WO2015186471A1 - Motor control device, motor drive device, and electric vehicle - Google Patents

Motor control device, motor drive device, and electric vehicle Download PDF

Info

Publication number
WO2015186471A1
WO2015186471A1 PCT/JP2015/063413 JP2015063413W WO2015186471A1 WO 2015186471 A1 WO2015186471 A1 WO 2015186471A1 JP 2015063413 W JP2015063413 W JP 2015063413W WO 2015186471 A1 WO2015186471 A1 WO 2015186471A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
shaft
rotational position
rotor
Prior art date
Application number
PCT/JP2015/063413
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 西口
和人 大山
宮崎 英樹
鈴木 康介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016525746A priority Critical patent/JP6208345B2/en
Publication of WO2015186471A1 publication Critical patent/WO2015186471A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor control device, a motor drive device, and an electric vehicle.
  • a motor unit composed of a plurality of motors and an output composition mechanism has been proposed for the purpose of expanding output torque and increasing efficiency.
  • a motor unit using an axial gap motor composed of two rotors for one stator and a planetary gear mechanism is known (see Patent Document 1).
  • a rotor position detection sensor is provided for each rotor. Since the rotor position detection sensor is fixed using, for example, a keyway, the rotor position detection sensor may be attached in a state where the position is shifted. If the mounting position of the rotor position detection sensor is deviated, the magnitude of the output torque deviates from the output torque command value. However, fine adjustment of the mounting position of the rotor position detection sensor is difficult after the motor unit is assembled.
  • the first motor is controlled based on the torque command and the rotor rotational position of the first motor in which the output shaft is connected to the power transmission mechanism that transmits power to the outside.
  • a first torque control unit that energizes the first motor so as to output torque according to the torque command, a torque command of the second motor whose output shaft is connected to the power transmission mechanism, and a rotor rotational position.
  • a second torque control unit for energizing the second motor so that the second motor outputs torque according to the torque command, and a rate of change in the rotational speed of the output shaft of the first or second motor.
  • a rate-of-change calculation unit that calculates the first and second values so that the first motor outputs the first correction torque and the second motor outputs the second correction torque that cancels the first correction torque. Corrective control of other motors At the same time, the rotor rotational position of the second motor is corrected so that the rate of change calculated by the rate of change calculation unit during the correction control becomes zero, and the correction amount when the rate of change becomes zero is stored.
  • An amount storage control unit and after the correction amount storage control unit stores the correction amount, the second torque control unit and the corrected rotation position after correcting the rotor rotation position of the second motor by the correction amount Based on the torque command of the second motor, the second motor is energized so that the second motor outputs a torque corresponding to the torque command.
  • a motor driving device is a motor control device according to the first or second aspect, a first motor having a first rotational position detection sensor for detecting a rotor rotational position, and And a second motor having a second rotational position detection sensor for detecting the rotational position of the rotor, and the power transmission mechanism includes a first shaft connected to the output shaft of the first motor, and an output of the second motor.
  • the second shaft connected to the shaft and the third shaft connected to the drive shaft of the vehicle, and the third shaft by combining the output of the first motor and the output of the second motor Output from.
  • An electric vehicle includes an on / off switch for turning on / off the power of the vehicle, a parking brake, and a parking brake detection switch for detecting whether or not the parking brake is operated, and stores a correction amount.
  • the control unit determines that the parking brake is operating based on the detection signal from the parking brake detection switch after the on / off switch is turned on, the control unit determines that the correction control can be performed and performs the correction control.
  • the rotor rotational position of the second motor is corrected so that the change rate calculated by the change rate calculation unit during the correction control becomes zero, and the correction amount when the change rate becomes zero is stored.
  • the motor can be driven efficiently.
  • FIG. 1 is a diagram illustrating a schematic configuration of an electric vehicle 1 including a motor control device 100 according to an embodiment.
  • the electric vehicle 1 according to the present embodiment includes a motor control device 100, a motor unit 200, a mechanical device 36, a drive shaft 12, a reduction gear 11, drive wheels 10, a vehicle-side controller 3, and a main switch 4. And various sensors 5 and a parking brake 6.
  • the motor unit 200 is a device in which, for example, motors 20a and 20b configured as synchronous generator motors and a mechanical device 36 described later are provided in the same casing.
  • the motor 20a is an axial gap type motor including a rotor 22a and a stator 21a.
  • the motor 20b is an axial gap type motor including a rotor 22b and a stator 21b.
  • Each of the motors 20a and 20b also has a function as a generator.
  • the motor 20a is provided with a rotational position detection sensor 25a for detecting the rotational position of the rotor 22a.
  • the motor 20b is provided with a rotational position detection sensor 25b that detects the rotational position of the rotor 22b.
  • An output shaft 23a of the rotor 22a is connected to a ring shaft 30 of a mechanical device 36 described later.
  • the output shaft 23b of the rotor 22b is connected to a carrier shaft 32 of a mechanical device 36 described later.
  • the mechanical device 36 is a single-pinion type planetary gear mechanism that synthesizes power using the sun gear shaft 34, the ring gear shaft 30 and the carrier shaft 32 as rotational elements.
  • the mechanical device 36 includes a sun gear shaft 34 constituted by external gears and a ring gear shaft 30 constituted by internal gears arranged concentrically with the sun gear shaft 34.
  • the mechanical device 36 includes a plurality of pinion gears 31 that mesh with the sun gear shaft 34 and mesh with the ring gear shaft 30, and a carrier shaft 32 that includes a carrier that holds the plurality of pinion gears 31 so as to rotate and revolve.
  • the sun gear shaft 34 is connected to the drive wheel 10 via the drive shaft 12 and the reduction gear 11 of the electric vehicle 1.
  • the carrier shaft 32 is connected to the output shaft 23b of the rotor 22b of the motor 20b.
  • the ring shaft 30 is coupled to the output shaft 23a of the rotor 22a of the motor 20a.
  • the electric vehicle 1 is provided with a known parking brake 6.
  • the parking brake 6 When the parking brake 6 is operated, the drive shaft 12 of the electric vehicle 1 is fixed, so that the sun gear shaft 34 connected to the drive shaft 12 is also fixed.
  • the motor 20a exchanges electric power with the battery 50 via the inverter 40a.
  • the motor 20b exchanges power with the battery 50 via the inverter 40b. Both the motors 20a and 20b are driven and controlled by inverters 40a and 40b that are driven and controlled by a motor controller 60 described later.
  • Motor control device 100 of the present embodiment includes inverters 40a and 40b for driving motors 20a and 20b, a battery 50 configured as a power source, for example, a lithium ion secondary battery, and inverter 40a. , 40b for controlling the motor controller 60.
  • Various signals necessary for driving and controlling the motors 20a and 20b are input to the motor controller 60.
  • An input signal to the motor controller 60 is detected by, for example, a signal from the rotational position detection sensors 25a and 25b, a phase current applied to the motors 20a and 20b detected by a current sensor (not shown), or a voltage sensor (not shown). For example, the DC voltage of the battery.
  • Various signals from the vehicle-side controller 3 are input to the motor controller 60.
  • the motor controller 60 outputs a switching control signal to the inverters 40a and 40b. Since switching control is well known, detailed description thereof is omitted.
  • the motor control device 100, the motors 20a and 20b, and the mechanical device 36 constitute the motor drive device 2.
  • the vehicle controller 3 is a control device that controls each part of the electric vehicle 1.
  • the vehicle-side controller 3 outputs a torque command to the motor controller 60 based on, for example, the depression amount of the accelerator pedal 7 of the electric vehicle 1 detected by an accelerator pedal sensor 5d described later.
  • a main switch 4 and various sensors 5 are connected to the vehicle-side controller 3.
  • the main switch 4 is an on / off switch that turns on and off the power supply of the electric vehicle 1.
  • Various sensors 5 are sensors that detect the state of the electric vehicle 1.
  • the various sensors 5 include, for example, a parking brake detection switch 5a, a vehicle speed sensor 5b, a brake switch 5c, an accelerator pedal sensor 5d, and the like.
  • the parking brake detection switch 5a is a detection switch for detecting whether or not the parking brake 6 is operated. When the parking brake 6 is operated, a parking brake signal is output.
  • the vehicle speed sensor 5 b is a sensor that detects the vehicle speed of the electric vehicle 1.
  • the brake switch 5c is a switch that outputs a brake signal when a brake pedal (not shown) for operating a hydraulic brake device (not shown) of the electric vehicle 1 is depressed.
  • the accelerator pedal sensor 5 d is a sensor that detects the amount of depression of the accelerator pedal 7 of the electric vehicle 1.
  • FIG. 2 is a velocity diagram illustrating the rotation speed ranges of the sun gear shaft 34, the carrier shaft 32, and the ring shaft 30 of the mechanical device 36.
  • ⁇ in the figure is given by equation (1), and the speed increase ratio or speed reduction ratio of each gear shaft can be grasped.
  • Zr is the number of teeth of the ring gear
  • Zs is the number of teeth of the sun gear.
  • Zr / Zs (1)
  • the motor control device 100 of the present embodiment configured as described above performs drive control of the motors 20a and 20b based on the torque command from the vehicle-side controller 3.
  • the rotational positions of the rotors 22a and 22b are detected based on signals from the rotational position detection sensors 25a and 25b, and the drive control of the motors 20a and 20b is performed by known vector control. . If the mounting positions of the rotational position detection sensors 25a and 25b with respect to the casing of the motor unit 200 are shifted, the rotational positions of the rotors 22a and 22b detected by the rotational position detection sensors 25a and 25b are shifted, and the output torque of the motors 20a and 20b is reduced. It will decline.
  • the mounting position of the rotational position detection sensors 25a and 25b may be after the motor unit 200 is assembled. It becomes difficult to make fine adjustments. For example, it can be considered that even if one of the two rotational position detection sensors 25a and 25b can be finely adjusted, the other fine adjustment is difficult.
  • the rotational position detection sensor 25a of the two rotational position detection sensors 25a and 25b can be accessed from the outside of the motor unit 200 and can finely adjust the mounting position.
  • the rotational position detection sensor 25b is inaccessible from the outside of the motor unit 200, and the attachment position cannot be finely adjusted. Therefore, in the present embodiment, the detection position of the rotor 22b by the rotational position detection sensor 25b is corrected as follows.
  • the features of the mechanical device 36 described below are used for correcting the detection position of the rotor 22b by the rotational position detection sensor 25b.
  • the ring shaft 30 connected to the output shaft of the rotor 22a rotates.
  • the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 is fixed
  • the rotor 22a of the motor 20a and the rotor 22b of the motor 20b are connected to each other. That is, when the sun gear shaft 34 is fixed, the carrier shaft 32 and the rotor 22b of the motor 20b connected to the carrier shaft 32 are rotated by the rotation of the ring shaft 30.
  • the speed ratio G between the rotational speed of the rotor 22a and the rotational speed of the rotor 22b is expressed by the following equation (2).
  • G (Zr + Zs) / Zr (2)
  • FIG. 3 is a graph showing the transition of the output torque of each motor 20a, 20b and the rotational speed of each rotor 22a, 22b.
  • FIG. 3A is a diagram showing the output torque Ta of the motor 20a
  • FIG. 3B is a diagram showing the output torque Tb of the motor 20b.
  • FIG. 3C is a diagram showing the rotational speeds of the rotors 22a and 22b.
  • the time difference ⁇ t at the rise of the output torques Ta and Tb of the motors 20 a and 20 b is a time difference assuming a delay in CAN communication in the electric vehicle 1.
  • the motor controller 60 calculates the torque command value Ta * such that the output torque Ta of the motor 20a is Tm1 and the torque command value Tb * such that the output torque Tb of the motor 20b is Tm2, and then calculates the inverter 40a, 40b is driven.
  • FIG. 4 is a graph showing changes in the output torques Ta and Tb of the motors 20a and 20b and the rotational speeds of the rotors 22a and 22b when the output torque Tb of the motor 20b is smaller than Tm2.
  • 4A is a diagram showing the output torque Ta of the motor 20a
  • FIG. 4B is a diagram showing the output torque Tb of the motor 20b.
  • FIG. 4C is a diagram showing the rotational speeds of the rotors 22a and 22b.
  • the motor controller 60 calculates the acceleration of the rotor 22b when the motors 20a and 20b are driven as described above. If the calculated acceleration of the rotor 22b is not zero, the motor controller 60 calculates a correction value for the detected position of the rotor 22b by the rotational position detection sensor 25b so that the acceleration of the rotor 22b becomes zero. Then, the motor controller 60 performs drive control of the motor 20b based on the detected position of the rotor 22b corrected with the calculated correction value.
  • FIG. 5 is a diagram showing transitions of output torques Ta and Tb of the motors 20a and 20b and rotation speeds of the rotors 22a and 22b when correction processing described later of the detection position of the rotor 22b is performed.
  • FIG. 5A is a diagram showing the output torque Ta of the motor 20a
  • FIG. 5B is a diagram showing the output torque Tb of the motor 20b.
  • FIG.5 (c) is a figure which shows the rotational speed of each rotor 22a, 22b.
  • FIG. 6 is a block diagram of the motor controller 60 that performs correction processing of the detection position of the rotor 22b together with vector control.
  • the motor controller 60 includes a torque command calculation unit 611, an axial acceleration calculation unit 612, vector control units 621 and 622, a correction amount generation unit 631, an adder 632, a switch 633, and a storage unit 634. Yes.
  • the torque command calculation unit 611 calculates torque command values Ta * and Tb * based on the torque command from the vehicle-side controller 3. Torque command value Ta * is output to vector controller 621, and torque command value Tb * is output to vector controller 622.
  • the torque command calculation unit 611 sets the torque command values Ta * and Tb * so that the motors 22a and 22b output the above-described first and second target torques Tm1 and Tm2, respectively, during the correction process. If the motor 22a rotates forward at the first target torque Tm1 and the motor 22b reverses at the second target torque Tm2 that cancels the first target torque Tm1, the rotational speeds of the motors 22a and 22b increase as described in FIG. Stable at a constant value without speed or acceleration.
  • the values of the first and second target torques Tm1, Tm2 can be set to values equal to or greater than the cogging torque of the motors 20a, 20b, for example.
  • the first target torque Tm1 is appropriately set in advance, and the first target torque Tm1 is multiplied by the speed ratio G to set the second target torque Tm2 as a negative value. be able to.
  • the first and second target torques Tm1 and Tm2 may be determined by experiment or analysis.
  • the first target torque Tm1 is also called a correction first torque
  • the second target torque Tm2 is also called a correction second torque.
  • the vector controller 621 generates a known PWM signal based on the torque command value Ta * from the torque command calculation unit 611 and the rotational position information of the rotor 22a from the rotational position detection sensor 25a, and outputs it to the inverter 40a. To do.
  • the vector controller 622 generates a known PWM signal based on the torque command value Tb * from the torque command calculation unit 611 and the corrected rotational position of the rotor 22b and outputs it to the inverter 40b.
  • the axial acceleration calculation unit 612 calculates the acceleration of the rotor 22b based on the rotation speed of the rotor 22b derived from information on the rotation position of the rotor 22b.
  • the correction amount generation unit 631 calculates a correction amount for the rotational position of the rotor 22b by proportional-integral compensation.
  • the switch 633 selects either the correction amount calculated by the correction amount generation unit 631 or the correction amount stored in the storage unit 634 and outputs it to the adder 632.
  • the adder 632 adds the correction amount input via the switch 633 and the rotational position of the rotor 22b from the rotational position detection sensor 25b, and outputs the result to the vector control unit 622.
  • the correction amount for the rotational position of the rotor 22b is calculated as follows.
  • the switch 633 is switched so that the correction amount from the correction amount generator 631 is input to the adder 632.
  • the correction amount generation unit 631 performs proportional-integral compensation based on the difference between the acceleration command value (0 [rad / s ⁇ 2]) of the rotor 22b and the acceleration of the rotor 22b calculated by the axial acceleration calculation unit 612. And the correction amount is calculated.
  • the correction amount calculated by the correction amount generation unit 631 is input to the adder 632 via the switch 633.
  • the adder 632 adds the correction amount from the correction amount generation unit 631 input via the switch 633 and the rotational position of the rotor 22b from the rotational position detection sensor 25b, and the corrected rotational position of the rotor 22b. Is output to the vector control unit 622.
  • the vector control unit 622 generates a PWM signal based on the rotational position of the rotor 22b reflecting the correction amount calculated by the correction amount generation unit 631, and outputs the PWM signal to the inverter 40b. As a result, the torque of the motor 22b increases and the acceleration of the rotor 22b gradually decreases.
  • the correction amount calculation process in the correction amount generation unit 631 is repeatedly executed until the acceleration of the rotor 22b becomes zero.
  • the correction amount calculated by the correction amount generation unit 631 at that time is stored in the storage unit 634, and the correction amount calculation processing in the correction amount generation unit 631 described above ends.
  • the switch 633 is switched so that the correction amount stored in the storage unit 634 is input to the adder 632.
  • the rotational position of the rotor 22 b corrected by the correction amount stored in the storage unit 634 is input to the vector control unit 622.
  • the correction amount calculation processing in the correction amount generation unit 631 is executed, for example, when the motor control device 100 is initialized by turning on the power of the motor control device 100. That is, in the correction amount calculation process in the correction amount generation unit 631 described above, for example, the main switch 4 of the electric vehicle 1 on which the motor control device 100 is mounted is turned on, the electric vehicle 1 is turned on, and the motor control is performed. This is performed when the apparatus 100 is powered on.
  • the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 must be fixed in order for the correction amount generation unit 631 to perform correction amount calculation processing. Therefore, in the present embodiment, after the main switch 4 is turned on, if it is determined that the parking brake 6 is operating based on the presence or absence of the parking brake signal from the parking brake detection switch 5a, the correction amount is generated. The unit 631 performs a correction amount calculation process.
  • the control is switched to normal control.
  • the correction amount stored in the storage unit 634 and the rotational position of the rotor 22b from the rotational position detection sensor 25b are input to the adder 632. Therefore, the rotational position of the rotor 22 b corrected with the correction amount stored in the storage unit 634 is output from the adder 632 and input to the vector controller 622.
  • FIG. 7 is a flowchart showing control processing of the motors 20a and 20b in the motor controller 60.
  • a program for performing the processing shown in FIG. 7 is started and repeatedly executed by the CPU of the motor controller 60.
  • step S1 it is determined whether or not the motor control device 100 has been initialized.
  • step S1 determines whether or not a parking brake signal from the parking brake detection switch 5a is detected. If an affirmative determination is made in step S3, the process proceeds to step S100, and a subroutine for correction processing of the detected position of the rotor 22b is executed. The subroutine of step S100 will be described in detail later.
  • step S100 When the subroutine of step S100 is executed, the process proceeds to step S200, and a subroutine for performing normal control related to driving of the motors 20a and 20b is executed.
  • the normal control subroutine of step S200 known drive control is performed for the motor 20a.
  • the driving of the motor 20b is controlled based on the rotational position of the rotor 22b corrected with the correction amount stored in the storage unit 634 as described above.
  • step S3 If a negative determination is made in step S3, the process proceeds to step S200, and a normal control subroutine is executed. If a negative determination is made in step S1, the process proceeds to step S200, and a normal control subroutine is executed.
  • FIG. 8 is a flowchart for the subroutine of step S100 in FIG. If step S3 in FIG. 7 is affirmatively determined, the process proceeds to step S101 in FIG. In step S102, the torque command value Ta * is set to Tm1, the torque command value Tb * is set to Tm2, and the process proceeds to step S103. In step S103, the rotational position of the rotor 22b is read, and the process proceeds to step S105.
  • step S105 the rotational speed and acceleration of the rotor 22b are calculated based on the rotational position of the rotor 22b read in step S103, and the process proceeds to step S107.
  • step S107 it is determined whether or not the acceleration of the rotor 22b calculated in step S105 is zero.
  • step S107 If a negative determination is made in step S107, the process proceeds to step S109, and proportional integration is performed based on the difference between the acceleration command value (0 [rad / s ⁇ 2]) of the rotor 22b and the acceleration of the rotor 22b calculated in step S105. Compensation is performed, a correction amount is calculated, and the process proceeds to step S111.
  • step S111 the rotational position of the rotor 22b from the rotational position detection sensor 25b is corrected with the correction amount calculated in step S111, and the process proceeds to step S113.
  • step S113 the rotational position of the rotor 22b corrected in step S111 is output to the vector control unit 622, and the process returns to step S103.
  • step S107 If a positive determination is made in step S107, the process proceeds to step S115, the latest correction amount calculated in step S111 is read, stored in the storage unit 634, and the process proceeds to step S117.
  • step S117 the switch 633 is switched so that the correction amount stored in the storage unit 634 is input to the adder 632, and the process returns to the main routine.
  • the correction first torque and correction for canceling each other's generated torque for the two motors 20a and 20b connected to the output shafts 23a and 23b in the mechanical device 36 are performed to output the torque command values Ta * and Tb * for outputting the second torque.
  • the acceleration of the rotor 22b is calculated, and the correction amount for the rotational position of the rotor 22b is calculated so that the calculated acceleration of the rotor 22b becomes zero.
  • the correction amount generation unit 631 is configured to perform a correction amount calculation process when the parking brake 6 of the electric vehicle 1 is operating. Accordingly, the correction amount calculation unit 631 that needs to fix the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 performs the correction amount calculation processing at a time when there is no problem in traveling of the electric vehicle 1. Therefore, the user of the electric vehicle 1 does not feel inconvenience.
  • the vehicle-side controller 3 is configured to output a torque command to the motor controller 60 based on the depression amount of the accelerator pedal 7 of the electric vehicle 1 detected by the accelerator pedal sensor 5d. Based on the torque command from the vehicle-side controller 3 and the detected position of the rotor 22a by the rotational position detection sensor 25a, the motor controller 60 outputs the output torque of the motor 20a, specifically, the PWM signal to be output to the inverter 40a. It was configured to calculate. Further, based on the torque command from the vehicle-side controller 3 and the detection value obtained by correcting the detection position of the rotor 22b by the rotational position detection sensor 25b with the correction amount, the output torque of the motor 20b, specifically, the output to the inverter 40b.
  • the PWM signal to be calculated is calculated by the motor controller 60. And based on the PWM signal from the motor controller 60, it comprised so that inverter 40a, 40b might control the electricity supply to motor 20a, 20b.
  • the driving of the motor 20b is controlled based on the rotational position of the rotor 22b corrected with the correction amount stored in the storage unit 634. Thereby, since the motor 20b can be driven efficiently by improving the control accuracy of the output torque of the motor 20b, the power consumption of the electric vehicle 1 can be suppressed.
  • the correction amount generation unit 631 when the main switch 4 of the electric vehicle 1 is turned on and the motor control device 100 is turned on, that is, when the motor control device 100 is initialized, the correction amount generation unit 631.
  • the correction amount generation unit 631 may perform a correction amount calculation process when the parking brake 6 of the electric vehicle 1 is operated due to a signal waiting or the like.
  • the correction amount calculation process in the correction amount generation unit 631 is not performed every time after the initialization of the motor control device 100, but at intervals of a predetermined period, for example, after the initialization of the first motor control device 100 every month. A correction amount calculation process in the correction amount generation unit 631 may be performed.
  • the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 must be fixed. Therefore, in the above description, when the parking brake signal from the parking brake detection switch 5a is detected, the correction amount generation unit 631 performs the correction amount calculation process.
  • the present invention is not limited to this.
  • the correction amount generation unit 631 performs a correction amount calculation process. You may comprise. Whether or not the hydraulic brake device, that is, the foot brake is in operation, is detected by detecting the brake fluid pressure of a hydraulic brake device (not shown) of the electric vehicle 1 instead of the brake signal from the brake switch 5c. May be determined.
  • the detection position of the rotor 22b detected by the rotational position detection sensor 25b is corrected.
  • the detection position of the rotor 22a detected by the rotation position detection sensor 25a is corrected. May be.
  • the sun gear shaft 34 is connected to the drive shaft 12
  • the carrier shaft 32 is connected to the output shaft 23b of the motor 20b
  • the ring shaft 30 is connected to the output shaft 23a of the motor 20a.
  • the present invention is not limited to this.
  • the combination of the shafts 30, 32, 34 of the mechanical device 36 with the drive shaft 12, the output shaft 23a of the motor 20a, and the output shaft 23b of the motor 20b is, for example, any of the combination combinations A to F in FIG. May be.
  • the sun gear shaft 34 is connected to the drive shaft 12
  • the carrier shaft 32 is connected to the output shaft 23b of the motor 20b
  • the ring shaft 30 is connected to the output shaft 23a of the motor 20a.
  • the torque command value Ta * When performing the correction processing of the detection position of the rotor 22b in the combined combination B, the torque command value Ta * may be set to Tm1, and the torque command value Tb * may be set to -Tm1 / G.
  • the torque command value Ta * When correcting the detection position of the rotor 22b in the combination C, the torque command value Ta * may be set to Tm1, and the torque command value Tb * may be set to Tm1 ⁇ G.
  • the mechanical device 36 is a planetary gear mechanism, but the present invention is not limited to this.
  • the mechanical device 36 may be another mechanism such as a differential gear mechanism called a so-called differential gear.
  • the motors 20a and 20b and the mechanical device 36 are provided in the same casing of the motor unit 200, but the present invention is not limited to this.
  • the motor 20a, the motor 20b, and the mechanical device 36 may be separated from each other.
  • SYMBOLS 1 Electric vehicle 2 Motor drive device, 3 Vehicle side controller, 12 Drive shaft, 20a, 20b Motor, 21a, 21b Stator, 22a, 22b Rotor, 23a, 23b Output shaft, 25a, 25b Rotation position detection sensor, 30 Ring gear shaft , 32 carrier shaft, 34 sun gear shaft, 36 mechanical device, 40a, 40b inverter, 60 motor controller, 100 motor drive device, 611 torque command calculation unit 612 axis acceleration calculation unit, 621, 622 vector control unit, 631 correction amount generation unit , 632 adder, 633 switch, 634 storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

The purpose of the present invention is to effectively drive a motor. When a sun gear shaft (34) connected to a drive shaft (12) on the electric vehicle side is fixed, a rotor (22a) of a motor (20a) connected to a ring shaft (30) and a rotor (22b) of a motor (20b) connected to a carrier shaft (32) are connected to each other. In this state, the motors (20a, 20b) are driven to rotate opposite to each other, and a correction value of the position of the rotor (22b) detected by a rotational position detection sensor (25b) is calculated so that the output torque (Ta) of the motor (20a) and the output torque (Tb) of the motor (20b) are balanced with each other and the acceleration of each of the rotors (22a, 22b) becomes zero.

Description

モータ制御装置、モータ駆動装置、および電動車両Motor control device, motor drive device, and electric vehicle
 本発明は、モータ制御装置、モータ駆動装置、および電動車両に関する。 The present invention relates to a motor control device, a motor drive device, and an electric vehicle.
 出力トルクの拡大や高効率化を目的に、複数のモータと出力合成機構で構成されるモータユニットが提案されている。たとえば、モータユニットを小型化するため、1つのステータに対し2つのロータで構成されるアキシャルギャップモータと遊星歯車式機構を使用した、モータユニットが知られている(特許文献1参照)。 A motor unit composed of a plurality of motors and an output composition mechanism has been proposed for the purpose of expanding output torque and increasing efficiency. For example, in order to reduce the size of a motor unit, a motor unit using an axial gap motor composed of two rotors for one stator and a planetary gear mechanism is known (see Patent Document 1).
特開2013-62988号公報JP 2013-62988 A
 上述した特許文献に記載のモータユニットでは、各ロータに対してロータ位置検出センサがそれぞれ設けられる。ロータ位置検出センサは、たとえばキー溝などを利用して固定されるため、位置がずれた状態で取り付けられるおそれがある。ロータ位置検出センサの取付位置がずれていると出力トルクの大きさが出力トルクの指令値からずれてしまう。しかし、モータユニットの組立後には、ロータ位置検出センサの取付位置の微調整が困難である。 In the motor unit described in the patent document described above, a rotor position detection sensor is provided for each rotor. Since the rotor position detection sensor is fixed using, for example, a keyway, the rotor position detection sensor may be attached in a state where the position is shifted. If the mounting position of the rotor position detection sensor is deviated, the magnitude of the output torque deviates from the output torque command value. However, fine adjustment of the mounting position of the rotor position detection sensor is difficult after the motor unit is assembled.
(1) 請求項1の発明によるモータ制御装置は、外部に動力を伝達する動力伝達機構に出力軸が接続された第1のモータのトルク指令およびロータ回転位置に基づいて、第1のモータがそのトルク指令に応じたトルクを出力するように第1のモータへ通電する第1のトルク制御部と、動力伝達機構に出力軸が接続された第2のモータのトルク指令およびロータ回転位置に基づいて、第2のモータがそのトルク指令に応じたトルクを出力するように第2のモータへ通電する第2のトルク制御部と、第1または第2のモータの出力軸の回転速度の変化率を算出する変化率算出部と、第1のモータが補正用第1トルクを出力し、第2のモータが補正用第1トルクを打ち消す補正用第2トルクを出力するように第1および第2のモータを補正制御するとともに、その補正制御中に変化率算出部で算出した変化率がゼロとなるように、第2のモータのロータ回転位置を補正し、変化率がゼロとなったときの補正量を記憶する補正量記憶制御部とを備え、第2のトルク制御部は、補正量記憶制御部が補正量を記憶した後は、第2のモータのロータ回転位置を補正量で補正した補正後回転位置と第2のモータのトルク指令とに基づいて、第2のモータがそのトルク指令に応じたトルクを出力するように第2のモータへ通電する。
(2) 請求項3の発明によるモータ駆動装置は、請求項1または請求項2に記載のモータ制御装置と、ロータ回転位置を検出する第1の回転位置検出センサを有する第1のモータと、ロータ回転位置を検出する第2の回転位置検出センサを有する第2のモータとを備え、動力伝達機構は、第1のモータの出力軸に接続される第1の軸、第2のモータの出力軸に接続される第2の軸、および、車両の駆動軸に接続される第3の軸を有し、第1のモータの出力と第2のモータの出力とを合成して第3の軸から出力する。
(3) 請求項6の発明による電動車両は、車両の電源をオンオフするオンオフスイッチと、パーキングブレーキと、パーキングブレーキが作動しているか否かを検出するパーキングブレーキ検出スイッチとを備え、補正量記憶制御部は、オンオフスイッチがオンされた後、パーキングブレーキ検出スイッチからの検出信号に基づいてパーキングブレーキが作動していると判断すると補正制御の実施が可能であると判断して、補正制御を実施するとともに、その補正制御中に変化率算出部で算出した変化率がゼロとなるように、第2のモータのロータ回転位置を補正し、変化率がゼロとなったときの補正量を記憶する。
(1) In the motor control device according to the first aspect of the present invention, the first motor is controlled based on the torque command and the rotor rotational position of the first motor in which the output shaft is connected to the power transmission mechanism that transmits power to the outside. Based on a first torque control unit that energizes the first motor so as to output torque according to the torque command, a torque command of the second motor whose output shaft is connected to the power transmission mechanism, and a rotor rotational position. A second torque control unit for energizing the second motor so that the second motor outputs torque according to the torque command, and a rate of change in the rotational speed of the output shaft of the first or second motor. A rate-of-change calculation unit that calculates the first and second values so that the first motor outputs the first correction torque and the second motor outputs the second correction torque that cancels the first correction torque. Corrective control of other motors At the same time, the rotor rotational position of the second motor is corrected so that the rate of change calculated by the rate of change calculation unit during the correction control becomes zero, and the correction amount when the rate of change becomes zero is stored. An amount storage control unit, and after the correction amount storage control unit stores the correction amount, the second torque control unit and the corrected rotation position after correcting the rotor rotation position of the second motor by the correction amount Based on the torque command of the second motor, the second motor is energized so that the second motor outputs a torque corresponding to the torque command.
(2) A motor driving device according to a third aspect of the present invention is a motor control device according to the first or second aspect, a first motor having a first rotational position detection sensor for detecting a rotor rotational position, and And a second motor having a second rotational position detection sensor for detecting the rotational position of the rotor, and the power transmission mechanism includes a first shaft connected to the output shaft of the first motor, and an output of the second motor. The second shaft connected to the shaft and the third shaft connected to the drive shaft of the vehicle, and the third shaft by combining the output of the first motor and the output of the second motor Output from.
(3) An electric vehicle according to a sixth aspect of the invention includes an on / off switch for turning on / off the power of the vehicle, a parking brake, and a parking brake detection switch for detecting whether or not the parking brake is operated, and stores a correction amount. When the control unit determines that the parking brake is operating based on the detection signal from the parking brake detection switch after the on / off switch is turned on, the control unit determines that the correction control can be performed and performs the correction control. At the same time, the rotor rotational position of the second motor is corrected so that the change rate calculated by the change rate calculation unit during the correction control becomes zero, and the correction amount when the change rate becomes zero is stored. .
 本発明によれば、モータを効率的に駆動できる。 According to the present invention, the motor can be driven efficiently.
一実施の形態のモータ駆動装置を含む電動車両を示す図である。It is a figure which shows the electric vehicle containing the motor drive device of one embodiment. 機械装置の速度線図である。It is a speed diagram of a mechanical apparatus. 各モータの出力トルクおよび各ロータの回転速度の推移を示す図である。It is a figure which shows transition of the output torque of each motor, and the rotational speed of each rotor. 各モータの出力トルクおよび各ロータの回転速度の推移を示す図である。It is a figure which shows transition of the output torque of each motor, and the rotational speed of each rotor. ロータの検出位置の後述する補正処理を行った場合の各モータの出力トルクおよび各ロータの回転速度の推移を示す図である。It is a figure which shows transition of the output torque of each motor at the time of performing the correction process mentioned later of the detection position of a rotor, and the rotational speed of each rotor. ベクトル制御とともにロータの検出位置の補正処理も行うモータコントローラのブロック図である。It is a block diagram of the motor controller which also performs correction processing of the detection position of a rotor with vector control. モータコントローラにおけるモータの制御処理を示すフローチャートである。It is a flowchart which shows the control process of the motor in a motor controller. 図7のステップS100のサブルーチンについてのフローチャートである。It is a flowchart about the subroutine of step S100 of FIG. 変形例を示す図である。It is a figure which shows a modification.
 図1~8を参照して、本発明によるモータ制御装置、モータ駆動装置、および電動車両の一実施の形態を説明する。図1は、一実施の形態のモータ制御装置100を含む電動車両1の概略構成を示す図である。本実施の形態の電動車両1は、モータ制御装置100と、モータユニット200と、機械装置36と、駆動軸12と、減速ギヤ11と、駆動輪10と、車両側コントローラ3と、メインスイッチ4と、各種センサ5と、パーキングブレーキ6とを備える。 1 to 8, an embodiment of a motor control device, a motor drive device, and an electric vehicle according to the present invention will be described. FIG. 1 is a diagram illustrating a schematic configuration of an electric vehicle 1 including a motor control device 100 according to an embodiment. The electric vehicle 1 according to the present embodiment includes a motor control device 100, a motor unit 200, a mechanical device 36, a drive shaft 12, a reduction gear 11, drive wheels 10, a vehicle-side controller 3, and a main switch 4. And various sensors 5 and a parking brake 6.
 モータユニット200は、たとえば同期発電電動機として構成されたモータ20a,20bと、後述する機械装置36とが同一のケーシング内に設けられた装置である。モータ20aは、ロータ22aとステータ21aとを備えるアキシャルギャップ型モータである。同様に、モータ20bは、ロータ22bとステータ21bとを備えるアキシャルギャップ型モータである。モータ20a,20bは、それぞれ発電機としての機能も有する。 The motor unit 200 is a device in which, for example, motors 20a and 20b configured as synchronous generator motors and a mechanical device 36 described later are provided in the same casing. The motor 20a is an axial gap type motor including a rotor 22a and a stator 21a. Similarly, the motor 20b is an axial gap type motor including a rotor 22b and a stator 21b. Each of the motors 20a and 20b also has a function as a generator.
 モータ20aには、ロータ22aの回転位置を検出する回転位置検出センサ25aが設けられている。モータ20bには、ロータ22bの回転位置を検出する回転位置検出センサ25bが設けられている。ロータ22aの出力軸23aは、後述する機械装置36のリング軸30に接続されている。ロータ22bの出力軸23bは、後述する機械装置36のキャリア軸32に接続されている。 The motor 20a is provided with a rotational position detection sensor 25a for detecting the rotational position of the rotor 22a. The motor 20b is provided with a rotational position detection sensor 25b that detects the rotational position of the rotor 22b. An output shaft 23a of the rotor 22a is connected to a ring shaft 30 of a mechanical device 36 described later. The output shaft 23b of the rotor 22b is connected to a carrier shaft 32 of a mechanical device 36 described later.
 機械装置36は、サンギヤ軸34とリングギヤ軸30とキャリア軸32とを回転要素として動力合成するシングルピニオン式の遊星歯車機構である。機械装置36は、外歯歯車で構成されるサンギヤ軸34と、サンギヤ軸34と同心円上に配置された内歯歯車で構成されるリングギヤ軸30とを備えている。機械装置36は、サンギヤ軸34に噛合すると共にリングギヤ軸30に噛合する複数のピニオンギヤ31と、複数のピニオンギヤ31を自転かつ公転自在に保持するキャリアで構成されるキャリア軸32とを備えている。 The mechanical device 36 is a single-pinion type planetary gear mechanism that synthesizes power using the sun gear shaft 34, the ring gear shaft 30 and the carrier shaft 32 as rotational elements. The mechanical device 36 includes a sun gear shaft 34 constituted by external gears and a ring gear shaft 30 constituted by internal gears arranged concentrically with the sun gear shaft 34. The mechanical device 36 includes a plurality of pinion gears 31 that mesh with the sun gear shaft 34 and mesh with the ring gear shaft 30, and a carrier shaft 32 that includes a carrier that holds the plurality of pinion gears 31 so as to rotate and revolve.
 サンギヤ軸34は、電動車両1の駆動軸12および減速ギヤ11を介して駆動輪10に連結される。キャリア軸32は、上述したようにモータ20bのロータ22bの出力軸23bに連結される。リング軸30は、上述したようにモータ20aのロータ22aの出力軸23aに連結される。モータ20a、20bが電動機として機能するときには、キャリア軸32から入力されるモータ20bの動力とリングギヤ軸30から入力されるモータ20aの動力が統合されてサンギヤ軸34から出力される。 The sun gear shaft 34 is connected to the drive wheel 10 via the drive shaft 12 and the reduction gear 11 of the electric vehicle 1. As described above, the carrier shaft 32 is connected to the output shaft 23b of the rotor 22b of the motor 20b. As described above, the ring shaft 30 is coupled to the output shaft 23a of the rotor 22a of the motor 20a. When the motors 20 a and 20 b function as electric motors, the power of the motor 20 b input from the carrier shaft 32 and the power of the motor 20 a input from the ring gear shaft 30 are integrated and output from the sun gear shaft 34.
 なお、電動車両1には、公知のパーキングブレーキ6が設けられている。パーキングブレーキ6が作動すると、電動車両1の駆動軸12が固定されるので、駆動軸12に接続されているサンギヤ軸34も固定される。 The electric vehicle 1 is provided with a known parking brake 6. When the parking brake 6 is operated, the drive shaft 12 of the electric vehicle 1 is fixed, so that the sun gear shaft 34 connected to the drive shaft 12 is also fixed.
 モータ20aは、インバータ40aを介してバッテリ50と電力を授受する。モータ20bは、インバータ40bを介してバッテリ50と電力を授受する。モータ20a、20bはともに、後述するモータコントローラ60により駆動制御されるインバータ40a,40bによって駆動制御される。 The motor 20a exchanges electric power with the battery 50 via the inverter 40a. The motor 20b exchanges power with the battery 50 via the inverter 40b. Both the motors 20a and 20b are driven and controlled by inverters 40a and 40b that are driven and controlled by a motor controller 60 described later.
 本実施の形態のモータ制御装置100は、各々のモータ20a,20bを駆動するためのインバータ40a,40bと、その電力源である、たとえばリチウムイオン2次電池として構成されたバッテリ50と、インバータ40a,40bを制御するためのモータコントローラ60とを備える。 Motor control device 100 of the present embodiment includes inverters 40a and 40b for driving motors 20a and 20b, a battery 50 configured as a power source, for example, a lithium ion secondary battery, and inverter 40a. , 40b for controlling the motor controller 60.
 モータコントローラ60には、モータ20a,20bを駆動制御するために必要な各種信号が入力される。モータコントローラ60への入力信号は、たとえば回転位置検出センサ25a,25bからの信号や、図示しない電流センサにより検出されるモータ20a,20bに印加される相電流や、図示しない電圧センサにより検出されるバッテリの直流電圧などである。また、モータコントローラ60には、車両側コントローラ3からの各種信号が入力される。 Various signals necessary for driving and controlling the motors 20a and 20b are input to the motor controller 60. An input signal to the motor controller 60 is detected by, for example, a signal from the rotational position detection sensors 25a and 25b, a phase current applied to the motors 20a and 20b detected by a current sensor (not shown), or a voltage sensor (not shown). For example, the DC voltage of the battery. Various signals from the vehicle-side controller 3 are input to the motor controller 60.
 モータコントローラ60からは、インバータ40a,40bへのスイッチング制御信号が出力される。スイッチング制御は周知なので、詳細な説明を省略する。なお、本実施の形態では、モータ制御装置100と、モータ20a,20bと、機械装置36とによって、モータ駆動装置2が構成されている。 The motor controller 60 outputs a switching control signal to the inverters 40a and 40b. Since switching control is well known, detailed description thereof is omitted. In the present embodiment, the motor control device 100, the motors 20a and 20b, and the mechanical device 36 constitute the motor drive device 2.
 車両側コントローラ3は、電動車両1の各部を制御する制御装置である。車両側コントローラ3は、たとえば、後述するアクセルペダルセンサ5dで検出した電動車両1のアクセルペダル7の踏み込み量等に基づいて、モータコントローラ60へトルク指令を出力する。車両側コントローラ3には、メインスイッチ4と、各種センサ5とが接続されている。メインスイッチ4は、電動車両1の電源をオンオフするオンオフスイッチである。各種センサ5は、電動車両1の状態を検出するセンサである。各種センサ5には、たとえば、パーキングブレーキ検出スイッチ5aや、車速センサ5b、ブレーキスイッチ5c、アクセルペダルセンサ5dなどが含まれる。 The vehicle controller 3 is a control device that controls each part of the electric vehicle 1. The vehicle-side controller 3 outputs a torque command to the motor controller 60 based on, for example, the depression amount of the accelerator pedal 7 of the electric vehicle 1 detected by an accelerator pedal sensor 5d described later. A main switch 4 and various sensors 5 are connected to the vehicle-side controller 3. The main switch 4 is an on / off switch that turns on and off the power supply of the electric vehicle 1. Various sensors 5 are sensors that detect the state of the electric vehicle 1. The various sensors 5 include, for example, a parking brake detection switch 5a, a vehicle speed sensor 5b, a brake switch 5c, an accelerator pedal sensor 5d, and the like.
 パーキングブレーキ検出スイッチ5aは、パーキングブレーキ6が作動しているか否かを検出する検出スイッチであり、パーキングブレーキ6が作動すると、パーキングブレーキ信号を出力する。車速センサ5bは、電動車両1の車速を検出するセンサである。ブレーキスイッチ5cは、電動車両1の不図示の油圧式ブレーキ装置を作動させるための不図示のブレーキペダルが踏み込まれるとブレーキ信号を出力するスイッチである。アクセルペダルセンサ5dは、電動車両1のアクセルペダル7の踏み込み量を検出するセンサである。 The parking brake detection switch 5a is a detection switch for detecting whether or not the parking brake 6 is operated. When the parking brake 6 is operated, a parking brake signal is output. The vehicle speed sensor 5 b is a sensor that detects the vehicle speed of the electric vehicle 1. The brake switch 5c is a switch that outputs a brake signal when a brake pedal (not shown) for operating a hydraulic brake device (not shown) of the electric vehicle 1 is depressed. The accelerator pedal sensor 5 d is a sensor that detects the amount of depression of the accelerator pedal 7 of the electric vehicle 1.
 図2は、機械装置36のサンギヤ軸34、キャリア軸32、および、リング軸30の回転数の範囲を例示する速度線図である。図中のλは(1)式で与えられ、各ギヤ軸の増速比あるいは減速比が把握できる。ここでZrはリングギヤの歯数であり、Zsはサンギヤの歯数である。
    λ=Zr/Zs    ・・・(1)
FIG. 2 is a velocity diagram illustrating the rotation speed ranges of the sun gear shaft 34, the carrier shaft 32, and the ring shaft 30 of the mechanical device 36. Λ in the figure is given by equation (1), and the speed increase ratio or speed reduction ratio of each gear shaft can be grasped. Here, Zr is the number of teeth of the ring gear, and Zs is the number of teeth of the sun gear.
λ = Zr / Zs (1)
 このように構成される本実施の形態のモータ制御装置100は、車両側コントローラ3からのトルク指令に基づき、モータ20a,20bの駆動制御を行う。本実施の形態のモータ制御装置100では、回転位置検出センサ25a,25bからの信号に基づいてロータ22a,22bの回転位置を検出して、公知のベクトル制御でモータ20a,20bの駆動制御を行う。モータユニット200のケーシングに対する回転位置検出センサ25a,25bの取付位置がずれると、回転位置検出センサ25a,25bで検出するロータ22a,22bの回転位置がずれてしまい、モータ20a,20bの出力トルクが低下してしまう。 The motor control device 100 of the present embodiment configured as described above performs drive control of the motors 20a and 20b based on the torque command from the vehicle-side controller 3. In the motor control device 100 of the present embodiment, the rotational positions of the rotors 22a and 22b are detected based on signals from the rotational position detection sensors 25a and 25b, and the drive control of the motors 20a and 20b is performed by known vector control. . If the mounting positions of the rotational position detection sensors 25a and 25b with respect to the casing of the motor unit 200 are shifted, the rotational positions of the rotors 22a and 22b detected by the rotational position detection sensors 25a and 25b are shifted, and the output torque of the motors 20a and 20b is reduced. It will decline.
 そのため、モータユニット200の組立後に回転位置検出センサ25a,25bの取付位置を微調整することが望まれるが、回転位置検出センサ25a,25bの配設位置によっては、モータユニット200の組立後に取付位置の微調整が困難となる。たとえば、2つの回転位置検出センサ25a,25bのうちの一方の取付位置の微調整が行えても、他方の微調整が困難であることも考えられる。 For this reason, it is desirable to finely adjust the mounting positions of the rotational position detection sensors 25a and 25b after the motor unit 200 is assembled. However, depending on the positions of the rotational position detection sensors 25a and 25b, the mounting position may be after the motor unit 200 is assembled. It becomes difficult to make fine adjustments. For example, it can be considered that even if one of the two rotational position detection sensors 25a and 25b can be finely adjusted, the other fine adjustment is difficult.
 たとえば本実施の形態では、2つの回転位置検出センサ25a,25bのうちの回転位置検出センサ25aは、モータユニット200の外部からアクセス可能であり、取付位置の微調整を行える。しかし、回転位置検出センサ25bは、モータユニット200の外部からアクセス不能であり、取付位置の微調整ができない。そこで、本実施の形態では、以下のようにして、回転位置検出センサ25bによるロータ22bの検出位置を補正する。 For example, in the present embodiment, the rotational position detection sensor 25a of the two rotational position detection sensors 25a and 25b can be accessed from the outside of the motor unit 200 and can finely adjust the mounting position. However, the rotational position detection sensor 25b is inaccessible from the outside of the motor unit 200, and the attachment position cannot be finely adjusted. Therefore, in the present embodiment, the detection position of the rotor 22b by the rotational position detection sensor 25b is corrected as follows.
 本実施の形態では、回転位置検出センサ25bによるロータ22bの検出位置の補正のために、以下に説明する機械装置36の特徴を利用する。
 モータ20aを駆動すると、ロータ22aの出力軸に連結されたリング軸30が回転する。たとえば、電動車両1の駆動軸12に接続されているサンギヤ軸34を固定すると、モータ20aのロータ22aとモータ20bのロータ22bとが互いに接続された状態となる。すなわち、サンギヤ軸34を固定すると、リング軸30の回転によってキャリア軸32と、キャリア軸32に連結されたモータ20bのロータ22bとが回転する。このときの、ロータ22aの回転速度とロータ22bの回転速度との速度比Gは、次の(2)式で表される。
     G=(Zr+Zs)/Zr   ・・・(2)
In the present embodiment, the features of the mechanical device 36 described below are used for correcting the detection position of the rotor 22b by the rotational position detection sensor 25b.
When the motor 20a is driven, the ring shaft 30 connected to the output shaft of the rotor 22a rotates. For example, when the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 is fixed, the rotor 22a of the motor 20a and the rotor 22b of the motor 20b are connected to each other. That is, when the sun gear shaft 34 is fixed, the carrier shaft 32 and the rotor 22b of the motor 20b connected to the carrier shaft 32 are rotated by the rotation of the ring shaft 30. At this time, the speed ratio G between the rotational speed of the rotor 22a and the rotational speed of the rotor 22b is expressed by the following equation (2).
G = (Zr + Zs) / Zr (2)
 サンギヤ軸34を固定した状態でロータ22bの回転方向とは反対の方向にロータ22bが回転するようにモータ20bを駆動することを考える。図3は、各モータ20a,20bの出力トルクおよび各ロータ22a,22bの回転速度の推移を示す図である。図3(a)は、モータ20aの出力トルクTaを示す図であり、図3(b)は、モータ20bの出力トルクTbを示す図である。図3(c)は、各ロータ22a,22bの回転速度を示す図である。なお、図3(a),(b)でモータ20a,20bの出力トルクTa,Tbの立ち上がりにおける時間差△tは、電動車両1でのCAN通信における遅れを想定した時間差である。 Suppose that the motor 20b is driven so that the rotor 22b rotates in a direction opposite to the rotation direction of the rotor 22b with the sun gear shaft 34 fixed. FIG. 3 is a graph showing the transition of the output torque of each motor 20a, 20b and the rotational speed of each rotor 22a, 22b. FIG. 3A is a diagram showing the output torque Ta of the motor 20a, and FIG. 3B is a diagram showing the output torque Tb of the motor 20b. FIG. 3C is a diagram showing the rotational speeds of the rotors 22a and 22b. 3A and 3B, the time difference Δt at the rise of the output torques Ta and Tb of the motors 20 a and 20 b is a time difference assuming a delay in CAN communication in the electric vehicle 1.
 モータ20aの出力トルクTaの値をTm1とすると、モータ20bの出力トルクTbの値がTm2=-Tm1×Gであれば、機械装置36の機構上、モータ20aの出力トルクTaとモータ20bの出力トルクTbとが釣り合う。したがって、図3に示すように、各ロータ22a,22bの回転速度は、時間が経過しても増減せずに一定となる。すなわち、モータコントローラ60は、モータ20aの出力トルクTaがTm1となるようなトルク指令値Ta*と、モータ20bの出力トルクTbがTm2となるようなトルク指令値Tb*を算出してインバータ40a,40bを駆動する。このとき、各モータ20a,20bの出力トルクTa,Tbがトルク指令値Ta*,Tb*と一致すれば、サンギヤ軸34固定時の各ロータ22a,22bの回転速度は、時間が経過しても増減せずに一定となる
Assuming that the value of the output torque Ta of the motor 20a is Tm1, if the value of the output torque Tb of the motor 20b is Tm2 = −Tm1 × G, the output torque Ta of the motor 20a and the output of the motor 20b are determined on the mechanism of the mechanical device 36. The torque Tb is balanced. Therefore, as shown in FIG. 3, the rotational speeds of the rotors 22a and 22b are constant without increasing or decreasing over time. That is, the motor controller 60 calculates the torque command value Ta * such that the output torque Ta of the motor 20a is Tm1 and the torque command value Tb * such that the output torque Tb of the motor 20b is Tm2, and then calculates the inverter 40a, 40b is driven. At this time, if the output torques Ta and Tb of the motors 20a and 20b coincide with the torque command values Ta * and Tb *, the rotational speeds of the rotors 22a and 22b when the sun gear shaft 34 is fixed are the same even if time passes. It becomes constant without increasing or decreasing.
 しかし、回転位置検出センサ25bの取付位置がずれていると、モータ20bの出力トルクTbは、本来出力されるべきである出力トルク目標値Tm2よりも小さくなる。図4は、モータ20bの出力トルクTbがTm2よりも小さい場合の各モータ20a,20bの出力トルクTa,Tbおよび各ロータ22a,22bの回転速度の推移を示す図である。図4(a)は、モータ20aの出力トルクTaを示す図であり、図4(b)は、モータ20bの出力トルクTbを示す図である。図4(c)は、各ロータ22a,22bの回転速度を示す図である。 However, if the mounting position of the rotational position detection sensor 25b is deviated, the output torque Tb of the motor 20b becomes smaller than the output torque target value Tm2 that should be output originally. FIG. 4 is a graph showing changes in the output torques Ta and Tb of the motors 20a and 20b and the rotational speeds of the rotors 22a and 22b when the output torque Tb of the motor 20b is smaller than Tm2. 4A is a diagram showing the output torque Ta of the motor 20a, and FIG. 4B is a diagram showing the output torque Tb of the motor 20b. FIG. 4C is a diagram showing the rotational speeds of the rotors 22a and 22b.
 図4に示すように、回転位置検出センサ25bの取付位置がずれていると、モータ20bの出力トルクTbは目標トルクTm2よりも低下し、サンギヤ軸34固定時の各ロータ22a,22bの回転速度は、時間の経過とともに増加する。 As shown in FIG. 4, when the mounting position of the rotational position detection sensor 25b is shifted, the output torque Tb of the motor 20b is lower than the target torque Tm2, and the rotational speeds of the rotors 22a and 22b when the sun gear shaft 34 is fixed. Increases over time.
 そこで、本実施の形態では、モータコントローラ60は、上述のようにしてモータ20a,20bを駆動した場合のロータ22bの加速度を算出する。そして、算出したロータ22bの加速度がゼロでなければ、モータコントローラ60は、ロータ22bの加速度がゼロとなるように回転位置検出センサ25bによるロータ22bの検出位置の補正値を算出する。そして、モータコントローラ60は、算出した補正値で補正後のロータ22bの検出位置に基づいて、モータ20bの駆動制御を行う。 Therefore, in the present embodiment, the motor controller 60 calculates the acceleration of the rotor 22b when the motors 20a and 20b are driven as described above. If the calculated acceleration of the rotor 22b is not zero, the motor controller 60 calculates a correction value for the detected position of the rotor 22b by the rotational position detection sensor 25b so that the acceleration of the rotor 22b becomes zero. Then, the motor controller 60 performs drive control of the motor 20b based on the detected position of the rotor 22b corrected with the calculated correction value.
 図5は、ロータ22bの検出位置の後述する補正処理を行った場合の各モータ20a,20bの出力トルクTa,Tbおよび各ロータ22a,22bの回転速度の推移を示す図である。図5(a)は、モータ20aの出力トルクTaを示す図であり、図5(b)は、モータ20bの出力トルクTbを示す図である。図5(c)は、各ロータ22a,22bの回転速度を示す図である。ロータ22bの検出位置の補正処理を時点t1以降行うことでモータ20bの出力トルクTbが増加して、各ロータ22a,22bの回転速度が一定値で安定する。 FIG. 5 is a diagram showing transitions of output torques Ta and Tb of the motors 20a and 20b and rotation speeds of the rotors 22a and 22b when correction processing described later of the detection position of the rotor 22b is performed. FIG. 5A is a diagram showing the output torque Ta of the motor 20a, and FIG. 5B is a diagram showing the output torque Tb of the motor 20b. FIG.5 (c) is a figure which shows the rotational speed of each rotor 22a, 22b. By performing the correction processing of the detection position of the rotor 22b after the time point t1, the output torque Tb of the motor 20b increases, and the rotational speeds of the rotors 22a and 22b are stabilized at a constant value.
 図6は、ベクトル制御とともにロータ22bの検出位置の補正処理も行うモータコントローラ60のブロック図である。モータコントローラ60は、トルク指令算出部611と、軸加速度算出部612と、ベクトル制御部621,622と、補正量生成部631と、加算器632と、スイッチ633と、記憶部634とを備えている。トルク指令算出部611は、車両側コントローラ3からのトルク指令に基づき、トルク指令値Ta*およびTb*を算出する。トルク指令値Ta*はベクトル制御器621へ出力され、トルク指令値Tb*はベクトル制御器622へ出力される。 FIG. 6 is a block diagram of the motor controller 60 that performs correction processing of the detection position of the rotor 22b together with vector control. The motor controller 60 includes a torque command calculation unit 611, an axial acceleration calculation unit 612, vector control units 621 and 622, a correction amount generation unit 631, an adder 632, a switch 633, and a storage unit 634. Yes. The torque command calculation unit 611 calculates torque command values Ta * and Tb * based on the torque command from the vehicle-side controller 3. Torque command value Ta * is output to vector controller 621, and torque command value Tb * is output to vector controller 622.
 トルク指令算出部611は、補正処理に際して、モータ22a,22bがそれぞれ上述した第1,第2目標トルクTm1,Tm2を出力するように、トルク指令値Ta*、Tb*を設定する。モータ22aが第1目標トルクTm1で正転し、モータ22bが第1目標トルクTm1を打ち消す第2目標トルクTm2で逆転すれば、図5で説明したように、モータ22a,22bの回転速度は増速も加速もせず一定値で安定する。 The torque command calculation unit 611 sets the torque command values Ta * and Tb * so that the motors 22a and 22b output the above-described first and second target torques Tm1 and Tm2, respectively, during the correction process. If the motor 22a rotates forward at the first target torque Tm1 and the motor 22b reverses at the second target torque Tm2 that cancels the first target torque Tm1, the rotational speeds of the motors 22a and 22b increase as described in FIG. Stable at a constant value without speed or acceleration.
 なお、第1、第2目標トルクTm1,Tm2の値は、たとえばモータ20a,20bのコギングトルク以上の値とすることができる。また、第1、第2目標トルクTm1,Tm2は、第1目標トルクTm1を予め適宜設定し、この第1目標トルクTm1に速度比Gを乗じて負の値として第2目標トルクTm2を設定することができる。しかしながら、これらの第1、第2目標トルクTm1,Tm2を実験または解析で決定してもよい。第1目標トルクTm1を補正用第1トルクとも呼び、第2目標トルクTm2を補正用第2トルクとも呼ぶ。 Note that the values of the first and second target torques Tm1, Tm2 can be set to values equal to or greater than the cogging torque of the motors 20a, 20b, for example. As the first and second target torques Tm1 and Tm2, the first target torque Tm1 is appropriately set in advance, and the first target torque Tm1 is multiplied by the speed ratio G to set the second target torque Tm2 as a negative value. be able to. However, the first and second target torques Tm1 and Tm2 may be determined by experiment or analysis. The first target torque Tm1 is also called a correction first torque, and the second target torque Tm2 is also called a correction second torque.
 ベクトル制御器621は、トルク指令算出部611からのトルク指令値Ta*、および、回転位置検出センサ25aからのロータ22aの回転位置の情報に基づいて公知のPWM信号を生成してインバータ40aへ出力する。ベクトル制御器622は、トルク指令算出部611からのトルク指令値Tb*、および、補正後のロータ22bの回転位置に基づいて公知のPWM信号を生成してインバータ40bへ出力する。 The vector controller 621 generates a known PWM signal based on the torque command value Ta * from the torque command calculation unit 611 and the rotational position information of the rotor 22a from the rotational position detection sensor 25a, and outputs it to the inverter 40a. To do. The vector controller 622 generates a known PWM signal based on the torque command value Tb * from the torque command calculation unit 611 and the corrected rotational position of the rotor 22b and outputs it to the inverter 40b.
 軸加速度算出部612は、ロータ22bの回転位置の情報から導かれるロータ22bの回転速度に基づいてロータ22bの加速度を算出する。補正量生成部631は、後述するように、比例積分補償によってロータ22bの回転位置についての補正量を算出する。スイッチ633は、補正量生成部631で算出された補正量か、記憶部634に記憶された補正量のいずれかを選択して加算器632に出力する。加算器632は、スイッチ633を介して入力される補正量と、回転位置検出センサ25bからのロータ22bの回転位置とを加算して、ベクトル制御部622へ出力する。 The axial acceleration calculation unit 612 calculates the acceleration of the rotor 22b based on the rotation speed of the rotor 22b derived from information on the rotation position of the rotor 22b. As will be described later, the correction amount generation unit 631 calculates a correction amount for the rotational position of the rotor 22b by proportional-integral compensation. The switch 633 selects either the correction amount calculated by the correction amount generation unit 631 or the correction amount stored in the storage unit 634 and outputs it to the adder 632. The adder 632 adds the correction amount input via the switch 633 and the rotational position of the rotor 22b from the rotational position detection sensor 25b, and outputs the result to the vector control unit 622.
 ロータ22bの回転位置についての補正量は、次のようにして算出される。補正量の算出の際には、補正量生成部631からの補正量が加算器632に入力されるようにスイッチ633が切り替えられる。 The correction amount for the rotational position of the rotor 22b is calculated as follows. When calculating the correction amount, the switch 633 is switched so that the correction amount from the correction amount generator 631 is input to the adder 632.
 補正量生成部631は、ロータ22bの加速度指令の値(0[rad/s^2])と、軸加速度算出部612で算出されたロータ22bの加速度との差分に基づいて、比例積分補償を行い、補正量を算出する。補正量生成部631で算出された補正量は、スイッチ633を介して加算器632に入力される。加算器632は、スイッチ633を介して入力された補正量生成部631からの補正量と、回転位置検出センサ25bからのロータ22bの回転位置とを加算して、補正後のロータ22bの回転位置をベクトル制御部622へ出力する。 The correction amount generation unit 631 performs proportional-integral compensation based on the difference between the acceleration command value (0 [rad / s ^ 2]) of the rotor 22b and the acceleration of the rotor 22b calculated by the axial acceleration calculation unit 612. And the correction amount is calculated. The correction amount calculated by the correction amount generation unit 631 is input to the adder 632 via the switch 633. The adder 632 adds the correction amount from the correction amount generation unit 631 input via the switch 633 and the rotational position of the rotor 22b from the rotational position detection sensor 25b, and the corrected rotational position of the rotor 22b. Is output to the vector control unit 622.
 ベクトル制御部622は、補正量生成部631で算出された補正量が反映されたロータ22bの回転位置に基づいて、PWM信号を生成してインバータ40bへ出力する。その結果、モータ22bのトルクが増加して、ロータ22bの加速度が徐々に低下する。 The vector control unit 622 generates a PWM signal based on the rotational position of the rotor 22b reflecting the correction amount calculated by the correction amount generation unit 631, and outputs the PWM signal to the inverter 40b. As a result, the torque of the motor 22b increases and the acceleration of the rotor 22b gradually decreases.
 補正量生成部631での補正量の算出処理は、ロータ22bの加速度がゼロとなるまで繰り返し実行される。ロータ22bの加速度がゼロとなると、その時点で補正量生成部631で算出されている補正量が記憶部634に記憶されて、上述した補正量生成部631での補正量の算出処理が終了する。上述した補正量生成部631での補正量の算出処理が終了すると、記憶部634に記憶されている補正量が加算器632に入力されるように、スイッチ633が切り替えられる。これにより、補正量の算出処理の終了後は、記憶部634に記憶された補正量により補正されたロータ22bの回転位置がベクトル制御部622に入力される。 The correction amount calculation process in the correction amount generation unit 631 is repeatedly executed until the acceleration of the rotor 22b becomes zero. When the acceleration of the rotor 22b becomes zero, the correction amount calculated by the correction amount generation unit 631 at that time is stored in the storage unit 634, and the correction amount calculation processing in the correction amount generation unit 631 described above ends. . When the correction amount calculation process in the correction amount generation unit 631 is completed, the switch 633 is switched so that the correction amount stored in the storage unit 634 is input to the adder 632. As a result, after the correction amount calculation process is completed, the rotational position of the rotor 22 b corrected by the correction amount stored in the storage unit 634 is input to the vector control unit 622.
 補正量生成部631での補正量の算出処理は、たとえば、モータ制御装置100の電源が投入されることでモータ制御装置100が初期化されると実行される。すなわち、上述した補正量生成部631での補正量の算出処理は、たとえば、モータ制御装置100を搭載する電動車両1のメインスイッチ4がオンされて、電動車両1の電源が投入され、モータ制御装置100の電源が投入されると実施される。 The correction amount calculation processing in the correction amount generation unit 631 is executed, for example, when the motor control device 100 is initialized by turning on the power of the motor control device 100. That is, in the correction amount calculation process in the correction amount generation unit 631 described above, for example, the main switch 4 of the electric vehicle 1 on which the motor control device 100 is mounted is turned on, the electric vehicle 1 is turned on, and the motor control is performed. This is performed when the apparatus 100 is powered on.
 なお、補正量生成部631で補正量の算出処理を行うためには、電動車両1の駆動軸12に接続されているサンギヤ軸34が固定されていなければならない。そこで、本実施の形態では、メインスイッチ4がオンされた後、パーキングブレーキ検出スイッチ5aからのパーキングブレーキ信号の有無に基づいて、パーキングブレーキ6が作動していると判断されると、補正量生成部631で補正量の算出処理が行われる。 Note that the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 must be fixed in order for the correction amount generation unit 631 to perform correction amount calculation processing. Therefore, in the present embodiment, after the main switch 4 is turned on, if it is determined that the parking brake 6 is operating based on the presence or absence of the parking brake signal from the parking brake detection switch 5a, the correction amount is generated. The unit 631 performs a correction amount calculation process.
 上述したように、補正量が記憶部634に記憶されて、スイッチ633が切り替えられると、通常の制御に切り替わる。通常制御では、加算器632には、記憶部634に記憶されている補正量と、回転位置検出センサ25bからのロータ22bの回転位置とが入力される。したがって、記憶部634に記憶された補正量で補正されたロータ22bの回転位置が加算器632から出力されて、ベクトル制御器622に入力される。 As described above, when the correction amount is stored in the storage unit 634 and the switch 633 is switched, the control is switched to normal control. In the normal control, the correction amount stored in the storage unit 634 and the rotational position of the rotor 22b from the rotational position detection sensor 25b are input to the adder 632. Therefore, the rotational position of the rotor 22 b corrected with the correction amount stored in the storage unit 634 is output from the adder 632 and input to the vector controller 622.
 図7は、モータコントローラ60におけるモータ20a,20bの制御処理を示すフローチャートである。たとえば、電動車両1のメインスイッチ4がオンされて、モータ制御装置100の電源が投入されると、図7に示す処理を行うプログラムが起動され、モータコントローラ60のCPUで繰り返し実行される。ステップS1において、モータ制御装置100が初期化されたか否かを判断する。 FIG. 7 is a flowchart showing control processing of the motors 20a and 20b in the motor controller 60. For example, when the main switch 4 of the electric vehicle 1 is turned on and the motor control device 100 is turned on, a program for performing the processing shown in FIG. 7 is started and repeatedly executed by the CPU of the motor controller 60. In step S1, it is determined whether or not the motor control device 100 has been initialized.
 ステップS1が肯定判断されるとステップS3へ進み、パーキングブレーキ検出スイッチ5aからのパーキングブレーキ信号が検出されたか否かを判断する。ステップS3が肯定判断されるとステップS100へ進み、ロータ22bの検出位置の補正処理についてのサブルーチンを実行する。ステップS100のサブルーチンについては、後に詳述する。 If the determination in step S1 is affirmative, the process proceeds to step S3, and it is determined whether or not a parking brake signal from the parking brake detection switch 5a is detected. If an affirmative determination is made in step S3, the process proceeds to step S100, and a subroutine for correction processing of the detected position of the rotor 22b is executed. The subroutine of step S100 will be described in detail later.
 ステップS100のサブルーチンが実行されるとステップS200へ進み、モータ20a,20bの駆動に関する通常制御を行うサブルーチンを実行する。ステップS200の通常制御のサブルーチンでは、モータ20aについて公知の駆動制御が行われる。また、ステップS200の通常制御のサブルーチンでは、上述したように記憶部634に記憶されている補正量で補正されたロータ22bの回転位置に基づいて、モータ20bの駆動が制御される。 When the subroutine of step S100 is executed, the process proceeds to step S200, and a subroutine for performing normal control related to driving of the motors 20a and 20b is executed. In the normal control subroutine of step S200, known drive control is performed for the motor 20a. In the normal control subroutine of step S200, the driving of the motor 20b is controlled based on the rotational position of the rotor 22b corrected with the correction amount stored in the storage unit 634 as described above.
 ステップS3が否定判断されるとステップS200へ進み、通常制御のサブルーチンを実行する。ステップS1が否定判断されるとステップS200へ進み、通常制御のサブルーチンを実行する。 If a negative determination is made in step S3, the process proceeds to step S200, and a normal control subroutine is executed. If a negative determination is made in step S1, the process proceeds to step S200, and a normal control subroutine is executed.
 図8は、図7のステップS100のサブルーチンについてのフローチャートである。図7のステップS3が肯定判断されると、図8のステップS101へ進み、補正量生成部631からの補正量が加算器632に入力されるようにスイッチ633を切り替えてステップS102へ進む。ステップS102において、トルク指令値Ta*をTm1に設定し、トルク指令値Tb*をTm2に設定してステップS103へ進む。ステップS103において、ロータ22bの回転位置を読み取ってステップS105へ進む。 FIG. 8 is a flowchart for the subroutine of step S100 in FIG. If step S3 in FIG. 7 is affirmatively determined, the process proceeds to step S101 in FIG. In step S102, the torque command value Ta * is set to Tm1, the torque command value Tb * is set to Tm2, and the process proceeds to step S103. In step S103, the rotational position of the rotor 22b is read, and the process proceeds to step S105.
 ステップS105において、ステップS103で読み取ったロータ22bの回転位置に基づいてロータ22bの回転速度と加速度を算出してステップS107へ進む。ステップS107において、ステップS105で算出したロータ22bの加速度がゼロであるか否かを判断する。 In step S105, the rotational speed and acceleration of the rotor 22b are calculated based on the rotational position of the rotor 22b read in step S103, and the process proceeds to step S107. In step S107, it is determined whether or not the acceleration of the rotor 22b calculated in step S105 is zero.
 ステップS107が否定判断されるとステップS109へ進み、ロータ22bの加速度指令の値(0[rad/s^2])と、ステップS105で算出したロータ22bの加速
度との差分に基づいて、比例積分補償を行い、補正量を算出してステップS111へ進む。ステップS111において、ステップS111で算出した補正量で回転位置検出センサ25bからのロータ22bの回転位置を補正してステップS113へ進む。ステップS113において、ステップS111で補正したロータ22bの回転位置をベクトル制御部622へ出力してステップS103へ戻る。
If a negative determination is made in step S107, the process proceeds to step S109, and proportional integration is performed based on the difference between the acceleration command value (0 [rad / s ^ 2]) of the rotor 22b and the acceleration of the rotor 22b calculated in step S105. Compensation is performed, a correction amount is calculated, and the process proceeds to step S111. In step S111, the rotational position of the rotor 22b from the rotational position detection sensor 25b is corrected with the correction amount calculated in step S111, and the process proceeds to step S113. In step S113, the rotational position of the rotor 22b corrected in step S111 is output to the vector control unit 622, and the process returns to step S103.
 ステップS107が肯定判断されるとステップS115へ進み、ステップS111で算出した最新の補正量を読み取って、記憶部634に記憶させて、ステップS117へ進む。ステップS117において、記憶部634に記憶された補正量が加算器632に入力されるようにスイッチ633を切り替えてメインルーチンへ戻る。 If a positive determination is made in step S107, the process proceeds to step S115, the latest correction amount calculated in step S111 is read, stored in the storage unit 634, and the process proceeds to step S117. In step S117, the switch 633 is switched so that the correction amount stored in the storage unit 634 is input to the adder 632, and the process returns to the main routine.
 本実施の形態では、次の作用効果を奏する。
(1) ロータ22bの検出位置の補正処理に際し、機械装置36に出力軸23a,23bが接続されている2つのモータ20a,20bに対して、互いの発生トルクを打ち消す補正用第1トルク、補正用第2トルクを出力させるトルク指令値Ta*,Tb*を出力する補正制御を行うように構成した。そして、補正制御中に、ロータ22bの加速度を算出し、算出したロータ22bの加速度がゼロになるように、ロータ22bの回転位置についての補正量を算出するように構成した。これにより、調整しにくい回転位置センサの出力補正量を簡単な構成で求めることができるので、モータ制御装置100、モータ駆動装置2、および電動車両1のコスト増を抑制できる。また、回転位置センサ出力の補正値でトルク演算が行われるので、モータ20bの出力トルクの制御精度が向上し、モータ20bから正確にトルクを出力できる。
In the present embodiment, the following operational effects are achieved.
(1) In the correction processing of the detection position of the rotor 22b, the correction first torque and correction for canceling each other's generated torque for the two motors 20a and 20b connected to the output shafts 23a and 23b in the mechanical device 36. The correction control is performed to output the torque command values Ta * and Tb * for outputting the second torque. During the correction control, the acceleration of the rotor 22b is calculated, and the correction amount for the rotational position of the rotor 22b is calculated so that the calculated acceleration of the rotor 22b becomes zero. Thereby, since the output correction amount of the rotational position sensor that is difficult to adjust can be obtained with a simple configuration, an increase in cost of the motor control device 100, the motor drive device 2, and the electric vehicle 1 can be suppressed. Further, since torque calculation is performed with the correction value of the rotational position sensor output, the control accuracy of the output torque of the motor 20b is improved, and the torque can be accurately output from the motor 20b.
 また、回転位置検出センサ25bの取付位置の微調整が困難な場合であっても、回転位置検出センサ25bの取付位置のずれに起因したモータ20bの出力トルクの低下を抑制できるので、モータユニット200のコスト増を抑制できる。
 さらに、モータ20bの出力トルクの制御精度向上により、モータ20bを効率的に駆動できるので、モータ駆動装置2、および電動車両1の電力消費量の抑制できる。
Further, even if it is difficult to finely adjust the mounting position of the rotational position detection sensor 25b, it is possible to suppress a decrease in output torque of the motor 20b due to a shift in the mounting position of the rotational position detection sensor 25b. Cost increase can be suppressed.
Furthermore, since the motor 20b can be driven efficiently by improving the control accuracy of the output torque of the motor 20b, the power consumption of the motor drive device 2 and the electric vehicle 1 can be suppressed.
(2) 電動車両1のパーキングブレーキ6が作動しているときに、補正量生成部631で補正量の算出処理が行われるように構成した。これにより、電動車両1の駆動軸12に接続されたサンギヤ軸34を固定しておく必要がある補正量生成部631で補正量の算出処理が、電動車両1の走行に支障がない時期に行われるので、電動車両1のユーザに不便を感じさせない。 (2) The correction amount generation unit 631 is configured to perform a correction amount calculation process when the parking brake 6 of the electric vehicle 1 is operating. Accordingly, the correction amount calculation unit 631 that needs to fix the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 performs the correction amount calculation processing at a time when there is no problem in traveling of the electric vehicle 1. Therefore, the user of the electric vehicle 1 does not feel inconvenience.
(3) サンギヤ軸34を固定すると、モータ20aのロータ22aとモータ20bのロータ22bとが互いに接続された状態となる機械装置36の特徴を利用して、サンギヤ軸34を固定した状態で上述したロータ22bの検出位置の補正処理を行うように構成した。これにより、機械的な構成を追加しなくてもロータ22bの検出位置を補正できるので、モータ制御装置100、モータ駆動装置2、および電動車両1のコスト増を抑制できる。 (3) Using the feature of the mechanical device 36 in which the rotor 22a of the motor 20a and the rotor 22b of the motor 20b are connected to each other when the sun gear shaft 34 is fixed, the sun gear shaft 34 is fixed as described above. The detection position of the rotor 22b is corrected. Thereby, since the detection position of the rotor 22b can be corrected without adding a mechanical configuration, an increase in cost of the motor control device 100, the motor drive device 2, and the electric vehicle 1 can be suppressed.
(4) アクセルペダルセンサ5dで検出した電動車両1のアクセルペダル7の踏み込み量等に基づいて、車両側コントローラ3がモータコントローラ60へトルク指令を出力するように構成した。そして、車両側コントローラ3からのトルク指令と、回転位置検出センサ25aによるロータ22aの検出位置とに基づいて、モータ20aの出力トルク、具体的にはインバータ40aへ出力するPWM信号をモータコントローラ60で演算するように構成した。また、車両側コントローラ3からのトルク指令と、回転位置検出センサ25bによるロータ22bの検出位置を補正量で補正した検出値とに基づいて、モータ20bの出力トルク、具体的にはインバータ40bへ出力するPWM信号をモータコントローラ60で演算するように構成した。そして、モータコントローラ60からのPWM信号に基づいて、インバータ40a,40bがモータ20a,20bへの通電を制御するように構成した。そして、通常制御時には、記憶部634に記憶されている補正量で補正されたロータ22bの回転位置に基づいて、モータ20bの駆動が制御されるように構成した。これにより、モータ20bの出力トルクの制御精度向上により、モータ20bを効率的に駆動できるので、電動車両1の電力消費量の抑制できる。 (4) The vehicle-side controller 3 is configured to output a torque command to the motor controller 60 based on the depression amount of the accelerator pedal 7 of the electric vehicle 1 detected by the accelerator pedal sensor 5d. Based on the torque command from the vehicle-side controller 3 and the detected position of the rotor 22a by the rotational position detection sensor 25a, the motor controller 60 outputs the output torque of the motor 20a, specifically, the PWM signal to be output to the inverter 40a. It was configured to calculate. Further, based on the torque command from the vehicle-side controller 3 and the detection value obtained by correcting the detection position of the rotor 22b by the rotational position detection sensor 25b with the correction amount, the output torque of the motor 20b, specifically, the output to the inverter 40b. The PWM signal to be calculated is calculated by the motor controller 60. And based on the PWM signal from the motor controller 60, it comprised so that inverter 40a, 40b might control the electricity supply to motor 20a, 20b. During normal control, the driving of the motor 20b is controlled based on the rotational position of the rotor 22b corrected with the correction amount stored in the storage unit 634. Thereby, since the motor 20b can be driven efficiently by improving the control accuracy of the output torque of the motor 20b, the power consumption of the electric vehicle 1 can be suppressed.
---変形例---
(1) 上述の説明では、電動車両1のメインスイッチ4がオンされて、モータ制御装置100の電源が投入されると、すなわち、モータ制御装置100が初期化されると、補正量生成部631での補正量の算出処理を行うように構成したが、本発明はこれに限定されない。たとえば、信号待ちなどで電動車両1のパーキングブレーキ6が作動したときに、補正量生成部631で補正量の算出処理を行うように構成してもよい。
 また、補正量生成部631での補正量の算出処理をモータ制御装置100の初期化後に毎回行うのではなく、たとえば、毎月最初のモータ制御装置100の初期化後など、所定の期間の間隔をあけて、補正量生成部631での補正量の算出処理を行うようにしてもよい。
---- Modifications ----
(1) In the above description, when the main switch 4 of the electric vehicle 1 is turned on and the motor control device 100 is turned on, that is, when the motor control device 100 is initialized, the correction amount generation unit 631. However, the present invention is not limited to this. For example, the correction amount generation unit 631 may perform a correction amount calculation process when the parking brake 6 of the electric vehicle 1 is operated due to a signal waiting or the like.
In addition, the correction amount calculation process in the correction amount generation unit 631 is not performed every time after the initialization of the motor control device 100, but at intervals of a predetermined period, for example, after the initialization of the first motor control device 100 every month. A correction amount calculation process in the correction amount generation unit 631 may be performed.
(2) 上述したように、補正量生成部631で補正量の算出処理を行うためには、電動車両1の駆動軸12に接続されているサンギヤ軸34が固定されていなければならない。そのため、上述の説明では、パーキングブレーキ検出スイッチ5aからのパーキングブレーキ信号が検出されると、補正量生成部631での補正量の算出処理を行うように構成した。しかし、本発明はこれに限定されない。たとえば、車速センサ5bで検出された電動車両1の車速がゼロであり、かつ、ブレーキスイッチ5cからのブレーキ信号が検出されたときに、補正量生成部631での補正量の算出処理を行うように構成してもよい。なお、ブレーキスイッチ5cからのブレーキ信号に代えて、電動車両1の不図示の油圧式ブレーキ装置のブレーキ液圧を検出することで、油圧式ブレーキ装置、すなわちフットブレーキの作動中であるか否かを判断するようにしてもよい。 (2) As described above, in order for the correction amount generation unit 631 to perform the correction amount calculation process, the sun gear shaft 34 connected to the drive shaft 12 of the electric vehicle 1 must be fixed. Therefore, in the above description, when the parking brake signal from the parking brake detection switch 5a is detected, the correction amount generation unit 631 performs the correction amount calculation process. However, the present invention is not limited to this. For example, when the vehicle speed of the electric vehicle 1 detected by the vehicle speed sensor 5b is zero and a brake signal from the brake switch 5c is detected, the correction amount generation unit 631 performs a correction amount calculation process. You may comprise. Whether or not the hydraulic brake device, that is, the foot brake is in operation, is detected by detecting the brake fluid pressure of a hydraulic brake device (not shown) of the electric vehicle 1 instead of the brake signal from the brake switch 5c. May be determined.
(3) 上述の説明では、回転位置検出センサ25bで検出するロータ22bの検出位置を補正するように構成したが、回転位置検出センサ25aで検出するロータ22aの検出位置を補正するように構成してもよい。 (3) In the above description, the detection position of the rotor 22b detected by the rotational position detection sensor 25b is corrected. However, the detection position of the rotor 22a detected by the rotation position detection sensor 25a is corrected. May be.
(4) 上述の説明では、サンギヤ軸34が駆動軸12に連結され、キャリア軸32がモータ20bの出力軸23bに連結され、リング軸30がモータ20aの出力軸23aに連結されている場合について説明しているが、本発明はこれに限定されない。機械装置36の各軸30,32,34と、駆動軸12、モータ20aの出力軸23a、モータ20bの出力軸23bとの結合組合せは、たとえば、図9の結合組合せA~Fのいずれであってもよい。 (4) In the above description, the sun gear shaft 34 is connected to the drive shaft 12, the carrier shaft 32 is connected to the output shaft 23b of the motor 20b, and the ring shaft 30 is connected to the output shaft 23a of the motor 20a. Although described, the present invention is not limited to this. The combination of the shafts 30, 32, 34 of the mechanical device 36 with the drive shaft 12, the output shaft 23a of the motor 20a, and the output shaft 23b of the motor 20b is, for example, any of the combination combinations A to F in FIG. May be.
 図9に示す結合組合せAは、上述した実施の形態における結合組合せである。この場合、上述したように、サンギヤ軸34が駆動軸12に連結され、キャリア軸32がモータ20bの出力軸23bに連結され、リング軸30がモータ20aの出力軸23aに連結されている。結合組合せAにおいてロータ22bの検出位置の補正処理を行う場合、上述したように、トルク指令値Ta*をTm1とし、トルク指令値Tb*を-Tm1×Gとすればよい。なお、速度比Gは、上述したようにG=(Zr+Zs)/Zrである。 9 is a combination in the above-described embodiment. In this case, as described above, the sun gear shaft 34 is connected to the drive shaft 12, the carrier shaft 32 is connected to the output shaft 23b of the motor 20b, and the ring shaft 30 is connected to the output shaft 23a of the motor 20a. When correcting the detection position of the rotor 22b in the combination combination A, as described above, the torque command value Ta * may be set to Tm1, and the torque command value Tb * may be set to −Tm1 × G. The speed ratio G is G = (Zr + Zs) / Zr as described above.
 結合組合せBにおいてロータ22bの検出位置の補正処理を行う場合、トルク指令値Ta*をTm1とし、トルク指令値Tb*を-Tm1/Gとすればよい。なお、速度比Gは、G=(Zr+Zs)/Zrである。結合組合せCにおいてロータ22bの検出位置の補正処理を行う場合、トルク指令値Ta*をTm1とし、トルク指令値Tb*をTm1×Gとすればよい。なお、速度比Gは、G=1である。以下、結合組合せD~Fについても同様であるので、説明を省略する。 When performing the correction processing of the detection position of the rotor 22b in the combined combination B, the torque command value Ta * may be set to Tm1, and the torque command value Tb * may be set to -Tm1 / G. The speed ratio G is G = (Zr + Zs) / Zr. When correcting the detection position of the rotor 22b in the combination C, the torque command value Ta * may be set to Tm1, and the torque command value Tb * may be set to Tm1 × G. The speed ratio G is G = 1. Hereinafter, since the same applies to the combination combinations D to F, the description thereof is omitted.
(5) 上述の説明では、機械装置36が遊星歯車機構であるが、本発明はこれに限定されない。たとえば、機械装置36が、いわゆるデファレンシャルギヤと呼ばれる差動歯車機構など、他の機構であってもよい。 (5) In the above description, the mechanical device 36 is a planetary gear mechanism, but the present invention is not limited to this. For example, the mechanical device 36 may be another mechanism such as a differential gear mechanism called a so-called differential gear.
(6) 上述の説明では、モータ20a,20bと、機械装置36とがモータユニット200の同一のケーシング内に設けられているが、本発明はこれに限定されない。たとえば、モータ20aと、モータ20bと、機械装置36とが、それぞれ分離されていてもよい。
(7) 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
(6) In the above description, the motors 20a and 20b and the mechanical device 36 are provided in the same casing of the motor unit 200, but the present invention is not limited to this. For example, the motor 20a, the motor 20b, and the mechanical device 36 may be separated from each other.
(7) You may combine each embodiment and modification which were mentioned above, respectively.
 なお、本発明は、上記の各実施形態や変形例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 In addition, it cannot be overemphasized that this invention can be variously changed in the range which is not limited to said each embodiment and modification, and does not deviate from the summary.
1 電動車両、2 モータ駆動装置、3 車両側コントローラ、12 駆動軸、20a,20b モータ、21a,21b ステータ、22a,22b ロータ、23a,23b 出力軸、25a,25b 回転位置検出センサ、30 リングギヤ軸、32 キャリア軸、34 サンギヤ軸、36 機械装置、40a,40b インバータ、60 モータコントローラ、100 モータ駆動装置、611 トルク指令算出部
612 軸加速度算出部、621,622 ベクトル制御部、631 補正量生成部、632 加算器、633 スイッチ、634 記憶部
DESCRIPTION OF SYMBOLS 1 Electric vehicle, 2 Motor drive device, 3 Vehicle side controller, 12 Drive shaft, 20a, 20b Motor, 21a, 21b Stator, 22a, 22b Rotor, 23a, 23b Output shaft, 25a, 25b Rotation position detection sensor, 30 Ring gear shaft , 32 carrier shaft, 34 sun gear shaft, 36 mechanical device, 40a, 40b inverter, 60 motor controller, 100 motor drive device, 611 torque command calculation unit 612 axis acceleration calculation unit, 621, 622 vector control unit, 631 correction amount generation unit , 632 adder, 633 switch, 634 storage unit

Claims (7)

  1.  外部に動力を伝達する動力伝達機構に出力軸が接続された第1のモータのトルク指令およびロータ回転位置に基づいて、前記第1のモータがそのトルク指令に応じたトルクを出力するように前記第1のモータへ通電する第1のトルク制御部と、
     前記動力伝達機構に出力軸が接続された第2のモータのトルク指令およびロータ回転位置に基づいて、前記第2のモータがそのトルク指令に応じたトルクを出力するように前記第2のモータへ通電する第2のトルク制御部と、
     前記第1または第2のモータの前記出力軸の回転速度の変化率を算出する変化率算出部と、
     前記第1のモータが補正用第1トルクを出力し、前記第2のモータが前記補正用第1トルクを打ち消す補正用第2トルクを出力するように前記第1および第2のモータを補正制御するとともに、その補正制御中に前記変化率算出部で算出した前記変化率がゼロとなるように、前記第2のモータの前記ロータ回転位置を補正し、前記変化率がゼロとなったときの補正量を記憶する補正量記憶制御部とを備え、
     前記第2のトルク制御部は、前記補正量記憶制御部が前記補正量を記憶した後は、前記第2のモータのロータ回転位置を前記補正量で補正した補正後回転位置と前記第2のモータのトルク指令とに基づいて、前記第2のモータがそのトルク指令に応じたトルクを出力するように前記第2のモータへ通電するモータ制御装置。
    Based on the torque command of the first motor whose output shaft is connected to the power transmission mechanism that transmits power to the outside and the rotor rotation position, the first motor outputs torque corresponding to the torque command. A first torque control unit for energizing the first motor;
    Based on the torque command of the second motor whose output shaft is connected to the power transmission mechanism and the rotor rotational position, the second motor outputs torque corresponding to the torque command to the second motor. A second torque control unit energized;
    A rate-of-change calculator that calculates a rate of change of the rotational speed of the output shaft of the first or second motor;
    Correction control of the first and second motors is performed so that the first motor outputs a first correction torque and the second motor outputs a second correction torque that cancels the first correction torque. And correcting the rotor rotational position of the second motor so that the change rate calculated by the change rate calculation unit during the correction control becomes zero, and when the change rate becomes zero A correction amount storage control unit for storing the correction amount,
    After the correction amount storage control unit stores the correction amount, the second torque control unit includes a corrected rotation position obtained by correcting the rotor rotation position of the second motor with the correction amount, and the second torque control unit. A motor control device for energizing the second motor based on a motor torque command so that the second motor outputs a torque corresponding to the torque command.
  2.  請求項1に記載のモータ制御装置において、
     前記補正量記憶制御部は、前記モータ制御装置が起動されると前記補正制御の実施が可能であるか否かを判断し、前記補正制御の実施が可能であると判断すると、前記補正制御を実施するとともに、その補正制御中に前記変化率算出部で算出した前記変化率がゼロとなるように、前記第2のモータの前記ロータ回転位置を補正し、前記変化率がゼロとなったときの補正量を記憶するモータ制御装置。
    The motor control device according to claim 1,
    When the motor control device is activated, the correction amount storage control unit determines whether or not the correction control can be performed, and determines that the correction control can be performed. When the rotor rotational position of the second motor is corrected so that the change rate calculated by the change rate calculation unit becomes zero during the correction control, and the change rate becomes zero Motor control device for storing the correction amount.
  3.  請求項1または請求項2に記載のモータ制御装置と、
     ロータ回転位置を検出する第1の回転位置検出センサを有する第1のモータと、
     ロータ回転位置を検出する第2の回転位置検出センサを有する第2のモータとを備え、
     前記動力伝達機構は、前記第1のモータの出力軸に接続される第1の軸、前記第2のモータの出力軸に接続される第2の軸、および、車両の駆動軸に接続される第3の軸を有し
    、前記第1のモータの出力と前記第2のモータの出力とを合成して前記第3の軸から出力するモータ駆動装置。
    The motor control device according to claim 1 or 2,
    A first motor having a first rotational position detection sensor for detecting a rotor rotational position;
    A second motor having a second rotational position detection sensor for detecting the rotor rotational position;
    The power transmission mechanism is connected to a first shaft connected to the output shaft of the first motor, a second shaft connected to the output shaft of the second motor, and a drive shaft of the vehicle. A motor drive device having a third shaft, which combines the output of the first motor and the output of the second motor and outputs the resultant from the third shaft.
  4.  請求項3に記載のモータ駆動装置において、
     前記第1のモータ、前記第2のモータ、および、前記動力伝達機構は、1つのユニットとして構成され、
     前記第1の回転位置検出センサは、前記ユニットの外部からアクセス可能な位置に設けられ、
     前記第2の回転位置検出センサは、前記ユニットの外部からアクセス不能な位置に設けられているモータ駆動装置。
    In the motor drive device according to claim 3,
    The first motor, the second motor, and the power transmission mechanism are configured as one unit,
    The first rotational position detection sensor is provided at a position accessible from the outside of the unit,
    The second rotational position detection sensor is a motor drive device provided at a position inaccessible from the outside of the unit.
  5.  請求項3または請求項4に記載のモータ駆動装置において、
     前記動力伝達機構は、サンギヤ軸、リングギヤ軸、およびキャリア軸を回転要素として動力合成する遊星歯車機構であり、前記第1の軸、前記第2の軸、および前記第3の軸が
    、それぞれ、前記サンギヤ軸、前記リングギヤ軸、および前記キャリア軸のいずれか1つと対応するモータ駆動装置。
    In the motor drive device according to claim 3 or 4,
    The power transmission mechanism is a planetary gear mechanism that synthesizes power using a sun gear shaft, a ring gear shaft, and a carrier shaft as rotational elements, and the first shaft, the second shaft, and the third shaft are respectively A motor driving device corresponding to any one of the sun gear shaft, the ring gear shaft, and the carrier shaft.
  6.  請求項3に記載のモータ駆動装置と、
     車両の電源をオンオフするオンオフスイッチと、
     パーキングブレーキと、
     前記パーキングブレーキが作動しているか否かを検出するパーキングブレーキ検出スイッチとを備え、
     前記補正量記憶制御部は、前記オンオフスイッチがオンされた後、前記パーキングブレーキ検出スイッチからの検出信号に基づいて前記パーキングブレーキが作動していると判断すると前記補正制御の実施が可能であると判断して、前記補正制御を実施するとともに
    、その補正制御中に前記変化率算出部で算出した前記変化率がゼロとなるように、前記第2のモータの前記ロータ回転位置を補正し、前記変化率がゼロとなったときの補正量を記憶する電動車両。
    A motor driving device according to claim 3;
    An on / off switch to turn on / off the vehicle,
    Parking brake,
    A parking brake detection switch for detecting whether or not the parking brake is operating,
    When the correction amount storage control unit determines that the parking brake is operating based on a detection signal from the parking brake detection switch after the on / off switch is turned on, the correction control can be performed. Determining, performing the correction control, correcting the rotor rotational position of the second motor so that the change rate calculated by the change rate calculation unit during the correction control becomes zero, and An electric vehicle that stores a correction amount when the rate of change becomes zero.
  7.  請求項6に記載の電動車両において、
     トルク指令を与えるアクセルペダルと、
     前記トルク指令および前記第1の回転位置検出センサで検出したロータ回転位置に基づいて、前記第1のモータの第1出力トルクを演算するとともに、前記トルク指令および前記第2の回転位置検出センサで検出したロータ回転位置に基づいて、前記第2のモータの第2出力トルクを演算するトルク演算部と、
     前記トルク演算部で演算された第1の出力トルクが前記第1のモータから出力されるように前記第1のモータへの通電を制御するとともに、前記トルク演算部で演算された第2の出力トルクが前記第2のモータから出力されるように前記第2のモータへの通電を制御する駆動部とを備え、
     前記トルク演算部は、前記補正量記憶制御部で記憶された補正量により前記第2の回転位置検出センサで検出されたロータ回転位置を補正する電動車両。
    The electric vehicle according to claim 6,
    An accelerator pedal that gives a torque command;
    Based on the torque command and the rotor rotational position detected by the first rotational position detection sensor, the first output torque of the first motor is calculated, and the torque command and the second rotational position detection sensor are used. A torque calculator that calculates a second output torque of the second motor based on the detected rotor rotational position;
    The energization to the first motor is controlled so that the first output torque calculated by the torque calculation unit is output from the first motor, and the second output calculated by the torque calculation unit. A drive unit that controls energization of the second motor so that torque is output from the second motor;
    The torque calculation unit is an electric vehicle that corrects the rotor rotational position detected by the second rotational position detection sensor based on the correction amount stored in the correction amount storage control unit.
PCT/JP2015/063413 2014-06-04 2015-05-11 Motor control device, motor drive device, and electric vehicle WO2015186471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525746A JP6208345B2 (en) 2014-06-04 2015-05-11 Motor control device, motor drive device, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115805 2014-06-04
JP2014115805 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186471A1 true WO2015186471A1 (en) 2015-12-10

Family

ID=54766549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063413 WO2015186471A1 (en) 2014-06-04 2015-05-11 Motor control device, motor drive device, and electric vehicle

Country Status (2)

Country Link
JP (1) JP6208345B2 (en)
WO (1) WO2015186471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148647A (en) * 2017-03-02 2018-09-20 株式会社リコー Driving device, drive system, image forming apparatus, transport device, and driving method
JP2020028174A (en) * 2018-08-10 2020-02-20 株式会社豊田中央研究所 Motor driving device, motor driving method, and motor driving program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050706A (en) 2017-09-12 2019-03-28 アイシン精機株式会社 Drive unit for electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326115A (en) * 1997-03-24 1998-12-08 Toyota Motor Corp Motive power output device and control method therefor
JP2006042575A (en) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd Control unit of motor for vehicle
JP2006050764A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Motor controller
US20090167231A1 (en) * 2007-12-26 2009-07-02 Pitney Bowes Inc. System and method for controlling electric motors to simulate a mechanical differential
US20130147403A1 (en) * 2010-10-01 2013-06-13 Deere & Company Electro-Mechanical Drive with Extended Constant Power Speed Range

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326115A (en) * 1997-03-24 1998-12-08 Toyota Motor Corp Motive power output device and control method therefor
JP2006042575A (en) * 2004-07-30 2006-02-09 Nissan Motor Co Ltd Control unit of motor for vehicle
JP2006050764A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Motor controller
US20090167231A1 (en) * 2007-12-26 2009-07-02 Pitney Bowes Inc. System and method for controlling electric motors to simulate a mechanical differential
US20130147403A1 (en) * 2010-10-01 2013-06-13 Deere & Company Electro-Mechanical Drive with Extended Constant Power Speed Range

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148647A (en) * 2017-03-02 2018-09-20 株式会社リコー Driving device, drive system, image forming apparatus, transport device, and driving method
JP2020028174A (en) * 2018-08-10 2020-02-20 株式会社豊田中央研究所 Motor driving device, motor driving method, and motor driving program
JP7125195B2 (en) 2018-08-10 2022-08-24 株式会社豊田中央研究所 MOTOR DRIVING DEVICE, MOTOR DRIVING METHOD, AND MOTOR DRIVING PROGRAM

Also Published As

Publication number Publication date
JPWO2015186471A1 (en) 2017-04-20
JP6208345B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP4998591B2 (en) Electric vehicle
JP3803269B2 (en) Parallel hybrid vehicle
JP4075863B2 (en) Electric torque using vehicle
JP3797354B2 (en) Electric vehicle drive control device and electric vehicle drive control method
CN101981808B (en) Motor control device
US20080018291A1 (en) Controller for motor
JP4699309B2 (en) Electric motor control device
JP4780223B2 (en) Vehicle drive motor control device
JP6578212B2 (en) Vehicle turning control device
JP6208345B2 (en) Motor control device, motor drive device, and electric vehicle
JP4888300B2 (en) Motor torque control device
WO2017018335A1 (en) Motor drive device
JP2015205676A (en) drive unit and drive module
JP2008100590A (en) Vehicle and vehicle control device
JP4144270B2 (en) Vehicle left and right wheel drive device
JP2010168017A (en) Vehicular steer by wire system and method for controlling the same
JP4643508B2 (en) Electric motor control device
JP6048101B2 (en) Hybrid vehicle drive device
JP2011006020A (en) Drive device of hybrid vehicle
JP2004023943A (en) Reversing suppression controller for electric vehicle
JP6252453B2 (en) Vehicle drive device
JP2015208207A (en) Vehicular control device
JP2020088950A (en) Gear change device and drive unit
JP2005254931A (en) Assist map designing method in electric power steering device, and electric power steering device
JP2007245770A (en) Driving controller for vehicle, automobile and driving control method for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803070

Country of ref document: EP

Kind code of ref document: A1