WO2015186333A1 - Battery unit - Google Patents

Battery unit Download PDF

Info

Publication number
WO2015186333A1
WO2015186333A1 PCT/JP2015/002746 JP2015002746W WO2015186333A1 WO 2015186333 A1 WO2015186333 A1 WO 2015186333A1 JP 2015002746 W JP2015002746 W JP 2015002746W WO 2015186333 A1 WO2015186333 A1 WO 2015186333A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
heat
battery cell
battery
heat storage
Prior art date
Application number
PCT/JP2015/002746
Other languages
French (fr)
Japanese (ja)
Inventor
篤昌 澤田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016525690A priority Critical patent/JPWO2015186333A1/en
Publication of WO2015186333A1 publication Critical patent/WO2015186333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery unit, for example, a battery unit having a battery cell for charging or discharging electricity.
  • secondary batteries that can charge or discharge electricity are widely used in portable electronic devices such as notebook computers, mobile phones, portable information terminals, tablet terminals, digital cameras, and portable music players. Further, the secondary battery is used not only for these portable electronic devices but also as a power source for transportation such as railways, automobiles and airplanes. Furthermore, secondary batteries are being used as power storage devices for power leveling and smart grids.
  • the secondary battery since the secondary battery is used in a wide range of applications, various performances are required.
  • a resistance load may increase at the terminal portion of the battery terminal (electrode) when a discharge with a large current is required.
  • heat may be generated at the terminal portion of the battery terminal.
  • security concern increases, for example, the performance of a secondary battery deteriorates, a secondary battery ignites, or a skin develops a burn when skin contacts.
  • Patent Document 1 the technique described in Patent Document 1 is generated when a large current flows to the terminal of the secondary battery by attaching the heat radiating portion (heat radiating fin) to the terminal (electrode terminal) of the secondary battery. The fever is suppressed.
  • Patent Document 2 employs a structure in which a refrigerant is circulated in addition to the heat dissipating fins.
  • JP 2009-245730 A Japanese Patent No. 4349037 JP 2012-138315 A JP 2013-222603 A
  • Patent Documents 1 and 2 have a problem that the battery unit cannot be reduced in size because the structure for suppressing the temperature rise of the terminals of the secondary battery becomes large.
  • the effects of this phenomenon include deterioration of the internal members and exterior members of the battery cell, deterioration of charge performance or discharge performance, and occurrence of electrolyte exposure.
  • Patent Documents 1 and 2 a heat radiation fin and a refrigerant circulation mechanism that operate regardless of heat generation time are provided regardless of whether the charging or discharging is performed for a short period of time or intermittent charging / discharging. For this reason, it is necessary to provide a large structure around the terminals of the secondary battery. Therefore, it is difficult to apply the techniques described in Patent Documents 1 and 2 to devices that have a limited mounting capacity of the battery system.
  • the present invention has been made in view of such circumstances, and an object of the present invention is a battery unit that can efficiently dissipate heat generated by a terminal with a simple configuration while suppressing temperature rise of the terminal. Is to provide.
  • the battery unit of the present invention is formed by a battery cell that charges or discharges electricity, a battery cell case that houses the battery cell, a terminal provided in the battery cell, and an insulating member, and contacts the terminal.
  • the heat storage part which receives the heat of the said terminal and stores it, and connects between the said heat storage part and the said battery cell case, and heat which conducts the heat stored by the said heat storage part to the said battery cell case And a conductive portion.
  • the battery unit of the present invention it is possible to efficiently dissipate the heat generated by the terminal while suppressing the temperature rise of the terminal with a simple configuration.
  • FIG. 1 is a perspective view showing the structure inside the battery cell case 60 in the configuration of the battery unit 100.
  • FIG. 2 is a terminal side plan view showing the configuration of the battery unit 100.
  • the battery unit 100 has three battery cells 10. As shown in FIG. 2, a battery cell case 60 is provided so as to cover the outer periphery of the battery cell 10. Moreover, it attaches to the one end part of each battery cell 10 so that the positive electrode tab lead terminal 20a and the negative electrode tab lead terminal 20b may protrude. When the positive electrode or the negative electrode is not distinguished, the positive electrode tab lead terminal 20a and the negative electrode tab lead terminal 20b are collectively referred to as a tab lead terminal 20.
  • the external connection terminal 30 is connected to one positive tab lead terminal 20a. Similarly, the external connection terminal 30 is connected to one negative tab lead terminal 20b.
  • a temperature rise suppression structure 40 and an inter-terminal conductor 50 are provided between the tab lead terminals 20, a temperature rise suppression structure 40 and an inter-terminal conductor 50 are provided. Further, a temperature rise suppression structure 40 is provided between the tab lead terminal 20 and the inner surface of the battery cell case 60.
  • the battery unit 100 includes a battery cell 10, a positive electrode tab lead terminal 20 a, a negative electrode tab lead terminal 20 b, an external connection terminal 30, a temperature rise suppression structure 40, and an inter-terminal conductivity.
  • a body 50 and a battery cell case 60 are provided.
  • the battery cell 10 is accommodated in a battery cell case 60.
  • the battery cell 10 charges or discharges electricity.
  • the battery cell 10 is a laminate-type battery cell. 1 and 2 show three battery cells 10 superimposed on each other. Note that the number of battery cells 10 may be three or less or three or more.
  • the positive electrode tab lead terminal 20 a is connected to one end of each battery cell 10.
  • the negative electrode tab lead terminal 20b is connected to one end of each battery cell 10.
  • the external connection terminal 30 is connected to one of the positive electrode tab lead terminals 20a provided in each of the three battery cells 10. Further, the external connection terminal 30 is connected to one of the negative electrode tab lead terminals 20 b provided in each of the three battery cells 10. That is, two external connection terminals 30 are provided, one is connected to one of the positive electrode tab lead terminals 20a, and the other is connected to the negative electrode tab lead terminal 20b.
  • one of the two external connection terminals 30 is connected to the positive electrode tab lead 20a of the lowermost (bottom) battery cell 10 among the three battery cells 10.
  • the other of the two external connection terminals 30 is connected to the negative electrode tab lead 10 b of the uppermost (top) battery cell 10 among the three battery cells 10.
  • the upper left external connection terminal 30 is provided between a heat storage unit 41 described later and the negative electrode tab lead 20 b of the uppermost battery cell 10.
  • the lower right external connection terminal 30 is provided between the positive electrode tab lead 20 a of the lowermost battery cell 10 and a heat storage unit 41 described later.
  • the external connection terminal 30 is exposed outside the battery cell case 60.
  • An external charging device (not shown) is connected to the external connection terminal 30.
  • the external charging device charges each battery cell 10 by supplying power to each battery cell 10 in the battery unit 100 via the external connection terminal 30 and the tab lead terminal 20.
  • the temperature rise suppression structure 40 is provided between the tab lead terminals 20 extended from the plurality of stacked battery cells 10. Further, a temperature rise suppression structure 40 is also provided between the tab lead terminal 20 extended from the uppermost or lowermost battery cell 10 in FIG. 2 and the inner surface of the battery cell case 60. When the external connection terminal 30 is connected to the tab lead terminal 20, the temperature rise suppression structure 40 is provided between the external connection terminal 30 connected to the tab lead terminal 20 and the inner surface of the battery cell case 60. ing.
  • the temperature rise suppression structure 40 includes a heat storage unit 41 and a heat conduction unit 42.
  • the temperature increase suppression structure 40 is formed by integrating the heat storage unit 41 and the heat conduction unit 42.
  • the heat storage part 41 is formed of an insulating member (for example, a resin member). As shown in FIGS. 1 and 2, the heat storage unit 41 is attached so as to contact the tab lead terminal 20 or the external connection terminal 30.
  • the first heat storage unit 41 from the upper left is provided between the heat conduction unit 42 connected to the battery cell case 60 and the external connection terminal 30.
  • the second heat storage unit 41 from the upper left side is provided between the heat conducting unit 42 connected to the battery cell case 60 and the negative electrode tab lead 20 b of the uppermost battery cell 10.
  • the third heat storage part 41 from the upper left side is provided between the heat conducting part 42 connected to the battery cell case 60 and the positive electrode tab lead terminal 20a of the second battery cell 10 from the upper side. Yes.
  • the fourth (bottom) heat storage unit 41 from the upper left is a negative electrode tab lead 10 b of the third (bottom) battery cell 10 from the top, and a heat conduction unit connected to the battery cell case 60. 42 is provided.
  • the first heat storage unit 41 from the upper right is provided between the heat conducting unit 42 connected to the battery cell case 60 and the external connection terminal 30.
  • the second heat storage unit 41 from the upper right side is provided between the negative electrode tab lead 20 b of the second battery cell 10 from the upper side and the heat conducting unit 42 connected to the battery cell case 60.
  • the third heat storage unit 41 from the upper right side is connected to the heat conducting unit 42 connected to the battery cell case 60, the positive electrode tab lead 20 a of the third battery cell 10 from the upper side, and the battery cell case 60. It is provided between the heat conducting part 42 and the heat conducting part 42.
  • the fourth (lowermost) heat storage unit 41 from the upper right side is provided between the external connection terminal 30 and the heat conducting unit 42 connected to the battery cell case 60.
  • the heat storage unit 41 receives heat from the tab lead terminal 20 and stores the heat. Further, the heat storage unit 41 receives the heat of the tab lead terminal 20 via the external connection terminal 30 and stores the received heat.
  • the heat storage unit 41 is also referred to as a heat storage insulating resin.
  • the heat conducting unit 42 connects between the heat storage unit 41 and the battery cell case 60.
  • the heat conduction unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60.
  • the inter-terminal conductor 50 is provided between the tab lead terminals 20 and electrically connects the tab lead terminals 20. Thereby, the tab lead terminals 20 are electrically connected by the inter-terminal conductor 50.
  • the inter-terminal conductor 50 is provided at two locations. That is, in FIG. 2, the inter-terminal conductor 50 on the left side is provided between the positive electrode tab lead 20a of the second battery cell 10 from the top and the negative electrode tab lead 20b of the lowermost battery cell 10, and these are electrically connected. Connected. In FIG. 2, the inter-terminal conductor 50 on the right side is provided between the positive electrode tab lead 20a of the uppermost battery cell 10 and the negative electrode tab lead 20b of the second battery cell 10 from the top. Connected. As shown in FIG. 2, the battery cell case 60 accommodates the battery cell 10. The battery cell case 60 is formed using a heat conductive member.
  • the battery cells 10 with the tab lead terminals 20 extending from one end are overlapped.
  • the external connection terminal 30 is connected to at least one positive tab lead terminal 20a. Similarly, the external connection terminal 30 is connected to at least one negative tab lead terminal 20b.
  • the external connection terminal 30 is formed of a conductive member such as copper or a copper alloy, for example.
  • the temperature increase suppressing structure 40 is created by superimposing the heat storage unit 41 and the heat conduction unit 42 so as to be integrated.
  • the heat storage unit 41 is made by kneading and preparing a heat storage material corresponding to a temperature at which temperature rise is desired to be suppressed in a highly insulating liquid resin, and then curing the heat storage material.
  • liquid resin with high insulation is an epoxy resin, a silicone resin, a phenol resin, a polyimide resin etc., for example.
  • the heat storage material corresponding to the temperature to suppress temperature rise include paraffin-containing capsule powder, water-containing capsule powder, sodium acetate / trihydrate-containing capsule powder, lithium nitrate / trihydrate-containing capsule powder, stearin Acid-containing capsule powder, cetyl alcohol-containing capsule powder, and the like.
  • the heat conducting part 42 is made of a heat radiating sheet having high heat conductivity (for example, copper foil, aluminum foil, gold foil, silver foil, graphite sheet, carbon fiber-containing elastomer, boron nitride-containing elastomer).
  • a heat radiating sheet having high heat conductivity for example, copper foil, aluminum foil, gold foil, silver foil, graphite sheet, carbon fiber-containing elastomer, boron nitride-containing elastomer).
  • the temperature increase suppression structure 40 is disposed between the tab lead terminals 20 (or external connection terminals 30), between the tab lead terminals 20 (or external connection terminals 30) and the inner surface of the battery cell case 60.
  • the temperature rise suppression structure 40 is arranged so that the heat conduction part 42 thermally connects the heat storage part 41 and the battery cell case 60.
  • the heat stored by the heat storage unit 41 is conducted to the battery cell case 60.
  • the inter-terminal conductor 50 is disposed between the tab lead terminals 20. Thereby, the tab lead terminals 20 are electrically connected via the inter-terminal conductor 50.
  • the battery cell case 60 is used to enclose the battery cell 10. At this time, each member is arranged so that one end of the external connection terminal 30 is exposed to the outside of the battery cell 10.
  • the method for manufacturing the battery unit 100 has been described above.
  • FIG. 3 is a diagram showing the relationship between the temperature of the terminal of the battery unit 100 and the elapsed time, and is a diagram showing an example in which charging or discharging is performed in a time longer than the temperature rise suppression time TS.
  • FIG. 4 is a diagram illustrating the relationship between the temperature of the external connection terminal 30 of the battery unit 100 and the elapsed time, and is a diagram illustrating an example in which charging or discharging is performed in a time shorter than the temperature rise suppression time TS.
  • the temperature rise suppression time TS refers to a time during which the heat storage unit 41 can be suppressed below the heat storage temperature ⁇ , which is a temperature at which the heat of the tab lead terminal 20 can be stored.
  • a change in terminal temperature of a battery without a temperature rise suppression structure is represented by a temperature change curve L20 in FIG. Is done.
  • the temperature change curve L20 rises as the elapsed time increases until the surface temperature of the terminal is saturated, unless charging or discharging stops.
  • the change in the terminal temperature of the battery unit 100 having the temperature rise suppression structure 40 is represented by the temperature change curve L21 in FIG.
  • the heat storage unit 41 included in the temperature rise suppression structure 40 is moved to the tab lead.
  • the heat of the terminal 20 is stored.
  • the heat storage temperature ⁇ is a temperature at which the heat storage unit 41 can store the heat of the tab lead terminal 20 as described above.
  • a temperature increase suppression time TS in which the temperature of the tab lead terminal 20 is temporarily maintained constant is generated according to the amount of latent heat of the heat storage material included in the heat storage unit 41. After that, when the heat storage amount corresponding to the heat generation amount from the tab lead terminal 20 is exceeded, the temperature is raised again.
  • the temperature increase suppression structure 40 includes the heat conduction portion 42, the heat dissipation suppression structure 40 dissipates heat even during heat storage during the temperature increase suppression time TS.
  • a change in terminal temperature of a battery without a temperature rise suppression structure is represented by a temperature change curve L20 in FIG. Is done.
  • the terminal temperature rises when the transition from the energization stop period 16a to the charge or discharge period 17b occurs. And if it enters into the electricity supply stop period 16a again, the heat of a terminal will be dissipated and temperature will fall.
  • the change in the terminal temperature of the battery unit 100 having the temperature rise suppression structure 40 is represented by a temperature change curve L21 in FIG.
  • a temperature increase suppression time TS in which the temperature of the tab lead terminal 20 is temporarily maintained constant is generated according to the amount of latent heat of the heat storage material included in the heat storage unit 41. During this time, the temperature of the tab lead terminal 20 is maintained at the heat storage temperature ⁇ by the heat storage of the heat storage unit 41.
  • the battery unit 100 includes the battery cell 10, the battery cell case 60, the tab lead terminal 20 (terminal), the heat storage unit 41, and the heat conduction unit 42. ing.
  • Battery cell 10 charges or discharges electricity.
  • the battery cell case 60 accommodates the battery cell 10.
  • the tab lead terminal 20 terminal
  • the heat storage unit 41 is formed of an insulating member, is attached so as to be in contact with the tab lead terminal 20, receives heat from the tab lead terminal 20, and stores the heat.
  • the heat conducting unit 42 connects between the heat storage unit 41 and the battery cell case 60.
  • the heat conduction unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60.
  • the heat storage unit 41 receives the heat of the tab lead terminal 20 by contacting the tab lead terminal 20 and stores the heat. Thereby, it is possible to suppress heat accumulation in the tab lead terminal 20 and to delay the temperature rise of the tab lead terminal 20.
  • the heat conducting unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60. Thereby, the heat of the tab lead terminal 20 is conducted to the battery cell case 60 via the heat storage part 41. As a result, it is possible to further suppress heat accumulation in the tab lead terminal 20 and further delay the temperature rise of the tab lead terminal 20.
  • the heat stored (stored) in the heat storage unit 41 is radiated to the battery cell case 60 having a temperature lower than that of the heat storage unit 41 via the heat conduction unit 42. Is done.
  • the temperature in the vicinity of the tab lead terminal 20 can be lowered.
  • the temperature of the battery cell case 60 can also be lowered.
  • the heat storage time of the heat storage unit 41 can be recovered.
  • the battery unit 100 only the heat storage part 41 and the heat conduction part 42 are provided, and a large structure such as a structure for circulating the heat radiation fins and the refrigerant is not required unlike the techniques described in Patent Documents 1 and 2. . For this reason, compared with the batteries described in Patent Documents 1 and 2, the battery unit 100 can be made smaller with a simple configuration.
  • the battery unit 100 of the first embodiment of the present invention it is possible to efficiently dissipate heat generated by the terminal while suppressing the temperature rise of the terminal with a simple configuration.
  • Patent Document 3 discloses a secondary battery or the like having an endothermic means (135) and a heat release promoting means (137).
  • the heat absorbing means absorbs heat generated by the battery cells over almost the entire side surface of the secondary battery.
  • the heat radiation promoting means is provided outside the heat absorbing means, and dissipates the heat temporarily absorbed by the heat absorbing means to the surrounding air.
  • Patent Document 3 is common to the battery unit 100 of the present embodiment in that it has a heat storage section (heat absorption means of Patent Document 3) and a heat dissipation section (heat dissipation promotion means of Patent Document 3).
  • the heat storage part heat absorbing means of Patent Document 3 absorbs heat, and after the temperature rise is suppressed for a certain period of time, the heat radiating part (heat dissipation promoting means of Patent Document 3) The heat is released to the outside through.
  • the temperature rise countermeasure part is different between the present invention and Patent Document 3. That is, in the present embodiment, the tab lead terminal 20 is a countermeasure for temperature rise. On the other hand, in the invention described in Patent Document 3, the battery cell (the side surface portion 101b of the can 101 of the secondary battery 100D) is a temperature rise countermeasure portion.
  • Patent Document 3 there is only a measure to suppress the temperature rise due to heat from the exterior of the battery cell, including the figure, and the heat storage unit 41 is brought into direct contact with the tab lead terminal 20 of the battery unit 100 as in this embodiment. It does not have a structure.
  • the battery unit 100 according to the first embodiment of the present invention further includes an external connection terminal 30.
  • the external connection terminal 30 is connected to the tab lead terminal 20.
  • the heat storage unit 41 is formed of an insulating member, is attached so as to contact the external connection terminal 30, receives heat from the tab lead terminal 20 through the external connection terminal 30, and stores the heat. Thus, even if the external connection terminal 30 is provided, the above-described effects can be obtained.
  • the battery unit 100 includes a temperature increase suppression structure 40 formed by integrating the heat storage unit 41 and the heat conduction unit 42.
  • a temperature increase suppression structure 40 formed by integrating the heat storage unit 41 and the heat conduction unit 42.
  • the temperature rise of the tab lead terminal 20 is made lower than a predetermined temperature.
  • the temperature increase suppression time TS is a time during which the heat storage unit 41 can be suppressed to a heat storage temperature ⁇ or lower, which is a temperature at which the heat of the tab lead terminal 20 can be stored.
  • the temperature rise of the tab lead terminal 20 can be reliably suppressed below a predetermined temperature.
  • the battery cell 10 is formed in a plate shape. Thereby, the battery cell 10 can be comprised easily.
  • FIG. 5 is a perspective view showing the structure inside the battery unit 100A.
  • FIG. 6 is a cross-sectional view showing the configuration of the battery unit 100A.
  • constituent elements equivalent to those shown in FIGS. 1 to 4 are given the same reference numerals as those shown in FIGS.
  • the battery unit 100A has two battery cells 10A.
  • a battery cell case 60A is provided so as to cover the outer periphery of the battery cell 10A.
  • the positive electrode terminal 21a is provided at one end (upper side) of each battery cell 10A so as to protrude.
  • a negative electrode terminal 21b is provided at the other end (lower side) of each battery cell 10A.
  • the positive electrode terminal 21a and the negative electrode terminal 21b are collectively referred to as a terminal 21.
  • the external connection terminal 30A is connected to one positive terminal 21a and one negative terminal 21b.
  • the extension lead wire 30Aa is connected to both the external connection terminals 30A.
  • the temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the upper battery cell 10A and the positive electrode terminal 21a of the lower battery cell 10A. Further, a temperature rise suppression structure 40A is also provided between the positive electrode terminal 21a of the upper battery cell 10A and the inner surface of the battery cell case 60A. Furthermore, a temperature rise suppression structure 40A is also provided between the negative electrode terminal 21b of the lower battery cell 10A and the inner surface of the battery cell case 60A.
  • the battery unit 100A includes a battery cell 10A, a positive electrode terminal 21a, a negative electrode terminal 21b, an external connection terminal 30A, an extension lead wire 30Aa, and a temperature rise suppression structure 40A.
  • the battery cell case 60A is provided.
  • the battery cell 10A is accommodated in the battery cell case 60A.
  • the battery cell 10A charges or discharges electricity.
  • a cylindrical battery cell is used.
  • 5 and 6 show two battery cells 10A connected in series. Note that the number of battery cells 10A may be two or less, or two or more.
  • the positive electrode terminal 21a is provided so as to protrude from one end of each battery cell 10A.
  • the negative electrode terminal 21b is provided at the other end of each battery cell 10A.
  • one of the two external connection terminals 30A is electrically connected to the positive terminal 21a of the battery cell 10A on the upper side of the drawing.
  • the other of the two external connection terminals 30A is electrically connected to the negative electrode terminal 21b of the battery cell 10A on the lower side in the drawing. That is, in the example of FIGS. 5 and 6, two external connection terminals 30A are provided.
  • One of the two external connection terminals 30A is connected to one positive terminal 21a of the two battery cells 10A.
  • the other of the two external connection terminals 30A is connected to the other negative electrode terminal 21b of the two battery cells 10A.
  • the extension lead wire 30Aa is connected to each of the two external connection terminals 30A.
  • the extended lead wire 30Aa is exposed outside the battery cell case 60A.
  • the battery unit 100A is provided with three temperature rise suppression structures 40A.
  • the first temperature rise suppression structure 40A is provided between the positive electrode terminal 21a of the battery cell 10A on the upper side of the paper and the inner surface of the battery cell case 60A.
  • the second temperature rise suppression structure 40A is provided between the terminals 21A of the connected battery cells 10A. That is, the second temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper and the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper.
  • the third temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the battery cell 10A on the lower side of the paper and the inner surface of the battery cell case 60A.
  • the temperature rise suppression structure 40A includes a heat storage part 41A and a heat conduction part 42A.
  • the temperature increase suppression structure 40A is formed by integrating the heat storage part 41A and the heat conduction part 42A.
  • the temperature increase suppression structure 40A provided at the center of the three temperature increase suppression structures 40A includes an annular heat storage portion 41A and an annular heat conduction portion 42A. ,It is configured.
  • the positive electrode terminal 21a is fitted into the opening hole in the center of the annular heat storage part 41A.
  • the annular heat storage part 41A is fitted inside the annular heat conduction part 42A.
  • the annular heat storage portion 41A is provided between the negative electrode terminal 21b of the upper battery cell 10A and the positive electrode terminal 21a of the lower battery cell 10A. That is, the annular heat storage portion 41A is sandwiched between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper and the peripheral portion of the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper. Accordingly, the heat storage unit 41A is always in thermal contact with the positive electrode terminal 21a of the lower battery cell 10A and the negative electrode terminal 21b of the upper battery cell 10A. As a result, the heat of the terminal 21 is stored in the annular heat storage unit 41A.
  • annular heat storage portion 41A is fitted into the opening hole in the center of the annular heat conducting portion 42A.
  • the outer peripheral portion of the annular heat storage portion 41A and the inner peripheral portion of the annular heat conducting portion 42A are thermally connected to each other.
  • the inner wall of the opening hole of the annular heat conducting portion 42A and the outer peripheral portion of the annular heat storage portion 41A are always in thermal contact.
  • the heat stored in the annular heat storage part 41A is conducted to the annular heat conduction part 42A.
  • the annular heat conducting portion 42A is thermally connected to the inner peripheral surface of the battery cell case 60A.
  • the temperature increase suppression structure 40A provided at a location other than the center includes a disk-shaped heat storage unit 41A and a disk-shaped heat conduction unit 42A. It is comprised by the laminated body of.
  • the disk-shaped heat storage unit 41A is connected to the external connection terminal 30A.
  • the disc-shaped heat storage unit 41A is thermally connected to the positive electrode terminal 21a or the negative electrode terminal 21b via the external connection terminal 30A. Thereby, disk-shaped heat storage part 41A can receive the heat
  • the heat conduction part 42A in the top temperature rise suppression structure 40A is connected to the upper end part of the battery cell case 60A.
  • the heat storage part 41A in the top temperature rise suppression structure 40A is connected to the external connection terminal 30A connected to the positive electrode terminal 21a of the upper battery cell 10A.
  • the heat conduction part 42A in the lowest temperature rise suppression structure 40A is connected to the inner surface of the lower end part of the battery cell case 60A.
  • the heat storage part 41A in the lowest temperature rise suppression structure 40A is connected to the external connection terminal 30A connected to the negative electrode terminal 21b of the lower battery cell 10A.
  • Each heat storage part 41A is formed of an insulating member (for example, a resin member).
  • the heat storage unit 41 ⁇ / b> A is provided so as to contact the terminal 21 or the external connection terminal 30 ⁇ / b> A.
  • the heat storage unit 41A receives the heat of the terminal 21 and stores the heat.
  • the heat storage unit 41 ⁇ / b> A receives the heat of the terminal 21 through the external connection terminal 30 and stores the heat.
  • the heat storage unit 41A is also referred to as a heat storage insulating resin.
  • the heat conducting portion 42A thermally connects the heat storage portion 41A and the battery cell case 60A.
  • the heat conducting unit 42A conducts the heat of the terminal 21 stored by the heat storage unit 41A to the battery cell case 60A.
  • the battery cell case 60A accommodates the battery cell 10A.
  • Battery cell case 60A is formed using a heat conductive member.
  • the above-described two temperature rise suppression structures 40A are created by superimposing and integrating the disk-shaped heat storage unit 41A and the disk-shaped heat conduction unit 42A. Moreover, one temperature rise suppression structure 40A is created by fitting the annular heat storage portion 41A into the opening hole in the center of the annular heat conducting portion 42A.
  • the heat storage section 41A is made by kneading and preparing a heat storage material corresponding to a temperature at which temperature rise is desired to be suppressed in a liquid resin having high insulation properties, and then curing it.
  • a heat storage material corresponding to a temperature at which temperature rise is desired to be suppressed in a liquid resin having high insulation properties.
  • an epoxy resin, a silicone resin, a phenol resin, a polyimide resin, or the like is used as the liquid resin having a high insulating property.
  • the heat storage material corresponding to the temperature at which the temperature rise is to be suppressed include, for example, paraffin-containing capsule powder, water-containing capsule powder, sodium acetate / trihydrate-containing capsule powder, lithium nitrate / trihydrate-containing capsule powder , Stearic acid-containing capsule powder, cetyl alcohol-containing capsule powder, and the like are used.
  • the heat conducting portion 42A is made of a heat radiating sheet (for example, copper, aluminum, gold, silver,
  • one of the temperature rise suppression structures 40A configured by the laminated body of the disk-shaped heat storage section 41A and the disk-shaped heat conduction section 42A is the positive terminal 21a of the battery cell 10A on the upper side of the paper and the battery cell case 60A. It is arrange
  • the disk-shaped heat storage part 41A of the temperature rise suppression structure 40A is thermally connected to the positive electrode terminal 21a of the battery cell 10A on the upper side in FIG. 6 via the external connection terminal 30A.
  • the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is also thermally connected to the disk-shaped heat conduction part 42A.
  • the disk-shaped heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the disk-shaped heat storage portion 41A and the inner surface of the battery cell case 60A.
  • another temperature rise suppression structure 40A constituted by a laminated body of a disk-shaped heat storage section 41A and a disk-shaped heat conduction section 42A is the negative electrode of the battery cell 10A on the lower side of the paper in FIG. It arrange
  • the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is thermally connected to the negative electrode terminal 21a of the battery cell 10A on the lower side of the drawing via the external connection terminal 30A.
  • the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is also thermally connected to the disk-shaped heat conduction part 42A.
  • the disk-shaped heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the disk-shaped heat storage portion 41A and the inner surface of the battery cell case 60A.
  • the temperature rise suppression structure 40A configured by a combination of the annular heat storage portion 41A and the annular heat conduction portion 42A includes a negative electrode terminal 21b of the battery cell 10A on the upper side of the paper in FIG. 6 and a lower side of the paper in FIG. Between the battery cell 10A and the positive electrode terminal 21a. At this time, the annular heat storage portion 41A of the temperature rise suppression structure 40A is thermally connected between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper in FIG. 6 and the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper in FIG. Connect to. Further, the annular heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the annular heat storage portion 41A and the inner surface of the battery cell case 60A.
  • the extension lead wire 30Aa is connected to the external connection terminal 30A.
  • the battery cell case 60A is used to enclose the battery cell 10A and the like. At this time, each member is arranged so that one end of the extension lead wire 30Aa is exposed to the outside of the battery cell 10A.
  • the method for manufacturing the battery unit 100A has been described above.
  • the usage example of the battery unit 100A is the same as that described with reference to FIGS.
  • the battery unit 100A includes the battery cell 10A, the battery cell case 60A, the terminal 21, the heat storage unit 41A, and the heat conduction unit 42A.
  • the battery cell 10A charges or discharges electricity.
  • Battery cell case 60A accommodates battery cell 10A.
  • the terminal 21 is connected to the battery cell 10A.
  • the heat storage unit 41A is formed of an insulating member, is attached so as to contact the terminal 21, receives heat from the terminal 21, and stores the heat.
  • the heat conducting part 42A connects between the heat storage part 41A and the battery cell case 60A.
  • the heat conducting unit 42A conducts the heat stored by the heat storage unit 41A to the battery cell case 60A. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
  • the battery unit 100A according to the second embodiment of the present invention further includes an external connection terminal 30A.
  • the external connection terminal 30A is connected to the terminal 21.
  • the heat storage unit 41A is formed of an insulating member, is attached so as to be in contact with the external connection terminal 30A, receives heat from the terminal 21 through the external connection terminal 30A, and stores the heat. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
  • the battery unit 100A in the second embodiment of the present invention includes a temperature increase suppression structure 40A formed by integrating the heat storage unit 41A and the heat conduction unit 42A. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
  • the temperature increase of the terminal 21 is suppressed below a predetermined temperature.
  • the temperature increase suppression time TS is a time during which the heat storage unit 41A can be suppressed to a heat storage temperature ⁇ or lower, which is a temperature at which the heat of the terminal 21 can be stored. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
  • the battery cell 10A is formed in a columnar shape. Thereby, the battery cell 10A can be configured easily.
  • Example 1 A manufacturing method of Example 1 of the battery unit 100 according to the first embodiment will be described.
  • the battery unit 100 is also called a laminate type secondary battery.
  • the detailed structure of the temperature rise suppression structure 10 was manufactured as follows.
  • the heat storage unit 41 was manufactured as follows. That is, first, a heat storage microcapsule of 5 micrometers ( ⁇ m) to 50 micrometers ( ⁇ m) is added to a one-part polyimide resin to which insulation is imparted after the resin is cured at a ratio of 20 wt% to 40 wt%. Knead and prepare. As the heat storage microcapsules, those having a shell made of polymethyl methacrylate and paraffin as a core are used. Thereafter, the one-component polyimide resin kneaded and prepared is cured. Thereby, the heat storage part 41 was obtained.
  • the heat conducting portion 42 In the manufacture of the heat conducting portion 42, a graphite sheet having a thickness of 5 micrometers ( ⁇ m) to 150 micrometers ( ⁇ m) was used.
  • the graphite sheet of the heat conducting portion 42 is used to dissipate heat from the heat storage portion 41 where the heat generated from the tab lead terminal 20 when the battery unit 100 is energized is stored.
  • a carbon fiber-containing elastomer or a boron nitride-containing elastomer can also be used for manufacturing the heat conducting portion 42.
  • a sheet of carbon fiber-containing elastomer or boron nitride-containing elastomer is used as the material of the heat conducting portion 42
  • a sheet having a thickness of 50 micrometers ( ⁇ m) to 10 millimeters (mm) can be used.
  • a conductive member such as copper was formed in a plate shape.
  • ⁇ Copper was used as the material for the external connection terminal 30.
  • One end of the external connection terminal 30 is connected to the tab lead terminal 20.
  • the other end of the external connection terminal 30 is connected to a charging device (not shown) or an external load device (not shown).
  • the inter-terminal conductor 50 was used for connecting the tab lead terminals 20.
  • the gap generated when the battery cells 10 are stacked (in FIG. 2, the gap between the battery cell 10 on the upper side of the paper and the battery cell 10 at the center of the paper)
  • the gap between the battery cell 10 in the center of the paper surface and the battery cell 10 on the lower side of the paper surface was 1.5 mm to 2.0 mm.
  • a gap between the heat storage part 41 and the heat conduction part 42 or an inter-terminal conductor 50 for connecting the tab lead terminals 20 is inserted into the gap.
  • Each component thickness is the maximum value that can be inserted.
  • the heat conducting part 42 was brought into contact with the battery cell case 60.
  • the detailed structure of the temperature rise suppression structure 10A was manufactured as follows.
  • the heat storage part 41A was manufactured as follows. That is, first, a heat storage microcapsule of 5 micrometers ( ⁇ m) to 50 micrometers ( ⁇ m) is added to a one-part polyimide resin to which insulation is imparted after the resin is cured at a ratio of 20 wt% to 40 wt%. Knead and prepare. As the heat storage microcapsules, those having a shell made of polymethyl methacrylate and paraffin as a core are used. Thereafter, the one-component polyimide resin kneaded and prepared is cured. Thereby, 41 A of heat storage parts were obtained.
  • the heat conducting portion 42A In the manufacture of the heat conducting portion 42A, a graphite sheet having a thickness of 5 micrometers ( ⁇ m) to 150 micrometers ( ⁇ m) was used.
  • the graphite sheet of the heat conducting portion 42A is used to dissipate heat from the heat storage portion 41A where the heat generated from the terminals 20 when the battery unit 100A is energized is stored.
  • a carbon fiber-containing elastomer or a boron nitride-containing elastomer can also be used for manufacturing the heat conducting portion 42.
  • a sheet of carbon fiber-containing elastomer or boron nitride-containing elastomer is used as the material of the heat conducting portion 42
  • a sheet having a thickness of 50 micrometers ( ⁇ m) to 10 millimeters (mm) can be used.
  • a conductive member such as copper was formed in a plate shape.
  • the external connection terminal 30A was used as the material for the external connection terminal 30A.
  • One end of the external connection terminal 30 ⁇ / b> A is connected to the terminal 20.
  • the other end of the external connection terminal 30A is connected to the extension lead wire 30Aa.
  • the extension lead wire 30Aa is connected to a charging device (not shown) or an external load device (not shown).
  • the terminal 20 which was 25 ° C. when the energization was stopped generated heat. Thereby, the temperature of the terminal 20 rose.
  • the temperature of the terminal 20 is 39 ° C. by the heat storage portion 42 (here, a 39 ° C. heat storage material is used) included in the heat storage portion 41 of the temperature rise suppression structure 40. To 42 ° C. Thereby, the temperature increase suppression period TS occurred.
  • Example 4 Regarding the operation of the battery unit 100, an example in which charging or discharging is performed in a time shorter than the temperature rise suppression time TS will be described with reference to FIG.
  • the temperature of the terminal 20 is 39 ° C. by the heat storage portion 42 (here, a 39 ° C. heat storage material is used) included in the heat storage portion 41 of the temperature rise suppression structure 40. To 42 ° C. Thereby, the temperature increase suppression period TS occurred.
  • the temperature increase suppression period TS depends on the amount of latent heat that the heat storage unit 41 has. And when the thing which can hold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

