise amplification unit 12 and the orthogonal demodulation unit 13 as compared with the transmission / reception device 3 c. Since the other configuration of the transmission / reception device 3d is the same as that of the transmission / reception device 3c, description thereof is omitted.
<実施の形態4>
 図14は、実施の形態4に係る送受信装置4を示すブロック図である。
<Embodiment 4>
FIG. 14 is a block diagram showing a transmission / reception device 4 according to the fourth embodiment.
 図14に示すように、送受信装置4は、送受信装置1aに設けられたフィルタ11及び低雑音増幅部12とは異なる構成のフィルタ41及び低雑音増幅部42を備える。 As shown in FIG. 14, the transmission / reception device 4 includes a filter 41 and a low noise amplification unit 42 that are configured differently from the filter 11 and the low noise amplification unit 12 provided in the transmission / reception device 1a.
 具体的には、フィルタ41は、外部からアンテナ10を介して無線受信された受信信号(高周波無線信号)の不要成分を除去した後、2つの信号に分配して出力する。本例では、フィルタ41は、受信信号を180度位相の異なる2つの分配信号を出力している。 Specifically, the filter 41 removes unnecessary components of the received signal (high-frequency radio signal) wirelessly received from the outside via the antenna 10, and then distributes and outputs the two signals. In this example, the filter 41 outputs two distribution signals that are 180 degrees out of phase with respect to the received signal.
 低雑音増幅部42は、分配器123を有さず、増幅器121,122が、フィルタ41から直接出力された180位相の異なる2つの分配信号をそれぞれ増幅して出力する。合成器124は、増幅器121,122のそれぞれの出力信号を合成して、低雑音増幅部42の出力信号として出力する。即ち、低雑音増幅部42は、プッシュプル型の増幅器として動作する。 The low noise amplifying unit 42 does not have the distributor 123, and the amplifiers 121 and 122 amplify and output two distribution signals having different 180 phases output directly from the filter 41, respectively. The synthesizer 124 synthesizes the output signals of the amplifiers 121 and 122 and outputs them as an output signal of the low noise amplification unit 42. That is, the low noise amplification unit 42 operates as a push-pull type amplifier.
 図15は、図14に示す送受信装置4の等価回路を示す図である。
 図15に示すように、フィルタ41の等価回路は、フィルタ11と、不平衡・平衡変換器を構成するトランスT1を有する。トランスT1には、フィルタ11を介して供給された受信信号(高周波無線信号)が流れる。それにより、トランスT1の出力両端には、180度位相の異なる2つの分配信号が生成される。
FIG. 15 is a diagram showing an equivalent circuit of the transmission / reception device 4 shown in FIG.
As shown in FIG. 15, the equivalent circuit of the filter 41 includes a filter 11 and a transformer T1 that constitutes an unbalanced / balanced converter. A reception signal (high-frequency radio signal) supplied via the filter 11 flows through the transformer T1. Thereby, two distributed signals having a phase difference of 180 degrees are generated at both ends of the output of the transformer T1.
 図16及び図17は、それぞれフィルタ41を平面及び側面から見た断面図である。なお、図16及び図17には、便宜的に右手系xyz座標が示されている。図16におけるxy平面は水平面を構成し、z軸方向が鉛直方向である。より具体的には、z軸のプラス方向が鉛直上向きとなる。 16 and 17 are cross-sectional views of the filter 41 as seen from the plane and side, respectively. 16 and 17 show the right-handed xyz coordinates for convenience. The xy plane in FIG. 16 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
 図16及び図17を参照すると、シャーシ61に囲まれて形成された複数のキャビティ62のそれぞれに、半同軸型共振器51~5n(nは自然数)が設けられている。これら半同軸型共振器51~5n(nは自然数)は、何れもz軸方向に沿って延在する円柱形状を有する。ここで、受信経路側の出力段に設けられた半同軸型共振器51の高さ(z軸方向の長さ)は、残りの各半同軸型共振器52~5nの高さの略2倍である。即ち、半同軸型共振器51は、λ/2共振器であって、各半同軸型共振器52~5nは、λ/4共振器である。それにより、半同軸型共振器51の上端及び下端から180度位相の異なる2つの分配信号がそれぞれ端子OUT1,OUT2から出力される。 16 and 17, semi-coaxial resonators 51 to 5n (n is a natural number) are provided in each of a plurality of cavities 62 formed surrounded by the chassis 61. Each of these semi-coaxial resonators 51 to 5n (n is a natural number) has a cylindrical shape extending along the z-axis direction. Here, the height (the length in the z-axis direction) of the semi-coaxial resonator 51 provided at the output stage on the reception path side is approximately twice the height of the remaining semi-coaxial resonators 52 to 5n. It is. That is, the semi-coaxial resonator 51 is a λ / 2 resonator, and each of the semi-coaxial resonators 52 to 5n is a λ / 4 resonator. As a result, two distribution signals that are 180 degrees out of phase from the upper and lower ends of the semi-coaxial resonator 51 are output from the terminals OUT1 and OUT2, respectively.
