WO2015186218A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
WO2015186218A1
WO2015186218A1 PCT/JP2014/064931 JP2014064931W WO2015186218A1 WO 2015186218 A1 WO2015186218 A1 WO 2015186218A1 JP 2014064931 W JP2014064931 W JP 2014064931W WO 2015186218 A1 WO2015186218 A1 WO 2015186218A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
terminals
base station
wireless communication
communication system
Prior art date
Application number
PCT/JP2014/064931
Other languages
English (en)
French (fr)
Inventor
幹 早川
教夫 大久保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/064931 priority Critical patent/WO2015186218A1/ja
Publication of WO2015186218A1 publication Critical patent/WO2015186218A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a system for measuring a relative position between terminals using wireless communication.
  • GPS Global Positioning System
  • GPS Global Positioning System
  • wireless signals transmitted from a plurality of satellites are received by the terminal, and the position of the terminal is specified by measuring the arrival time at three points. Because it uses radio signals from satellites, its use is mainly limited to the outdoors only, and since GPS satellites are not geostationary satellites, the number and position of satellites that are in the line-of-sight range from the terminal change from time to time, Depending on the conditions, the terminal position identification accuracy varies greatly in units of several meters.
  • the other In order to measure the distance by wireless strength using this indoor positioning technology, it is necessary for the other to receive the communication transmitted by one, so that one of them must be in a standby operation. In general, compared with transmission, the receiving operation does not accurately know the time when the other party transmits, so it is necessary to operate the radio circuit for a longer time and consumes a lot of power.
  • the terminal is generally operated by a battery in order to move, and is generally operated intermittently without making the wireless circuit stand by. Therefore, the base station performs a standby operation that consumes power, and the terminal always communicates via the base station.
  • Patent Document 3 describes a technique for reducing the transmission power of a terminal by performing standby operation with part of the terminal serving as a representative terminal and hierarchizing the topology.
  • JP 2008-96326 A International Publication No. 2013/065240 JP 2011-15141 A
  • Patent Document 2 in order to measure the relative positional relationship between terminals, a method of estimating the distance between terminals using wireless strength is used. This method requires the other terminal to wait for a packet transmitted by one terminal, and there is a problem that power consumption increases due to the standby operation.
  • the transmission power of terminals can be reduced by hierarchizing the topology, but communication between terminal terminals cannot be performed, and thus the distance between terminals cannot be directly measured.
  • a typical object of the present invention is to measure the wireless strength between terminals while suppressing the power consumption of the terminals in a star type network in which the terminals communicate only with the base station, and determine the distance between the terminals. It provides a technique that enables estimation.
  • a typical wireless communication system is a wireless communication system having a base station and a plurality of terminals that perform wireless communication with the base station.
  • Each of the plurality of terminals has a state of transmitting a connection request to the base station and a reception state of detecting radio wave intensity.
  • Each of the plurality of terminals shifts to a reception state in which the radio wave intensity is detected when another terminal is in a state of transmitting a connection request to the base station, and acquires the intensity of the radio wave transmitted by the other terminal.
  • a typical effect is that, in a star-type network in which terminals communicate only with base stations, the wireless power between terminals is measured and the distance between terminals is estimated while suppressing power consumption of the terminals. Is possible.
  • wireless communications system which is one embodiment of this invention, it is a figure which shows an example of the external appearance of a name tag type
  • wireless communications system which is one embodiment of this invention, it is a figure which shows an example (A) (B) (C) of a specification of proximity detection by the infrared rays of a name tag type
  • wireless communications system which is one embodiment of this invention.
  • wireless communications system which is one embodiment of this invention, it is a figure which shows an example of the optical axis of the infrared transmitter / receiver arrange
  • wireless communications system which is one embodiment of this invention.
  • wireless communications system which is one embodiment of this invention, it is a figure which shows an example of the relationship between the distance between terminals, and electromagnetic wave intensity. It is a figure which shows an example of the detection range of an infrared rays and radio
  • FIG. 1 It is a figure which shows an example (A) (B) of a network topology in the comparison with a prior art and one embodiment of this invention. It is a figure which shows an example of the state transition of the radio
  • a base station responds to the connection request which the terminal transmitted, and is a figure which shows an example of a communication sequence in case data communication is performed from a terminal to a base station.
  • a base station responds to the connection request which the terminal transmitted, and is a figure which shows an example of a communication sequence in case data communication is performed from a base station to a terminal. It is a figure which shows an example of the state transition of the radio
  • FIG. 5 is a flowchart illustrating an example of state transition of a wireless circuit in a sensor terminal in a wireless communication system according to an embodiment of the present invention. It is a flowchart which shows an example of the time synchronization by the radio
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently indispensable in principle. Needless to say.
  • the shape and positional relationship of components and the like when referring to the shape and positional relationship of components and the like, the shape is substantially the same unless otherwise specified and the case where it is not clearly apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • a typical wireless communication system includes a base station (wireless base station (WBS)) and a plurality of terminals (sensor terminals (NN)) that perform wireless communication with the base station. It is a communication system.
  • Each of the plurality of terminals has a state of transmitting a connection request to the base station (connection request state (MADV)) and a reception state of detecting radio wave intensity (search state (MSCN)).
  • Each of the plurality of terminals shifts to a reception state in which the radio wave intensity is detected when another terminal is in a state of transmitting a connection request to the base station, and acquires the intensity of the radio wave transmitted by the other terminal. To do.
  • the wireless communication system of the present invention combines the relationship between persons and the current organization as an organization activity by integrating the wearer and surrounding situation acquired by a name tag type sensor terminal worn by a person and the face-to-face information between the wearers. This is a system to illustrate the evaluation (performance) of the system and to help improve the organization.
  • the wireless communication system of the present invention can be used for communication between staff members, customers / patients, and staff members in business fields where communication between people in the organization is strongly related to performance, such as stores in the field of work and medical sites.
  • a name tag type sensor terminal will be described as a name tag type sensor terminal, and also simply referred to as a sensor terminal and a terminal.
  • the wearer wearing the name tag type sensor terminal is described as a person, person, person, human body, or the like.
  • FIG. 1 is a diagram showing an example of a system configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system of the present embodiment includes a plurality of (three examples shown in FIG. 1) name tag type sensor terminals (NN1, NN2, NNn), wireless base stations (WBS1, WBSn), wired base stations (BS), It has a transmitter (BCN1, BCNn), a data sensor (DC), a display (DP), and the like.
  • the data sensor (DC) includes an analysis engine (AE), a sensor database (SDB), a downlink communication database (DDB), and the like.
  • the wireless base station (WBS) and the wired base station (BS) and the data center (DC) are connected through a line such as the Internet (IN).
  • a name tag type sensor terminal (NN), a wireless base station (WBS), a transmitter (BCN) and the like are typically described.
  • the wireless communication system of the present embodiment is characterized in that a person (P1, P2, Pn) wears a name tag type sensor terminal (NN1, NN2, NNn).
  • a name tag type sensor terminal (NN) is worn by two or more (three examples are shown in FIG. 1).
  • a name-tag type sensor terminal (NN) a person's face-to-face contact, behavior, a placed environment, and the like are acquired and accumulated by a sensor, and data is collected via a base station.
  • the base station includes a base station that performs wireless communication with the sensor terminal (NN) (WBS, two examples of WBS1 and WBSn in FIG. 1), a base station that performs wired communication (BS), and the like.
  • WBS wireless base station
  • WBS wireless base stations
  • BS wired base stations
  • a base station including a base station that performs wireless communication and a base station that performs wired communication may be collectively referred to as a base station (WBS, BS) in some cases.
  • the name tag type sensor terminal (NN) has a function of recording that it has approached another sensor terminal (NN). This is called a proximity detection function.
  • a proximity detection function In this embodiment, two types of infrared signals and wireless signals are assumed.
  • the proximity detection function has two roles. One is a function (FFDT) for detecting face-to-face communication between wearers wearing sensor terminals (NN), and the other is installed at each location. Function for detecting when and where the wearer wearing the sensor terminal (NN) is received (LI1) from a stationary transmitter (BCN, FIG. 1 shows two examples of BCN1 and BCNn). , LI2, LIn).
  • the location information transmitted from the transmitter (BCN) may be infrared communication or wireless communication.
  • Infrared communication has higher directivity than wireless communication, has a characteristic in which communication is difficult to disperse and reflect, and is suitable for detecting that sensor terminals (NN) are facing each other.
  • wireless communication has a characteristic of being emitted and radiated in a wider space compared to infrared rays, and is suitable for detecting the presence of the sensor terminal (NN) in a wider space.
  • Data collected by a wireless base station (WBS) or a wired base station (BS) is stored as sensor data (SDT) in a sensor database (SDB) of a data center (DC) through a line such as the Internet (IN). .
  • the sensor data (SDT) is analyzed by the analysis engine (AE) and displayed on the display (DP) as feedback data (FBDT) or stored in the downlink communication database (DDB), and then the Internet (IN) is again transmitted.
  • a wireless base station (WBS) or a wired base station (BS) and is directly notified to the wearer on the screen of the sensor terminal (NN) or as sound.
  • FIG. 2 is a diagram showing an example of the flow of analysis of data collected by the sensor terminal (NN).
  • Sensor input (SIN) acquired by various sensors mounted on the sensor terminal (NN) includes infrared ID (IRID), wireless ID / intensity (RST), environmental information (temperature / humidity / illuminance) (EDT), Each information includes acceleration (movement / angular velocity) (ACDT) and microphone (voice) (SDT).
  • IRID infrared ID
  • RST wireless ID / intensity
  • EDT environmental information
  • Each information includes acceleration (movement / angular velocity) (ACDT) and microphone (voice) (SDT).
  • ACDT acceleration movement / angular velocity
  • SDT voice
  • the dynamic acceleration (ACDT) information is subjected to frequency analysis (FFT) and integration (ACUM) by a temporary feature analysis (FAN) inside the sensor terminal (NN), and an acceleration rhythm (MR) which is a temporary feature (FF).
  • FFT frequency analysis
  • MR acceleration rhythm
  • ME kinetic energy
  • the static acceleration (ACDT) information is recorded as a posture (POS) that is a temporary feature amount (FF).
  • POS posture
  • FF temporary feature amount
  • SDT speech
  • Infrared ID (IRID) information is information received from other sensor terminals or stationary infrared beacons (transmitters), which is a temporary feature (F2FDT) of face-to-face ID (person / place). ) Is recorded.
  • the wireless ID / strength (RST) is information obtained by receiving ID transmitted from another sensor terminal or a stationary wireless beacon and measuring the strength information, similarly to the infrared ID (IRID). It is recorded as a temporary feature amount (F2FDT) of the face-to-face ID (person / place).
  • the environmental information (EDT) is also recorded as a temporary feature amount (EDT) of the environmental information.
  • the sensor input (SIN), temporary feature amount analysis (FAN), and temporary feature amount (FF) in the sensor terminal (NN) described above are made to correspond to the configuration of the sensor terminal (NN) shown in FIGS. I will explain.
  • the infrared ID is identification information obtained from the infrared transmission / reception circuits (TRIR1 to TRIR6).
  • the wireless ID / strength (RST) is identification information and strength information obtained from the wireless circuit (RADIO-S).
  • the environmental information is information such as temperature / humidity obtained from the temperature / humidity sensor (TEMP) and illuminance obtained from the illuminance sensor (LUM).
  • the acceleration is information such as movement / angular velocity obtained from the acceleration / angular velocity sensor (ACC).
  • the microphone (SDT) is information such as voice obtained from the microphone (MIC).
  • the temporary feature amount analysis is realized by executing each analysis program stored in the nonvolatile memory (IFMEM) by the central processing unit (CPU) in the microprocessor (MPU). That is, the temporary feature amount analysis (FAN) is a functional unit by software.
  • the temporary feature amount (FF) is information stored in an external flash memory (OFMEM) or the like.
  • the temporary feature quantity (FF) recorded inside the sensor terminal (NN) is stored in the base station (not shown in FIG. 2, wireless base station (WBS) or wired base station (BS) shown in FIG. 1).
  • WBS wireless base station
  • BS wired base station
  • DC data center
  • SAN secondary feature analysis
  • the face-to-face ID (F2FDT) is complemented (SUP) and combined extraction (CMB), and a face-to-face matrix (F2FD) of secondary feature quantities (SF) is generated.
  • the face-to-face ID that has been supplemented (SUP) is compared with the environment information (EDT) and the place identification (PLDT) to generate place information (LD).
  • Acceleration rhythm (MR), kinetic energy (ME), and posture (POS) are combined with face-to-face ID information that has been subjected to frequency pattern analysis (SFAN) and complemented (SUP).
  • ART degree of activity
  • CRT degree of concentration
  • etc. are generated as features of the person's communication.
  • the voice frequency (SF) and the voice energy (SE) are determined by the utterance estimation (SPDT), and the wearer's utterance is determined. Together with the frequency pattern analysis (SFAN) information, the behavior determination (BHDT) is used to wear the sensor terminal wearer. The estimated behavior (BHD) is generated.
  • the secondary feature analysis (SAN) in the above data center (DC) is executed in the analysis engine (AE) shown in FIG.
  • the secondary feature amount (SF) is information stored in a sensor database (SDB), a downlink communication database (DDB), or the like.
  • FIG. 3 is a diagram illustrating an example of a flow of collecting sensor data (SDT).
  • FIG. 4 is a diagram illustrating an example of the flow of delivery of feedback data (FBDT).
  • the host program, client middleware, and host middleware in FIGS. 3 and 4 mean functional units realized by the operation of these software.
  • Sensor data is collected from a sensor terminal (NN) by a base station (WBS, BS) and stored in a sensor database (SDB) of a data center (DC).
  • the feedback data (FBDT) stored in the downlink communication database (DDB) of the data center (DC) by the upper application (not shown) is sent to the sensor terminal (NN) via the base stations (WBS, BS).
  • the sensor data (SDT) and feedback data (FBDT) are described in FIGS. 3 and 4 because the data flow directions are opposite.
  • one base station (WBS, BS) can be implemented to have both functions of collecting sensor data (SDT) and distributing feedback data (FBDT).
  • the sensor data (SDT) stored in the external flash memory (OFMEM) of the sensor terminal (NN) is a wireless circuit (RADIO-S) or USB target based on Bluetooth (registered trademark, not shown below).
  • the data is transferred to the base station (WBS, BS) via the I / F (USB-T).
  • the Bluetooth is, for example, Bluetooth 4.0.
  • the upstream communication base station host program (BUHS) of the base station (WBS, BS) converts the sensor data (SDT) transmitted from the sensor terminal (NN) into a wireless circuit (RADIO-H) by Bluetooth or a USB master I / F. Received via (USB-M) and temporarily stored in the base station primary storage (BUTS) (file synchronization).
  • the sensor data (SDT) is temporarily stored in the base station primary storage (BUTS) because the base station (WBS, BS) receives a large amount of sensor data (SDT) from many sensor terminals (NN). This is to prevent the data center (DC) from being stored in the sensor database (SDB) in time, and the sensor data (SDT) from being lost.
  • BUTS base station primary storage
  • the base station retrieves the sensor data (SDT) once stored in the base station primary storage (BUTS) by the upstream communication server client middleware (SUCM), and transmits it to the data center (IN) via the Internet (IN).
  • DC The upstream communication server host middleware (SUHM) of the data center (DC) receives the sensor data (SDT) transmitted from the base stations (WBS, BS) and stores it in the sensor database (SDB) (HTTP / HTTPS upload).
  • SDB sensor database
  • the sensor terminal (NN) makes an inquiry as to whether there is feedback data (FBDT) directed to itself, or makes a wireless circuit (RADIO-S) by Bluetooth or a USB target I / F (USB-T).
  • FBDT feedback data
  • RFID-S wireless circuit
  • ID inquiry To the base stations (WBS, BS) via ID) (ID inquiry).
  • the downlink communication base station host program (BDHS) of the base station (WBS, BS) sends the inquiry transmitted from the sensor terminal (NN) to the wireless circuit (RADIO-H) by Bluetooth or USB master I / F (USB-M ) And transferred to the downlink communication server host middleware (SDHM) of the data center (DC) via the downlink communication server client middleware (SDCM).
  • SDHM downlink communication server host middleware
  • FBDT feedback data
  • DDB downlink communication database
  • FBDT downlink communication database
  • the downlink communication base station host program (BDHS) of the base station (WBS, BS) uses the feedback data (FBDT) received via the downlink communication server client middleware (SDCM) as a radio circuit (RADIO-H) or USB master I Transmit to the sensor terminal (NN) via / F (USB-M).
  • SDCM downlink communication server client middleware
  • the sensor terminal (NN) receives the feedback data (FBDT) transmitted by the downlink communication base station host program (BDHS) via the radio circuit (RADIO-S) or the USB target I / F (USB-T), and externally Store in flash memory (OFMEM) (data reception).
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the name tag type sensor terminal (NN).
  • the name tag type sensor terminal (NN) is composed of various communication circuits centered on a microprocessor (MPU) that performs overall control.
  • the microprocessor (MPU) includes a central processing unit (CPU), nonvolatile memory (IFMEM), volatile memory (RAM), real time clock (RTC), general purpose I / O (GPIO), serial communication circuit (SCI), A / A D converter (ADC) and a D / A converter (DAC) are incorporated. These are connected to each other via a bus (IBUS) inside the microprocessor (MPU) and controlled by a central processing unit (CPU).
  • IBUS bus
  • the central processing unit is a device that controls arithmetic processing based on a program.
  • the non-volatile memory (IFMEM) is a memory represented by a program that operates a central processing unit (CPU) and fixed data, for example, a flash memory.
  • Volatile memory (RAM) is memory in which primary data is stored.
  • the real-time clock (RTC) is a clock function unit that stores and manages time.
  • General purpose I / O GPIO
  • the serial communication circuit (SCI) is an input / output interface for serial communication.