[Problem] To suppress a rise in the temperature of a terminal while efficiently dissipating the heat generated from the terminal through a simple configuration. [Solution] The battery unit comprises: a battery cell for charging or discharging electricity; a battery cell case for housing the battery cell; a terminal disposed on the battery cell; a heat accumulation part formed from an insulating member and mounted so as to be in contact with the terminal, said heat accumulation part receiving and accumulating the heat from the terminal; and a heat conduction part which connects the heat accumulation part to the battery cell case and conducts the heat accumulated by the heat accumulation part to the battery cell case.

Description

電池ユニットBattery unit
 本発明は、電池ユニットに関し、例えば、電気を充電または放電する電池セルを有するものに関する。 The present invention relates to a battery unit, for example, a battery unit having a battery cell for charging or discharging electricity.
 近年、電気を充電または放電することができる二次電池は、ノートパソコン、携帯電話機、携帯情報端末、タブレット端末、デジタルカメラおよび携帯音楽プレイヤー等の携帯電子機器に広く利用されている。また、二次電池は、これらの携帯電子機器への利用に留まらず、鉄道、自動車および航空機等の交通機関の動力源としても、利用されている。さらには、二次電池は、電力の平準化やスマートグリッドのための蓄電装置としても、利用されつつある。 In recent years, secondary batteries that can charge or discharge electricity are widely used in portable electronic devices such as notebook computers, mobile phones, portable information terminals, tablet terminals, digital cameras, and portable music players. Further, the secondary battery is used not only for these portable electronic devices but also as a power source for transportation such as railways, automobiles and airplanes. Furthermore, secondary batteries are being used as power storage devices for power leveling and smart grids.
 このように、二次電池は、広範な用途に利用されるため、多様な性能が要求される。特に、小型ながら大電力を生成するために、大電流による放電が必要となる場合には、抵抗負荷が電池端子(電極)の終端部で増大することがある。このとき、電池端子の終端部に発熱が生じることがある。このため、二次電池の性能が劣化したり、二次電池が発火したり、電池ケースに肌が接触することにより火傷を発症したりするなど、安全上の懸念を増大させてしまう。 As described above, since the secondary battery is used in a wide range of applications, various performances are required. In particular, in order to generate a large amount of power even though it is small, a resistance load may increase at the terminal portion of the battery terminal (electrode) when a discharge with a large current is required. At this time, heat may be generated at the terminal portion of the battery terminal. For this reason, the safety | security concern increases, for example, the performance of a secondary battery deteriorates, a secondary battery ignites, or a skin develops a burn when skin contacts.
 この問題に対して、特許文献1に記載の技術では、放熱部(放熱フィン)を二次電池の端子(電極端子)に取り付けることにより、大電流が二次電池の端子に流れた際に生じる発熱を抑制している。 With respect to this problem, the technique described in Patent Document 1 is generated when a large current flows to the terminal of the secondary battery by attaching the heat radiating portion (heat radiating fin) to the terminal (electrode terminal) of the secondary battery. The fever is suppressed.
 また、上記問題に対して、特許文献2に記載の技術では、放熱フィンに加えて、冷媒を循環させる構造を採用している。 Further, with respect to the above problem, the technique described in Patent Document 2 employs a structure in which a refrigerant is circulated in addition to the heat dissipating fins.
 なお、本発明の関連技術として、さらに、例えば、特許文献3および特許文献4に記載の技術が開示されている。 In addition, as a related technique of the present invention, for example, techniques described in Patent Document 3 and Patent Document 4 are disclosed.
特開2009-245730号公報JP 2009-245730 A 特許第4349037号公報Japanese Patent No. 4349037 特開2012-138315号公報JP 2012-138315 A 特開2013-222603号公報JP 2013-222603 A
 しかしながら、特許文献1および2に記載の技術では、二次電池の端子の昇温を抑制するための構造物が大きくなるため、電池ユニットを小型化することができないという問題があった。 However, the techniques described in Patent Documents 1 and 2 have a problem that the battery unit cannot be reduced in size because the structure for suppressing the temperature rise of the terminals of the secondary battery becomes large.
 また、特許文献1および2に記載の技術では、二次電池の端子間の接触部分には、電池セルの充電または放電の際に、大きな電流が流れる。このため、二次電池の端子間接触抵抗の影響によって、端子に取り付けた構造物(放熱フィン、冷媒を循環させる構造)が発熱する。また、これ以外の周囲の構造物も、端子に取り付けた構造物からの伝熱により、ほぼ同時に昇温してしまう。 In the techniques described in Patent Documents 1 and 2, a large current flows through the contact portion between the terminals of the secondary battery when the battery cell is charged or discharged. For this reason, the structure (a structure which circulates a radiation fin and a refrigerant | coolant) attached to the terminal generate | occur | produces heat by the influence of the contact resistance between terminals of a secondary battery. Further, other surrounding structures are also heated up almost simultaneously due to heat transfer from the structures attached to the terminals.
 この現象による影響として、電池セルの内部部材や外装部材が劣化することや、充電性能または放電性能が低下することや、電解質の露出が生じることが、挙げられる。 The effects of this phenomenon include deterioration of the internal members and exterior members of the battery cell, deterioration of charge performance or discharge performance, and occurrence of electrolyte exposure.
 また、特許文献1および2に記載の技術では、短時間の連続充放電または間欠充放電のどちらであっても、発熱時間に関係なく動作する放熱フィンや冷媒循環機構が設けられている。このため、二次電池の端子周囲に大がかりな構造物を設ける必要が生じる。したがって、電池システムの搭載容積に制限がある機器には、特許文献1および2に記載の技術を適用することは困難である。 Further, in the techniques described in Patent Documents 1 and 2, a heat radiation fin and a refrigerant circulation mechanism that operate regardless of heat generation time are provided regardless of whether the charging or discharging is performed for a short period of time or intermittent charging / discharging. For this reason, it is necessary to provide a large structure around the terminals of the secondary battery. Therefore, it is difficult to apply the techniques described in Patent Documents 1 and 2 to devices that have a limited mounting capacity of the battery system.
 本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、簡素な構成で、端子の昇温を抑制しつつ、端子の発熱を効率よく放熱することができる電池ユニットを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is a battery unit that can efficiently dissipate heat generated by a terminal with a simple configuration while suppressing temperature rise of the terminal. Is to provide.
 本発明の電池ユニットは、電気を充電または放電する電池セルと、前記電池セルを収容する電池セルケースと、前記電池セルに設けられた端子と、絶縁性部材により形成され、前記端子に接触するように取り付けられ、前記端子の熱を受熱して蓄熱する蓄熱部と、前記蓄熱部および前記電池セルケースの間を接続し、前記蓄熱部により蓄熱された熱を前記電池セルケースへ伝導する熱伝導部とを備えている。 The battery unit of the present invention is formed by a battery cell that charges or discharges electricity, a battery cell case that houses the battery cell, a terminal provided in the battery cell, and an insulating member, and contacts the terminal. The heat storage part which receives the heat of the said terminal and stores it, and connects between the said heat storage part and the said battery cell case, and heat which conducts the heat stored by the said heat storage part to the said battery cell case And a conductive portion.
 本発明にかかる電池ユニットによれば、簡素な構成で、端子の昇温を抑制しつつ、端子の発熱を効率よく放熱することができる。 According to the battery unit of the present invention, it is possible to efficiently dissipate the heat generated by the terminal while suppressing the temperature rise of the terminal with a simple configuration.
本発明の第1の実施の形態における電池ユニットの構成のうち、電池セルケース内の構造を示す斜視図である。It is a perspective view which shows the structure in a battery cell case among the structures of the battery unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における電池ユニットの構成を示す端子側平面図である。It is a terminal side top view which shows the structure of the battery unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における電池ユニットの端子の温度と経過時間との関係を示す図であって、昇温抑制時間よりも長い時間で充電または放電を行った例を示す図である。It is a figure which shows the relationship between the temperature of the terminal of the battery unit in 1st Embodiment of this invention, and elapsed time, Comprising: It is a figure which shows the example which performed charge or discharge in time longer than temperature rising suppression time. . 本発明の第1の実施の形態における電池ユニットの端子の温度と経過時間との関係を示す図であって、昇温抑制時間よりも短い時間で充電または放電を行った例を示す図である。It is a figure which shows the relationship between the temperature of the terminal of the battery unit in 1st Embodiment of this invention, and elapsed time, Comprising: It is a figure which shows the example which performed charge or discharge in time shorter than temperature rising suppression time. . 本発明の第2の実施の形態における電池ユニット内の構造を透過して示す斜視図である。It is a perspective view which permeate | transmits and shows the structure in the battery unit in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における電池ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the battery unit in the 2nd Embodiment of this invention.
<第1の実施の形態>
 本発明の第1の実施の形態における電池ユニット100の構成について説明する。
<First Embodiment>
The configuration of the battery unit 100 in the first embodiment of the present invention will be described.
 図1は、電池ユニット100の構成のうち、電池セルケース60内の構造を示す斜視図である。図2は、電池ユニット100の構成を示す端子側平面図である。 FIG. 1 is a perspective view showing the structure inside the battery cell case 60 in the configuration of the battery unit 100. FIG. 2 is a terminal side plan view showing the configuration of the battery unit 100.
 まず、電池ユニット100の構成の概要を説明する。 First, an outline of the configuration of the battery unit 100 will be described.
 図1および図2に示されるように、電池ユニット100は、3つの電池セル10を有する。図2に示されるように、電池セルケース60が電池セル10の外周を被覆するように設けられている。また、各電池セル10の一端部には、正極タブリード端子20aと負極タブリード端子20bが突出するように、取り付けられている。正極または負極を区別しない場合、正極タブリード端子20aおよび負極タブリード端子20bを統一して、タブリード端子20と呼ぶ。また、外部接続端子30が、1つの正極タブリード端子20aに接続されている。同様に、外部接続端子30が、1つの負極タブリード端子20bに接続されている。 1 and 2, the battery unit 100 has three battery cells 10. As shown in FIG. 2, a battery cell case 60 is provided so as to cover the outer periphery of the battery cell 10. Moreover, it attaches to the one end part of each battery cell 10 so that the positive electrode tab lead terminal 20a and the negative electrode tab lead terminal 20b may protrude. When the positive electrode or the negative electrode is not distinguished, the positive electrode tab lead terminal 20a and the negative electrode tab lead terminal 20b are collectively referred to as a tab lead terminal 20. The external connection terminal 30 is connected to one positive tab lead terminal 20a. Similarly, the external connection terminal 30 is connected to one negative tab lead terminal 20b.
 また、タブリード端子20の間には、昇温抑制構造体40や端子間導電体50が設けられている。さらに、タブリード端子20および電池セルケース60の内面の間には、昇温抑制構造体40が設けられている。 Also, between the tab lead terminals 20, a temperature rise suppression structure 40 and an inter-terminal conductor 50 are provided. Further, a temperature rise suppression structure 40 is provided between the tab lead terminal 20 and the inner surface of the battery cell case 60.
 以上、電池ユニット100の構成の概要を説明した。 As above, the outline of the configuration of the battery unit 100 has been described.
 次に、電池ユニット100の構成の詳細について、説明する。 Next, the details of the configuration of the battery unit 100 will be described.
 図1および図2に示されるように、電池ユニット100は、電池セル10と、正極タブリード端子20aと、負極タブリード端子20bと、外部接続端子30と、昇温抑制構造体40と、端子間導電体50と、電池セルケース60とを備えている。 As shown in FIG. 1 and FIG. 2, the battery unit 100 includes a battery cell 10, a positive electrode tab lead terminal 20 a, a negative electrode tab lead terminal 20 b, an external connection terminal 30, a temperature rise suppression structure 40, and an inter-terminal conductivity. A body 50 and a battery cell case 60 are provided.
 図1に示されるように、電池セル10は、電池セルケース60内に収容される。電池セル10は、電気を充電または放電する。ここでは、電池セル10は、例示として、ラミネート型の電池セルとする。また、図1および図2には、3つの電池セル10を重ね合わせたものを示す。なお、電池セル10は、3つ以下でも、3つ以上であってもよい。 As shown in FIG. 1, the battery cell 10 is accommodated in a battery cell case 60. The battery cell 10 charges or discharges electricity. Here, as an example, the battery cell 10 is a laminate-type battery cell. 1 and 2 show three battery cells 10 superimposed on each other. Note that the number of battery cells 10 may be three or less or three or more.
 図1および図2に示されるように、正極タブリード端子20aは、各電池セル10の一端部に接続されている。 As shown in FIGS. 1 and 2, the positive electrode tab lead terminal 20 a is connected to one end of each battery cell 10.
 図1および図2に示されるように、負極タブリード端子20bは、各電池セル10の一端部に接続されている。 1 and 2, the negative electrode tab lead terminal 20b is connected to one end of each battery cell 10.
 図1および図2に示されるように、外部接続端子30は、3つの電池セル10にそれぞれ設けられた正極タブリード端子20aのうちの1つに、接続されている。また、外部接続端子30は、3つの電池セル10にそれぞれ設けられた負極タブリード端子20bのうちの1つに、接続されている。すなわち、2本の外部接続端子30が設けられ、1本は正極タブリード端子20aのうちの1つに接続され、もう1本は負極タブリード端子20bに接続される。 1 and 2, the external connection terminal 30 is connected to one of the positive electrode tab lead terminals 20a provided in each of the three battery cells 10. Further, the external connection terminal 30 is connected to one of the negative electrode tab lead terminals 20 b provided in each of the three battery cells 10. That is, two external connection terminals 30 are provided, one is connected to one of the positive electrode tab lead terminals 20a, and the other is connected to the negative electrode tab lead terminal 20b.
 図1および図2の例では、2本の外部接続端子30の一方は、3つの電池セル10のうち最下部(一番下)の電池セル10の正極タブリード20aに、接続されている。また、2本の外部接続端子30の他方は、3つの電池セル10のうち最上部(一番上)の電池セル10の負極タブリード10bに接続されている。また、図2において、左上側の外部接続端子30は、後述の蓄熱部41と、一番上の電池セル10の負極タブリード20bとの間に、設けられている。図2において、右下側の外部接続端子30は、一番下の電池セル10の正極タブリード20aと、後述の蓄熱部41との間に、設けられている。 1 and 2, one of the two external connection terminals 30 is connected to the positive electrode tab lead 20a of the lowermost (bottom) battery cell 10 among the three battery cells 10. The other of the two external connection terminals 30 is connected to the negative electrode tab lead 10 b of the uppermost (top) battery cell 10 among the three battery cells 10. In FIG. 2, the upper left external connection terminal 30 is provided between a heat storage unit 41 described later and the negative electrode tab lead 20 b of the uppermost battery cell 10. In FIG. 2, the lower right external connection terminal 30 is provided between the positive electrode tab lead 20 a of the lowermost battery cell 10 and a heat storage unit 41 described later.
 外部接続端子30は、電池セルケース60の外に露出される。外部接続端子30には、外部充電装置(不図示)が接続される。外部充電装置は、外部接続端子30およびタブリード端子20を介して、電池ユニット100内の各電池セル10に電力を供給することにより、各電池セル10を充電する。 The external connection terminal 30 is exposed outside the battery cell case 60. An external charging device (not shown) is connected to the external connection terminal 30. The external charging device charges each battery cell 10 by supplying power to each battery cell 10 in the battery unit 100 via the external connection terminal 30 and the tab lead terminal 20.
 図1および図2に示されるように、昇温抑制構造体40は、積層された複数の電池セル10から延出されたタブリード端子20間に設けられている。また、図2において最上部または最下部の電池セル10から延出されたタブリード端子20と、電池セルケース60の内面との間にも、昇温抑制構造体40が設けられている。なお、外部接続端子30がタブリード端子20に接続されている場合、昇温抑制構造体40は、タブリード端子20に接続された外部接続端子30と、電池セルケース60の内面との間に設けられている。 As shown in FIGS. 1 and 2, the temperature rise suppression structure 40 is provided between the tab lead terminals 20 extended from the plurality of stacked battery cells 10. Further, a temperature rise suppression structure 40 is also provided between the tab lead terminal 20 extended from the uppermost or lowermost battery cell 10 in FIG. 2 and the inner surface of the battery cell case 60. When the external connection terminal 30 is connected to the tab lead terminal 20, the temperature rise suppression structure 40 is provided between the external connection terminal 30 connected to the tab lead terminal 20 and the inner surface of the battery cell case 60. ing.
 図1および図2に示されるように、昇温抑制構造体40は、蓄熱部41と、熱伝導部42とを備えている。昇温抑制構造体40は、蓄熱部41および熱伝導部42を一体化して形成される。 As shown in FIGS. 1 and 2, the temperature rise suppression structure 40 includes a heat storage unit 41 and a heat conduction unit 42. The temperature increase suppression structure 40 is formed by integrating the heat storage unit 41 and the heat conduction unit 42.
 蓄熱部41は、絶縁性部材(例えば、樹脂部材)により形成されている。図1および図2に示されるように、蓄熱部41は、タブリード端子20または外部接続端子30に接触するように取り付けられる。 The heat storage part 41 is formed of an insulating member (for example, a resin member). As shown in FIGS. 1 and 2, the heat storage unit 41 is attached so as to contact the tab lead terminal 20 or the external connection terminal 30.
 図2において、左側の上から1番目の蓄熱部41は、電池セルケース60に接続された熱伝導部42と、外部接続端子30との間に、設けられている。図2において、左側上から2番目の蓄熱部41は、電池セルケース60に接続された熱伝導部42と、一番上の電池セル10の負極タブリード20bとの間に、設けられている。図2において、左側上から3番目の蓄熱部41は、電池セルケース60に接続された熱伝導部42と、上から2番目の電池セル10の正極タブリード端子20aとの間に、設けられている。図2において、左側上から4番目(一番下)の蓄熱部41は、上から3番目(一番下)の電池セル10の負極タブリード10bと、電池セルケース60に接続された熱伝導部42との間に、設けられている。 In FIG. 2, the first heat storage unit 41 from the upper left is provided between the heat conduction unit 42 connected to the battery cell case 60 and the external connection terminal 30. In FIG. 2, the second heat storage unit 41 from the upper left side is provided between the heat conducting unit 42 connected to the battery cell case 60 and the negative electrode tab lead 20 b of the uppermost battery cell 10. In FIG. 2, the third heat storage part 41 from the upper left side is provided between the heat conducting part 42 connected to the battery cell case 60 and the positive electrode tab lead terminal 20a of the second battery cell 10 from the upper side. Yes. In FIG. 2, the fourth (bottom) heat storage unit 41 from the upper left is a negative electrode tab lead 10 b of the third (bottom) battery cell 10 from the top, and a heat conduction unit connected to the battery cell case 60. 42 is provided.
 図2において、右側の上から1番目の蓄熱部41は、電池セルケース60に接続された熱伝導部42と、外部接続端子30との間に、設けられている。図2において、右側上から2番目の蓄熱部41は、上から2番目の電池セル10の負極タブリード20bと、電池セルケース60に接続された熱伝導部42との間に、設けられている。図2において、右側上から3番目の蓄熱部41は、電池セルケース60に接続された熱伝導部42と、上から3番目の電池セル10の正極タブリード20aと、電池セルケース60に接続された熱伝導部42との間に、設けられている。図2において、右側上から4番目(一番下)の蓄熱部41は、外部接続端子30と、電池セルケース60に接続された熱伝導部42との間に、設けられている。 In FIG. 2, the first heat storage unit 41 from the upper right is provided between the heat conducting unit 42 connected to the battery cell case 60 and the external connection terminal 30. In FIG. 2, the second heat storage unit 41 from the upper right side is provided between the negative electrode tab lead 20 b of the second battery cell 10 from the upper side and the heat conducting unit 42 connected to the battery cell case 60. . In FIG. 2, the third heat storage unit 41 from the upper right side is connected to the heat conducting unit 42 connected to the battery cell case 60, the positive electrode tab lead 20 a of the third battery cell 10 from the upper side, and the battery cell case 60. It is provided between the heat conducting part 42 and the heat conducting part 42. In FIG. 2, the fourth (lowermost) heat storage unit 41 from the upper right side is provided between the external connection terminal 30 and the heat conducting unit 42 connected to the battery cell case 60.
 蓄熱部41は、タブリード端子20の熱を受熱して蓄熱する。また、蓄熱部41は、外部接続端子30を介して、タブリード端子20の熱を受熱して、受熱した熱を蓄熱する。なお、蓄熱部41は、蓄熱絶縁樹脂とも呼ばれる。 The heat storage unit 41 receives heat from the tab lead terminal 20 and stores the heat. Further, the heat storage unit 41 receives the heat of the tab lead terminal 20 via the external connection terminal 30 and stores the received heat. The heat storage unit 41 is also referred to as a heat storage insulating resin.
 図2に示されるように、熱伝導部42は、蓄熱部41および電池セルケース60の間を接続する。熱伝導部42は、蓄熱部41により蓄熱された熱を電池セルケース60へ伝導する。 As shown in FIG. 2, the heat conducting unit 42 connects between the heat storage unit 41 and the battery cell case 60. The heat conduction unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60.
 図1および図2に示されるように、端子間導電体50は、タブリード端子20間に設けられ、タブリード端子20間を電気的に接続する。これにより、タブリード端子20間が端子間導電体50によって電気的に接続される。図2の例では、端子間導電体50は、2箇所に設けられている。すなわち、図2において、左側の端子間導電体50は、上から2番目の電池セル10の正極タブリード20aと、一番下の電池セル10の負極タブリード20bとの間に設けられ、これらを電気的に接続している。図2において、右側の端子間導電体50は、一番上の電池セル10の正極タブリード20aと、上から2番目の電池セル10の負極タブリード20bとの間に設けられ、これらを電気的に接続している。 図2に示されるように、電池セルケース60は、電池セル10を収容する。電池セルケース60は、熱伝導性部材を用いて形成される。 1 and 2, the inter-terminal conductor 50 is provided between the tab lead terminals 20 and electrically connects the tab lead terminals 20. Thereby, the tab lead terminals 20 are electrically connected by the inter-terminal conductor 50. In the example of FIG. 2, the inter-terminal conductor 50 is provided at two locations. That is, in FIG. 2, the inter-terminal conductor 50 on the left side is provided between the positive electrode tab lead 20a of the second battery cell 10 from the top and the negative electrode tab lead 20b of the lowermost battery cell 10, and these are electrically connected. Connected. In FIG. 2, the inter-terminal conductor 50 on the right side is provided between the positive electrode tab lead 20a of the uppermost battery cell 10 and the negative electrode tab lead 20b of the second battery cell 10 from the top. Connected. As shown in FIG. 2, the battery cell case 60 accommodates the battery cell 10. The battery cell case 60 is formed using a heat conductive member.
 以上、電池ユニット100の構成の詳細について説明した。 The detailed configuration of the battery unit 100 has been described above.
 次に、電池ユニット100を製造する方法について説明する。 Next, a method for manufacturing the battery unit 100 will be described.
 まず、一端部からタブリード端子20が延出された電池セル10を重ね合わせる。 First, the battery cells 10 with the tab lead terminals 20 extending from one end are overlapped.
 次に、少なくとも1つの正極タブリード端子20aに外部接続端子30を接続する。同様に、少なくとも1つの負極タブリード端子20bに外部接続端子30を接続する。外部接続端子30は、例えば、銅や銅合金等の導電性部材により形成される。 Next, the external connection terminal 30 is connected to at least one positive tab lead terminal 20a. Similarly, the external connection terminal 30 is connected to at least one negative tab lead terminal 20b. The external connection terminal 30 is formed of a conductive member such as copper or a copper alloy, for example.
 次に、蓄熱部41および熱伝導部42を重ね合わせて一体化することにより、昇温抑制構造体40を作成する。 Next, the temperature increase suppressing structure 40 is created by superimposing the heat storage unit 41 and the heat conduction unit 42 so as to be integrated.
 蓄熱部41は、絶縁性の高い液状の樹脂の中に、昇温抑制したい温度に応じた蓄熱材を混練調製し、その後硬化させて作られる。なお、絶縁性の高い液状の樹脂は、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂などである。昇温抑制したい温度に応じた蓄熱材は、例えばパラフィン含有カプセル粉体、水含有カプセル粉体、酢酸ナトリウム・三水和物含有カプセル粉体、硝酸リチウム・三水和物含有カプセル粉体、ステアリン酸含有カプセル粉体、セチルアルコール含有カプセル粉体などである。 熱伝導部42は、熱伝導性の高い放熱シート(例えば、銅箔、アルミ箔、金箔、銀箔、グラファイトシート、カーボンファイバー含有エラストマー、窒化ホウ素含有エラストマーなど)により作成される。 The heat storage unit 41 is made by kneading and preparing a heat storage material corresponding to a temperature at which temperature rise is desired to be suppressed in a highly insulating liquid resin, and then curing the heat storage material. In addition, liquid resin with high insulation is an epoxy resin, a silicone resin, a phenol resin, a polyimide resin etc., for example. Examples of the heat storage material corresponding to the temperature to suppress temperature rise include paraffin-containing capsule powder, water-containing capsule powder, sodium acetate / trihydrate-containing capsule powder, lithium nitrate / trihydrate-containing capsule powder, stearin Acid-containing capsule powder, cetyl alcohol-containing capsule powder, and the like. The heat conducting part 42 is made of a heat radiating sheet having high heat conductivity (for example, copper foil, aluminum foil, gold foil, silver foil, graphite sheet, carbon fiber-containing elastomer, boron nitride-containing elastomer).
 そして、図1および図2に示されるように、複数のタブリード端子20(または外部接続端子30)の間や、タブリード端子20(または外部接続端子30)および電池セルケース60の内面の間に、昇温抑制構造体40を配置する。このとき、熱伝導部42が蓄熱部41および電池セルケース60の間を熱的に接続するように、昇温抑制構造体40を配置する。これにより、蓄熱部41により蓄熱された熱が電池セルケース60へ伝導される。また、併せて、端子間導電体50をタブリード端子20間に配置する。これにより、タブリード端子20間が、端子間導電体50を介して、導通する。 As shown in FIGS. 1 and 2, between the tab lead terminals 20 (or external connection terminals 30), between the tab lead terminals 20 (or external connection terminals 30) and the inner surface of the battery cell case 60, The temperature increase suppression structure 40 is disposed. At this time, the temperature rise suppression structure 40 is arranged so that the heat conduction part 42 thermally connects the heat storage part 41 and the battery cell case 60. Thereby, the heat stored by the heat storage unit 41 is conducted to the battery cell case 60. In addition, the inter-terminal conductor 50 is disposed between the tab lead terminals 20. Thereby, the tab lead terminals 20 are electrically connected via the inter-terminal conductor 50.
 最後に、電池セルケース60を用いて、電池セル10を包むように収容する。このとき、外部接続端子30の一端部が電池セル10の外に露出するように、各部材を配置する。 Finally, the battery cell case 60 is used to enclose the battery cell 10. At this time, each member is arranged so that one end of the external connection terminal 30 is exposed to the outside of the battery cell 10.
 以上、電池ユニット100を製造する方法について説明した。 The method for manufacturing the battery unit 100 has been described above.
 次に、電池ユニット100の使用例について、説明する。 Next, usage examples of the battery unit 100 will be described.
 図3は、電池ユニット100の端子の温度と経過時間との関係を示す図であって、昇温抑制時間TSよりも長い時間で充電または放電を行った例を示す図である。図4は、電池ユニット100の外部接続端子30の温度と経過時間との関係を示す図であって、昇温抑制時間TSよりも短い時間で充電または放電を行った例を示す図である。 FIG. 3 is a diagram showing the relationship between the temperature of the terminal of the battery unit 100 and the elapsed time, and is a diagram showing an example in which charging or discharging is performed in a time longer than the temperature rise suppression time TS. FIG. 4 is a diagram illustrating the relationship between the temperature of the external connection terminal 30 of the battery unit 100 and the elapsed time, and is a diagram illustrating an example in which charging or discharging is performed in a time shorter than the temperature rise suppression time TS.
 まず、図3を用いて、昇温抑制時間TSよりも長い時間で充電または放電を行った例について説明する。 First, an example in which charging or discharging is performed for a time longer than the temperature rise suppression time TS will be described with reference to FIG.
 ここで、昇温抑制時間TSとは、蓄熱部41がタブリード端子20の熱を蓄積することができる温度である蓄熱温度α以下に抑制することができる時間をいう。 Here, the temperature rise suppression time TS refers to a time during which the heat storage unit 41 can be suppressed below the heat storage temperature α, which is a temperature at which the heat of the tab lead terminal 20 can be stored.
 一般的に、昇温抑制構造体を持たない二次電池への充電または放電を行った場合、昇温抑制構造体を持たない電池の端子温度の変化は、図3の温度変化曲線L20で表される。図3に示されるように、温度変化曲線L20は、充電または放電が停止しない限り、経過時間が増えるに応じて、端子の表面温度が飽和するまで上昇する。 In general, when a secondary battery without a temperature rise suppression structure is charged or discharged, a change in terminal temperature of a battery without a temperature rise suppression structure is represented by a temperature change curve L20 in FIG. Is done. As shown in FIG. 3, the temperature change curve L20 rises as the elapsed time increases until the surface temperature of the terminal is saturated, unless charging or discharging stops.
 一方、本実施形態の昇温抑制構造体40を具備した電池ユニット100では、昇温抑制構造体40を持つ電池ユニット100の端子温度の変化は、図3の温度変化曲線L21で表される。 On the other hand, in the battery unit 100 including the temperature rise suppression structure 40 of the present embodiment, the change in the terminal temperature of the battery unit 100 having the temperature rise suppression structure 40 is represented by the temperature change curve L21 in FIG.
 図3に示されるように、経過時間の経過に応じて、タブリード端子20への通電停止期間16aから充電または放電の期間17aに移行すると、昇温抑制構造体40に含まれる蓄熱部41がタブリード端子20の熱を蓄熱する。これにより、タブリード端子20の温度が蓄熱温度αまで到達する。蓄熱温度αとは、上述の通り、蓄熱部41がタブリード端子20の熱を蓄積することができる温度である。 As shown in FIG. 3, as the elapsed time elapses, when the energization stop period 16a to the tab lead terminal 20 is shifted to the charging or discharging period 17a, the heat storage unit 41 included in the temperature rise suppression structure 40 is moved to the tab lead. The heat of the terminal 20 is stored. Thereby, the temperature of the tab lead terminal 20 reaches the heat storage temperature α. The heat storage temperature α is a temperature at which the heat storage unit 41 can store the heat of the tab lead terminal 20 as described above.
 その後、蓄熱部41に含まれる蓄熱材の潜熱量に応じて、一時的にタブリード端子20の温度が一定に維持される昇温抑制時間TSが生じる。更にその後、タブリード端子20からの発熱量に応じた蓄熱量を超えると、再び昇温する。 Thereafter, a temperature increase suppression time TS in which the temperature of the tab lead terminal 20 is temporarily maintained constant is generated according to the amount of latent heat of the heat storage material included in the heat storage unit 41. After that, when the heat storage amount corresponding to the heat generation amount from the tab lead terminal 20 is exceeded, the temperature is raised again.
 なお、昇温抑制構造体40は、熱伝導部42を含むことから、昇温抑制時間TSでの蓄熱中も放熱している。 In addition, since the temperature increase suppression structure 40 includes the heat conduction portion 42, the heat dissipation suppression structure 40 dissipates heat even during heat storage during the temperature increase suppression time TS.
 次に、図4を用いて、昇温抑制時間TSよりも短い時間で充電または放電を行った例について説明する。 Next, an example in which charging or discharging is performed in a time shorter than the temperature rise suppression time TS will be described with reference to FIG.
 一般的に、昇温抑制構造体を持たない二次電池への充電または放電を行った場合、昇温抑制構造体を持たない電池の端子温度の変化は、図4の温度変化曲線L20で表される。図4に示されるように、昇温抑制構造体を持たない二次電池の端子の温度変化曲線L20では、通電停止期間16aから充電または放電の期間17bに移行すると、端子温度が昇温する。そして、再び通電停止期間16aに入ると、端子の熱が放散し、降温していく。 In general, when a secondary battery without a temperature rise suppression structure is charged or discharged, a change in terminal temperature of a battery without a temperature rise suppression structure is represented by a temperature change curve L20 in FIG. Is done. As shown in FIG. 4, in the temperature change curve L20 of the terminal of the secondary battery that does not have the temperature rise suppression structure, the terminal temperature rises when the transition from the energization stop period 16a to the charge or discharge period 17b occurs. And if it enters into the electricity supply stop period 16a again, the heat of a terminal will be dissipated and temperature will fall.
 一方、本発明の昇温抑制構造体40を具備した電池ユニット100では、昇温抑制構造体40を持つ電池ユニット100の端子温度の変化は、図4の温度変化曲線L21で表される。 On the other hand, in the battery unit 100 including the temperature rise suppression structure 40 of the present invention, the change in the terminal temperature of the battery unit 100 having the temperature rise suppression structure 40 is represented by a temperature change curve L21 in FIG.
 図4に示されるように、経過時間の経過に応じて、タブリード端子20への通電停止期間16aから充電または放電の期間17aに移行すると、昇温抑制構造体40に含まれる蓄熱部41がタブリード端子20の熱を蓄熱する。これにより、タブリード端子20の温度が蓄熱温度αまで到達する。 As shown in FIG. 4, as the elapsed time elapses, when the energization stop period 16a to the tab lead terminal 20 is shifted to the charging or discharging period 17a, the heat storage unit 41 included in the temperature increase suppression structure 40 is moved to the tab lead. The heat of the terminal 20 is stored. Thereby, the temperature of the tab lead terminal 20 reaches the heat storage temperature α.
 その後、蓄熱部41に含まれる蓄熱材の潜熱量に応じて、一時的にタブリード端子20の温度が一定に維持される昇温抑制時間TSが生じる。この間、蓄熱部41の蓄熱によって、タブリード端子20の温度は、蓄熱温度αに維持される。 Thereafter, a temperature increase suppression time TS in which the temperature of the tab lead terminal 20 is temporarily maintained constant is generated according to the amount of latent heat of the heat storage material included in the heat storage unit 41. During this time, the temperature of the tab lead terminal 20 is maintained at the heat storage temperature α by the heat storage of the heat storage unit 41.
