WO2015188787A1 - Method for preparing oxazolidinone compound and intermediates thereof - Google Patents

Method for preparing oxazolidinone compound and intermediates thereof Download PDF

Info

Publication number
WO2015188787A1
WO2015188787A1 PCT/CN2015/081383 CN2015081383W WO2015188787A1 WO 2015188787 A1 WO2015188787 A1 WO 2015188787A1 CN 2015081383 W CN2015081383 W CN 2015081383W WO 2015188787 A1 WO2015188787 A1 WO 2015188787A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
formula
acid
temperature
Prior art date
Application number
PCT/CN2015/081383
Other languages
French (fr)
Inventor
Yinglin ZUO
Jin Zhang
Jinfu ZHENG
Liang Wen
Xiaojun Wang
Yingjun Zhang
Jiancun Zhang
Original Assignee
Sunshine Lake Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunshine Lake Pharma Co., Ltd. filed Critical Sunshine Lake Pharma Co., Ltd.
Publication of WO2015188787A1 publication Critical patent/WO2015188787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Definitions

  • the invention relates to the field of pharmaceutical chemistry, specifically to method for preparing an oxazolidinone compound having 5-chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) thiophene-2 -carboxamide and intermediates thereof.
  • thrombootic disease that is a thrombus embolism disease, refers to various dysfunctional diseases caused by that vessel lumen stenosis and occlusion caused by thrombus make ischemia and infarction in main organs, which belongs to cardiovascular and cerebrovascular diseases.
  • Cardiovascular and cerebrovascular disease has been one of the highest morbidity and mortality diseases in the global.
  • thrombotic disease as the main cause of cardiovascular and cerebrovascular diseases, the incidence is increasing year by year.
  • Coagulation factor Xa is a serine protease that can convert prothrombin to thrombin, which is a target having a great clinical value for anticoagulation and plays an important role in controlling the formation of thrombin and activating coagulation cascade.
  • Coagulation factor Xa locates in the joint of the internal and extrinsic coagulation pathway and mainly catalyzes the conversion of Factor II to Factor IIa. Because of biological signal amplification in the coagulation process, a blood coagulation factor Xa inhibitor can inhibit the physiological effects of 138 prothrombin molecules. Therefore, inhibiting coagulation factor Xa can effectively inhibit the generation of thrombin and thrombosis. Effective and specific inhibitors of Factor Xa are valuable as potential therapeutic agents for the treatment of thromboembolic disorders.
  • Patent application PCT WO 2014110971 (incorporated herein by reference) disclosed an oxazolidinone compound having 5-chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) thiophene-2-carboxamide, and its structure represented by Formula (I) is as shown below.
  • This compound has a good FXa inhibition activity, and can be used as anticoagulant drug for the treatment of thromboembolic-related disorders.
  • the above patent application disclosed a preparation process of the compound of Formula (I) comprising the steps of: a) reacting (3R, 3aS) -7-sustituted-3- ( ( (tert-butyldimethylsilyl) oxy) methyl) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one with morpholin-3-one in the present of a metal Palladium catalyst and a ligand containing phosphine by coupled reaction to give a product; b) forming an intermediate (I-a) (i.e.
  • step a) the compound of Formula (I-a) ) via removing the protecting group, sulfonylation, substituted with phthalimido and aminolysis reaction 4 steps in turn from the product of step a) ; and at last, c) reacting the intermediate (I-a) with 5-chlorothiophene-2-carbonyl chloride by coupled reaction to afford the compound of Formula (I) .
  • This preparation process has some characteristics of low yields in the coupled reaction and high price of the metal Palladium catalyst, and which is not suitable for large scale production. Furthermore, the intermediate (I-a) obtained from the process without purification is used directly in the next coupled reaction step, which leads to many difficulties in the work-up of the coupled reaction, and also influences the reaction yield.
  • Patent application WO 2015/043364 also disclosed the compound of Formula (I) , preparation method and pharmaceutical composition thereof, as well as use thereof as an anticoagulant for the treatment and prevention of thromboembolism diseases.
  • the process for preparing the compound of Formula (I-a) was also disclosed in the application comprising activating a hydroxy group and then preparing by azide substitution and reduction reaction to afford the compound of Formula (I-a) .
  • sodium azide was used, which is toxic and explosive, that increases risk of experiment and is disadvantage for industrial production.
  • the present invention relates to method for preparing the compound of Formula (I) and important intermediate; the method has characteristics of simple operations, safety and controllable, high yield, and which is suitable for industrial production.
  • the invention relates to the method for preparing the compound of Formula (I) :
  • 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one can be converted to (3R, 3aS) -3- (hydroxymethyl) -7- (3-oxomorpholino) -3a
  • 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one which can be converted to (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a
  • HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
  • a copper catalyst was used in the coupled reaction, which is cheaper than a metal palladium catalyst, so the production cost can be reduced when using the copper catalyst; meanwhile, the coupled reaction performed under the conditions of the present invention has a simple work-up and high yield.
  • a hydroxy group was converted to an amino group by activation, substitution with phthalyl or benzoic sulfimidyl and aminolysis reaction in turn, adopting this method can avoid using toxic and explosive reagent, which is safe and controllable.
  • the crude product in the aminolysis reaction of the present invention, can be salified with an acid, which can make the work-up of the aminolysis reaction become simpler, and the obtained intermediate has a high purity, which is useful for the control of impurities and the improvement of yield in the next step; and the intermediate having salt form is liable to be saved.
  • the reaction yield was further improved by using a mixed solvent; the crude product of the condensation reaction can be purified by recrystallization, which is a simple operation.
  • the preparation process of the present invention has characteristics of cheap raw materials, low costing, simple operations, safety and easy control and high total yield; especially the last step has characteristics of simpler work-up and higher yield through the salt formation of the intermediate (I-a) by acidizing, which is specially suitable for industrial production.
  • the invention also relates to two important intermediates (represented by Formula (II) and (III) ) for preparing the Formula (I) and preparation processes thereof.
  • HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
  • 5-Chlorothiophene-2-carbonyl chloride of the present invention can be added dropwise directly to the compound of Formula (II) , or also can be added dropwise in a certain concentration prepared by dissolving in a second solvent.
  • the second solvent disclosed herein is not specifically restricted; whatever solvent which can dissolve the 5-chlorothiophene-2-carbonyl chloride and does not affect the reaction is within the scope of the invention, which includes, but is not limited to, toluene or dichloromethane, and the like.
  • the certain concentration disclosed herein is not specifically restricted, whatever concentrations which do not affect the reaction are within the scope of the invention.
  • the certain concentration solution of 5-chlorothiophene-2-carbonyl chloride is a 48%solution of 5-chlorothiophene-2-carbonyl chloride in toluene. In other embodiments, the certain concentration solution of 5-chlorothiophene-2-carbonyl chloride is a 1.6 M or 2.1 M solution of 5-chlorothiophene-2-carbonyl chloride in toluene.
  • 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature from about 0 °C to about 50 °C. In some embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature from about 30 °C to about 50 °C. In other embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 0 °C.
  • 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 35 °C. In yet other embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 45 °C.
  • the condensation reaction disclosed herein is performed at a temperature from about 0 °C to about 50 °C. In some embodiments, the condensation reaction disclosed herein is performed at a temperature from about 20 °C to about 30 °C. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 0 °C. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 20 °C. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 25 °C.
  • the condensation reaction disclosed herein is performed in a first solvent comprising one or more ethers, one or more ketones, dichloromethane, toluene, water or a combination thereof.
  • the first solvent disclosed herein comprises tetrahydrofuran, dioxane, diisopropyl ether, methyl tert-butyl ether, methyl ethyl ketone, methy isobutyl ketone, acetone, dichloromethane, toluene, water or a combination thereof.
  • the first solvent disclosed herein comprises acetone, toluene, water or a combination thereof.
  • the first solvent disclosed herein comprises acetone, water or a combination thereof.
  • the first solvent disclosed herein is a mixture of acetone and water.
  • the mixture has a volume ratio between acetone and water ranging from about 1/2 to about 3/1.
  • the mixture has a volume ratio between acetone and water ranging from about 1/2 to about 3/2.
  • the mixture has a volume ratio between acetone and water at ranging from about 7/10 to about 9/10.
  • the mixture has a volume ratio between acetone and water ranging from about 1/2, about 3/4 or about 8/11.
  • the condensation reaction disclosed herein is performed in the present of a first base which may be an organic or inorganic base.
  • the organic base may be triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, pyridine or a combination thereof.
  • the inorganic base include, but is not limited to, the alkali metal or alkaline earth metal hydroxide, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal carbonate or bicarbonate or phosphate or hydrogen phosphate, ammonia or a combination thereof.
  • the first base disclosed herein is an organic base.
  • the first base disclosed herein is an inorganic base.
  • the first base disclosed herein is triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, pyridine, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium dicarbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate or a combination thereof.
  • the first base disclosed herein is sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium dicarbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate or a combination thereof.
  • the method disclosed herein further comprises purifying the compound of Formula (I) by a method, such as recrystallization, but not limited.
  • the recrystallization is performed in a third solvent.
  • the third solvent disclosed herein is not specifically restricted; whatever solvent which can dissolve the crude product of the condensation reaction, and in which crystalline can precipitate out under a certain condition, is within the scope of the invention, which includes, but is not limited to, acetic acid, water or a combination thereof.
  • the third solvent is acetic acid.
  • the third solvent is water.
  • the third solvent is a mixed solvent of acetic acid and water.
  • the third solvent is a mixed solvent having a volume ratio between acetic acid and water ranging from 1/2 to 3/2.
  • the process of recrystallization comprises the steps of: a) suspending the crude product in the third solvent; b) heating and dissolving the crude product; c) cooling the solution to precipitate crystalline or precipitating crystalline by using anti-solvent addition.
  • the crude product of example 7 was suspended in acetic acid or water or a combination thereof, after heating and dissolving, the solution was cooled slowly to precipitate crystalline; or after heating and dissolving, the another solvent (can be water or acetic acid or a combination thereof) was added to the solution at a maintaining temperature, and then the resulting solution was cooled slowly to precipitate crystalline.
  • the condensation reaction disclosed herein has characteristics of high yield, simple work-up by using recrystallization, which is suitable for a large scale production.
  • a large scale production example of the condensation reaction was provided herein, it can be known from the results of the experiment that the yield of large scale production can reach 77%under the reaction conditions disclosed herein.
  • HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
  • the aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 50 °C to about 100 °C. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 60 °C to about 90 °C. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature of about 85 °C. In other embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature of about 90 °C. In other embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 85 °C to about 90 °C.
  • the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of a reaction solvent.
  • the refluxing temperature associates with a specific reaction, varies with different conditions.
  • the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of ethanol.
  • the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of a mixture of ethanol and water.
  • the aminolysis reaction of the step a) disclosed herein is performed in the present of an amination reagent comprising ammonia gas, ammonia water, primary amine or hydrazine.
  • an amination reagent comprising ammonia gas, ammonia water, primary amine or hydrazine.
  • primary amine is methylamine, ethylamine, propylamine or butylamine
  • the hydrazine is hydrazine hydrate.
  • the primary amine in the aminolysis reaction of the step a) disclosed herein is methylamine, wherein the methylamine can be a solution in a certain concentration, the solution of methylamine includes, but is not limited to methylamine in water solution, methylamine in methanol solution, methylamine in ethanol solution or methylamine in isopropanol solution in a certain concentration, and the like.
  • the certain concentration of methylamine is 40%methylamine in water solution or 33%methylamine in ethanol solution.
  • the amination reagent used in the aminolysis reaction of the step a) disclosed herein is a methanol solution of ammonia. In some embodiments, the amination reagent used in the aminolysis reaction of the step a) disclosed herein is a methanol solution of ammonia (33%)
  • the amount of amination reagent disclosed herein is generally excess, and multiplicity by mole of the compound represented by Formula (III) .
  • the amount of amination reagent is 2 to10 folds by mole of the compound represented by Formula (III) .
  • the amount of amination reagent is 2 to 7 folds by mole of the compound represented by Formula (III) .
  • the amount of amination reagent is 2.5, 5.0 or 7.0 folds by mole of the compound represented by Formula (III) .
  • the aminolysis reaction of the step a) disclosed herein is performed in a first polar solvent comprising methanol, ethanol, isopropanol, water or a combination thereof.
  • the salt forming reaction disclosed herein refers to the product of the aminolysis reaction of the step a) disclosed herein with a suitable acid in a fourth solvent to produce a corresponding salt.
  • the fourth solvent disclosed herein is not specific restricted, which can make the product of the aminolysis reaction of the step a) disclosed herein dissolved completely and does not affect salt forming reaction is within the scope of the invention.
  • the fourth solvent includes, but is not limited to methanol, ethanol, isopropanol, water or a combination thereof, and the like.
  • the suitable acid disclosed herein is not specific restricted, and which can form stable salts with the product of the aminolysis reaction of the step a) disclosed herein is within the scope of the invention.
  • the suitable acids include, but are not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid, and the like.
  • the salt forming reaction disclosed herein can be realized by adjusting the solution pH to acidic with an acid.
  • the salt forming reaction of the step b) is performed in a fourth solvent comprising methanol, ethanol, isopropanol, water or a combination thereof.
  • the salt forming reaction of the step b) refers to the product of the aminolysis reaction disclosed herein reacts with an acid HX or a solution thereof to produce the compound of Formula (II) .
  • the acid HX is hydrochloric acid.
  • the salt formed from the product of the aminolysis reaction disclosed herein is hydrochloride
  • the preparation process of hydrochloride comprises reacting the product of the aminolysis reaction disclosed herein with concentrated hydrochloric acid or hydrogen chloride gas or hydrochloric acid solution in the fourth solvent
  • the hydrochloric acid solution includes, but is not limited to, an ethyl acetate solution of hydrochloric acid.