 送受信装置4も、送受信装置1a等と同等の効果を奏することができる。 The transmission / reception device 4 can also achieve the same effects as the transmission / reception device 1a and the like.
 以上のように、上記実施の形態1~4に係る送受信装置は、受信経路上に、並列に設けられた複数の増幅器からなる低雑音増幅部を備える。それにより、低雑音増幅部は、インターセプトポイントが向上するため、送信経路からフィルタを介して受信経路にリークする送信信号成分や、外部からフィルタを介して受信経路に混入する妨害波の影響を受けにくくなる。それにより、フィルタに対して要求される減衰特性が緩和されるため、キャビティ型のフィルタに設けられた共振器の段数(個数)を少なくして当該フィルタを小型化することができる。その結果、上記実施の形態1~4に係る送受信装置は、受信信号の品質を落とすことなく、回路規模を小さくして装置を小型化することができる。 As described above, the transmission / reception apparatus according to Embodiments 1 to 4 includes the low noise amplification unit including a plurality of amplifiers provided in parallel on the reception path. As a result, since the intercept point is improved, the low noise amplification unit is affected by a transmission signal component leaking from the transmission path to the reception path through the filter or an interference wave mixed in the reception path from the outside through the filter. It becomes difficult. As a result, the attenuation characteristic required for the filter is relaxed, so that the number of resonator stages (number) provided in the cavity type filter can be reduced and the filter can be downsized. As a result, the transmission / reception apparatus according to Embodiments 1 to 4 can reduce the circuit size and the size of the apparatus without degrading the quality of the received signal.
 また、上記実施の形態3に係る送受信装置は、受信信号成分の歪に起因して生じた復調後のベースバンド信号の歪を、歪補償部を用いて補償することにより、高品質の受信信号を無線受信することができる。 In addition, the transmission / reception apparatus according to Embodiment 3 compensates for the distortion of the demodulated baseband signal caused by the distortion of the received signal component by using the distortion compensation unit, thereby obtaining a high-quality received signal. Can be received wirelessly.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 上記実施の形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
   (付記1)
 外部に無線送信される送信信号と、外部から無線受信される受信信号と、により共用されるフィルタと、
 前記フィルタを介して供給された前記受信信号を増幅する低雑音増幅部と、
 前記低雑音増幅部の出力信号を復調して受信ベースバンド信号を出力する復調部と、を備え、
 前記低雑音増幅部は、
 並列に設けられた複数の増幅器を有する、送受信装置。
(Appendix 1)
A filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside;
A low noise amplifying unit for amplifying the received signal supplied through the filter;
A demodulator that demodulates the output signal of the low noise amplifier and outputs a received baseband signal,
The low noise amplification unit is
A transmission / reception apparatus having a plurality of amplifiers provided in parallel.
   (付記2)
 前記低雑音増幅部は、
 前記受信信号を同位相、90度異なる位相、又は、180度異なる位相の第1及び第2分配信号に分配する分配器と、
 前記第1及び前記第2分配信号をそれぞれ増幅する前記複数の増幅器としての第1及び第2増幅器と、
 前記第1及び前記第2増幅器のそれぞれの出力信号を合成して出力する合成器と、を有する、付記1に記載の送受信装置。
(Appendix 2)
The low noise amplification unit is
A distributor for distributing the received signal into first and second distribution signals having the same phase, a phase different by 90 degrees, or a phase different by 180 degrees;
First and second amplifiers as the plurality of amplifiers for amplifying the first and second distribution signals, respectively;
The transmitter / receiver according to appendix 1, further comprising: a combiner that combines and outputs the output signals of the first and second amplifiers.
   (付記3)
 前記低雑音増幅部の出力信号に含まれる送信信号成分の歪に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す歪補償部をさらに備えた、付記1又は2に記載の送受信装置。
(Appendix 3)
Supplementary note 1 or 2 further comprising a distortion compensation unit that performs distortion compensation processing on the received baseband signal using a distortion compensation coefficient corresponding to distortion of a transmission signal component included in an output signal of the low noise amplification unit. 2. The transmission / reception device according to 2.