 そして、昇温抑制時間TSよりも短い時間で充電または放電を終えると(充電または放電の時間17bの終了)、タブリード端子20の温度は熱飽和前に次の通電停止期間16bにて降温していく。 When the charging or discharging is finished in a time shorter than the temperature rise suppression time TS (end of the charging or discharging time 17b), the temperature of the tab lead terminal 20 drops in the next energization stop period 16b before the thermal saturation. Go.
 以上の通り、本発明の第1の実施の形態における電池ユニット100は、電池セル10と、電池セルケース60と、タブリード端子20(端子)と、蓄熱部41と、熱伝導部42とを備えている。 As described above, the battery unit 100 according to the first embodiment of the present invention includes the battery cell 10, the battery cell case 60, the tab lead terminal 20 (terminal), the heat storage unit 41, and the heat conduction unit 42. ing.
 電池セル10は、電気を充電または放電する。電池セルケース60は、電池セル10を収容する。タブリード端子20(端子)は、電池セル10に設けられている。蓄熱部41は、絶縁性部材により形成され、タブリード端子20に接触するように取り付けられ、タブリード端子20の熱を受熱して蓄熱する。熱伝導部42は、蓄熱部41および電池セルケース60の間を接続する。熱伝導部42は、蓄熱部41により蓄熱された熱を電池セルケース60へ伝導する。 Battery cell 10 charges or discharges electricity. The battery cell case 60 accommodates the battery cell 10. The tab lead terminal 20 (terminal) is provided in the battery cell 10. The heat storage unit 41 is formed of an insulating member, is attached so as to be in contact with the tab lead terminal 20, receives heat from the tab lead terminal 20, and stores the heat. The heat conducting unit 42 connects between the heat storage unit 41 and the battery cell case 60. The heat conduction unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60.
 このように、蓄熱部41は、タブリード端子20に接触することにより、タブリード端子20の熱を受熱して蓄熱する。これにより、タブリード端子20に熱が蓄熱することを抑制し、タブリード端子20の昇温を遅らせることができる。また、熱伝導部42は、蓄熱部41により蓄熱された熱を電池セルケース60へ伝導する。これにより、タブリード端子20の熱が蓄熱部41を介して電池セルケース60へ伝導される。この結果、タブリード端子20に熱が蓄熱することをさらに抑制し、タブリード端子20の昇温をさらに遅らせることができる。また、電池ユニット100への通電停止中であっても、蓄熱部41に蓄熱(貯蔵)された熱は、熱伝導部42を介して、蓄熱部41よりも温度の低い電池セルケース60に放熱される。 Thus, the heat storage unit 41 receives the heat of the tab lead terminal 20 by contacting the tab lead terminal 20 and stores the heat. Thereby, it is possible to suppress heat accumulation in the tab lead terminal 20 and to delay the temperature rise of the tab lead terminal 20. The heat conducting unit 42 conducts the heat stored by the heat storage unit 41 to the battery cell case 60. Thereby, the heat of the tab lead terminal 20 is conducted to the battery cell case 60 via the heat storage part 41. As a result, it is possible to further suppress heat accumulation in the tab lead terminal 20 and further delay the temperature rise of the tab lead terminal 20. Further, even when energization to the battery unit 100 is stopped, the heat stored (stored) in the heat storage unit 41 is radiated to the battery cell case 60 having a temperature lower than that of the heat storage unit 41 via the heat conduction unit 42. Is done.
 また、電池ユニット100では、タブリード端子20近傍の温度を下げることができる。また、併せて、電池セルケース60の温度も下げることができる。この結果、蓄熱部41の蓄熱時間の回復を図ることができる。 Further, in the battery unit 100, the temperature in the vicinity of the tab lead terminal 20 can be lowered. In addition, the temperature of the battery cell case 60 can also be lowered. As a result, the heat storage time of the heat storage unit 41 can be recovered.
 また、電池ユニット100では、蓄熱部41および熱伝導部42を設けるだけで、特許文献1および2に記載の技術のように、放熱フィンや冷媒を循環させる構造などの大きな構造物を必要としない。このため、特許文献1および2に記載の電池と比較して、電池ユニット100を簡素な構成で小型に作成することができる。 Moreover, in the battery unit 100, only the heat storage part 41 and the heat conduction part 42 are provided, and a large structure such as a structure for circulating the heat radiation fins and the refrigerant is not required unlike the techniques described in Patent Documents 1 and 2. . For this reason, compared with the batteries described in Patent Documents 1 and 2, the battery unit 100 can be made smaller with a simple configuration.
 以上の通り、本発明の第1の実施の形態における電池ユニット100によれば、簡素な構成で、端子の昇温を抑制しつつ、端子の発熱を効率よく放熱することができる。 As described above, according to the battery unit 100 of the first embodiment of the present invention, it is possible to efficiently dissipate heat generated by the terminal while suppressing the temperature rise of the terminal with a simple configuration.
 なお、特許文献3には、二次電池等の発明として、吸熱手段(135)と放熱促進手段(137)を有するものが開示されている。吸熱手段は、二次電池の側面部のほぼ全面に亘って、電池セルにより生じる熱を吸収する。放熱促進手段は、吸熱手段の外側に設けられ、吸熱手段に一時的に吸収された熱を周囲の空気に放熱する。 Note that Patent Document 3 discloses a secondary battery or the like having an endothermic means (135) and a heat release promoting means (137). The heat absorbing means absorbs heat generated by the battery cells over almost the entire side surface of the secondary battery. The heat radiation promoting means is provided outside the heat absorbing means, and dissipates the heat temporarily absorbed by the heat absorbing means to the surrounding air.
 特許文献3では、蓄熱部(特許文献3の吸熱手段)および放熱部(特許文献3の放熱促進手段)を有する点は、本実施形態の電池ユニット100と共通する。また、発熱部(電池セル)からの放熱に際しては、初めに蓄熱部(特許文献3の吸熱手段)に吸熱させ、一定時間昇温を抑えた上で放熱部(特許文献3の放熱促進手段)を介して外部に熱を逃がしている。 Patent Document 3 is common to the battery unit 100 of the present embodiment in that it has a heat storage section (heat absorption means of Patent Document 3) and a heat dissipation section (heat dissipation promotion means of Patent Document 3). In addition, when radiating heat from the heat generating part (battery cell), first, the heat storage part (heat absorbing means of Patent Document 3) absorbs heat, and after the temperature rise is suppressed for a certain period of time, the heat radiating part (heat dissipation promoting means of Patent Document 3) The heat is released to the outside through.
 しかし、昇温対策箇所が、本発明と特許文献3とでは異なる。すなわち、本実施形態では、タブリード端子20が昇温対策箇所である。これに対して、特許文献3に記載の発明では、電池セル(二次電池100Dの缶101の側面部101b)が昇温対策箇所である。 However, the temperature rise countermeasure part is different between the present invention and Patent Document 3. That is, in the present embodiment, the tab lead terminal 20 is a countermeasure for temperature rise. On the other hand, in the invention described in Patent Document 3, the battery cell (the side surface portion 101b of the can 101 of the secondary battery 100D) is a temperature rise countermeasure portion.
 特許文献3では、電池セルの外装からの熱による昇温を抑制する対策しか、図を含めて記載が無く、本実施形態のように電池ユニット100のタブリード端子20に直に蓄熱部41を接触させた構造となっていない。 In Patent Document 3, there is only a measure to suppress the temperature rise due to heat from the exterior of the battery cell, including the figure, and the heat storage unit 41 is brought into direct contact with the tab lead terminal 20 of the battery unit 100 as in this embodiment. It does not have a structure.
 また、本発明の第1の実施の形態における電池ユニット100は、外部接続端子30をさらに備えている。外部接続端子30は、タブリード端子20に接続される。蓄熱部41は、絶縁性部材により形成され、外部接続端子30に接触するように取り付けられ、外部接続端子30を介してタブリード端子20の熱を受熱して蓄熱する。このように、外部接続端子30を設けても、前述した効果を奏することができる。 The battery unit 100 according to the first embodiment of the present invention further includes an external connection terminal 30. The external connection terminal 30 is connected to the tab lead terminal 20. The heat storage unit 41 is formed of an insulating member, is attached so as to contact the external connection terminal 30, receives heat from the tab lead terminal 20 through the external connection terminal 30, and stores the heat. Thus, even if the external connection terminal 30 is provided, the above-described effects can be obtained.
 また、本発明の第1の実施の形態における電池ユニット100は、蓄熱部41および熱伝導部42を一体化して形成された昇温抑制構造体40を備えている。これにより、部品点数を減らすことができ、電池ユニット100の構成をより簡素化することができる。この結果、電池ユニット100をより容易に組み立てることができる。 In addition, the battery unit 100 according to the first embodiment of the present invention includes a temperature increase suppression structure 40 formed by integrating the heat storage unit 41 and the heat conduction unit 42. Thereby, the number of parts can be reduced and the configuration of the battery unit 100 can be further simplified. As a result, the battery unit 100 can be assembled more easily.
 また、本発明の第1の実施の形態における電池ユニット100において、電池セル10の充電時間または放電時間が、昇温抑制時間TSよりも短い場合、タブリード端子20の昇温を所定の温度未満に抑制する。昇温抑制時間TSは、蓄熱部41がタブリード端子20の熱を蓄積することができる温度である蓄熱温度α以下に抑制することができる時間である。 Further, in the battery unit 100 according to the first embodiment of the present invention, when the charging time or discharging time of the battery cell 10 is shorter than the temperature rise suppression time TS, the temperature rise of the tab lead terminal 20 is made lower than a predetermined temperature. Suppress. The temperature increase suppression time TS is a time during which the heat storage unit 41 can be suppressed to a heat storage temperature α or lower, which is a temperature at which the heat of the tab lead terminal 20 can be stored.
 このように、電池セル10の充電時間または放電時間を昇温抑制時間TSよりも短くすることにより、タブリード端子20の昇温を確実に所定の温度未満に抑制することができる。 Thus, by setting the charging time or discharging time of the battery cell 10 to be shorter than the temperature rise suppression time TS, the temperature rise of the tab lead terminal 20 can be reliably suppressed below a predetermined temperature.
 また、本発明の第1の実施の形態における電池ユニット100において、電池セル10は板状に形成されている。これにより、簡単に電池セル10を構成することができる。 Moreover, in the battery unit 100 according to the first embodiment of the present invention, the battery cell 10 is formed in a plate shape. Thereby, the battery cell 10 can be comprised easily.
 <第2の実施の形態>
 本発明の第2の実施の形態における電池ユニット100Aの構成について説明する。
<Second Embodiment>
The configuration of battery unit 100A in the second embodiment of the present invention will be described.
 図5は、電池ユニット100A内の構造を透過して示す斜視図である。図6は、電池ユニット100Aの構成を示す断面図である。なお、図5および図6では、図1~4で示した各構成要素と同等の構成要素には、図1~4に示した符号と同等の符号を付している。 FIG. 5 is a perspective view showing the structure inside the battery unit 100A. FIG. 6 is a cross-sectional view showing the configuration of the battery unit 100A. In FIG. 5 and FIG. 6, constituent elements equivalent to those shown in FIGS. 1 to 4 are given the same reference numerals as those shown in FIGS.
 まず、電池ユニット100Aの構成の概要を説明する。 First, an outline of the configuration of the battery unit 100A will be described.
 図5および図6に示されるように、電池ユニット100Aは、2つの電池セル10Aを有する。電池セルケース60Aが電池セル10Aの外周を被覆するように設けられている。また、各電池セル10Aの一端部(上側)には、正極端子21aが突出するように設けられている。各電池セル10Aの他端部(下側)には、負極端子21bが設けられている。正極または負極を区別しない場合、正極端子21aおよび負極端子21bを統一して、端子21と呼ぶ。また、外部接続端子30Aが、1つの正極端子21aと、1つの負極端子21bに接続されている。また、外部接続端子30Aの双方には、延長リード線30Aaが接続されている。 As shown in FIG. 5 and FIG. 6, the battery unit 100A has two battery cells 10A. A battery cell case 60A is provided so as to cover the outer periphery of the battery cell 10A. Moreover, the positive electrode terminal 21a is provided at one end (upper side) of each battery cell 10A so as to protrude. A negative electrode terminal 21b is provided at the other end (lower side) of each battery cell 10A. When the positive electrode or the negative electrode is not distinguished, the positive electrode terminal 21a and the negative electrode terminal 21b are collectively referred to as a terminal 21. Further, the external connection terminal 30A is connected to one positive terminal 21a and one negative terminal 21b. The extension lead wire 30Aa is connected to both the external connection terminals 30A.
 また、昇温抑制構造体40Aは、上側の電池セル10Aの負極端子21bと、下側の電池セル10Aの正極端子21aとの間に、設けられている。また、上側の電池セル10Aの正極端子21aと、電池セルケース60Aの内面の間にも、昇温抑制構造体40Aが設けられている。さらに、下側の電池セル10Aの負極端子21bと、電池セルケース60Aの内面の間にも、昇温抑制構造体40Aが設けられている。 Further, the temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the upper battery cell 10A and the positive electrode terminal 21a of the lower battery cell 10A. Further, a temperature rise suppression structure 40A is also provided between the positive electrode terminal 21a of the upper battery cell 10A and the inner surface of the battery cell case 60A. Furthermore, a temperature rise suppression structure 40A is also provided between the negative electrode terminal 21b of the lower battery cell 10A and the inner surface of the battery cell case 60A.
 以上、電池ユニット100Aの構成の概要を説明した。 The outline of the configuration of the battery unit 100A has been described above.
 次に、電池ユニット100Aの構成の詳細について、説明する。 Next, details of the configuration of the battery unit 100A will be described.
 図5および図6に示されるように、電池ユニット100Aは、電池セル10Aと、正極端子21aと、負極端子21bと、外部接続端子30Aと、延長リード線30Aaと、昇温抑制構造体40Aと、電池セルケース60Aとを備えている。 As shown in FIGS. 5 and 6, the battery unit 100A includes a battery cell 10A, a positive electrode terminal 21a, a negative electrode terminal 21b, an external connection terminal 30A, an extension lead wire 30Aa, and a temperature rise suppression structure 40A. The battery cell case 60A is provided.
 図5および図6に示されるように、電池セル10Aは、電池セルケース60A内に収容される。電池セル10Aは、電気を充電または放電する。ここでは、円柱型の電池セルとする。また、図5および図6には、2つの電池セル10Aを直列に接続して配置したものを示す。なお、電池セル10Aは、2つ以下でも、2つ以上であってもよい。 As shown in FIG. 5 and FIG. 6, the battery cell 10A is accommodated in the battery cell case 60A. The battery cell 10A charges or discharges electricity. Here, a cylindrical battery cell is used. 5 and 6 show two battery cells 10A connected in series. Note that the number of battery cells 10A may be two or less, or two or more.
 図5および図6に示されるように、正極端子21aは、各電池セル10Aの一端部に突出するように設けられている。 As shown in FIGS. 5 and 6, the positive electrode terminal 21a is provided so as to protrude from one end of each battery cell 10A.
 図5および図6に示されるように、負極端子21bは、各電池セル10Aの他端部に設けられている。 As shown in FIGS. 5 and 6, the negative electrode terminal 21b is provided at the other end of each battery cell 10A.
 図5および図6の例では、2つの外部接続端子30Aの一方は、紙面上側の電池セル10Aの正極端子21aに、電気的に接続されている。また、2つの外部接続端子30Aの他方は、紙面下側の電池セル10Aの負極端子21bに、電気的に接続されている。すなわち、図5および図6の例では、2つの外部接続端子30Aが設けられている。そして、2つの外部接続端子30Aの一方は、2つの電池セル10Aの一方の正極端子21aに接続されている。2つの外部接続端子30Aの他方は、2つの電池セル10Aの他方の負極端子21bに接続されている。延長リード線30Aaは、2つの外部接続端子30Aの各々に接続される。この延長リード線30Aaは、電池セルケース60Aの外に露出される。 5 and 6, one of the two external connection terminals 30A is electrically connected to the positive terminal 21a of the battery cell 10A on the upper side of the drawing. The other of the two external connection terminals 30A is electrically connected to the negative electrode terminal 21b of the battery cell 10A on the lower side in the drawing. That is, in the example of FIGS. 5 and 6, two external connection terminals 30A are provided. One of the two external connection terminals 30A is connected to one positive terminal 21a of the two battery cells 10A. The other of the two external connection terminals 30A is connected to the other negative electrode terminal 21b of the two battery cells 10A. The extension lead wire 30Aa is connected to each of the two external connection terminals 30A. The extended lead wire 30Aa is exposed outside the battery cell case 60A.
 図5および図6に示されるように、電池ユニット100Aには3つの昇温抑制構造体40Aが設けられている。 As shown in FIGS. 5 and 6, the battery unit 100A is provided with three temperature rise suppression structures 40A.
 1つ目の昇温抑制構造体40Aは、紙面上側の電池セル10Aの正極端子21aと、電池セルケース60Aの内面との間に、設けられている。また、2つ目の昇温抑制構造体40Aは、連結された電池セル10Aの端子21A間に設けられている。すなわち、2つ目の昇温抑制構造体40Aは、紙面上側の電池セル10Aの負極端子21bと、紙面下側の電池セル10Aの正極端子21aとの間に、設けられている。また、3つ目の昇温抑制構造体40Aは、紙面下側の電池セル10Aの負極端子21bと、電池セルケース60Aの内面との間に、設けられている。 The first temperature rise suppression structure 40A is provided between the positive electrode terminal 21a of the battery cell 10A on the upper side of the paper and the inner surface of the battery cell case 60A. The second temperature rise suppression structure 40A is provided between the terminals 21A of the connected battery cells 10A. That is, the second temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper and the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper. The third temperature rise suppression structure 40A is provided between the negative electrode terminal 21b of the battery cell 10A on the lower side of the paper and the inner surface of the battery cell case 60A.
 図5および図6に示されるように、昇温抑制構造体40Aは、蓄熱部41Aと、熱伝導部42Aとを備えている。昇温抑制構造体40Aは、蓄熱部41Aおよび熱伝導部42Aを一体化して形成される。 図5および図6に示されるように、3つの昇温抑制構造体40Aのうちで中央に設けられた昇温抑制構造体40Aは、環状の蓄熱部41Aと、環状の熱伝導部42Aとにより、構成されている。図6に示されるように、環状の蓄熱部41Aの中央部の開口穴には、正極端子21aが嵌合されている。環状の蓄熱部41Aは、環状の熱伝導部42Aの内側に嵌め込まれている。また、環状の蓄熱部41Aは、上側の電池セル10Aの負極端子21bと、下側の電池セル10Aの正極端子21aの間に、設けられている。すなわち、環状の蓄熱部41Aは、紙面上側の電池セル10Aの負極端子21bと紙面下側の電池セル10Aの正極端子21aの周縁部との間で、挟持されている。これにより、蓄熱部41Aは下側の電池セル10Aの正極端子21aおよび上側の電池セル10Aの負極端子21bに常に熱的に接触する。この結果、端子21の熱が環状の蓄熱部41Aに蓄熱される。 また、環状の熱伝導部42Aの中央部の開口穴には、環状の蓄熱部41Aが嵌め込まれている。環状の蓄熱部41Aの外周部と、環状の熱伝導部42Aの内周部とは、互いに熱的に接続されている。これにより、環状の熱伝導部42Aの開口穴の内壁と、環状の蓄熱部41Aの外周部とが、常に熱的に接触する。この結果、環状の蓄熱部41Aに蓄熱された熱が、環状の熱伝導部42Aへ伝導される。環状の熱伝導部42Aは、電池セルケース60Aの内周面に熱的に接続されている。これにより、環状の蓄熱部41Aに蓄熱された熱が、環状の熱伝導部42Aを介して、電池セルケース60Aの内周面へ伝導される。 図5および図6に示されるように、3つの昇温抑制構造体40Aのうちで中央以外に設けられた昇温抑制構造体40Aは、円盤状の蓄熱部41Aと円盤状の熱伝導部42Aの積層体により、構成されている。また、円盤状の蓄熱部41Aは、外部接続端子30Aに接続されている。円盤状の蓄熱部41Aは、外部接続端子30Aを介して、正極端子21aまたは負極端子21bに熱的に接続されている。これにより、円盤状の蓄熱部41Aは、端子21の熱を、外部接続端子30Aを介して受け取り、これを蓄熱することができる。 As shown in FIGS. 5 and 6, the temperature rise suppression structure 40A includes a heat storage part 41A and a heat conduction part 42A. The temperature increase suppression structure 40A is formed by integrating the heat storage part 41A and the heat conduction part 42A. As shown in FIG. 5 and FIG. 6, the temperature increase suppression structure 40A provided at the center of the three temperature increase suppression structures 40A includes an annular heat storage portion 41A and an annular heat conduction portion 42A. ,It is configured. As shown in FIG. 6, the positive electrode terminal 21a is fitted into the opening hole in the center of the annular heat storage part 41A. The annular heat storage part 41A is fitted inside the annular heat conduction part 42A. In addition, the annular heat storage portion 41A is provided between the negative electrode terminal 21b of the upper battery cell 10A and the positive electrode terminal 21a of the lower battery cell 10A. That is, the annular heat storage portion 41A is sandwiched between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper and the peripheral portion of the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper. Accordingly, the heat storage unit 41A is always in thermal contact with the positive electrode terminal 21a of the lower battery cell 10A and the negative electrode terminal 21b of the upper battery cell 10A. As a result, the heat of the terminal 21 is stored in the annular heat storage unit 41A. Further, an annular heat storage portion 41A is fitted into the opening hole in the center of the annular heat conducting portion 42A. The outer peripheral portion of the annular heat storage portion 41A and the inner peripheral portion of the annular heat conducting portion 42A are thermally connected to each other. Thereby, the inner wall of the opening hole of the annular heat conducting portion 42A and the outer peripheral portion of the annular heat storage portion 41A are always in thermal contact. As a result, the heat stored in the annular heat storage part 41A is conducted to the annular heat conduction part 42A. The annular heat conducting portion 42A is thermally connected to the inner peripheral surface of the battery cell case 60A. Thereby, the heat stored in the annular heat storage part 41A is conducted to the inner peripheral surface of the battery cell case 60A via the annular heat conduction part 42A. As shown in FIG. 5 and FIG. 6, among the three temperature increase suppression structures 40A, the temperature increase suppression structure 40A provided at a location other than the center includes a disk-shaped heat storage unit 41A and a disk-shaped heat conduction unit 42A. It is comprised by the laminated body of. The disk-shaped heat storage unit 41A is connected to the external connection terminal 30A. The disc-shaped heat storage unit 41A is thermally connected to the positive electrode terminal 21a or the negative electrode terminal 21b via the external connection terminal 30A. Thereby, disk-shaped heat storage part 41A can receive the heat | fever of the terminal 21 via the external connection terminal 30A, and can store this.
 1番上の昇温抑制構造体40A内の熱伝導部42Aは、電池セルケース60Aの上端部に、接続されている。1番上の昇温抑制構造体40A内の蓄熱部41Aは、上側の電池セル10Aの正極端子21aに接続された外部接続端子30Aに、接続されている。 The heat conduction part 42A in the top temperature rise suppression structure 40A is connected to the upper end part of the battery cell case 60A. The heat storage part 41A in the top temperature rise suppression structure 40A is connected to the external connection terminal 30A connected to the positive electrode terminal 21a of the upper battery cell 10A.
 また、1番下の昇温抑制構造体40A内の熱伝導部42Aは、電池セルケース60Aの下端部の内面に、接続されている。1番下の昇温抑制構造体40A内の蓄熱部41Aは、下側の電池セル10Aの負極端子21bに接続された外部接続端子30Aに、接続されている。 各蓄熱部41Aは、絶縁性部材(例えば、樹脂部材)により形成されている。図5および図6に示されるように、蓄熱部41Aは、端子21または外部接続端子30Aに接触するように設けられる。蓄熱部41Aは、端子21の熱を受熱して蓄熱する。また、蓄熱部41Aは、外部接続端子30を介して、端子21の熱を受熱して蓄熱する。なお、蓄熱部41Aは、蓄熱絶縁樹脂とも呼ばれる。 Also, the heat conduction part 42A in the lowest temperature rise suppression structure 40A is connected to the inner surface of the lower end part of the battery cell case 60A. The heat storage part 41A in the lowest temperature rise suppression structure 40A is connected to the external connection terminal 30A connected to the negative electrode terminal 21b of the lower battery cell 10A. Each heat storage part 41A is formed of an insulating member (for example, a resin member). As shown in FIGS. 5 and 6, the heat storage unit 41 </ b> A is provided so as to contact the terminal 21 or the external connection terminal 30 </ b> A. The heat storage unit 41A receives the heat of the terminal 21 and stores the heat. The heat storage unit 41 </ b> A receives the heat of the terminal 21 through the external connection terminal 30 and stores the heat. The heat storage unit 41A is also referred to as a heat storage insulating resin.
 図5および図6に示されるように、熱伝導部42Aは、蓄熱部41Aおよび電池セルケース60Aの間を熱的に接続する。熱伝導部42Aは、蓄熱部41Aにより蓄熱された端子21の熱を電池セルケース60Aへ伝導する。 As shown in FIG. 5 and FIG. 6, the heat conducting portion 42A thermally connects the heat storage portion 41A and the battery cell case 60A. The heat conducting unit 42A conducts the heat of the terminal 21 stored by the heat storage unit 41A to the battery cell case 60A.
 図5および図6に示されるように、電池セルケース60Aは、電池セル10Aを収容する。電池セルケース60Aは、熱伝導性部材を用いて形成される。 As shown in FIG. 5 and FIG. 6, the battery cell case 60A accommodates the battery cell 10A. Battery cell case 60A is formed using a heat conductive member.
 以上、電池ユニット100Aの構成の詳細について説明した。 The details of the configuration of the battery unit 100A have been described above.
 次に、電池ユニット100Aを製造する方法について説明する。 Next, a method for manufacturing the battery unit 100A will be described.
 まず、円盤状の蓄熱部41Aおよび円盤状の熱伝導部42Aを重ね合わせて一体化することにより、前述した2つの昇温抑制構造体40Aを作成する。また、環状の熱伝導部42Aの中央部の開口穴に、環状の蓄熱部41Aを嵌め込むことにより、1つの昇温抑制構造体40Aを作成する。 First, the above-described two temperature rise suppression structures 40A are created by superimposing and integrating the disk-shaped heat storage unit 41A and the disk-shaped heat conduction unit 42A. Moreover, one temperature rise suppression structure 40A is created by fitting the annular heat storage portion 41A into the opening hole in the center of the annular heat conducting portion 42A.
 蓄熱部41Aは、絶縁性の高い液状の樹脂の中に、昇温抑制したい温度に応じた蓄熱材を混練調製し、その後硬化させて作られる。絶縁性の高い液状の樹脂には、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂などが用いられている。昇温抑制したい温度に応じた蓄熱材には、例えば、パラフィン含有カプセル粉体、水含有カプセル粉体、酢酸ナトリウム・三水和物含有カプセル粉体、硝酸リチウム・三水和物含有カプセル粉体、ステアリン酸含有カプセル粉体、セチルアルコール含有カプセル粉体などを用いる。 熱伝導部42Aは、熱伝導性の高い放熱シート(例えば、銅、アルミ、金、銀、グラファイトシートなど)により作成される。 The heat storage section 41A is made by kneading and preparing a heat storage material corresponding to a temperature at which temperature rise is desired to be suppressed in a liquid resin having high insulation properties, and then curing it. For example, an epoxy resin, a silicone resin, a phenol resin, a polyimide resin, or the like is used as the liquid resin having a high insulating property. Examples of the heat storage material corresponding to the temperature at which the temperature rise is to be suppressed include, for example, paraffin-containing capsule powder, water-containing capsule powder, sodium acetate / trihydrate-containing capsule powder, lithium nitrate / trihydrate-containing capsule powder , Stearic acid-containing capsule powder, cetyl alcohol-containing capsule powder, and the like are used. The heat conducting portion 42A is made of a heat radiating sheet (for example, copper, aluminum, gold, silver, graphite sheet, etc.) having high heat conductivity.
 次に、図5および図6に示されるように、3つの昇温抑制構造体40Aと外部接続端子30Aを配置する。 Next, as shown in FIGS. 5 and 6, three temperature rise suppression structures 40 </ b> A and external connection terminals 30 </ b> A are arranged.
 これにより、円盤状の蓄熱部41Aと円盤状の熱伝導部42Aの積層体により構成された昇温抑制構造体40Aの1つは、紙面上側の電池セル10Aの正極端子21aと電池セルケース60Aの内面との間に配置される。このとき、昇温抑制構造体40Aの円盤状の蓄熱部41Aは、外部接続端子30Aを介して、図6の紙面上側の電池セル10Aの正極端子21aに熱的に接続される。また、昇温抑制構造体40Aの円盤状の蓄熱部41Aは、円盤状の熱伝導部42Aにも熱的に接続されている。また、昇温抑制構造体40Aの円盤状の熱伝導部42Aは、円盤状の蓄熱部41Aおよび電池セルケース60Aの内面に熱的に接続される。 As a result, one of the temperature rise suppression structures 40A configured by the laminated body of the disk-shaped heat storage section 41A and the disk-shaped heat conduction section 42A is the positive terminal 21a of the battery cell 10A on the upper side of the paper and the battery cell case 60A. It is arrange | positioned between the inner surfaces of. At this time, the disk-shaped heat storage part 41A of the temperature rise suppression structure 40A is thermally connected to the positive electrode terminal 21a of the battery cell 10A on the upper side in FIG. 6 via the external connection terminal 30A. Further, the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is also thermally connected to the disk-shaped heat conduction part 42A. Further, the disk-shaped heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the disk-shaped heat storage portion 41A and the inner surface of the battery cell case 60A.
 また、同様に、円盤状の蓄熱部41Aと円盤状の熱伝導部42Aの積層体により構成された昇温抑制構造体40Aのもう1つは、図6の紙面下側の電池セル10Aの負極端子21bと電池セルケース60Aの内面との間に配置される。このとき、昇温抑制構造体40Aの円盤状の蓄熱部41Aは、外部接続端子30Aを介して、紙面下側の電池セル10Aの負極端子21aに熱的に接続される。また、昇温抑制構造体40Aの円盤状の蓄熱部41Aは、円盤状の熱伝導部42Aにも熱的に接続されている。また、昇温抑制構造体40Aの円盤状の熱伝導部42Aは、円盤状の蓄熱部41Aおよび電池セルケース60Aの内面に熱的に接続される。 Similarly, another temperature rise suppression structure 40A constituted by a laminated body of a disk-shaped heat storage section 41A and a disk-shaped heat conduction section 42A is the negative electrode of the battery cell 10A on the lower side of the paper in FIG. It arrange | positions between the terminal 21b and the inner surface of battery cell case 60A. At this time, the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is thermally connected to the negative electrode terminal 21a of the battery cell 10A on the lower side of the drawing via the external connection terminal 30A. Further, the disk-shaped heat storage part 41A of the temperature increase suppression structure 40A is also thermally connected to the disk-shaped heat conduction part 42A. Further, the disk-shaped heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the disk-shaped heat storage portion 41A and the inner surface of the battery cell case 60A.
 さらに、環状の蓄熱部41Aと環状の熱伝導部42Aとの組合せにより構成された昇温抑制構造体40Aは、図6の紙面上側の電池セル10Aの負極端子21bと、図6の紙面下側の電池セル10Aの正極端子21aとの間に、配置される。このとき、昇温抑制構造体40Aの環状の蓄熱部41Aは、図6の紙面上側の電池セル10Aの負極端子21bおよび図6の紙面下側の電池セル10Aの正極端子21aの間を熱的に接続する。また、昇温抑制構造体40Aの環状の熱伝導部42Aは、環状の蓄熱部41Aおよび電池セルケース60Aの内面に熱的に接続される。 Furthermore, the temperature rise suppression structure 40A configured by a combination of the annular heat storage portion 41A and the annular heat conduction portion 42A includes a negative electrode terminal 21b of the battery cell 10A on the upper side of the paper in FIG. 6 and a lower side of the paper in FIG. Between the battery cell 10A and the positive electrode terminal 21a. At this time, the annular heat storage portion 41A of the temperature rise suppression structure 40A is thermally connected between the negative electrode terminal 21b of the battery cell 10A on the upper side of the paper in FIG. 6 and the positive electrode terminal 21a of the battery cell 10A on the lower side of the paper in FIG. Connect to. Further, the annular heat conducting portion 42A of the temperature rise suppression structure 40A is thermally connected to the annular heat storage portion 41A and the inner surface of the battery cell case 60A.
 次に、図5および図6に示されるように、外部接続端子30Aに延長リード線30Aaを接続する。 Next, as shown in FIGS. 5 and 6, the extension lead wire 30Aa is connected to the external connection terminal 30A.
 最後に、図5および図6に示されるように、電池セルケース60Aを用いて、電池セル10A等を包むように収容する。このとき、延長リード線30Aaの一端部が電池セル10Aの外に露出するように、各部材を配置する。 Finally, as shown in FIGS. 5 and 6, the battery cell case 60A is used to enclose the battery cell 10A and the like. At this time, each member is arranged so that one end of the extension lead wire 30Aa is exposed to the outside of the battery cell 10A.
 以上、電池ユニット100Aを製造する方法について説明した。 The method for manufacturing the battery unit 100A has been described above.
 次に、電池ユニット100Aの使用例について、説明する。電池ユニット100Aの使用例は、図3および図4を用いて説明した内容と同様である。 Next, a usage example of the battery unit 100A will be described. The usage example of the battery unit 100A is the same as that described with reference to FIGS.
 以上の通り、本発明の第2の実施の形態における電池ユニット100Aは、電池セル10Aと、電池セルケース60Aと、端子21と、蓄熱部41Aと、熱伝導部42Aとを備えている。 As described above, the battery unit 100A according to the second embodiment of the present invention includes the battery cell 10A, the battery cell case 60A, the terminal 21, the heat storage unit 41A, and the heat conduction unit 42A.
 電池セル10Aは、電気を充電または放電する。電池セルケース60Aは、電池セル10Aを収容する。端子21は、電池セル10Aに接続されている。蓄熱部41Aは、絶縁性部材により形成され、端子21に接触するように取り付けられ、端子21の熱を受熱して蓄熱する。熱伝導部42Aは、蓄熱部41Aおよび電池セルケース60Aの間を接続する。熱伝導部42Aは、蓄熱部41Aにより蓄熱された熱を電池セルケース60Aへ伝導する。この構成は、第1の実施の形態における電池ユニット100と同様であるから、第1の実施の形態における電池ユニット100と同様の効果を奏する。 The battery cell 10A charges or discharges electricity. Battery cell case 60A accommodates battery cell 10A. The terminal 21 is connected to the battery cell 10A. The heat storage unit 41A is formed of an insulating member, is attached so as to contact the terminal 21, receives heat from the terminal 21, and stores the heat. The heat conducting part 42A connects between the heat storage part 41A and the battery cell case 60A. The heat conducting unit 42A conducts the heat stored by the heat storage unit 41A to the battery cell case 60A. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
 また、本発明の第2の実施の形態における電池ユニット100Aは、外部接続端子30Aをさらに備えている。外部接続端子30Aは、端子21に接続される。蓄熱部41Aは、絶縁性部材により形成され、外部接続端子30Aに接触するように取り付けられ、外部接続端子30Aを介して端子21の熱を受熱して蓄熱する。この構成は、第1の実施の形態における電池ユニット100と同様であるから、第1の実施の形態における電池ユニット100と同様の効果を奏する。 The battery unit 100A according to the second embodiment of the present invention further includes an external connection terminal 30A. The external connection terminal 30A is connected to the terminal 21. The heat storage unit 41A is formed of an insulating member, is attached so as to be in contact with the external connection terminal 30A, receives heat from the terminal 21 through the external connection terminal 30A, and stores the heat. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
 また、本発明の第2の実施の形態における電池ユニット100Aは、蓄熱部41Aおよび熱伝導部42Aを一体化して形成された昇温抑制構造体40Aを備えている。この構成は、第1の実施の形態における電池ユニット100と同様であるから、第1の実施の形態における電池ユニット100と同様の効果を奏する。 Further, the battery unit 100A in the second embodiment of the present invention includes a temperature increase suppression structure 40A formed by integrating the heat storage unit 41A and the heat conduction unit 42A. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
 また、本発明の第2の実施の形態における電池ユニット100Aにおいて、電池セル10Aの充電時間または放電時間が、昇温抑制時間TSよりも短い場合、端子21の昇温を所定の温度未満に抑制する。昇温抑制時間TSは、蓄熱部41Aが端子21の熱を蓄積することができる温度である蓄熱温度α以下に抑制することができる時間である。この構成は、第1の実施の形態における電池ユニット100と同様であるから、第1の実施の形態における電池ユニット100と同様の効果を奏する。 Further, in the battery unit 100A according to the second embodiment of the present invention, when the charging time or discharging time of the battery cell 10A is shorter than the temperature increase suppression time TS, the temperature increase of the terminal 21 is suppressed below a predetermined temperature. To do. The temperature increase suppression time TS is a time during which the heat storage unit 41A can be suppressed to a heat storage temperature α or lower, which is a temperature at which the heat of the terminal 21 can be stored. Since this configuration is the same as that of the battery unit 100 in the first embodiment, the same effect as that of the battery unit 100 in the first embodiment can be obtained.
 また、本発明の第1の実施の形態における電池ユニット100Aにおいて、電池セル10Aは円柱状に形成されている。これにより、簡単に電池セル10Aを構成することができる。 Further, in the battery unit 100A according to the first embodiment of the present invention, the battery cell 10A is formed in a columnar shape. Thereby, the battery cell 10A can be configured easily.
 ここで、本発明の第1および第2の実施形態に関する実施例を示すが、以下の製造方法と使用方法に制限されるものではない。
[実施例1]
 第1の実施の形態における電池ユニット100の実施例1について、その製造方法を説明する。電池ユニット100は、ラミネート型二次電池とも呼ばれる。
Here, although the Example regarding the 1st and 2nd embodiment of this invention is shown, it is not restrict | limited to the following manufacturing methods and usage methods.
[Example 1]
A manufacturing method of Example 1 of the battery unit 100 according to the first embodiment will be described. The battery unit 100 is also called a laminate type secondary battery.
 図1および図2に示されるように、昇温抑制構造体10の詳細構造を、次のように製造した。 As shown in FIG. 1 and FIG. 2, the detailed structure of the temperature rise suppression structure 10 was manufactured as follows.
 まず、蓄熱部41を、次のように製造した。すなわち、まず、樹脂が硬化後に絶縁性が付与される一液性ポリイミド樹脂に、5マイクロメートル(μm)から50マイクロメートル(μm)の蓄熱性マイクロカプセルを、20重量%から40重量%の割合で混練調製する。なお、蓄熱性マイクロカプセルは、ポリメチルメタクリレートからなる殻とパラフィンを核にもつものを用いる。その後に、混練調製された一液性ポリイミド樹脂を硬化させる。これにより、蓄熱部41を得た。 First, the heat storage unit 41 was manufactured as follows. That is, first, a heat storage microcapsule of 5 micrometers (μm) to 50 micrometers (μm) is added to a one-part polyimide resin to which insulation is imparted after the resin is cured at a ratio of 20 wt% to 40 wt%. Knead and prepare. As the heat storage microcapsules, those having a shell made of polymethyl methacrylate and paraffin as a core are used. Thereafter, the one-component polyimide resin kneaded and prepared is cured. Thereby, the heat storage part 41 was obtained.
 熱伝導部42の製造では、厚さ5マイクロメートル(μm)から150マイクロメートル(μm)のグラファイトシートを用いた。この熱伝導部42のグラファイトシートは、電池ユニット100への通電時におけるタブリード端子20から発生する熱が蓄熱された蓄熱部41から放熱させるために用いられる。なお、電極間隙によっては、熱伝導部42の製造に、カーボンファイバー含有エラストマーや窒化ホウ素含有エラストマーをも、用いることができる。カーボンファイバー含有エラストマーや窒化ホウ素含有エラストマーのシートを熱伝導部42の材料に用いる場合、50マイクロメートル(μm)から10ミリメートル(mm)までの厚みのシートを用いることができる。 In the manufacture of the heat conducting portion 42, a graphite sheet having a thickness of 5 micrometers (μm) to 150 micrometers (μm) was used. The graphite sheet of the heat conducting portion 42 is used to dissipate heat from the heat storage portion 41 where the heat generated from the tab lead terminal 20 when the battery unit 100 is energized is stored. Depending on the electrode gap, a carbon fiber-containing elastomer or a boron nitride-containing elastomer can also be used for manufacturing the heat conducting portion 42. When a sheet of carbon fiber-containing elastomer or boron nitride-containing elastomer is used as the material of the heat conducting portion 42, a sheet having a thickness of 50 micrometers (μm) to 10 millimeters (mm) can be used.
 正極タブリード端子20aおよび負極タブリード端子20bの製造では、銅等の導電性部材を板状に形成した。 In the manufacture of the positive electrode tab lead terminal 20a and the negative electrode tab lead terminal 20b, a conductive member such as copper was formed in a plate shape.
 外部接続端子30の材料には、銅を用いた。外部接続端子30の一端は、タブリード端子20に接続される。外部接続端子30の他端は、充電装置(不図示)や外部負荷装置(不図示)に接続される。 銅 Copper was used as the material for the external connection terminal 30. One end of the external connection terminal 30 is connected to the tab lead terminal 20. The other end of the external connection terminal 30 is connected to a charging device (not shown) or an external load device (not shown).
 端子間導電体50の材料には、銅を用いた。端子間導電体50は、タブリード端子20の間を接続するために用いられる。 銅 Copper was used as the material for the inter-terminal conductor 50. The inter-terminal conductor 50 is used for connecting the tab lead terminals 20.
 そして、第1の実施の形態で説明したように、これらの部材を組み立てて、電池ユニット100を完成させる。 Then, as described in the first embodiment, these members are assembled to complete the battery unit 100.
 ここで、昇温抑制構造体40の構成部品の設置方法では、電池セル10を重ねた時に生じる間隙(図2にて、紙面上側の電池セル10と紙面中央の電池セル10の間の間隙と、紙面中央の電池セル10と紙面下側の電池セル10の間隙の双方)を1.5mmから2.0mmとした。そして、この間隙に、蓄熱部41と熱伝導部42を重ねたものや、タブリード端子20同士の接続のための端子間導電体50などを、図2に示されるように、挿入する。また、それぞれの構成部品厚は、挿入可能な最大値とする。熱伝導部42は、電池セルケース60に接触させた。
[実施例2]
 第2の実施の形態における電池ユニット100Aの実施例2について、その製造方法を説明する。電池ユニット100は、筒型二次電池とも呼ばれる。
Here, in the method of installing the components of the temperature rise suppression structure 40, the gap generated when the battery cells 10 are stacked (in FIG. 2, the gap between the battery cell 10 on the upper side of the paper and the battery cell 10 at the center of the paper) The gap between the battery cell 10 in the center of the paper surface and the battery cell 10 on the lower side of the paper surface was 1.5 mm to 2.0 mm. Then, as shown in FIG. 2, a gap between the heat storage part 41 and the heat conduction part 42 or an inter-terminal conductor 50 for connecting the tab lead terminals 20 is inserted into the gap. Each component thickness is the maximum value that can be inserted. The heat conducting part 42 was brought into contact with the battery cell case 60.
[Example 2]
A manufacturing method of Example 2 of battery unit 100A in the second embodiment will be described. The battery unit 100 is also called a cylindrical secondary battery.
 図5および図6に示されるように、昇温抑制構造体10Aの詳細構造を、次のよう製造した。 As shown in FIGS. 5 and 6, the detailed structure of the temperature rise suppression structure 10A was manufactured as follows.
 まず、蓄熱部41Aを、次のように製造した。すなわち、まず、樹脂が硬化後に絶縁性が付与される一液性ポリイミド樹脂に、5マイクロメートル(μm)から50マイクロメートル(μm)の蓄熱性マイクロカプセルを、20重量%から40重量%の割合で混練調製する。蓄熱性マイクロカプセルには、ポリメチルメタクリレートからなる殻とパラフィンを核にもつものを用いる。その後に、混練調製された一液性ポリイミド樹脂を硬化させる。これにより、蓄熱部41Aを得た。 First, the heat storage part 41A was manufactured as follows. That is, first, a heat storage microcapsule of 5 micrometers (μm) to 50 micrometers (μm) is added to a one-part polyimide resin to which insulation is imparted after the resin is cured at a ratio of 20 wt% to 40 wt%. Knead and prepare. As the heat storage microcapsules, those having a shell made of polymethyl methacrylate and paraffin as a core are used. Thereafter, the one-component polyimide resin kneaded and prepared is cured. Thereby, 41 A of heat storage parts were obtained.
 熱伝導部42Aの製造では、厚さ5マイクロメートル(μm)から150マイクロメートル(μm)のグラファイトシートを用いた。この熱伝導部42Aのグラファイトシートは、電池ユニット100Aへの通電時における端子20から発生する熱が蓄熱された蓄熱部41Aから放熱させるために用いられる。なお、電極間隙によっては、熱伝導部42の製造に、カーボンファイバー含有エラストマーや窒化ホウ素含有エラストマーをも、用いることができる。カーボンファイバー含有エラストマーや窒化ホウ素含有エラストマーのシートを熱伝導部42の材料に用いる場合、50マイクロメートル(μm)から10ミリメートル(mm)までの厚みのシートを用いることができる。 In the manufacture of the heat conducting portion 42A, a graphite sheet having a thickness of 5 micrometers (μm) to 150 micrometers (μm) was used. The graphite sheet of the heat conducting portion 42A is used to dissipate heat from the heat storage portion 41A where the heat generated from the terminals 20 when the battery unit 100A is energized is stored. Depending on the electrode gap, a carbon fiber-containing elastomer or a boron nitride-containing elastomer can also be used for manufacturing the heat conducting portion 42. When a sheet of carbon fiber-containing elastomer or boron nitride-containing elastomer is used as the material of the heat conducting portion 42, a sheet having a thickness of 50 micrometers (μm) to 10 millimeters (mm) can be used.
 正極端子21aおよび負極端子21b製造では、銅等の導電性部材を板状に形成した。 In manufacturing the positive electrode terminal 21a and the negative electrode terminal 21b, a conductive member such as copper was formed in a plate shape.
 外部接続端子30Aの材料には、銅を用いた。外部接続端子30Aの一端は、端子20に接続される。外部接続端子30Aの他端は、延長リード線30Aaに接続される。延長リード線30Aaは、充電装置(不図示)や外部負荷装置(不図示)に接続される。 銅 Copper was used as the material for the external connection terminal 30A. One end of the external connection terminal 30 </ b> A is connected to the terminal 20. The other end of the external connection terminal 30A is connected to the extension lead wire 30Aa. The extension lead wire 30Aa is connected to a charging device (not shown) or an external load device (not shown).
 そして、第2の実施の形態で説明したように、これらの部材を組み立てて、電池ユニット100Aを完成させる。 Then, as described in the second embodiment, these members are assembled to complete the battery unit 100A.
 ここで、昇温抑制構造体40Aの構成部品の設置方法では、電池セル10Aを連結した時に生じる間隙(図6にて、紙面上側の電池セル10Aと紙面下側の電池セル10Aの間の間隙)に、蓄熱部41と熱伝導部42を重ねたものなどを挿入した。また、外部接続端子30Aの一方の面に蓄熱部41Aと熱伝導部42を接触させたものを置いた。熱伝導部42は、電池セルケース60に接触させた。
[実施例3]
 電池ユニット100の動作について、図3を用いて昇温抑制時間TSよりも長い時間で充電または放電を行った例について説明する。
Here, in the method of installing the constituent parts of the temperature rise suppression structure 40A, a gap generated when the battery cells 10A are connected (in FIG. 6, the gap between the battery cell 10A on the upper side of the paper and the battery cell 10A on the lower side of the paper). ) And the like, in which the heat storage part 41 and the heat conduction part 42 are stacked. Moreover, what made the thermal storage part 41A and the heat conduction part 42 contact was set | placed on one side of the external connection terminal 30A. The heat conducting part 42 was brought into contact with the battery cell case 60.
[Example 3]
Regarding the operation of the battery unit 100, an example in which charging or discharging is performed in a time longer than the temperature rise suppression time TS will be described with reference to FIG.
 まず、通電停止状態の電池ユニット100に、外部電源(不図示)により外部接続端子30から電力供給を行った。 First, power was supplied from the external connection terminal 30 to the battery unit 100 in the energized state stopped by an external power source (not shown).
 次に、通電停止状態から充電状態へ移行するか、または既に充電済みの電池ユニット100に外部負荷装置(不図示)を外部接続端子30につなげる事で、通電停止状態から放電状態へ移行させた。 Next, a transition from the energization stop state to the charge state is performed, or an external load device (not shown) is connected to the already connected battery unit 100 to the external connection terminal 30 to shift from the energization stop state to the discharge state. .
 この結果、通電停止時に25℃であった端子20が発熱した。これにより、端子20の温度が昇温した。 As a result, the terminal 20 which was 25 ° C. when the energization was stopped generated heat. Thereby, the temperature of the terminal 20 rose.
 その後、図3に示されるように、昇温抑制構造体40の蓄熱部41に内包されている蓄熱部42(ここでは、39℃蓄熱材を用いた。)により、端子20の温度が39℃から42℃の範囲にて保持された。これにより、昇温抑制期間TSが生じた。 After that, as shown in FIG. 3, the temperature of the terminal 20 is 39 ° C. by the heat storage portion 42 (here, a 39 ° C. heat storage material is used) included in the heat storage portion 41 of the temperature rise suppression structure 40. To 42 ° C. Thereby, the temperature increase suppression period TS occurred.
 この時、同時に熱伝導部42より熱が電池セルケース60に向けて徐々に放出された。 At this time, heat was gradually released from the heat conducting portion 42 toward the battery cell case 60 at the same time.
 そして、さらに端子20の発熱が継続した結果、端子20の温度は、昇温抑制期間TSを超えて、再び昇温が進んだ。
[実施例4]
 電池ユニット100の動作について、図4を用いて昇温抑制時間TSよりも短い時間で充電または放電を行った例について説明する。
As a result of further continued heat generation at the terminal 20, the temperature of the terminal 20 exceeded the temperature increase suppression period TS, and the temperature increased again.
[Example 4]
Regarding the operation of the battery unit 100, an example in which charging or discharging is performed in a time shorter than the temperature rise suppression time TS will be described with reference to FIG.
 まず、通電停止状態の電池ユニット100に、外部電源(不図示)により外部接続端子30から電力供給を行った。 First, power was supplied from the external connection terminal 30 to the battery unit 100 in the energized state stopped by an external power source (not shown).
 次に、通電停止状態から充電状態へ移行するか、または既に充電済みの電池ユニット100に外部負荷装置(不図示)を外部接続端子30につなげる事で、通電停止状態から放電状態へ移行させた。この結果、通電停止時に25℃であった端子20が発熱した。これにより、端子20の温度が昇温した。 Next, a transition from the energization stop state to the charge state is performed, or an external load device (not shown) is connected to the already connected battery unit 100 to the external connection terminal 30 to shift from the energization stop state to the discharge state. . As a result, the terminal 20 that was 25 ° C. when the energization was stopped generated heat. Thereby, the temperature of the terminal 20 rose.
 その後、図4に示されるように、昇温抑制構造体40の蓄熱部41に内包されている蓄熱部42(ここでは、39℃蓄熱材を用いた。)により、端子20の温度が39℃から42℃の範囲にて保持された。これにより、昇温抑制期間TSが生じた。 Thereafter, as shown in FIG. 4, the temperature of the terminal 20 is 39 ° C. by the heat storage portion 42 (here, a 39 ° C. heat storage material is used) included in the heat storage portion 41 of the temperature rise suppression structure 40. To 42 ° C. Thereby, the temperature increase suppression period TS occurred.
 この昇温抑制期間TSは、蓄熱部41がもつ潜熱量に依存する。そして、昇温抑制期間TSとして、タブリード端子20の温度を300秒間保持できるものを用いた場合、30秒でタブリード端子20への通電停止にすると、端子20の発熱は停止する。これにより、熱伝導部42から熱が電池セルケース60に向かって流出するのみになるため、端子20の温度の降温が進んでいく。 The temperature increase suppression period TS depends on the amount of latent heat that the heat storage unit 41 has. And when the thing which can hold | maintain the temperature of the tab lead terminal 20 for 300 second is used as the temperature increase suppression period TS, if the energization stop to the tab lead terminal 20 is stopped in 30 seconds, the heat generation of the terminal 20 stops. As a result, heat only flows out from the heat conducting portion 42 toward the battery cell case 60, and thus the temperature of the terminal 20 is lowered.
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. The embodiment is an exemplification, and various changes, increases / decreases, and combinations may be added to the above-described embodiments without departing from the gist of the present invention. It will be understood by those skilled in the art that modifications to which these changes, increases / decreases, and combinations are also within the scope of the present invention.
 この出願は、2014年6月2日に出願された日本出願特願2014-113874を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-113874 filed on June 2, 2014, the entire disclosure of which is incorporated herein.
 10、10A  電池セル
 20  タブリード端子
 21  端子
 20a  正極タブリード端子
 20b  負極タブリード端子
 21a  正極端子
 21b  負極端子
 30、30A  外部接続端子
 30Aa  延長リード線
 40、40A  昇温抑制構造体
 41、41A  蓄熱部
 42、42A  熱伝導部
 50  端子間導電体
 60 電池セルケース
 100  電池ユニット
10, 10A battery cell 20 tab lead terminal 21 terminal 20a positive electrode tab lead terminal 20b negative electrode tab lead terminal 21a positive electrode terminal 21b negative electrode terminal 30, 30A external connection terminal 30Aa extension lead wire 40, 40A temperature rise suppression structure 41, 41A heat storage part 42, 42A Thermal conduction part 50 Inter-terminal conductor 60 Battery cell case 100 Battery unit