  • the A / D converter (ADC) is a converter that performs analog / digital conversion.
  • the D / A converter (DAC) is a converter that performs digital / analog conversion.
  • an acceleration / angular velocity sensor (ACC), a temperature / humidity sensor (TEMP), and an illuminance sensor (LUM) are mounted as various sensors. Since the outputs of the acceleration / angular velocity sensor (ACC) and temperature / humidity sensor (TEMP) are output as digital serial signals, they are connected to the serial communication circuit (SCI) of the microprocessor (MPU). Since the output of the illuminance sensor (LUM) is an analog output, it is connected to an A / D converter (ADC) of a microprocessor (MPU) and is digitally converted by the A / D converter (ADC).
  • ADC A / D converter
  • the output of the microphone (MIC) is connected to an A / D converter (ADC) of a microprocessor (MPU), and sound acquired by the microphone (MIC) is digitally converted by the A / D converter (ADC).
  • ADC A / D converter
  • the speaker (SP) is connected to a D / A converter (DAC) of a microprocessor (MPU), and is converted into an analog signal by the D / A converter (DAC) to generate sound from the speaker (SP).
  • each transmission / reception circuit is connected to a serial communication circuit (SCI) of a microprocessor (MPU) via an IrDA modulation / demodulation circuit (IRCD).
  • SCI serial communication circuit
  • MPU microprocessor
  • IRCD IrDA modulation / demodulation circuit
  • Sensor data (SDT) acquired from various sensors is stored in an external flash memory (OFMEM) connected to a serial communication circuit (SCI) of a microprocessor (MPU).
  • OFMEM external flash memory
  • SCI serial communication circuit
  • MPU microprocessor
  • a Bluetooth wireless circuit (RADIO-S) and a USB target I / F (USB-T) are provided. . These are also connected to the serial communication circuit (SCI) of the microprocessor (MPU).
  • the USB target I / F (USB-T) is connected to a serial communication circuit (SCI) via a USB asynchronous transmission / reception circuit (USB-UART).
  • the name tag type sensor terminal operates with electric power supplied from a secondary battery (BAT).
  • the secondary battery (BAT) is charged by the charging circuit (CHG) using the power supplied from the USB target I / F (USB-T) by the USB bus power power supply (EPOW +, EPOW-).
  • a button switch As a user interface, a button switch (BUTS), a light emitting diode (LED), and a liquid crystal screen (LCD) are provided.
  • the button switch (BUTS) and the light emitting diode (LED) are connected to a general-purpose I / O (GPIO), and the liquid crystal screen (LCD) is connected to a serial communication circuit (SCI).
  • a general-purpose I / O GPIO
  • SCI serial communication circuit
  • FIG. 6 is a diagram showing an example of the appearance of a name tag type sensor terminal (NN).
  • the name tag type sensor terminal (NN) of the present embodiment is small, for example, having a vertical and horizontal dimension of 60 mm ⁇ 85 mm on the surface, a thickness of 10 mm at the thickest part, and 8 mm at other thicknesses. The shape is assumed to be mounted.
  • the upper part of the housing (IRW) is composed of an infrared transmitting member, and transmits optical signals from the infrared transmission / reception circuits (TRIR1 to TRIR6) mounted therein.
  • Three strap attachment holes (STH) are provided in the upper part (IRW) of the case, and each penetrates the back side of the case by an L-shaped tunnel structure.
  • a string or a strap is passed through this hole (STH) to attach to a person.
  • a light emitting diode (LED) and an illuminance sensor (LUM) are mounted on the upper part of the housing (IRW) and guided to the surface of the housing by a light guide material (not shown).
  • a liquid crystal screen (LCD) and a button switch (BUTS) are provided on the housing surface, and a power switch (PSW) and a USB target I / F (USB-T) are mounted on the lower portion of the housing.
  • An opening for a microphone (MIC) is provided on the surface of the housing, and an opening for a speaker (SP) is provided on the back of the housing.
  • MIC microphone
  • SP opening for a speaker
  • the name tag type sensor terminal (NN) shown in FIG. 6 has a liquid crystal screen (LCD), a button switch (BUTS), an opening for a microphone (MIC), etc. on the front side, and a speaker (SP).
  • the side on which the opening is disposed is the back side.
  • FIG. 7 is a diagram showing an example of an internal layout of the name tag type sensor terminal (NN).
  • the name tag type sensor terminal (NN) is provided with a strap attachment hole (STH) in the upper part of the casing and a packing (SEAL) on the outer peripheral part to prevent water from entering the housing.
  • the light emitting diode (LED), the illuminance sensor (LUM), the radio circuit (RADIO-S), and the infrared transmission / reception circuits (TRIR1 to TRIR6) are arranged as high as possible in the casing. This prevents the arm or the like from interfering with the name tag type sensor terminal (NN) while a person is wearing, and blocking visible light, infrared signals, and radio signals entering and exiting the sensor terminal (NN).
  • the microphone (MIC), temperature / humidity sensor (TEMP), and triaxial acceleration / angular velocity sensor (ACC) are arranged in the center of the housing as much as possible to avoid disturbance as much as possible.
  • the liquid crystal screen (LCD) and button switch (BUTS) user interfaces are arranged together on the right side of the housing.
  • the power switch (PSW) and the USB target I / F (USB-T) are accessed from below the chassis.
  • the secondary battery (BAT) is charged by the power supplied from the connector of the USB target I / F (USB-T).
  • a microprocessor (MPU) that performs overall control and an external flash memory (OFMEM) that stores sensor information are mounted on a substrate inside the housing.
  • infrared transmission / reception circuits also referred to as infrared transceivers
  • the infrared transceivers (TRIR1 to TRIR4) are mounted in the front direction at different angles, and the infrared transceivers (TRIR5 to TRIR6) are mounted in the lateral direction to cover the assumed proximity detection requirement specifications described below.
  • FIG. 8 is a diagram showing an example of the specification of proximity detection by infrared rays of the name tag type sensor terminal (NN).
  • FIG. 8A shows a positional relationship when two humans (HUM3) and a human (HUM4) communicate with each other. When two people talk, it is rare that they are completely face-to-face. In many cases, they face each other with the shoulder width shifted. At this time, the face-to-face state cannot be detected if the infrared transmitter / receiver for detecting the face-to-face contact between the name tags is sensitive only to the front face of the name tag.
  • the vertical straight lines L4 and L6 drawn from the surfaces of the name tag type sensor terminal (NN3) and the name tag type sensor terminal (NN4) worn by the human (HUM3) and the human (HUM4) are respectively the name tag type sensor terminal (NN3).
  • Sensitivity of about 30 ° to the left and right is required for the straight line L5 connecting the name tag type sensor terminal (NN4).
  • FIG. 8B shows the positional relationship when a person sitting on a chair (HUM1) and a standing person (HUM2) are communicating. Since there is a difference in head height between the person sitting on the chair (HUM1) and the person standing on the chair (HUM2), the person sitting on the chair (HUM1) has a posture with the upper body facing slightly upward.
  • a straight line L3 connecting the name tag type sensor terminal (NN1) and the name tag type sensor terminal (NN2) worn by a human (HUM1) and a human (HUM2) is from straight lines L1 and L2 drawn vertically from the surface of each name tag. Located down. Therefore, in order for the name tag type sensor terminal to reliably detect the face-to-face condition under this condition, both name tag type sensor terminals (NN1, NN2) need to be sensitive in the downward direction.
  • FIG. 8C shows a positional relationship in which two persons (HUM5) and a person (HUM6) heading to the same desk are communicating.
  • a straight line L7 connecting the name tag type sensor terminal (NN5) and the name tag type sensor terminal (NN6) attached to both of them is located directly beside. Therefore, in order for the name tag type sensor terminal to detect the face-to-face condition under this condition, both name tag type sensor terminals (NN5, NN6) need a certain degree of sensitivity also in the lateral direction.
  • an infrared transceiver installed sideways. The circuit needs to set the output weakly.
  • FIG. 9 is a diagram showing an example of the arrangement direction of the infrared transmitter / receiver of the name tag type sensor terminal (NN).
  • FIG. 9 shows the arrangement direction of the infrared transceivers (TRIR1 to TRIR4) arranged in the forward direction.
  • the infrared transceivers (TRIR1 to TRIR4) are respectively arranged 15 ° inside toward the front.
  • Two of the infrared transmitter / receiver (TRIR1) and the infrared transmitter / receiver (TRIR4) are arranged further downward by 30 °.
  • the infrared transmitter / receiver (TRIR1) and the infrared transmitter / receiver (TRIR2) located on the left side when viewed from the front are the infrared transmitter / receiver (TRIR3) located on the right side toward the front and the right side when viewed from the front.
  • the infrared transceiver (TRIR4) has sensitivity on the left side in the front direction.
  • the optical axes of the infrared transceivers arranged on the left and right are as shown in FIG.
  • FIG. 10 is a diagram illustrating an example of an optical axis of infrared transceivers (TRIR2, TRIR3) arranged on the left and right of the name tag type sensor terminal. As shown in FIG.
  • the optical axes of the infrared transmitters / receivers (TRIR2, TRIR3) arranged on the left and right of the upper part (IRW) of the casing have a crossing characteristic. If the inherent sensitivity of the infrared transceivers (TRIR2, TRIR3) is a sensitivity curve of plus or minus 15 °, the detection range formed by the infrared transceiver (TRIR2) and infrared transceiver (TRIR3) together with the mounting angle Is enlarged to 60 ° left and right.
  • the proximity detection using infrared rays described above has high straightness and easy control of the direction of irradiation and light reception, while the detection distance is about 3 m at the maximum, making it difficult to detect proximity in a wide space such as a factory. Also, under direct sunlight, the infrared signal is affected by the infrared rays contained in the sunlight, and the detection performance deteriorates. Therefore, the sensor terminal (NN) in the present embodiment includes a proximity detection function using a radio signal in addition to proximity detection using infrared rays.
  • FIG. 11 is a diagram showing an example of wireless proximity detection specifications of the name tag type sensor terminal (NN).
  • FIG. 11 shows a case where three humans (HUM7, HUM8, HUM9) are within a 10-meter range and are equipped with name tag type sensor terminals (NN7, NN8, NN9), respectively.
  • Proximity detection using wireless signals in the present embodiment is based on the fact that distances (L8, L9, L10) between name tag type sensor terminals worn by humans are within a 10 meter range, regardless of altitude difference or direction between persons. , Proximity detection between people.
  • the relative distance difference between persons is detected by wireless intensity information.
  • FIG. 12 is a diagram illustrating an example of the relationship between the distance (L) [m] between terminals and the radio wave intensity (RSSI) [dBm ⁇ 1 ].
  • the value of the radio field intensity (RSSI) is shown in hexadecimal.
  • the radio wave intensity (RSSI) is an index representing the strength of radio waves of a received radio signal. The smaller the value, the stronger the received intensity, and the larger the value, the weaker the received intensity.
  • the radio wave intensity (RSSI) is evaluated not by an absolute value but by a relative value because a numerical value is influenced by characteristics of a radio circuit and an antenna.
  • the value of the radio field strength (RSSI) is 0x3d
  • the value of the radio field intensity (RSSI) is 0x55. Is shown.
  • the radio field intensity (RSSI) value 0x55 as a threshold, it is possible to determine that the distance between terminals is closer than 5 m when it is smaller than 0x55, and that the distance between terminals is farther than 5 m when larger than 0x55. it can.
  • FIG. 13 is a diagram illustrating an example of infrared and wireless detection ranges.
  • the range in which proximity detection is possible with infrared rays (AIR) the range in which proximity detection is possible depending on whether a radio signal can be received (AR)
  • RSSI radio wave intensity
  • An example of a detectable range (AR5m) is shown.
  • FIG. 13 shows a detection range viewed from above when a person wearing a sensor terminal stands in the center.
  • the range (AIR) in which proximity detection by infrared rays can be performed has a detection range of about 3 m in the 60 ° left and right range due to the arrangement of the infrared transceivers (TRIR1 to TRIR4) described in FIG. Further, the side infrared transmitter / receiver (TRIR5, TRIR6) has a detection range of about 60 cm in the lateral direction.
  • the range (AR) in which proximity detection is possible depending on whether a radio signal can be received has clearly no directivity and has a detection range of about 10 m ahead.
  • the range (AR5m) in which the range based on the threshold value 0x55 of the radio field intensity (RSSI) can be detected has a detection range of about 5 m ahead.
  • FIG. 14A is a diagram illustrating an example of a network topology of a conventional technique. That is, in the conventional network topology, as shown in FIG. 14 (A), a star station that performs communication between the base station (WBS) and the terminals (NN1, NN2) around the base station (WBS). Type network topology. Direct communication is not performed between the terminal 1 (NN1) and the terminal 2 (NN2). In order to perform direct communication between the terminals (NN1, NN2), it is necessary to set one side to a standby state.
  • the standby operation continuously consumes a large current because it is necessary to continuously operate the receiving circuit.
  • WBS base station
  • the terminals (NN1, NN2) do not perform standby operation, thereby suppressing the current consumption of the terminals (NN1, NN2).
  • the terminal (NN1, NN2) and the base station (WBS) communicate, the terminal (NN1, NN2) transmits a connection request (ADV1, ADV2) to the base station (WBS), and then the base station (WBS) Moves to the connection state and performs data communication.
  • FIG. 15 is a diagram illustrating an example of state transition of a wireless circuit in a sensor terminal having a conventional star network.
  • the sensor terminal is, for example, the terminal 1 (NN1) or the terminal 2 (NN2) in FIG. 14A
  • the base station is the base station (WBS) in FIG. 14A.
  • the sensor terminal After the power is turned on, the sensor terminal starts sensing, drives the wireless circuit, and shifts to a connection request state (141) that attempts to connect to the base station.
  • the connection with the base station is intermittently performed, and thereafter, the wireless sleep state (142) is entered. Thereafter, the connection request state (141) and the wireless sleep state (142) are repeated.
  • the connection request state (141) is a state in which a connection request (ADV) is transmitted to the base station.
  • connection request state (142) If it is necessary to perform data communication with the base station, the state shifts from the connection request state (142) to the base station connection state (143). Since the base station does not always exist within the range where the terminal can communicate, and even if the base station exists within the communicable range, it is not always possible to respond immediately, so the terminal sends a connection request. However, there is a response from the base station, and it does not always shift to the base station connection state. Even if the terminal transmits a connection request (ADV) a certain number of times, if there is no response from the base station, the terminal again shifts to the wireless dormant state (142) in order to reduce power consumption.
  • ADV connection request
  • the terminal When the base station responds to the connection request (ADV) transmitted by the terminal and data communication becomes possible, the terminal shifts to the base station connection state (143). After the transition to the base station connection state (143), when necessary communication is completed, or when communication between the terminal and the base station cannot be performed for some reason, the terminal transitions again to the radio dormant state (142).
  • FIG. 16 is a diagram illustrating an example of a packet structure of a connection request according to the present embodiment (the same applies to the related art).
  • the packet of the connection request (ADV) transmitted from the sensor terminal (NN) to the base station (WBS) is divided into three pieces of identification information, a payload, and an error detection unit.
  • the identification information is information for the receiving side to determine where the packet is transmitted and what the packet is.
  • the payload is the data body.
  • the error detection unit is a code for determining the integrity of the received packet.
  • the identification information includes preamble (PRE), access address (ADR), and header (HED) information.
  • the preamble (PRE) is a bit pattern representing the head of the packet. When the packet is received, the bit pattern of the preamble (PRE) is searched for and the head of the packet is determined.
  • the access address (ADR) is a unique address of the transmitting terminal.
  • the header (HED) is information indicating the type of packet for determining what the packet is.
  • the error detection unit is, for example, a cyclic redundancy code (CRC) calculated from a packet other than the error detection unit.
  • CRC cyclic redundancy code
  • Arbitrary data is stored in the payload depending on the type of packet, but in the case of a connection request (ADV), one or a plurality of advertisement structure information is stored.
  • the advertisement structure information includes a length (LEN), a type (ADT), and data (ADD).
  • the length (LEN) indicates the number of bytes of the advertisement structure information
  • the type (ADT) indicates the type of information
  • the data (ADD) indicates the data body.
  • the information transferred by the advertisement structure information includes, for example, the name of the terminal.
  • FIG. 17 is a diagram illustrating an example of a communication sequence when the base station does not respond to the connection request transmitted by the terminal.
  • FIG. 18 is a diagram illustrating an example of a communication sequence when a base station responds to a connection request transmitted from a terminal and data communication is performed from the terminal to the base station.
  • FIG. 19 is a diagram illustrating an example of a communication sequence when a base station responds to a connection request transmitted from a terminal and data communication is performed from the base station to the terminal. 17 to 19, the terminals are, for example, the terminal 1 (NN1) and the terminal 2 (NN2) in FIG. 14A, and the base station is the base station (WBS) in FIG. 14A.
  • connection request packet ADV
  • ADV connection request packet
  • TINT connection request transmission interval
  • the terminal transmits a connection request (ADV) three times. If there is no response from the base station, the terminal shifts to a radio dormant state. In this example, the terminal shows a case in which a connection request is periodically transmitted in order to inform the base station of its presence. Even if the base station does not respond, the connection request state shifts at every sensing reference interval (TSINT).
  • FIG. 18 and FIG. 19 show an example in which after the terminal transmits a connection request twice, the base station returns a connection response (CRSP), the terminal shifts to the base station connection state, and transfers the sensor data from the terminal to the base station. Is shown. The terminal enters a reception state immediately after shifting to the base station connection state, and receives a sensor data request (SDREQ) from the base station as shown in FIG. 18 or a feedback start transmission notification (FDST) as shown in FIG. .
  • SDREQ sensor data request
  • FDST
  • the base station transmits a sensor data request (SDREQ) to the terminal to request sensor data.
  • SDREQ sensor data request
  • the terminal continuously transmits sensor data (SD1, SD2,..., SDn), and when there is no more data to be transmitted, transmits a disconnect request (DREQ). Request to release the connection with the base station.
  • the base station transmits a disconnection response (DRSP), and when the terminal receives the disconnection response (DRSP) from the base station, the terminal shifts to the radio dormant state.
  • DRSP disconnection response
  • the wireless communication device shifts from the wireless dormant state to the connection request state at the sensing reference interval (TSINT).
  • the base station transmits a feedback data transmission start notification (FDST) to the terminal to notify the feedback data transmission start. .
  • FDST feedback data transmission start notification