   (付記4)
 前記歪補償部は、
 前記低雑音増幅部の出力信号に含まれる前記送信信号成分を復調してフィードバック信号を出力する復調部と、
 前記フィードバック信号と、前記送信信号に変調する前の送信ベースバンド信号と、を比較した結果に基づいて、前記低雑音増幅部の出力信号に含まれる前記送信信号成分の歪を算出する歪算出部と、
 前記歪算出部の算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す信号処理部と、
 を備えた、付記3に記載の送受信装置。
(Appendix 4)
The distortion compensation unit
A demodulator that demodulates the transmission signal component contained in the output signal of the low noise amplifier and outputs a feedback signal;
A distortion calculation unit that calculates distortion of the transmission signal component included in the output signal of the low noise amplification unit based on a comparison result between the feedback signal and a transmission baseband signal before modulation into the transmission signal When,
A signal processing unit that performs distortion compensation processing on the received baseband signal using a distortion compensation coefficient according to the calculation result of the distortion calculation unit;
The transmitting / receiving apparatus according to Supplementary Note 3, comprising:
   (付記5)
 送信ベースバンド信号を変調して高周波信号を出力する変調部と、
 前記高周波信号を増幅して前記送信信号を出力する高出力増幅器と、をさらに備え、
 前記歪補償部は、さらに、前記高出力増幅器の出力信号の歪に応じた歪補償係数を用いて、前記送信ベースバンド信号に対して歪補償処理を施す、付記3に記載の送受信装置。
(Appendix 5)
A modulation unit that modulates the transmission baseband signal and outputs a high-frequency signal;
A high-power amplifier that amplifies the high-frequency signal and outputs the transmission signal, and
The transmission / reception apparatus according to appendix 3, wherein the distortion compensation unit further performs distortion compensation processing on the transmission baseband signal using a distortion compensation coefficient corresponding to distortion of an output signal of the high-power amplifier.
   (付記6)
 前記歪補償部は、
 前記高出力増幅器の出力信号と、前記低雑音増幅部の出力信号に含まれる前記送信信号成分と、の何れかを選択的に出力する選択部と、
 前記選択部の出力信号を復調してフィードバック信号を出力する復調部と、
 前記フィードバック信号と、前記送信ベースバンド信号と、を比較した結果に基づいて、前記高出力増幅器の出力信号の歪、及び、前記低雑音増幅部の出力信号に含まれる前記送信信号成分の歪、の何れかを算出する歪算出部と、
 前記歪算出部の算出結果に応じた歪補償係数を用いて、前記送信ベースバンド信号及び前記受信ベースバンド信号の何れかに対して歪補償処理を施す信号処理部と、を備えた、付記5に記載の送受信装置。
(Appendix 6)
The distortion compensation unit
A selector that selectively outputs one of the output signal of the high-power amplifier and the transmission signal component included in the output signal of the low-noise amplifier;
A demodulator that demodulates the output signal of the selector and outputs a feedback signal;
Based on the result of comparing the feedback signal and the transmission baseband signal, distortion of the output signal of the high-power amplifier, and distortion of the transmission signal component included in the output signal of the low-noise amplifier, A distortion calculation unit for calculating any one of
Appendix 5 comprising: a signal processing unit that performs distortion compensation processing on either the transmission baseband signal or the reception baseband signal using a distortion compensation coefficient corresponding to the calculation result of the distortion calculation unit. The transmitting / receiving apparatus according to 1.
   (付記7)
 前記歪補償部は、前記歪算出部によって算出された前記低雑音増幅部の出力信号に含まれる前記送信信号成分の歪から、前記低雑音増幅部の出力信号に含まれる受信信号成分の歪を推定し、推定された前記受信信号成分の歪に起因して生じた前記受信ベースバンド信号の歪を補償するように、当該受信ベースバンド信号に対して歪補償処理を施す、付記4又は6に記載の送受信装置。
(Appendix 7)
The distortion compensator calculates a distortion of the received signal component included in the output signal of the low noise amplification unit from the distortion of the transmission signal component included in the output signal of the low noise amplification unit calculated by the distortion calculation unit. Additional distortion 4 or 6, wherein the received baseband signal is subjected to a distortion compensation process so as to compensate for the distortion of the received baseband signal caused by the estimated distortion of the received signal component. The transmitter / receiver described.
   (付記8)
 前記復調部は、前記低雑音増幅部の出力信号と局部発振信号とを混合することにより、前記受信ベースバンド信号を出力する、付記1~7の何れか一項に記載の送受信装置。
(Appendix 8)
The transmission / reception apparatus according to any one of appendices 1 to 7, wherein the demodulation unit outputs the reception baseband signal by mixing an output signal of the low noise amplification unit and a local oscillation signal.
   (付記9)
 前記低雑音増幅部と前記復調部との間に設けられた段間フィルタをさらに備えた、付記1~8の何れか一項に記載の送受信装置。
(Appendix 9)
The transmission / reception device according to any one of appendices 1 to 8, further comprising an interstage filter provided between the low noise amplification unit and the demodulation unit.
   (付記10)
 前記段間フィルタは、SAW、FBAR、及び、TEM-DRの何れかの共振器を用いて構成されたブロック型又はモノブロック型のフィルタである、付記9に記載の送受信装置。
(Appendix 10)
The transmission / reception apparatus according to appendix 9, wherein the interstage filter is a block-type or monoblock-type filter configured using any one of SAW, FBAR, and TEM-DR resonators.
   (付記11)
 前記フィルタは、複数の共振器を用いて構成されたキャビティ型のフィルタである、付記1~10の何れか一項に記載の送受信装置。
(Appendix 11)
The transmitting / receiving apparatus according to any one of appendices 1 to 10, wherein the filter is a cavity type filter configured using a plurality of resonators.
   (付記12)
 前記フィルタは、複数の半同軸型の共振器を用いて構成されたキャビティ型のフィルタであって、
 前記複数の共振器のうち受信経路側の出力段に設けられた共振器の軸方向の長さは、残りの共振器の軸方向の長さの略2倍であって、
 前記フィルタは、受信経路側の出力段に設けられた前記共振器の両端から180度位相の異なる第1及び第2分配信号を出力し、
 前記低雑音増幅部は、
 前記第1及び前記第2分配信号をそれぞれ増幅する前記複数の増幅器としての第1及び第2増幅器と、
 前記第1及び前記第2増幅器のそれぞれの出力信号を合成して出力する合成器と、を有する、付記1に記載の送受信装置。
(Appendix 12)
The filter is a cavity-type filter configured using a plurality of semi-coaxial resonators,
The axial length of the resonator provided in the output stage on the reception path side among the plurality of resonators is approximately twice the axial length of the remaining resonators,
The filter outputs first and second distribution signals that are 180 degrees out of phase from both ends of the resonator provided in the output stage on the reception path side,
The low noise amplification unit is
First and second amplifiers as the plurality of amplifiers for amplifying the first and second distribution signals, respectively;
The transmitter / receiver according to appendix 1, further comprising: a combiner that combines and outputs the output signals of the first and second amplifiers.
   (付記13)
 外部に無線送信される送信信号と外部から無線受信される受信信号とにより共用されるフィルタを介して供給された前記受信信号を、並列に設けられた複数の増幅器を用いて増幅し、
 前記複数の増幅器のそれぞれの出力信号の合成信号を復調して受信ベースバンド信号を出力する、送受信方法。
(Appendix 13)
Amplifying the reception signal supplied through a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside using a plurality of amplifiers provided in parallel;
A transmission / reception method for demodulating a combined signal of output signals of the plurality of amplifiers and outputting a reception baseband signal.
   (付記14)
 前記受信信号を同位相、90度異なる位相、又は、180度異なる位相の第1及び第2分配信号に分配し、
 前記第1及び前記第2分配信号をそれぞれ前記複数の増幅器としての第1及び第2増幅器を用いて増幅し、
 前記第1及び前記第2増幅器のそれぞれの出力信号を合成して出力する、付記13に記載の送受信方法。
(Appendix 14)
Distributing the received signal into first and second distribution signals having the same phase, 90 degrees different phases, or 180 degrees different phases;
Amplifying the first and second distribution signals using first and second amplifiers as the plurality of amplifiers, respectively;
14. The transmission / reception method according to appendix 13, wherein the output signals of the first and second amplifiers are combined and output.
   (付記15)
 前記合成信号に含まれる送信信号成分の歪に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、付記13又は14に記載の送受信方法。
(Appendix 15)
15. The transmission / reception method according to appendix 13 or 14, wherein distortion compensation processing is performed on the received baseband signal using a distortion compensation coefficient corresponding to distortion of a transmission signal component included in the synthesized signal.
   (付記16)
 前記歪補償処理では、
 前記合成信号に含まれる前記送信信号成分を復調してフィードバック信号を出力し、
 前記フィードバック信号と、前記送信信号に変調する前の送信ベースバンド信号と、を比較した結果に基づいて、前記合成信号に含まれる前記送信信号成分の歪を算出し、
 その算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、付記15に記載の送受信方法。
(Appendix 16)
In the distortion compensation process,
Demodulate the transmission signal component included in the combined signal and output a feedback signal;
Based on the comparison result between the feedback signal and the transmission baseband signal before modulation into the transmission signal, the distortion of the transmission signal component included in the combined signal is calculated,
The transmission / reception method according to appendix 15, wherein a distortion compensation process is performed on the received baseband signal using a distortion compensation coefficient corresponding to the calculation result.
   (付記17)
 送信ベースバンド信号を変調して高周波信号を出力し、
 前記高周波信号を高出力増幅器により増幅して前記送信信号を出力し、
 前記歪補償処理では、さらに、
 前記高出力増幅器の出力信号の歪に応じた歪補償係数を用いて、前記送信ベースバンド信号に対して歪補償処理を施す、付記15に記載の送受信方法。
(Appendix 17)
Modulate the transmission baseband signal and output a high-frequency signal,
Amplifying the high-frequency signal by a high-power amplifier to output the transmission signal;
In the distortion compensation process,
The transmission / reception method according to appendix 15, wherein distortion compensation processing is performed on the transmission baseband signal using a distortion compensation coefficient corresponding to distortion of an output signal of the high-power amplifier.
   (付記18)
 前記歪補償処理では、
 前記高出力増幅器の出力信号と、前記合成信号に含まれる前記送信信号成分と、の何れかを選択的に出力し、
 選択的に出力された信号を復調してフィードバック信号を出力し、
 前記フィードバック信号と、前記送信ベースバンド信号と、を比較した結果に基づいて、前記高出力増幅器の出力信号の歪、及び、前記合成信号に含まれる前記送信信号成分の歪、のいずれかを算出し、
 その算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、付記17に記載の送受信方法。
(Appendix 18)
In the distortion compensation process,
Selectively output one of the output signal of the high-power amplifier and the transmission signal component included in the combined signal;
Demodulate the selectively output signal and output a feedback signal,
Based on the comparison result between the feedback signal and the transmission baseband signal, one of distortion of the output signal of the high-power amplifier and distortion of the transmission signal component included in the synthesized signal is calculated. And
18. The transmission / reception method according to appendix 17, wherein distortion compensation processing is performed on the received baseband signal using a distortion compensation coefficient corresponding to the calculation result.
   (付記19)
 前記歪補償処理では、
 算出された前記合成信号に含まれる前記送信信号成分の歪から、前記合成信号に含まれる受信信号成分の歪を推定し、
 推定された前記受信信号成分の歪に起因して生じた前記受信ベースバンド信号の歪を補償するように、前記受信ベースバンド信号に対して歪補償処理を施す、付記16又は18に記載の送受信方法。
(Appendix 19)
In the distortion compensation process,
From the calculated distortion of the transmission signal component included in the combined signal, the distortion of the received signal component included in the combined signal is estimated,
The transmission / reception according to appendix 16 or 18, wherein a distortion compensation process is performed on the reception baseband signal so as to compensate for the distortion of the reception baseband signal caused by the estimated distortion of the reception signal component. Method.
   (付記20)
 前記合成信号と局部発振信号とを混合することにより、前記受信ベースバンド信号を出力する、付記13~19の何れか一項に記載の送受信方法。
(Appendix 20)
20. The transmission / reception method according to any one of appendices 13 to 19, wherein the reception baseband signal is output by mixing the synthesized signal and the local oscillation signal.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2014年6月11日に出願された日本出願特願2014-120277を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-120277 filed on June 11, 2014, the entire disclosure of which is incorporated herein.
 1,1a,1b,1c 送受信装置
 2,2a,2b 送受信装置
 3,3a,3b,3c,3d 送受信装置
 4 送受信装置
 10 アンテナ
 11 フィルタ
 12 低雑音増幅部
 121,122 増幅器
 123 分配器
 124 合成器
 13 直交復調部
 14 局部発振器
 15 ADコンバータ
 16 周波数変換部
 17 段間フィルタ
 20 歪補償部
 201 直交復調部
 202 局部発振器
 203 ADコンバータ
 204 歪算出部
 205 電力計算部
 206 メモリ
 207 信号処理部
 21 直交変調部
 22 DAコンバータ
 23 周波数変換部
 24 局部発振器
 25 高出力増幅器
 30,30a,30b 歪補償部
 301 直交復調部
 302 局部発振器
 303 ADコンバータ
 304 歪算出部
 305 電力計算部
 306 メモリ
 307 信号処理部
 308 電力計算部
 309 メモリ
 310 信号処理部
 311 周波数変換部
 41 フィルタ
 42 低雑音増幅部
 51~5n 半同軸型共振器
 61 シャーシ
 62 キャビティ
 T1 トランス
 SW1 選択部
1, 1a, 1b, 1c Transmission / reception device 2, 2a, 2b Transmission / reception device 3, 3a, 3b, 3c, 3d Transmission / reception device 4 Transmission / reception device 10 Antenna 11 Filter 12 Low noise amplification unit 121, 122 Amplifier 123 Divider 124 Synthesizer 13 Orthogonal demodulation unit 14 Local oscillator 15 AD converter 16 Frequency conversion unit 17 Interstage filter 20 Distortion compensation unit 201 Orthogonal demodulation unit 202 Local oscillator 203 AD converter 204 Distortion calculation unit 205 Power calculation unit 206 Memory 207 Signal processing unit 21 Orthogonal modulation unit 22 DA converter 23 Frequency conversion unit 24 Local oscillator 25 High- power amplifier 30, 30a, 30b Distortion compensation unit 301 Quadrature demodulation unit 302 Local oscillator 303 AD converter 304 Distortion calculation unit 305 Power calculation unit 306 Memory 307 Signal processing unit 308 Power calculation unit 309 Memory 310 Signal processing unit 311 Frequency conversion unit 41 Filter 42 Low noise amplification unit 51 to 5n Semi-coaxial resonator 61 Chassis 62 Cavity T1 Transformer SW1 selection unit

Claims (17)

  1.  外部に無線送信される送信信号と、外部から無線受信される受信信号と、により共用されるフィルタと、
     前記フィルタを介して供給された前記受信信号を増幅する低雑音増幅手段と、
     前記低雑音増幅手段の出力信号を復調して受信ベースバンド信号を出力する復調手段と、を備え、
     前記低雑音増幅手段は、
     並列に設けられた複数の増幅器を有する、送受信装置。
    A filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside;
    Low noise amplification means for amplifying the received signal supplied via the filter;
    Demodulating means for demodulating the output signal of the low noise amplifying means and outputting a received baseband signal,
    The low noise amplification means includes
    A transmission / reception apparatus having a plurality of amplifiers provided in parallel.