Claims (5)

  1.  電気を充電または放電する電池セルと、
     前記電池セルを収容する電池セルケースと、
     前記電池セルに設けられた端子と、
     絶縁性部材により形成され、前記端子に接触するように取り付けられ、前記端子の熱を受熱して蓄熱する蓄熱部と、
     前記蓄熱部および前記電池セルケースの間を接続し、前記蓄熱部により蓄熱された熱を前記電池セルケースへ伝導する熱伝導部とを備えた電池ユニット。
    Battery cells that charge or discharge electricity;
    A battery cell case that houses the battery cell;
    A terminal provided in the battery cell;
    A heat storage unit that is formed of an insulating member, is attached so as to be in contact with the terminal, receives heat from the terminal, and stores the heat;
    A battery unit comprising: a heat conduction unit that connects between the heat storage unit and the battery cell case and conducts heat stored by the heat storage unit to the battery cell case.
  2.  前記端子に接続される外部接続端子をさらに備え、
     前記蓄熱部は、絶縁性部材により形成され、前記外部接続端子に接触するように取り付けられ、前記外部接続端子を介して前記端子の熱を受熱して蓄熱する請求項1に記載の電池ユニット。
    An external connection terminal connected to the terminal;
    The battery unit according to claim 1, wherein the heat storage unit is formed of an insulating member, is attached to be in contact with the external connection terminal, receives heat from the terminal via the external connection terminal, and stores the heat.
  3.  前記蓄熱部および前記熱伝導部を一体化して形成された昇温抑制構造体を備えた請求項1または2に記載の電池ユニット。 3. The battery unit according to claim 1, further comprising a temperature rise suppression structure formed by integrating the heat storage unit and the heat conduction unit.
  4.  前記電池セルの充電時間または放電時間が、前記蓄熱部が前記端子の熱を蓄積することができる温度である蓄熱温度以下に抑制することができる時間である昇温抑制時間よりも短い場合、前記端子の昇温を所定温度未満に抑制する請求項1~3の何れか1項に記載の電池ユニット。 When the charging time or discharging time of the battery cell is shorter than a temperature rise suppression time that is a time during which the heat storage unit can be suppressed to a heat storage temperature that is a temperature at which the heat of the terminal can be stored, or shorter, The battery unit according to any one of claims 1 to 3, wherein the temperature rise of the terminal is suppressed below a predetermined temperature.
  5.  前記電池セルは板状または円柱状に形成されている請求項1~4の何れか1項に記載の電池ユニット。 The battery unit according to any one of claims 1 to 4, wherein the battery cell is formed in a plate shape or a column shape.
PCT/JP2015/002746 2014-06-02 2015-06-01 Battery unit WO2015186333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525690A JPWO2015186333A1 (en) 2014-06-02 2015-06-01 Battery unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014113874 2014-06-02
JP2014-113874 2014-06-02