  • the terminal performs a standby operation and continues the standby operation for continuously receiving feedback data.
  • the base station continuously transmits feedback data (FD1, FD2,..., FDn) following transmission start notification (FDST) transmission.
  • FDED transmission end notification
  • the terminal When receiving the transmission end notification (FDED), the terminal cancels the standby state for receiving feedback data, transmits a disconnection request (DREQ), and requests the cancellation of the connection state with the base station.
  • the base station In response to the disconnection request (DREQ) from the terminal, the base station transmits a disconnection response (DRSP), and when the terminal receives the disconnection response (DRSP) from the base station, the terminal shifts to the radio dormant state.
  • DRSP disconnection response
  • the wireless communication device shifts from the wireless dormant state to the connection request state at the sensing reference interval (TSINT).
  • the terminal In a network topology, if other terminals can receive a connection request periodically transmitted by a terminal and measure the wireless strength, the distance between the terminals can be grasped. However, as described above, the terminal intermittently transmits a connection request, and the terminal cannot always be in a standby state for power saving, so the reception is performed at the timing when the connection request is transmitted from another terminal. The circuit must be driven to receive.
  • FIG. 14B is a diagram illustrating an example of a network topology according to the present embodiment.
  • This embodiment is a wireless communication system having a low-power star network that performs communication between a base station (WBS) and terminals (NN1, NN2) as shown in FIG. 14B.
  • WBS base station
  • terminals (NN1, NN2) communicate exclusively with base stations (WBS).
  • WBS base station
  • the present embodiment is configured so that when the terminal transmits a connection request to the base station, another terminal receives the connection request, and the wireless strength This technology is characterized by measuring the distance between the terminals.
  • connection request (ADV1) transmitted from the terminal 1 (NN1) to the base station (WBS) is received by the terminal 2 (NN2), and the connection request (ADV2) transmitted from the terminal 2 (NN2) to the base station (WBS). Is received by the terminal 1 (NN1).
  • FIG. 20 is a diagram illustrating an example of state transition of the wireless circuit in the sensor terminal according to the present embodiment.
  • the sensor terminals are, for example, the terminal 1 (NN1) and the terminal 2 (NN2) in FIG. 14B, and the base station is the base station (WBS) in FIG. 14B.
  • the radio circuit in the sensor terminal is the radio circuit (RADIO-S) shown in FIG.
  • the sequence accompanying the state transition of the radio circuit is executed based on the control of the microprocessor (MPU) shown in FIG.
  • MPU microprocessor
  • the sensor terminal When power is turned on, the sensor terminal first shifts to a connection request state (201) for connection to a base station, and performs time synchronization (202) between the terminals.
  • FIG. 21 is a diagram illustrating an example of a time synchronization sequence.
  • FIG. 21 shows an example in which the terminal 1 and the terminal 2 are powered on at different times and time-synchronized with each other.
  • the terminal 1 is powered on at time (T601). Thereafter, the terminal 1 shifts to a connection request state, transmits a connection request (ADV) to the base station, and requests connection to the base station. Receiving the connection response (CRSP) from the base station, the terminal 1 shifts to the time synchronization state and transmits a time synchronization request (TREQ) to the base station.
  • the time synchronization request (TREQ) is a packet that requests the base station to transmit the current time.
  • the base station returns a time synchronization response (TRSP).
  • the time synchronization response (TRSP) includes information on the current accurate time based on a clock that records the reference time of the base station.
  • the terminal 1 sets the accurate time included in the time synchronization response (TRSP) from the base station in the built-in clock (real time clock RTC).
  • the correct time is set by the time synchronization response (TRSP) received from the base station in the terminal 1 at the correct time (T602).
  • the terminal 1 transmits a disconnection request (DREQ) to the base station when the time synchronization is completed.
  • the terminal 1 is released from the connection state by the disconnection response (DRSP) from the base station, shifts to the wireless sleep state, and stops wireless communication until the next sensing start reference time (T605).
  • the sensing reference interval (TSINT) is 10 seconds
  • the terminal 2 is synchronized
  • the first sensing start reference time (T605) is 00:00:00
  • the next sensing start reference time (T606) is An example of 00:00:10 is shown. From the accurate reception time (T602) to the sensing start reference time (T605), the sensing start waiting time (T610 (1)) of the terminal 1 is used.
  • the terminal 2 is powered on at a time (T603) different from that of the terminal 1. Thereafter, the terminal 2 shifts to a connection request state, transmits a connection request (ADV) to the base station, and requests connection to the base station. Upon receiving the connection response (CRSP) from the base station, the terminal 2 shifts to the time synchronization state and receives accurate time information from the base station in the same manner as the terminal 1.
  • the time (T604) at which the terminal 2 receives the accurate time information from the base station is different from the time (T602) at which the terminal 1 receives the time information.
  • the internal clocks of 1 and terminal 2 are synchronized.
  • the terminal 2 transmits a disconnection request (DREQ) to the base station when the time synchronization is completed.
  • the terminal 2 is released from the connection state by the disconnection response (DRSP) from the base station, shifts to the wireless sleep state, and stops wireless communication until the next sensing start reference time (T606).
  • the terminal 1 starts sensing with a sensing reference interval (TSINT) one cycle earlier, but the second sensing start time of the terminal 1 and the first sensing start time of the terminal 2 match ( T606).
  • the sensing start waiting time (T610 (2)) is from the accurate time of reception (T604) to the sensing start reference time (T606).
  • the sensor terminal in the present embodiment transitions to a sensing state when time synchronization is completed.
  • the state transits to the connection request state (201) for the base station in order to perform time synchronization with the base station.
  • it waits in a sensing start waiting state (203) until the next sensing start reference time is reached.
  • the radio circuit is in a dormant state.
  • the sensing start reference time is reached, the sensor terminal starts sensing. This timing is synchronized between terminals.
  • the sensing state is further divided into a proximity detection state (MACT) and a wireless dormant state (MSLP) depending on the operation of the wireless function.
  • MACT proximity detection state
  • MSLP wireless dormant state
  • the proximity detection state (MACT) is a state in which a connection request is periodically transmitted to the base station, and data transfer can be started if necessary.
  • MSLP wireless hibernation state
  • sensing is continued, but the wireless function is not driven, and the wireless circuit is in a low power consumption state.
  • FIG. 22 is a diagram illustrating an example of the proximity detection sequence.
  • 22A is an entire proximity detection sequence
  • FIG. 22B is an enlarged view of the flow in the proximity detection state.
  • FIG. 22 shows a proximity detection flow at the sensing reference interval (TSINT) from the sensing start reference time (T221) to the next sensing start reference time (T222) when the terminal 1 and the terminal 2 are in the sensing state.
  • the proximity detection state (MACT) and the radio dormant state (MSLP) in the sensing state shown in FIG. 22 are repeated at the sensing reference interval (TSINT).
  • the proximity detection time (TACT) of the proximity detection state (MACT) of each terminal overlaps, and the connection request transmitted from one to the base station The other can receive.
  • TACT proximity detection time
  • MACT proximity detection state
  • both the terminal 1 and the terminal 2 have the same time for shifting to the radio dormant state, the base station connection request transmitted by the other party is always missed even when the radio circuit is in the dormant state. There is no. Further, the power consumption of the radio circuit can be reduced by the ratio by the intermittent operation of the radio circuit by repeating the proximity detection state (MACT) and the radio dormant state (MSLP).
  • TACT proximity detection time
  • Terminal 1 and terminal 2 perform a transition from a search state (MSCN) to a connection request state (MADV) to a search state (MSCN) in the proximity detection state (MACT).
  • the search state (MSCN) is a state in which a connection request for a base station transmitted by another terminal is received.
  • the connection request state (MADV) is a state in which the connection request state is repeatedly transmitted to the base station once or a plurality of times. As shown in FIG. 20, if there is a response from the base station to the connection request and data transfer is necessary, the state shifts from the connection request state (MADV) to the base station connection state (204).
  • the wireless circuit In a state where necessary data transfer has been completed, the wireless circuit enters a wireless sleep state (MSLP), and the wireless circuit is suspended until the next sensing start reference time.
  • MSLP wireless sleep state
  • MADV connection request state
  • MSCN search state
  • the timing at which the terminal 1 and the terminal 2 shift from the search state (MSCN) to the connection request state (MADV), respectively, is different.
  • the connection request (ADV) transmitted from the terminal 1 to the base station can be received by the terminal 2 in the search state (MSCN), and the connection transmitted from the terminal 2 to the base station.
  • the request (ADV) can be received by the terminal 1 in the search state (MSCN).
  • the terminal 1 is in the connection request state duration (TADV (1)), the terminal 2 is in the initial search state duration (TSCN1 (2)), and the terminal 2 is in the connection request state duration ( Since the terminal 1 is in the second search state duration (TSCN2 (1)) at TADV (2)), it can receive the mutual connection request.
  • TADV (1) connection request state duration
  • TSCN1 (2) initial search state duration
  • TSCN2 (1) connection request state duration
  • the first search state duration (TSCN1) and the second search state duration (TSCN2) between terminals are changed.
  • the first search state duration (TSCN1 (1)) of the terminal 1 is smaller than the first search state duration (TSCN1 (2)) of the terminal 2, and the second of the terminal 1
  • the search state continuation time (TSCN2 (1)) of the terminal 2 is larger than the second search state continuation time (TSCN2 (2)) of the terminal 2.
  • the method for determining the search state duration (TSCN) is not particularly limited.
  • the search state duration (TSCN) may be set at random each time, or may be set at different times specific to the terminal.
  • FIG. 23A is a flowchart illustrating an example of state transition of a wireless circuit in a sensor terminal.
  • 23B to 23E are flowcharts showing in detail each state of FIG. 23A, FIG. 23B is an example of wireless time synchronization of the sensor terminal, FIG. 23C is an example of search state 1 of the sensor terminal, and FIG. 23D is a sensor terminal.
  • FIG. 23E is an example of the search state 2 of the sensor terminal.
  • FIG. 23A when the terminal is turned on and activated (23A1), the terminal enters a time synchronization state (23A2).
  • the flow of time synchronization is shown in FIG. 23B.
  • the terminal In the time synchronization state, when time synchronization is started (23B1), the terminal first transmits a connection request to the base station (23B2) and tries to connect to the base station. The terminal performs wireless reception processing (23B3) and waits for a response from the base station (23B4). When the base station responds (23B4-Y), the terminal transmits a time information transmission request (23B5) and receives time information from the base station (23B7). The terminal sets the received time to its own real-time clock (RTC) (23B8).
  • RTC real-time clock
  • the terminal holds the time and keeps the time The synchronization process is terminated (23B9). If there is no time set in the past (23B6-N), the terminal continues to transmit a connection request to the base station (23B2) and tries to connect to the base station.
  • the terminal when the time synchronization (23A2) ends, the terminal performs a radio pause process (23A3) to put the radio circuit in a pause state, and waits for the next sensing start reference time (23A4).
  • the terminal shifts to search state 1 (23A5).
  • the flow in search state 1 is shown in FIG. 23C.
  • the search state 1 when the search state 1 is started (23C1), first, the terminal performs a wireless reception process (23C2) so that a connection request transmitted from another terminal can be received.
  • the terminal When a connection request is received from another terminal (23C3-Y), the terminal records the access address (ADR) included in the connection request packet (FIG.
  • Search state 1 continues for the first search state duration (TSCN1) regardless of whether or not a connection request is received. When this time (TSCN1) has elapsed (23C5-Y), search state 1 is terminated. (23C6).
  • the initial search state duration (TSCN1) is a time that differs for each terminal.
  • FIG. 23D shows a flow of the connection request state.
  • the connection request state is a state in which a connection request is transmitted once or a plurality of times to the base station.
  • the connection request state is started (23D1), first, the terminal transmits a connection request to the base station (23D2) and tries to connect to the base station.
  • the terminal performs wireless reception processing (23D3) and waits for a response from the base station (23D4).
  • the base station responds (23D4-Y)
  • the terminal performs necessary base station communication processing (23D6) and ends the connection request state (23D8).
  • the terminal waits until the connection request transmission interval (TAINT) elapses (23D5) and transmits the connection request again (23D2). At this time, it is checked whether or not the connection request state duration (TADV) has elapsed (23D7), and if it has elapsed (23D7-Y), the connection request state is terminated (23D8).
  • TAINT connection request transmission interval
  • TADV connection request state duration
  • search state 2 when the connection request state (23A6) ends, the terminal shifts to the search state 2 (23A7).
  • the flow of search state 2 is shown in FIG. 23E.
  • the search state 2 when the search state 2 is started (23E1), first, the terminal performs a wireless reception process (23E2) so that a connection request transmitted from another terminal can be received.
  • the terminal When a connection request is received from another terminal (23E3-Y), the terminal records the access address (ADR) included in the connection request packet (FIG. 16) (23E4).
  • Search state 2 continues for the second search state duration (TSCN2) regardless of whether or not a connection request is received, and when this time (TSCN2) has elapsed (23E5-Y), search state 2 ends. (23E6).
  • the second search state duration (TSCN2) is a different time for each terminal.
  • the terminal (NN) communicates only with the base station (WBS), and in a star network, while suppressing the power consumption of the terminal (NN), It is possible to estimate the distance between the terminals (NN) by measuring the wireless strength between the terminals (NN). More details are as follows.
  • Each of the terminals (NN) has a connection request state (MADV) in a state of transmitting a connection request to the base station (WBS) and a reception state search state (MSCN) of detecting a radio wave intensity.
  • MADV connection request state
  • MSCN reception state search state
  • the terminal 1 (NN1) shifts to the search state (MSCN) and acquires the intensity of the radio wave transmitted by the terminal 2 (NN2).
  • the terminal 1 (NN1) can estimate the distance between the terminal 1 (NN1) and the terminal 2 (NN2) from the acquired radio wave intensity.
  • the terminal 2 (NN2) can estimate the distance between the terminal 2 (NN2) and the terminal 1 (NN1) by acquiring the intensity of the radio wave transmitted by the terminal 1 (NN1).
  • Each of the terminals (NN) is time-synchronized, and has a connection request state (MADV), a search state (MSCN), and a wireless dormant state (MSLP) of the wireless communication function.
  • MADV connection request state
  • MSCN search state
  • MSLP wireless dormant state
  • the terminal 1 (NN1) shifts to the radio dormant state (MSLP).
  • the power consumption of the terminal 1 (NN1) can be reduced.
  • the terminal 2 (NN2) shifts to the radio dormant state (MSLP)
  • the power consumption of the terminal 2 (NN2) can be reduced.
  • the search state includes, in time series, a search state (MSCN) of the first search state duration (TSCN1) and a search state (MSCN) of the second search state duration (TSCN2). Have.
  • Each of the terminals (NN) shifts to the connection request state (MADV) at a time after the first search state duration (TSCN1) and before the second search state duration (TSCN2). can do.
  • the terminal 1 (NN1) changes from the search state (MSCN) of the first search state duration (TSCN1) to the connection request state (MADV). Can be migrated.
  • MSCN search state
  • TSCN1 first search state duration
  • MADV connection request state
  • the terminal 2 searches for the second search state duration (TSCN2) from the connection request state (MADV) (MSCN) Can be migrated to.
  • TSCN2 the second search state duration
  • MADV connection request state
  • the terminal 1 (NN1) uses the intensity of the radio wave transmitted by the terminal 2 (NN2) acquired by the terminal 1 (NN1) to connect between the terminal 1 (NN1) and the terminal 2 (NN2). Can get the distance.
  • Each terminal (NN) has a hole (STH) for attaching a strap for mounting on the human body. Then, for example, the terminal 1 (NN1) acquires the distance between the terminal 1 (NN1) and the terminal 2 (NN2), and wears the wearer who wears the terminal 1 (NN1) and the terminal 2 (NN2). The distance between the wearer and the wearer can be acquired. The same applies to the reverse case and between other terminals.
  • the wireless communication system further includes a terminal n (NNn) that performs wired communication with the base station (BS).
  • the base station (WBS, BS) has a wireless circuit (RADIO-H) that receives data transmitted by terminal 1 (NN1) and terminal 2 (NN2) by wireless communication, and terminal n (NNn) transmits by wire communication.
  • a USB master I / F (USB-M) for receiving data.
  • the base station (WBS, BS) receives the connection request signal transmitted from the terminal 1 (NN1) or the terminal 2 (NN2) via the radio, selects the radio circuit (RADIO-H) and selects the terminal 1 Data from (NN1) or terminal 2 (NN2) can be received.
  • the base station (WBS, BS) can select the USB master I / F (USB-M) and receive data from the terminal n (NNn).
  • the base station (WBS) has a clock that records the reference time. Then, the base station (WBS) transmits time information to each terminal (NN) in response to a time synchronization request (TREQ) from each terminal (NN), and sets each time of the terminal (NN). By performing, it is possible to synchronize the operations between the terminals (NN). For example, the operation between the terminal 1 (NN1) and the terminal 2 (NN2) can be synchronized. The same applies to other terminals.
  • Each terminal (NN) has a plurality of infrared transmission / reception circuits (TRIR1 to TRIR6).
  • the terminal 1 (NN1) receives the optical signal emitted from the terminal 2 (NN2) by the infrared transmission / reception circuit (infrared detection range (AIR)), and thus the terminal 1 (NN1) and the terminal 2 (NN2). Can be recorded.
  • the intensity of the radio wave transmitted by the terminal 2 (NN2) acquired by the terminal 1 (NN1) is used.
  • the distance between the terminal 1 (NN1) and the terminal 2 (NN2) can be acquired. The same applies to the reverse case and between other terminals.
  • the infrared transmission / reception circuits (TRIR1 to TRIR6) are mounted on the terminals (NN) at different angles to detect the front direction. Proximity detection of the range is possible. Further, the infrared transmission / reception circuits (TRIR5, TRIR6) can be mounted on each of the terminals (NN) in the lateral direction so as to detect the proximity of the lateral detection range.
  • Each terminal (NN) is a terminal that operates on a secondary battery (BAT), thereby minimizing the operation time of the radio circuit (RADIO-S) of the terminal (NN) that operates on the secondary battery. Thus, it is possible to contribute to lower power consumption of the terminal (NN).
  • WBS (WBS1, WBSn) ... Wireless base station BS ... Wired base station NN (NN1, NN2, NNn) ... Sensor terminal MADV ... Connection request state MSCN ... Search state MSLP ... Wireless dormant state