  • the preparation process of hydrochloride comprises reacting the product of the aminolysis reaction disclosed herein with concentrated hydrochloric acid in the fourth solvent.
  • the preparation process of hydrochloride comprises: dissolving the product of the aminolysis reaction disclosed herein in the fourth solvent (such as methanol, ethanol, isopropanol or water, and the like) ; adding concentrated hydrochloric acid to the solution until the system become acidic to form the hydrochloride.
  • the system temperature can be within a certain range in the adding process (for example, keeping the temperature at about 0 °C or no more than 25 °C or no more than 40 °C) ; the system temperature can be reduced after the addition, which makes the salt precipitate out much more as much as possible and avoids unnecessary loss.
  • the product of the aminolysis reaction disclosed herein is a corresponding amine of the compound represented by Formula (II) , i.e. the compound of Formula (I-a) .
  • the product obtained from the aminolysis reaction disclosed herein is purified by salt forming reaction, which is a simple operation, to avoid some complex operations (such as column chromatography, and so on) . Meanwhile, it is useful for the control of the next step reaction and improvement of yield that the product is purified before use.
  • the amine salt prepared by using the salt forming reaction disclosed herein has characteristics of high purity and high stability, which is more easily saved than the amine form.
  • the compound of Formula (II) can be further purified by triturating with a solvent.
  • the solvent used in the triturating is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether, or combination thereof, and the like.
  • provided herein is a method for preparing the compound of Formula (III) comprising reacting a compound of Formula (IV)
  • R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl or Br in 4 position;
  • An o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium or sodium salt. In some embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt. In other embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, such as saccharin sodium salt.
  • the dosage of o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is 1.0 fold or multiplicity by mole of the compound represented by Formula (IV) .
  • the dosage of o-phthalimide salt or o-benzoic sulfimide salt is 1.0 to 2.0 folds by mole of the compound represented by Formula (IV) .
  • the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt which is 1.0 to 2.0 folds by mole of the compound represented by Formula (IV) .
  • the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt which is 1.2 to 1.5 folds by mole of the compound represented by Formula (IV) .
  • the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, the dosage of which is 1.0 fold to 2.0 folds by mole of the compound represented by Formula (IV) .
  • the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, the dosage of which is 1.5 folds by mole of the compound represented by Formula (IV) .
  • the substitution reaction disclosed herein is performed at a temperature from about 50 °C to about 100 °C. In some embodiments, the substitution reaction disclosed herein is performed at a temperature from about 65 °C to about 90 °C. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 65 °C. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 72 °C. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 75 °C. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 90 °C.
  • substitution reaction disclosed herein is performed in a second polar solvent disclosed herein comprising N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, terahydrofuran, acetone or a combination thereof.
  • substitution reaction disclosed herein can be carried out without a catalyst, or can also be carried out in the presence of a catalyst.
  • the substitution reaction is performed in the present of a first catalyst, wherein the first catalyst is benzyltriethylammonium chloride, tetrabutylammonium chloride or potassium iodide.
  • provided herein is a method for preparing the compound of formula (IV) comprising the steps of:
  • Hal is OTf, I, Br or Cl; R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl or Br in 4 position.
  • the coupled reaction of the step A) is performed at a temperature from about 60 °C to about 140 °C. In some embodiments, the coupled reaction of the step A) is performed at a temperature from about 90 °C to about 130 °C. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 100 °C to about 130 °C. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 90 °C to about 120 °C. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 115 °C to about 118 °C.
  • the coupled reaction of the step A) is performed at a refluxing temperature of the reaction solvent; the refluxing temperature has a little change due to various special reaction conditions. In yet other embodiments, the coupled reaction of the step A) is performed at a refluxing temperature of toluene.
  • the coupled reaction of the step A) is performed in a third polar solvent comprising N, N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidinone, toluene, dioxane, tetrahydrofuran, dimethylbenzene, dimethoxyethane or a combination thereof.
  • the coupled reaction of the step A) is performed in the present of a second base comprising potassium phosphate, potassium carbonate, cesium carbonate, sodium carbonate, sodium phosphate or a combination thereof.
  • the coupled reaction of the step A) is performed in the present of a second catalyst comprising a common metal catalyst promoting coupled reaction, specially including Palladium catalyst, Rhodium catalyst, Nickel catalyst or Copper catalyst and the like.
  • the second catalyst disclosed herein is Copper catalyst.
  • the second catalyst disclosed herein is Copper power, Cuprous iodide, Cuprous chloride, Cuprous thiocyanate, Cuprous oxide, Copper (I) acetate or Cupric acetylacetonate.
  • the second catalyst of the step A) is applied in an amount of about 5%to about 20%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In some embodiments, the second catalyst is applied in an amount of about 10%to about 20%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In other embodiments, the second catalyst is applied in an amount of about 15%equivalents per 1 equivalent by mole of the compound of Formula (VII) .
  • the coupled reaction of the step A) is performed in the present of a ligand comprising a common ligand of a coupled reaction, which can be chosen depending on which catalyst is used, whatever ligands suited with the second catalyst are all within the scope of the invention.
  • the ligand is 8-hydroxyquinoline, proline, N-methylglycine, N, N-dimethylglycine, N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine or N, N-dimethylethanediamine.
  • the ligand of the step A) is applied in an amount of about 10%to about 40%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In some embodiments, the ligand is applied in an amount of about 20%to about 40%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In other embodiments, the ligand is applied in an amount of about 30%equivalents per 1 equivalent by mole of the compound of Formula (VII) .
  • the method for preparing the compound of Formula (IV) disclosed herein further comprises purifying by a method, such as triturating but not limited.
  • the triturating is performed in a solvent, wherein the solvent is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether or a combination thereof, and the like.
  • a copper catalyst and a ligand containing nitrogen are used in the step A) , which leads to low costing, and a triturating is adopted for purification in the work-up, which is a simple operation and suitable for industrial production.
  • a fluorine reagent of step B) is tetrabutylammonium fluoride; the de-protecting reaction of step B) is performed in a fourth polar solvent comprising tetrahydrofuran or glycol dimethyl ether, and the like.
  • the reaction of the step C) is performed at a temperature from about -20 °C to about 50 °C. In some embodiments, the reaction temperature of the step C) is from about -10 °C to about 40 °C. In some embodiments, the reaction temperature of the step C) is from about -10 °C to about 20 °C. In other embodiments, the reaction temperature of the step C) is from about 0 °C to about 20 °C. In still other embodiments, the reaction temperature of the step C) is room temperature.
  • RCl of step C) is added dropwise to a solution of the compound of Formula (V) at a low temperature from about -20 °C to about 10 °C.
  • the low temperature of the step C) is from about -10 °C to about 0 °C.
  • RCl of the step C) is added dropwise to a solution of the compound of Formula (V) in an ice-bath.
  • the reaction of the step C) is performed in a third base comprising triethylamine, N, N-diisopropylethylamine, pyridine or a combination thereof.
  • the aprotic solvent of the step C) is dichloromethane, tetrahydrofuran, N, N-dimethylformamide, diethyl ether or a combination thereof.
  • the reaction of the step C) can be performed without a catalyst, or can also be carried out in the presence of a catalyst. In some embodiments, the reaction of the step C) is performed in the presence of a third catalyst comprising 4-dimethylaminopyridine.
  • the compound of Formula (V) of the step B) and the compound of Formula (IV) of the step C) can be further purified by triturating with a solvent, adopting this method can avoid using complex operations such as column chromatography, wherein the solvent is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether or a combination thereof, and the like.
  • the “room temperature” disclosed herein refers to the temperature from about 10 °C to about 40 °C. In some embodiments, the room temperature is from about 20 °C to about 30 °C. In other embodiments, the room temperature is about 20 °C, about 22.5 °C, about 25 °C or about 27.5 °C, and so on.
  • the reaction mixture is worked up, such as cooled, collected, drawn, filtered, separated, purified or a combination thereof.
  • the reaction can be monitored by conventional method such as thin-layer chromatography (TLC) , high performance liquid chromatography (HPLC) , gas chromatography (GC) , and the like.
  • the reaction mixture can be worked up by conventional method, for example, the crude product can be collected by concentrating the reaction mixture through vacuum evaporation or conventional distillation and which is used directly in the next operation; or the crude product can be obtained by filtration of the reaction mixture and which is used directly in the next operation; or the crude product can be get by pouring the supernatant liquid of the reaction mixture after standing for a while and which is used directly in the next operation.
  • the reaction mixture can be purified by suitable methods such as extraction, distillation, crystallization, column chromatography, washing, trituration with suitable solvents or a combination thereof.
  • Each process of dropping and each step reaction disclosed herein are proceed under certain temperature conditions. Any suitable temperature for the dropping process or the reaction are included in the invention. Additionally, the field of many similar changes, equivalent replacement, or equivalent temperature and temperature range described in the invention, are considered to be within the scope of the invention.
  • the invention provides the preferred temperature or temperature range of dripping process, and the preferred temperature of the reaction.
  • the solvents used in each reaction step are not particularly restricted. Any solvent which can dissolve the starting material in a certain extent and does not inhibit the reaction is included in the invention. Additionally, the field of many similar changes, equivalent replacement, or equivalent solvents described in the invention, solvents combination and the proportions of solvent combination are considered to be within the scope of the invention.
  • the invention provides the preferred solvents of each reaction steps.
  • the solvent used for recrystallization is not particularly restricted so long as it dissolves the crude product and the crystal product can precipitate out under certain conditions. Additionally, the field of the field of many similar changes, equivalent replacement, or equivalent solvents described in the invention, solvents combination and the proportions of solvent combination are considered to be within the scope of the invention. Wherein the solvent could be alcohols, ethers, halohydrocarbons, esters, ketones, aromatic hydrocarbons, alkanes, acetonotrile, DMF or a combination thereof.
  • the content of water in the solvent disclosed herein is not restricted.
  • a solvent having any content which can be used in a certain extent in the present invention, are all deemed as the solvent disclosed herein.
  • Such as the content of water in the solvent is about less than 0.05%, less than 0.1%, less than 0.2%, less than 0.5%, less than 5%, less than 10%, less than 25%, less than 30, or 0%.
  • first means at least two, for example, two, three and the like.
  • temperatures are set forth in degrees Celsius (°C) .
  • Reagents were purchased from commercial suppliers such as Aladdin reagent (shanghai) limited company, shanghai link pharmaceutical technology limited company, shanghai demo pharmaceutical technology limited company and Beijing Ouhe pharmaceutical technology limited company, and were used without further purification unless otherwise indicated.
  • Common solvents were purchased from commercial suppliers such as Chengdu KeLong chemical, Taizhou Haichuan chemical limited company, Sichuan weibo technology limited company and Zhejiang bulk chemical limited company.
  • NMR spectra were obtained as CDCl 3 , d 6 -DMSO, CD 3 OD D 2 O, or d 6 -acetone solutions (reported in ppm) , using TMS (0 ppm) or chloroform (7.25 ppm) as the reference standard.
  • MS data were determined on an Agilent 6320 Series LC-MS spectrometer equipped with G1312A binary pumps and a G1316A TCC (Temperature Control of Column, maintained at 30 °C) .
  • G1329A autosampler and a G1315B DAD detector were used in the analysis, and an ESI source was used on the LC-MS spectrometer.
  • MS data were determined on an Agilent 6120 Series LC-MS spectrometer equipped with G1311A quaternary pumps and a G1316A TCC (Temperature Control of Column, maintained at 30 °C) .
  • G1329A autosampler and a G1315D DAD detector were used in the analysis, and an ESI source was used on the LC-MS spectrometer.
  • Table 1 The conditions of gradient elution of mobile phase in Low-resolution mass spectral
  • HPLC high performance liquid chromatography
  • HPLC high performance liquid chromatography
  • G1311B quaternary pumps G1329B autosampler
  • G1316A TCC Tempo Control of Column, maintained at 35 °C
  • G1315D DAD detector G1315D DAD detector
  • Chromatographic column is an Agilent Zorbax SB-C18 (4.6 ⁇ 150 mm, 5 ⁇ m) .
  • the flow rate is 1.0 mL/min.
  • the detection wave length is 250 nm.
  • the mobile phase and conditions of gradient elution is described in Tables 2 to 5:
  • Compound (8) can be prepared by a method illustrated in the above scheme, wherein each R 1 is independently halogen or C 1-4 alkyl; R 2 is a substituted or unsubstantiated heterocyclic group; R 3 is a substituted or unsubstantiated aryl or heteroaryl group; Y + is Na + or K + ; n is 0, 1, 2 or 3; each R, Z and ⁇ is as defined herein.
  • Compound (1) can react with R 2 H in the presence of a base (such as potassium phosphate, potassium carbonate, cesium carbonate, and the like) , a catalyst (such as Cuprous iodide, Cuprous oxide or Cuprous chloride, and the like) and a ligand (such as N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine, and the like) in a suitable solvent, to obtain compound (2) .
  • a base such as potassium phosphate, potassium carbonate, cesium carbonate, and the like
  • a catalyst such as Cuprous iodide, Cuprous oxide or Cuprous chloride, and the like
  • a ligand such as N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine, and the like
  • the protecting group of compound (2) can be removed to afford compound (3) in the presence of a fluorine reagent (such as n-tetrabutylammonium fluoride) and in a polar solvent (such as tetrahydrofuran or dimethoxyethane) .
  • a fluorine reagent such as n-tetrabutylammonium fluoride
  • a polar solvent such as tetrahydrofuran or dimethoxyethane
  • Compound (3) can react with RCl in the presence of a base (such as triethylamine, N, N-diisopropylethylamine or pyridine, and the like) to obtain compound (4) .
  • Compound (4) can react with compound (5) by substitution reaction in a polar solvent under a heating condition to give compound (6) .
  • Compound (6) can convert to compound (7) by the aminolysis reaction in the presence of primary amine or hydrazine, and then by salification reaction.
  • a base such as sodium carbonate, potassium carbonate or potassium phosphate, and the like
  • the resulting mixture was adjusted to pH 2 to 3, then filtered by a vacuum filtration.
  • the filter cake was washed with ethanol (500 mL) , triturated with DCM (9 L) and filtered, dried to give a white solid (0.8 kg, 65%) .
  • reaction mixture was cooled to 25 °C and stirred for 0.5 hour.
  • the reaction was monitored by TLC.
  • the reaction mixture was stirred for another 2 hours and filtered by a vacuum filter.
  • reaction mixture was cooled to 20 °C for 1 hour.
  • the reaction was monitored by TLC.
  • the reaction mixture was cooled to rt and filtered by a vacuum filter to give a white solid (18.3 g, 93.1 %) .

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided are a novel preparation method of an oxazolidinone compound, and several important intermediates involved in the method. The preparation method disclosed herein has the characteristics of cheap raw material, mild conditions, simple operation, safe and controllable, high total yield and suitable for industrial production.

Description

METHOD FOR PREPARING AN OXAZOLIDINONE COMPOUND AND INTERMEDIATES THEREOF
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Chinese Patent Application Serial No. 201410264186.1, filed with the State Intellectual Property Office of China on June 14, 2014, which is hereby incorporated by reference in its entirety and for all purposes as if specifically and fully set forth herein.
FIELD OF THE INVENTION
The invention relates to the field of pharmaceutical chemistry, specifically to method for preparing an oxazolidinone compound having 5-chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) thiophene-2 -carboxamide and intermediates thereof.
BACKGROUND OF THE INVENTION
Thrombotic disease that is a thrombus embolism disease, refers to various dysfunctional diseases caused by that vessel lumen stenosis and occlusion caused by thrombus make ischemia and infarction in main organs, which belongs to cardiovascular and cerebrovascular diseases. Cardiovascular and cerebrovascular disease has been one of the highest morbidity and mortality diseases in the global. And thrombotic disease as the main cause of cardiovascular and cerebrovascular diseases, the incidence is increasing year by year.
Coagulation factor Xa is a serine protease that can convert prothrombin to thrombin, which is a target having a great clinical value for anticoagulation and plays an important role in controlling the formation of thrombin and activating coagulation cascade. Coagulation factor Xa locates in the joint of the internal and extrinsic coagulation pathway and mainly catalyzes the conversion of Factor II to Factor IIa. Because of biological signal amplification in the coagulation process, a blood coagulation factor Xa inhibitor can inhibit the physiological effects of 138 prothrombin molecules. Therefore, inhibiting coagulation factor Xa can effectively inhibit the generation of thrombin and thrombosis. Effective and specific inhibitors of Factor Xa are valuable as potential therapeutic agents for the treatment of thromboembolic disorders.
Patent application PCT WO 2014110971 (incorporated herein by reference) disclosed an  oxazolidinone compound having 5-chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) thiophene-2-carboxamide, and its structure represented by Formula (I) is as shown below. This compound has a good FXa inhibition activity, and can be used as anticoagulant drug for the treatment of thromboembolic-related disorders.
Figure PCTCN2015081383-appb-000001
Meanwhile, the above patent application disclosed a preparation process of the compound of Formula (I) comprising the steps of: a) reacting (3R, 3aS) -7-sustituted-3- ( ( (tert-butyldimethylsilyl) oxy) methyl) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one with morpholin-3-one in the present of a metal Palladium catalyst and a ligand containing phosphine by coupled reaction to give a product; b) forming an intermediate (I-a) (i.e. the compound of Formula (I-a) ) via removing the protecting group, sulfonylation, substituted with phthalimido and aminolysis reaction 4 steps in turn from the product of step a) ; and at last, c) reacting the intermediate (I-a) with 5-chlorothiophene-2-carbonyl chloride by coupled reaction to afford the compound of Formula (I) .
Figure PCTCN2015081383-appb-000002
This preparation process has some characteristics of low yields in the coupled reaction and high price of the metal Palladium catalyst, and which is not suitable for large scale production. Furthermore, the intermediate (I-a) obtained from the process without purification is used directly in the next coupled reaction step, which leads to many difficulties in the work-up of the coupled reaction, and also influences the reaction yield.
Patent application WO 2015/043364 (incorporated herein by reference) also disclosed the compound of Formula (I) , preparation method and pharmaceutical composition thereof, as well as use thereof as an anticoagulant for the treatment and prevention of thromboembolism diseases. The process for preparing the compound of Formula (I-a) was also disclosed in the application comprising activating a hydroxy group and then preparing by azide substitution and reduction  reaction to afford the compound of Formula (I-a) . In this process, sodium azide was used, which is toxic and explosive, that increases risk of experiment and is disadvantage for industrial production.
SUMMARY OF THE INVENTION
The present invention relates to method for preparing the compound of Formula (I) and important intermediate; the method has characteristics of simple operations, safety and controllable, high yield, and which is suitable for industrial production.
The invention relates to the method for preparing the compound of Formula (I) : By coupling reaction and then de-protection reaction, (3R, 3aS) -7-substituted-3- ( ( (tert-butyldimethylsilyl) oxy) methyl) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one can be converted to (3R, 3aS) -3- (hydroxymethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one, which can be converted to (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one salt (the compound represented by Formula (II) ) by hydroxy activation, substitution reaction, aminolysis reaction and acidification reaction in turn; condensation reaction of (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one salt with 5-chlorothiophene-2-carbonyl chloride affords the target compound 5-chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] o xazin-3-yl) methyl) thiophene-2-carboxamide.
Figure PCTCN2015081383-appb-000003
HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
In the method of the present invention, a copper catalyst was used in the coupled reaction, which is cheaper than a metal palladium catalyst, so the production cost can be reduced when using the copper catalyst; meanwhile, the coupled reaction performed under the conditions of the present invention has a simple work-up and high yield. In the process of the invention, a hydroxy group was converted to an amino group by activation, substitution with phthalyl or benzoic sulfimidyl and aminolysis reaction in turn, adopting this method can avoid using toxic and explosive reagent, which is safe and controllable. Meanwhile, in the aminolysis reaction of the present invention, the  crude product can be salified with an acid, which can make the work-up of the aminolysis reaction become simpler, and the obtained intermediate has a high purity, which is useful for the control of impurities and the improvement of yield in the next step; and the intermediate having salt form is liable to be saved. In the last step, i.e. the condensation reaction, the reaction yield was further improved by using a mixed solvent; the crude product of the condensation reaction can be purified by recrystallization, which is a simple operation. In summary, the preparation process of the present invention has characteristics of cheap raw materials, low costing, simple operations, safety and easy control and high total yield; especially the last step has characteristics of simpler work-up and higher yield through the salt formation of the intermediate (I-a) by acidizing, which is specially suitable for industrial production.
The invention also relates to two important intermediates (represented by Formula (II) and (III) ) for preparing the Formula (I) and preparation processes thereof.
Figure PCTCN2015081383-appb-000004
wherein Z is -C (=O) -or -S (=O) 2-.
In one aspect, provided herein is a method for preparing a compound of Formula (I) ,
Figure PCTCN2015081383-appb-000005
comprising reacting a compound of Formula (II)
Figure PCTCN2015081383-appb-000006
with 5-chlorothiophene-2-carbonyl chloride
Figure PCTCN2015081383-appb-000007
by condensation reaction, wherein HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic  acid or p-toluenesulfonic acid.
5-Chlorothiophene-2-carbonyl chloride of the present invention can be added dropwise directly to the compound of Formula (II) , or also can be added dropwise in a certain concentration prepared by dissolving in a second solvent. The second solvent disclosed herein is not specifically restricted; whatever solvent which can dissolve the 5-chlorothiophene-2-carbonyl chloride and does not affect the reaction is within the scope of the invention, which includes, but is not limited to, toluene or dichloromethane, and the like. The certain concentration disclosed herein is not specifically restricted, whatever concentrations which do not affect the reaction are within the scope of the invention. In some embodiments, the certain concentration solution of 5-chlorothiophene-2-carbonyl chloride is a 48%solution of 5-chlorothiophene-2-carbonyl chloride in toluene. In other embodiments, the certain concentration solution of 5-chlorothiophene-2-carbonyl chloride is a 1.6 M or 2.1 M solution of 5-chlorothiophene-2-carbonyl chloride in toluene.
5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature from about 0 ℃ to about 50 ℃. In some embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature from about 30 ℃ to about 50 ℃. In other embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 0 ℃. In still other embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 35 ℃. In yet other embodiments, 5-Chlorothiophene-2-carbonyl chloride disclosed herein is added dropwise to the compound of Formula (II) at a temperature of about 45 ℃.
The condensation reaction disclosed herein is performed at a temperature from about 0 ℃ to about 50 ℃. In some embodiments, the condensation reaction disclosed herein is performed at a temperature from about 20 ℃ to about 30 ℃. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 0 ℃. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 20 ℃. In other embodiments, the condensation reaction disclosed herein is performed at a temperature of about 25 ℃.
The condensation reaction disclosed herein is performed in a first solvent comprising one or more ethers, one or more ketones, dichloromethane, toluene, water or a combination thereof. In some embodiments, the first solvent disclosed herein comprises tetrahydrofuran, dioxane, diisopropyl ether, methyl tert-butyl ether, methyl ethyl ketone, methy isobutyl ketone, acetone, dichloromethane, toluene, water or a combination thereof. In other embodiments, the first solvent disclosed herein comprises acetone, toluene, water or a combination thereof. In other embodiments, the first solvent disclosed herein comprises acetone, water or a combination thereof.
In some embodiments, the first solvent disclosed herein is a mixture of acetone and water. In some embodiments, the mixture has a volume ratio between acetone and water ranging from about 1/2 to about 3/1. In some embodiments, the mixture has a volume ratio between acetone and water ranging from about 1/2 to about 3/2. In other embodiments, the mixture has a volume ratio between acetone and water at ranging from about 7/10 to about 9/10. In other embodiments, the mixture has a volume ratio between acetone and water ranging from about 1/2, about 3/4 or about 8/11.
The condensation reaction disclosed herein is performed in the present of a first base which may be an organic or inorganic base. The organic base may be triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, pyridine or a combination thereof. The inorganic base include, but is not limited to, the alkali metal or alkaline earth metal hydroxide, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal carbonate or bicarbonate or phosphate or hydrogen phosphate, ammonia or a combination thereof. In some embodiments, the first base disclosed herein is an organic base. In some embodiments, the first base disclosed herein is an inorganic base. In some embodiments, the first base disclosed herein is triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, pyridine, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium dicarbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate or a combination thereof. In some embodiments, the first base disclosed herein is sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium dicarbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate or a combination thereof.
The method disclosed herein further comprises purifying the compound of Formula (I) by a method, such as recrystallization, but not limited. The recrystallization is performed in a third solvent. Wherein the third solvent disclosed herein is not specifically restricted; whatever solvent which can dissolve the crude product of the condensation reaction, and in which crystalline can precipitate out under a certain condition, is within the scope of the invention, which includes, but is not limited to, acetic acid, water or a combination thereof. In some embodiments, the third solvent is acetic acid. In other embodiments, the third solvent is water. In other embodiments, the third solvent is a mixed solvent of acetic acid and water. In other embodiments, the third solvent is a mixed solvent having a volume ratio between acetic acid and water ranging from 1/2 to 3/2. The process of recrystallization comprises the steps of: a) suspending the crude product in the third solvent; b) heating and dissolving the crude product; c) cooling the solution to precipitate crystalline or precipitating crystalline by using anti-solvent addition. For example, the crude product of example 7 was suspended in acetic acid or water or a combination thereof, after heating and dissolving, the solution was cooled slowly to precipitate crystalline; or after heating and dissolving, the another solvent (can be water or acetic acid or a combination thereof) was added to the solution at a maintaining temperature, and then the resulting solution was cooled slowly to precipitate crystalline.
The condensation reaction disclosed herein has characteristics of high yield, simple work-up by using recrystallization, which is suitable for a large scale production. A large scale production example of the condensation reaction was provided herein, it can be known from the results of the experiment that the yield of large scale production can reach 77%under the reaction conditions disclosed herein.
In other aspect, provided herein is a compound having Formula (II) :
Figure PCTCN2015081383-appb-000008
and, HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
In other aspect, provided herein is a method for preparing a compound of Formula (II) , 
Figure PCTCN2015081383-appb-000009
comprising the steps of:
a) obtaining a product from a compound of Formula (III) by aminolysis reaction,
Figure PCTCN2015081383-appb-000010
b) obtaining the compound of Formula (II) from the product by salt forming reaction,
wherein, Z is -C (=O) -or -S (=O) 2-; and HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
The aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 50 ℃ to about 100 ℃. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 60 ℃ to about 90 ℃. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature of about 85 ℃. In other embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature of about 90 ℃. In other embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a temperature from about 85 ℃ to about 90 ℃. In still other embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of a reaction solvent. The refluxing temperature associates with a specific reaction, varies with different conditions. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of ethanol. In some embodiments, the aminolysis reaction of the step a) disclosed herein is performed at a refluxing temperature of a mixture of ethanol and water.
The aminolysis reaction of the step a) disclosed herein is performed in the present of an amination reagent comprising ammonia gas, ammonia water, primary amine or hydrazine. In some embodiments, primary amine is methylamine, ethylamine, propylamine or butylamine, and the hydrazine is hydrazine hydrate.
In some embodiments, the primary amine in the aminolysis reaction of the step a) disclosed  herein is methylamine, wherein the methylamine can be a solution in a certain concentration, the solution of methylamine includes, but is not limited to methylamine in water solution, methylamine in methanol solution, methylamine in ethanol solution or methylamine in isopropanol solution in a certain concentration, and the like. In some embodiments, the certain concentration of methylamine is 40%methylamine in water solution or 33%methylamine in ethanol solution.
In some embodiments, the amination reagent used in the aminolysis reaction of the step a) disclosed herein is a methanol solution of ammonia. In some embodiments, the amination reagent used in the aminolysis reaction of the step a) disclosed herein is a methanol solution of ammonia (33%)
The amount of amination reagent disclosed herein is generally excess, and multiplicity by mole of the compound represented by Formula (III) . In some embodiments, the amount of amination reagent is 2 to10 folds by mole of the compound represented by Formula (III) . In some embodiments, the amount of amination reagent is 2 to 7 folds by mole of the compound represented by Formula (III) . In other embodiments, the amount of amination reagent is 2.5, 5.0 or 7.0 folds by mole of the compound represented by Formula (III) .
The aminolysis reaction of the step a) disclosed herein is performed in a first polar solvent comprising methanol, ethanol, isopropanol, water or a combination thereof.
The salt forming reaction disclosed herein refers to the product of the aminolysis reaction of the step a) disclosed herein with a suitable acid in a fourth solvent to produce a corresponding salt. The fourth solvent disclosed herein is not specific restricted, which can make the product of the aminolysis reaction of the step a) disclosed herein dissolved completely and does not affect salt forming reaction is within the scope of the invention. The fourth solvent includes, but is not limited to methanol, ethanol, isopropanol, water or a combination thereof, and the like. The suitable acid disclosed herein is not specific restricted, and which can form stable salts with the product of the aminolysis reaction of the step a) disclosed herein is within the scope of the invention. The suitable acids include, but are not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid, and the like. The salt forming reaction disclosed herein can be realized by adjusting the solution pH to acidic with an acid.
In some embodiments, the salt forming reaction of the step b) is performed in a fourth  solvent comprising methanol, ethanol, isopropanol, water or a combination thereof. In some embodiments, the salt forming reaction of the step b) refers to the product of the aminolysis reaction disclosed herein reacts with an acid HX or a solution thereof to produce the compound of Formula (II) . In some embodiments, the acid HX is hydrochloric acid.
In some embodiments, the salt formed from the product of the aminolysis reaction disclosed herein is hydrochloride, the preparation process of hydrochloride comprises reacting the product of the aminolysis reaction disclosed herein with concentrated hydrochloric acid or hydrogen chloride gas or hydrochloric acid solution in the fourth solvent; the hydrochloric acid solution includes, but is not limited to, an ethyl acetate solution of hydrochloric acid. In other embodiments, the preparation process of hydrochloride comprises reacting the product of the aminolysis reaction disclosed herein with concentrated hydrochloric acid in the fourth solvent. In some embodiments, the preparation process of hydrochloride comprises: dissolving the product of the aminolysis reaction disclosed herein in the fourth solvent (such as methanol, ethanol, isopropanol or water, and the like) ; adding concentrated hydrochloric acid to the solution until the system become acidic to form the hydrochloride. And the system temperature can be within a certain range in the adding process (for example, keeping the temperature at about 0 ℃ or no more than 25 ℃ or no more than 40 ℃) ; the system temperature can be reduced after the addition, which makes the salt precipitate out much more as much as possible and avoids unnecessary loss.
The product of the aminolysis reaction disclosed herein is a corresponding amine of the compound represented by Formula (II) , i.e. the compound of Formula (I-a) .
The product obtained from the aminolysis reaction disclosed herein is purified by salt forming reaction, which is a simple operation, to avoid some complex operations (such as column chromatography, and so on) . Meanwhile, it is useful for the control of the next step reaction and improvement of yield that the product is purified before use. The amine salt prepared by using the salt forming reaction disclosed herein has characteristics of high purity and high stability, which is more easily saved than the amine form.
The compound of Formula (II) can be further purified by triturating with a solvent. Wherein the solvent used in the triturating is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether, or combination thereof, and the like.
In some embodiments, provided herein is a compound having Formula (III) :
Figure PCTCN2015081383-appb-000011
wherein, Z is -C (=O) -or -S (=O) 2-.
In some embodiments, provided herein is a method for preparing the compound of Formula (III) comprising reacting a compound of Formula (IV)
Figure PCTCN2015081383-appb-000012
with o-phthalimide or o-benzoic sulfimide or a salt thereof by substitution reaction,
wherein, R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl or Br in 4 position; Z is -C (=O) -or -S (=O) 2-.
An o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium or sodium salt. In some embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt. In other embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, such as saccharin sodium salt.
The dosage of o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is 1.0 fold or multiplicity by mole of the compound represented by Formula (IV) . In some embodiments, the dosage of o-phthalimide salt or o-benzoic sulfimide salt is 1.0 to 2.0 folds by mole of the compound represented by Formula (IV) . In other embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt which is 1.0 to 2.0 folds by mole of the compound represented by Formula (IV) . In still other embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a potassium salt which is 1.2 to 1.5 folds by mole of the compound represented by Formula (IV) . In some embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, the dosage of which is 1.0 fold to 2.0 folds by mole of the compound represented by Formula (IV) . In some embodiments, the o-phthalimide salt or o-benzoic sulfimide salt disclosed herein is a sodium salt, the dosage of which is 1.5 folds by mole of the compound represented by Formula (IV) .
The substitution reaction disclosed herein is performed at a temperature from about 50 ℃ to about 100 ℃. In some embodiments, the substitution reaction disclosed herein is performed at a temperature from about 65 ℃ to about 90 ℃. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 65 ℃. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 72 ℃. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 75 ℃. In other embodiments, the substitution reaction disclosed herein is performed at a temperature of about 90 ℃.
The substitution reaction disclosed herein is performed in a second polar solvent disclosed herein comprising N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, terahydrofuran, acetone or a combination thereof.
The substitution reaction disclosed herein can be carried out without a catalyst, or can also be carried out in the presence of a catalyst. In some embodiments, the substitution reaction is performed in the present of a first catalyst, wherein the first catalyst is benzyltriethylammonium chloride, tetrabutylammonium chloride or potassium iodide.
In some embodiments, provided herein is a method for preparing the compound of formula (IV) comprising the steps of:
A) : reacting a compound of Formula (VII)
Figure PCTCN2015081383-appb-000013
with morpholin-3-one to produce a compound of Formula (VI) by coupling reaction
Figure PCTCN2015081383-appb-000014
B) : removing a protecting group of the compound of Formula (VI ) in the present of a fluorine reagent to produce a compound of Formula (V) ;
Figure PCTCN2015081383-appb-000015
and
C) : reacting the compound of Formula (V) with RCl in an aprotic solvent to produce the compound of Formula (IV) ;
and Hal is OTf, I, Br or Cl; R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl or Br in 4 position.
In the method for preparing the compound of Formula (IV) disclosed herein, the coupled reaction of the step A) is performed at a temperature from about 60 ℃ to about 140 ℃. In some embodiments, the coupled reaction of the step A) is performed at a temperature from about 90 ℃ to about 130 ℃. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 100 ℃ to about 130 ℃. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 90 ℃ to about 120 ℃. In other embodiments, the coupled reaction of the step A) is performed at a temperature from about 115 ℃ to about 118 ℃. In still other embodiments, the coupled reaction of the step A) is performed at a refluxing temperature of the reaction solvent; the refluxing temperature has a little change due to various special reaction conditions. In yet other embodiments, the coupled reaction of the step A) is performed at a refluxing temperature of toluene.
In the method for preparing the compound of Formula (IV) disclosed herein, the coupled reaction of the step A) is performed in a third polar solvent comprising N, N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidinone, toluene, dioxane, tetrahydrofuran, dimethylbenzene, dimethoxyethane or a combination thereof.
In the method for preparing the compound of Formula (IV) disclosed herein, the coupled reaction of the step A) is performed in the present of a second base comprising potassium phosphate, potassium carbonate, cesium carbonate, sodium carbonate, sodium phosphate or a combination thereof.
In the method for preparing the compound of Formula (IV) disclosed herein, the coupled reaction of the step A) is performed in the present of a second catalyst comprising a common metal catalyst promoting coupled reaction, specially including Palladium catalyst, Rhodium catalyst, Nickel catalyst or Copper catalyst and the like. In some embodiments, the second catalyst disclosed herein is Copper catalyst. In other embodiments, the second catalyst disclosed herein is Copper power, Cuprous iodide, Cuprous chloride, Cuprous thiocyanate, Cuprous oxide, Copper (I) acetate or Cupric acetylacetonate.
In the method for preparing the compound of Formula (IV) disclosed herein, the second catalyst of the step A) is applied in an amount of about 5%to about 20%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In some embodiments, the second catalyst is applied in an amount of about 10%to about 20%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In other embodiments, the second catalyst is applied in an amount of about 15%equivalents per 1 equivalent by mole of the compound of Formula (VII) .
In the method for preparing the compound of Formula (IV) disclosed herein, the coupled reaction of the step A) is performed in the present of a ligand comprising a common ligand of a coupled reaction, which can be chosen depending on which catalyst is used, whatever ligands suited with the second catalyst are all within the scope of the invention. In some embodiments, the ligand is 8-hydroxyquinoline, proline, N-methylglycine, N, N-dimethylglycine, N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine or N, N-dimethylethanediamine.
In the method for preparing the compound of Formula (IV) disclosed herein, the ligand of the step A) is applied in an amount of about 10%to about 40%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In some embodiments, the ligand is applied in an amount of about 20%to about 40%equivalents per 1 equivalent by mole of the compound of Formula (VII) . In other embodiments, the ligand is applied in an amount of about 30%equivalents per 1 equivalent by mole of the compound of Formula (VII) .
The method for preparing the compound of Formula (IV) disclosed herein further comprises purifying by a method, such as triturating but not limited. The triturating is performed in a solvent, wherein the solvent is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether or a combination thereof, and the like.
In the method for preparing the compound of Formula (IV) disclosed herein, a copper catalyst and a ligand containing nitrogen are used in the step A) , which leads to low costing, and a triturating is adopted for purification in the work-up, which is a simple operation and suitable for industrial production.
In the method for preparing the compound of Formula (IV) disclosed herein, a fluorine reagent of step B) is tetrabutylammonium fluoride; the de-protecting reaction of step B) is performed in a fourth polar solvent comprising tetrahydrofuran or glycol dimethyl ether, and the  like.
In the method for preparing the compound of Formula (IV) disclosed herein, the reaction of the step C) is performed at a temperature from about -20 ℃ to about 50 ℃. In some embodiments, the reaction temperature of the step C) is from about -10 ℃ to about 40 ℃. In some embodiments, the reaction temperature of the step C) is from about -10 ℃ to about 20 ℃. In other embodiments, the reaction temperature of the step C) is from about 0 ℃ to about 20 ℃. In still other embodiments, the reaction temperature of the step C) is room temperature.
In the method for preparing the compound of Formula (IV) disclosed herein, RCl of step C) is added dropwise to a solution of the compound of Formula (V) at a low temperature from about -20 ℃ to about 10 ℃. In some embodiments, the low temperature of the step C) is from about -10 ℃ to about 0 ℃. In other embodiments, RCl of the step C) is added dropwise to a solution of the compound of Formula (V) in an ice-bath.
In the method for preparing the compound of Formula (IV) disclosed herein, the reaction of the step C) is performed in a third base comprising triethylamine, N, N-diisopropylethylamine, pyridine or a combination thereof.
In the method for preparing the compound of Formula (IV) disclosed herein, the aprotic solvent of the step C) is dichloromethane, tetrahydrofuran, N, N-dimethylformamide, diethyl ether or a combination thereof.
In the method for preparing the compound of Formula (IV) disclosed herein, the reaction of the step C) can be performed without a catalyst, or can also be carried out in the presence of a catalyst. In some embodiments, the reaction of the step C) is performed in the presence of a third catalyst comprising 4-dimethylaminopyridine.
In the method for preparing the compound of Formula (IV) disclosed herein, the compound of Formula (V) of the step B) and the compound of Formula (IV) of the step C) can be further purified by triturating with a solvent, adopting this method can avoid using complex operations such as column chromatography, wherein the solvent is not restricted, including but not limited to dichloromethane, ethyl acetate, methanol, ethanol, isopropanol, diisopropyl ether or a combination thereof, and the like.
DEFINITIONS AND GENERAL TERMINOLOGY
The “room temperature” disclosed herein refers to the temperature from about 10 ℃ to  about 40 ℃. In some embodiments, the room temperature is from about 20 ℃ to about 30 ℃. In other embodiments, the room temperature is about 20 ℃, about 22.5 ℃, about 25 ℃ or about 27.5 ℃, and so on.
In the present context, all numbers disclosed herein are approximate values, and the value of each number may differ by 1 %, 2%, 5%, 7%, 8%, 10%and so on. Therefore, whenever a number having a value N is disclosed, any number having the value N+/-l %, N+/-2%, N+/-3%, N+/-5%, N+/-7%, N+/-8%, or N+/-10%is specifically disclosed, wherein “+/-” refers to plus or minus. Whenever a numerical range with a lower limit, DL and an upper limit, DL, is disclosed, any number falling within the range is specifically disclosed.
After the reaction proceeds to a certain extent in the present invention, such as the raw material is consumed more than 70%, more than 80%, more than 90%, more than 95%, or completely by monitoring, the reaction mixture is worked up, such as cooled, collected, drawn, filtered, separated, purified or a combination thereof. The reaction can be monitored by conventional method such as thin-layer chromatography (TLC) , high performance liquid chromatography (HPLC) , gas chromatography (GC) , and the like. The reaction mixture can be worked up by conventional method, for example, the crude product can be collected by concentrating the reaction mixture through vacuum evaporation or conventional distillation and which is used directly in the next operation; or the crude product can be obtained by filtration of the reaction mixture and which is used directly in the next operation; or the crude product can be get by pouring the supernatant liquid of the reaction mixture after standing for a while and which is used directly in the next operation. Or the reaction mixture can be purified by suitable methods such as extraction, distillation, crystallization, column chromatography, washing, trituration with suitable solvents or a combination thereof.
Each process of dropping and each step reaction disclosed herein are proceed under certain temperature conditions. Any suitable temperature for the dropping process or the reaction are included in the invention. Additionally, the field of many similar changes, equivalent replacement, or equivalent temperature and temperature range described in the invention, are considered to be within the scope of the invention. The invention provides the preferred temperature or temperature range of dripping process, and the preferred temperature of the reaction.
The solvents used in each reaction step are not particularly restricted. Any solvent which  can dissolve the starting material in a certain extent and does not inhibit the reaction is included in the invention. Additionally, the field of many similar changes, equivalent replacement, or equivalent solvents described in the invention, solvents combination and the proportions of solvent combination are considered to be within the scope of the invention. The invention provides the preferred solvents of each reaction steps.
The solvent used for recrystallization is not particularly restricted so long as it dissolves the crude product and the crystal product can precipitate out under certain conditions. Additionally, the field of the field of many similar changes, equivalent replacement, or equivalent solvents described in the invention, solvents combination and the proportions of solvent combination are considered to be within the scope of the invention. Wherein the solvent could be alcohols, ethers, halohydrocarbons, esters, ketones, aromatic hydrocarbons, alkanes, acetonotrile, DMF or a combination thereof. Such as water, acetic acid, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, tert-butanol, petroleum ether, n-pentane, n-hexane, n-heptane, cyclohexane, isopropyl ether, DMF, tetrahydrofuran, ethyl ether, dioxane, MTBE, 1, 2-dimethoxylethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dichloromethane, 1, 2-dichloroethane, chloroform, tetrachloromethane, ethyl acetate, isopropyl acetate, acetone, butanone, benzene, toluene, xylene or a combination thereof.
The content of water in the solvent disclosed herein is not restricted. A solvent having any content which can be used in a certain extent in the present invention, are all deemed as the solvent disclosed herein. Such as the content of water in the solvent is about less than 0.05%, less than 0.1%, less than 0.2%, less than 0.5%, less than 5%, less than 10%, less than 25%, less than 30, or 0%.
The terms “first” , “second” and the like terms disclosed herein only used in description, which not be understood as number of technical features indicated or implied which are relative importance or implied or indicated which are indicative. Therefore, the technical feature limited with “first” , “second” can indicate or imply which containing one or more the technical features. In the description of the invention, unless otherwise indicated, “more” means at least two, for example, two, three and the like.
GENERAL SYNTHETIC PROCEDURES
In this specification, if there is any difference between the chemical name and chemical  structure, the structure is the dominant.
In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius (℃) . Reagents were purchased from commercial suppliers such as Aladdin reagent (shanghai) limited company, shanghai link pharmaceutical technology limited company, shanghai demo pharmaceutical technology limited company and Beijing Ouhe pharmaceutical technology limited company, and were used without further purification unless otherwise indicated. Common solvents were purchased from commercial suppliers such as Chengdu KeLong chemical, Taizhou Haichuan chemical limited company, Sichuan weibo technology limited company and Zhejiang bulk chemical limited company.
Nuclear magnetic resonance spectroscopy data through Bruker Avance 400 NMR spectrometer to determine, NMR spectra were obtained as CDCl3, d6-DMSO, CD3OD D2O, or d6-acetone solutions (reported in ppm) , using TMS (0 ppm) or chloroform (7.25 ppm) as the reference standard. When peak multiplicities are reported, the following abbreviations are used: s (singlet) , d (doublet) , t (triplet) , m (multiplet) , br (broadened) , dd (doublet of doublets) , dt (doublet of triplets) , td (triplet of doublets) , ddd (doublet of doublet of doublets) , ddt (doublet of doublet of triplets) , dddd (doublet of doublet of doublet of doublets) . Coupling constants, when given, are reported in Hertz (Hz) .
Low-resolution mass spectral (MS) data were determined on an Agilent 6320 Series LC-MS spectrometer equipped with G1312A binary pumps and a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) . A G1329A autosampler and a G1315B DAD detector were used in the analysis, and an ESI source was used on the LC-MS spectrometer.
Low-resolution mass spectral (MS) data were determined on an Agilent 6120 Series LC-MS spectrometer equipped with G1311A quaternary pumps and a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) . A G1329A autosampler and a G1315D DAD detector were used in the analysis, and an ESI source was used on the LC-MS spectrometer.
Both Spectrographs were equipped with an Agilent Zorbax SB-C18 (2.1 × 30 mm, 5 micron) . Injection volume was decided by the sample concentration. The flow rate is 0.6 mL/min. The mobile phase was (0.1%formic acid in CH3CN as mobile phase A) in (0.1%formic acid in H2O as mobile phase B) with UV detection at 210/254 nm. The conditions of gradient elution is described in Table 1:
Table 1: The conditions of gradient elution of mobile phase in Low-resolution mass spectral
Figure PCTCN2015081383-appb-000016
Purities of compounds were assessed by Agilent 1260 Series high performance liquid chromatography (HPLC) . Wherein high performance liquid chromatography (HPLC) was equipped with G1311B quaternary pumps, G1329B autosampler, G1316A TCC (Temperature Control of Column, maintained at 35 ℃) and G1315D DAD detector. Chromatographic column is an Agilent Zorbax SB-C18 (4.6 × 150 mm, 5 μm) . The flow rate is 1.0 mL/min. The detection wave length is 250 nm. The mobile phase and conditions of gradient elution is described in Tables 2 to 5:
Table 2: HPLC mobile phase and conditions of gradient elution 1
Time (min) A (acetonitrile) B (H2O)
0-10 30-90 70-10
10-25 90 10
25-26 10 90
26-31 90 10
Table 3: HPLC mobile phase and conditions of gradient elution 2
time (min) A (acetonitrile) B (H2O)
0-10 10-30 90-70
10-15 30-90 70-10
15-20 90 10
20-21 10 90
21-26 10 90
Table 4: HPLC mobile phase and conditions of gradient elution 3
Time (min) A (acetonitrile) B (H2O)
0-15 10-90 90-10
15-25 90 10
25-26 10 90
26-31 10 90
Table 5: HPLC mobile phase and conditions of gradient elution
The following abbreviations are used throughout the application:
CDC13    chloroform-d
D2O   deuteroxide
DMSO-d6  dimethylsulfoxide-d6
K2CO3    potassium carbonate
CuI   cuprous iodide
HCl     hydrochloric acid
EDTA   ethylenediamine tetraacetic acid
TBAF   tetrabutylammonium fluoride
MsCl   methylsulfonyl chloride
DIEA, DIPEA   N, N-diisopropylethylamine
DMF   N, N-dimethylformide
OTf    trifluoromethylsulfonyl
kg   kilogram
g   gram
mg   milligram
mol   mole
mmol   millimole
L   liter
mL   milliliter
TLC   thin layer chromatography
HPLC   high performance liquid chromatography
Compounds in this invention may be prepared by the scheme described below.
Figure PCTCN2015081383-appb-000018
Compound (8) can be prepared by a method illustrated in the above scheme, wherein each R1 is independently halogen or C1-4 alkyl; R2 is a substituted or unsubstantiated heterocyclic group; R3 is a substituted or unsubstantiated aryl or heteroaryl group; Y+ is Na+ or K+; n is 0, 1, 2 or 3; each R, Z and × is as defined herein. Compound (1) can react with R2H in the presence of a base (such as potassium phosphate, potassium carbonate, cesium carbonate, and the like) , a catalyst (such as Cuprous iodide, Cuprous oxide or Cuprous chloride, and the like) and a ligand (such as N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine, and the like) in a suitable solvent, to obtain compound (2) . The protecting group of compound (2) can be removed to afford compound (3) in the presence of a fluorine reagent (such as n-tetrabutylammonium fluoride) and in a polar solvent (such as tetrahydrofuran or dimethoxyethane) . Compound (3) can react with RCl in the presence of a base (such as triethylamine, N, N-diisopropylethylamine or pyridine, and the like) to obtain compound (4) . Compound (4) can react with compound (5) by substitution reaction in a polar solvent under a heating condition to give compound (6) . Compound (6) can convert to compound (7) by the aminolysis reaction in the presence of primary amine or hydrazine, and then by salification reaction. Compound (7) can react with acyl chloride (R3C (=O) Cl) to afford compound (8) in the presence of a base (such as sodium carbonate, potassium carbonate or  potassium phosphate, and the like) .
EXAMPLES
The examples of the present invention disclosed the preparation methods of oxazolidinone compounds. The person skilled in the art can learn from this article to properly improve the process parameters to implement the preparation method. Of particular note is that all similar substitutions and modifications to the skilled person are obvious, and they are deemed to be included in the present invention. The methods disclosed herein were described in the preferred examples. Related person can clearly realize and apply the techniques disclosed herein by making some changes, appropriate alterations or combinations to the methods without departing from spirit, principles and scope of the present disclosure.
In order to further understand the invention, it is detailed below through examples.
Example
Example 1
(3R, 3aS) -3- ( ( (tert-Butyldimethylsilyl) oxy) methyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] o xazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one
Figure PCTCN2015081383-appb-000019
To a suspension of (3R, 3aS) -7-bromo-3- ( ( (tert-butyldimethylsilyl) oxy) methyl) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one (J. Med. Chem., 2011, 54, 7493–7502) (1.96 kg, 4.70 mol) and morpholin-3-one in toluene (13 L) was added K2CO3 (1.31 kg, 9.40 mol) , then CuI (130 g, 0.70 mol) and N1, N2-dimethylethyl-1, 2-diamine (124 g, 1.40 mol) were added under N2. The reaction mixture was stirred at 115 ℃ to 118 ℃ for 36 hours and the reaction was monitored by HPLC. After the reaction was completed, the reaction mixture was cooled to room temperature, and then filtered. The filtrate was concentrated in vacuo. The residue was dissolved in DCM (10 L) . The resulting mixture was washed with aqueous HCl solution (1 M, 10 L) , saturated EDTA disodium salt solution (10 L × 2) and water (10 L) in turn. The organic phase was concentrated in vacuo. The residue was triturated with isopropanol (2 L) and filtered to afford a white solid (1.86 kg, 91.5%) .
MS (ESI, pos. ion) m/z: 435.2 (M+1) ; and
1H NMR (400 MHz, CDCl3) δ: 8.03 (d, J = 8.7 Hz, 1H) , 6.99 (d, J = 1.9 Hz, 1H) , 6.94 (dd, J =8.7, 1.9 Hz, 1H) , 4.46 (dd, J = 10.4, 3.1 Hz, 1H) , 4.33 (s, 2H) , 4.31 –4.26 (m, 1H) , 4.15 –4.08 (m, 1H) , 4.06 –3.99 (m, 2H) , 3.96 –3.86 (m, 3H) , 3.75 –3.69 (m, 2H) , 0.90 (s, 9H) , 0.11 (d, J = 2.6 Hz, 6H) .
Example 2
(3R, 3aS) -3- (Hydroxymethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] ox azin-1 (3H) -one
Figure PCTCN2015081383-appb-000020
To a solution of (3R, 3aS) -3- ( ( (tert-butyldimethylsilyl) oxy) methyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one (1.86 kg, 4.30 mol) in THF (5 L) was added a solution of TBAF in THF (1 M, 4.70 L, 4.70 mol) dropwise at room temperature. After the addition, the reaction mixture was stirred at rt for 1 hour and the reaction was monitored by TLC. After the reaction was completed, the reaction mixture was concentrated in vacuo to give oil. To the oil was added water (7 L) with stirring and then the mixture was stirred for further 30 minutes. The resulting mixture was filtered, and the filter cake was washed with cooled water (1 L) . The residue was triturated with isopropanol (3 L) and filtered to afford a white solid (1.35 kg, 98.0%) .
MS (ESI, pos. ion) m/z: 321.1 (M+1) ; and
1H NMR (400 MHz, DMSO-d6) δ: 7.85 (d, J = 8.7 Hz, 1H) , 7.05 (d, J = 2.2 Hz, 1H) , 7.01 (dd, J = 8.7, 2.3 Hz, 1H) , 5.31 (s, 1H) , 4.59 –4.51 (m, 1H) , 4.47 –4.41 (m, 1H) , 4.18 (s, 2H) , 4.07 –3.98 (m, 2H) , 3.98 –3.91 (m, 2H) , 3.80 –3.64 (m, 4H) .
Example 3
( (3R, 3aS) -1-Oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate
Figure PCTCN2015081383-appb-000021
To a solution of (3R, 3aS) -3- (hydroxymethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one (1.35 kg, 4.20 mol) and DIPEA (1.09 kg, 8.43 mol) in dried DMF (6.5 L) was added MsCl (530 g, 4.60 mol) dropwise slowly in an ice-bath. After the addition, the reaction mixture was stirred in an ice-bath for another 30 minutes. Then the reaction mixture was stirred at rt for 30 minutes and the reaction was monitored by TLC. After the reaction was completed, to the mixture was added pure water (7 L) , and the resulting mixture was stirred in an ice-bath for 30 minutes. The resulting reaction mixture was filtered, and the filter cake was triturated with isopropanol (4 L) and filtered to afford a white solid (1.55 kg, 92.7%) .
MS (ESI, pos. ion) m/z: 399.1 (M+1) ; and
1H NMR (400 MHz, DMSO-d6) δ: 7.85 (d, J = 8.7 Hz, 1H) , 7.07 (d, J = 2.2 Hz, 1H) , 7.03 (dd, J = 8.7, 2.3 Hz, 1H) , 4.83 –4.75 (m, 1H) , 4.67 –4.54 (m, 3H) , 4.18 (s, 2H) , 4.11 –4.03 (m, 2H) , 3.98 –3.92 (m, 2H) , 3.73 –3.65 (m, 2H) , 3.28 (s, 3H) .
Example 4
2- ( ( (3S, 3aS) -1-Oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin -3-yl) methyl) isoindoline-1, 3-dione
Figure PCTCN2015081383-appb-000022
Method 1:
To a suspension of potassium phthalimide (1.08 kg, 5.84 mol) in anhydrous DMF (12 L) was added ( (3R, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate (1.55 kg, 3.89 mol) at 72 ℃. The reaction mixture was stirred at 72 ℃ for 3 hours and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to 20 ℃, and water (12 L) was added. And then white solid precipitated out. The resulting mixture was further stirred for 1 hour. Then the mixture was filtered, and the filter cake was washed with ethanol (2 L) , and dried to afford a white solid (1.55 kg, 88.7%) .
MS (ESI, pos. ion) m/z: 450.4 (M+1) ; and
1H NMR (400 MHz, DMSO-d6) δ: 7.96 –7.90 (m, 2H) , 7.90 –7.85 (m, 2H) , 7.81 (d, J = 8.7  Hz, 1H) , 7.05 (d, J = 2.2 Hz, 1H) , 7.00 (dd, J = 8.7, 2.3 Hz, 1H) , 4.76 –4.68 (m, 1H) , 4.64 (dd, J =10.4, 3.1 Hz, 1H) , 4.22 –4.15 (m, 3H) , 4.14 –4.00 (m, 3H) , 3.95 (t, J = 5.0 Hz, 2H) , 3.71 –3.65 (m, 2H) .
Method 2:
A mixture of potassium phthalimide (112 mg, 0.61 mmol) and ( (3R, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate (200 mg, 0.50 mmol) in DMF (2 mL) was heated to 65 ℃ and stirred for 3 hours, and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to 20 ℃, and water (2 mL) was added. The resulting mixture was stirred for 1 hour. Then the mixture was filtered, and the filter cake was dried to afford a white solid (203 mg, 74.5%) .
Method 3:
A mixture of potassium phthalimide (112 mg, 0.61 mmol) and ( (3R, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate (200 mg, 0.50 mmol) in DMF (2 mL) was heated to 90 ℃ and stirred for 3 hours, and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to 20 ℃, and water (2 mL) was added. The resulting mixture was stirred for 1 hour. Then the mixture was filtered, and the filter cake was dried to afford a white solid (210 mg, 78.5%) .
Method 4:
A mixture of potassium phthalimide (223 mg, 1.21 mmol) , benzyltriethylammonium chloride (27 mg, 0.12 mmol) and ( (3R, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate (400 mg, 1.01 mmol) in DMF (5 mL) was heated at 65 ℃ for 3 hours and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to 20 ℃, and water (2 mL) was added. The resulting mixture was stirred for 1 hour. Then the mixture was filtered, and the filter cake was dried to afford a white solid (458 mg, 85.4%) .
Example 5
(3S, 3aS) -3- ( (1, 1-Dioxido-3-oxobenzo [d] isothiazol-2 (3H) -yl) methyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one
Figure PCTCN2015081383-appb-000023
A solution of saccharin sodium salt (770 mg, 3.75 mmol) and ( (3R, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl methanesulfonate (1.0 g, 2.51 mmol) in DMF (5 mL) was heated to 75 ℃ and stirred overnight. After the reaction was completed, the mixture was cooled to 20 ℃, to which were added water (10 mL) and ethyl acetate (10 mL) . The resulting mixture was separated. The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography eluted with EtOAc to give the title compound as a white solid (430 mg, 34%) .
Example 6
(3S, 3aS) -3- (Aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazi n-1 (3H) -one hydrochloride
Figure PCTCN2015081383-appb-000024
Method 1:
To a suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (2.00 g, 4.45 mmol) in anhydrous ethanol (20 mL) was added aqueous methylamine solution (40%, 1.70 g, 22.27 mmol) . The reaction mixture was refluxed for 1 hour and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (40 mL) . The resulting mixture was adjusted with concentrated hydrochloric acid to pH 2 to 3, then filtered by a vacuum filter. The filter cake was washed with ethanol (5 mL) , and dried to give a white solid (1.27 g, 80.2%) .
MS (ESI, pos. ion) m/z: 320.2 (M+1) ; and
1H NMR (400 MHz, D2O) δ: 7.95 (d, J = 8.9 Hz, 1H) , 7.09 –7.04 (m, 2H) , 4.93 –4.86 (m, 1H) ,  4.70 (dd, J = 10.5, 2.9 Hz, 1H) , 4.39 (s, 2H) , 4.24 –4.18 (m, 1H) , 4.16 –4.09 (m, 3H) , 3.83 –3.77 (m, 2H) , 3.66 –3.52 (m, 2H) .
Method 2:
To a suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (3.00 g, 6.68 mmol) in ethanol (40 mL) was added aqueous methylamine solution (40%, 1.30 g, 16.70 mmol) at 90 ℃. The reaction mixture was refluxed for 1 hour and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (40 mL) . The resulting mixture was adjusted with concentrated hydrochloric acid to pH 2 to 3, then filtered by vacuum filtration. The filter cake was washed with ethanol (5 mL) , and dried to give a white solid (1.73 g, 73.0%) .
Method 3:
To a suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (2.00 g, 4.45 mmol) in anhydrous ethanol (20 mL) was added aqueous methylamine solution (40%, 2.40 g, 31.15 mmol) at 85 ℃. The reaction mixture was refluxed for 1 hour and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (40 mL) . The resulted mixture was adjusted with concentrated hydrochloric acid to pH 2 to 3, then filtered by a vacuum filter. The filter cake was washed with ethanol (5 mL) , and dried to give a white solid (1.31 g, 82.0%) .
Method 4:
To a suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (3.20 g, 7.13 mmol) in anhydrous ethanol (30 mL) was added an ethanol solution of methylamine (33%, 3.60 g, 35.63 mmol) at 85 ℃. The reaction mixture was refluxed for 1 hour and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (24 mL) . The resulting mixture was adjusted with concentrated hydrochloric acid to pH 2 to 3, then filtered by a vacuum filter. The filter cake was washed with ethanol (10 mL) , triturated with DCM (20 mL) and filtered, dried to give a white solid (2.30 g, 87.0%) .
Method 5:
A suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (1.55 kg, 3.45 mol) in ethanol (6 L) was refluxed, to which was added aqueous methylamine solution (40%, 1.3 kg, 17.3 mol) . The reaction mixture was refluxed for another 1 hour and the reaction was monitored by HPLC. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (6 L) . The resulting mixture was adjusted to pH 2 to 3, then filtered by a vacuum filtration. The filter cake was washed with ethanol (500 mL) , triturated with DCM (9 L) and filtered, dried to give a white solid (0.8 kg, 65%) .
Method 6:
A suspension of 2- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) isoindoline-1, 3-dione (400 mg, 0.82 mmol) in anhydrous ethanol (2 mL) was refluxed, to which was added a methanol solution of methylamine (33%, 320 mg, 5.7 mmol) . The reaction mixture was refluxed for another 1 hour. After the reaction was completed, the mixture was cooled to rt and concentrated in vacuo. The residue was dissolved in ethanol (5 mL) . The resulting mixture was adjusted to pH 2 to 3, then filtered by a vacuum filter to give a white solid (280 mg, 88%) .
Example 7
5-Chloro-N- ( ( (3S, 3aS) -1-oxo-7- (3-oxomorpholino) -1, 3, 3a, 4-tetrahydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-3-yl) methyl) thiophene-2-carboxamide
Figure PCTCN2015081383-appb-000025
Method 1:
To a solution of (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one hydrochloride (800 g, 2.25 mol) in water (2.2 L) was added acetone (1.6 L) and sodium carbonate (300 g, 2.83 mol) . Then the reaction mixture was heated to 35 ℃, and then a solution of 5-chlorothiophene-2-carbonyl chloride in toluene (48%, 430 g, 2.37 mol) was added. After the addition, the reaction mixture was cooled to 25 ℃ and stirred for 0.5 hour. The reaction was monitored by TLC. After the reaction was completed, the reaction mixture was stirred  for another 2 hours and filtered by a vacuum filter. The filter cake was washed with a mixture of water and acetone solvent (1 L, v/v = 4/1) . The crude product was purified by re-crystallization from a mixture of acetic acid and water (3.8 L, v/v = 10/9) to give a white solid (8.10 g, 77.6%) .
MS (ESI, pos. ion) m/z: 464.1 (M+1) ; and
1H NMR (400 MHz, DMSO-d6) δ: 8.98 (t, J = 5.8 Hz, 1H) , 7.85 (d, J = 8.7 Hz, 1H) , 7.71 (d, J = 4.1 Hz, 1H) , 7.20 (d, J = 4.0 Hz, 1H) , 7.05 (d, J = 2.2 Hz, 1H) , 7.01 (dd, J = 8.7, 2.3 Hz, 1H) , 4.64 –4.52 (m, 2H) , 4.17 (s, 2H) , 4.12 –4.00 (m, 2H) , 3.98 –3.91 (m, 2H) , 3.73 (t, J = 5.5 Hz, 2H) , 3.70 –3.64 (m, 2H) .
Method 2:
To a solution of sodium carbonate (3.50 g, 33.0 mmol) in water (30 mL) was added (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one hydrochloride (10.0 g, 28.1 mmol) and acetone (15 mL) in turn. The reaction mixture was cooled to 0 ℃ and a solution of 5-chlorothiophene-2-carbonyl chloride (5.30 g, 29.0 mmol) in toluene (18 mL) was added. After the addition, the reaction mixture was stirred at 0 ℃ for 2 hours. The reaction was monitored by TLC. After the reaction was completed, the reaction mixture was filtered by a vacuum filter to give a white solid (13.6 g, 96.1%) .
Method 3:
To a solution of sodium carbonate (5.50 g, 51.9 mmol) in water (40 mL) was added (3S, 3aS) -3- (aminomethyl) -7- (3-oxomorpholino) -3a, 4-dihydrobenzo [b] oxazolo [3, 4-d] [1, 4] oxazin-1 (3H) -one hydrochloride (15.0 g, 42.3 mmol) and acetone (30 mL) in turn. The reaction mixture was heated to 45 ℃ and a solution of 5-chlorothiophene-2-carbonyl chloride (7.80 g, 43.3 mmol) in toluene (20 mL) was added. After the addition, the reaction mixture was cooled to 20 ℃ for 1 hour. The reaction was monitored by TLC. After the reaction was completed, the reaction mixture was cooled to rt and filtered by a vacuum filter to give a white solid (18.3 g, 93.1 %) .

Claims (39)

  1. A method for preparing a compound of Formula (I)
    Figure PCTCN2015081383-appb-100001
    comprising reacting a compound of Formula (II)
    Figure PCTCN2015081383-appb-100002
    with 5-chlorothiophene-2-carbonyl chloride
    Figure PCTCN2015081383-appb-100003
    by condensation reaction, wherein HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
  2. The method of claim 1, wherein the 5-chlorothiophene-2-carbonyl chloride is added dropwise to the compound of Formula (II) at a temperature from about 0 ℃ to about 50 ℃.
  3. The method of claim 2, wherein the temperature is from about 30 ℃ to about 50 ℃.
  4. The method of claim 1, wherein a temperature of the condensation reaction is from about 0 ℃ to about 50 ℃.
  5. The method of claim 4, wherein the temperature of the condensation reaction is from about 20 ℃ to about 30 ℃.
  6. The method of claim 1, wherein the condensation reaction is performed in a first solvent comprising at least one ethers, at least one ketones, dichloromethane, toluene, water or a combination thereof.
  7. The method of claim 6, wherein the first solvent is tetrahydrofuran, dioxane, diisopropyl ether, methyl tert-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, dichloromethane, toluene, water or a combination thereof.
  8. The method of claim 7, wherein the first solvent is a mixture of acetone and water.
  9. The method of claim 8, the mixture has a volume ratio between acetone and water ranging  from about 1/2 to about 3/1.
  10. The method of claim 9, wherein the mixture has the volume ratio between acetone and water ranging from about 7/10 to about 9/10.
  11. The method of claim 1, wherein the condensation reaction is performed in the present of a first base comprising triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, pyridine, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate or a combination thereof.
  12. The method of claim 1 further comprising purifying the compound of Formula (I) by recrystallization.
  13. The method of claim 12, wherein the recrystallization is performed in a third solvent comprising acetic acid, water or a combination thereof.
  14. A compound of Formula (II)
    Figure PCTCN2015081383-appb-100004
    wherein HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid. 
  15. A method for preparing the compound of Formula (II)
    Figure PCTCN2015081383-appb-100005
    comprising the steps of:
    a) obtaining a product from a compound of Formula (III) by aminolysis reaction,
    Figure PCTCN2015081383-appb-100006
    and
    b) obtaining the compound of Formula (II) from the product by salt forming reaction;
    wherein Z is -C (=O) -or -S (=O) 2-; and HX is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propane diacid, oxalic acid, maleic acid, methylsulfonic acid or p-toluenesulfonic acid.
  16. The method of claim 15, wherein a temperature of the aminolysis reaction of the step a) is from about 50 ℃ to about 100 ℃.
  17. The method of claim 16, wherein the temperature of the aminolysis reaction of the step a) is from about 60 ℃ to about 90 ℃.
  18. The method of claim 15, wherein the aminolysis reaction of the step a) is performed in the present of an amination reagent comprising ammonia gas, ammonia water, methylamine, ethylamine, propylamine, butyl amine, hydrazine or hydrazine hydrate.
  19. The method of claim 18, wherein the amination reagent of the step a) is applied in an amount of 2 equivalents to10 equivalents per 1 equivalent by mole of the compound of Formula (III) .
  20. The method of claim 15, wherein the salt forming reaction of the step b) is performed in a fourth solvent comprising methanol, ethanol, isopropanol, water or a combination thereof.
  21. The method of claim 15 further comprising purifying the compound of Formula (II) by triturating.
  22. The method of claim 15, wherein the aminolysis reaction of the step a) is performed in a first polar solvent comprising methanol, ethanol, isopropanol, water or a combination thereof.
  23. The method of claim 15 further comprising reacting a compound of Formula (IV)
    Figure PCTCN2015081383-appb-100007
    with an o-phthalimide or o-benzoic sulfimide or a salt thereof to produce the compound of Formula (III) by substitution reaction,
    wherein R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl or Br in 4 position.
  24. The method of claim 23, wherein the o-phthalimide salt or o-benzoic sulfimide salt is a potassium or sodium salt.
  25. The method of claim 23, wherein the o-phthalimide salt or o-benzoic sulfimide salt is applied in an amount of 1.0 equivalent to 2.0 equivalents per 1 equivalent by mole of the compound of  Formula (IV) .
  26. The method of claim 23, wherein a temperature of the substitution reaction is from about 50 ℃ to about 100 ℃.
  27. The process of claim 26, wherein the temperature of the substitution reaction is from about 65 ℃ to about 90 ℃.
  28. The method of claim 23, wherein the substitution reaction is performed in a second polar solvent comprising N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, terahydrofuran, acetone or a combination thereof.
  29. The method of claim 23, wherein the substitution reaction is performed in the present of a first catalyst comprising benzyltriethylammonium chloride, tetrabutylammonium chloride or potassium iodide.
  30. The method of claim 23 further comprising the steps of:
    A) reacting a compound of Formula (VII)
    Figure PCTCN2015081383-appb-100008
    with morpholin-3-one to produce a compound of Formula (VI) by coupling reaction,
    Figure PCTCN2015081383-appb-100009
    B) removing the protecting group of the compound of Formula (VI) in the present of a fluorine reagent to produce a compound of Formula (V) :
    Figure PCTCN2015081383-appb-100010
    and
    C) reacting the compound of Formula (V) with RCl in an aprotic solvent to produce the compound of Formula (IV) ,
    wherein Hal is OTf, I, Br or Cl; and
    R is acetyl, mesyl, trifyl or benzenesulfonyl substituted with methyl, trifluoromethyl, nitro, Cl  or Br in 4 position.
  31. The method of claim 30, wherein a temperature of the coupling reaction of the step A) is from about 60 ℃ to about 140 ℃.
  32. The method of claim 31, wherein, the temperature of the coupling reaction of the step A) is from 90 ℃ to 120 ℃.
  33. The method of claim 30, wherein, the coupling reaction of the step A) is performed in a third polar solvent comprising N, N-dimethylformamide, dimethylsulfoxide, 1-methyl-2-pyrrolidinone, toluene, dioxane, tetrahydrofuran, dimethylbenzene, dimethoxyethane or a combination thereof.
  34. The method of claim 30, wherein the coupling reaction of the step A) is performed in the present of a second base comprising potassium phosphate, potassium carbonate, cesium carbonate, sodium carbonate, sodium phosphate or a combination thereof.
  35. The method of claim 30, wherein, the coupling reaction of the step A) is performed in the present of a second catalyst is copper powder, cuprous iodide, cuprous chloride, copper thiocyanate, cuprous oxide, copper (I) acetate or cupric acetylacetonate.
  36. The method of claim 35, wherein the second catalyst is applied in an amount of about 5%to about 20%equivalents per 1 equivalent by mole of the compound of Formula (VII) .
  37. The method of claim 30, wherein the coupling reaction of the step A) is performed in the present of a ligand comprising 8-hydroxyquinoline, proline, N-methylglycine, N, N-dimethylglycine, N, N’ -dimethylethanediamine, trans-N, N’ -dimethyl-cyclohexanediamine or N, N-dimethylethanediamine.
  38. The method of claim 37, wherein the ligand is applied in an amount of about 10%to about 40%equivalents per 1 equivalent by mole of a compound of Formula (VII) .
  39. The method of claim 30 further comprising purifying the compound of Formula (VI) by triturating in the step A) .
PCT/CN2015/081383 2014-06-14 2015-06-12 Method for preparing oxazolidinone compound and intermediates thereof WO2015188787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410264186.1 2014-06-14
CN201410264186 2014-06-14

Publications (1)

Publication Number Publication Date
WO2015188787A1 true WO2015188787A1 (en) 2015-12-17

Family

ID=54832925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081383 WO2015188787A1 (en) 2014-06-14 2015-06-12 Method for preparing oxazolidinone compound and intermediates thereof

Country Status (2)

Country Link
CN (1) CN105693746B (en)
WO (1) WO2015188787A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176677A1 (en) * 2014-05-22 2015-11-26 Sunshine Lake Pharma Co., Ltd. Crystalline forms and amorphism of oxazolidinone compound
CN106478658A (en) * 2015-08-25 2017-03-08 华北制药集团新药研究开发有限责任公司 Crystal formation D of benzoxazoles oxazines ketone compounds WA1-089 and preparation method thereof
CN106478661A (en) * 2015-08-25 2017-03-08 华北制药集团新药研究开发有限责任公司 Crystal formation E of benzoxazoles oxazines ketone compounds WA1-089 and preparation method thereof
CN107892696A (en) * 2017-11-07 2018-04-10 南京正亮医药科技有限公司 A kind of pharmaceutical composition for treating old cognitive disorder
CN114685529A (en) * 2020-12-29 2022-07-01 中国科学院上海药物研究所 Amorphous substance of oxazolidinone compound and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147259A1 (en) * 2010-05-24 2011-12-01 中国科学院上海药物研究所 Novel benzoxazine oxazolidinone compounds, preparation methods and uses thereof
WO2014110971A1 (en) * 2013-01-18 2014-07-24 中国科学院上海药物研究所 Oxazolidone compound, preparing method and application thereof
WO2015043364A1 (en) * 2013-09-29 2015-04-02 华北制药集团新药研究开发有限责任公司 Benzoxazoleoxazine ketone compound as blood coagulation factor xa inhibitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002044A1 (en) * 2004-01-15 2005-08-04 Bayer Healthcare Ag manufacturing
WO2006043121A1 (en) * 2004-10-20 2006-04-27 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
CN102464658B (en) * 2010-11-03 2014-04-16 天津药物研究院 Oxazolidinone derivative and preparation method and application thereof
US20140378682A1 (en) * 2011-09-08 2014-12-25 Cadila Healthcare Limited Processes and intermediates for preparing rivaroxaban
CN102746288B (en) * 2012-07-24 2015-04-08 常州制药厂有限公司 Preparation methods of anticoagulant and key intermediate of anticoagulant
CN102786516B (en) * 2012-08-21 2014-10-01 湖南师范大学 Method for synthesizing rivaroxaban

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147259A1 (en) * 2010-05-24 2011-12-01 中国科学院上海药物研究所 Novel benzoxazine oxazolidinone compounds, preparation methods and uses thereof
WO2014110971A1 (en) * 2013-01-18 2014-07-24 中国科学院上海药物研究所 Oxazolidone compound, preparing method and application thereof
WO2015043364A1 (en) * 2013-09-29 2015-04-02 华北制药集团新药研究开发有限责任公司 Benzoxazoleoxazine ketone compound as blood coagulation factor xa inhibitor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO BIN ET AL.: "Solubility-Driven Optimization of (Pyridin-3-yl) Benzoxazinyl- oxazolidinones Leading to a Promising Antibacterial Agent", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, 21 February 2013 (2013-02-21), pages 2642 - 2650, XP055242119 *
GUO BIN ET AL.: "Synthesis and biological evaluation of novel benzoxazinyl-oxazolidinones as potential antibacterial agents", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 23, 17 May 2013 (2013-05-17), pages 3697 - 3699, XP028564928 *
XIN QISHENG ET AL.: "Design, Synthesis, and Structure-Activity Relationship Studies of Highly Potent Novel Benzoxazinyl-Oxazolidinone Antibacterial Agents", JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, 28 September 2011 (2011-09-28), pages 7493 - 7502, XP055081848 *

Also Published As

Publication number Publication date
CN105693746B (en) 2018-09-14
CN105693746A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2015188787A1 (en) Method for preparing oxazolidinone compound and intermediates thereof
EP1806340B1 (en) Indoline compound and process for producing the same
WO2010110409A1 (en) Process for producing pyrone and pyridone derivatives
JP6568221B2 (en) Method for producing benzoxazole oxazine ketone compound, intermediate and crystal form thereof
CN106831737B (en) Preparation of vipatavir and derivatives thereof
CN114805314A (en) Synthesis method of Ensaitevir
WO2003076374A1 (en) PROCESS FOR PRODUCING trans-4-AMINO-1-CYCLOHEXANECARBOXYLIC ACID DERIVATIVE
WO2019163731A1 (en) Production method for oxazolidinone compound
CN107382897B (en) Intermediate of betrixaban and preparation method and application thereof
CN114805308A (en) Method for synthesizing aminopyrimidine FAK inhibitor compound
CN114539285A (en) Preparation method of mabarosavir
JPH02289563A (en) Improved process for producing ortho-carboxypyridyl- and ortho-carboxyquinolylimidazolinones
CN114249672B (en) Riluzole intermediate compound
CN110878097B (en) Preparation method of feigninib
CN111410650B (en) Process for the preparation of sulfonamides
JP5244604B2 (en) Method for producing benzothiazole compound
WO2015162630A1 (en) Novel processes for preparing triazolo [4,5-d]- pyrimidines, including ticagrelor, vianew intermediates and new route of synthesis.
JP5776127B2 (en) Process for producing substituted pyridin-2-ones
EP4375282A1 (en) Preparation method for hepatitis b virus nucleocapsid inhibitor
JP3622409B2 (en) β-anilinoethanethiol derivative, method for producing the same, and method for producing 3,4-dihydro-2H-1,4-benzothiazine derivatives using the same
CN116621742A (en) Novel preparation method of oxo-pyridine compound and key intermediate
CN114478454A (en) SGLT2 inhibitor key intermediate and preparation method thereof
JPWO2019146280A1 (en) Compounds and methods for producing compounds
Hu et al. An efficient synthesis of Erismodegib
CN117105909A (en) Preparation method of intermediate of lasmidbody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807398

Country of ref document: EP

Kind code of ref document: A1