Publications (1)

Publication Number Publication Date
WO2015186333A1 true WO2015186333A1 (en) 2015-12-10

Family

ID=54766418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002746 WO2015186333A1 (en) 2014-06-02 2015-06-01 Battery unit

Country Status (2)

Country Link
JP (1) JPWO2015186333A1 (en)
WO (1) WO2015186333A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014205A (en) * 2016-07-20 2018-01-25 矢崎総業株式会社 Battery pack for vehicle
JP2021500724A (en) * 2018-07-27 2021-01-07 エルジー・ケム・リミテッド Battery module and battery pack containing it
KR102333290B1 (en) * 2021-03-25 2021-12-01 고려대학교 산학협력단 Battery module with direct cooling of tap

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210619A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Battery pack
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
JP2012186114A (en) * 2011-03-08 2012-09-27 Hitachi Vehicle Energy Ltd Secondary battery and secondary battery module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210619A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Battery pack
JP2012059361A (en) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd Battery
JP2012186114A (en) * 2011-03-08 2012-09-27 Hitachi Vehicle Energy Ltd Secondary battery and secondary battery module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014205A (en) * 2016-07-20 2018-01-25 矢崎総業株式会社 Battery pack for vehicle
JP2021500724A (en) * 2018-07-27 2021-01-07 エルジー・ケム・リミテッド Battery module and battery pack containing it
JP7060688B2 (en) 2018-07-27 2022-04-26 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing it
KR102333290B1 (en) * 2021-03-25 2021-12-01 고려대학교 산학협력단 Battery module with direct cooling of tap

Also Published As

Publication number Publication date
JPWO2015186333A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5211022B2 (en) Lithium ion secondary battery
KR101252963B1 (en) Battery pack with enhanced radiating ability
JP2015522912A (en) Battery cell with improved cooling efficiency
JPWO2016067517A1 (en) Battery pack and heat dissipation holder
JP6380704B2 (en) Power storage device pack
JP2011023296A (en) Battery pack
KR20170019041A (en) Battery Pack Comprising Metallic Pack Case and Thermal Conduction Member
CN110676536A (en) Battery module
CN103026437A (en) Power storage module
JP2009252553A (en) Battery pack module
JP2012174972A (en) Power storage device
KR20170132514A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JPWO2013145611A1 (en) Power storage device and heat dissipation method for power storage device
WO2015186333A1 (en) Battery unit
KR20200065192A (en) Battery Pack Having Heat Dissipating Member
JP2012174971A (en) Power storage device
JP2012174970A (en) Power storage device
JP2020523753A (en) Secondary battery having a hollow filled with a heat conductive resin
KR102311076B1 (en) Battery Module Having Heat Pipe and Battery Pack Having the Same
KR101134134B1 (en) Secondary battery module
JP6289237B2 (en) Assembled battery
JP2009016239A (en) Temperature control structure of power source body, and vehicle
JP2007123016A (en) Battery pack
CN114079096B (en) Battery assembly and electronic device
JP2010287490A (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802390

Country of ref document: EP

Kind code of ref document: A1