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システムは、基地局(無線基地局(WBS))と、前記基地局との間で無線通信を行う複数の端末(センサ端末(NN))と、を有する無線通信システムである。前記複数の端末のそれぞれは、前記基地局に対する接続リクエストを送信する状態(接続リクエスト状態(MADV))と、電波強度を検出する受信状態(探索状態(MSCN))と、を有する。前記複数の端末のそれぞれは、他の端末が前記基地局に対する接続リクエストを送信する状態にある時に、前記電波強度を検出する受信状態に移行し、前記他の端末の送信した電波の強度を取得する。

Description

無線通信システム
 本発明は、無線通信システムに関し、特に、無線通信を使用し、端末間の相対位置を測定するシステムに関する。
 無線通信システムにおいて、端末間の相対位置を把握するためには、端末間の直接通信によって相対的位置関係を測定する方法と、端末の絶対位置を把握することで間接的に相対位置を測定する方法がある。
 例えば、端末の位置を特定する測位技術として、GPS(Global Positioning System)が実用化されている。これは、複数の衛星から発信される無線信号を端末で受信し、その到達時間を三点測量することで端末の位置を特定する。衛星からの無線信号を利用するため、その使用は主に屋外のみに限られ、またGPS衛星は静止衛星ではないため、端末からの見通し範囲に存在する衛星の数や位置は時々刻々変化し、その条件により端末位置の特定精度に数メートル単位での大きなばらつきが生じる。
 一方、屋内における端末の位置測位技術には、屋外GPSと同様に、無線信号の到達時間を用いるものがある。しかし、測位精度を高めるためには、光速で進行する無線信号の到達時間を高い時間精度で測定する必要がある。例えば、特許文献1に示した技術では、高い時間精度を得るための特別なシーケンスについて述べられている。しかし、高い時間精度で到達時間を測定するためには、高速で動作するカウンタが必要であり、システムが大規模になる問題があった。
 また、屋内におけるより簡便な位置測位技術として、無線信号の強度により距離を推定する技術がある。例えば、特許文献2に示す通り、端末と、複数の無線基地局との通信の無線強度を計測して、それぞれの無線基地局と端末の距離の差を推定し、三点測量することで、端末の位置を推定することができる。
 この屋内における位置測位技術を用いて、無線強度により距離を測定するためには、一方が送信する通信をもう一方が受信する必要があるため、一方を待ち受け動作にする必要がある。一般に、送信と比較して受信動作は、相手方が送信して来る時間が正確に分からないため、より長い時間無線回路を動作させる必要があり、電力を多く消費する。端末は、移動するために電池で動作することが一般的で、無線回路を待ち受け動作にせず、間欠動作するのが一般的である。そこで、電力を消費する待ち受け動作は基地局が行い、端末は必ず基地局を介して通信を行う。
 また、端末は専ら基地局とのみ通信を行い、直接、端末間の通信を行わない無線方式を、スター型のネットワークと呼ぶ。例えば、特許文献3では、端末の一部が代表端末となって待ち受け動作を行い、トポロジを階層化することで端末の送信電力を削減する技術について述べられている。
特開2008-96326号公報 国際公開第2013/065240号 特開2011-15141号公報
 上述したように、例えば、前記特許文献2では、端末間の相対的な位置関係を測定するため、無線強度を利用して端末間の距離を推定する方式を用いている。この方式は、一方の端末が送信するパケットを他方の端末が待ち受ける必要があり、待ち受け動作により、消費電力が増大する問題がある。
 また、前記特許文献3では、トポロジを階層化することで端末の送信電力を削減することができるが、末端の端末間では通信を行えないため、端末間の距離を直接測定することができない。
 本発明の代表的な目的は、端末は専ら基地局とのみ通信を行う、スター型のネットワークにおいて、端末の消費電力を抑制しながら、端末間の無線強度を測定して、端末間の距離を推定可能にする技術を提供するものである。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
 代表的な無線通信システムは、基地局と、前記基地局との間で無線通信を行う複数の端末と、を有する無線通信システムである。前記複数の端末のそれぞれは、前記基地局に対する接続リクエストを送信する状態と、電波強度を検出する受信状態と、を有する。前記複数の端末のそれぞれは、他の端末が前記基地局に対する接続リクエストを送信する状態にある時に、前記電波強度を検出する受信状態に移行し、前記他の端末の送信した電波の強度を取得する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下の通りである。
 代表的な効果は、端末は専ら基地局とのみ通信を行う、スター型のネットワークにおいて、端末の消費電力を抑制しながら、端末間の無線強度を測定して、端末間の距離を推定することが可能となる。
本発明の一実施の形態である無線通信システムのシステム構成の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、センサ端末で収集されたデータの解析の流れの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、センサデータの収集の流れの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、フィードバックデータの配信の流れの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末のハードウェア構成の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の外観の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の内部レイアウトの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の赤外線による近接検知の仕様の一例(A)(B)(C)を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の赤外線送受信機の配置方向の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の左右に配置された赤外線送受信機の光軸の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、名札型センサ端末の無線による近接検知の仕様の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、端末間の距離と、電波強度との関係の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、赤外線、無線の検知範囲の一例を示す図である。 従来技術と本発明の一実施の形態との比較におけるネットワークトポロジの一例(A)(B)を示す図である。 従来技術のスター型ネットワークを持つセンサ端末における無線回路の状態遷移の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、接続リクエストのパケット構造の一例を示す図である。 従来技術において、端末の送信した接続リクエストに基地局が応答しなかった場合の通信シーケンスの一例を示す図である。 従来技術において、端末の送信した接続リクエストに基地局が応答し、端末から基地局へデータ通信が行われる場合の通信シーケンスの一例を示す図である。 従来技術において、端末の送信した接続リクエストに基地局が応答し、基地局から端末へデータ通信が行われる場合の通信シーケンスの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、センサ端末における無線回路の状態遷移の一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、時刻同期シーケンスの一例を示す図である。 本発明の一実施の形態である無線通信システムにおいて、近接検知シーケンスの一例(A)(B)を示す図である。 本発明の一実施の形態である無線通信システムにおいて、センサ端末における無線回路の状態遷移の一例を示すフローチャートである。 本発明の一実施の形態である無線通信システムにおいて、センサ端末の無線による時刻同期の一例を示すフローチャートである。 本発明の一実施の形態である無線通信システムにおいて、センサ端末の探索状態1の一例を示すフローチャートである。 本発明の一実施の形態である無線通信システムにおいて、センサ端末の接続リクエスト状態の一例を示すフローチャートである。 本発明の一実施の形態である無線通信システムにおいて、センサ端末の探索状態2の一例を示すフローチャートである。
 以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップなども含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合などを除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素などの形状、位置関係などに言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合などを除き、実質的にその形状などに近似または類似するものなどを含むものとする。このことは、上記数値および範囲についても同様である。
 [実施の形態の概要]
 まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素、符号などを付して説明する。
 実施の形態の代表的な無線通信システムは、基地局(無線基地局(WBS))と、前記基地局との間で無線通信を行う複数の端末(センサ端末(NN))と、を有する無線通信システムである。前記複数の端末のそれぞれは、前記基地局に対する接続リクエストを送信する状態(接続リクエスト状態(MADV))と、電波強度を検出する受信状態(探索状態(MSCN))と、を有する。前記複数の端末のそれぞれは、他の端末が前記基地局に対する接続リクエストを送信する状態にある時に、前記電波強度を検出する受信状態に移行し、前記他の端末の送信した電波の強度を取得する。
 以下、上述した実施の形態の概要に基づいた一実施の形態を図面に基づいて詳細に説明する。なお、一実施の形態を説明するための全図において、同一の部材には原則として同一の符号または関連する符号を付し、その繰り返しの説明は省略する。
 また、以下の実施の形態においては、本発明の特徴を分かり易くするために、本発明に対する従来技術と比較して説明する。
 [一実施の形態]
 本実施の形態である無線通信システムについて、図1~図23Eを用いて説明する。
 <無線通信システムの説明>
 本発明の位置づけと機能を明らかにするため、まず、本発明における無線通信システムについて説明する。本発明の無線通信システムは、人間に装着した名札型センサ端末で取得される装着者及び周囲の状況と、装着者同士の対面情報を総合して組織アクティビティとして人物間の関係性と現在の組織の評価(パフォーマンス)を図示して組織の改善に役立てるためのシステムである。
 さらには、本発明の無線通信システムは、現業分野の店舗、医療現場など、組織内の人と人とのコミュニケーションがパフォーマンスに強く関係する業務分野において、スタッフ間、顧客・患者とスタッフとのコミュニケーション、また動線を可視化・分析することで効率化を目指すものである。
 以下においては、名札型センサ端末を、名札型センサ端末と記載する他、単に、センサ端末、端末とも記載する。また、名札型センサ端末を装着する装着者を、人間、人、人物、人体などの呼び方で記載する。
 図1は、本発明の一実施の形態である無線通信システムのシステム構成の一例を示す図である。本実施の形態の無線通信システムは、複数(図1では3つの例を図示)の名札型センサ端末(NN1、NN2、NNn)、無線基地局(WBS1、WBSn)、有線基地局(BS)、発信器(BCN1、BCNn)、データセンサ(DC)、ディスプレイ(DP)などを有する。データセンサ(DC)は、解析エンジン(AE)、センサデータベース(SDB)、下り通信データベース(DDB)などを有する。無線基地局(WBS)および有線基地局(BS)とデータセンタ(DC)との間は、インターネット(IN)などの回線を通じて接続されている。以下においては、代表的に、名札型センサ端末(NN)、無線基地局(WBS)、発信器(BCN)などと記載する。
 本実施の形態の無線通信システムでは、人(P1、P2、Pn)が名札型センサ端末(NN1、NN2、NNn)を装着することが特徴である。一般的には、名札型センサ端末(NN)は2以上の複数(図1では3人の例を図示)の人が身につける。名札型センサ端末(NN)では、人と人との対面、行動、おかれた環境などがセンサによって取得・蓄積され、基地局を介してデータを収集する。基地局には、センサ端末(NN)との間で、無線通信を行う基地局(WBS、図1ではWBS1とWBSnの2つの例を図示)と、有線通信を行う基地局(BS)などのバリエーションがある。無線基地局(WBS)のみで構成されるシステムであってもよいし、有線基地局(BS)のみで構成されるシステムでもよい。無線通信を行う基地局と有線通信を行う基地局とを含む基地局を総称して、基地局(WBS、BS)と記載する場合がある。
 名札型センサ端末(NN)は、他のセンサ端末(NN)と接近したことを記録する機能を持つ。これを、近接検知機能と呼ぶ。本実施の形態では、赤外線信号と、無線信号の2通りを想定する。近接検知機能には2つの役割があり、1つは、センサ端末(NN)を装着した装着者同士の対面コミュニケーションを検出する機能(FFDT)であり、もう1つは、それぞれの場所に設置された据え置き型の発信器(BCN、図1ではBCN1とBCNnの2つの例を図示)からの信号を受信し、センサ端末(NN)を装着した装着者がいつどこにいたかを検出する機能(LI1、LI2、LIn)である。
 発信器(BCN)が発信する場所情報は、赤外線通信でもよいし、無線通信を使ってもよい。赤外線通信は、無線通信と比較して直行性が高く、通信が分散、反射しにくい特性があり、センサ端末(NN)同士が向き合っていることを検出するのに適している。一方で、無線通信は、赤外線と比較してより広い空間に発散して放射される特性があり、より広い空間にそのセンサ端末(NN)が存在することを検出することに適している。
 無線基地局(WBS)または有線基地局(BS)で収集されたデータは、センサデータ(SDT)としてインターネット(IN)などの回線を通じて、データセンタ(DC)のセンサデータベース(SDB)に格納される。センサデータ(SDT)は、解析エンジン(AE)によって解析され、フィードバックデータ(FBDT)としてディスプレイ(DP)上に表示されたり、下り通信データベース(DDB)に格納されたのち、再びインターネット(IN)を介して無線基地局(WBS)または有線基地局(BS)へ転送され、センサ端末(NN)の画面上や、音声として直接装着者に通知される。
 図2は、センサ端末(NN)で収集されたデータの解析の流れの一例を示す図である。センサ端末(NN)に搭載された各種センサによって取得されるセンサ入力(SIN)には、赤外線ID(IRID)、無線ID・強度(RST)、環境情報(温度・湿度・照度)(EDT)、加速度(動き・角速度)(ACDT)、マイク(音声)(SDT)の各情報がある。
 動的な加速度(ACDT)の情報は、センサ端末(NN)内部の一時特徴量分析(FAN)によって周波数分析(FFT)、積分(ACUM)され、一時特徴量(FF)である加速度リズム(MR)、運動エネルギー(ME)がそれぞれ生成され、記録される。静的な加速度(ACDT)の情報は、一時特徴量(FF)である姿勢(POS)として記録される。マイクから得られる音声(SDT)の情報も同様に、周波数分析(FFT)されて一時特徴量(FF)の音声周波数(SF)が生成され、積分(ACUM)されて一時特徴量(FF)の音声エネルギー(SE)が生成され、それぞれ記録される。
 赤外線ID(IRID)の情報は、他のセンサ端末や、据え置き型の赤外線ビーコン(発信器)が発信するIDを受信したものであり、これは対面ID(人・場所)の一時特徴量(F2FDT)として記録される。同様に、無線ID・強度(RST)についても、他のセンサ端末や、据え置き型の無線ビーコンが発信するIDを受信し、その強度情報を計測した情報であり、赤外線ID(IRID)と同様に対面ID(人・場所)の一時特徴量(F2FDT)として記録される。環境情報(EDT)についても、環境情報の一時特徴量(EDT)として記録される。
 以上のセンサ端末(NN)における、センサ入力(SIN)、一時特徴量分析(FAN)、一時特徴量(FF)を、後述する図5~図7に示すセンサ端末(NN)の構成に対応させて説明する。