  2.  前記低雑音増幅手段は、
     前記受信信号を同位相、90度異なる位相、又は、180度異なる位相の第1及び第2分配信号に分配する分配器と、
     前記第1及び前記第2分配信号をそれぞれ増幅する前記複数の増幅器としての第1及び第2増幅器と、
     前記第1及び前記第2増幅器のそれぞれの出力信号を合成して出力する合成器と、を有する、請求項1に記載の送受信装置。
    The low noise amplification means includes
    A distributor for distributing the received signal into first and second distribution signals having the same phase, a phase different by 90 degrees, or a phase different by 180 degrees;
    First and second amplifiers as the plurality of amplifiers for amplifying the first and second distribution signals, respectively;
    The transmission / reception apparatus according to claim 1, further comprising a combiner that combines and outputs the output signals of the first and second amplifiers.
  3.  前記低雑音増幅手段の出力信号に含まれる送信信号成分の歪に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す歪補償手段をさらに備えた、請求項1又は2に記載の送受信装置。 The distortion compensation means which performs a distortion compensation process with respect to the said received baseband signal using the distortion compensation coefficient according to the distortion of the transmission signal component contained in the output signal of the said low noise amplification means is provided Or the transmission / reception apparatus of 2.
  4.  前記歪補償手段は、
     前記低雑音増幅手段の出力信号に含まれる前記送信信号成分を復調してフィードバック信号を出力する復調手段と、
     前記フィードバック信号と、前記送信信号に変調する前の送信ベースバンド信号と、を比較した結果に基づいて、前記低雑音増幅手段の出力信号に含まれる前記送信信号成分の歪を算出する歪算出手段と、
     前記歪算出手段の算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す信号処理手段と、
     を備えた、請求項3に記載の送受信装置。
    The distortion compensation means includes
    Demodulation means for demodulating the transmission signal component contained in the output signal of the low noise amplification means and outputting a feedback signal;
    Distortion calculation means for calculating distortion of the transmission signal component included in the output signal of the low noise amplification means based on the result of comparing the feedback signal and the transmission baseband signal before modulation to the transmission signal When,
    Signal processing means for performing distortion compensation processing on the received baseband signal using a distortion compensation coefficient according to the calculation result of the distortion calculation means;
    The transmission / reception apparatus according to claim 3, comprising:
  5.  送信ベースバンド信号を変調して高周波信号を出力する変調手段と、
     前記高周波信号を増幅して前記送信信号を出力する高出力増幅器と、をさらに備え、
     前記歪補償手段は、さらに、前記高出力増幅器の出力信号の歪に応じた歪補償係数を用いて、前記送信ベースバンド信号に対して歪補償処理を施す、請求項3に記載の送受信装置。
    Modulation means for modulating a transmission baseband signal and outputting a high-frequency signal;
    A high-power amplifier that amplifies the high-frequency signal and outputs the transmission signal, and
    The transmission / reception apparatus according to claim 3, wherein the distortion compensation unit further performs distortion compensation processing on the transmission baseband signal using a distortion compensation coefficient corresponding to distortion of an output signal of the high-power amplifier.
  6.  前記歪補償手段は、
     前記高出力増幅器の出力信号と、前記低雑音増幅手段の出力信号に含まれる前記送信信号成分と、の何れかを選択的に出力する選択手段と、
     前記選択手段の出力信号を復調してフィードバック信号を出力する復調手段と、
     前記フィードバック信号と、前記送信ベースバンド信号と、を比較した結果に基づいて、前記高出力増幅器の出力信号の歪、及び、前記低雑音増幅手段の出力信号に含まれる前記送信信号成分の歪、の何れかを算出する歪算出手段と、
     前記歪算出手段の算出結果に応じた歪補償係数を用いて、前記送信ベースバンド信号及び前記受信ベースバンド信号の何れかに対して歪補償処理を施す信号処理手段と、を備えた、請求項5に記載の送受信装置。
    The distortion compensation means includes
    A selection means for selectively outputting one of the output signal of the high-power amplifier and the transmission signal component included in the output signal of the low-noise amplification means;
    Demodulation means for demodulating the output signal of the selection means and outputting a feedback signal;
    Based on the comparison result between the feedback signal and the transmission baseband signal, distortion of the output signal of the high-power amplifier, and distortion of the transmission signal component included in the output signal of the low-noise amplifier, Distortion calculation means for calculating any one of
    The signal processing means which performs distortion compensation processing on either the transmission baseband signal or the reception baseband signal using a distortion compensation coefficient corresponding to the calculation result of the distortion calculation means. 5. The transmission / reception device according to 5.
  7.  前記歪補償手段は、前記歪算出手段によって算出された前記低雑音増幅手段の出力信号に含まれる前記送信信号成分の歪から、前記低雑音増幅手段の出力信号に含まれる受信信号成分の歪を推定し、推定された前記受信信号成分の歪に起因して生じた前記受信ベースバンド信号の歪を補償するように、当該受信ベースバンド信号に対して歪補償処理を施す、請求項4又は6に記載の送受信装置。 The distortion compensator calculates a distortion of the received signal component included in the output signal of the low noise amplifying unit from the distortion of the transmission signal component included in the output signal of the low noise amplifying unit calculated by the distortion calculating unit. 7. A distortion compensation process is performed on the received baseband signal so as to compensate for distortion of the received baseband signal caused by estimation and distortion of the estimated received signal component. The transmitting / receiving apparatus according to 1.
  8.  前記復調手段は、前記低雑音増幅手段の出力信号と局部発振信号とを混合することにより、前記受信ベースバンド信号を出力する、請求項1~7の何れか一項に記載の送受信装置。 The transmission / reception apparatus according to any one of claims 1 to 7, wherein the demodulation unit outputs the reception baseband signal by mixing an output signal of the low noise amplification unit and a local oscillation signal.
  9.  前記低雑音増幅手段と前記復調手段との間に設けられた段間フィルタをさらに備えた、請求項1~8の何れか一項に記載の送受信装置。 The transmitting / receiving apparatus according to any one of claims 1 to 8, further comprising an interstage filter provided between the low noise amplifying unit and the demodulating unit.
  10.  外部に無線送信される送信信号と外部から無線受信される受信信号とにより共用されるフィルタを介して供給された前記受信信号を、並列に設けられた複数の増幅器を用いて増幅し、
     前記複数の増幅器のそれぞれの出力信号の合成信号を復調して受信ベースバンド信号を出力する、送受信方法。
    Amplifying the reception signal supplied through a filter shared by a transmission signal wirelessly transmitted to the outside and a reception signal wirelessly received from the outside using a plurality of amplifiers provided in parallel;
    A transmission / reception method for demodulating a combined signal of output signals of the plurality of amplifiers and outputting a reception baseband signal.
  11.  前記受信信号を同位相、90度異なる位相、又は、180度異なる位相の第1及び第2分配信号に分配し、
     前記第1及び前記第2分配信号をそれぞれ前記複数の増幅器としての第1及び第2増幅器を用いて増幅し、
     前記第1及び前記第2増幅器のそれぞれの出力信号を合成して出力する、請求項10に記載の送受信方法。
    Distributing the received signal into first and second distribution signals having the same phase, 90 degrees different phases, or 180 degrees different phases;
    Amplifying the first and second distribution signals using first and second amplifiers as the plurality of amplifiers, respectively;
    The transmission / reception method according to claim 10, wherein the output signals of the first and second amplifiers are combined and output.
  12.  前記合成信号に含まれる送信信号成分の歪に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、請求項10又は11に記載の送受信方法。 The transmission / reception method according to claim 10 or 11, wherein a distortion compensation process is performed on the received baseband signal using a distortion compensation coefficient corresponding to a distortion of a transmission signal component included in the synthesized signal.
  13.  前記歪補償処理では、
     前記合成信号に含まれる前記送信信号成分を復調してフィードバック信号を出力し、
     前記フィードバック信号と、前記送信信号に変調する前の送信ベースバンド信号と、を比較した結果に基づいて、前記合成信号に含まれる前記送信信号成分の歪を算出し、
     その算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、請求項12に記載の送受信方法。
    In the distortion compensation process,
    Demodulate the transmission signal component included in the combined signal and output a feedback signal;
    Based on the comparison result between the feedback signal and the transmission baseband signal before modulation into the transmission signal, the distortion of the transmission signal component included in the combined signal is calculated,
    The transmission / reception method according to claim 12, wherein a distortion compensation process is performed on the received baseband signal using a distortion compensation coefficient corresponding to the calculation result.
  14.  送信ベースバンド信号を変調して高周波信号を出力し、
     前記高周波信号を高出力増幅器により増幅して前記送信信号を出力し、
     前記歪補償処理では、さらに、
     前記高出力増幅器の出力信号の歪に応じた歪補償係数を用いて、前記送信ベースバンド信号に対して歪補償処理を施す、請求項12に記載の送受信方法。
    Modulate the transmission baseband signal and output a high-frequency signal,
    Amplifying the high-frequency signal by a high-power amplifier to output the transmission signal;
    In the distortion compensation process,
    The transmission / reception method according to claim 12, wherein distortion compensation processing is performed on the transmission baseband signal using a distortion compensation coefficient corresponding to distortion of an output signal of the high-power amplifier.
  15.  前記歪補償処理では、
     前記高出力増幅器の出力信号と、前記合成信号に含まれる前記送信信号成分と、の何れかを選択的に出力し、
     選択的に出力された信号を復調してフィードバック信号を出力し、
     前記フィードバック信号と、前記送信ベースバンド信号と、を比較した結果に基づいて、前記高出力増幅器の出力信号の歪、及び、前記合成信号に含まれる前記送信信号成分の歪、のいずれかを算出し、
     その算出結果に応じた歪補償係数を用いて、前記受信ベースバンド信号に対して歪補償処理を施す、請求項14に記載の送受信方法。
    In the distortion compensation process,
    Selectively output one of the output signal of the high-power amplifier and the transmission signal component included in the combined signal;
    Demodulate the selectively output signal and output a feedback signal,
    Based on the comparison result between the feedback signal and the transmission baseband signal, one of distortion of the output signal of the high-power amplifier and distortion of the transmission signal component included in the synthesized signal is calculated. And
    The transmission / reception method according to claim 14, wherein a distortion compensation process is performed on the received baseband signal using a distortion compensation coefficient corresponding to the calculation result.
  16.  前記歪補償処理では、
     算出された前記合成信号に含まれる前記送信信号成分の歪から、前記合成信号に含まれる受信信号成分の歪を推定し、
     推定された前記受信信号成分の歪に起因して生じた前記受信ベースバンド信号の歪を補償するように、前記受信ベースバンド信号に対して歪補償処理を施す、請求項13又は15に記載の送受信方法。
    In the distortion compensation process,
    From the calculated distortion of the transmission signal component included in the combined signal, the distortion of the received signal component included in the combined signal is estimated,
    16. The distortion compensation process is performed on the reception baseband signal so as to compensate for the distortion of the reception baseband signal caused by the estimated distortion of the reception signal component. Transmission / reception method.
  17.  前記合成信号と局部発振信号とを混合することにより、前記受信ベースバンド信号を出力する、請求項10~16の何れか一項に記載の送受信方法。 The transmission / reception method according to any one of claims 10 to 16, wherein the reception baseband signal is output by mixing the synthesized signal and a local oscillation signal.
PCT/JP2015/001251 2014-06-11 2015-03-09 Transceiving device and transceiving method WO2015190016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-120277 2014-06-11
JP2014120277 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190016A1 true WO2015190016A1 (en) 2015-12-17

Family

ID=54833136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001251 WO2015190016A1 (en) 2014-06-11 2015-03-09 Transceiving device and transceiving method

Country Status (1)

Country Link
WO (1) WO2015190016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199233A1 (en) * 2017-04-27 2018-11-01 日本電気株式会社 Transmitter, communication system, and method and program for controlling transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131627A (en) * 1988-11-12 1990-05-21 Nec Corp Microwave band transmission/reception common use radio equipment
JP2001230634A (en) * 2000-02-17 2001-08-24 Nippon Dengyo Kosaku Co Ltd Multistage type low-noise amplifier
JP2012060433A (en) * 2010-09-09 2012-03-22 Hitachi Ltd Transmitter-receiver, rfic for mobile phone terminal using the same, and base station for mobile phone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131627A (en) * 1988-11-12 1990-05-21 Nec Corp Microwave band transmission/reception common use radio equipment
JP2001230634A (en) * 2000-02-17 2001-08-24 Nippon Dengyo Kosaku Co Ltd Multistage type low-noise amplifier
JP2012060433A (en) * 2010-09-09 2012-03-22 Hitachi Ltd Transmitter-receiver, rfic for mobile phone terminal using the same, and base station for mobile phone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199233A1 (en) * 2017-04-27 2018-11-01 日本電気株式会社 Transmitter, communication system, and method and program for controlling transmitter
JPWO2018199233A1 (en) * 2017-04-27 2020-03-12 日本電気株式会社 Transmitter, communication system, transmitter control method and program
US10749480B2 (en) 2017-04-27 2020-08-18 Nec Corporation Transmitter, communication system, and method and program for controlling transmitter
JP7081594B2 (en) 2017-04-27 2022-06-07 日本電気株式会社 Transmitters, communication systems, transmitter control methods and programs

Similar Documents

Publication Publication Date Title
US10090989B2 (en) Software defined radio front end
KR100987295B1 (en) Down convertor and up convertor
US7983627B2 (en) Circuit arrangement with improved decoupling
US10447337B2 (en) Duplexer system and associated digital correction for improved isolation
EP2169837B1 (en) Technique for suppressing noise in a transmitter device
US20100329387A1 (en) Wireless communication apparatus and wireless communication method
US10419039B2 (en) Front end module and communication apparatus
JP5236711B2 (en) Mobile communication terminal, multi-frequency simultaneous communication method
CA2843078A1 (en) A suppresion circuit for suppressing unwanted transmitter output
JP2009165112A (en) Wireless circuit device
JP2020512770A (en) Adjustable out-of-band interference mitigation system and method
JPWO2018143043A1 (en) Wireless device and wireless communication method
WO2015190016A1 (en) Transceiving device and transceiving method
US20160380604A1 (en) Transformer based duplexer
WO2015190085A1 (en) Transmission/reception device and transmission/reception method
US10659098B2 (en) Duplexing apparatus, transceiver apparatus and method of compensating for signal leakage
CN110463033B (en) Enhanced linear mixer
JP2018101856A (en) Communication device and communication method
US11637734B2 (en) Radio-frequency circuit, communication device, and radio-frequency circuit designing method
KR20240008619A (en) Calibration-Free Out-of-band blocker Rejection Low Noise Amplifier and the Method
JPWO2004001989A1 (en) Transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP