WO2015186607A1 - Engine device - Google Patents

Engine device Download PDF

Info

Publication number
WO2015186607A1
WO2015186607A1 PCT/JP2015/065452 JP2015065452W WO2015186607A1 WO 2015186607 A1 WO2015186607 A1 WO 2015186607A1 JP 2015065452 W JP2015065452 W JP 2015065452W WO 2015186607 A1 WO2015186607 A1 WO 2015186607A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel injection
load
control
fuel
Prior art date
Application number
PCT/JP2015/065452
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 辻本
理彰 土井
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2015186607A1 publication Critical patent/WO2015186607A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically

Definitions

  • the present invention relates to an engine device mounted on a ship or the like, and relates to an engine device provided with a fuel injection device that efficiently burns fuel.
  • An object of the present invention is to provide an engine device that has been improved by examining the current situation as described above.
  • An engine device includes an engine including a fuel injection device that injects fuel into a combustion chamber in a cylinder of the engine and burns, and a control device that controls a fuel injection operation by the fuel injection device.
  • the control device when detecting a load change of the engine, the control device executes a load change control for changing a fuel injection amount or a fuel injection timing by the fuel injection device, and executes the load change control after executing the load change control. After the elapse of the period, the control operation for the fuel injection device is returned to the normal control.
  • the engine transmits power to a generator
  • the control device is configured to load a load based on a load signal received from the generator.
  • the control device executes the load fluctuation control for a predetermined period when the fluctuation is detected.
  • the control device calculates a deviation between the target rotational speed of the engine and the actual rotational speed, and based on the calculated rotational speed deviation, the load fluctuation is calculated.
  • the control device executes the load fluctuation control for a predetermined period.
  • the control device calculates a change amount of the actual rotation speed of the engine, and detects a load fluctuation based on the calculated rotation speed change amount. When the load fluctuation is detected, the control device executes the load fluctuation control for a predetermined period.
  • the control device increases the feedback gain of the fuel injection amount by the fuel injection device to perform the load fluctuation control. It is something to execute.
  • the control device advances a fuel injection timing by the fuel injection device, and fuel injection by the fuel injection device.
  • the load fluctuation control is executed by increasing the feedback gain of the amount.
  • an engine apparatus comprising: a fuel injection device that injects fuel into a combustion chamber in a cylinder of an engine and burns; and a control device that controls a fuel injection operation by the fuel injection device.
  • the control device executes load variation control for varying a fuel injection amount or fuel injection timing by the fuel injection device when detecting a load variation of the engine, and after a predetermined period of time has elapsed after executing the load variation control Since the control operation for the fuel injection device is returned to the normal control, even when the load on the engine is suddenly changed by the load application, the decrease in the engine speed can be suppressed and The engine output corresponding to the load can be maintained.
  • the engine transmits power to a generator, and the control device detects a load fluctuation based on a load signal received from the generator, and the control device
  • the load fluctuation control is executed for a predetermined period, so that the load fluctuation can be detected at an early stage. Therefore, it is possible to stabilize the power generation equipment by making the engine respond to load fluctuations at an early stage.
  • the control device calculates a deviation between the target rotational speed of the engine and the actual rotational speed, detects a load fluctuation based on the calculated rotational speed deviation, and the control device includes: When the load fluctuation is detected, the load fluctuation control is executed for a predetermined period. Therefore, the load fluctuation can be detected based on a signal other than the load signal. Therefore, even when there is an abnormality in the load signal, it is possible to check the load fluctuation and to operate the engine by adapting to the load fluctuation.
  • the control device calculates a change amount of the actual rotational speed of the engine, detects a load fluctuation based on the calculated rotation speed change amount, and the control device detects the load fluctuation.
  • the load fluctuation control is executed for a predetermined period, so that the load fluctuation can be detected based on a signal other than the load signal. Therefore, even when there is an abnormality in the load signal, it is possible to check the load fluctuation and to operate the engine by adapting to the load fluctuation.
  • the control device executes the load variation control by increasing a feedback gain of the fuel injection amount by the fuel injection device, the fuel injection amount corresponding to the load variation is set. It can be set early. And since the fuel injection amount by a fuel-injection apparatus can be adjusted optimally, not only fuel consumption can be reduced but PM generation amount can also be suppressed.
  • the control device advances the fuel injection timing by the fuel injection device and increases the feedback gain of the fuel injection amount by the fuel injection device to execute the load fluctuation control. Therefore, the fuel injection amount and the fuel injection timing according to the load fluctuation can be set at an early stage. Since the fuel injection amount and fuel injection timing by the fuel injection device can be optimally adjusted, not only the fuel consumption can be reduced, but also the PM generation amount can be suppressed.
  • FIG. 2 is a schematic view schematically showing the inside of a cylinder head in the engine device. It is a perspective view which shows the structure of the cylinder head periphery in the engine apparatus. It is a perspective view which shows the structure in the head cover in the engine apparatus. It is a control block diagram which shows the structure of the engine control apparatus of the engine apparatus. It is a flowchart which shows the detection operation of load injection in the engine control apparatus. It is a time chart which shows the advance angle control operation at the time of detection of load application.
  • the ship 1 includes a hull 2, a cabin 3 (bridge) provided on the stern side of the hull 2, a funnel 4 (chimney) disposed behind the cabin 3, and a lower rear part of the hull 2.
  • a propeller 5 for propulsion and a rudder 6 for steering are provided with a propeller 5 for propulsion and a rudder 6 for steering.
  • a stern skeg 8 is integrally formed on the bottom 7 of the rear lower part of the hull 2, and a propulsion shaft 9 for rotating the propeller 5 for propulsion is provided.
  • the propulsion shaft 9 is pivotally supported on the stern skeg 8.
  • a hold 10 is provided on the bow side and the center in the hull 2.
  • An engine room 11 is provided on the stern side in the hull 2.
  • a diesel engine 21 and a speed reducer 22 as main engines that are driving sources of the propeller 5, and a power generation device 23 for supplying electric power to the electrical system in the hull 2 are arranged.
  • the propeller 5 is rotationally driven by the rotational power from the main engine 21 via the speed reducer 22.
  • the interior of the engine room 11 is partitioned vertically by an upper deck 13, a second deck 14, a third deck 15, and an inner bottom plate 16.
  • the main engine 21 and the speed reducer 22 are installed on the inner bottom plate 16 at the lowermost stage of the engine room 11, and the power generator 23 is installed on the third deck 15 at the middle stage of the engine room 11. Note that the hold 10 is divided into a plurality of sections.
  • the power generator 23 includes three diesel generators 24.
  • the diesel generator 24 is configured by combining a six-cylinder power generation diesel engine 25 as an auxiliary machine and a generator 26 that generates electric power by driving the diesel engine 25.
  • the three diesel generators 24 are operated in accordance with the required power amount. When a large amount of power is consumed (for example, when entering and leaving the port), all the diesel generators 24 are operated, When the amount of power consumption is relatively small (for example, when anchored), the three diesel generators 24 are selectively operated, and the electric system in the hull 2 generates power from the generator 26 of each diesel generator 24. It is configured to supply power.
  • the exhaust gas discharge pipe 30 of the diesel engine 25 of each diesel generator 24 communicates with the outside from the funnel 4.
  • Three diesel engines 25 are installed for power generation, and three exhaust gas discharge pipes 30 exist for each diesel engine 25.
  • the exhaust gas discharge pipe 30 of each diesel engine 25 is connected to the main path 31 extending to the funnel 4, the bypass path 32 branched from the middle part of the main path 31, and both the main path 31 and the bypass path 32.
  • a casing 33 is provided. That is, three power generation diesel engines 25 are mounted, and an exhaust gas purification system including a main path 31, a bypass path 32, a composite casing 33, and the like is associated with each diesel engine 25.
  • the composite casing 33 is made of a heat-resistant metal material and has a rectangular tube shape, and is disposed above the second deck 14 on which each diesel engine 25 is disposed (upper side of the engine room 11).
  • a NOx catalyst (not shown) as a selective catalyst reduction device that promotes reduction of NOx in the exhaust gas of the diesel engine 25 is accommodated in the main path 31 inside the composite casing 33. Exhaust gas passes through the NOx catalyst in the main path 31 and is hatched.
  • the bypass path 32 is a path for bypassing the exhaust gas with respect to the NOx catalyst. That is, the exhaust gas moving through the bypass path 32 does not pass through the NOx catalyst.
  • the main path 31 and the bypass path 32 are merged on the exhaust outlet side of the composite casing 33.
  • a main side switching valve and a switching member for switching the direction of movement of the exhaust gas to the main path 31 or the bypass path 32 are provided at a branch portion between the main path 31 and the bypass path 32 on the exhaust gas inlet side of the composite casing 33.
  • a bypass side switching valve is provided. In the state where the main side switching valve is opened (the bypass side switching valve is closed), the exhaust gas in the exhaust gas discharge pipe 30 passes through the main path 31 (NOx catalyst) in the composite casing 33 and is purified. Then, it is discharged out of the ship 1. In a state where the bypass side switching valve is opened (the main side switching valve is closed), the exhaust gas in the exhaust gas exhaust pipe 30 is not purified by bypassing the NOx catalyst, and is outside the ship 1. Released.
  • the diesel engine 25 has a configuration in which a plurality of cylinders (cylinders) 34 (six cylinders in this embodiment) are arranged in series on a cylinder block 44.
  • Each cylinder 34 communicates with an intake manifold (intake flow path) 49 via an intake port 35.
  • Each cylinder 34 communicates with an exhaust manifold (exhaust flow path) 51 via an exhaust port 36. Accordingly, air (fresh air) from the intake manifold 49 is supplied to each cylinder 34 via the intake port 35, while exhaust gas from each cylinder 34 is discharged to the exhaust manifold 51 via the exhaust port 36. .
  • the engine device 21 includes a supercharger 37 that compresses air with the exhaust gas from the exhaust manifold 51, and an intercooler 38 that cools the compressed air compressed by the supercharger 37 and supplies the compressed air to the intake manifold 49.
  • the exhaust inlet of the turbine 37a of the supercharger 37 is connected to the exhaust outlet side of the exhaust manifold 51, and the air discharge port (new air) of the intercooler 38 is connected to the air inlet side (new air inlet side) of the intake manifold 49. Outlet) is connected.
  • the air discharge port (fresh air outlet) of the compressor 37 b of the supercharger 37 is connected to the air intake port (fresh air inlet) of the intercooler 38.
  • the turbine 37a is rotationally driven by the exhaust gas from the exhaust manifold 51 to drive the compressor 39a, compress the air (fresh air) taken from outside air, cool it by the intercooler 38, and supply it to the intake manifold 49 To do.
  • the diesel engine 25 has a piston 27 slidably provided in each cylinder 34.
  • the diesel engine 25 forms a combustion chamber M surrounded by the lower side of the cylinder block 44 and the top of the piston 27 in the cylinder 34.
  • the piston 27 reciprocates up and down in the cylinder 34, thereby rotating the engine output shaft (crankshaft) 42 (see FIG. 13) on the lower side of the cylinder 34.
  • a fuel injection valve 39 is inserted into the cylinder head 46 on the cylinder block 44 toward the combustion chamber M formed in the cylinder 34.
  • the fuel injection valve 39 has a tip disposed at the center position of the upper end opening surface of the cylinder 34 and injects fuel oil into the combustion chamber M formed by the upper surface of the piston 27 and the inner wall surface of the cylinder 34.
  • the diesel engine 25 includes an intake valve 28 that sucks air into the combustion chamber M and an exhaust valve 29 that discharges combustion gas from the combustion chamber M.
  • the intake valve 28 and the exhaust valve 29 are inserted at positions that are the outer periphery of the fuel injection valve 39.
  • the intake valve 28 opens and closes the intake port 35 to supply air from the intake manifold 49 into the cylinder 34.
  • the exhaust valve 29 opens and closes the exhaust port 36, combustion gas (exhaust gas) generated in the cylinder 34 is discharged to the exhaust manifold 50.
  • the upper ends of the two intake valves 28 are connected by a bridge 94, and the upper ends of the two exhaust valves 29 are connected by a bridge 95.
  • the rocker arm 96 with one end abutting on the center of the upper surface of the bridge 94 is connected to the other end of a push rod 98 interlocking with an intake cam on a camshaft (not shown).
  • the rocker arm 97 having one end abutted on the center of the upper surface of the bridge 95 is connected to the other end of a push rod 99 that interlocks with an exhaust cam on a camshaft (not shown).
  • the diesel engine 25 has a fuel injection pump 40 for each cylinder 34 as shown in FIGS. 4 to 6, and the fuel injection pump 40 is connected to the fuel injection valve 39 via a fuel discharge pipe (high pressure pipe) 70. is doing.
  • the fuel injection pump 40 has a pump main body 40a in the lower part, and a plunger 75 abutted on a pump cam on a cam shaft (not shown) that rotates in synchronization with the engine output shaft 42 is provided in the pump main body 40a. Move up and down.
  • the fuel injection pump 40 has an electromagnetic spill valve 40b connected to the upper part of the pump body 40a, and controls the opening and closing of the spill valve body 76 of the electromagnetic spill valve 40b, thereby fueling the fuel oil accumulated in the pump body 40a. Pumped to the injection valve 39.
  • the electromagnetic spill valve 40b adjusts the fuel injection amount and injection timing of the fuel injection pump 40.
  • the fuel injection pump 40 traps fuel oil in the fuel pressure chamber 78 in the pump body 40a when the plunger 75 is raised. Since the fuel injection pump 40 is provided with the fuel pressure chamber 78 at the boundary position between the pump body 40a and the electromagnetic spill valve 40b, the fuel oil confined in the fuel pressure chamber 78 is pumped to the electromagnetic spill valve 40b. The fuel injection pump 40 moves the spill valve body 76 in the electromagnetic spill valve 40b in the horizontal direction by the electromagnetic solenoid 79, and the oil passage on the fuel pressure chamber 78 side and the oil passage on the fuel discharge pipe 70 side of the pump body 40a. And the fuel oil in the fuel pressure chamber 78 is pumped toward the fuel injection valve 39.
  • a stepped portion 44a is provided on the front upper side of the cylinder block 44, and the fuel injection pumps 40 are arranged on the upper surface of the stepped portion 44a of the cylinder block 44 so as to be arranged in a line along the cylinder head 46 row.
  • the side surface of the pump body 40a in the fuel injection pump 40 is connected to the upper and lower two fuel oil pipes 69a and 69b, and the upper end of the electromagnetic spill valve 40b is connected to the fuel injection valve 39 in the cylinder head 46 via the fuel discharge pipe 70. It is connected.
  • One fuel oil pipe 69 a is an oil supply pipe that supplies fuel oil to the fuel injection pump 40
  • the other fuel oil pipe 69 b is an oil return pipe that returns the fuel oil from the fuel injection pump 40.
  • Fuel oil is supplied to the pump body 40a of the fuel injection pump 40 through a fuel oil pipe 69a by a fuel supply pump (not shown).
  • the pump main body 40 a supplies the fuel supplied from the fuel oil pipe 69 a to the fuel pressure chamber 78 when the plunger 75 is lowered by the pump cam (not shown). Thereafter, the fuel supplied into the fuel pressure chamber 78 is pressurized by a plunger 75 that slides upward in accordance with the rotation of the pump cam, and is supplied to an oil passage formed in the electromagnetic spill valve 40b.
  • the solenoid 79 of the electromagnetic spill valve 40b is excited based on a control signal from the engine control device 86.
  • the spill valve body 76 of the electromagnetic spill valve 40b slides toward the solenoid 79 by the attraction force of the solenoid 79, thereby blocking the return path from the oil path of the electromagnetic spill valve 40b to the oil path of the pump body 40a ( The pressure of the fuel oil supplied from the fuel pressure chamber 78 is maintained. Accordingly, the fuel injection pump 40 supplies the fuel oil pressurized by the fuel pressure chamber 78 and supplied to the electromagnetic spill valve 40b to the fuel injection valve 39 via the fuel discharge pipe 70 by closing the electromagnetic spill valve 40b. Pump.
  • the solenoid 79 of the electromagnetic spill valve 40b is demagnetized based on a control signal from the engine control device 86.
  • the spill valve body 76 of the electromagnetic spill valve 40b slides in a direction away from the solenoid 89 by the urging force of the spill valve spring 77, thereby returning the oil path of the electromagnetic spill valve 40b to the oil path of the pump body 40a.
  • the passage is communicated (the electromagnetic spill valve 40b is opened), and the fuel oil supplied from the fuel pressure chamber 78 is released.
  • the fuel injection pump 40 returns the fuel oil pressurized by the fuel pressure chamber 78 and supplied to the electromagnetic spill valve 40b to the pump body 40a side and discharged to the fuel oil pipe 69b by opening the electromagnetic spill valve 40b. Therefore, the discharge of the fuel oil to the fuel injection valve 39 is stopped.
  • the fuel injection timing is controlled by the closing timing of the electromagnetic spill valve 40b, and the fuel is supplied by the closing time (time from closing to opening) of the electromagnetic spill valve 40b.
  • the injection amount is controlled. That is, the engine control device 86 controls the valve closing timing and the valve opening timing of the electromagnetic spill valve 40b of the fuel injection pump 40, whereby the fuel oil injection timing and injection injected from the fuel injection valve 39 through the fuel injection pump 40 Control the amount.
  • the diesel engine 25 includes an engine control device 86 that controls each part of the diesel engine 25, and the engine control device 86 controls the fuel injection amount and fuel injection timing of the fuel injection pump 40. .
  • the engine control device 86 receives a measurement signal from a load measuring device 89 such as a watt transducer or a torque sensor that measures the output of the generator 26 and calculates a load applied to the diesel engine 25.
  • the engine control device 86 receives a measurement signal from an engine rotation sensor 90 such as a pulse sensor that measures the rotation speed of the crankshaft 42 of the diesel engine 25 and detects the engine rotation speed of the diesel engine 25.
  • the engine control device 86 receives the acceleration / deceleration command signal from the speed instruction unit 93 and sets the target engine rotation speed Ns.
  • the engine control device 86 receives an acceleration / deceleration command signal and calculates the target engine speed Ns, and the target engine speed Ns set by the engine speed setting part 101. And a subtractor 102 that calculates a difference ⁇ N between the measured engine rotation speed (actual engine rotation speed) Ne from the engine rotation sensor 90 and a PID (Proportional Integral Derivative) based on the difference ⁇ N of the rotation speed obtained by the subtractor 102.
  • a subtractor 102 that calculates a difference ⁇ N between the measured engine rotation speed (actual engine rotation speed) Ne from the engine rotation sensor 90 and a PID (Proportional Integral Derivative) based on the difference ⁇ N of the rotation speed obtained by the subtractor 102.
  • a PID control unit 103 that performs control calculation, a fuel injection amount calculation unit 104 that calculates a fuel injection amount based on a calculation value output from the PID control unit 103, and an advance angle control unit 105 that advances the fuel injection timing ,
  • a load application detection unit 10 that receives a measurement signal from the load measuring device 89 and the engine rotation sensor 90 and detects the load application.
  • a gain setting unit 107 for setting a P (Proportional) gain and an I (Integral) gain in the PID control unit 103, and a fuel injection amount set by the fuel injection amount calculation unit 104 and an advance angle control unit 105.
  • an open / close control unit that generates an open / close control signal for the electromagnetic spill valve 40b based on the fuel injection timing.
  • the engine control device 86 performs PID control of the fuel injection amount from the fuel injection valve 39 based on the acceleration / deceleration command signal given from the speed instruction unit 93 and the measurement signal from the engine rotation sensor 90. That is, the engine speed setting unit 101 sets the target engine speed Ns based on the acceleration / deceleration command signal, and the subtractor 102 determines the actual engine speed Ne and the target engine speed based on the measurement signal from the engine speed sensor 90. A difference value ⁇ N from the speed Ns is calculated.
  • the PID control unit 103 uses the P gain (multiplication coefficient for the proportional component value) and I gain (multiplication coefficient for the integral component value) set by the gain setting unit 107 for the difference value ⁇ N of the engine rotation speed obtained by the subtractor 102. ).
  • the fuel injection amount calculation unit 104 calculates the fuel injection amount based on the calculation result by the PID control unit 103 and sends it to the opening / closing control unit 108.
  • the advance angle control unit 105 sets the fuel oil pumping timing (fuel injection timing) to the fuel injection valve 39 by the fuel injection pump 40. For example, when the advance angle control unit 105 confirms that the load is applied based on the rotation speed difference value ⁇ N of the subtractor 102, the advance angle control unit 105 advances the fuel injection timing and notifies the open / close control unit 108.
  • the opening / closing control unit 108 calculates the valve closing timing and the valve opening timing of the spill valve 40b based on the fuel injection amount calculated by the fuel injection amount calculating unit 104 and the fuel injection timing by the advance angle control unit 105.
  • the opening / closing control unit 108 outputs a control signal for closing the spill valve 40b at the calculated valve closing timing, starts the fuel oil pumping by the fuel injection pump 40, and at the calculated valve opening timing, the spill valve 40b.
  • a control signal for opening the valve 40b is output, and the fuel oil pumping by the fuel injection pump 40 is stopped.
  • the load input detection unit 106 receives the measurement signal from the load measuring device 89 or the engine rotation sensor 90 and detects the presence or absence of the load input. When detecting the load application, the load application detection unit 106 notifies the advance angle control unit 105 and the gain setting unit 107 of the detection result. When the advance angle control unit 105 receives a load input notification from the load input detection unit 106, the advance angle control unit 105 advances the fuel injection timing for a predetermined period. Further, when the gain setting unit 107 receives a load input notification from the load input detecting unit 106, the gain setting unit 107 increases the P gain and the I gain (feedback gain) for a predetermined period.
  • the load input detection operation in the load input detection unit 106 will be described below with reference to FIG.
  • the load input detection unit 106 receives a measurement signal (load signal) of the load measuring device 89 that measures the output of the generator 26 (STEP 1), and also measures a measurement signal of the engine rotation sensor 90 that measures the rotation speed of the crankshaft 42. (Engine rotation signal) is received (STEP 2). Then, the load application detection unit 106 confirms whether or not the load application detection function based on the measurement signal (load signal) of the load measuring device 89 that measured the output of the generator 26 is selected (STEP 3).
  • the load input detection unit 106 checks whether there is an abnormality in the measurement signal (load signal) of the load measuring device 89 (STEP 4). For example, the load input detection unit 106 uses the load measuring device 89 when the signal value or variation rate by the measurement signal from the load measuring device 89 is out of the detection range due to a failure or disconnection of the load measuring device 89. An abnormality is detected in the measurement signal.
  • the load application detecting unit 106 is based on the load signal received in STEP 1 and the load signal already received and stored. Load change amount (output fluctuation amount of the generator 26) ⁇ Ac is calculated (STEP 5). That is, the load input detection unit 106 calculates the load change amount ⁇ Ac of the diesel engine 25 based on the history of measurement signals from the load measuring device 89.
  • the load application detection unit 106 detects the presence or absence of the load application based on the load change amount ⁇ Ac calculated in STEP 5 (STEP 6). That is, the load input detection unit 106 compares the load change amount ⁇ Ac of the diesel engine 25 with the first threshold value, and when the load change amount ⁇ Ac becomes larger than the first threshold value (Yes in STEP 6), the load input amount is detected. It is determined that the load has been detected, and the advance angle control unit 105 and the gain setting unit 107 are notified that the load has been detected (STEP 7).
  • the load input detection unit 106 When the load input detection function by the load signal is not selected (No in STEP 3), or when an abnormality is confirmed in the measurement signal (load signal) by the load measuring device 89 (Yes in STEP 4), the load input detection unit 106 Then, it is confirmed whether or not the load application detection function based on the engine speed deviation is selected (STEP 8).
  • the load application detection unit 106 detects the presence or absence of the application of the load based on the calculated engine speed deviation ⁇ Nse (STEP 10). That is, the load application detection unit 106 compares the engine speed deviation ⁇ Nse with the second threshold value, and detects the load application when the engine speed deviation ⁇ Nse difference becomes larger than the second threshold value (Yes in STEP 10). This is notified to the advance angle control unit 105 and the gain setting unit 107 (STEP 7).
  • the load application detection unit 106 When the load application detection function based on the engine speed deviation is not selected (No in STEP 8), the load application detection unit 106 is based on the engine rotation signal received in STEP 7 and the engine rotation signal already received and stored. Thus, the change amount ⁇ Ne of the actual engine speed is calculated (STEP 11).
  • the load application detection unit 106 detects the presence or absence of load application based on the calculated change amount ⁇ Ne of the actual engine speed (STEP 12). That is, the load application detection unit 106 compares the actual engine speed change amount ⁇ Ne with the third threshold value, and when the actual engine speed change amount ⁇ Ne is larger than the third threshold value (Yes in STEP 12).
  • the advance angle control unit 105 and the gain setting unit 107 are notified that the load has been detected (STEP 7).
  • the advance angle control unit 105 executes the advance angle control for a predetermined period T1, as shown in FIG.
  • the advance angle control unit 105 receives the notification of load application from the load input unit 106 and starts the advance angle control, and gradually increases the advance amount of the fuel injection timing to the target advance amount Q1. That is, the advance angle control unit 105 increases the advance angle amount immediately after the start of the advance angle control, and sets the advance angle amount Q1 after ⁇ T1 has elapsed.
  • the advance angle control unit 105 cancels the advance angle control, gradually decreases the advance amount of the fuel injection timing, and the fuel before the advance angle control starts. Return to injection timing. That is, the advance angle control unit 105 decreases the advance angle amount immediately after canceling the advance angle control, and sets the advance angle amount to 0 after lapse of ⁇ T2.
  • the gain setting unit 107 When the gain setting unit 107 receives a notification of load application from the load application unit 106, the gain setting unit 107 increases the feedback gain (P gain and I gain) to be given to the PID control unit 103 for a predetermined period T2, as shown in FIG. .
  • the gain setting unit 107 Upon receiving the notification of load application from the load application unit 106, the gain setting unit 107 changes the P gain from the steady value Pc to the maximum value Pmax and at the same time changes the I gain from the steady value Ic to the maximum value Imax. 103. Therefore, the calculation result is increased from the PID control unit 103 and the fuel injection amount calculated by the fuel injection amount calculation unit 104 is increased.
  • the gain setting unit 107 confirms the elapse of the predetermined period T2 after receiving the notification of load application from the load application unit 106, the gain setting unit 107 gradually returns the P gain from the maximum value Pmax to the steady value Pc, and at the same time, The gain is gradually returned from the maximum value Imax to the steady value Ic.
  • the engine control device 86 executes load variation control for varying the fuel injection amount or the fuel injection timing by the fuel injection device 40 when detecting the engine load variation.
  • the control operation for the fuel injection device 40 is returned to the normal control after a lapse of a predetermined period from the execution of the load variation control. Even when the load on the diesel engine 25 changes suddenly due to the load application, a decrease in the engine speed can be suppressed, and the engine output corresponding to the input load can be maintained.
  • the engine control device 86 detects a load fluctuation based on a load signal received from the generator 26. When detecting the load fluctuation, the engine control device 86 increases the feedback gain of the fuel injection amount by the fuel injection device 40 and executes the load fluctuation control for a predetermined period T2. Since the load fluctuation is detected based on the load signal for measuring the output of the generator 26, the load fluctuation can be detected at an early stage, and the diesel engine 25 can be responded to the load fluctuation at an early stage to stabilize the power generation equipment.
  • the engine control device 86 detects a load fluctuation based on a load signal received from the generator 26. Since the load fluctuation is detected based on the load signal for measuring the output of the generator 26, the load fluctuation can be detected at an early stage, and the diesel engine 25 can be responded to the load fluctuation at an early stage to stabilize the power generation equipment.
  • the engine control device 86 calculates a deviation between the target rotation speed and the actual rotation speed of the diesel engine 25, and detects a load fluctuation based on the calculated rotation speed deviation. Further, the engine control device 86 calculates the amount of change in the actual rotational speed of the diesel engine 25, and detects a load fluctuation based on the calculated amount of change in the rotational speed. By detecting the load fluctuation based on the rotational speed of the diesel engine 25, even when there is an abnormality in the load signal, the load fluctuation can be confirmed and the diesel engine 25 can be operated by adapting to the load fluctuation. it can.
  • the engine control device 86 executes load variation control by increasing the feedback gain of the fuel injection amount by the fuel injection device 40 during a predetermined period T2 when detecting the load variation.
  • the engine control device 86 advances the fuel injection timing by the fuel injection device 40 for a predetermined period T1 when the load fluctuation is detected. Further, by using the fuel injection device 40 as an electronically controlled fuel injection pump provided with an electromagnetic valve 40b, the fuel injection amount and the fuel injection timing can be controlled only by opening / closing control of the electromagnetic valve 40b.
  • the fuel injection amount control mechanism such as the plunger lead or the fuel control rack becomes unnecessary, but also the fuel injection amount and the fuel injection timing corresponding to the load fluctuation can be set at an early stage. Since the fuel injection amount and the fuel injection timing by the fuel injection device 40 can be adjusted optimally, not only the fuel consumption can be reduced, but also the NOx generation amount and the PM generation amount can be suppressed.
  • the diesel engine according to the present invention will be described below, focusing on the exhaust gas discharge structure, taking as an example a diesel engine for power generation in which superchargers are arranged in two stages.
  • the generator diesel engine 25 and the generator 26 are mounted on the base frame 41.
  • An output shaft (crankshaft) 42 projects from one side of the diesel engine 25, and a flywheel 43 is pivotally supported on the output shaft 42, and the output shaft 42 is connected to the generator 26.
  • the machine 26 is configured to be driven.
  • the diesel engine 25 includes a cylinder block 44 for 6 cylinders mounted on the base frame 41, and an oil pan 45 as an engine oil tank installed on the lower surface side of the cylinder block 44.
  • a cylinder head 46 disposed on the upper surface side of the cylinder block 44 and a head cover 47 for six cylinders disposed on the upper surface side of the cylinder head 46 are provided.
  • a fuel pump arrangement chamber 48 is provided on one side surface in the longitudinal direction of the rectangular box-shaped cylinder block 44, and an intake manifold 49 is formed on the other side surface in the longitudinal direction of the cylinder block 44.
  • An exhaust manifold 51 is disposed on the side surface.
  • one side surface of the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged in the longitudinal direction is referred to as the front surface of the diesel engine 25 and the cylinder in which the intake manifold 49 and the exhaust manifold 51 are arranged.
  • the other side surface of the head 46 in the longitudinal direction is referred to as the back surface of the diesel engine 25, and one side surface of the cylinder block 44 in which the generator 26 is disposed (one cylinder installation width) is defined as the left side surface of the diesel engine 25.
  • the other side surface in the short direction of the cylinder block 44 is referred to as the right side surface of the diesel engine 25.
  • an intake valve and an exhaust valve are attached to the cylinder head 46, an opening / closing mechanism for the intake valve and the exhaust valve is provided inside the cylinder head cover 47, and the fuel pipes 69a and 69b described above (FIG. 6).
  • a fuel injection pump 40 (see FIG. 6), a cam shaft (not shown), and the like are installed in the cylinder block 44 of the fuel pump arrangement chamber 48.
  • a fuel system-equipped component such as a fuel pump is provided in the fuel pump arrangement chamber 48 on the front side of the diesel engine 25, while each side of the cylinder block 44 and the cylinder head 46 on the rear side of the diesel engine 25.
  • Intake / exhaust system attachment parts such as the intake manifold 49 and the exhaust manifold 51 are provided, and the fuel system attachment parts and the intake / exhaust system attachment parts are separately arranged on the front side and the back side of the diesel engine 25.
  • the exhaust manifold 51 has a cylinder connection pipe 52 that communicates with the first to sixth cylinders of the diesel engine 25, and the exhaust manifold 51 is disposed in parallel above the intake manifold 49.
  • an engine coolant pipe 53 for cooling the diesel engine 25 is extended between the head cover 47 and the exhaust manifold 51 in parallel with the exhaust manifold 51. That is, the exhaust manifold 51 between the cylinder head 46 and the high-pressure supercharger 56 and the engine cooling water pipe 53 are extended in parallel to one side of the head cover 47 row.
  • the two-stage supercharger 55 connected to the intake manifold 49 and the exhaust manifold 51 includes a high pressure supercharger 56, a high pressure side intercooler 57, a low pressure supercharger 58, and a low pressure side intercooler.
  • a cooler 59 is provided.
  • the high-pressure side intercooler 57 and the low-pressure side intercooler 59 are arranged adjacent to each other by partitioning the inside of the square box-shaped intercooler main body 54.
  • the high pressure supercharger 56 includes a high pressure compressor 61 and a high pressure turbine 60
  • the low pressure supercharger 58 includes a low pressure compressor 63 and a low pressure turbine 62.
  • the exhaust gas inlet 64 of the high-pressure turbine 60 is connected to the exhaust manifold 51
  • the exhaust gas inlet 67 of the low-pressure turbine 62 is connected to the exhaust gas outlet 65 of the high-pressure turbine 60 via the high-pressure exhaust gas pipe 66.
  • An exhaust gas intake side end of the exhaust gas discharge pipe 30 is connected to the gas outlet 68.
  • the exhaust gas of the power generating diesel engine 25 discharged from the exhaust manifold 51 sequentially moves to the high pressure turbine 60, the high pressure exhaust gas pipe 66, and the low pressure turbine 62, and then the exhaust gas outlet of the low pressure turbine 62. It moves from 68 to the exhaust gas discharge pipe 30, is hatched in the composite casing 33 provided in the middle of the exhaust gas discharge pipe 30, and is discharged outside the ship. Further, the high-pressure turbine 61 drives the high-pressure compressor 61, and the low-pressure turbine 62 drives the low-pressure compressor 63.
  • a supply air filter 71 is provided on the fresh air intake side of the low pressure compressor 63, a low pressure side intercooler 59 is connected to the fresh air delivery side of the low pressure compressor 63 via a low pressure fresh air passage pipe 72, and a low pressure side intercooler. 59 is connected to a fresh air intake side of the high pressure compressor 61 via a fresh air introduction pipe 73, and a high pressure side intercooler 57 is connected to a fresh air delivery side of the high pressure compressor 61 via a high pressure fresh air passage pipe 74.
  • the fresh air taken in from the air supply filter 71 is pressurized by the low-pressure compressor 63 and then cooled by the low-pressure side intercooler 59, and then moves from the low-pressure side intercooler 59 to the high-pressure compressor 61. Is further pressurized, cooled by the high pressure side intercooler 57, and fed to the intake manifold 49.
  • an engine lubricating oil mechanism 80 for circulating the engine oil of the power generating diesel engine 25 is provided.
  • the engine lubricating oil mechanism 80 includes an oil pump (not shown) for sending engine oil from the oil pan 45, an oil cooler 82 for cooling the engine oil, an oil filter 83 for hatching the engine oil, and the like.
  • An oil cooler 82 and an oil filter 83 are fixed in a horizontal row on the side of the cylinder block 44 (the back of the diesel engine 25) where the intake manifold 49 and the exhaust manifold 51 are arranged.
  • the engine oil in the oil pan 45 is circulated in the cylinder block 44 or the cylinder head 46 through the oil cooler 82 and the oil filter 83.
  • the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged is offset to one side surface (front side of the diesel engine 25) in the longitudinal direction opposite to the side surface of the cylinder block 44 (back side of the diesel engine 25).
  • the intake manifold 49, the exhaust manifold 51, the oil cooler 82, and the oil filter 83 are arranged.
  • a cooling water pump (not shown) is connected to the high pressure side intercooler 57, the low pressure side intercooler 59, and the oil cooler 82 via cooling water pipes 84a, 84b, and 84c.
  • the cooling water is circulated through the high pressure side intercooler 57, the low pressure side intercooler 59, and the oil cooler 82, and fresh air from the high pressure turbine 60, fresh air from the low pressure turbine 62, and engine oil in the oil cooler 82 are removed. It is configured to cool.
  • the start / stop switch box 87 and the engine starter 88 are respectively arranged so as to be offset toward the side of the cylinder block 44 (the front side of the diesel engine 25) where the fuel pump disposition chamber 48 is disposed. That is, the operator moves to the side (front side) of the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged, and the diesel engine 25 is started or stopped without being affected by the radiant heat of the exhaust manifold 51 or the like. Can be performed. Further, on one side of the diesel engine 25, on the upper side of the flywheel 43 supported by the output shaft 42, the control of the fuel injection timing and the fuel injection amount by the fuel injection pump 40 (see FIG. 6), etc. An engine control device 86 for controlling the operation of each part is arranged.
  • the mounting structure of the two-stage supercharger 55 high pressure supercharger 56, low pressure supercharger 58
  • the intercooler body 54 high pressure side intercooler 57, low pressure side intercooler 59
  • FIGS. 11 to 17 of the side surfaces of the cylinder block 44 of the power generating diesel engine 25, the side surface facing the side surface (the left side surface of the cylinder block 44) on the generator 26 side where the output shaft 42 projects.
  • the two-stage supercharger 55 and the intercooler body 54 are disposed on the right side surface of the cylinder block 44. That is, one end of the output shaft 42 and the generator 26 are disposed on the left side surface portion of the diesel engine 25, and the two-stage supercharger 55 and the intercooler body 54 are disposed on the right side surface portion of the diesel engine 25.
  • the supercharger unit frame 91 for attaching the two-stage supercharger 55 and the intercooler main body 54 is provided.
  • the supercharger unit frame 91 includes a vertical portion 91a that is bonded and fixed to the right side surface of the cylinder block 44 opposite to the left side surface on which the generator 26 is disposed, and a horizontal portion 91b that is connected in an L shape to the upper end side of the vertical portion.
  • Have The vertical portion 91a is fastened and fixed to the right side surface of the cylinder block 44 in a substantially vertical posture, and one end side of the horizontal portion 91b is integrally connected to the upper end of the vertical portion 91a, and the horizontal portion 91b is moved away from the cylinder block 44.
  • the other end side protrudes substantially horizontally.
  • the vertical portion 91a and the horizontal portion 91b are integrally formed by combining a plurality of metal plates by welding.
  • a high pressure supercharger 56 and a low pressure supercharger 58 are attached to the upper surface side of the horizontal portion 91b of the turbocharger unit frame 91 in which the vertical portion 91a is joined and fixed to one side surface (right side surface) of the diesel engine 25.
  • the low-pressure supercharger 58 is arranged close to the right side surface of the diesel engine 25, and the high-pressure supercharger 56 is arranged apart from the right side surface of the diesel engine 25. That is, the low-pressure supercharger 58 is disposed on the upper surface side of the horizontal portion 91b and connected to the upper end of the vertical portion 91a, and the diesel engine is disposed on the upper surface side of the horizontal portion 91b.
  • the high-pressure supercharger 56 is disposed on the upper surface side of the end portion of the horizontal portion 91b that is separated from the right side surface of 25.
  • the high-pressure supercharger 56 is configured to be small and light, and the low-pressure supercharger 58 is configured to be large and heavy. .
  • the upper surface of the intercooler main body 54 is bonded and fixed to the lower surface of the horizontal portion 91b of the supercharger unit frame 91, and the intercooler main body 54 is attached in a suspended posture to the lower surface side of the horizontal portion 91b.
  • the supply air (fresh air) temperature sent from the high pressure supercharger 56 is configured to be lowered by the low pressure side intercooler 59 or the high pressure side intercooler 57 of the intercooler body 54.
  • a cradle frame 92 is fixed to the upper surface side of the horizontal portion 91b to which the upper end portion of the vertical portion 91a is connected, of the upper surface side of the horizontal portion 91b of the supercharger unit frame 91, and the Among the one end portions of the exhaust manifold 51 that mounts the feeder 58 and causes the high-pressure supercharger 56 to lead out the exhaust gas of the engine 25, the one end portion of the exhaust manifold 51 near the exhaust gas inlet 64 of the high-pressure compressor 60 is placed horizontally. Through a space between the portion 91 b and the cradle frame 92, the low pressure supercharger 58 is extended in a penetrating manner.
  • the shortest distance between the exhaust manifold 51 and the cylinder block 44 and the high pressure supercharger 56 is achieved without bypassing the outside of the low pressure supercharger 58 disposed between the cylinder block 44 and the high pressure supercharger 56. Can be extended.
  • a fresh air introduction path (not shown) is opened in the vertical portion 91a to be joined and fixed to the right side surface of the cylinder block 44, and the cylinder block 44 and the high pressure side intercooler 57 are joined by the vertical portion 91a, so that the high pressure side intercooler is joined.
  • the fresh air outlet 57a of 57 is connected to the inlet of the end portion of the intake manifold 46 via a fresh air introduction path (not shown) so that the fresh air of the high pressure side intercooler 57 is supplied to the intake manifold 46. is doing.
  • a high pressure supercharger 56 as a first supercharger and a low pressure supercharger 58 as a second supercharger are arranged in series in the exhaust gas discharge path of the diesel engine 25.
  • the high-pressure supercharger 56 and the low-pressure supercharger 58 are arranged on one side of the diesel engine 25, the low-pressure supercharger 58 is arranged close to one side of the diesel engine 25, and Since the high-pressure supercharger 56 is disposed away from one side of the diesel engine 25, the low-pressure supercharger that is larger and heavier than the high-pressure supercharger 56 is interposed between the diesel engine 25 and the high-pressure supercharger 56.
  • the supply air pipe (new air) on the high-pressure supercharger 56 side where the supply air temperature is high Introduction pipe 7 Etc.) can be installed away from one side of the diesel engine 25, while a supply pipe (such as the vertical portion 91a of the turbocharger unit frame 91) on the low-pressure supercharger 58 side where the supply air temperature is low is connected to the diesel engine 25. It can be supported close to the side surface, and the charge / air cooling structure of the diesel engine 25 can be simplified. Attached parts such as a cooling water circulation pump or an engine oil circulation pump can be collectively attached to the lower space of each of the superchargers 56, 58, and the maintenance workability of each attached part can be improved.
  • a cooling water circulation pump or an engine oil circulation pump can be collectively attached to the lower space of each of the superchargers 56, 58, and the maintenance workability of each attached part can be improved.
  • the vertical portion 91a of the supercharger unit frame 91 is joined and fixed to one side surface of the diesel engine 25, and the high pressure supercharger is disposed on the upper surface side of the horizontal portion 91b of the supercharger unit frame 91.
  • 56 and a low-pressure supercharger 58 are attached. Accordingly, the low-pressure supercharger 58 can be arranged on the upper surface side of the supercharger unit frame 91 near the vertical portion 91a of the horizontal portion 91b of the horizontal portion 91b.
  • the support structure such as the supercharger unit frame 91 can be simplified while securing the support rigidity of the charger 58.
  • the structure is provided with an intercooler main body 54 as an intercooler that lowers the supply air temperature of the high-pressure supercharger 56 and the low-pressure supercharger 58, and is provided on one side of the diesel engine 25.
  • the vertical portion 91 a of the charger unit frame 91 is joined and fixed, and the intercooler body 54 is attached to the lower surface side of the horizontal portion 91 b of the supercharger unit frame 91. Therefore, one side surface of the intercooler body 54 can be opposed to one side surface of the diesel engine 25 across the vertical portion 91a of the supercharger unit frame 91, and the intake manifold 49 and the intercooler body 54 of the diesel engine 25 are newly provided.
  • a part of the turbocharger unit frame 91 can be used as a pipe for connecting to the air outlet 57a, and the simplification of the air supply pipe or the reduction of the air supply resistance can be easily achieved.
  • the high pressure supercharger 56 is provided with an exhaust manifold 51 as an exhaust pipe for deriving exhaust gas of the diesel engine 25, and has an upper end of a vertical portion 91a of the supercharger unit frame 91.
  • One end of the horizontal portion 91b of the supercharger unit frame 91 is connected in an L shape to the upper side of the horizontal portion 91b of the supercharger unit frame 91 to which the vertical portion 91a of the supercharger unit frame 91 is connected.
  • the cradle frame 92 is fixed, the low pressure supercharger 58 is mounted on the cradle frame 92, and the exhaust manifold 51 is extended between the horizontal portion 91 b of the supercharger unit frame 91 and the cradle frame 92. . Therefore, the exhaust manifold 51 for connecting the high-pressure supercharger 56 to the diesel engine 25 can be formed linearly, the exhaust resistance between the diesel engine 25 and the high-pressure supercharger 56 can be reduced, and the diesel engine 25 to the high-pressure supercharger 56 can be reduced.
  • the exhaust pipe line between the feeders 56 can be easily configured.
  • an exhaust manifold 51 as an exhaust pipe between the diesel engine 25 and the high pressure supercharger 56 and an engine coolant pipe 53 as a coolant pipe are parallel to one side of the head cover 47 row. It is extended to. Accordingly, the exhaust manifold 51 and the engine coolant pipe 53 can be compactly installed on one side of the head cover 47 row, but the one side of the head cover 47 row on which the exhaust manifold 51 and the engine coolant pipe 53 are arranged.
  • the oil filter 83 or the oil cooler 82 can be easily installed using the side surface of the diesel engine 25.
  • a fuel pump arrangement chamber 48, a start / stop switch box 87, an engine start device 88, and the like can be arranged on the side surface of the diesel engine 25 on the other side of the head cover 47 row, and a work space for starting or stopping the diesel engine 25, etc. Can be easily secured.
  • the dynamic pressure type exhaust manifold 51 includes, for example, a first exhaust manifold that communicates with the first cylinder, the fourth cylinder, and the fifth cylinder of the diesel engine 25, the second cylinder, the third cylinder, and the sixth cylinder of the diesel engine 25.
  • a plurality of exhaust manifolds such as a second exhaust manifold communicating with the cylinder may be used.

Abstract

The present invention addresses the problem of providing an engine device that can suppress reduction of the rotational speed of an engine and can maintain engine output that is optimal for an applied load, even when the load on the engine changes rapidly due to application of load. A diesel engine (engine device) (25) according to the present embodiment has an engine control device (86) that, when a variation in the load on the engine is detected, performs load variation control that varies fuel injection timing or the amount of fuel injected by a fuel injection device (40), and that, after a prescribed period of time has passed from the performance of the load variation control, returns control operations of the fuel injection device (40) to normal control. The engine control device (86) detects load variations on the basis of a load signal received from a power generator (26).

Description

エンジン装置Engine equipment
 本願発明は、船舶などに搭載するエンジン装置に係り、燃料を効率良く燃焼させる燃料噴射装置を備えたエンジン装置に関するものである。 The present invention relates to an engine device mounted on a ship or the like, and relates to an engine device provided with a fuel injection device that efficiently burns fuel.
 従来、大型のディーゼルエンジンに搭載される燃料噴射ポンプとして、燃料効率の向上や排気ガスエミッションの低減のために、エンジンの運転状態に応じて燃料噴射のタイミングや燃料噴射の回数等を制御するものが知られている。このような燃料噴射ポンプは、電磁スピル弁を任意のタイミングで開閉することにより精密な燃料噴射を行う。(例えば特許文献1等参照)。 Conventionally, as a fuel injection pump mounted on a large diesel engine, in order to improve fuel efficiency and reduce exhaust gas emissions, control the fuel injection timing, the number of fuel injections, etc. according to the operating state of the engine It has been known. Such a fuel injection pump performs precise fuel injection by opening and closing an electromagnetic spill valve at an arbitrary timing. (See, for example, Patent Document 1).
特開2007-120463号公報JP 2007-120463 A
 特許文献1のエンジン装置歯のように、電磁スピル弁を有する燃料噴射ポンプを有することで、エンジンの状態に応じた燃料噴射を実行させて、燃焼効率を向上させている。しかしながら、発電機などに負荷が投入されたときなど、瞬間的な負荷変動が発生した場合、従来では、燃料噴射制御による最適化に時間を要していたため、燃料噴射の状態遷移タイミングが実際の負荷変動タイミングに対して遅延してしまう。従って、負荷変動時に必要な燃料流量が燃焼室内に供給されず、エンジンにおける燃焼効率を悪化させるだけでなく、NOx発生量やPM(微小粒子:Particulate Matter)発生量の低減の妨げになることがある。 Like the engine device tooth of Patent Document 1, by having a fuel injection pump having an electromagnetic spill valve, fuel injection is performed according to the state of the engine, and combustion efficiency is improved. However, when instantaneous load fluctuations occur, such as when a load is applied to a generator, etc., conventionally, optimization by fuel injection control has taken time, so the state transition timing of fuel injection is It will be delayed with respect to the load fluctuation timing. Therefore, the fuel flow rate required when the load fluctuates is not supplied into the combustion chamber, which not only deteriorates the combustion efficiency in the engine but also hinders the reduction of NOx generation amount and PM (Particulate Matter) generation amount. is there.
 本願発明は、上記のような現状を検討して改善を施したエンジン装置を提供することを目的としている。 An object of the present invention is to provide an engine device that has been improved by examining the current situation as described above.
 請求項1の発明に係るエンジン装置は、エンジンのシリンダ内の燃焼室に燃料を噴射して燃焼させる燃料噴射装置と、該燃料噴射装置による燃料噴射動作を制御する制御装置と、を備えたエンジン装置において、前記制御装置は、エンジンの負荷変動を検出したときに、前記燃料噴射装置による燃料噴射量又は燃料噴射タイミングを変動させる負荷変動制御を実行し、該負荷変動制御を実行してから所定期間経過後に、前記燃料噴射装置に対する制御動作を通常制御に復帰させるものである。 An engine device according to a first aspect of the present invention includes an engine including a fuel injection device that injects fuel into a combustion chamber in a cylinder of the engine and burns, and a control device that controls a fuel injection operation by the fuel injection device. In the apparatus, when detecting a load change of the engine, the control device executes a load change control for changing a fuel injection amount or a fuel injection timing by the fuel injection device, and executes the load change control after executing the load change control. After the elapse of the period, the control operation for the fuel injection device is returned to the normal control.
 請求項2の発明は、請求項1に記載のエンジン装置において、前記エンジンは、発電機に動力を伝達するものであって、前記制御装置は、前記発電機から受ける負荷信号に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものである。 According to a second aspect of the present invention, in the engine device according to the first aspect, the engine transmits power to a generator, and the control device is configured to load a load based on a load signal received from the generator. When the fluctuation is detected, the control device executes the load fluctuation control for a predetermined period when the fluctuation is detected.
 請求項3の発明は、請求項1に記載のエンジン装置において、前記制御装置は、前記エンジンの目標回転速度と実回転速度との偏差を算出し、算出した回転速度偏差に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものである。 According to a third aspect of the present invention, in the engine device according to the first aspect, the control device calculates a deviation between the target rotational speed of the engine and the actual rotational speed, and based on the calculated rotational speed deviation, the load fluctuation is calculated. When the load fluctuation is detected, the control device executes the load fluctuation control for a predetermined period.
 請求項4の発明は、請求項1に記載のエンジン装置において、前記制御装置は、前記エンジンの実回転速度の変化量を算出し、算出した回転速度変化量に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものである。 According to a fourth aspect of the present invention, in the engine device according to the first aspect, the control device calculates a change amount of the actual rotation speed of the engine, and detects a load fluctuation based on the calculated rotation speed change amount. When the load fluctuation is detected, the control device executes the load fluctuation control for a predetermined period.
 請求項5の発明は、請求項1~4のいずれか一項に記載のエンジン装置において、前記制御装置は、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行するものである。 According to a fifth aspect of the present invention, in the engine device according to any one of the first to fourth aspects, the control device increases the feedback gain of the fuel injection amount by the fuel injection device to perform the load fluctuation control. It is something to execute.
 請求項6の発明は、請求項1~4のいずれか一項に記載のエンジン装置において、前記制御装置は、前記燃料噴射装置による燃料噴射タイミングを進角させるとともに、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行するものである。 According to a sixth aspect of the present invention, in the engine device according to any one of the first to fourth aspects, the control device advances a fuel injection timing by the fuel injection device, and fuel injection by the fuel injection device. The load fluctuation control is executed by increasing the feedback gain of the amount.
 請求項1の発明によると、エンジンのシリンダ内の燃焼室に燃料を噴射して燃焼させる燃料噴射装置と、該燃料噴射装置による燃料噴射動作を制御する制御装置と、を備えたエンジン装置において、前記制御装置は、エンジンの負荷変動を検出したときに、前記燃料噴射装置による燃料噴射量又は燃料噴射タイミングを変動させる負荷変動制御を実行し、該負荷変動制御を実行してから所定期間経過後に、前記燃料噴射装置に対する制御動作を通常制御に復帰させるものであるから、負荷投入により、エンジンへの負荷が急激に変化した場合であっても、エンジン回転速度の低下を抑制でき、投入された負荷に対応したエンジン出力を維持できる。 According to the invention of claim 1, in an engine apparatus comprising: a fuel injection device that injects fuel into a combustion chamber in a cylinder of an engine and burns; and a control device that controls a fuel injection operation by the fuel injection device. The control device executes load variation control for varying a fuel injection amount or fuel injection timing by the fuel injection device when detecting a load variation of the engine, and after a predetermined period of time has elapsed after executing the load variation control Since the control operation for the fuel injection device is returned to the normal control, even when the load on the engine is suddenly changed by the load application, the decrease in the engine speed can be suppressed and The engine output corresponding to the load can be maintained.
 請求項2の発明によると、前記エンジンは、発電機に動力を伝達するものであって、前記制御装置は、前記発電機から受ける負荷信号に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものであるから、早期に負荷変動を検出できる。従って、エンジンを負荷変動に早期に対応させて、発電設備の安定化を図れる。 According to a second aspect of the present invention, the engine transmits power to a generator, and the control device detects a load fluctuation based on a load signal received from the generator, and the control device When the load fluctuation is detected, the load fluctuation control is executed for a predetermined period, so that the load fluctuation can be detected at an early stage. Therefore, it is possible to stabilize the power generation equipment by making the engine respond to load fluctuations at an early stage.
 請求項3の発明によると、前記制御装置は、前記エンジンの目標回転速度と実回転速度との偏差を算出し、算出した回転速度偏差に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものであるから、負荷信号以外の信号に基づいて負荷変動を検出できる。従って、負荷信号に異常があった場合などにおいても、負荷変動を確認し、エンジンを負荷変動に適応させて動作させることができる。 According to the invention of claim 3, the control device calculates a deviation between the target rotational speed of the engine and the actual rotational speed, detects a load fluctuation based on the calculated rotational speed deviation, and the control device includes: When the load fluctuation is detected, the load fluctuation control is executed for a predetermined period. Therefore, the load fluctuation can be detected based on a signal other than the load signal. Therefore, even when there is an abnormality in the load signal, it is possible to check the load fluctuation and to operate the engine by adapting to the load fluctuation.
 請求項4の発明によると、前記制御装置は、前記エンジンの実回転速度の変化量を算出し、算出した回転速度変化量に基づいて、負荷変動を検出し、前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行するものであるから、負荷信号以外の信号に基づいて負荷変動を検出できる。従って、負荷信号に異常があった場合などにおいても、負荷変動を確認し、エンジンを負荷変動に適応させて動作させることができる。 According to a fourth aspect of the present invention, the control device calculates a change amount of the actual rotational speed of the engine, detects a load fluctuation based on the calculated rotation speed change amount, and the control device detects the load fluctuation. When detected, the load fluctuation control is executed for a predetermined period, so that the load fluctuation can be detected based on a signal other than the load signal. Therefore, even when there is an abnormality in the load signal, it is possible to check the load fluctuation and to operate the engine by adapting to the load fluctuation.
 請求項5の発明によると、前記制御装置は、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行するものであるので、負荷変動に応じた燃料噴射量に早期に設定可能となる。そして、燃料噴射装置による燃料噴射量を最適に調整できるため、燃料消費量を低減できるだけでなく、PM発生量も抑制できる。 According to the invention of claim 5, since the control device executes the load variation control by increasing a feedback gain of the fuel injection amount by the fuel injection device, the fuel injection amount corresponding to the load variation is set. It can be set early. And since the fuel injection amount by a fuel-injection apparatus can be adjusted optimally, not only fuel consumption can be reduced but PM generation amount can also be suppressed.
 請求項6の発明によると、前記制御装置は、前記燃料噴射装置による燃料噴射タイミングを進角させるとともに、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行するものであるので、負荷変動に応じた燃料噴射量及び燃料噴射タイミングに早期に設定可能となる。そして、燃料噴射装置による燃料噴射量及び燃料噴射タイミングを最適に調整できるため、燃料消費量を低減できるだけでなく、PM発生量も抑制できる。 According to the invention of claim 6, the control device advances the fuel injection timing by the fuel injection device and increases the feedback gain of the fuel injection amount by the fuel injection device to execute the load fluctuation control. Therefore, the fuel injection amount and the fuel injection timing according to the load fluctuation can be set at an early stage. Since the fuel injection amount and fuel injection timing by the fuel injection device can be optimally adjusted, not only the fuel consumption can be reduced, but also the PM generation amount can be suppressed.
船舶の全体側面図である。It is the whole ship side view. 図1の縦断面図である。It is a longitudinal cross-sectional view of FIG. 本発明の実施形態におけるエンジン装置の吸排気路の構成を示す概略図である。It is the schematic which shows the structure of the intake / exhaust path of the engine apparatus in embodiment of this invention. 同エンジン装置におけるシリンダヘッド内の模式的に表した概略図である。FIG. 2 is a schematic view schematically showing the inside of a cylinder head in the engine device. 同エンジン装置におけるシリンダヘッド周辺の構成を示す斜視図である。It is a perspective view which shows the structure of the cylinder head periphery in the engine apparatus. 同エンジン装置におけるヘッドカバー内の構成を示す斜視図である。It is a perspective view which shows the structure in the head cover in the engine apparatus. 同エンジン装置のエンジン制御装置の構成を示す制御ブロック図である。It is a control block diagram which shows the structure of the engine control apparatus of the engine apparatus. 同エンジン制御装置における負荷投入の検出動作を示すフローチャートである。It is a flowchart which shows the detection operation of load injection in the engine control apparatus. 負荷投入の検出時の進角制御動作を示すタイムチャートである。It is a time chart which shows the advance angle control operation at the time of detection of load application. 負荷投入の検出時のフィードバックゲインの変更制御動作を示すタイムチャートである。It is a time chart which shows the change control operation | movement of a feedback gain at the time of detection of load injection. ディーゼルエンジンの吸気・排気マニホールド側(左側面)を示す斜視図である。It is a perspective view which shows the intake / exhaust manifold side (left side surface) of a diesel engine. 同燃料ポンプ配置室側(右側面)を示す斜視図である。It is a perspective view which shows the fuel pump arrangement | positioning chamber side (right side surface). 同吸気・排気マニホールド側(左側面)を示す側面図である。It is a side view which shows the same intake / exhaust manifold side (left side surface). 同燃料ポンプ配置室側(右側面)を示す側面図である。It is a side view which shows the fuel pump arrangement | positioning chamber side (right side surface). 同平面図である。It is the same top view. 同過給機設置側(背面)を示す側面図である。It is a side view which shows the supercharger installation side (back surface). 同発電機設置側(正面)を示す側面図である。It is a side view which shows the generator installation side (front).
 以下に、本願発明を具体化した実施形態を、船舶に搭載された発電機のディーゼルエンジンに適用した場合の図面に基づいて説明する。 Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings when applied to a diesel engine of a generator mounted on a ship.
 先ず、図1及び図2を参照しながら、ディーゼルエンジンを搭載する船舶1の概要を説明する。図1及び図2に示す如く、船舶1は、船体2と、船体2の船尾側に設けるキャビン3(船橋)と、キャビン3の後方に配置するファンネル4(煙突)と、船体2の後方下部に設ける推進用のプロペラ5及び操舵用の舵6とを備える。また、船体2後方下部の船底7に船尾スケグ8を一体形成すると共に、推進用のプロペラ5を回転駆動させる推進軸9を備え、船尾スケグ8に推進軸9を軸支している。船体2内の船首側及び中央部には船倉10を設けている。船体2内の船尾側には機関室11を設けている。 First, an outline of a ship 1 equipped with a diesel engine will be described with reference to FIGS. 1 and 2. As shown in FIGS. 1 and 2, the ship 1 includes a hull 2, a cabin 3 (bridge) provided on the stern side of the hull 2, a funnel 4 (chimney) disposed behind the cabin 3, and a lower rear part of the hull 2. Provided with a propeller 5 for propulsion and a rudder 6 for steering. In addition, a stern skeg 8 is integrally formed on the bottom 7 of the rear lower part of the hull 2, and a propulsion shaft 9 for rotating the propeller 5 for propulsion is provided. The propulsion shaft 9 is pivotally supported on the stern skeg 8. A hold 10 is provided on the bow side and the center in the hull 2. An engine room 11 is provided on the stern side in the hull 2.
 機関室11には、プロペラ5の駆動源である主機としてのディーゼルエンジン21及び減速機22と、船体2内の電気系統に電力を供給するための発電装置23とを配置している。主エンジン21から減速機22を経由した回転動力によって、プロペラ5が回転駆動する。機関室11の内部は、上甲板13、第2甲板14、第3甲板15及び内底板16によって上下に仕切られている。機関室11最下段の内底板16上に主エンジン21及び減速機22を据え付け、機関室11中段の第3甲板15上に発電装置23を据え付けている。なお、船倉10は複数の区画に分割している。 In the engine room 11, a diesel engine 21 and a speed reducer 22 as main engines that are driving sources of the propeller 5, and a power generation device 23 for supplying electric power to the electrical system in the hull 2 are arranged. The propeller 5 is rotationally driven by the rotational power from the main engine 21 via the speed reducer 22. The interior of the engine room 11 is partitioned vertically by an upper deck 13, a second deck 14, a third deck 15, and an inner bottom plate 16. The main engine 21 and the speed reducer 22 are installed on the inner bottom plate 16 at the lowermost stage of the engine room 11, and the power generator 23 is installed on the third deck 15 at the middle stage of the engine room 11. Note that the hold 10 is divided into a plurality of sections.
 図2に示す如く、発電装置23は、3基のディーゼル発電機24を備える。ディーゼル発電機24は、補機としての6気筒の発電用ディーゼルエンジン25と、ディーゼルエンジン25の駆動によって発電する発電機26とを組み合わせて構成される。3基のディーゼル発電機24は、必要電力量に対応して稼働させるものであり、大量の電力消費量のとき(例えば出入航時など)には、全てのディーゼル発電機24を稼働させる一方、比較的電力消費量が少ないとき(例えば停泊時など)には、3基のディーゼル発電機24を選択的に稼働させ、船体2内の各電気系統に各ディーゼル発電機24の発電機26から発電電力を供給するように構成している。 As shown in FIG. 2, the power generator 23 includes three diesel generators 24. The diesel generator 24 is configured by combining a six-cylinder power generation diesel engine 25 as an auxiliary machine and a generator 26 that generates electric power by driving the diesel engine 25. The three diesel generators 24 are operated in accordance with the required power amount. When a large amount of power is consumed (for example, when entering and leaving the port), all the diesel generators 24 are operated, When the amount of power consumption is relatively small (for example, when anchored), the three diesel generators 24 are selectively operated, and the electric system in the hull 2 generates power from the generator 26 of each diesel generator 24. It is configured to supply power.
 また、図2に示す如く、各ディーゼル発電機24のディーゼルエンジン25の排気ガス排出管30は、ファンネル4から外部に連通している。発電用として3基のディーゼルエンジン25が設置され、各ディーゼルエンジン25用として三本の排気ガス排出管30が存在する。各ディーゼルエンジン25の排気ガス排出管30は、ファンネル4まで延びたメイン経路31と、メイン経路31の中途部から分岐したバイパス経路32と、メイン経路31とバイパス経路32との両方に連通する複合ケーシング33とを備えている。すなわち、3基の発電用ディーゼルエンジン25を搭載し、各ディーゼルエンジン25に対して、メイン経路31、バイパス経路32及び複合ケーシング33等からなる排気ガス浄化システムをそれぞれ対応させている。 Further, as shown in FIG. 2, the exhaust gas discharge pipe 30 of the diesel engine 25 of each diesel generator 24 communicates with the outside from the funnel 4. Three diesel engines 25 are installed for power generation, and three exhaust gas discharge pipes 30 exist for each diesel engine 25. The exhaust gas discharge pipe 30 of each diesel engine 25 is connected to the main path 31 extending to the funnel 4, the bypass path 32 branched from the middle part of the main path 31, and both the main path 31 and the bypass path 32. A casing 33 is provided. That is, three power generation diesel engines 25 are mounted, and an exhaust gas purification system including a main path 31, a bypass path 32, a composite casing 33, and the like is associated with each diesel engine 25.
 複合ケーシング33は、耐熱金属材料製で角筒状に構成していて、各ディーゼルエンジン25を配置した第2甲板14よりも上方(機関室11の上部側)に配置している。複合ケーシング33内部のメイン経路31に、ディーゼルエンジン25の排気ガス中にあるNOxの還元を促す選択触媒還元装置としてのNOx触媒(図示省略)を収容する。メイン経路31中の前記NOx触媒を、排気ガスが通過して淨化される。バイパス経路32は、前記NOx触媒に対して排気ガスを迂回させるための経路である。即ち、バイパス経路32を移動する排気ガスは、前記NOx触媒を排気ガスが通過しない。複合ケーシング33の排気出口側で、メイン経路31とバイパス経路32とを合流させる。 The composite casing 33 is made of a heat-resistant metal material and has a rectangular tube shape, and is disposed above the second deck 14 on which each diesel engine 25 is disposed (upper side of the engine room 11). A NOx catalyst (not shown) as a selective catalyst reduction device that promotes reduction of NOx in the exhaust gas of the diesel engine 25 is accommodated in the main path 31 inside the composite casing 33. Exhaust gas passes through the NOx catalyst in the main path 31 and is hatched. The bypass path 32 is a path for bypassing the exhaust gas with respect to the NOx catalyst. That is, the exhaust gas moving through the bypass path 32 does not pass through the NOx catalyst. The main path 31 and the bypass path 32 are merged on the exhaust outlet side of the composite casing 33.
 なお、複合ケーシング33の排気ガス入口側のうちメイン経路31とバイパス経路32との分岐部には、メイン経路31またはバイパス経路32に排気ガス移動方向を切換える経路切換部材として、メイン側切換バルブ及びバイパス側切換バルブを設けている。前記メイン側切換バルブを開いた(前記バイパス側切換バルブを閉じた)状態では、排気ガス排出管30中の排気ガスは、複合ケーシング33内のメイン経路31(NOx触媒)を通過して浄化処理されてから、船舶1外に放出される。前記バイパス側切換バルブを開いた(前記メイン側切換バルブを閉じた)状態では、排気ガス排出管30中の排気ガスは、前記NOx触媒を迂回して浄化処理されることなく、船舶1外に放出される。 Note that a main side switching valve and a switching member for switching the direction of movement of the exhaust gas to the main path 31 or the bypass path 32 are provided at a branch portion between the main path 31 and the bypass path 32 on the exhaust gas inlet side of the composite casing 33. A bypass side switching valve is provided. In the state where the main side switching valve is opened (the bypass side switching valve is closed), the exhaust gas in the exhaust gas discharge pipe 30 passes through the main path 31 (NOx catalyst) in the composite casing 33 and is purified. Then, it is discharged out of the ship 1. In a state where the bypass side switching valve is opened (the main side switching valve is closed), the exhaust gas in the exhaust gas exhaust pipe 30 is not purified by bypassing the NOx catalyst, and is outside the ship 1. Released.
 次いで、ディーゼルエンジン25の概略構成について、図3~図7を参照して以下に説明する。ディーゼルエンジン25は、図3に示す如く、シリンダブロック44に複数の気筒(シリンダ)34(本実施形態では6気筒)を直列に並べた構成を有している。各気筒34は、吸気マニホールド(吸気流路)49と吸気ポート35を介して連通している。各気筒34が、排気マニホールド(排気流路)51と排気ポート36を介して連通している。従って、吸気マニホールド49からの空気(新気)が、吸気ポート35を介して各気筒34に供給される一方、各気筒34からの排ガスが、排気ポート36を介して排気マニホールド51に吐出される。 Next, a schematic configuration of the diesel engine 25 will be described below with reference to FIGS. As shown in FIG. 3, the diesel engine 25 has a configuration in which a plurality of cylinders (cylinders) 34 (six cylinders in this embodiment) are arranged in series on a cylinder block 44. Each cylinder 34 communicates with an intake manifold (intake flow path) 49 via an intake port 35. Each cylinder 34 communicates with an exhaust manifold (exhaust flow path) 51 via an exhaust port 36. Accordingly, air (fresh air) from the intake manifold 49 is supplied to each cylinder 34 via the intake port 35, while exhaust gas from each cylinder 34 is discharged to the exhaust manifold 51 via the exhaust port 36. .
 エンジン装置21は、排気マニホールド51からの排気ガスにより空気を圧縮する過給機37と、過給機37で圧縮された圧縮空気を冷却して吸気マニホールド49に供給するインタークーラ38とを有している。排気マニホールド51の排気出口側に、過給機37のタービン37aの排気入口を接続しており、吸気マニホールド49の空気入口側(新気入口側)に、インタークーラ38の空気吐出口(新気出口)を接続している。インタークーラ38の空気吸入口(新気入口)に、過給機37のコンプレッサ37bの空気吐出口(新気出口)を接続している。排気マニホールド51からの排気ガスによりタービン37aを回転駆動させることで、コンプレッサ39aを駆動させて、外気より取り込んだ空気(新気)を圧縮して、インタークーラ38で冷却して吸気マニホールド49に供給する。 The engine device 21 includes a supercharger 37 that compresses air with the exhaust gas from the exhaust manifold 51, and an intercooler 38 that cools the compressed air compressed by the supercharger 37 and supplies the compressed air to the intake manifold 49. ing. The exhaust inlet of the turbine 37a of the supercharger 37 is connected to the exhaust outlet side of the exhaust manifold 51, and the air discharge port (new air) of the intercooler 38 is connected to the air inlet side (new air inlet side) of the intake manifold 49. Outlet) is connected. The air discharge port (fresh air outlet) of the compressor 37 b of the supercharger 37 is connected to the air intake port (fresh air inlet) of the intercooler 38. The turbine 37a is rotationally driven by the exhaust gas from the exhaust manifold 51 to drive the compressor 39a, compress the air (fresh air) taken from outside air, cool it by the intercooler 38, and supply it to the intake manifold 49 To do.
 ディーゼルエンジン25は、図4に示す如く、各気筒34内にピストン27を摺動可能に設けている。ディーゼルエンジン25は、気筒34内において、シリンダブロック44下側とピストン27頂部で囲まれる燃焼室Mを形成している。ピストン27が、気筒34内を上下方向に往復動することで、気筒34下側のエンジン出力軸(クランク軸)42(図13参照)を回転させる。シリンダブロック44上のシリンダヘッド46に、燃料噴射弁39を気筒34内に形成されている燃焼室Mに向けて挿入している。燃料噴射弁39は、気筒34の上端開口面の中心位置に先端を配置しており、ピストン27上面と気筒34の内壁面とで構成される燃焼室Mに燃料油を噴射する。 As shown in FIG. 4, the diesel engine 25 has a piston 27 slidably provided in each cylinder 34. The diesel engine 25 forms a combustion chamber M surrounded by the lower side of the cylinder block 44 and the top of the piston 27 in the cylinder 34. The piston 27 reciprocates up and down in the cylinder 34, thereby rotating the engine output shaft (crankshaft) 42 (see FIG. 13) on the lower side of the cylinder 34. A fuel injection valve 39 is inserted into the cylinder head 46 on the cylinder block 44 toward the combustion chamber M formed in the cylinder 34. The fuel injection valve 39 has a tip disposed at the center position of the upper end opening surface of the cylinder 34 and injects fuel oil into the combustion chamber M formed by the upper surface of the piston 27 and the inner wall surface of the cylinder 34.
 ディーゼルエンジン25は、図4及び図5に示す如く、燃焼室Mに空気を吸気させる吸気弁28と、燃焼室Mから燃焼ガスを排気させる排気弁29を備えている。シリンダヘッド46において、燃料噴射弁39の外周となる位置に吸気弁28及び排気弁29を挿入している。吸気弁28が吸気ポート35を開閉することで、吸気マニホールド49から気筒34内に空気を供給させる。排気弁29が排気ポート36を開閉することで、気筒34内で生じた燃焼ガス(排気ガス)を排気マニホールド50へ吐出させる。 4 and 5, the diesel engine 25 includes an intake valve 28 that sucks air into the combustion chamber M and an exhaust valve 29 that discharges combustion gas from the combustion chamber M. In the cylinder head 46, the intake valve 28 and the exhaust valve 29 are inserted at positions that are the outer periphery of the fuel injection valve 39. The intake valve 28 opens and closes the intake port 35 to supply air from the intake manifold 49 into the cylinder 34. When the exhaust valve 29 opens and closes the exhaust port 36, combustion gas (exhaust gas) generated in the cylinder 34 is discharged to the exhaust manifold 50.
 シリンダヘッド46の上側では、2つの吸気弁28の上端がブリッジ94で連結されるとともに、2つの排気弁29の上端がブリッジ95で連結される。ブリッジ94を上面中央に一端を当接させたロッカーアーム96は、カムシャフト(図示省略)における吸気用カムと連動するプッシュロッド98と他端が連結される。また、ブリッジ95を上面中央に一端を当接させたロッカーアーム97は、カムシャフト(図示省略)における排気用カムと連動するプッシュロッド99と他端が連結される。従って、カムシャフトの回転に応じて、プッシュロッド98,99それぞれが上下動することで、ロッカーアーム96,97が揺動し、ブリッジ94,95を介して、吸気弁28及び排気弁29それぞれを上下動させる。 On the upper side of the cylinder head 46, the upper ends of the two intake valves 28 are connected by a bridge 94, and the upper ends of the two exhaust valves 29 are connected by a bridge 95. The rocker arm 96 with one end abutting on the center of the upper surface of the bridge 94 is connected to the other end of a push rod 98 interlocking with an intake cam on a camshaft (not shown). Further, the rocker arm 97 having one end abutted on the center of the upper surface of the bridge 95 is connected to the other end of a push rod 99 that interlocks with an exhaust cam on a camshaft (not shown). Accordingly, as the push rods 98 and 99 move up and down in accordance with the rotation of the camshaft, the rocker arms 96 and 97 swing, and the intake valve 28 and the exhaust valve 29 are respectively connected via the bridges 94 and 95. Move up and down.
 ディーゼルエンジン25は、図4~図6に示す如く、気筒34毎に燃料噴射ポンプ40を有しており、燃料吐出管(高圧管)70を介して燃料噴射弁39に燃料噴射ポンプ40を接続している。燃料噴射ポンプ40は、下部にポンプ本体40aを有し、上記エンジン出力軸42と同期して回転するカム軸(図示省略)におけるポンプ用カムに当接させたプランジャ75を、ポンプ本体40a内で上下動させる。燃料噴射ポンプ40は、ポンプ本体40a上部に電磁スピル弁40bを連結しており、電磁スピル弁40bのスピル弁体76を開閉制御することで、ポンプ本体40a内で蓄圧されている燃料油を燃料噴射弁39に圧送する。電磁スピル弁40bは、燃料噴射ポンプ40の燃料噴射量及び噴射タイミングを調節するものである。 The diesel engine 25 has a fuel injection pump 40 for each cylinder 34 as shown in FIGS. 4 to 6, and the fuel injection pump 40 is connected to the fuel injection valve 39 via a fuel discharge pipe (high pressure pipe) 70. is doing. The fuel injection pump 40 has a pump main body 40a in the lower part, and a plunger 75 abutted on a pump cam on a cam shaft (not shown) that rotates in synchronization with the engine output shaft 42 is provided in the pump main body 40a. Move up and down. The fuel injection pump 40 has an electromagnetic spill valve 40b connected to the upper part of the pump body 40a, and controls the opening and closing of the spill valve body 76 of the electromagnetic spill valve 40b, thereby fueling the fuel oil accumulated in the pump body 40a. Pumped to the injection valve 39. The electromagnetic spill valve 40b adjusts the fuel injection amount and injection timing of the fuel injection pump 40.
 燃料噴射ポンプ40は、プランジャ75を上昇させたときに、ポンプ本体40a内の燃料圧室78に燃料油を閉じ込める。燃料噴射ポンプ40は、ポンプ本体40aと電磁スピル弁40bとの境界位置に燃料圧室78を設けているため、燃料圧室78に閉じ込めた燃料油を電磁スピル弁40bに圧送する。そして、燃料噴射ポンプ40は、電磁スピル弁40bにおけるスピル弁体76を電磁ソレノイド79により水平方向に移動して、ポンプ本体40aの燃料圧室78側の油路と燃料吐出管70側の油路とを連結することで、燃料圧室78内の燃料油を燃料噴射弁39に向かって圧送させる。 The fuel injection pump 40 traps fuel oil in the fuel pressure chamber 78 in the pump body 40a when the plunger 75 is raised. Since the fuel injection pump 40 is provided with the fuel pressure chamber 78 at the boundary position between the pump body 40a and the electromagnetic spill valve 40b, the fuel oil confined in the fuel pressure chamber 78 is pumped to the electromagnetic spill valve 40b. The fuel injection pump 40 moves the spill valve body 76 in the electromagnetic spill valve 40b in the horizontal direction by the electromagnetic solenoid 79, and the oil passage on the fuel pressure chamber 78 side and the oil passage on the fuel discharge pipe 70 side of the pump body 40a. And the fuel oil in the fuel pressure chamber 78 is pumped toward the fuel injection valve 39.
 シリンダブロック44の正面上側に段差部44aが設けてあり、このシリンダブロック44の段差部44a上面に、燃料噴射ポンプ40をシリンダヘッド46列に沿って一列に配列するように設置している。燃料噴射ポンプ40におけるポンプ本体40aの側面を、上下2本の燃料油管69a,69bと連結するとともに、電磁スピル弁40bの上端を燃料吐出管70を介してシリンダヘッド46内の燃料噴射弁39と連結している。一方の燃料油管69aが、燃料噴射ポンプ40へ燃料油を供給する給油管であり、他方の燃料油管69bが、燃料噴射ポンプ40から燃料油を戻す油戻り管である。 A stepped portion 44a is provided on the front upper side of the cylinder block 44, and the fuel injection pumps 40 are arranged on the upper surface of the stepped portion 44a of the cylinder block 44 so as to be arranged in a line along the cylinder head 46 row. The side surface of the pump body 40a in the fuel injection pump 40 is connected to the upper and lower two fuel oil pipes 69a and 69b, and the upper end of the electromagnetic spill valve 40b is connected to the fuel injection valve 39 in the cylinder head 46 via the fuel discharge pipe 70. It is connected. One fuel oil pipe 69 a is an oil supply pipe that supplies fuel oil to the fuel injection pump 40, and the other fuel oil pipe 69 b is an oil return pipe that returns the fuel oil from the fuel injection pump 40.
 燃料供給ポンプ(図示省略)により燃料油管69aを介して燃料噴射ポンプ40のポンプ本体40aに、燃料油が供給される。ポンプ本体40aは、上記ポンプ用カム(図示省略)によりプランジャ75が下降したときに、燃料油管69aから送給される燃料を燃料圧室78に供給する。その後、燃料圧室78内に供給された燃料は、上記ポンプ用カムの回転に従って上方向に摺動されるプランジャ75によって加圧されて、電磁スピル弁40bに形成される油路に送給される。 Fuel oil is supplied to the pump body 40a of the fuel injection pump 40 through a fuel oil pipe 69a by a fuel supply pump (not shown). The pump main body 40 a supplies the fuel supplied from the fuel oil pipe 69 a to the fuel pressure chamber 78 when the plunger 75 is lowered by the pump cam (not shown). Thereafter, the fuel supplied into the fuel pressure chamber 78 is pressurized by a plunger 75 that slides upward in accordance with the rotation of the pump cam, and is supplied to an oil passage formed in the electromagnetic spill valve 40b. The
 燃料噴射ポンプ40が燃料噴射弁39に向かって燃料油を吐出する場合、エンジン制御装置86からの制御信号に基づいて、電磁スピル弁40bのソレノイド79を励磁させる。電磁スピル弁40bのスピル弁体76が、ソレノイド79の吸着力によってソレノイド79に向かって摺動することで、電磁スピル弁40bの油路からポンプ本体40aの油路への戻り路を遮断し(電磁スピル弁40bの閉弁)、燃料圧室78から供給される燃料油の加圧を維持する。従って、燃料噴射ポンプ40は、電磁スピル弁40bの閉弁により、燃料圧室78で加圧されて電磁スピル弁40bに供給される燃料油を、燃料吐出管70を介して燃料噴射弁39に圧送する。 When the fuel injection pump 40 discharges fuel oil toward the fuel injection valve 39, the solenoid 79 of the electromagnetic spill valve 40b is excited based on a control signal from the engine control device 86. The spill valve body 76 of the electromagnetic spill valve 40b slides toward the solenoid 79 by the attraction force of the solenoid 79, thereby blocking the return path from the oil path of the electromagnetic spill valve 40b to the oil path of the pump body 40a ( The pressure of the fuel oil supplied from the fuel pressure chamber 78 is maintained. Accordingly, the fuel injection pump 40 supplies the fuel oil pressurized by the fuel pressure chamber 78 and supplied to the electromagnetic spill valve 40b to the fuel injection valve 39 via the fuel discharge pipe 70 by closing the electromagnetic spill valve 40b. Pump.
 燃料噴射ポンプ40による燃料油の吐出を停止する場合、エンジン制御装置86からの制御信号に基づいて、電磁スピル弁40bのソレノイド79を消磁させる。電磁スピル弁40bのスピル弁体76が、スピル弁ばね77の付勢力によって、ソレノイド89と離間する方向に摺動することで、電磁スピル弁40bの油路からポンプ本体40aの油路への戻り路を連通し(電磁スピル弁40bの開弁)、燃料圧室78から供給される燃料油を放圧する。従って、燃料噴射ポンプ40は、電磁スピル弁40bの開弁により、燃料圧室78で加圧されて電磁スピル弁40bに供給される燃料油を、ポンプ本体40a側に戻して燃料油管69bに吐出させることとなり、燃料噴射弁39への燃料油の吐出を停止する。 When stopping the discharge of fuel oil by the fuel injection pump 40, the solenoid 79 of the electromagnetic spill valve 40b is demagnetized based on a control signal from the engine control device 86. The spill valve body 76 of the electromagnetic spill valve 40b slides in a direction away from the solenoid 89 by the urging force of the spill valve spring 77, thereby returning the oil path of the electromagnetic spill valve 40b to the oil path of the pump body 40a. The passage is communicated (the electromagnetic spill valve 40b is opened), and the fuel oil supplied from the fuel pressure chamber 78 is released. Therefore, the fuel injection pump 40 returns the fuel oil pressurized by the fuel pressure chamber 78 and supplied to the electromagnetic spill valve 40b to the pump body 40a side and discharged to the fuel oil pipe 69b by opening the electromagnetic spill valve 40b. Therefore, the discharge of the fuel oil to the fuel injection valve 39 is stopped.
 ところで、上述したように、吸気弁28を開くことで、気筒34内に形成されている燃焼室Mに空気を吸気させた後、吸気弁28を閉じるとともにピストン27をスライドさせて、燃焼室M内の空気を圧縮させる。このとき、上述のようにして電磁スピル弁40bの開閉に基づいて燃料噴射ポンプ40が燃料油を燃料噴射弁39に向かって吐出することにより、燃料噴射弁39が、吐出動作を実行するから圧送された燃料油を、燃焼室M内に噴射して発火させる。その後、排気弁28を開くことで、燃焼室M内の燃焼ガス(排ガス)を、排気ポート36を通じて排気マニホールド50へ吐出させる。 By the way, as described above, by opening the intake valve 28, air is taken into the combustion chamber M formed in the cylinder 34, and then the intake valve 28 is closed and the piston 27 is slid to move the combustion chamber M. Compress the air inside. At this time, the fuel injection pump 40 discharges the fuel oil toward the fuel injection valve 39 based on the opening and closing of the electromagnetic spill valve 40b as described above, so that the fuel injection valve 39 performs the discharge operation. The injected fuel oil is injected into the combustion chamber M to ignite. Thereafter, by opening the exhaust valve 28, the combustion gas (exhaust gas) in the combustion chamber M is discharged to the exhaust manifold 50 through the exhaust port 36.
 電磁スピル弁40bを有する燃料噴射ポンプ40は、電磁スピル弁40bの閉弁タイミングにより燃料噴射タイミングが制御されるとともに、電磁スピル弁40bの閉弁時間(閉弁から開弁までの時間)により燃料噴射量が制御される。すなわち、エンジン制御装置86が、燃料噴射ポンプ40の電磁スピル弁40bの閉弁タイミング及び開弁タイミングを制御することで、燃料噴射ポンプ40を通じて燃料噴射弁39から噴射させる燃料油の噴射タイミングと噴射量を制御する。 In the fuel injection pump 40 having the electromagnetic spill valve 40b, the fuel injection timing is controlled by the closing timing of the electromagnetic spill valve 40b, and the fuel is supplied by the closing time (time from closing to opening) of the electromagnetic spill valve 40b. The injection amount is controlled. That is, the engine control device 86 controls the valve closing timing and the valve opening timing of the electromagnetic spill valve 40b of the fuel injection pump 40, whereby the fuel oil injection timing and injection injected from the fuel injection valve 39 through the fuel injection pump 40 Control the amount.
 ディーゼルエンジン25は、図4に示す如く、ディーゼルエンジン25の各部を制御するエンジン制御装置86を具備しており、エンジン制御装置86が、燃料噴射ポンプ40の燃料噴射量及び燃料噴射タイミングを制御する。エンジン制御装置86は、発電機26の出力を測定するワットトランスデューサやトルクセンサなどの負荷測定器89による測定信号を受け、ディーゼルエンジン25にかかる負荷を算出する。エンジン制御装置86は、ディーゼルエンジン25のクランク軸42の回転速度を測定するパルスセンサなどのエンジン回転センサ90による測定信号を受け、ディーゼルエンジン25のエンジン回転速度を検知する。エンジン制御装置86は、速度指示部93からの増減速指令信号を受けて、目標エンジン回転速度Nsを設定する。 As shown in FIG. 4, the diesel engine 25 includes an engine control device 86 that controls each part of the diesel engine 25, and the engine control device 86 controls the fuel injection amount and fuel injection timing of the fuel injection pump 40. . The engine control device 86 receives a measurement signal from a load measuring device 89 such as a watt transducer or a torque sensor that measures the output of the generator 26 and calculates a load applied to the diesel engine 25. The engine control device 86 receives a measurement signal from an engine rotation sensor 90 such as a pulse sensor that measures the rotation speed of the crankshaft 42 of the diesel engine 25 and detects the engine rotation speed of the diesel engine 25. The engine control device 86 receives the acceleration / deceleration command signal from the speed instruction unit 93 and sets the target engine rotation speed Ns.
 エンジン制御装置86は、図7に示す如く、増減速指令信号を受けて目標エンジン回転速度Nsを算出するエンジン回転速度設定部101と、エンジン回転速度設定部101で設定された目標エンジン回転速度Nsとエンジン回転センサ90からの測定エンジン回転速度(実エンジン回転速度)Neとの差分ΔNを算出する減算器102と、減算器102で求めた回転速度の差分値ΔNに基づきPID(Proportional Integral Derivative)制御演算を行うPID制御部103と、PID制御部103から出力される演算値に基づいて燃料噴射量を算出する燃料噴射量算出部104と、燃料噴射タイミングを進角させる進角制御部105と、負荷測定器89及びエンジン回転センサ90からの測定信号を受けて負荷投入を検出する負荷投入検出部106と、PID制御部103におけるP(Proportional)ゲイン及びI(Integral)ゲインを設定するゲイン設定部107と、燃料噴射量算出部104で設定された燃料噴射量と進角制御部105で設定された燃料噴射タイミングに基づいて電磁スピル弁40bの開閉制御信号を生成する開閉制御部108とを備える。 As shown in FIG. 7, the engine control device 86 receives an acceleration / deceleration command signal and calculates the target engine speed Ns, and the target engine speed Ns set by the engine speed setting part 101. And a subtractor 102 that calculates a difference ΔN between the measured engine rotation speed (actual engine rotation speed) Ne from the engine rotation sensor 90 and a PID (Proportional Integral Derivative) based on the difference ΔN of the rotation speed obtained by the subtractor 102. A PID control unit 103 that performs control calculation, a fuel injection amount calculation unit 104 that calculates a fuel injection amount based on a calculation value output from the PID control unit 103, and an advance angle control unit 105 that advances the fuel injection timing , A load application detection unit 10 that receives a measurement signal from the load measuring device 89 and the engine rotation sensor 90 and detects the load application. A gain setting unit 107 for setting a P (Proportional) gain and an I (Integral) gain in the PID control unit 103, and a fuel injection amount set by the fuel injection amount calculation unit 104 and an advance angle control unit 105. And an open / close control unit that generates an open / close control signal for the electromagnetic spill valve 40b based on the fuel injection timing.
 エンジン制御装置86は、速度指示部93から与えられる増減速指令信号と、エンジン回転センサ90からの測定信号とに基づいて、燃料噴射弁39からの燃料噴射量をPID制御している。すなわち、エンジン回転速度設定部101が、増減速指令信号に基づき、目標エンジン回転速度Nsを設定し、減算器102が、エンジン回転センサ90からの測定信号に基づく実エンジン回転速度Neと目標エンジン回転速度Nsとの差分値ΔNを算出する。PID制御部103は、減算器102で得られたエンジン回転速度の差分値ΔNについて、ゲイン設定部107で設定されたPゲイン(比例成分値に対する乗算係数)及びIゲイン(積分成分値に対する乗算係数)に基づく演算を行う。燃料噴射量算出部104は、PID制御部103による演算結果に基づいて、燃料噴射量を算出して開閉制御部108に送出する。 The engine control device 86 performs PID control of the fuel injection amount from the fuel injection valve 39 based on the acceleration / deceleration command signal given from the speed instruction unit 93 and the measurement signal from the engine rotation sensor 90. That is, the engine speed setting unit 101 sets the target engine speed Ns based on the acceleration / deceleration command signal, and the subtractor 102 determines the actual engine speed Ne and the target engine speed based on the measurement signal from the engine speed sensor 90. A difference value ΔN from the speed Ns is calculated. The PID control unit 103 uses the P gain (multiplication coefficient for the proportional component value) and I gain (multiplication coefficient for the integral component value) set by the gain setting unit 107 for the difference value ΔN of the engine rotation speed obtained by the subtractor 102. ). The fuel injection amount calculation unit 104 calculates the fuel injection amount based on the calculation result by the PID control unit 103 and sends it to the opening / closing control unit 108.
 進角制御部105は、燃料噴射ポンプ40による燃料噴射弁39への燃料油の圧送タイミング(燃料噴射タイミング)を設定する。進角制御部105は、例えば、減算器102の回転速度差分値ΔNに基づいて、負荷投入状態にあることを確認すると、燃料噴射タイミングを進角させ、開閉制御部108に通知する。開閉制御部108は、燃料噴射量算出部104で算出した燃料噴射量と、進角制御部105による燃料噴射タイミングとに基づき、スピル弁40bの閉弁タイミング及び開弁タイミングを算出する。そして、開閉制御部108は、算出した閉弁タイミングにおいて、スピル弁40bを閉弁させる制御信号を出力して、燃料噴射ポンプ40による燃料油の圧送を開始させ、算出した開弁タイミングにおいて、スピル弁40bを開弁させる制御信号を出力して、燃料噴射ポンプ40による燃料油の圧送を停止させる。 The advance angle control unit 105 sets the fuel oil pumping timing (fuel injection timing) to the fuel injection valve 39 by the fuel injection pump 40. For example, when the advance angle control unit 105 confirms that the load is applied based on the rotation speed difference value ΔN of the subtractor 102, the advance angle control unit 105 advances the fuel injection timing and notifies the open / close control unit 108. The opening / closing control unit 108 calculates the valve closing timing and the valve opening timing of the spill valve 40b based on the fuel injection amount calculated by the fuel injection amount calculating unit 104 and the fuel injection timing by the advance angle control unit 105. Then, the opening / closing control unit 108 outputs a control signal for closing the spill valve 40b at the calculated valve closing timing, starts the fuel oil pumping by the fuel injection pump 40, and at the calculated valve opening timing, the spill valve 40b. A control signal for opening the valve 40b is output, and the fuel oil pumping by the fuel injection pump 40 is stopped.
 負荷投入検出部106は、負荷測定器89又はエンジン回転センサ90からの測定信号を受けて負荷投入の有無を検出する。負荷投入検出部106は、負荷投入を検出すると、検出結果を進角制御部105及びゲイン設定部107に通知する。進角制御部105は、負荷投入検出部106から負荷投入の通知を受けると、燃料噴射タイミングを所定期間進角させる。また、ゲイン設定部107は、負荷投入検出部106から負荷投入の通知を受けると、Pゲイン及びIゲイン(フィードバックゲイン)を所定期間大きくする。 The load input detection unit 106 receives the measurement signal from the load measuring device 89 or the engine rotation sensor 90 and detects the presence or absence of the load input. When detecting the load application, the load application detection unit 106 notifies the advance angle control unit 105 and the gain setting unit 107 of the detection result. When the advance angle control unit 105 receives a load input notification from the load input detection unit 106, the advance angle control unit 105 advances the fuel injection timing for a predetermined period. Further, when the gain setting unit 107 receives a load input notification from the load input detecting unit 106, the gain setting unit 107 increases the P gain and the I gain (feedback gain) for a predetermined period.
 負荷投入検出部106における負荷投入の検出動作について、図8を参照して、以下に説明する。負荷投入検出部106は、発電機26の出力を測定した負荷測定器89の測定信号(負荷信号)を受けるととともに(STEP1)、クランク軸42の回転速度を測定したエンジン回転センサ90の測定信号(エンジン回転信号)を受ける(STEP2)。そして、負荷投入検出部106は、発電機26の出力を測定した負荷測定器89の測定信号(負荷信号)による負荷投入検出機能を選択しているか否かを確認する(STEP3)。 The load input detection operation in the load input detection unit 106 will be described below with reference to FIG. The load input detection unit 106 receives a measurement signal (load signal) of the load measuring device 89 that measures the output of the generator 26 (STEP 1), and also measures a measurement signal of the engine rotation sensor 90 that measures the rotation speed of the crankshaft 42. (Engine rotation signal) is received (STEP 2). Then, the load application detection unit 106 confirms whether or not the load application detection function based on the measurement signal (load signal) of the load measuring device 89 that measured the output of the generator 26 is selected (STEP 3).
 負荷信号による負荷投入検出機能を選択している場合(STEP3でYes)、負荷投入検出部106は、負荷測定器89の測定信号(負荷信号)における異常の有無を確認する(STEP4)。例えば、負荷投入検出部106は、負荷測定器89の故障や断線などが原因となり、負荷測定器89による測定信号による信号値や変動率が検出範囲外となった場合に、負荷測定器89による測定信号に異常を検出する。 When the load input detection function based on the load signal is selected (YES in STEP 3), the load input detection unit 106 checks whether there is an abnormality in the measurement signal (load signal) of the load measuring device 89 (STEP 4). For example, the load input detection unit 106 uses the load measuring device 89 when the signal value or variation rate by the measurement signal from the load measuring device 89 is out of the detection range due to a failure or disconnection of the load measuring device 89. An abnormality is detected in the measurement signal.
 負荷測定器89による測定信号に異常がない場合(STEP4でNo)、負荷投入検出部106は、STEP1で受信した負荷信号と既に受信して記憶している負荷信号とに基づいて、ディーゼルエンジン25の負荷変化量(発電機26の出力変動量)ΔAcを算出する(STEP5)。すなわち、負荷投入検出部106は、負荷測定器89による測定信号の履歴に基づいて、ディーゼルエンジン25の負荷変化量ΔAcを算出する。 When there is no abnormality in the measurement signal from the load measuring device 89 (No in STEP 4), the load application detecting unit 106 is based on the load signal received in STEP 1 and the load signal already received and stored. Load change amount (output fluctuation amount of the generator 26) ΔAc is calculated (STEP 5). That is, the load input detection unit 106 calculates the load change amount ΔAc of the diesel engine 25 based on the history of measurement signals from the load measuring device 89.
 負荷投入検出部106は、STEP5で算出した負荷変化量ΔAcに基づいて、負荷投入の有無を検出する(STEP6)。すなわち、負荷投入検出部106は、ディーゼルエンジン25の負荷変化量ΔAcを第1閾値と比較して、負荷変化量ΔAcが第1閾値よりも大きくなった場合に(STEP6でYes)、負荷投入があったものと判定し、負荷投入を検出したことを進角制御部105及びゲイン設定部107に通知する(STEP7)。 The load application detection unit 106 detects the presence or absence of the load application based on the load change amount ΔAc calculated in STEP 5 (STEP 6). That is, the load input detection unit 106 compares the load change amount ΔAc of the diesel engine 25 with the first threshold value, and when the load change amount ΔAc becomes larger than the first threshold value (Yes in STEP 6), the load input amount is detected. It is determined that the load has been detected, and the advance angle control unit 105 and the gain setting unit 107 are notified that the load has been detected (STEP 7).
 負荷信号による負荷投入検出機能を選択していない場合(STEP3でNo)、又は、負荷測定器89による測定信号(負荷信号)に異常を確認した場合(STEP4でYes)、負荷投入検出部106は、エンジン回転速度偏差による負荷投入検出機能を選択しているか否かを確認する(STEP8)。 When the load input detection function by the load signal is not selected (No in STEP 3), or when an abnormality is confirmed in the measurement signal (load signal) by the load measuring device 89 (Yes in STEP 4), the load input detection unit 106 Then, it is confirmed whether or not the load application detection function based on the engine speed deviation is selected (STEP 8).
 エンジン回転速度偏差による負荷投入検出機能を選択している場合、(STEP8でYes)、エンジン回転速度設定部101から受けた目標エンジン回転速度Nsとエンジン回転センサ90からのエンジン回転信号に基づく実エンジン回転速度Neとのエンジン回転速度偏差ΔNseを算出する(STEP9)。負荷投入検出部106は、算出したエンジン回転速度偏差ΔNseに基づいて、負荷投入の有無を検出する(STEP10)。すなわち、負荷投入検出部106は、エンジン回転速度偏差ΔNseを第2閾値と比較して、エンジン回転速度偏ΔNse差が第2閾値よりも大きくなった場合に(STEP10でYes)、負荷投入を検出したことを進角制御部105及びゲイン設定部107に通知する(STEP7)。 When the load application detection function based on the engine rotational speed deviation is selected (YES in STEP 8), the actual engine based on the target engine rotational speed Ns received from the engine rotational speed setting unit 101 and the engine rotational signal from the engine rotational sensor 90 An engine rotational speed deviation ΔNse with the rotational speed Ne is calculated (STEP 9). The load application detection unit 106 detects the presence or absence of the application of the load based on the calculated engine speed deviation ΔNse (STEP 10). That is, the load application detection unit 106 compares the engine speed deviation ΔNse with the second threshold value, and detects the load application when the engine speed deviation ΔNse difference becomes larger than the second threshold value (Yes in STEP 10). This is notified to the advance angle control unit 105 and the gain setting unit 107 (STEP 7).
 負荷投入検出部106は、エンジン回転速度偏差による負荷投入検出機能を選択していない場合(STEP8でNo)、STEP7で受信したエンジン回転信号と既に受信して記憶しているエンジン回転信号とに基づいて、実エンジン回転速度の変化量ΔNeを算出する(STEP11)。負荷投入検出部106は、算出した実エンジン回転速度の変化量ΔNeに基づいて、負荷投入の有無を検出する(STEP12)。すなわち、負荷投入検出部106は、実エンジン回転速度の変化量ΔNeを第3閾値と比較して、実エンジン回転速度の変化量ΔNeが第3閾値よりも大きくなった場合に(STEP12でYes)、負荷投入を検出したことを進角制御部105及びゲイン設定部107に通知する(STEP7)。 When the load application detection function based on the engine speed deviation is not selected (No in STEP 8), the load application detection unit 106 is based on the engine rotation signal received in STEP 7 and the engine rotation signal already received and stored. Thus, the change amount ΔNe of the actual engine speed is calculated (STEP 11). The load application detection unit 106 detects the presence or absence of load application based on the calculated change amount ΔNe of the actual engine speed (STEP 12). That is, the load application detection unit 106 compares the actual engine speed change amount ΔNe with the third threshold value, and when the actual engine speed change amount ΔNe is larger than the third threshold value (Yes in STEP 12). The advance angle control unit 105 and the gain setting unit 107 are notified that the load has been detected (STEP 7).
 進角制御部105は、負荷投入部106から負荷投入検出の通知を受けると、図9に示す如く、所定期間T1の間、進角制御を実行する。進角制御部105は、負荷投入部106からの負荷投入検出の通知を受けて、進角制御を開始すると、燃料噴射タイミングの進角量を目標進角量Q1まで徐々に上昇させる。すなわち、進角制御部105は、進角制御の開始直後から進角量を増加させ、ΔT1経過後に目標進角量Q1とする。そして、進角制御の開始から所定時間T1が経過すると、進角制御部105は、進角制御を解除し、燃料噴射タイミングの進角量を徐々に下降させて、進角制御開始前の燃料噴射タイミングに戻す。すなわち、進角制御部105は、進角制御の解除直後から進角量を減少させ、ΔT2経過後に進角量0とする。 When the advance angle control unit 105 receives a load input detection notification from the load input unit 106, the advance angle control unit 105 executes the advance angle control for a predetermined period T1, as shown in FIG. The advance angle control unit 105 receives the notification of load application from the load input unit 106 and starts the advance angle control, and gradually increases the advance amount of the fuel injection timing to the target advance amount Q1. That is, the advance angle control unit 105 increases the advance angle amount immediately after the start of the advance angle control, and sets the advance angle amount Q1 after ΔT1 has elapsed. When a predetermined time T1 has elapsed from the start of the advance angle control, the advance angle control unit 105 cancels the advance angle control, gradually decreases the advance amount of the fuel injection timing, and the fuel before the advance angle control starts. Return to injection timing. That is, the advance angle control unit 105 decreases the advance angle amount immediately after canceling the advance angle control, and sets the advance angle amount to 0 after lapse of ΔT2.
 ゲイン設定部107は、負荷投入部106から負荷投入検出を通知を受けると、図10に示す如く、所定期間T2の間、PID制御部103に与えるフィードバックゲイン(Pゲイン及びIゲイン)を増加させる。ゲイン設定部107は、負荷投入部106からの負荷投入検出の通知を受けると、Pゲインを定常値Pcから最大値Pmaxとすると同時に、Iゲインを定常値Icから最大値Imaxとして、PID制御部103に与える。従って、PID制御部103から演算結果が大きくなり、燃料噴射量算出部104により算出される燃料噴射量を増加させる。また、ゲイン設定部107は、負荷投入部106からの負荷投入検出の通知を受けてから所定期間T2の経過を確認すると、Pゲインを最大値Pmaxから定常値Pcに徐々に戻すと同時に、Iゲインを最大値Imaxから定常値Icに徐々に戻す。 When the gain setting unit 107 receives a notification of load application from the load application unit 106, the gain setting unit 107 increases the feedback gain (P gain and I gain) to be given to the PID control unit 103 for a predetermined period T2, as shown in FIG. . Upon receiving the notification of load application from the load application unit 106, the gain setting unit 107 changes the P gain from the steady value Pc to the maximum value Pmax and at the same time changes the I gain from the steady value Ic to the maximum value Imax. 103. Therefore, the calculation result is increased from the PID control unit 103 and the fuel injection amount calculated by the fuel injection amount calculation unit 104 is increased. In addition, when the gain setting unit 107 confirms the elapse of the predetermined period T2 after receiving the notification of load application from the load application unit 106, the gain setting unit 107 gradually returns the P gain from the maximum value Pmax to the steady value Pc, and at the same time, The gain is gradually returned from the maximum value Imax to the steady value Ic.
 本実施形態のディーゼルエンジン(エンジン装置)25において、エンジン制御装置86は、エンジンの負荷変動を検出したときに、燃料噴射装置40による燃料噴射量又は燃料噴射タイミングを変動させる負荷変動制御を実行し、該負荷変動制御を実行してから所定期間経過後に、燃料噴射装置40に対する制御動作を通常制御に復帰させる。負荷投入により、ディーゼルエンジン25への負荷が急激に変化した場合であっても、エンジン回転速度の低下を抑制でき、投入された負荷に対応したエンジン出力を維持できる。 In the diesel engine (engine device) 25 of the present embodiment, the engine control device 86 executes load variation control for varying the fuel injection amount or the fuel injection timing by the fuel injection device 40 when detecting the engine load variation. The control operation for the fuel injection device 40 is returned to the normal control after a lapse of a predetermined period from the execution of the load variation control. Even when the load on the diesel engine 25 changes suddenly due to the load application, a decrease in the engine speed can be suppressed, and the engine output corresponding to the input load can be maintained.
 エンジン制御装置86は、発電機26から受ける負荷信号に基づいて、負荷変動を検出する。エンジン制御装置86は、負荷変動を検出したときに、所定期間T2の間、燃料噴射装置40による燃料噴射量のフィードバックゲインを大きくして、負荷変動制御を実行する。発電機26の出力を測定する負荷信号に基づいて負荷変動を検出するため、早期に負荷変動を検出でき、ディーゼルエンジン25を負荷変動に早期に対応させて、発電設備の安定化を図れる。 The engine control device 86 detects a load fluctuation based on a load signal received from the generator 26. When detecting the load fluctuation, the engine control device 86 increases the feedback gain of the fuel injection amount by the fuel injection device 40 and executes the load fluctuation control for a predetermined period T2. Since the load fluctuation is detected based on the load signal for measuring the output of the generator 26, the load fluctuation can be detected at an early stage, and the diesel engine 25 can be responded to the load fluctuation at an early stage to stabilize the power generation equipment.
 エンジン制御装置86は、発電機26から受ける負荷信号に基づいて、負荷変動を検出する。発電機26の出力を測定する負荷信号に基づいて負荷変動を検出するため、早期に負荷変動を検出でき、ディーゼルエンジン25を負荷変動に早期に対応させて、発電設備の安定化を図れる。エンジン制御装置86は、ディーゼルエンジン25の目標回転速度と実回転速度との偏差を算出し、算出した回転速度偏差に基づいて、負荷変動を検出する。また、エンジン制御装置86は、ディーゼルエンジン25の実回転速度の変化量を算出し、算出した回転速度変化量に基づいて、負荷変動を検出する。ディーゼルエンジン25の回転速度に基づいて、負荷変動を検出することにより、負荷信号に異常があった場合などにおいても、負荷変動を確認し、ディーゼルエンジン25を負荷変動に適応させて動作させることができる。 The engine control device 86 detects a load fluctuation based on a load signal received from the generator 26. Since the load fluctuation is detected based on the load signal for measuring the output of the generator 26, the load fluctuation can be detected at an early stage, and the diesel engine 25 can be responded to the load fluctuation at an early stage to stabilize the power generation equipment. The engine control device 86 calculates a deviation between the target rotation speed and the actual rotation speed of the diesel engine 25, and detects a load fluctuation based on the calculated rotation speed deviation. Further, the engine control device 86 calculates the amount of change in the actual rotational speed of the diesel engine 25, and detects a load fluctuation based on the calculated amount of change in the rotational speed. By detecting the load fluctuation based on the rotational speed of the diesel engine 25, even when there is an abnormality in the load signal, the load fluctuation can be confirmed and the diesel engine 25 can be operated by adapting to the load fluctuation. it can.
 エンジン制御装置86は、負荷変動を検出したときに、所定期間T2の間、燃料噴射装置40による燃料噴射量のフィードバックゲインを大きくして、負荷変動制御を実行する。エンジン制御装置86は、負荷変動を検出したときに、所定期間T1の間、燃料噴射装置40による燃料噴射タイミングを進角させる。また、燃料噴射装置40を、電磁弁40bを備えた電子制御式燃料噴射ポンプとすることにより、電磁弁40bの開閉制御のみで燃料噴射量及び燃料噴射タイミングを制御できる。 The engine control device 86 executes load variation control by increasing the feedback gain of the fuel injection amount by the fuel injection device 40 during a predetermined period T2 when detecting the load variation. The engine control device 86 advances the fuel injection timing by the fuel injection device 40 for a predetermined period T1 when the load fluctuation is detected. Further, by using the fuel injection device 40 as an electronically controlled fuel injection pump provided with an electromagnetic valve 40b, the fuel injection amount and the fuel injection timing can be controlled only by opening / closing control of the electromagnetic valve 40b.
 従って、プランジャリードや燃料コントロールラックなどによる燃料噴射量制御機構が不要となるだけでなく、負荷変動に応じた燃料噴射量及び燃料噴射タイミングに早期に設定可能となる。燃料噴射装置40による燃料噴射量及び燃料噴射タイミングを最適に調整できるため、燃料消費量を低減できるだけでなく、NOx発生量やPM発生量も抑制できる。 Therefore, not only the fuel injection amount control mechanism such as the plunger lead or the fuel control rack becomes unnecessary, but also the fuel injection amount and the fuel injection timing corresponding to the load fluctuation can be set at an early stage. Since the fuel injection amount and the fuel injection timing by the fuel injection device 40 can be adjusted optimally, not only the fuel consumption can be reduced, but also the NOx generation amount and the PM generation amount can be suppressed.
 次に、図11~図17を参照して、本発明のディーゼルエンジンとして、過給機を2段に配置した発電用ディーゼルエンジンを例に挙げて、排気ガス排出構造を中心に、以下に説明する。図13~図14に示す如く、ベースフレーム41上に、発電用ディーゼルエンジン25と、発電機26を載置する。ディーゼルエンジン25の一側方に出力軸(クランク軸)42を突設させて、出力軸42にフライホィール43を軸支すると共に、発電機26に出力軸42を連結し、ディーゼルエンジン25によって発電機26を駆動するように構成している。 Next, with reference to FIGS. 11 to 17, the diesel engine according to the present invention will be described below, focusing on the exhaust gas discharge structure, taking as an example a diesel engine for power generation in which superchargers are arranged in two stages. To do. As shown in FIGS. 13 to 14, the generator diesel engine 25 and the generator 26 are mounted on the base frame 41. An output shaft (crankshaft) 42 projects from one side of the diesel engine 25, and a flywheel 43 is pivotally supported on the output shaft 42, and the output shaft 42 is connected to the generator 26. The machine 26 is configured to be driven.
 また、図11~図17に示す如く、ディーゼルエンジン25は、ベースフレーム41に上載固定する6気筒用のシリンダブロック44と、シリンダブロック44の下面側に設置するエンジンオイルタンクとしてのオイルパン45と、シリンダブロック44の上面側に配置するシリンダヘッド46と、シリンダヘッド46の上面側に配置する6気筒分のヘッドカバー47を備える。四角箱形のシリンダブロック44の長手方向一側面に燃料ポンプ配置室48を設けると共に、シリンダブロック44の長手方向他側面に吸気マニホールド49を形成し、吸気マニホールド49上側方のシリンダヘッド46長手方向他側面に排気マニホールド51を配置している。 Further, as shown in FIGS. 11 to 17, the diesel engine 25 includes a cylinder block 44 for 6 cylinders mounted on the base frame 41, and an oil pan 45 as an engine oil tank installed on the lower surface side of the cylinder block 44. A cylinder head 46 disposed on the upper surface side of the cylinder block 44 and a head cover 47 for six cylinders disposed on the upper surface side of the cylinder head 46 are provided. A fuel pump arrangement chamber 48 is provided on one side surface in the longitudinal direction of the rectangular box-shaped cylinder block 44, and an intake manifold 49 is formed on the other side surface in the longitudinal direction of the cylinder block 44. An exhaust manifold 51 is disposed on the side surface.
 なお、燃料ポンプ配置室48が配置されたシリンダブロック44の長手方向(6気筒分のシリンダ設置幅)の一側面をディーゼルエンジン25の正面と称し、吸気マニホールド49と排気マニホールド51が配置されたシリンダヘッド46長手方向の他側面をディーゼルエンジン25の背面と称し、発電機26が配置されるシリンダブロック44の短手方向(1気筒分のシリンダ設置幅)の一側面をディーゼルエンジン25の左側面と称し、シリンダブロック44の短手方向の他側面をディーゼルエンジン25の右側面と称する。また、シリンダヘッド46に吸気弁及び排気弁(図示省略)などを取付け、シリンダヘッドカバー47の内部に前記吸気弁及び排気弁用の開閉機構などを設けると共に、上述した燃料配管69a,69b(図6参照)及び燃料噴射ポンプ40(図6参照)及びカム軸(図示省略)などが燃料ポンプ配置室48部のシリンダブロック44に設置されている。 Note that one side surface of the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged in the longitudinal direction (cylinder installation width for six cylinders) is referred to as the front surface of the diesel engine 25 and the cylinder in which the intake manifold 49 and the exhaust manifold 51 are arranged. The other side surface of the head 46 in the longitudinal direction is referred to as the back surface of the diesel engine 25, and one side surface of the cylinder block 44 in which the generator 26 is disposed (one cylinder installation width) is defined as the left side surface of the diesel engine 25. The other side surface in the short direction of the cylinder block 44 is referred to as the right side surface of the diesel engine 25. In addition, an intake valve and an exhaust valve (not shown) are attached to the cylinder head 46, an opening / closing mechanism for the intake valve and the exhaust valve is provided inside the cylinder head cover 47, and the fuel pipes 69a and 69b described above (FIG. 6). And a fuel injection pump 40 (see FIG. 6), a cam shaft (not shown), and the like are installed in the cylinder block 44 of the fuel pump arrangement chamber 48.
 図11~図17に示す如く、ディーゼルエンジン25正面側の燃料ポンプ配置室48に燃料ポンプなどの燃料系付設部品を設ける一方、ディーゼルエンジン25背面側のシリンダブロック44及びシリンダヘッド46の各側面に吸気マニホールド49及び排気マニホールド51などの吸排気系付設部品を設けるものであり、ディーゼルエンジン25の正面側と背面側に、燃料系付設部品と吸排気系付設部品を振分けて配設させている。また、排気マニホールド51は、ディーゼルエンジン25の第1~第6気筒に連通させる気筒連結管52を有し、吸気マニホールド49の上方に排気マニホールド51が平行に配置される。加えて、ヘッドカバー47と排気マニホールド51の間に、排気マニホールド51と平行に、ディーゼルエンジン25冷却用のエンジン冷却水パイプ53を延設させる。即ち、シリンダヘッド46と高圧過給機56間の排気マニホールド51と、エンジン冷却水パイプ53を、ヘッドカバー47列の一側方に平行に延設させている。 As shown in FIGS. 11 to 17, a fuel system-equipped component such as a fuel pump is provided in the fuel pump arrangement chamber 48 on the front side of the diesel engine 25, while each side of the cylinder block 44 and the cylinder head 46 on the rear side of the diesel engine 25. Intake / exhaust system attachment parts such as the intake manifold 49 and the exhaust manifold 51 are provided, and the fuel system attachment parts and the intake / exhaust system attachment parts are separately arranged on the front side and the back side of the diesel engine 25. The exhaust manifold 51 has a cylinder connection pipe 52 that communicates with the first to sixth cylinders of the diesel engine 25, and the exhaust manifold 51 is disposed in parallel above the intake manifold 49. In addition, an engine coolant pipe 53 for cooling the diesel engine 25 is extended between the head cover 47 and the exhaust manifold 51 in parallel with the exhaust manifold 51. That is, the exhaust manifold 51 between the cylinder head 46 and the high-pressure supercharger 56 and the engine cooling water pipe 53 are extended in parallel to one side of the head cover 47 row.
 さらに、図11~図17に示す如く、吸気マニホールド49と排気マニホールド51に接続させる二段過給機55は、高圧過給機56及び高圧側インタークーラ57と低圧過給機58及び低圧側インタークーラ59を備える。高圧側インタークーラ57と、低圧側インタークーラ59は、四角箱状のインタークーラ本体54の内部を仕切って、互いに隣接させて配置している。 Further, as shown in FIGS. 11 to 17, the two-stage supercharger 55 connected to the intake manifold 49 and the exhaust manifold 51 includes a high pressure supercharger 56, a high pressure side intercooler 57, a low pressure supercharger 58, and a low pressure side intercooler. A cooler 59 is provided. The high-pressure side intercooler 57 and the low-pressure side intercooler 59 are arranged adjacent to each other by partitioning the inside of the square box-shaped intercooler main body 54.
 また、高圧過給機56は、高圧コンプレッサ61と高圧タービン60を有すると共に、低圧過給機58は、低圧コンプレッサ63と低圧タービン62を有する。排気マニホールド51に高圧タービン60の排気ガス入口64を連結させ、高圧タービン60の排気ガス出口65に高圧排気ガス管66を介して低圧タービン62の排気ガス入口67を連結させ、低圧タービン62の排気ガス出口68に排気ガス排出管30の排気ガス取入れ側端部を連結させている。 The high pressure supercharger 56 includes a high pressure compressor 61 and a high pressure turbine 60, and the low pressure supercharger 58 includes a low pressure compressor 63 and a low pressure turbine 62. The exhaust gas inlet 64 of the high-pressure turbine 60 is connected to the exhaust manifold 51, and the exhaust gas inlet 67 of the low-pressure turbine 62 is connected to the exhaust gas outlet 65 of the high-pressure turbine 60 via the high-pressure exhaust gas pipe 66. An exhaust gas intake side end of the exhaust gas discharge pipe 30 is connected to the gas outlet 68.
 上記の構成により、排気マニホールド51から排出される発電用ディーゼルエンジン25の排気ガスは、高圧タービン60と、高圧排気ガス管66と、低圧タービン62に順次移動した後、低圧タービン62の排気ガス出口68から排気ガス排出管30に移動し、排気ガス排出管30の途中に設けた複合ケーシング33にて淨化され、船外に排出される。また、高圧タービン60にて高圧コンプレッサ61が駆動され、低圧タービン62にて低圧コンプレッサ63が駆動される。 With the above configuration, the exhaust gas of the power generating diesel engine 25 discharged from the exhaust manifold 51 sequentially moves to the high pressure turbine 60, the high pressure exhaust gas pipe 66, and the low pressure turbine 62, and then the exhaust gas outlet of the low pressure turbine 62. It moves from 68 to the exhaust gas discharge pipe 30, is hatched in the composite casing 33 provided in the middle of the exhaust gas discharge pipe 30, and is discharged outside the ship. Further, the high-pressure turbine 61 drives the high-pressure compressor 61, and the low-pressure turbine 62 drives the low-pressure compressor 63.
 一方、低圧コンプレッサ63の新気取入れ側に給気フィルタ71を設け、低圧コンプレッサ63の新気送出側に低圧新気通路管72を介して低圧側インタークーラ59を接続させると共に、低圧側インタークーラ59に新気導入管73を介して高圧コンプレッサ61の新気取入れ側を接続させ、高圧コンプレッサ61の新気送出側に高圧新気通路管74を介して高圧側インタークーラ57を接続させる。給気フィルタ71から取入れた新気は、低圧コンプレッサ63にて加圧され、次いで低圧側インタークーラ59にて冷却された後、低圧側インタークーラ59から高圧コンプレッサ61に移動すると共に、高圧コンプレッサ61にてさらに加圧され、高圧側インタークーラ57にて冷却されて、吸気マニホールド49に送給される。 On the other hand, a supply air filter 71 is provided on the fresh air intake side of the low pressure compressor 63, a low pressure side intercooler 59 is connected to the fresh air delivery side of the low pressure compressor 63 via a low pressure fresh air passage pipe 72, and a low pressure side intercooler. 59 is connected to a fresh air intake side of the high pressure compressor 61 via a fresh air introduction pipe 73, and a high pressure side intercooler 57 is connected to a fresh air delivery side of the high pressure compressor 61 via a high pressure fresh air passage pipe 74. The fresh air taken in from the air supply filter 71 is pressurized by the low-pressure compressor 63 and then cooled by the low-pressure side intercooler 59, and then moves from the low-pressure side intercooler 59 to the high-pressure compressor 61. Is further pressurized, cooled by the high pressure side intercooler 57, and fed to the intake manifold 49.
 さらに、図13に示す如く、発電用ディーゼルエンジン25のエンジンオイルを循環させるエンジン潤滑油機構80を備える。エンジン潤滑油機構80は、オイルパン45のエンジンオイルを送出するオイルポンプ(図示省略)と、エンジンオイルを冷却するオイルクーラ82と、エンジンオイルを淨化するオイルフィルタ83などを有する。吸気マニホールド49と排気マニホールド51が配置されたシリンダブロック44側面(ディーゼルエンジン25の背面)に、オイルクーラ82及びオイルフィルタ83を横一列に固着させている。シリンダブロック44またはシリンダヘッド46などに、オイルクーラ82及びオイルフィルタ83を介して、オイルパン45内のエンジンオイルを循環させるように構成している。 Furthermore, as shown in FIG. 13, an engine lubricating oil mechanism 80 for circulating the engine oil of the power generating diesel engine 25 is provided. The engine lubricating oil mechanism 80 includes an oil pump (not shown) for sending engine oil from the oil pan 45, an oil cooler 82 for cooling the engine oil, an oil filter 83 for hatching the engine oil, and the like. An oil cooler 82 and an oil filter 83 are fixed in a horizontal row on the side of the cylinder block 44 (the back of the diesel engine 25) where the intake manifold 49 and the exhaust manifold 51 are arranged. The engine oil in the oil pan 45 is circulated in the cylinder block 44 or the cylinder head 46 through the oil cooler 82 and the oil filter 83.
 図13に示す如く、燃料ポンプ配置室48が配置されたシリンダブロック44の長手方向の一側面(ディーゼルエンジン25の正面)とは反対側のシリンダブロック44側面(ディーゼルエンジン25の背面側)に片寄らせて、吸気マニホールド49と、排気マニホールド51と、オイルクーラ82及びオイルフィルタ83を配置させる。また、高圧側インタークーラ57と、低圧側インタークーラ59と、オイルクーラ82とに,冷却水配管84a,84b,84cを介して、図示しない冷却水ポンプを接続させている。即ち、高圧側インタークーラ57及び低圧側インタークーラ59及びオイルクーラ82に冷却水を循環させ、高圧タービン60からの新気と、低圧タービン62からの新気と、オイルクーラ82内のエンジンオイルを冷却するように構成している。 As shown in FIG. 13, the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged is offset to one side surface (front side of the diesel engine 25) in the longitudinal direction opposite to the side surface of the cylinder block 44 (back side of the diesel engine 25). Thus, the intake manifold 49, the exhaust manifold 51, the oil cooler 82, and the oil filter 83 are arranged. In addition, a cooling water pump (not shown) is connected to the high pressure side intercooler 57, the low pressure side intercooler 59, and the oil cooler 82 via cooling water pipes 84a, 84b, and 84c. That is, the cooling water is circulated through the high pressure side intercooler 57, the low pressure side intercooler 59, and the oil cooler 82, and fresh air from the high pressure turbine 60, fresh air from the low pressure turbine 62, and engine oil in the oil cooler 82 are removed. It is configured to cool.
 一方、図14に示す如く、燃料ポンプ配置室48が配置されたシリンダブロック44側面(ディーゼルエンジン25の正面側)に片寄らせて、始動停止スイッチボックス87と、エンジン始動装置88をそれぞれ配置する。即ち、燃料ポンプ配置室48が配置されたシリンダブロック44の側方(正面側)にオペレータが移動して、排気マニホールド51などの輻射熱に影響されることなく、ディーゼルエンジン25の始動または停止操作などの作業を実行できる。また、ディーゼルエンジン25の一側方において、出力軸42で軸支されるフライホィール43の上側に、燃料噴射ポンプ40(図6参照)による燃料噴射タイミングや燃料噴射量の制御などディーゼルエンジン25の各部動作を制御するエンジン制御装置86を配置している。 On the other hand, as shown in FIG. 14, the start / stop switch box 87 and the engine starter 88 are respectively arranged so as to be offset toward the side of the cylinder block 44 (the front side of the diesel engine 25) where the fuel pump disposition chamber 48 is disposed. That is, the operator moves to the side (front side) of the cylinder block 44 in which the fuel pump arrangement chamber 48 is arranged, and the diesel engine 25 is started or stopped without being affected by the radiant heat of the exhaust manifold 51 or the like. Can be performed. Further, on one side of the diesel engine 25, on the upper side of the flywheel 43 supported by the output shaft 42, the control of the fuel injection timing and the fuel injection amount by the fuel injection pump 40 (see FIG. 6), etc. An engine control device 86 for controlling the operation of each part is arranged.
 次いで、前記二段過給機55(高圧過給機56、低圧過給機58)と、インタークーラ本体54(高圧側インタークーラ57、低圧側インタークーラ59)の取付け構造を説明する。図11~図17に示す如く、前記発電用ディーゼルエンジン25のシリンダブロック44の側面のうち、出力軸42が突設する発電機26配置側の側面(シリンダブロック44の左側面)に対向する側面(シリンダブロック44の右側面)に、前記二段過給機55とインタークーラ本体54を配設している。即ち、ディーゼルエンジン25の左側面部に出力軸42一端側と発電機26が配置され、ディーゼルエンジン25の右側面部に二段過給機55とインタークーラ本体54が配置される。 Next, the mounting structure of the two-stage supercharger 55 (high pressure supercharger 56, low pressure supercharger 58) and the intercooler body 54 (high pressure side intercooler 57, low pressure side intercooler 59) will be described. As shown in FIGS. 11 to 17, of the side surfaces of the cylinder block 44 of the power generating diesel engine 25, the side surface facing the side surface (the left side surface of the cylinder block 44) on the generator 26 side where the output shaft 42 projects. The two-stage supercharger 55 and the intercooler body 54 are disposed on the right side surface of the cylinder block 44. That is, one end of the output shaft 42 and the generator 26 are disposed on the left side surface portion of the diesel engine 25, and the two-stage supercharger 55 and the intercooler body 54 are disposed on the right side surface portion of the diesel engine 25.
 図11~図17に示す如く、前記二段過給機55とインタークーラ本体54とを取付ける過給機ユニットフレーム91を備える。過給機ユニットフレーム91は、発電機26が配置される左側面と反対側のシリンダブロック44の右側面に接合固定させる垂直部91aと、垂直部の上端側にL形状に連結させる水平部91bを有する。シリンダブロック44の右側面に垂直部91aを略垂直な姿勢に締結固定させ、垂直部91aの上端に水平部91bの一端側を一体的に連接させ、シリンダブロック44から離れる方向に水平部91bの他端側を略水平に突設している。なお、垂直部91aと水平部91bは、複数枚の金属板を溶接加工にて組み合わせて、一体的に形成している。 11 to 17, a supercharger unit frame 91 for attaching the two-stage supercharger 55 and the intercooler main body 54 is provided. The supercharger unit frame 91 includes a vertical portion 91a that is bonded and fixed to the right side surface of the cylinder block 44 opposite to the left side surface on which the generator 26 is disposed, and a horizontal portion 91b that is connected in an L shape to the upper end side of the vertical portion. Have The vertical portion 91a is fastened and fixed to the right side surface of the cylinder block 44 in a substantially vertical posture, and one end side of the horizontal portion 91b is integrally connected to the upper end of the vertical portion 91a, and the horizontal portion 91b is moved away from the cylinder block 44. The other end side protrudes substantially horizontally. The vertical portion 91a and the horizontal portion 91b are integrally formed by combining a plurality of metal plates by welding.
 また、ディーゼルエンジン25の一側面(右側面)に垂直部91aが接合固定された過給機ユニットフレーム91の水平部91bの上面側に、高圧過給機56と低圧過給機58を取付けている。ディーゼルエンジン25の右側面に低圧過給機58を接近させて配置させると共に、ディーゼルエンジン25の右側面から高圧過給機56を離間させて配置させる。即ち、水平部91bの上面側のうち、垂直部91a上端に連接される水平部91b端部の上面側に低圧過給機58が配置されると共に、水平部91bの上面側のうち、ディーゼルエンジン25の右側面から離間した水平部91b端部の上面側に高圧過給機56が配置される。なお、高圧過給機56の外形及び自重と低圧過給機58の外形及び自重を対比すると、高圧過給機56は小形で軽く構成され、低圧過給機58は大形で重く構成される。 Further, a high pressure supercharger 56 and a low pressure supercharger 58 are attached to the upper surface side of the horizontal portion 91b of the turbocharger unit frame 91 in which the vertical portion 91a is joined and fixed to one side surface (right side surface) of the diesel engine 25. Yes. The low-pressure supercharger 58 is arranged close to the right side surface of the diesel engine 25, and the high-pressure supercharger 56 is arranged apart from the right side surface of the diesel engine 25. That is, the low-pressure supercharger 58 is disposed on the upper surface side of the horizontal portion 91b and connected to the upper end of the vertical portion 91a, and the diesel engine is disposed on the upper surface side of the horizontal portion 91b. The high-pressure supercharger 56 is disposed on the upper surface side of the end portion of the horizontal portion 91b that is separated from the right side surface of 25. In addition, if the external shape and self-weight of the high-pressure supercharger 56 are compared with the external shape and self-weight of the low-pressure supercharger 58, the high-pressure supercharger 56 is configured to be small and light, and the low-pressure supercharger 58 is configured to be large and heavy. .
 一方、過給機ユニットフレーム91の水平部91bの下面にインタークーラ本体54の上面を接合固定させ、水平部91bの下面側にインタークーラ本体54を吊下げ姿勢に取付け、低圧過給機58または高圧過給機56から送出される給気(新気)温度を、インタークーラ本体54の低圧側インタークーラ59または高圧側インタークーラ57にて低下させるように構成している。加えて、過給機ユニットフレーム91の水平部91bの上面側のうち、垂直部91a上端部が連結された水平部91bの上面側に受け台フレーム92を固着し、受け台フレーム92に低圧過給機58を上載すると共に、高圧過給機56にエンジン25の排気ガスを導出させる排気マニホールド51の一端部のうち、高圧コンプレッサ60の排気ガス入口64に近い排気マニホールド51の一端部を、水平部91bと前記受け台フレーム92の間の空間を介して、低圧過給機58の下面側に貫通状に延設させている。即ち、シリンダブロック44と高圧過給機56の間に配置された低圧過給機58の機外側方を迂回することなく、シリンダブロック44と高圧過給機56の間に排気マニホールド51を最短距離で延設できる。 On the other hand, the upper surface of the intercooler main body 54 is bonded and fixed to the lower surface of the horizontal portion 91b of the supercharger unit frame 91, and the intercooler main body 54 is attached in a suspended posture to the lower surface side of the horizontal portion 91b. The supply air (fresh air) temperature sent from the high pressure supercharger 56 is configured to be lowered by the low pressure side intercooler 59 or the high pressure side intercooler 57 of the intercooler body 54. In addition, a cradle frame 92 is fixed to the upper surface side of the horizontal portion 91b to which the upper end portion of the vertical portion 91a is connected, of the upper surface side of the horizontal portion 91b of the supercharger unit frame 91, and the Among the one end portions of the exhaust manifold 51 that mounts the feeder 58 and causes the high-pressure supercharger 56 to lead out the exhaust gas of the engine 25, the one end portion of the exhaust manifold 51 near the exhaust gas inlet 64 of the high-pressure compressor 60 is placed horizontally. Through a space between the portion 91 b and the cradle frame 92, the low pressure supercharger 58 is extended in a penetrating manner. That is, the shortest distance between the exhaust manifold 51 and the cylinder block 44 and the high pressure supercharger 56 is achieved without bypassing the outside of the low pressure supercharger 58 disposed between the cylinder block 44 and the high pressure supercharger 56. Can be extended.
 さらに、シリンダブロック44の右側面に接合固定させる垂直部91aに新気導入路(図示省略)を開設し、シリンダブロック44と高圧側インタークーラ57を垂直部91aにて接合させ、高圧側インタークーラ57の新気出口57aに新気導入路(図示省略)を介して吸気マニホールド46端部の入口を接続して、高圧側インタークーラ57の新気が吸気マニホールド46に送給されるように構成している。 Further, a fresh air introduction path (not shown) is opened in the vertical portion 91a to be joined and fixed to the right side surface of the cylinder block 44, and the cylinder block 44 and the high pressure side intercooler 57 are joined by the vertical portion 91a, so that the high pressure side intercooler is joined. The fresh air outlet 57a of 57 is connected to the inlet of the end portion of the intake manifold 46 via a fresh air introduction path (not shown) so that the fresh air of the high pressure side intercooler 57 is supplied to the intake manifold 46. is doing.
 図11~図17に示す如く、ディーゼルエンジン25の排気ガス排出径路中に、第1過給機としての高圧過給機56と第2過給機としての低圧過給機58を直列に配置するエンジン装置において、ディーゼルエンジン25の一側面に高圧過給機56と低圧過給機58を配置する構造であって、ディーゼルエンジン25の一側面に低圧過給機58を接近させて配置させると共に、ディーゼルエンジン25の一側面から高圧過給機56を離間させて配置したものであるから、ディーゼルエンジン25と高圧過給機56の間に、高圧過給機56に比べて大型で重くなる低圧過給機58を安定良く設置でき、高圧過給機56と低圧過給機58の支持構造を簡略化できるものでありながら、給気温度が高い高圧過給機56側の給気配管(新気導入管73など)をディーゼルエンジン25の一側面から離して設置できる一方、給気温度が低い低圧過給機58側の給気配管(過給機ユニットフレーム91の垂直部91aなど)をディーゼルエンジン25の一側面に近接支持でき、ディーゼルエンジン25の給気冷却構造を簡略化できる。各過給機56,58の下方側スペースに冷却水循環ポンプまたはエンジンオイル循環ポンプなどの付設部品を集約的に取付けることができ、各付設部品のメンテナンス作業性を向上できる。 As shown in FIGS. 11 to 17, a high pressure supercharger 56 as a first supercharger and a low pressure supercharger 58 as a second supercharger are arranged in series in the exhaust gas discharge path of the diesel engine 25. In the engine device, the high-pressure supercharger 56 and the low-pressure supercharger 58 are arranged on one side of the diesel engine 25, the low-pressure supercharger 58 is arranged close to one side of the diesel engine 25, and Since the high-pressure supercharger 56 is disposed away from one side of the diesel engine 25, the low-pressure supercharger that is larger and heavier than the high-pressure supercharger 56 is interposed between the diesel engine 25 and the high-pressure supercharger 56. While the charger 58 can be installed stably and the support structure of the high-pressure supercharger 56 and the low-pressure supercharger 58 can be simplified, the supply air pipe (new air) on the high-pressure supercharger 56 side where the supply air temperature is high Introduction pipe 7 Etc.) can be installed away from one side of the diesel engine 25, while a supply pipe (such as the vertical portion 91a of the turbocharger unit frame 91) on the low-pressure supercharger 58 side where the supply air temperature is low is connected to the diesel engine 25. It can be supported close to the side surface, and the charge / air cooling structure of the diesel engine 25 can be simplified. Attached parts such as a cooling water circulation pump or an engine oil circulation pump can be collectively attached to the lower space of each of the superchargers 56, 58, and the maintenance workability of each attached part can be improved.
 図11~図17に示す如く、ディーゼルエンジン25の一側面に過給機ユニットフレーム91の垂直部91aを接合固定させると共に、過給機ユニットフレーム91の水平部91bの上面側に高圧過給機56と低圧過給機58を取付けている。したがって、過給機ユニットフレーム91の水平部91bの上面側のうち、過給機ユニットフレーム91の垂直部91aに近い上面側に低圧過給機58を配置でき、高圧過給機56と低圧過給機58の支持剛性を確保しながら、過給機ユニットフレーム91などの支持構造体を簡略化できる。 11 to 17, the vertical portion 91a of the supercharger unit frame 91 is joined and fixed to one side surface of the diesel engine 25, and the high pressure supercharger is disposed on the upper surface side of the horizontal portion 91b of the supercharger unit frame 91. 56 and a low-pressure supercharger 58 are attached. Accordingly, the low-pressure supercharger 58 can be arranged on the upper surface side of the supercharger unit frame 91 near the vertical portion 91a of the horizontal portion 91b of the horizontal portion 91b. The support structure such as the supercharger unit frame 91 can be simplified while securing the support rigidity of the charger 58.
 図11~図17に示す如く、高圧過給機56と低圧過給機58の給気温度を低下させるインタークーラとしてのインタークーラ本体54を備える構造であって、ディーゼルエンジン25の一側面に過給機ユニットフレーム91の垂直部91aを接合固定させると共に、過給機ユニットフレーム91の水平部91bの下面側にインタークーラ本体54を取付けている。したがって、過給機ユニットフレーム91の垂直部91aを挟んでディーゼルエンジン25の一側面にインタークーラ本体54の一側面を対峙させることができ、ディーゼルエンジン25の吸気マニホールド49とインタークーラ本体54の新気出口57aとを接続させる配管として、過給機ユニットフレーム91の一部を利用でき、給気配管の簡略化または給気抵抗の低減などを容易に図ることができる。 As shown in FIGS. 11 to 17, the structure is provided with an intercooler main body 54 as an intercooler that lowers the supply air temperature of the high-pressure supercharger 56 and the low-pressure supercharger 58, and is provided on one side of the diesel engine 25. The vertical portion 91 a of the charger unit frame 91 is joined and fixed, and the intercooler body 54 is attached to the lower surface side of the horizontal portion 91 b of the supercharger unit frame 91. Therefore, one side surface of the intercooler body 54 can be opposed to one side surface of the diesel engine 25 across the vertical portion 91a of the supercharger unit frame 91, and the intake manifold 49 and the intercooler body 54 of the diesel engine 25 are newly provided. A part of the turbocharger unit frame 91 can be used as a pipe for connecting to the air outlet 57a, and the simplification of the air supply pipe or the reduction of the air supply resistance can be easily achieved.
 図11~図17に示す如く、高圧過給機56にディーゼルエンジン25の排気ガスを導出させる排気管としての排気マニホールド51を備える構造であって、過給機ユニットフレーム91の垂直部91aの上端側に過給機ユニットフレーム91の水平部91bの一端部をL形状に連結させ、過給機ユニットフレーム91の垂直部91aが連結された過給機ユニットフレーム91の水平部91bの上面側に受け台フレーム92を固着し、受け台フレーム92に低圧過給機58を上載すると共に、過給機ユニットフレーム91の水平部91bと受け台フレーム92の間に排気マニホールド51を延設させている。したがって、ディーゼルエンジン25に高圧過給機56を接続させるための排気マニホールド51を直線的に形成でき、ディーゼルエンジン25乃至高圧過給機56間の排気抵抗を低減できると共に、ディーゼルエンジン25乃至高圧過給機56間の排気管路を簡単に構成できる。 As shown in FIGS. 11 to 17, the high pressure supercharger 56 is provided with an exhaust manifold 51 as an exhaust pipe for deriving exhaust gas of the diesel engine 25, and has an upper end of a vertical portion 91a of the supercharger unit frame 91. One end of the horizontal portion 91b of the supercharger unit frame 91 is connected in an L shape to the upper side of the horizontal portion 91b of the supercharger unit frame 91 to which the vertical portion 91a of the supercharger unit frame 91 is connected. The cradle frame 92 is fixed, the low pressure supercharger 58 is mounted on the cradle frame 92, and the exhaust manifold 51 is extended between the horizontal portion 91 b of the supercharger unit frame 91 and the cradle frame 92. . Therefore, the exhaust manifold 51 for connecting the high-pressure supercharger 56 to the diesel engine 25 can be formed linearly, the exhaust resistance between the diesel engine 25 and the high-pressure supercharger 56 can be reduced, and the diesel engine 25 to the high-pressure supercharger 56 can be reduced. The exhaust pipe line between the feeders 56 can be easily configured.
 図11、図15に示す如く、ディーゼルエンジン25と高圧過給機56間の排気管としての排気マニホールド51と、冷却水配管としてのエンジン冷却水パイプ53を、ヘッドカバー47列の一側方に平行に延設させている。したがって、ヘッドカバー47列の一側方に排気マニホールド51とエンジン冷却水パイプ53をコンパクトに設置できるものでありながら、排気マニホールド51とエンジン冷却水パイプ53が配置されるヘッドカバー47列の一側方のディーゼルエンジン25側面を利用して、例えばオイルフィルタ83またはオイルクーラ82などを容易に設置できる。なお、ヘッドカバー47列の他側方のディーゼルエンジン25側面に、燃料ポンプ配置室48、始動停止スイッチボックス87、エンジン始動装置88などをそれぞれ配置でき、ディーゼルエンジン25の始動または停止操作などの作業空間を容易に確保できる。 As shown in FIGS. 11 and 15, an exhaust manifold 51 as an exhaust pipe between the diesel engine 25 and the high pressure supercharger 56 and an engine coolant pipe 53 as a coolant pipe are parallel to one side of the head cover 47 row. It is extended to. Accordingly, the exhaust manifold 51 and the engine coolant pipe 53 can be compactly installed on one side of the head cover 47 row, but the one side of the head cover 47 row on which the exhaust manifold 51 and the engine coolant pipe 53 are arranged. For example, the oil filter 83 or the oil cooler 82 can be easily installed using the side surface of the diesel engine 25. A fuel pump arrangement chamber 48, a start / stop switch box 87, an engine start device 88, and the like can be arranged on the side surface of the diesel engine 25 on the other side of the head cover 47 row, and a work space for starting or stopping the diesel engine 25, etc. Can be easily secured.
 なお、高圧過給機56と低圧過給機58を一体的に合体させて、ディーゼルエンジン25一側方の側面に配置してもよい。また、動圧式の排気マニホールド51は、例えば、ディーゼルエンジン25の第1気筒及び第4気筒及び第5気筒に連通させる第1排気マニホールドと、ディーゼルエンジン25の第2気筒及び第3気筒及び第6気筒に連通させる第2排気マニホールドなどの複数体の排気マニホールドにて形成してもよい。 Note that the high-pressure supercharger 56 and the low-pressure supercharger 58 may be integrally combined and arranged on the side surface on one side of the diesel engine 25. The dynamic pressure type exhaust manifold 51 includes, for example, a first exhaust manifold that communicates with the first cylinder, the fourth cylinder, and the fifth cylinder of the diesel engine 25, the second cylinder, the third cylinder, and the sixth cylinder of the diesel engine 25. A plurality of exhaust manifolds such as a second exhaust manifold communicating with the cylinder may be used.
25 ディーゼルエンジン
39 燃料噴射弁
40 燃料噴射ポンプ
40a ポンプ本体
40b 電磁スピル弁
47 ヘッドカバー
49 吸気マニホールド
51 排気マニホールド(排気管)
69a 燃料油管(給油管)
69b 燃料油管(油戻り管)
70 燃料吐出管(高圧管)
75 プランジャ
76 スピル弁体
77 スピル弁ばね
78 燃料圧室
79 電磁ソレノイド
86 エンジン制御装置
89 負荷測定器
90 エンジン回転センサ
101 エンジン回転速度設定部
102 減算器
103 PID制御部
104 燃料噴射量算出部
105 進角制御部
106 負荷投入検出部
107 ゲイン設定部
108 開閉制御部
25 diesel engine 39 fuel injection valve 40 fuel injection pump 40a pump body 40b electromagnetic spill valve 47 head cover 49 intake manifold 51 exhaust manifold (exhaust pipe)
69a Fuel oil pipe (oil supply pipe)
69b Fuel oil pipe (oil return pipe)
70 Fuel discharge pipe (high pressure pipe)
75 Plunger 76 Spill valve body 77 Spill valve spring 78 Fuel pressure chamber 79 Electromagnetic solenoid 86 Engine control device 89 Load measuring device 90 Engine rotation sensor 101 Engine rotation speed setting unit 102 Subtractor 103 PID control unit 104 Fuel injection amount calculation unit 105 Angle control unit 106 Load application detection unit 107 Gain setting unit 108 Open / close control unit

Claims (6)

  1.  エンジンのシリンダ内の燃焼室に燃料を噴射して燃焼させる燃料噴射装置と、該燃料噴射装置による燃料噴射動作を制御する制御装置と、を備えたエンジン装置において、
     前記制御装置は、エンジンの負荷変動を検出したときに、前記燃料噴射装置による燃料噴射量又は燃料噴射タイミングを変動させる負荷変動制御を実行し、該負荷変動制御を実行してから所定期間経過後に、前記燃料噴射装置に対する制御動作を通常制御に復帰させることを特徴とするエンジン装置。
    An engine device comprising: a fuel injection device that injects fuel into a combustion chamber in a cylinder of an engine and burns; and a control device that controls a fuel injection operation by the fuel injection device.
    The control device executes load variation control for varying a fuel injection amount or fuel injection timing by the fuel injection device when detecting a load variation of the engine, and after a predetermined period of time has elapsed after executing the load variation control An engine device for returning the control operation for the fuel injection device to normal control.
  2.  前記エンジンは、発電機に動力を伝達するものであって、
     前記制御装置は、前記発電機から受ける負荷信号に基づいて、負荷変動を検出し、
     前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行することを特徴とする請求項1に記載のエンジン装置。
    The engine transmits power to a generator,
    The control device detects a load fluctuation based on a load signal received from the generator,
    The engine device according to claim 1, wherein the control device executes the load variation control for a predetermined period when the load variation is detected.
  3.  前記制御装置は、前記エンジンの目標回転速度と実回転速度との偏差を算出し、算出した回転速度偏差に基づいて、負荷変動を検出し、
     前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行することを特徴とする請求項1に記載のエンジン装置。
    The control device calculates a deviation between the target rotation speed and the actual rotation speed of the engine, detects a load fluctuation based on the calculated rotation speed deviation,
    The engine device according to claim 1, wherein the control device executes the load variation control for a predetermined period when the load variation is detected.
  4.  前記制御装置は、前記エンジンの実回転速度の変化量を算出し、算出した回転速度変化量に基づいて、負荷変動を検出し、
     前記制御装置は、負荷変動を検出したとき、所定期間、前記負荷変動制御を実行することを特徴とする請求項1に記載のエンジン装置。
    The control device calculates a change amount of the actual rotation speed of the engine, detects a load fluctuation based on the calculated rotation speed change amount,
    The engine device according to claim 1, wherein the control device executes the load variation control for a predetermined period when the load variation is detected.
  5.  前記制御装置は、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行することを特徴とする請求項1~4のいずれか一項に記載のエンジン装置。 The engine device according to any one of claims 1 to 4, wherein the control device executes the load variation control by increasing a feedback gain of a fuel injection amount by the fuel injection device.
  6.  前記制御装置は、前記燃料噴射装置による燃料噴射タイミングを進角させるとともに、前記燃料噴射装置による燃料噴射量のフィードバックゲインを大きくして、前記負荷変動制御を実行することを特徴とする請求項1~4のいずれか一項に記載のエンジン装置。 2. The control device executes the load variation control by advancing a fuel injection timing by the fuel injection device and increasing a feedback gain of a fuel injection amount by the fuel injection device. The engine device according to any one of 1 to 4.
PCT/JP2015/065452 2014-06-05 2015-05-28 Engine device WO2015186607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116984 2014-06-05
JP2014116984A JP6356493B2 (en) 2014-06-05 2014-06-05 Engine equipment

Publications (1)

Publication Number Publication Date
WO2015186607A1 true WO2015186607A1 (en) 2015-12-10

Family

ID=54766680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065452 WO2015186607A1 (en) 2014-06-05 2015-05-28 Engine device

Country Status (2)

Country Link
JP (1) JP6356493B2 (en)
WO (1) WO2015186607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900504B2 (en) 2015-12-31 2021-01-26 Westinghouse Electric Company Llc Hydraulic apparatus and hydraulic appliance usable therein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023109000A (en) * 2022-01-26 2023-08-07 三菱重工エンジン&ターボチャージャ株式会社 Engine control device, engine control system and engine control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187341A (en) * 1988-01-18 1989-07-26 Kubota Ltd Engine speed controller
JPH04143437A (en) * 1990-10-03 1992-05-18 Fujitsu Ten Ltd Idle rotational speed controlling method of internal combustion engine
JP2004108153A (en) * 2002-09-13 2004-04-08 Tokyo Gas Co Ltd Dual fuel engine
JP2006029089A (en) * 2004-07-12 2006-02-02 Yanmar Co Ltd Engine speed control device of internal combustion engine and internal combustion engine having its engine speed control device
JP2006183653A (en) * 2004-11-30 2006-07-13 Denso Corp Gas fuel engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098011A (en) * 2000-09-27 2002-04-05 Kubota Corp Electronically controlled fuel injection system of gas engine
JP4075644B2 (en) * 2003-03-07 2008-04-16 トヨタ自動車株式会社 Internal combustion engine output control device
JP2008291754A (en) * 2007-05-24 2008-12-04 Yanmar Co Ltd Electronic governor control engine
JP2010121490A (en) * 2008-11-18 2010-06-03 Mitsubishi Fuso Truck & Bus Corp Combustion control device of diesel engine
JP5573701B2 (en) * 2011-01-24 2014-08-20 トヨタ自動車株式会社 Internal combustion engine
JP5871140B2 (en) * 2013-02-13 2016-03-01 国産電機株式会社 Electronic governor for engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187341A (en) * 1988-01-18 1989-07-26 Kubota Ltd Engine speed controller
JPH04143437A (en) * 1990-10-03 1992-05-18 Fujitsu Ten Ltd Idle rotational speed controlling method of internal combustion engine
JP2004108153A (en) * 2002-09-13 2004-04-08 Tokyo Gas Co Ltd Dual fuel engine
JP2006029089A (en) * 2004-07-12 2006-02-02 Yanmar Co Ltd Engine speed control device of internal combustion engine and internal combustion engine having its engine speed control device
JP2006183653A (en) * 2004-11-30 2006-07-13 Denso Corp Gas fuel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900504B2 (en) 2015-12-31 2021-01-26 Westinghouse Electric Company Llc Hydraulic apparatus and hydraulic appliance usable therein

Also Published As

Publication number Publication date
JP6356493B2 (en) 2018-07-11
JP2015229977A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5808128B2 (en) Gas fired engine
CN108138664B (en) Engine device
CN107949690B (en) Engine device
KR101274016B1 (en) Large turbocharged two-stroke diesel engine with exhaust gas recirculation
JP5832616B2 (en) Turbocharged large low-speed two-stroke internal combustion engine with dual fuel supply system
CN108026844B (en) Engine device
JP6106792B1 (en) Booster pump
KR102114527B1 (en) Engine device
US10253681B2 (en) Engine device
JP2007303404A (en) Fuel circulation type common-rail fuel injection device for large two-cycle diesel engine
EP3153685B1 (en) Engine device
JP6356493B2 (en) Engine equipment
US10227914B2 (en) Engine device
JP4735625B2 (en) EGR device for internal combustion engine
JP6404781B2 (en) Engine equipment
CN107850034B (en) Engine device
JP2015166596A (en) Gas-fired engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15804042

Country of ref document: EP

Kind code of ref document: A1