 センサ入力(SIN)において、赤外線ID(IRID)は、赤外線送受信回路(TRIR1~TRIR6)から得られる識別情報である。無線ID・強度(RST)は、無線回路(RADIO-S)から得られる識別情報と強度情報である。環境情報(EDT)は、温度・湿度センサ(TEMP)から得られる温度・湿度、照度センサ(LUM)から得られる照度などの情報である。加速度(ACDT)は、加速度・角速度センサ(ACC)から得られる動き・角速度などの情報である。マイク(SDT)は、マイク(MIC)から得られる音声などの情報である。
 また、一時特徴量分析(FAN)は、マイクロプロセッサ(MPU)において、中央演算装置(CPU)が不揮発メモリ(IFMEM)に記憶されている各分析プログラムを実行することにより実現される。すなわち、一時特徴量分析(FAN)は、ソフトウェアによる機能部である。そして、一時特徴量(FF)は、外部フラッシュメモリ(OFMEM)などに格納される情報である。
 続いて、センサ端末(NN)内部に記録された一時特徴量(FF)は、基地局(図2では図示省略、図1に示した無線基地局(WBS)または有線基地局(BS))を介してデータセンタ(DC)に転送され、二次特徴量分析(SAN)が行われて二次特徴量(SF)が生成される。
 対面ID(F2FDT)は、補完(SUP)、組合せ抽出(CMB)が行われ、二次特徴量(SF)の対面マトリクス(F2FD)が生成される。補完(SUP)された対面IDは、環境情報(EDT)と場所識別(PLDT)によって照らし合わされ、場所情報(LD)が生成される。加速度リズム(MR)、運動エネルギー(ME)、姿勢(POS)は、周波数パタン解析(SFAN)され、補完(SUP)された対面ID情報と組み合わせて、コミュニケーション特徴抽出(CMDT)により、センサ端末装着者のコミュニケーションの特徴としてアクティブ度(ART)や集中度(CRT)などが生成される。音声周波数(SF)と音声エネルギーは(SE)は、発話推定(SPDT)によって、装着者の発話が判定され、周波数パタン解析(SFAN)情報と併せ、行動判定(BHDT)により、センサ端末装着者の推定行動(BHD)が生成される。
 以上のデータセンタ(DC)における二次特徴量分析(SAN)は、図1に示した解析エンジン(AE)において実行される。そして、二次特徴量(SF)は、センサデータベース(SDB)、下り通信データベース(DDB)などに格納される情報である。
 <基地局の動作の説明>
 次に、基地局(無線基地局(WBS)または有線基地局(BS))の動作について、図3、図4を用いて説明する。図3は、センサデータ(SDT)の収集の流れの一例を示す図である。図4は、フィードバックデータ(FBDT)の配信の流れの一例を示す図である。図3および図4における、ホストプログラム、クライアントミドルウェア、ホストミドルウェアとは、これらのソフトウェアの動作で実現される機能部を意味する。
 センサデータ(SDT)は、センサ端末(NN)から基地局(WBS、BS)によって収集され、データセンタ(DC)のセンサデータベース(SDB)に格納される。一方で、フィードバックデータ(FBDT)は、データセンタ(DC)の下り通信データベース(DDB)に上位アプリケーション(図示省略)により格納されたものが、基地局(WBS、BS)を介してセンサ端末(NN)に送信される。センサデータ(SDT)とフィードバックデータ(FBDT)とはデータが流れる方向が逆のため、図3と図4とに分けて説明する。もちろん、1つの基地局(WBS、BS)が、センサデータ(SDT)の収集と、フィードバックデータ(FBDT)の配信の両方の機能を持つ実装が可能である。
 図3に示すように、センサ端末(NN)の外部フラッシュメモリ(OFMEM)に格納されたセンサデータ(SDT)は、Bluetooth(登録商標、以下記載省略)による無線回路(RADIO-S)またはUSBターゲットI/F(USB-T)を介して基地局(WBS、BS)に転送される。Bluetoothは、例えばBluetooth4.0とする。基地局(WBS、BS)の上り通信基地局ホストプログラム(BUHS)は、センサ端末(NN)から送信されたセンサデータ(SDT)を、Bluetoothによる無線回路(RADIO-H)またはUSBマスターI/F(USB-M)を介して受け取り、基地局一次記憶(BUTS)へ一旦格納する(ファイル同期)。センサデータ(SDT)を一旦、基地局一次記憶(BUTS)へ格納するのは、基地局(WBS、BS)は多くのセンサ端末(NN)から大量のセンサデータ(SDT)を受け取るため、転送が集中すると、データセンタ(DC)のセンサデータベース(SDB)への格納が間に合わず、センサデータ(SDT)の欠落が起こることを防止するためである。
 基地局(WBS、BS)は、一旦、基地局一次記憶(BUTS)へ蓄積されたセンサデータ(SDT)を、上り通信サーバクライアントミドルウェア(SUCM)によって取り出し、インターネット(IN)を介してデータセンタ(DC)へ送信する。データセンタ(DC)の上り通信サーバホストミドルウェア(SUHM)は、基地局(WBS、BS)から送信されたセンサデータ(SDT)を受け取り、センサデータベース(SDB)に格納する(HTTP/HTTPSアップロード)。
 図4に示すように、センサ端末(NN)は、自身に向けたフィードバックデータ(FBDT)があるかどうかの問い合わせを、Bluetoothによる無線回路(RADIO-S)またはUSBターゲットI/F(USB-T)を介して基地局(WBS、BS)に向けて送信する(ID問い合わせ)。基地局(WBS、BS)の下り通信基地局ホストプログラム(BDHS)は、センサ端末(NN)から送信された問い合わせを、Bluetoothによる無線回路(RADIO-H)またはUSBマスターI/F(USB-M)を介して受け取り、下り通信サーバクライアントミドルウェア(SDCM)を介してデータセンタ(DC)の下り通信サーバホストミドルウェア(SDHM)へ転送する。
 データセンタ(DC)の下り通信サーバホストミドルウェア(SDHM)は、問い合わせを発信したセンサ端末(NN)のIDに基づいて、下り通信データベース(DDB)から、そのセンサ端末(NN)向けのフィードバックデータ(FBDT)が登録されているかどうかを検索する。この検索の結果、そのセンサ端末(NN)向けのフィードバックデータ(FBDT)が存在すれば、そのフィードバックデータ(FBDT)を基地局(WBS、BS)の下り通信サーバクライアントミドルウェア(SDCM)へ転送する。基地局(WBS、BS)の下り通信基地局ホストプログラム(BDHS)は、下り通信サーバクライアントミドルウェア(SDCM)を介して受け取ったフィードバックデータ(FBDT)を、無線回路(RADIO-H)またはUSBマスターI/F(USB-M)を介してセンサ端末(NN)へ送信する。センサ端末(NN)は、下り通信基地局ホストプログラム(BDHS)が送信したフィードバックデータ(FBDT)を、無線回路(RADIO-S)またはUSBターゲットI/F(USB-T)を介して受け取り、外部フラッシュメモリ(OFMEM)に格納する(データ受信)。
 <名札型センサ端末の説明>
 次に、本実施の形態のセンサ端末である名札型センサ端末(NN)について、図5~図7を用いて説明する。
 図5は、名札型センサ端末(NN)のハードウェア構成の一例を示す図である。名札型センサ端末(NN)は、全体制御を行うマイクロプロセッサ(MPU)を中心として、各種通信回路から構成される。マイクロプロセッサ(MPU)には、中央演算装置(CPU)、不揮発メモリ(IFMEM)、揮発メモリ(RAM)、リアルタイムクロック(RTC)、汎用I/O(GPIO)、シリアル通信回路(SCI)、A/Dコンバータ(ADC)、D/Aコンバータ(DAC)が内蔵されている。これらは、マイクロプロセッサ(MPU)内部のバス(IBUS)を介して相互に接続されており、中央演算装置(CPU)によって制御される。
 中央演算装置(CPU)は、プログラムに基づいて演算処理を制御する装置である。不揮発メモリ(IFMEM)は、中央演算装置(CPU)が動作するプログラムや、固定データが格納されるメモリ、例えばフラッシュメモリなどに代表されるメモリである。揮発メモリ(RAM)は、一次データが記憶されるメモリである。リアルタイムクロック(RTC)は、時刻を記憶、管理する時計機能部である。汎用I/O(GPIO)は、汎用の入出力インタフェースである。シリアル通信回路(SCI)は、シリアル通信の入出力インタフェースである。A/Dコンバータ(ADC)は、アナログ/デジタル変換する変換器である。D/Aコンバータ(DAC)は、デジタル/アナログ変換する変換器である。
 本実施の形態の名札型センサ端末(NN)では、各種センサとして、加速度・角速度センサ(ACC)、温度・湿度センサ(TEMP)、照度センサ(LUM)が搭載されている。加速度・角速度センサ(ACC)、温度・湿度センサ(TEMP)の出力は、デジタルのシリアル信号で出力されるため、マイクロプロセッサ(MPU)のシリアル通信回路(SCI)に接続される。照度センサ(LUM)の出力はアナログ出力のため、マイクロプロセッサ(MPU)のA/Dコンバータ(ADC)に接続され、A/Dコンバータ(ADC)によってデジタル変換される。
 マイク(MIC)の出力は、マイクロプロセッサ(MPU)のA/Dコンバータ(ADC)に接続され、マイク(MIC)によって取得される音声は、A/Dコンバータ(ADC)によってデジタル変換される。スピーカ(SP)は、マイクロプロセッサ(MPU)のD/Aコンバータ(DAC)に接続され、D/Aコンバータ(DAC)によってアナログ変換されてスピーカ(SP)から音声が発生される。
 本実施の形態では、6組の赤外線送受信回路(TRIR1~TRIR6、図5では代表的に4組の赤外線送受信回路(TRIR1~TRIR4)を図示)を備え、赤外線通信による対面検出、場所検出を行う。プロトコルは例えばIrDA規格であり、それぞれの送受信回路は、IrDA変復調回路(IRCD)を介してマイクロプロセッサ(MPU)のシリアル通信回路(SCI)に接続される。
 各種センサから取得されたセンサデータ(SDT)は、マイクロプロセッサ(MPU)のシリアル通信回路(SCI)に接続された外部フラッシュメモリ(OFMEM)に格納される。
 センサデータ(SDT)の基地局(WBS、BS)への送信や、フィードバックデータ(FBDT)の受信のため、Bluetoothによる無線回路(RADIO-S)、USBターゲットI/F(USB-T)を備える。これらについても、マイクロプロセッサ(MPU)のシリアル通信回路(SCI)に接続される。USBターゲットI/F(USB-T)は、USB非同期送受信回路(USB-UART)を介してシリアル通信回路(SCI)に接続される。
 名札型センサ端末(NN)は、二次電池(BAT)から供給される電力で動作する。二次電池(BAT)は、USBターゲットI/F(USB-T)から、USBバスパワーの電源(EPOW+、EPOW-)により供給される電力を用いて充電回路(CHG)により充電される。
 ユーザインタフェースとして、ボタンスイッチ(BUTS)、発光ダイオード(LED)、液晶画面(LCD)を備え、ボタンスイッチ(BUTS)、発光ダイオード(LED)については汎用I/O(GPIO)に接続され、液晶画面(LCD)はシリアル通信回路(SCI)に接続される。
 図6は、名札型センサ端末(NN)の外観の一例を示す図である。本実施の形態の名札型センサ端末(NN)は、例えば、表面の縦横寸法が60mm×85mm、厚みは最厚部が10mm、それ以外は8mmと小型であり、人がストラップによって、首から下げて装着することを想定した形状である。筺体上部(IRW)は、赤外線透過部材によって構成されており、内部に実装された赤外線送受信回路(TRIR1~TRIR6)からの光信号を透過する。筺体上部(IRW)に3か所のストラップ取り付け用の穴(STH)が設けられており、それぞれL字型のトンネル構造により筺体裏側に貫通している。この穴(STH)に紐や、ストラップを通すことで、人に装着する。筐体上部(IRW)には、発光ダイオード(LED)と照度センサ(LUM)が実装されており、導光材(図示省略)によって、筺体表面に導光される。筺体表面には、液晶画面(LCD)およびボタンスイッチ(BUTS)があり、筺体下部には、電源スイッチ(PSW)と、USBターゲットI/F(USB-T)が実装される。筐体表面にはマイク(MIC)用の開口部を備え、筐体裏面にはスピーカ(SP)用の開口部を備える。
 図6に示す名札型センサ端末(NN)は、液晶画面(LCD)、ボタンスイッチ(BUTS)、マイク(MIC)用の開口部などが配置されている方が表面側であり、スピーカ(SP)用の開口部が配置されている方が裏面側である。この名札型センサ端末(NN)を人が首から下げて装着する場合には、表面側が人の前方向となるように装着する。
 図7は、名札型センサ端末(NN)の内部レイアウトの一例を示す図である。名札型センサ端末(NN)の筐体上部には、ストラップ取り付け用の穴(STH)を備え、外周部にパッキン(SEAL)を備えることで筺体内部への浸水を防ぐ。発光ダイオード(LED)、照度センサ(LUM)、無線回路(RADIO-S)、赤外線送受信回路(TRIR1~TRIR6)は、できるだけ筺体上部へ配置される。これにより、人が装着中に、腕などが名札型センサ端末(NN)と干渉し、センサ端末(NN)に出入りする可視光や赤外線信号、無線信号が遮蔽されることを防止する。マイク(MIC)、温度・湿度センサ(TEMP)、三軸加速度・角速度センサ(ACC)は、できるだけ外乱を避けるため、できるだけ筺体中央に配置される。液晶画面(LCD)、ボタンスイッチ(BUTS)のユーザインタフェースは、筺体右側に纏めて配置される。電源スイッチ(PSW)と、USBターゲットI/F(USB-T)は、筺体下からアクセスされる。USBターゲットI/F(USB-T)のコネクタから供給された電力により、二次電池(BAT)が充電される。そのほか、筐体内部の基板上に、全体制御を行うマイクロプロセッサ(MPU)、センサ情報を格納する外部フラッシュメモリ(OFMEM)が実装される。
 <赤外線近接検知についての説明>
 次に、名札型センサ端末(NN)の赤外線近接検知について、図8~図10を用いて説明する。
 本実施の形態では、名札型センサ端末(NN)同士の近接検知のための赤外線送受信回路(赤外線送受信機とも記す)を6式備える例を示している。赤外線送受信機(TRIR1~TRIR4)は、角度を変えて正面向きに、赤外線送受信機(TRIR5~TRIR6)は側面方向に実装され、以下に説明する、想定された近接検知要求仕様をカバーする。
 図8は、名札型センサ端末(NN)の赤外線による近接検知の仕様の一例を示す図である。図8(A)は、2人の人間(HUM3)と人間(HUM4)とが対面してコミュニケーションを取る場合の位置関係を示している。2人の人間が話をする場合、完全に正面で正対することはまれである。多くの場合、肩幅程度ずれて対峙する。このとき、名札同士の対面を検出するための赤外線送受信機が、名札正面にしか感度がないと、対面状態を検出することができない。人間(HUM3)と人間(HUM4)とが装着した名札型センサ端末(NN3)と名札型センサ端末(NN4)との表面から引いた垂直な直線L4、L6それぞれは、名札型センサ端末(NN3)と名札型センサ端末(NN4)とを結んだ直線L5に対し、左右30°程度の感度が必要となる。
 また、図8(B)は、椅子に座った人間(HUM1)と立った人間(HUM2)とがコミュニケーションを取っている場合の位置関係を示す。椅子に座った人間(HUM1)と立った人間(HUM2)との頭の高さに差があるため、椅子に座った方の人間(HUM1)は、上半身がやや上方を向いた体勢になる。人間(HUM1)と人間(HUM2)とが装着した名札型センサ端末(NN1)と名札型センサ端末(NN2)とを結んだ直線L3は、それぞれの名札表面から垂直に引いた直線L1、L2より下方向に位置している。従って、本条件で確実に名札型センサ端末が対面状況を検出するためには、双方の名札型センサ端末(NN1、NN2)は下方向に感度が必要である。
 図8(C)は、同じ机に向かった2人の人間(HUM5)と人間(HUM6)とがコミュニケーションを取っている位置関係を示す。両者が装着した名札型センサ端末(NN5)と名札型センサ端末(NN6)とを結んだ直線L7は、真横に位置している。従って、本条件で名札型センサ端末が対面状況を検出するためには、双方の名札型センサ端末(NN5、NN6)は横方向にもある程度の感度が必要である。しかし、自分から横方向に、ただ単にこちらを向いている人や、隣の机で作業をしている人を、誤って対面コミュニケーションとして検出しないように、横向きに設置された赤外線送受信機の送信回路は、出力を弱く設定する必要がある。
 図9は、名札型センサ端末(NN)の赤外線送受信機の配置方向の一例を示す図である。図9では、前向き方向に配置される赤外線送受信機(TRIR1~TRIR4)の配置方向を示している。赤外線送受信機(TRIR1~TRIR4)は、それぞれ前方に向かって15°内側に配置される。赤外線送受信機(TRIR1)と赤外線送受信機(TRIR4)の2つは、さらに30°下向きに向けて配置する。
 本配置にすることにより、正面から向かって左側に位置する赤外線送受信機(TRIR1)と赤外線送受信機(TRIR2)は、手前方向右側に、正面から向かって右側に位置する赤外線送受信機(TRIR3)と赤外線送受信機(TRIR4)は、手前方向左側に感度を持つ。筺体上部から見れば、左右に配置された赤外線送受信機の光軸は図10のようになる。図10は、名札型センサ端末の左右に配置された赤外線送受信機(TRIR2、TRIR3)の光軸の一例を示す図である。図10に示す通り、筐体上部(IRW)の左右に配置された赤外線送受信機(TRIR2、TRIR3)の光軸はクロスする特性となる。赤外線送受信機(TRIR2、TRIR3)の持つ固有の感度が、プラスマイナス15°の感度曲線であるとすれば、実装角度と併せて赤外線送受信機(TRIR2)と赤外線送受信機(TRIR3)の形作る検出範囲は、左右60°に拡大される。
 <無線近接検知についての説明>
 次に、名札型センサ端末(NN)の無線近接検知について、図11~図13を用いて説明する。
 前述の赤外線を使った近接検知は、直進性が高く、照射、受光方向の制御が容易である一方で、検知距離が最大3m程度であり、工場など広い空間での近接検知が難しい。また、直射日光下では、赤外線信号は太陽光に含まれる赤外線に影響され、検知性能が悪化する。そこで、本実施の形態におけるセンサ端末(NN)では、赤外線による近接検知と併せ、無線信号による近接検知機能を備える。
 図11は、名札型センサ端末(NN)の無線による近接検知の仕様の一例を示す図である。図11では、人間(HUM7、HUM8、HUM9)の3人の人間が10m圏内に存在し、それぞれ名札型センサ端末(NN7、NN8、NN9)を装着している場合を表している。工場などでは、複数の人間が共同で高所作業などを行う場合も多く、名札型センサ端末間が数メートルの高度差を持つこともある。本実施の形態における無線信号による近接検知は、人物間の高度差や向きによらず、人間が装着する名札型センサ端末間の距離(L8、L9、L10)が、10m圏内に存在することで、人物間の近接検知を行う。また、無線の強度情報により、人物間の相対的な距離差を検知する。
 一般的に、電波強度は、センサ端末間の距離の二乗に反比例して減衰する。図12は、端末間の距離(L)[m]と、電波強度(RSSI)[dBm-1]との関係の一例を示す図である。図12では、電波強度(RSSI)の値は16進数で示している。電波強度(RSSI)は、受信した無線信号の電波の強弱を表す指標であり、値が小さいほど受信強度が強く、値が大きいほど受信強度が弱いことを示す。電波強度(RSSI)は、無線回路やアンテナの特性によって数値が影響を受けるため、絶対値ではなく相対値によって評価する。
 図12の例では、端末間の距離(L)が1mのときに電波強度(RSSI)の値0x3d、端末間の距離(L)が5mのときに電波強度(RSSI)の値0x55を取ることを示している。つまり、電波強度(RSSI)の値0x55を閾値にすることにより、0x55より小さいときは端末間の距離が5mより近く、0x55より大きいときは端末間の距離が5mより遠いことを判別することができる。
 実環境下においては、名札型センサ端末を装着した人体、環境の反射物などで、無線信号は反射、吸収されるため、厳密に電波強度によって距離を判別することは難しい。図13は、赤外線、無線の検知範囲の一例を示す図である。図13では、赤外線により近接検知が可能な範囲(AIR)、無線信号が受信可能かどうかで近接検知が可能な範囲(AR)、無線信号受信時の電波強度(RSSI)の閾値0x55による範囲が検知可能な範囲(AR5m)の例を示している。図13は、中央にセンサ端末を身に付けた人が立ち、上から見た検出範囲を示している。
 赤外線により近接検知が可能な範囲(AIR)は、図9で説明した赤外線送受信機(TRIR1~TRIR4)の配置により、左右60°範囲でおよそ3mの検知範囲を持つ。また、サイドの赤外線送受信機(TRIR5、TRIR6)により、横方向に約60cmの検知範囲を持つ。一方で、無線信号が受信可能かどうかで近接検知が可能な範囲(AR)には、明確に指向性は無く、前方約10mの検知範囲を持つ。また、電波強度(RSSI)の閾値0x55による範囲が検知可能な範囲(AR5m)は、前方約5mの検知範囲を持つ。無線信号が受信可能かどうかで近接検知が可能な範囲(AR)と、電波強度(RSSI)の閾値0x55による範囲が検知可能な範囲(AR5m)については、センサ端末を中心として概ね円形の検知範囲を持つが、人間がセンサ端末を胸に装着した場合、背後方向は、電波が人体で吸収されるため、背後方向は検知範囲が狭くなる特性を持つため、楕円に近い感度曲線を持つ。
 本実施の形態の名札型センサ端末(NN)においては、図12に示すような端末間の距離(L)と電波強度(RSSI)との関係、図13に示すような赤外線と無線の検知範囲を考慮して、赤外線送受信機(TRIR1~TRIR6)の配置による赤外線近接検知と、無線回路(RADIO-S)の配置による無線近接検知を行う。
 <無線通信プロトコルの説明>
 次に、無線通信プロトコルについて、図14~図19を用いて説明する。ここでは、主に、本実施の形態の特徴を分かり易くするための従来技術について説明する。
 一般的に、低電力な無線ネットワークでは、ネットワークトポロジにおいて、トポロジ上位を基地局、下位を端末とし、マスターとスレーブの関係で通信を行う。図14(A)は、従来技術のネットワークトポロジの一例を示す図である。つまり、従来のネットワークトポロジにおいては、図14(A)に示すように、基地局(WBS)を中心として、その基地局(WBS)と端末(NN1、NN2)との間で通信を行う、スター型のネットワークトポロジを持つ。端末1(NN1)と端末2(NN2)との間は、直接通信を行わない。端末(NN1、NN2)間が直接通信を行うためには、片側を待ち受け状態にする必要がある。待ち受け動作は、受信回路を継続的に動作させる必要があるため、大きな電流を継続して消費する。低電力なスター型ネットワークでは、消費電流の大きな待ち受け動作を基地局(WBS)のみが行い、端末(NN1、NN2)は待ち受け動作をしないことで、端末(NN1、NN2)の消費電流を抑制している。端末(NN1、NN2)と基地局(WBS)が通信を行う時、端末(NN1、NN2)は基地局(WBS)に接続リクエスト(ADV1、ADV2)を送信し、その後、基地局(WBS)との接続状態に移行し、データ通信を行う。
 図15は、従来技術のスター型ネットワークを持つセンサ端末における無線回路の状態遷移の一例を示す図である。図15において、センサ端末は、例えば図14(A)における端末1(NN1)や端末2(NN2)であり、基地局は図14(A)における基地局(WBS)である。センサ端末は、電源投入後、センシングを開始するとともに、無線回路を駆動して、基地局との接続を試みる接続リクエスト状態(141)へ移行する。一般的には、低電力化のため、基地局との接続は間欠的に行うため、その後、無線休止状態(142)となる。その後、接続リクエスト状態(141)と、無線休止状態(142)を繰り返す。接続リクエスト状態(141)は、基地局に対し、接続リクエスト(ADV)を送信する状態である。
 基地局とデータ通信を行う必要があれば、接続リクエスト状態(142)から基地局接続状態(143)へ移行する。端末が通信可能な範囲に基地局が存在するとは限らないこと、また、基地局が通信可能な範囲に存在しても、即時に応答できるとは限らないことから、端末が接続リクエストを送信しても、基地局から応答があり、基地局接続状態へ移行するとは限らない。端末が接続リクエスト(ADV)を一定回数送信しても、基地局から応答が無い場合は、消費電力を抑えるために再び無線休止状態(142)へ移行する。端末が送信した接続リクエスト(ADV)に対し、基地局が応答し、データ通信が可能になった場合は、端末は基地局接続状態(143)へ移行する。基地局接続状態(143)へ移行後、必要な通信が終了したとき、または端末と基地局の通信が何らかの理由で出来なくなった場合は、端末は再び無線休止状態(142)へ移行する。
 図16は、本実施の形態(従来技術でも同様)である接続リクエストのパケット構造の一例を示す図である。図16に示すように、センサ端末(NN)が基地局(WBS)に対して送信する接続リクエスト(ADV)のパケットは、識別情報と、ペイロードと、エラー検出部の3つに分けられる。識別情報は、受信側が、そのパケットが何処から送信され、何のパケットかを判別するための情報である。ペイロードは、データ本体である。エラー検出部は、受信されたパケットの完全性を判定する符号である。
 識別情報には、プリアンブル(PRE)、アクセスアドレス(ADR)、ヘッダ(HED)の情報がある。プリアンブル(PRE)は、パケットの先頭を表すビットパタンである。パケットを受信したとき、プリアンブル(PRE)のビットパタンを探し、パケットの先頭を判別する。アクセスアドレス(ADR)は、送信した端末のユニークアドレスである。ヘッダ(HED)は、そのパケットが何のパケットかを判別するためのパケットの種類を示す情報である。
 エラー検出部は、例えばエラー検出部以外のパケットから計算される巡回冗長符号(CRC)であり、計算されたCRCと、エラー検出部に格納されたCRCを比較することで、受信されたパケットの完全性を判定する。不一致の場合は、通信の過程で何らかのエラーがあったことを示し、パケットは無効なものとして破棄される。
 ペイロードには、パケットの種類により任意のデータが格納されるが、接続リクエスト(ADV)の場合は、1つまたは複数のアドバタイズ構造情報が格納される。アドバタイズ構造情報は、長さ(LEN)、タイプ(ADT)、データ(ADD)から構成される。長さ(LEN)は、そのアドバタイズ構造情報のバイト数、タイプ(ADT)は情報の種類、データ(ADD)はデータ本体を示す。アドバタイズ構造情報により転送する情報には、例えばその端末の名前などがある。
 従来技術のスター型ネットワークの通信シーケンスについて、図17~図19を使って説明する。図17は、端末の送信した接続リクエストに基地局が応答しなかった場合の通信シーケンスの一例を示す図である。図18は、端末の送信した接続リクエストに基地局が応答し、端末から基地局へデータ通信が行われる場合の通信シーケンスの一例を示す図である。図19は、端末の送信した接続リクエストに基地局が応答し、基地局から端末へデータ通信が行われる場合の通信シーケンスの一例を示す図である。図17~図19において、端末は、例えば図14(A)における端末1(NN1)や端末2(NN2)であり、基地局は図14(A)における基地局(WBS)である。
 端末は、接続リクエスト状態にあるとき、接続リクエスト送信間隔(TAINT)毎に接続リクエストパケット(ADV)を送信する。図17~図19の例では、端末は接続リクエスト(ADV)を3回送信し、基地局から応答が無ければ、端末は無線休止状態へ移行する。本例では、端末は、基地局へ自身の存在を伝えるため、接続リクエストを定期的に送信する場合を示している。接続リクエスト状態は、基地局が応答しなくても、センシング基準間隔(TSINT)毎に移行する。図18、図19は、端末が接続リクエストを2回送信したのち、基地局が接続応答(CRSP)を返し、端末は基地局接続状態へ移行し、センサデータを端末から基地局へ転送する例を示している。端末は、基地局接続状態に移行した直後は受信状態となり、図18のように基地局からのセンサデータ要求(SDREQ)、または図19のようにフィードバックデータの送信開始通知(FDST)を受信する。
 図18に示す端末から基地局へのデータ通信では、基地局接続状態になった後、基地局は端末に対してセンサデータ要求(SDREQ)を送信し、センサデータを要求する。このセンサデータ要求(SDREQ)に対し、端末はセンサデータ(SD1、SD2、…、SDn)を連続して送信し、送信すべきデータが無くなった段階で、切断リクエスト(DREQ)を送信して、基地局との接続状態の解除を要求する。端末からの切断リクエスト(DREQ)に対し、基地局は切断応答(DRSP)を送信し、端末は基地局からの切断応答(DRSP)を受信したことで無線休止状態へ移行する。図18に示す通り、基地局と接続し、データ転送が終了した後も、無線休止状態からセンシング基準間隔(TSINT)で接続リクエスト状態へ移行する。
 図19に示す基地局から端末へのデータ通信では、基地局接続状態になった後、基地局は端末に対しフィードバックデータの送信開始通知(FDST)を送信し、フィードバックデータの送信開始を通知する。この送信開始通知(FDST)に対し、端末は待ち受け動作を行い、連続してフィードバックデータを受信するための待ち受け動作を継続する。基地局は、送信開始通知(FDST)送信に続いて、連続してフィードバックデータ(FD1、FD2、…、FDn)を送信する。基地局から端末に対するフィードバックデータを全て送信すると、基地局は送信終了通知(FDED)を端末に送信する。端末は、送信終了通知(FDED)を受信すると、フィードバックデータを受信するための待ち受け状態を解除し、切断リクエスト(DREQ)を送信して、基地局との接続状態の解除を要求する。端末からの切断リクエスト(DREQ)に対し、基地局は切断応答(DRSP)を送信し、端末は基地局からの切断応答(DRSP)を受信したことで無線休止状態へ移行する。図19に示す通り、基地局と接続し、データ転送が終了した後も、無線休止状態からセンシング基準間隔(TSINT)で接続リクエスト状態へ移行する。
 <近接検知を実現するシーケンス>
 次に、本実施の形態のネットワークトポロジにおいて、近接検知を実現するシーケンスについて、図14(B)、図20~図23Eを用いて説明する。
 ネットワークトポロジにおいて、端末が定期的に送信する接続リクエストを、他の端末が受信し、無線強度を測定することができれば、端末間の距離を把握することができる。しかし、前述の通り、端末は間欠的に接続リクエストを送信し、かつ端末は低電力化のために常に待ち受け状態にすることはできないため、他の端末から接続リクエストが送信されるタイミングで、受信回路を駆動して受信しなければならない。
 図14(B)は、本実施の形態のネットワークトポロジの一例を示す図である。本実施の形態は、図14(B)に示す通り、基地局(WBS)と端末(NN1、NN2)との間で通信を行う、低電力なスター型ネットワークを持つ無線通信システムである。このスター型ネットワークでは、端末(NN1、NN2)は専ら基地局(WBS)とのみ通信を行う。このような低電力なスター型ネットワークを持つ無線通信システムにおいて、本実施の形態は、端末が基地局に対して接続リクエストを送信するタイミングで、他の端末がその接続リクエストを受信し、無線強度を測定して、端末間の距離を把握する技術が特徴である。例えば、端末1(NN1)が基地局(WBS)に送信する接続リクエスト(ADV1)を端末2(NN2)が受信し、端末2(NN2)が基地局(WBS)に送信する接続リクエスト(ADV2)を端末1(NN1)が受信する。
 図20は、本実施の形態のセンサ端末における無線回路の状態遷移の一例を示す図である。図20において、センサ端末は、例えば図14(B)における端末1(NN1)と端末2(NN2)であり、基地局は図14(B)における基地局(WBS)である。また、センサ端末における無線回路は、図5に示した無線回路(RADIO-S)である。また、センサ端末において、無線回路の状態遷移に伴うシーケンスは、図5に示したマイクロプロセッサ(MPU)の制御に基づいて実行される。センサ端末は、電源投入されると、まず基地局に接続するための接続リクエスト状態(201)へ移行し、端末間の時刻同期(202)を行う。その後、センシング開始のタイミングを待つ(203)。図20と併せ、図21を用いて、時刻同期シーケンスを説明する。図21は、時刻同期シーケンスの一例を示す図である。図21では、端末1と端末2とが、異なった時刻で電源が投入され、互いに時刻同期する例を示している。
 図21において、端末1は、時刻(T601)に電源が投入される。その後、端末1は、接続リクエスト状態へ移行し、接続リクエスト(ADV)を基地局に送信し、基地局に対する接続を要求する。基地局からの接続応答(CRSP)を受信して、端末1は、時刻同期状態へ移行し、基地局に対して時刻同期要求(TREQ)を送信する。時刻同期要求(TREQ)は、基地局に現在の時刻の送信を要求するパケットである。基地局は、端末1からの時刻同期要求(TREQ)に対し、時刻同期応答(TRSP)を返送する。時刻同期応答(TRSP)には、基地局が持つ基準時刻を刻む時計に基づいた、現在の正確な時刻の情報が含まれる。端末1は、基地局からの時刻同期応答(TRSP)に含まれる正確な時刻を、内蔵された時計(リアルタイムクロックRTC)にセットする。図21の例では、正確な時刻の受信時刻(T602)において、端末1は、基地局から受信した時刻同期応答(TRSP)によって、正確な時刻がセットされる。
 端末1は、時刻同期が終了すると、基地局へ切断リクエスト(DREQ)を送信する。端末1は、基地局からの切断応答(DRSP)によって、接続状態は解除され、無線休止状態に移行し、次回のセンシング開始基準時刻(T605)まで無線通信を休止する。図21では、センシング基準間隔(TSINT)は10秒、端末2が時刻同期してから、最初のセンシング開始基準時刻(T605)は00:00:00、その次のセンシング開始基準時刻(T606)は00:00:10である例を示している。正確な時刻の受信時刻(T602)からセンシング開始基準時刻(T605)までは、端末1のセンシング開始待ち時間(T610(1))となる。
 一方で、端末2は、端末1とは異なる時刻(T603)に電源が投入される。その後、端末2は、接続リクエスト状態へ移行し、接続リクエスト(ADV)を基地局に送信し、基地局に対する接続を要求する。基地局からの接続応答(CRSP)を受信して、端末2は、時刻同期状態へ移行し、端末1と同様に基地局から正確な時刻情報を受け取る。端末2が基地局から正確な時刻情報を受け取る時間(T604)は、端末1が時刻情報を受け取る時間(T602)とは別の時刻であるが、それぞれその時の正確な時刻の配信であり、端末1と端末2との内蔵時計は、同期する。
 端末2は、時刻同期が終了すると、基地局へ切断リクエスト(DREQ)を送信する。端末2は、基地局からの切断応答(DRSP)によって、接続状態は解除され、無線休止状態に移行し、次回のセンシング開始基準時刻(T606)まで無線通信を休止する。図21では、端末1は、センシング基準間隔(TSINT)が1周期分早くセンシングを開始するが、端末1の2回目のセンシング開始時刻と、端末2の1回目のセンシング開始時刻とは一致する(T606)。端末2では、正確な時刻の受信時刻(T604)からセンシング開始基準時刻(T606)までは、センシング開始待ち時間(T610(2))となる。
 図20に戻り説明する。図20に示す通り、本実施の形態におけるセンサ端末は、時刻同期が終了すると、センシング状態に遷移する。センサ端末の電源が投入されると、前述の通り、基地局と時刻同期を行うために基地局に対する接続リクエスト状態(201)に遷移する。基地局と接続(図示省略)して時刻同期(202)を行い、時刻同期が終了すると基地局から切断する。その後、次のセンシング開始基準時刻に達するまでセンシング開始待ち状態(203)で待機する。このとき、無線回路は休止状態である。センシング開始基準時刻に達すると、センサ端末はセンシングを開始する。このタイミングは、端末間で同期している。
 センシング状態では、無線機能の動作によって、さらに近接検知状態(MACT)と、無線休止状態(MSLP)に分けられる。近接検知状態(MACT)は、定期的に基地局に対して接続リクエストを送信し、必要であればデータ転送の開始できる状態である。無線休止状態(MSLP)では、センシングは継続されているが、無線機能は駆動されず、無線回路が低消費電力にある状態である。
 図20と併せ、図22を用いて、近接検知シーケンスを説明する。図22は、近接検知シーケンスの一例を示す図である。図22(A)は近接検知全体シーケンス、図22(B)は近接検知状態におけるフローの拡大図である。図22では、端末1と端末2とがセンシング状態において、センシング開始基準時刻(T221)から次のセンシング開始基準時刻(T222)まで、センシング基準間隔(TSINT)での近接検知フローを示している。図22に示すセンシング状態の近接検知状態(MACT)と無線休止状態(MSLP)は、センシング基準間隔(TSINT)で繰り返す。
 図22において、端末1と端末2とは時刻同期しているので、それぞれの端末の近接検知状態(MACT)の近接検知時間(TACT)は重なっており、一方が基地局へ送信した接続リクエストを、もう一方が受信することが可能である。同様に、端末1と端末2との双方が無線休止状態へ移行する時間は重なっているため、無線回路が休止状態にあっても、他者の送信する基地局接続リクエストを、常に取りこぼすことはない。また、近接検知状態(MACT)と、無線休止状態(MSLP)の繰り返しによる、無線回路の間欠動作により、無線回路の消費電力をその比率により削減することができる。
 もちろん、複数の端末間において、近接検知時間(TACT)に少しでも重なりがあれば、一方が基地局へ送信した接続リクエストをもう一方が受信することが可能であるから、それぞれの端末の近接検知時間(TACT)同士、無線休止時間(TSLP)同士が完全に同じタイミングである必要はない。
 端末1と端末2とは、近接検知状態(MACT)において、探索状態(MSCN)→接続リクエスト状態(MADV)→探索状態(MSCN)の遷移を行う。探索状態(MSCN)とは、他の端末が送信する基地局に対する接続リクエストを受信する状態である。接続リクエスト状態(MADV)とは、自身が基地局に対して接続リクエストを1回または複数回繰り返して送信する状態である。図20に示す通り、接続リクエストに対して基地局からの応答があり、データ転送が必要であれば、接続リクエスト状態(MADV)から基地局接続状態(204)へ移行する。必要なデータ転送が終了した状態で、無線休止状態(MSLP)へ遷移し、次のセンシング開始基準時刻まで無線回路を休止する。基地局とのデータ転送が必要でない場合は、接続リクエスト状態(MADV)から、再び探索状態(MSCN)へ遷移する。
 この時、図22(B)の近接検知状態におけるフローの拡大図に示す通り、端末1と端末2とが、それぞれ探索状態(MSCN)から接続リクエスト状態(MADV)へ移行するタイミングが異なっていれば、端末1が基地局に対して送信した接続リクエスト(ADV)を、探索状態(MSCN)にある端末2が受信することが可能であり、また、端末2が基地局に対して送信した接続リクエスト(ADV)を、探索状態(MSCN)にある端末1が受信することが可能である。図22(B)では、端末1が接続リクエスト状態継続時間(TADV(1))に、端末2は最初の探索状態継続時間(TSCN1(2))にあり、端末2が接続リクエスト状態継続時間(TADV(2))に、端末1は二番目の探索状態継続時間(TSCN2(1))にあるから、互いの接続リクエストを受信することができる。
 つまり、端末間で、最初の探索状態継続時間(TSCN1)と、二番目の探索状態継続時間(TSCN2)とを変える必要がある。図22(B)に示した例では、端末1の最初の探索状態継続時間(TSCN1(1))は端末2の最初の探索状態継続時間(TSCN1(2))より小さく、端末1の二番目の探索状態継続時間(TSCN2(1))は端末2の二番目の探索状態継続時間(TSCN2(2))より大きい例を示している。探索状態継続時間(TSCN)の決定方法は、特に限定しないが、例えば毎回ランダムで設定するとか、端末固有の異なった時間を設定するなどの実装が可能である。
 図20に示したセンサ端末における無線回路の状態遷移を、図23A~図23Dのフローチャートを使って説明する。図23Aは、センサ端末における無線回路の状態遷移の一例を示すフローチャートである。図23B~図23Eは、図23Aの各状態を詳細に示すフローチャートであり、図23Bはセンサ端末の無線による時刻同期の一例、図23Cはセンサ端末の探索状態1の一例、図23Dはセンサ端末の接続リクエスト状態の一例、図23Eはセンサ端末の探索状態2の一例である。
 図23Aにおいて、端末は、電源が投入されて起動すると(23A1)、時刻同期状態(23A2)となる。時刻同期のフローを図23Bに示す。時刻同期状態では、時刻同期が開始されると(23B1)、まず、端末は、基地局に対して接続リクエストを送信(23B2)し、基地局との接続を試みる。端末は、無線受信処理(23B3)して基地局の応答を待つ(23B4)。基地局が応答した場合(23B4-Y)、端末は、時刻情報送信要求を送信し(23B5)、基地局からの時刻情報を受信する(23B7)。端末は、受信した時刻を、自身のリアルタイムクロック(RTC)へ設定する(23B8)。また、接続リクエストに対して基地局からの応答が無く(23B4-N)、過去に時刻同期を行って設定した時刻が存在する場合(23B6-Y)、端末は、その時刻を保持して時刻同期処理を終了する(23B9)。過去に設定した時刻が無い場合(23B6-N)、端末は、その後も引き続き基地局に対する接続リクエストを送信(23B2)し、基地局との接続を試みる。
 図23Aに戻り、端末は、時刻同期(23A2)が終了すると、無線回路を休止状態とするために無線休止処理(23A3)をして、次回のセンシング開始基準時刻を待つ(23A4)。センシング開始基準時刻になったら(23A4-Y)、端末は、探索状態1(23A5)へ移行する。探索状態1のフローを図23Cに示す。探索状態1では、探索状態1が開始されると(23C1)、まず、端末は、無線受信処理(23C2)を行い、他の端末が送信する接続リクエストを受信できる状態にする。他の端末の接続リクエスト受信があった場合(23C3-Y)、端末は、その接続リクエストパケット(図16)に含まれるアクセスアドレス(ADR)を記録する(23C4)。探索状態1は、接続リクエストを受信したかどうかにかかわらず、最初の探索状態継続時間(TSCN1)の間継続し、この時間(TSCN1)が経過したら(23C5-Y)、探索状態1を終了する(23C6)。最初の探索状態継続時間(TSCN1)は、端末毎に異なる時間である。
 図23Aに戻り、端末は、探索状態1(23A5)が終了すると、接続リクエスト状態(23A6)へ遷移する。接続リクエスト状態のフローを図23Dに示す。接続リクエスト状態は、基地局に対して、接続リクエストを1回または複数回送信する状態である。接続リクエスト状態が開始されると(23D1)、まず、端末は、基地局に対して接続リクエストを送信(23D2)し、基地局との接続を試みる。端末は、無線受信処理(23D3)して基地局の応答を待つ(23D4)。基地局が応答した場合(23D4-Y)、端末は、必要な基地局通信処理(23D6)を実施し、接続リクエスト状態を終了する(23D8)。基地局が応答しない場合(23D4-N)、端末は、接続リクエスト送信間隔(TAINT)が経過するまで待ち(23D5)、再び接続リクエストを送信する(23D2)。このとき、接続リクエスト状態継続時間(TADV)が経過しているかどうかをチェックし(23D7)、経過していれば(23D7-Y)、接続リクエスト状態を終了する(23D8)。
 図23Aに戻り、端末は、接続リクエスト状態(23A6)が終了すると、探索状態2(23A7)へ移行する。探索状態2のフローを図23Eに示す。探索状態2では、探索状態2が開始されると(23E1)、まず、端末は、無線受信処理(23E2)を行い、他の端末が送信する接続リクエストを受信できる状態にする。他の端末の接続リクエスト受信があった場合(23E3-Y)、端末は、その接続リクエストパケット(図16)に含まれるアクセスアドレス(ADR)を記録する(23E4)。探索状態2は、接続リクエストを受信したかどうかにかかわらず、二番目の探索状態継続時間(TSCN2)の間継続し、この時間(TSCN2)が経過したら(23E5-Y)、探索状態2を終了する(23E6)。二番目の探索状態継続時間(TSCN2)は、端末毎に異なる時間である。
 <実施の形態の効果>
 以上説明した本実施の形態の無線通信システムによれば、端末(NN)は専ら基地局(WBS)とのみ通信を行う、スター型のネットワークにおいて、端末(NN)の消費電力を抑制しながら、端末(NN)間の無線強度を測定して、端末(NN)間の距離を推定することが可能となる。より詳細には、以下の通りである。
 (1)端末(NN)のそれぞれは、基地局(WBS)に対する接続リクエストを送信する状態の接続リクエスト状態(MADV)と、電波強度を検出する受信状態の探索状態(MSCN)と、を有する。そして、例えば、端末1(NN1)は、端末2(NN2)が接続リクエスト状態(MADV)にある時に、探索状態(MSCN)に移行し、端末2(NN2)の送信した電波の強度を取得する。これにより、端末1(NN1)は、取得した電波の強度から、端末1(NN1)と端末2(NN2)との間の距離を推定することができる。逆に、端末2(NN2)は、端末1(NN1)の送信した電波の強度を取得することにより、端末2(NN2)と端末1(NN1)との間の距離を推定することができる。さらに、端末1(NN1)および端末2(NN2)以外の他の端末間でも同様である。すなわち、端末(NN)間の無線強度を観測して、端末(NN)間の相対位置を推定することができる。
 (2)端末(NN)のそれぞれは、時刻同期しており、接続リクエスト状態(MADV)と、探索状態(MSCN)と、無線通信機能の無線休止状態(MSLP)と、を有する。そして、例えば、端末1(NN1)は、端末2(NN2)が接続リクエスト状態(MADV)にない時に、無線休止状態(MSLP)に移行する。これにより、端末1(NN1)の消費電力を削減することができる。逆に、端末2(NN2)が無線休止状態(MSLP)に移行する場合には、端末2(NN2)の消費電力を削減することができる。さらに、端末1(NN1)および端末2(NN2)以外の他の端末間でも同様である。すなわち、端末(NN)間が時刻同期することで、一方の端末は、他方の端末が接続リクエストを送信するタイミングで受信状態にし、かつ、他方の端末が接続リクエストを送信しない状態では、自身の無線回路(RADIO-S)を休止する間欠動作を行うことで、端末(NN)の消費電力を削減することができる。
 (3)探索状態(MSCN)は、時系列において、最初の探索状態継続時間(TSCN1)の探索状態(MSCN)と、二番目の探索状態継続時間(TSCN2)の探索状態(MSCN)と、を有する。そして、端末(NN)のそれぞれは、最初の探索状態継続時間(TSCN1)より後の時間、かつ、二番目の探索状態継続時間(TSCN2)より前の時間に、接続リクエスト状態(MADV)に移行することができる。
 (4)例えば、端末2(NN2)が探索状態(MSCN)にある時に、端末1(NN1)は、最初の探索状態継続時間(TSCN1)の探索状態(MSCN)から接続リクエスト状態(MADV)に移行することができる。逆の場合や他の端末間でも同様である。
 (5)例えば、端末1(NN1)が探索状態(MSCN)にある時に、端末2(NN2)は、接続リクエスト状態(MADV)から二番目の探索状態継続時間(TSCN2)の探索状態(MSCN)に移行することができる。逆の場合や他の端末間でも同様である。
 (6)例えば、端末1(NN1)は、端末1(NN1)が取得した端末2(NN2)が送信した電波の強度を利用して、端末1(NN1)と端末2(NN2)との間の距離を取得することができる。逆の場合や他の端末間でも同様である。
 (7)端末(NN)のそれぞれは、人体に装着するためのストラップ取り付け用の穴(STH)を有する。そして、例えば、端末1(NN1)は、端末1(NN1)と端末2(NN2)との距離を取得することにより、端末1(NN1)を装着する装着者と端末2(NN2)を装着する装着者との間の距離を取得することができる。逆の場合や他の端末間でも同様である。
 (8)無線通信システムは、さらに基地局(BS)との間で有線通信を行う端末n(NNn)を有する。基地局(WBS、BS)は、端末1(NN1)および端末2(NN2)が無線通信で送信するデータを受信する無線回路(RADIO-H)と、端末n(NNn)が有線通信で送信するデータを受信するUSBマスターI/F(USB-M)と、を有する。そして、基地局(WBS、BS)は、端末1(NN1)または端末2(NN2)が無線経由で送信する接続リクエスト信号を受信することで、無線回路(RADIO-H)を選択して端末1(NN1)または端末2(NN2)からのデータを受信することができる。また、基地局(WBS、BS)は、USBマスターI/F(USB-M)を選択して端末n(NNn)からのデータを受信することができる。
 (9)基地局(WBS)は、基準時刻を刻む時計を有する。そして、基地局(WBS)は、端末(NN)のそれぞれからの時刻同期要求(TREQ)に応じて端末(NN)のそれぞれへ時刻情報を送信し、端末(NN)のそれぞれの時刻の設定を行うことで、端末(NN)のそれぞれの間の動作を同期させることができる。例えば、端末1(NN1)と端末2(NN2)との間の動作を同期させることができる。他の端末間でも同様である。
 (10)端末(NN)のそれぞれは、複数の赤外線送受信回路(TRIR1~TRIR6)を有する。そして、例えば、端末1(NN1)は、赤外線送受信回路で端末2(NN2)が発射した光信号を受信することで(赤外線検出範囲(AIR))、端末1(NN1)と端末2(NN2)との接近を記録することができる。また、端末2(NN2)が発射した光信号を受信しない範囲(無線通信可能範囲(AR))では、端末1(NN1)が取得した端末2(NN2)が送信した電波の強度を利用して、端末1(NN1)と端末2(NN2)との間の距離を取得することができる。逆の場合や他の端末間でも同様である。
 (11)複数の赤外線送受信回路(TRIR1~TRIR6)のうち、赤外線送受信回路(TRIR1~TRIR4)は、端末(NN)のそれぞれに、角度を変えて正面向きに実装することで、正面方向の検知範囲を近接検知することができる。また、赤外線送受信回路(TRIR5、TRIR6)は、端末(NN)のそれぞれに、側面方向に向けて実装することで、横方向の検知範囲を近接検知することができる。
 (12)端末(NN)のそれぞれは、二次電池(BAT)で動作する端末とすることで、二次電池で動作する端末(NN)の無線回路(RADIO-S)の動作時間を最小限にし、端末(NN)の低電力化に寄与することができる。
 以上、本発明者によってなされた発明を一実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 たとえば、上記した一実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
WBS(WBS1、WBSn)…無線基地局
BS…有線基地局
NN(NN1、NN2、NNn)…センサ端末
MADV…接続リクエスト状態
MSCN…探索状態
MSLP…無線休止状態
 
 

Claims (15)

  1.  基地局と、前記基地局との間で無線通信を行う複数の端末と、を有する無線通信システムであって、
     前記複数の端末のそれぞれは、前記基地局に対する接続リクエストを送信する状態と、電波強度を検出する受信状態と、を有し、
     前記複数の端末のそれぞれは、他の端末が前記基地局に対する接続リクエストを送信する状態にある時に、前記電波強度を検出する受信状態に移行し、前記他の端末の送信した電波の強度を取得する、無線通信システム。
  2.  請求項1記載の無線通信システムにおいて、
     前記複数の端末のそれぞれは、時刻同期しており、
     前記複数の端末のそれぞれは、前記基地局に対する接続リクエストを送信する状態と、前記電波強度を検出する受信状態と、無線通信機能の休止状態と、を有し、
     前記複数の端末のそれぞれは、前記他の端末が前記基地局に対する接続リクエストを送信する状態にない時に、前記無線通信機能の休止状態に移行する、無線通信システム。
  3.  請求項1記載の無線通信システムにおいて、
     前記電波強度を検出する受信状態は、時系列において、第1の電波強度を検出する受信状態と、第2の電波強度を検出する受信状態と、を有し、
     前記複数の端末のそれぞれは、前記第1の電波強度を検出する受信状態より後の時間、かつ、前記第2の電波強度を検出する受信状態より前の時間に、前記接続リクエストを送信する状態に移行する、無線通信システム。
  4.  請求項3記載の無線通信システムにおいて、
     前記複数の端末のうちの第1端末が前記第1の電波強度を検出する受信状態にある時に、前記複数の端末のうちの前記第1端末とは別の第2端末は、前記第1の電波強度を検出する受信状態から前記基地局に対する接続リクエストを送信する状態に移行する、無線通信システム。
  5.  請求項3記載の無線通信システムにおいて、
     前記複数の端末のうちの第1端末が前記第2の電波強度を検出する受信状態にある時に、前記複数の端末のうちの前記第1端末とは別の第2端末は、前記基地局に対する接続リクエストを送信する状態から前記第2の電波強度を検出する受信状態に移行する、無線通信システム。
  6.  請求項1記載の無線通信システムにおいて、
     前記複数の端末のそれぞれは、前記複数の端末のそれぞれが取得した前記他の端末が送信した電波の強度を利用して、前記複数の端末のそれぞれと前記他の端末との間の距離を取得する、無線通信システム。
  7.  請求項6記載の無線通信システムにおいて、
     前記複数の端末のそれぞれは、人体に装着するためのストラップを取り付ける構造を有し、
     前記複数の端末のそれぞれは、前記複数の端末のそれぞれと前記他の端末との距離を取得することにより、前記複数の端末のそれぞれを装着する装着者と前記他の端末を装着する装着者との間の距離を取得する、無線通信システム。
  8.  請求項1記載の無線通信システムにおいて、
     前記無線通信システムは、さらに前記基地局との間で有線通信を行う第3端末を有し、
     前記基地局は、前記複数の端末のそれぞれが無線通信で送信するデータを受信する無線通信回路と、前記第3端末が有線通信で送信するデータを受信する有線通信回路と、を有し、
     前記基地局は、前記複数の端末のそれぞれが無線経由で送信する接続リクエスト信号を受信することで、前記無線通信回路を選択して前記複数の端末のそれぞれからのデータを受信する、無線通信システム。
  9.  請求項8記載の無線通信システムにおいて、
     前記基地局は、前記有線通信回路を選択して前記第3端末からのデータを受信する、無線通信システム。
  10.  請求項2記載の無線通信システムにおいて、
     前記基地局は、基準時刻を刻む時計を有し、
     前記基地局は、前記複数の端末のそれぞれからの時刻同期要求信号に応じて前記複数の端末のそれぞれへ時刻情報を送信し、前記複数の端末のそれぞれの時刻の設定を行うことで、前記複数の端末のそれぞれの間の動作を同期させる、無線通信システム。
  11.  請求項6記載の無線通信システムにおいて、
     前記複数の端末のそれぞれは、1つまたは複数の光送受信機を有し、
     前記複数の端末のそれぞれは、前記光送受信機で前記他の端末が発射した光信号を受信することで、前記複数の端末のそれぞれと前記他の端末との接近を記録し、前記他の端末が発射した光信号を受信しない範囲では、前記複数の端末のそれぞれが取得した前記他の端末が送信した電波の強度を利用して、前記複数の端末のそれぞれと前記他の端末との間の距離を取得する、無線通信システム。
  12.  請求項11記載の無線通信システムにおいて、
     前記光送受信機が複数からなる場合に、前記複数の光送受信機は、前記複数の端末のそれぞれに角度を変えて実装されている、無線通信システム。
  13.  請求項12記載の無線通信システムにおいて、
     前記複数の光送受信機のうち、第1、第2、第3および第4光送受信機は、前記複数の端末のそれぞれに、角度を変えて正面向きに実装されている、無線通信システム。
  14.  請求項13記載の無線通信システムにおいて、
     前記複数の光送受信機のうち、第5および第6光送受信機は、前記複数の端末のそれぞれに、側面方向に向けて実装されている、無線通信システム。
  15.  請求項1記載の無線通信システムにおいて、
     前記複数の端末のそれぞれは、電池で動作する端末である、無線通信システム。
     
     
PCT/JP2014/064931 2014-06-05 2014-06-05 無線通信システム WO2015186218A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064931 WO2015186218A1 (ja) 2014-06-05 2014-06-05 無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064931 WO2015186218A1 (ja) 2014-06-05 2014-06-05 無線通信システム

Publications (1)

Publication Number Publication Date
WO2015186218A1 true WO2015186218A1 (ja) 2015-12-10

Family

ID=54766314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064931 WO2015186218A1 (ja) 2014-06-05 2014-06-05 無線通信システム

Country Status (1)

Country Link
WO (1) WO2015186218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108110A (ja) * 2018-12-28 2020-07-09 Toto株式会社 水回り機器
JPWO2021024831A1 (ja) * 2019-08-05 2021-02-11
WO2021070388A1 (ja) * 2019-10-11 2021-04-15 株式会社Nttドコモ 端末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007752A (ja) * 1999-06-18 2001-01-12 Hittsu Kenkyusho:Kk 無線通信システム
JP2007184754A (ja) * 2006-01-06 2007-07-19 Hitachi Ltd センサノード、基地局、センサネット及びセンシングデータの送信方法
JP2007189716A (ja) * 2007-02-08 2007-07-26 Ntt Docomo Inc 情報端末およびアンテナ
JP2007300571A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd センサネットシステム、センサネット位置特定プログラム
JP2007300572A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd センサネットシステム、センサネット位置特定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007752A (ja) * 1999-06-18 2001-01-12 Hittsu Kenkyusho:Kk 無線通信システム
JP2007184754A (ja) * 2006-01-06 2007-07-19 Hitachi Ltd センサノード、基地局、センサネット及びセンシングデータの送信方法
JP2007300571A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd センサネットシステム、センサネット位置特定プログラム
JP2007300572A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd センサネットシステム、センサネット位置特定方法
JP2007189716A (ja) * 2007-02-08 2007-07-26 Ntt Docomo Inc 情報端末およびアンテナ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108110A (ja) * 2018-12-28 2020-07-09 Toto株式会社 水回り機器
JP7230505B2 (ja) 2018-12-28 2023-03-01 Toto株式会社 水回り機器
JPWO2021024831A1 (ja) * 2019-08-05 2021-02-11
WO2021024831A1 (ja) * 2019-08-05 2021-02-11 日本電気株式会社 位置検出システム、位置検出方法および位置検出プログラム
JP7211520B2 (ja) 2019-08-05 2023-01-24 日本電気株式会社 位置検出システム、位置検出方法および位置検出プログラム
WO2021070388A1 (ja) * 2019-10-11 2021-04-15 株式会社Nttドコモ 端末
CN114503699A (zh) * 2019-10-11 2022-05-13 株式会社Ntt都科摩 终端

Similar Documents

Publication Publication Date Title
CN107643509B (zh) 定位方法、定位系统及终端设备
US9538325B2 (en) Rotation based alignment of a group of wireless tags
US9519812B2 (en) Managing a sphere of wireless tags
US11914033B2 (en) Transmitting device for use in location determination systems
Xiao et al. Comparison and analysis of indoor wireless positioning techniques
US9313788B2 (en) Mobile device for wireless data communication and a method for communicating data by wireless data communication in a data communication network
CN106291468A (zh) 一种可远程监控的超声波室内快速定位系统及其定位方法
US20240107260A1 (en) Low level smartphone audio and sensor clock synchronization
Savić et al. Constrained localization: A survey
WO2015186218A1 (ja) 無線通信システム
CN107532913A (zh) 一种导航方法和用于导航的设备
D'Aloia et al. Improving energy efficiency in building system using a novel people localization system
Dai et al. A power-efficient BLE augmented GNSS approach to site-specific navigation
CN116158742A (zh) 智能采集佩戴者生命体征及行为数据的低功耗装置、精准定位系统
Taşkın Design of bluetooth low energy based indoor positioning system
Yu et al. A query-driven indoor location system based on smartphone
TW201523202A (zh) 偵測系統、電子裝置以及偵測方法
US20220065951A1 (en) Determining a level of interaction experienced by a subject
Fink et al. Radio-based indoor localization using the eZ430-Chronos platform
Kardzhiev et al. Recent trends in hybrid systems for indoor localization
Savvas WiFi-based indoor positioning.
Knauth et al. Evaluating the iLoc indoor localization system: Competition outcomes and lessons learned

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP