WO2015184638A1 - 阵列天线校准方法、装置和系统 - Google Patents

阵列天线校准方法、装置和系统 Download PDF

Info

Publication number
WO2015184638A1
WO2015184638A1 PCT/CN2014/079360 CN2014079360W WO2015184638A1 WO 2015184638 A1 WO2015184638 A1 WO 2015184638A1 CN 2014079360 W CN2014079360 W CN 2014079360W WO 2015184638 A1 WO2015184638 A1 WO 2015184638A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
array
group
channel
inter
Prior art date
Application number
PCT/CN2014/079360
Other languages
English (en)
French (fr)
Inventor
杨陈庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480046795.8A priority Critical patent/CN105518934B/zh
Priority to PCT/CN2014/079360 priority patent/WO2015184638A1/zh
Priority to EP14893708.9A priority patent/EP3142188B1/en
Publication of WO2015184638A1 publication Critical patent/WO2015184638A1/zh
Priority to US15/370,863 priority patent/US20170084995A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to an array antenna calibration method, apparatus, and system. Background technique
  • the base station In the existing Long Term Evolution (LTE) system, the base station is configured to be 4 antennas or 8 antennas, and in the large-scale array antenna system, the number of antennas of the base station is increased to several hundred or more, in order to make the large antenna array Under the action of precoding or steering vector, the beam synthesized in space for a certain user becomes very narrow, and at the same time, the beam can be more accurately pointed to the user to enhance the power of the user to receive signals, reducing the relationship between the paired users. Interference with the cell requires high-precision calibration of the transceiver channel.
  • the array antenna can be calibrated by wired coupling calibration or wireless air interface coupling calibration. That is, the calibration signal is transmitted to or from the channel to be calibrated through a wired cable or a wireless air interface, and the calibration parameters are obtained by comparing the amplitude and phase characteristics difference between the channels.
  • the wired coupling calibration method is limited by the difficulty and complexity of the number of coupling disk ports.
  • the wireless air interface coupling calibration method is subject to Limited to the improvement of the air interface stability and dynamic range caused by the increase of the array area, both the wired coupling calibration and the wireless air interface coupling calibration cannot meet the calibration accuracy of the large-scale array antenna system. Summary of the invention
  • Embodiments of the present invention provide an array antenna calibration method, apparatus, and system to improve calibration accuracy of a large-scale array antenna system.
  • an embodiment of the present invention provides an array antenna calibration method, including:
  • the array elements of the array antenna are divided into at least two array elements, the channels corresponding to one or more array elements of the array antenna;
  • determining, by using a wireless air interface coupling calibration manner, an intra-group calibration coefficient of a channel in any one of the array elements including:
  • Determining an intra-group calibration coefficient of the reference channel is 1;
  • An intra-group calibration coefficient of the other channels of the array of elements other than the reference channel is determined according to the ratio.
  • determining, by using a wired coupling calibration manner, an inter-group calibration coefficient of the channel of each array element includes:
  • the response characteristics of the reference channels in each of the arrays are determined by a wired coupling calibration method; the inter-group calibration coefficients are determined based on the response characteristics of the reference channels in each of the arrays.
  • the array element when the channel is a transmitting channel, the array element is determined by a wireless air interface coupling calibration manner
  • the ratio of the response characteristics of the other channels in the group except the reference channel to the response characteristics of the reference channel including:
  • the channel in the array tuple Determining an air interface response characteristic between the channel in the array tuple and the calibration receiving channel in the group; the channel in the array tuple sends a first calibration signal to the calibration receiving channel in the group; And determining, by the channel, a response characteristic of the channel in the array of elements according to the received first calibration signal and the determined air interface response characteristic;
  • determining, by using a wired coupling calibration manner, an inter-group calibration coefficient of the reference channel in each of the array elements include:
  • the reference channel in each array of tuples sends a second calibration signal to the inter-group calibration receiving channel; the inter-group calibration receiving channel determines the each of the array of tuples according to the received second calibration signal The response characteristics of the reference channel;
  • the inter-group calibration coefficients are determined based on the response characteristics of the reference channels in each of the array elements.
  • the array element is determined by a wireless air interface coupling calibration manner
  • the ratio of the response characteristics of the other channels in the group except the reference channel to the response characteristics of the reference channel including:
  • the channel in the array tuple receives a third calibration signal sent by the calibration transmission channel in the group;
  • the channel in the channel determines a response characteristic of the channel in the array of tuples according to the received third calibration signal and the determined air interface response characteristic;
  • determining, by using a wired coupling calibration manner, an inter-group calibration coefficient of the reference channel in each of the array elements Includes:
  • the reference channel in each array of tuples receives a fourth calibration signal sent by the inter-group calibration transmission channel
  • the inter-group calibration coefficients are determined based on the response characteristics of the reference channels in each of the array elements.
  • an array antenna calibration apparatus including:
  • An intra-group processing module configured to determine an intra-group calibration coefficient of a channel in each array of array antennas by a wireless air interface coupling calibration manner, wherein the array elements of the array antenna are divided into at least two array elements Group, the channel corresponding to one or more array elements of the array antenna;
  • An inter-group processing module configured to determine, by a wired coupling calibration manner, an inter-group calibration coefficient of a channel in each of the array elements
  • an integrated processing module configured to determine a calibration coefficient of the array element of the array antenna according to the intra-group calibration coefficient and the inter-group calibration coefficient, and compensate an array element of the array antenna according to the calibration coefficient.
  • the processing module in the group includes:
  • a reference channel determining unit configured to determine a reference channel in any one of the array of elements, wherein the reference channel is any one of the array of elements;
  • a reference coefficient determining unit configured to determine that the intra-group calibration coefficient of the reference channel is 1;
  • a ratio determining unit configured to determine, by using a wireless air interface coupling calibration manner, a ratio between a response characteristic of the channel other than the reference channel and a response characteristic of the reference channel;
  • the intra-group calibration coefficient determining unit is configured to determine an intra-group calibration coefficient of the other channels of the array tuple except the reference channel according to the ratio.
  • the inter-group processing module is specifically configured to determine the each by using a wired coupling calibration manner The response characteristics of the reference channels in the array of elements; determining the calibration coefficients between the groups based on the response characteristics of the reference channels in each of the arrays.
  • the ratio determining unit is specifically configured to determine The air interface response characteristic between the channel in the array tuple and the calibration receiving channel in the group; the channel in the array tuple sends a first calibration signal to the calibration receiving channel in the group; the calibration receiving channel in the group is based on Determining, by the received first calibration signal and the determined air interface response characteristic, a response characteristic of a channel in the array of elements; determining a response characteristic of the channel other than the reference channel in the array of elements The ratio between the response characteristics of the reference channel.
  • the inter-group processing module is specifically configured to use the reference channel group in each of the array elements
  • the inter-calibration receiving channel transmits a second calibration signal; the inter-group calibration receiving channel is according to the received a second calibration signal, determining a response characteristic of the reference channel in each of the array of elements; determining the inter-group calibration coefficient according to a response characteristic of the reference channel in each of the array of elements.
  • the ratio determining unit is specifically configured to determine The air interface response characteristic between the channel in the array tuple and the calibration transmission channel in the group; the channel in the array tuple receives a third calibration signal sent by the calibration transmission channel in the group; The channel determines, according to the received third calibration signal and the determined air interface response characteristic, a response characteristic of the channel in the array of elements; determining a response of the other channel of the array of elements other than the reference channel The ratio between the characteristic and the response characteristic of the reference channel.
  • the inter-group processing module is specifically configured to use the reference channel receiving group in each of the array tuples Inter-calibrating a fourth calibration signal sent by the transmitting channel; the reference channel in each of the array of elements determines a response characteristic of the reference channel in each of the array of elements according to the received fourth calibration signal; The response characteristics of the reference channels in each array of tuples are determined, and the calibration coefficients between the groups are determined.
  • an embodiment of the present invention provides a transmission channel calibration system, including: an inter-group unit, an integrated calculator, and a plurality of intra-group units, wherein the intra-group unit includes a plurality of array elements of an array antenna, and a coupler a transmitting circuit, a digital-to-analog converter DAC, an analog-to-digital converter ADC, a signal generator, an in-group receiving circuit, and an in-group calibration coefficient calculator; the inter-unit unit includes a combiner, an inter-group receiving circuit, an ADC, and a group Inter-calibration coefficient calculator;
  • the intra-group unit is configured to acquire an intra-group calibration coefficient of all the transmission channels in the array of tuples by using a wireless air interface coupling calibration manner, where the transmission channel corresponds to one or more of the array elements in the array of element arrays;
  • the inter-group unit is configured to obtain, by using a wired coupling calibration manner, a calibration coefficient between the groups corresponding to each of the array tuple groups;
  • the comprehensive calculator is configured to acquire calibration coefficients of all transmission channels of the array antenna according to the intra-group calibration coefficient and the inter-group calibration coefficient, and respectively perform all transmissions on the array antenna according to the calibration coefficient
  • the channel is compensated, and all of the transmit channels of the array antenna include all of the transmit channels in all of the array of elements.
  • an embodiment of the present invention provides a receiving channel calibration system, including: an inter-group unit, a comprehensive calculator, and a plurality of intra-group units, wherein the intra-group unit includes an array antenna.
  • the intra-group unit includes an array antenna.
  • said inter-group unit includes shunt Transmitter, inter-group transmission circuit, DAC, signal generator and inter-group calibration coefficient calculator;
  • the intra-group unit is configured to acquire an intra-group calibration coefficient of all receiving channels in the array of tuples by using a wireless air interface coupling calibration manner, where the receiving channel corresponds to one or more of the array elements in the array of element arrays;
  • the inter-group unit is configured to obtain, by using a wired coupling calibration manner, a calibration coefficient between the groups corresponding to each of the array tuple groups;
  • the comprehensive calculator is configured to acquire calibration coefficients of all receiving channels of the array antenna according to the intra-group calibration coefficient and the inter-group calibration coefficient, and respectively receive all the receiving of the array antenna according to the calibration coefficient
  • the channel is compensated, and all receive channels of the array antenna include all of the receive channels in all of the array of elements.
  • the method, device and system for calibrating an array antenna according to an embodiment of the present invention respectively, by grouping array elements of an array antenna according to a preset rule, respectively acquiring a calibration coefficient in the group and a calibration coefficient between groups, and then acquiring each of the array antennas by using the two coefficients.
  • the calibration coefficient corresponding to the channel is compensated for each channel according to the calibration coefficient, which improves the calibration accuracy of the large-scale array antenna system.
  • Embodiment 1 is a flow chart of Embodiment 1 of an array antenna calibration method according to the present invention.
  • 2 is a schematic diagram of grouping of array antennas
  • Figure 3 is a schematic diagram of a wireless air interface coupling calibration method
  • 4A is a schematic diagram of a wired coupled calibration transmission channel
  • 4B is a schematic diagram of a wired coupled calibration receiving channel
  • Embodiment 2 is a flowchart of Embodiment 2 of an array antenna calibration method according to the present invention.
  • Embodiment 1 of an array antenna calibration apparatus according to the present invention
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of an array antenna calibration apparatus according to the present invention
  • 8 is a schematic structural view of an embodiment of a transmission channel calibration system according to the present invention
  • FIG. 9 is a schematic structural diagram of an embodiment of a receiving channel calibration system according to the present invention. detailed description
  • Embodiment 1 is a flowchart of Embodiment 1 of an array antenna calibration method according to the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step 101 Divide the array elements of the array antenna into at least two array elements
  • the calibrated large-scale array antenna may group the array elements (ie, the antenna elements) of the array antenna according to a preset rule, and the preset rule may include the relative position of the array elements in the antenna array, the coupling degree between the array elements, Array signal receiving power, calibration signal detection accuracy, etc.
  • FIG. 2 is a schematic diagram of grouping of array antennas. As shown in FIG. 2, the array antenna is composed of a 16x16 uniformly distributed rectangular planar array, each circle represents an array element, and the array elements included in the dashed box constitute an array of array elements.
  • each array of tuples contains a 4x4 array of array elements, which are grouped according to the positions of the array elements in the antenna array, for a total of 16 groups.
  • the array elements of the array antenna are grouped according to any combination of one or more of the above rules. The grouping method needs to ensure that the calibration accuracy of the channels in the same array of elements meets the requirements of the large-scale array antenna system.
  • step 101 is optional because the array of elements can be divided by the antenna calibration device or other device before the antenna is calibrated.
  • Step 102 Determine, by using a wireless air interface coupling calibration manner, an intra-group calibration coefficient of a channel in each array of array antennas;
  • the channel corresponds to one or more of the array elements in the array of elements.
  • the grouping process needs to ensure that different array elements corresponding to the same channel are in the same array of elements.
  • the array antenna calibration device acquires the intra-group calibration coefficients of all the channels in each array by wireless air interface coupling calibration. Since the number of array elements of the large-scale array antenna is very large, the number of array elements of each array group after grouping is reduced. After grouping, each array of tuples can be emptied when using wireless air interface coupling calibration. Mouth stability.
  • Figure 3 is a schematic diagram of the wireless air interface coupling calibration mode.
  • the wireless air interface coupling calibration method uses the inter-array wireless channel of the array antenna as the transmission channel of the calibration signal, and the signal transmission between the calibration channel and the calibration channel is Implemented through a wireless air interface channel.
  • the double arrow in Figure 3 represents the wireless air interface channel between the channel to be calibrated and the calibration channel. Due to the poor consistency of the wireless air interface, the air interface response characteristic error between the channels 0, 1, 2, 3 to be calibrated and the calibration channel respectively Very large, if not processed, the error will be directly reflected in the calibration results, affecting system performance.
  • the air interface response characteristic between each channel to be calibrated and the calibration channel needs to be obtained before the calibration, and the method for obtaining the response characteristics of the air interface can be obtained by directly measuring the test instrument, for example, a vector network analyzer.
  • the air interface response characteristics of the channels between the antennas that is, H04, H14, H24, and H34 in Figure 3, use these air interface response characteristics to eliminate the inconsistency of the wireless air interface in the next calibration.
  • the method for obtaining the air interface response characteristics includes offline testing. And online calculations. For the transmission channel calibration, the channels to be calibrated 0, 1, 2, 3 respectively send calibration signals to the calibration channels. After the calibration channels receive the calibration signals, the response characteristics corresponding to each channel to be calibrated can be calculated.
  • the response characteristics are determined by the transmission channels.
  • the air interface and the receiving channel are composed of three parts. Because the receiving channel (ie, the calibration channel) is the same, the air port response characteristics H04, H14, H24, H34 have been obtained, so the response characteristics of the transmitting channel can pass the response of each channel to be calibrated. After the characteristic is removed from the influence of the air interface response characteristic, the inconsistency of the transmission channel is compensated according to the response characteristic, that is, the transmission channel calibration is completed.
  • the calibration channel sends a calibration signal to the channel to be calibrated. After the calibration channel receives the calibration signal, the response characteristic corresponding to each channel to be calibrated can be calculated.
  • the response characteristic is composed of three parts: the transmitting channel, the air port and the receiving channel.
  • Response characteristics since the transmit channels (ie, the calibration channels) are the same, the air interface response characteristics H04, H14, H24, H34 have been obtained, so the response characteristics of the receive channel can be removed by the response characteristics of the channels to be calibrated. After obtaining, the inconsistency of the receiving channel is compensated according to the response characteristic, that is, the receiving channel calibration is completed.
  • Step 103 Determine, by using a wired coupling calibration manner, an inter-group calibration coefficient of the channel in each array of the array elements;
  • the wired grouping calibration method is used to obtain the calibration coefficient between the groups. After the array of antennas, the number of packets is limited, which reduces the complexity of large-scale array antenna calibration. Coupling calibration method to obtain the inter-group calibration coefficient of each array of tuples, this It is also possible to reasonably deploy wired connection calibration wiring to improve calibration accuracy.
  • the execution body of the embodiment 102 and the step 103 may be an array antenna calibration device, which may be integrated in the array antenna, exist as a special calibration module, or may be a calibration device independent of the array antenna.
  • the present invention is not specifically limited by calibrating it with an air interface or a wired interaction of the array antenna.
  • FIG. 4A is a schematic diagram of a wired coupling calibration transmission channel
  • FIG. 4B is a schematic diagram of a wired coupling calibration receiving channel.
  • the wired coupling calibration refers to using a wired mode such as a coupling disk as a calibration signal transmission channel, and connecting the channel to be calibrated.
  • calibration channels the method of channel calibration.
  • the antennas that need to be channel-calibrated in the figure include a transmit channel (TX) and a receive channel (RX).
  • the calibration channel is used to assist calibration. It includes a transmit channel (TX_cal) and a receive channel (RX_cal).
  • the channel to be calibrated and the calibration channel of the antenna are connected to the coupling disk through an RF cable, wherein the calibration channel is connected to the calibration port of the coupling disk, and the channel to be calibrated is connected to the common port of the coupling disk, and the channel to be calibrated is sent through the coupling disk.
  • the calibration signal can be received by the calibration channel, and the calibration signal sent by the calibration channel can also be received by the channel to be calibrated.
  • the coupling plate requires a high degree of uniformity in the amplitude and phase characteristics of each channel, that is, the channels inside the coupling disk through which the different channels to be calibrated pass are identical, and this property ensures the accuracy of the calibration.
  • the channels ⁇ 0, ⁇ , TX2, and TX3 to be calibrated respectively send calibration signals to the calibration channel.
  • the response characteristics corresponding to each channel to be calibrated can be calculated.
  • the response characteristics are determined by the transmission channel.
  • the three-part response characteristics of the coupling disc and the receiving channel are different because the consistency between the channels of the coupling disc is good, and the receiving channels (ie, the calibration channels) are the same, so the inconsistency between the above response characteristics can be considered as
  • the inconsistency of the transmitting channel compensates for the inconsistency of the transmitting channel, that is, the calibration of the transmitting channel is completed.
  • the calibration channel sends calibration signals to the channels ⁇ 0, ⁇ , TX2, and TX3 to be calibrated. After the calibration channel receives the calibration signal, the response characteristics corresponding to each channel to be calibrated can be calculated. The response characteristics are transmitted.
  • the channel, the coupling disc and the receiving channel are composed of three parts. Because the consistency between the channels of the coupling disc is good, and the transmitting channel (ie, the calibration channel) is the same, the inconsistency between the above response characteristics can be considered as If the receiving channel is inconsistent, the inconsistency of the receiving channel is compensated, that is, the calibration of the receiving channel is completed.
  • Step 104 Determine, according to the intra-group calibration coefficient and the inter-group calibration coefficient, a calibration coefficient of an array element of the array antenna, and supplement an array element of the array antenna according to the calibration coefficient. Reimbursement.
  • all channels of the array antenna include all channels in all of the array of elements.
  • the intra-group calibration coefficient and the inter-group calibration coefficient corresponding to each channel of the array antenna are obtained by the above method, and the final calibration coefficients of each channel are obtained according to the two coefficients, and the array antenna calibration device correspondingly pairs the array antenna according to the calibration coefficient.
  • the channel is compensated to complete the channel alignment of the array antenna.
  • the method for calibrating a transmission channel of an array antenna may include:
  • Step 201 Divide the array elements of the array antenna into at least two array elements
  • the process of grouping the array elements of the array antenna according to the preset rule is similar to the step 101 of the foregoing method embodiment, and details are not described herein again.
  • step 201 is optional because the array of elements can be divided by the antenna calibration device or other device before the antenna is calibrated.
  • Step 202 Determine a reference channel in the array of elements.
  • the array of elements may be any one of at least two arrays of elements in step 101.
  • a wireless air interface coupling calibration mode is adopted in each array of tuples, and a wired coupling calibration is used between the groups.
  • a transmission channel is selected from each of the arrays as a representative for calibration, that is, a reference channel, and in the group, other transmission channels are referenced to the reference channel, and the calibration of the transmission channels relative to the reference channel is calculated.
  • the coefficient, visible in the group calibration coefficient is a relative value, relative to the value of the reference channel.
  • the reference channel may be any one of the array channels, that is, the reference channel is determined by a fixed rule.
  • the array element may be any one of the array elements to be calibrated.
  • Step 203 Determine a calibration coefficient of the reference channel within the group is 1;
  • Step 204 Determine, by using a wireless air interface coupling calibration manner, a ratio between a response characteristic of the channel other than the reference channel in the array of elements and a response characteristic of the reference channel;
  • Step 205 Determine, according to the ratio, other channels in the array of elements other than the reference channel The intra-group calibration coefficient
  • the reference channel is used as the reference channel, and the other channels obtain an intra-group calibration coefficient relative to the reference channel.
  • the intra-group calibration coefficient of the reference channel is determined as l o
  • the air interface response characteristic between the transmitting channel in the array element group and the calibration receiving channel in the group may be determined first; then the transmitting channel in the array element group is sent to the in-group calibration receiving channel. a first calibration signal; the intra-group calibration receiving channel determines a response characteristic of the transmission channel in the array tuple according to the received first calibration signal and the determined air interface response characteristic; and determines other transmission channels of the array tuple except the reference channel The ratio between the response characteristics and the response characteristics of the reference channel.
  • An intra-group calibration receiver is respectively disposed in each of the array tuples, and the intra-group calibration receiver is similar to the receiver corresponding to the calibration channel shown in FIG. 3, and is used for receiving all the to-be-calibrated in the array tuple.
  • the first calibration signal sent by the transmitting channel, the first calibration signal is coupled into the receiving channel of the calibration receiver in the group through the wireless air interface, and the in-group calibration receiver sends the received first calibration signal into the group calculator, the group
  • the internal calculator calculates the intra-group calibration coefficients of the other channels except the reference channel in the array element group according to the intra-group calibration coefficient of the reference channel being 1 and the above ratio.
  • Step 206 Determine, by using a wired coupling calibration manner, a response characteristic of the reference channel in each array of the array elements;
  • Step 207 Determine, according to a response characteristic of a reference channel in each array of the arrays, the calibration coefficient between the groups;
  • the reference channel in each array of tuples sends a second calibration signal to the inter-group calibration receiving channel; and the inter-group calibration receiving channel is based on the received second calibration signal.
  • An inter-group calibration receiver is provided between each array of tuples, and the inter-group calibration receiver is similar to the diagram.
  • the receiver corresponding to the calibration channel shown in FIG. 4A is configured to receive the second calibration signal sent by the reference channel determined by each array element, and the second calibration signal is transmitted to the receiving channel of the inter-group calibration receiver through the wired cable, between the groups.
  • the calibration receiver sends the received second calibration signal to the inter-group calculator to calculate the inter-group calibration coefficients for the reference channels in each array.
  • Step 208 Determine the array day according to the intra-group calibration coefficient and the inter-group calibration coefficient a calibration coefficient of the array elements of the line, and compensating the array elements of the array antenna according to the calibration coefficients.
  • Calibration coefficient Tb k Calibration coefficient
  • the calibration coefficients of all the transmission channels of the array antenna are integrated, and the calibration coefficient Tc kp of each transmission channel is obtained, where k represents the array element number and p represents the transmission channel number in the array tuple;
  • T Ckp Ta kp xTb k .
  • the foregoing method embodiment may be further configured to perform calibration on a receiving channel of the array antenna, and the foregoing step 204 determines, by using a wireless air interface coupling calibration manner, response characteristics of the other channels of the array element other than the reference channel.
  • a specific implementation manner of the reference channel may be: determining an air interface response characteristic between the channel in the array tuple and the calibration transmission channel in the group; the channel in the array tuple Receiving a third calibration signal sent by the calibration transmit channel in the group; the channel in the array of cells determining a channel in the array of tuples according to the received third calibration signal and the determined response characteristics of the air interface a response characteristic; determining a ratio between a response characteristic of the other channel of the array of elements other than the reference channel and a response characteristic of the reference channel.
  • the foregoing steps 206-207 determine a response characteristic of the reference channel in each array of tuples by a wired coupling calibration manner; and determine the inter-group calibration coefficient according to a response characteristic of the reference channel in each array of tuples.
  • the specific implementation method may be: the reference channel in each array of tuples receives a fourth calibration signal sent by the inter-group calibration transmission channel; and the reference channel in each array of tuples is according to the fourth received And calibrating signals, determining response characteristics of the reference channels in each of the arrays; determining the inter-group calibration coefficients according to response characteristics of the reference channels in each of the arrays.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of an array antenna calibration apparatus according to the present invention. As shown in FIG.
  • the apparatus of this embodiment may include: a grouping module 11, an in-group processing module 12, an inter-group processing module 13, and an integrated processing module 14.
  • the grouping module 11 is configured to divide the array elements of the array antenna into at least two array elements;
  • the in-group processing module 12 is configured to determine the channel in each array of the array antennas by using a wireless air interface coupling calibration method.
  • the above packet module 11 is optional because the array of elements can be divided by the antenna calibration device or other device before the antenna is calibrated.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 1.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of the array antenna calibration apparatus of the present invention.
  • the apparatus of this embodiment is further based on the apparatus structure shown in FIG. 6, and the intra-group processing module 12 may include: a reference channel determining unit 121, a reference coefficient determining unit 122, a ratio determining unit 123, and an intra-group calibration coefficient determining unit 124, wherein the reference channel determining unit 121 is configured to determine a reference channel in any one of the array of elements, the reference channel a reference channel determining unit 122, configured to determine an intra-group calibration coefficient of the reference channel is 1; a ratio determining unit 123, configured to determine the array by a wireless air interface coupling calibration manner a ratio between a response characteristic of a channel other than the reference channel and a response characteristic of the reference channel; an intra-group calibration coefficient determining unit 124, configured to determine, according to the ratio, the array element group Intra-group calibration coefficients for other channels outside of the reference channel.
  • the inter-group processing module 13 is specifically configured to determine, by using a wired coupling calibration manner, a response characteristic of the reference channel in each array of the array elements; determining the group according to a response characteristic of the reference channel in each array of the array of elements Inter-calibration coefficient.
  • the ratio determining unit 123 is specifically configured to determine an air interface response characteristic between the channel in the array element group and the calibration receiving channel in the group; the channel in the array element group Transmitting, by the intra-group calibration receiving channel, a first calibration signal; the intra-group calibration receiving channel determining a response of the channel in the array of tuples according to the received first calibration signal and the determined air interface response characteristic Determining; determining, in the array of elements, other channels than the reference channel The ratio between the response characteristic and the response characteristic of the reference channel.
  • the inter-group processing module 13 is specifically configured to send, by the reference channel in each array of tuples, a second calibration signal to the inter-group calibration receiving channel; and the inter-group calibration receiving channel is determined according to the received second calibration signal. a response characteristic of the reference channel in each of the array of elements; determining the inter-group calibration coefficient according to a response characteristic of the reference channel in each of the array of elements.
  • the ratio determining unit 123 is specifically configured to determine an air interface response characteristic between the channel in the array element group and the calibration transmitting channel in the group; the channel in the array element group Receiving a third calibration signal sent by the calibration transmit channel in the group; the channel in the array of cells determining a channel in the array of tuples according to the received third calibration signal and the determined response characteristics of the air interface a response characteristic; determining a ratio between a response characteristic of the other channel of the array of elements other than the reference channel and a response characteristic of the reference channel.
  • the inter-group processing module 13 is specifically configured to receive, by the reference channel in each array of tuples, a fourth calibration signal sent by the inter-group calibration transmission channel; the reference channel in each array of the arrays is according to the received And determining a response characteristic of the reference channel in each of the array of elements; determining the calibration coefficient between the groups according to a response characteristic of the reference channel in each of the array of elements.
  • the device of this embodiment may be used to perform the technical solution of the method embodiment of any one of FIG. 1 to FIG. 5.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of an embodiment of a transmission channel calibration system according to the present invention.
  • the system of the embodiment includes: an inter-unit unit 11, an integrated calculator 12, and a plurality of intra-group units 13, wherein the intra-group unit 13 includes a plurality of array elements of the array antenna, a coupler 131, a transmitting circuit 132, a digital-to-analog converter (abbreviation: DAC) 133, and an analog-to-digital converter (Analog-to-Digital Converter, referred to as: ADC) 134, signal generator 135, in-group receiving circuit 136, and in-group calibration coefficient calculator 137;
  • inter-group unit 11 includes combiner 111, inter-group receiving circuit 112, ADC 113, and inter-group calibration coefficient calculator 114.
  • a signal generator 135 for generating a calibration signal
  • a DAC 133 in the intra-group unit for converting the calibration signal into a transmission analog signal
  • a transmitting circuit 132 for filtering and amplifying the transmission analog signal After processing, the output is coupled to the coupler 131.
  • the coupler 131 is configured to split the transmit analog signal into two paths, one of which is sent to the array antenna through the through end, and the other is sent to the inter-group receiving circuit 112 through the coupled end; the in-group receiving circuit 136 , used to receive the calibration signal sent by the transmitting channel in the array tuple; ADC 134 in the unit in the group, used to receive the power in the group The calibration signal received by the path 136 is converted into a digital signal; the intra-group calibration coefficient calculator 137 is configured to determine the intra-group calibration coefficient according to the digital signal output by the ADC 134 in the unit in the group; the combiner 111 is configured to pair at least two arrays The calibration signal sent by the reference channel in the tuple (unit 13 in the group) is combined; the inter-group receiving circuit 112 is configured to receive the calibration signal after the combining; the ADC 113 in the inter-group unit is used to combine the signals The calibration signal is converted into a digital signal; the inter-group calibration coefficient calculator 114 is configured to determine the
  • the system of the present embodiment can perform the technical solutions of the method embodiments in any of the embodiments of FIG. 1 to FIG. 5.
  • the principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of an embodiment of a receiving channel calibration system according to the present invention.
  • the system of the embodiment includes: an inter-group unit 21, a comprehensive calculator 22, and a plurality of intra-group units 23, wherein the intra-group unit 23 includes a plurality of array elements of the array antenna, a coupler 231, a receiving circuit 232, an ADC 233, a DAC 234, a signal generator 235, an in-group transmitting circuit 236, an in-group calibration coefficient calculator 237, and a receiving compensator 238;
  • a splitter 211, an inter-group transmission circuit 212, a DAC 213, a signal generator 214, and an inter-group calibration coefficient calculator 215 are included.
  • a signal generator 235 in the intra-group unit is used to generate a calibration signal in the array tuple; a DAC 234 in the intra-group unit is used to convert the calibration signal in the array tuple into a transmission simulation.
  • the in-group transmitting circuit 236 is configured to send the transmitting analog signal to the coupler 231; the coupler 231 is configured to receive the transmitting analog signal sent by the in-group transmitting circuit 236 through the through-end, and receive the inter-group transmitting circuit 212 through the coupling end.
  • the analog signal is sent; the receiving circuit 232 is configured to receive the analog signal; the ADC 233 in the unit is used to convert the analog signal received by the receiving circuit 232 into a digital signal; the intra-group calibration coefficient calculator 237 is used according to the group The digital signal output by the ADC 233 in the unit determines the calibration coefficient in the group; the signal generator 214 in the inter-group unit is used to generate the calibration signal between the array elements; the DAC 213 in the inter-group unit is used to The calibration signal is converted into an analog signal; the inter-group transmission circuit 212 is configured to send the analog signal to the splitter 211; and the splitter 211 is configured to split the analog signal into The multi-channel calibration signal corresponding to the array tuple, and the split analog signal is input to the reference channel in the array tuple; the inter-group calibration coefficient calculator 215 is configured to output the ADC according to the reference channel in the array tuple Digital signal determination between groups a calibration coefficient 22, configured to calculate a calibration coefficient of the array element of the array
  • the system of the present embodiment can perform the technical solutions of the method embodiments in any of the embodiments of FIG. 1 to FIG. 5.
  • the principle and technical effects are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the method of various embodiments of the present invention.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供一种阵列天线校准方法、装置和系统。本发明阵列天线校准方法,包括:通过无线空口耦合校准方式确定阵列天线的每个阵元组中的通道的组内校准系数,所述阵列天线的阵元被分为至少两个阵元组,所述通道对应所述阵列天线的一个或多个阵元;通过有线耦合校准方式确定所述每个阵元组中的通道的组间校准系数;根据所述组内校准系数和所述组间校准系数确定所述阵列天线的阵元的校准系数,并根据所述校准系数对所述阵列天线的阵元进行补偿。本发明实施例提高了大规模阵列天线系统的校准精度。

Description

阵列天线校准方法、 装置和系统
技术领域
本发明实施例涉及通信技术, 尤其涉及一种阵列天线校准方法、 装置和 系统。 背景技术
在大规模阵列天线系统中, 为了保证波束赋形(Beamforming)技术带来 的系统增益, 以及充分利用大天线阵列带来的高空间分辨能力, 需要保证基 站侧收发通道响应的一致性, 响应包括幅度和相位。 现有的长期演进 (Long Term Evolution, 简称: LTE) 系统中基站配置为 4天线或者 8天线, 而大规 模阵列天线系统中基站的天线数目上升为几百根甚至更多, 为了使得大天线 阵列在预编码或者导向矢量的作用下, 针对某个用户在空间中合成的波束变 得非常窄, 同时能够让该波束更加精确的指向该用户以增强该用户接收信号 的功率, 减少配对用户之间和小区间的干扰, 需要对收发通道进行高精度的 校准。 一般阵列天线校准时可采用有线耦合校准或者无线空口耦合校准, 即 校准信号通过有线电缆或者无线空口被传入或传出待校准通道, 通过比较通 道间的幅相特性差异获取校准参数。
但是, 随着大规模阵列天线系统的应用, 传统阵列天线校准方法的弊端 越发显现, 有线耦合校准方式受限于耦合盘端口数量急剧增加时的实现难度 和复杂度, 无线空口耦合校准方式则受限于阵列面积增加后导致的空口稳定 性变差和动态范围扩大, 有线耦合校准和无线空口耦合校准均无法满足大规 模阵列天线系统的校准精度。 发明内容
本发明实施例提供一种阵列天线校准方法、 装置和系统, 以提高大规模 阵列天线系统的校准精度。
第一方面, 本发明实施例提供一种阵列天线校准方法, 包括:
通过无线空口耦合校准方式确定阵列天线的每个阵元组中的通道的组内 校准系数, 所述阵列天线的阵元被分为至少两个阵元组, 所述通道对应所述 阵列天线的一个或多个阵元;
通过有线耦合校准方式确定所述每个阵元组中的通道的组间校准系数; 根据所述组内校准系数和所述组间校准系数确定所述阵列天线的阵元的 校准系数, 并根据所述校准系数对所述阵列天线的阵元进行补偿。
结合第一方面, 在第一方面的第一种可能的实现方式中, 通过无线空口 耦合校准方式确定任一个阵元组中通道的组内校准系数, 包括:
确定所述阵元组中的参考通道, 所述参考通道为所述阵元组中的任一个 通道;
确定所述参考通道的组内校准系数为 1 ;
通过无线空口耦合校准方式确定所述阵元组中除所述参考通道外的其他 通道的响应特性与所述参考通道的响应特性之间的比值;
根据所述比值确定所述阵元组中除所述参考通道外的其他通道的组内校 准系数。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实 现方式中, 通过有线耦合校准方式确定所述每个阵元组的通道的组间校准系 数, 包括:
通过有线耦合校准方式确定所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
结合第一方面的第一种或第二种可能的实现方式, 在第一方面的第三种 可能的实现方式中, 所述通道为发射通道时, 通过无线空口耦合校准方式确 定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考通道的 响应特性之间的比值, 包括:
确定所述阵元组中的通道与组内校准接收通道之间的空口响应特性; 所述阵元组中的通道向所述组内校准接收通道发送第一校准信号; 所述组内校准接收通道根据接收的所述第一校准信号和确定的所述空口 响应特性, 确定所述阵元组中的通道的响应特性;
确定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考 通道的响应特性之间的比值。 结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实 现方式中, 通过有线耦合校准方式确定所述每个阵元组中的参考通道的组间 校准系数, 包括:
所述每个阵元组中的参考通道向组间校准接收通道发送第二校准信号; 所述组间校准接收通道根据接收的所述第二校准信号, 确定所述每个阵 元组中的参考通道的响应特性;
根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
结合第一方面的第一种或第二种可能的实现方式, 在第一方面的第五种 可能的实现方式中, 所述通道为接收通道时, 通过无线空口耦合校准方式确 定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考通道的 响应特性之间的比值, 包括:
确定所述阵元组中的通道与组内校准发射通道之间的空口响应特性; 所述阵元组中的通道接收所述组内校准发射通道发送的第三校准信号; 所述阵元组中的通道根据接收的所述第三校准信号和确定的所述空口响 应特性, 确定所述阵元组中的通道的响应特性;
确定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考 通道的响应特性之间的比值。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的实 现方式中, 通过有线耦合校准方式确定所述每个阵元组中的参考通道的组间 校准系数, 包括:
所述每个阵元组中的参考通道接收组间校准发射通道发送的第四校准信 号;
所述每个阵元组中的参考通道根据接收的所述第四校准信号, 确定所述 每个阵元组中的参考通道的响应特性;
根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
第二方面, 本发明实施例提供一种阵列天线校准装置, 包括:
组内处理模块, 用于通过无线空口耦合校准方式确定阵列天线的每个阵 元组中的通道的组内校准系数, 所述阵列天线的阵元被分为至少两个阵元 组, 所述通道对应所述阵列天线的一个或多个阵元;
组间处理模块, 用于通过有线耦合校准方式确定所述每个阵元组中的通 道的组间校准系数;
综合处理模块, 用于根据所述组内校准系数和所述组间校准系数确定所 述阵列天线的阵元的校准系数, 并根据所述校准系数对所述阵列天线的阵元 进行补偿。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述组内处理 模块包括:
参考通道确定单元, 用于确定任一个阵元组中的参考通道, 所述参考通 道为所述阵元组中的任一个通道;
参考系数确定单元, 用于确定所述参考通道的组内校准系数为 1 ;
比值确定单元, 用于通过无线空口耦合校准方式确定所述阵元组中除所 述参考通道外的其他通道的响应特性与所述参考通道的响应特性之间的比 值;
组内校准系数确定单元, 用于根据所述比值确定所述阵元组中除所述参 考通道外的其他通道的组内校准系数。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 所述组间处理模块, 具体用于通过有线耦合校准方式 确定所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参 考通道的响应特性, 确定所述组间校准系数。
结合第二方面的第一种或第二种可能的实现方式, 在第二方面的第三种 可能的实现方式中, 所述通道为发射通道时, 所述比值确定单元, 具体用于 确定所述阵元组中的通道与组内校准接收通道之间的空口响应特性; 所述阵 元组中的通道向所述组内校准接收通道发送第一校准信号; 所述组内校准接 收通道根据接收的所述第一校准信号和确定的所述空口响应特性, 确定所述 阵元组中的通道的响应特性; 确定所述阵元组中除所述参考通道外的其他通 道的响应特性与所述参考通道的响应特性之间的比值。
结合第二方面的第三种可能的实现方式, 在第二方面的第四种可能的实 现方式中, 所述组间处理模块, 具体用于所述每个阵元组中的参考通道向组 间校准接收通道发送第二校准信号; 所述组间校准接收通道根据接收的所述 第二校准信号, 确定所述每个阵元组中的参考通道的响应特性; 根据所述每 个阵元组中的参考通道的响应特性, 确定所述组间校准系数。
结合第二方面的第一种或第二种可能的实现方式, 在第二方面的第五种 可能的实现方式中, 所述通道为接收通道时, 所述比值确定单元, 具体用于 确定所述阵元组中的通道与组内校准发射通道之间的空口响应特性; 所述阵 元组中的通道接收所述组内校准发射通道发送的第三校准信号; 所述阵元组 中的通道根据接收的所述第三校准信号和确定的所述空口响应特性, 确定所 述阵元组中的通道的响应特性; 确定所述阵元组中除所述参考通道外的其他 通道的响应特性与所述参考通道的响应特性之间的比值。
结合第二方面的第五种可能的实现方式, 在第二方面的第六种可能的实 现方式中, 所述组间处理模块, 具体用于所述每个阵元组中的参考通道接收 组间校准发射通道发送的第四校准信号; 所述每个阵元组中的参考通道根据 接收的所述第四校准信号, 确定所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系数。
第三方面, 本发明实施例提供一种发射通道校准系统, 包括: 组间单 元、 综合计算器以及多个组内单元, 其中, 所述组内单元包括阵列天线的多 个阵元、 耦合器、 发射电路、 数模转换器 DAC、 模数转换器 ADC、 信号产 生器、 组内接收电路以及组内校准系数计算器; 所述组间单元包括合路器、 组间接收电路、 ADC和组间校准系数计算器;
所述组内单元, 用于通过无线空口耦合校准方式获取阵元组中的所有发 射通道的组内校准系数, 所述发射通道对应所述阵元组中的一个或多个所述 阵元;
所述组间单元, 用于通过有线耦合校准方式获取每个所述阵元组对应的 组间校准系数;
所述综合计算器, 用于根据所述组内校准系数和所述组间校准系数获取 所述阵列天线的所有发射通道的校准系数, 并根据所述校准系数分别对所述 阵列天线的所有发射通道进行补偿, 所述阵列天线的所有发射通道包括所有 所述阵元组中的所有发射通道。
第四方面, 本发明实施例提供一种接收通道校准系统, 包括: 组间单 元、 综合计算器以及多个组内单元, 其中, 所述组内单元包括阵列天线的多 个阵元、 耦合器、 接收电路、 模数转换器 ADC、 数模转换器 DAC、 信号产 生器、 组内发送电路、 组内校准系数计算器和接收补偿器; 所述组间单元包 括分路器、 组间发送电路、 DAC、 信号产生器和组间校准系数计算器;
所述组内单元, 用于通过无线空口耦合校准方式获取阵元组中的所有接 收通道的组内校准系数, 所述接收通道对应所述阵元组中的一个或多个所述 阵元;
所述组间单元, 用于通过有线耦合校准方式获取每个所述阵元组对应的 组间校准系数;
所述综合计算器, 用于根据所述组内校准系数和所述组间校准系数获取 所述阵列天线的所有接收通道的校准系数, 并根据所述校准系数分别对所述 阵列天线的所有接收通道进行补偿, 所述阵列天线的所有接收通道包括所有 所述阵元组中的所有接收通道。
本发明实施例阵列天线校准方法、 装置和系统, 通过根据预设规则对阵 列天线的阵元进行分组, 分别获取组内校准系数和组间校准系数, 再通过这 两个系数获取阵列天线的各通道对应的校准系数, 并根据校准系数对各通道 进行补偿, 提高了大规模阵列天线系统的校准精度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明阵列天线校准方法实施例一的流程图;
图 2为阵列天线分组示意图;
图 3为无线空口耦合校准方式示意图;
图 4A为有线耦合校准发射通道示意图;
图 4B为有线耦合校准接收通道示意图;
图 5为本发明阵列天线校准方法实施例二的流程图;
图 6为本发明阵列天线校准装置实施例一的结构示意图;
图 7为本发明阵列天线校准装置实施例二的结构示意图; 图 8为本发明发射通道校准系统实施例的结构示意图;
图 9为本发明接收通道校准系统实施例的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明阵列天线校准方法实施例一的流程图, 如图 1所示, 本实 施例的方法可以包括:
歩骤 101、 将阵列天线的阵元分为至少两个阵元组;
本实施例中, 校准大规模阵列天线可以按照预设规则对阵列天线的阵元 (即天线阵子) 进行分组, 预设规则可以包括阵元在天线阵列中的相对位 置、 阵元间耦合度、 阵元信号接收功率、 校准信号检测精度等。 例如, 图 2 为阵列天线分组示意图, 如图 2所示, 阵列天线由一个 16x16均匀分布的矩 形平面阵列组成, 每个圆圈代表一个阵元, 虚线框内包含的阵元组成一个阵 元组, 即每个阵元组包含一个 4x4的阵元阵列, 这是根据阵元在天线阵列中 的位置进行分组的, 一共有 16 个分组。 根据以上任意一种或多种规则的组 合对阵列天线的阵元进行分组, 分组方法需确保同一个阵元组内的通道的校 准精度满足大规模阵列天线系统的需求。
上述歩骤 101是可选的, 因为阵元组可以是在对天线进行校准之前, 就 已经由天线校准装置或其它设备分好了。
歩骤 102、 通过无线空口耦合校准方式确定阵列天线的每个阵元组中的 通道的组内校准系数;
本实施例中, 所述通道对应所述阵元组中的一个或多个所述阵元, 可选 的, 上述分组过程需要确保同一通道对应的不同阵元分在同一个阵元组内。 阵列天线校准装置通过无线空口耦合校准方式获取每个阵元组中的所有通道 的组内校准系数, 由于大规模阵列天线的阵元数量非常多, 分组后每个阵列 分组的阵元数目减少, 分组后各阵元组采用无线空口耦合校准时, 能确保空 口稳定性。
图 3为无线空口耦合校准方式示意图, 如图 3所示, 无线空口耦合校准 方式用阵列天线的阵元间无线信道作为校准信号的传输通道, 待校准通道与 校准通道之间的信号传输都是通过无线空口信道实现的。 图 3中的双箭头代 表待校准通道与校准通道间的无线空口信道, 由于无线空口的一致性较差, 因此待校准通道 0, 1, 2, 3 分别与校准通道之间的空口响应特性误差很 大, 如果不进行处理, 该误差会直接体现到校准结果中, 影响系统性能。 为 了解决该问题, 需要在进行校准之前, 先获得各个待校准通道与校准通道之 间的空口响应特性, 该空口响应特性的获取方法可以是通过测试仪器, 例如 矢量网络分析仪, 直接测量获得两个天线之间通道的空口响应特性, 即图 3 中的 H04, H14, H24, H34, 在接下来的校准中利用这些空口响应特性消除 无线空口的不一致性, 空口响应特性的获取方法包含离线测试和在线计算两 种。 对于发射通道校准, 待校准通道 0, 1, 2, 3 分别向校准通道发送校准 信号, 校准通道接收到校准信号后, 可以计算出每个待校准通道对应的响应 特性, 该响应特性由发射通道, 空口和接收通道三部分响应特性组成, 由于 接收通道(即校准通道)是相同的, 空口响应特性 H04, H14, H24, H34已 经获得, 所以发射通道的响应特性可以通过各待校准通道的响应特性去除空 口响应特性的影响后得到, 再根据该响应特性对发射通道的不一致进行补 偿, 即完成了发射通道校准。 对于接收通道校准, 校准通道向待校准通道发 送校准信号, 待校准通道接收到校准信号后, 可以计算出每个待校准通道对 应的响应特性, 该响应特性由发射通道, 空口和接收通道三部分响应特性组 成, 由于发射通道 (即校准通道) 是相同的, 空口响应特性 H04, H14 , H24, H34 已经获得, 所以接收通道的响应特性可以通过各待校准通道的响 应特性去除空口响应特性的影响后得到, 再根据该响应特性对接收通道的不 一致进行补偿, 即完成了接收通道校准。
歩骤 103、 通过有线耦合校准方式确定所述每个阵元组中的通道的组间 校准系数;
本实施例中, 阵列分组之间采用有线耦合校准方式获取各组对应的组间 校准系数, 对天线的阵元组后, 分组数量有限, 降低了大规模阵列天线校准 的复杂度, 可以采用有线耦合校准方式获取每个阵元组的组间校准系数, 这 样也可以合理地部署有线耦合校准的连线方式, 提高校准精度。
本实施例歩骤 102和歩骤 103的执行主体可以是阵列天线校准装置, 该 装置可以是集成在阵列天线中, 作为一个专门的校准模块存在, 也可以是一 个独立于阵列天线的校准设备, 通过与阵列天线的空口或有线交互对其进行 校准, 对此本发明不做具体限定。
图 4A为有线耦合校准发射通道示意图, 图 4B为有线耦合校准接收通道 示意图, 图 4A和图 4B结合来看, 有线耦合校准是指利用耦合盘等有线方式 作为校准信号传输通道, 连接待校准通道和校准通道, 进行通道校准的方 法。 图中需要进行通道校准的天线都包含一个发射通道(TX)和一个接收通 道(RX) , 校准通道用来辅助校准, 包含一个发射通道(TX_cal) 和一个接 收通道 (RX_cal) 。 天线的待校准通道和校准通道通过射频电缆连接到耦合 盘上, 其中校准通道连接到耦合盘的校准端口, 待校准通道连接到耦合盘的 普通端口上, 通过耦合盘, 待校准通道发送出的校准信号可以被校准通道接 收, 校准通道发送出的校准信号也可以被待校准通道接收。 耦合盘要求各个 通道幅相特性高度一致, 即不同的待校准通道所经过的耦合盘内部的各个通 道是一致的, 这个性质保证了校准的精度。 对于发射通道校准, 待校准通道 ΤΧ0, ΤΧΙ , TX2, TX3 分别向校准通道发送校准信号, 校准通道接收到校 准信号后, 可以计算出每个待校准通道对应的响应特性, 该响应特性由发射 通道, 耦合盘和接收通道三部分响应特性组成的, 由于耦合盘各个通道之间 的一致性很好, 而接收通道 (即校准通道) 是相同的, 所以上述响应特性之 间的不一致可以认为是由发射通道的不一致造成的, 对发射通道的不一致进 行补偿, 即完成了发射通道的校准。 对于接收通道校准, 校准通道向待校准 通道 ΤΧ0, ΤΧΙ , TX2, TX3分别发送校准信号, 待校准通道接收到校准信 号后, 可以计算出每个待校准通道对应的响应特性, 该响应特性由发射通 道, 耦合盘和接收通道三部分响应特性组成, 由于耦合盘各个通道之间的一 致性很好, 而发射通道 (即校准通道) 是相同的, 所以上述响应特性之间的 不一致可以认为是由接收通道不一致造成的, 对接收通道的不一致进行补 偿, 即完成了接收通道的校准。
歩骤 104、 根据所述组内校准系数和所述组间校准系数确定所述阵列天 线的阵元的校准系数, 并根据所述校准系数对所述阵列天线的阵元进行补 偿。
本实施例中, 所述阵列天线的所有通道包括所有所述阵元组中的所有通 道。 通过上述方法获取到阵列天线的各通道对应的组内校准系数和组间校准 系数, 即可根据这两个系数获取各通道最终的校准系数, 阵列天线校准装置 根据该校准系数对应地对阵列天线的通道进行补偿, 以完成阵列天线的通道 校准。
本实施例, 通过根据预设规则对阵列天线的阵元进行分组, 分别获取组 内校准系数和组间校准系数, 再通过这两个系数获取阵列天线的各通道对应 的校准系数, 并根据校准系数对各通道进行补偿, 提高了大规模阵列天线系 统的校准精度。
图 5为本发明阵列天线校准方法实施例二的流程图, 如图 5所示, 本实 施例是针对阵列天线的发射通道的校准方法, 可以包括:
歩骤 201、 将阵列天线的阵元分为至少两个阵元组;
本实施例中, 根据预设规则对阵列天线的阵元进行分组的过程与上述方 法实施例的歩骤 101类似, 此处不再赘述。
上述歩骤 201是可选的, 因为阵元组可以是在对天线进行校准之前, 就 已经由天线校准装置或其它设备分好了。
歩骤 202、 确定所述阵元组中的参考通道;
本实施例中, 所述阵元组可以是歩骤 101 中的至少两个阵元组中的任一 个, 在每个阵元组内采用无线空口耦合校准方式, 在组间是采用有线耦合校 准方式, 组间是从每个阵元组中选择一个发射通道作为代表进行校准的, 即 参考通道, 而组内则是其他发射通道以参考通道为基准, 计算这些发射通道 相对于参考通道的校准系数, 可见组内校准系数是一个相对值, 相对于参考 通道的值。 而参考通道可以是阵元组中的任意一个发射通道, 即参考通道的 确定没有固定的规则, 以阵元组为单位, 可以是阵元组内的任意一个待校准 的发射通道。
歩骤 203、 确定所述参考通道的组内校准系数为 1 ;
歩骤 204、 通过无线空口耦合校准方式确定所述阵元组中除所述参考通 道外的其他通道的响应特性与所述参考通道的响应特性之间的比值;
歩骤 205、 根据所述比值确定所述阵元组中除所述参考通道外的其他通 道的组内校准系数;
本实施例中, 以参考通道为基准通道, 其他通道都是相对于该参考通道 得到一个组内校准系数, 为了方便起见, 将参考通道的组内校准系数确定为 l o
根据图 3所示的线空口耦合校准方式, 可以先确定阵元组中的发射通道 与组内校准接收通道之间的空口响应特性; 然后阵元组中的发射通道向组内 校准接收通道发送第一校准信号; 组内校准接收通道根据接收的第一校准信 号和确定的空口响应特性, 确定阵元组中的发射通道的响应特性; 确定阵元 组中除参考通道外的其他发送通道的响应特性与参考通道的响应特性之间的 比值。
在每个所述阵元组中分别设置有组内校准接收机, 该组内校准接收机类 似于图 3所示的校准通道对应的接收机, 用于接收阵元组内的所有待校准的 发射通道发送出的第一校准信号, 第一校准信号通过无线空口耦合进组内校 准接收机的接收通道, 组内校准接收机将接收到的第一校准信号汇入组内计 算器, 该组内计算器根据参考通道的组内校准系数为 1 以及上述比值, 计算 获取阵元组中除参考通道外的其他通道的组内校准系数。
歩骤 206、 通过有线耦合校准方式确定所述每个阵元组中的参考通道的 响应特性;
歩骤 207、 根据所述每个阵元组中的参考通道的响应特性, 确定所述组 间校准系数;
本实施例中, 根据图 4A所示的有线耦合校准方式, 每个阵元组中的参 考通道向组间校准接收通道发送第二校准信号; 组间校准接收通道根据接收 的第二校准信号, 确定每个阵元组中的参考通道的响应特性; 根据每个阵元 组中的参考通道的响应特性, 确定组间校准系数。
在各个阵元组之间设置有组间校准接收机, 该组间校准接收机类似于图
4A所示的校准通道对应的接收机, 用于接收各个阵元组确定出来的参考通 道发送的第二校准信号, 第二校准信号通过有线电缆传输至组间校准接收机 的接收通道, 组间校准接收机将接收到的第二校准信号汇入组间计算器, 计 算获取每个阵元组中的参考通道的组间校准系数。
歩骤 208、 根据所述组内校准系数和所述组间校准系数确定所述阵列天 线的阵元的校准系数, 并根据所述校准系数对所述阵列天线的阵元进行补 偿。
举例说明, 假设组内校准系数为 Takp, 其中 k表示第 k阵元组, p表示该 阵元组内的第 p发射通道; 经计算后得到各发射通道相对于参考通道的空口 响应特性为 Tmkp; 参考信道发送特性设为
Figure imgf000013_0001
, r表示参考信道; 通过公 式 TakpxTmkp=l, 即可获得阵元组内各发射通道的组内校准系数 Takp
假设组间校准系数为 Tbk, 其中 k表示第 k阵元组; 经计算后得到各阵元 组的参考通道的发送特性为 Tnk; 通过公式 TbkxTnk=l, 即可获得组间校准系 数 Tbk
根据上述组内校准系数和组间校准系数完成阵列天线所有发射通道校准 系数的融合, 获取各发射通道的校准系数 Tckp, 其中 k表示阵元组编号, p 表示阵元组内发射通道编号; 计算公式为 TCkp=TakpxTbk
本实施例, 通过根据预设规则对阵列天线的阵元进行分组, 分别获取发 射通道的组内校准系数和组间校准系数, 再通过这两个系数获取阵列天线的 各发射通道对应的校准系数, 并根据校准系数对各发射通道进行补偿, 提高 了大规模阵列天线系统的校准精度。
进一歩的, 上述方法实施例还可以用于针对阵列天线的接收通道进行校 准, 上述歩骤 204通过无线空口耦合校准方式确定所述阵元组中除所述参考 通道外的其他通道的响应特性与所述参考通道的响应特性之间的比值, 具体 的实现方法可以是: 确定所述阵元组中的通道与组内校准发射通道之间的空 口响应特性; 所述阵元组中的通道接收所述组内校准发射通道发送的第三校 准信号; 所述阵元组中的通道根据接收的所述第三校准信号和确定的所述空 口响应特性, 确定所述阵元组中的通道的响应特性; 确定所述阵元组中除所 述参考通道外的其他通道的响应特性与所述参考通道的响应特性之间的比 值。 上述歩骤 206-207通过有线耦合校准方式确定所述每个阵元组中的参考 通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述 组间校准系数, 具体的实现方法可以是: 所述每个阵元组中的参考通道接收 组间校准发射通道发送的第四校准信号; 所述每个阵元组中的参考通道根据 接收的所述第四校准信号, 确定所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系数。 图 6为本发明阵列天线校准装置实施例一的结构示意图, 如图 6所示, 本实施例的装置可以包括: 分组模块 11、 组内处理模块 12、 组间处理模块 13 以及综合处理模块 14, 其中, 分组模块 11, 用于将阵列天线的阵元分为 至少两个阵元组; 组内处理模块 12, 用于通过无线空口耦合校准方式确定阵 列天线的每个阵元组中的通道的组内校准系数, 所述通道对应所述阵列天线 的一个或多个阵元; 组间处理模块 13, 用于通过有线耦合校准方式确定所述 每个阵元组中的通道的组间校准系数; 综合处理模块 14, 用于根据所述组内 校准系数和所述组间校准系数确定所述阵列天线的阵元的校准系数, 并根据 所述校准系数对所述阵列天线的阵元进行补偿。
上述分组模块 11 是可选的, 因为阵元组可以是在对天线进行校准之 前, 就已经由天线校准装置或其它设备分好了。
本实施例的装置, 可以用于执行图 1所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 7为本发明阵列天线校准装置实施例二的结构示意图, 如图 7所示, 本实施例的装置在图 6所示装置结构的基础上, 进一歩地, 组内处理模块 12 可以包括: 参考通道确定单元 121、 参考系数确定单元 122、 比值确定单元 123以及组内校准系数确定单元 124, 其中, 参考通道确定单元 121, 用于确 定任一个阵元组中的参考通道, 所述参考通道为所述阵元组中的任一个通 道; 参考系数确定单元 122, 用于确定所述参考通道的组内校准系数为 1 ; 比值确定单元 123, 用于通过无线空口耦合校准方式确定所述阵元组中除所 述参考通道外的其他通道的响应特性与所述参考通道的响应特性之间的比 值; 组内校准系数确定单元 124, 用于根据所述比值确定所述阵元组中除所 述参考通道外的其他通道的组内校准系数。 组间处理模块 13, 具体用于通过 有线耦合校准方式确定所述每个阵元组中的参考通道的响应特性; 根据所述 每个阵元组中的参考通道的响应特性, 确定所述组间校准系数。
进一歩的, 所述通道为发射通道时, 比值确定单元 123, 具体用于确定 所述阵元组中的通道与组内校准接收通道之间的空口响应特性; 所述阵元组 中的通道向所述组内校准接收通道发送第一校准信号; 所述组内校准接收通 道根据接收的所述第一校准信号和确定的所述空口响应特性, 确定所述阵元 组中的通道的响应特性; 确定所述阵元组中除所述参考通道外的其他通道的 响应特性与所述参考通道的响应特性之间的比值。 组间处理模块 13, 具体用 于所述每个阵元组中的参考通道向组间校准接收通道发送第二校准信号; 所 述组间校准接收通道根据接收的所述第二校准信号, 确定所述每个阵元组中 的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确 定所述组间校准系数。
进一歩的, 所述通道为接收通道时, 比值确定单元 123, 具体用于确定 所述阵元组中的通道与组内校准发射通道之间的空口响应特性; 所述阵元组 中的通道接收所述组内校准发射通道发送的第三校准信号; 所述阵元组中的 通道根据接收的所述第三校准信号和确定的所述空口响应特性, 确定所述阵 元组中的通道的响应特性; 确定所述阵元组中除所述参考通道外的其他通道 的响应特性与所述参考通道的响应特性之间的比值。 组间处理模块 13, 具体 用于所述每个阵元组中的参考通道接收组间校准发射通道发送的第四校准信 号; 所述每个阵元组中的参考通道根据接收的所述第四校准信号, 确定所述 每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的 响应特性, 确定所述组间校准系数。
本实施例的装置, 可以用于执行图 1〜图 5任一方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 8为本发明发射通道校准系统实施例的结构示意图, 如图 8所示, 本 实施例的系统包括: 组间单元 11、 综合计算器 12以及多个组内单元 13, 其 中, 组内单元 13包括阵列天线的多个阵元、 耦合器 131、 发送电路 132、 数 模转换器 ( Digital-to-Analog Converter , 简称: DAC ) 133、 模数转换器 (Analog-to-Digital Converter, 简称: ADC) 134、 信号产生器 135、 组内接 收电路 136以及组内校准系数计算器 137; 组间单元 11包括合路器 111、 组 间接收电路 112、 ADC113和组间校准系数计算器 114。
在任一个组内单元 13中, 信号产生器 135, 用于产生校准信号; 组内单 元中的 DAC133 , 用于将校准信号转换成发送模拟信号; 发送电路 132, 用 于对发送模拟信号进行滤波放大处理后输出至耦合器 131 ; 耦合器 131, 用 于将发送模拟信号分成两路, 其中一路通过直通端发送至阵列天线, 另一路 通过耦合端发送至组间接收电路 112; 组内接收电路 136, 用于接收阵元组 中的发射通道发送的校准信号; 组内单元中的 ADC134, 用于将组内接收电 路 136接收的校准信号转换成数字信号; 组内校准系数计算器 137, 用于根 据组内单元中的 ADC134输出的数字信号确定组内校准系数; 合路器 111, 用于对至少两个阵元组 (组内单元 13 ) 中的参考通道发送的校准信号进行合 路处理; 组间接收电路 112, 用于接收合路后的校准信号; 组间单元中的 ADC113 , 用于将合路后的校准信号转换成数字信号; 组间校准系数计算器 114, 用于根据组间单元中的 ADC113 输出的数字信号确定组间校准系数; 综合计算器 12, 用于根据组内校准系数和组间校准系数计算获取阵列天线的 阵元的校准系数, 并将校准系数输入至信号产生器 135 以使信号产生器 135 根据校准系数对产生的数字信号进行调整, 对阵列天线的阵元进行补偿。
本实施例的系统, 可以执行图 1〜图 5任一方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 9为本发明接收通道校准系统实施例的结构示意图, 如图 9所示, 本 实施例的系统包括: 组间单元 21、 综合计算器 22以及多个组内单元 23, 其 中, 组内单元 23 包括阵列天线的多个阵元、 耦合器 231、 接收电路 232、 ADC233, DAC234、 信号产生器 235、 组内发送电路 236、 组内校准系数计 算器 237和接收补偿器 238; 组间单元 21 包括分路器 211、 组间发送电路 212、 DAC213, 信号产生器 214和组间校准系数计算器 215。
在任一个组内单元 23中, 组内单元中的信号产生器 235, 用于产生阵元 组内的校准信号; 组内单元中的 DAC234, 用于将阵元组内的校准信号转换 成发送模拟信号; 组内发送电路 236, 用于将发送模拟信号发送至耦合器 231; 耦合器 231, 用于通过直通端接收组内发送电路 236发送的发送模拟信 号, 通过耦合端接收组间发送电路 212发送的模拟信号; 接收电路 232, 用 于接收模拟信号; 组内单元中的 ADC233 , 用于将接收电路 232接收的模拟 信号转换成数字信号; 组内校准系数计算器 237, 用于根据组内单元中的 ADC233 输出的数字信号确定组内校准系数; 组间单元中的信号产生器 214, 用于产生阵元组间的校准信号; 组间单元中的 DAC213 , 用于将阵元 组间的校准信号转换成模拟信号; 组间发送电路 212, 用于将模拟信号发送 至分路器 211 ; 分路器 211, 用于将模拟信号分路成与阵元组对应的多路校 准信号, 并将分路后的模拟信号输入至阵元组中的参考通道; 组间校准系数 计算器 215, 用于根据阵元组中的参考通道的 ADC输出的数字信号确定组间 校准系数; 综合计算器 22, 用于根据组内校准系数和组间校准系数计算获取 阵列天线的阵元的校准系数, 并将校准系数输入至接收补偿器 238; 接收补 偿器 238, 用于根据校准系数对组内单元中的信号产生器 235产生的数字信 号进行调整, 对阵列天线的阵元进行补偿。
本实施例的系统, 可以执行图 1〜图 5任一方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有 另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系 统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或 通信连接, 可以是电性, 机械或其它的形式。
所述该作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部 分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加 软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明各个实施例所述方法的部分歩骤。 而前述 的存储介质包括: U 盘、 移动硬盘、 只读存储器 (Read-Only Memory , ROM) 、 随机存取存储器 (Random Access Memory, RAM) 、 磁碟或者光 盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替 换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种阵列天线校准方法, 其特征在于, 包括:
通过无线空口耦合校准方式确定阵列天线的每个阵元组中的通道的组内 校准系数, 所述阵列天线的阵元被分为至少两个阵元组, 所述通道对应所述 阵列天线的一个或多个阵元;
通过有线耦合校准方式确定所述每个阵元组中的通道的组间校准系数; 根据所述组内校准系数和所述组间校准系数确定所述阵列天线的阵元的 校准系数, 并根据所述校准系数对所述阵列天线的阵元进行补偿。
2、 根据权利要求 1 所述的方法, 其特征在于, 通过无线空口耦合校准 方式确定任一个阵元组中通道的组内校准系数, 包括:
确定所述阵元组中的参考通道, 所述参考通道为所述阵元组中的任一个 通道;
确定所述参考通道的组内校准系数为 1 ;
通过无线空口耦合校准方式确定所述阵元组中除所述参考通道外的其他 通道的响应特性与所述参考通道的响应特性之间的比值;
根据所述比值确定所述阵元组中除所述参考通道外的其他通道的组内校 准系数。
3、 根据权利要求 2 所述的方法, 其特征在于, 通过有线耦合校准方式 确定所述每个阵元组的通道的组间校准系数, 包括:
通过有线耦合校准方式确定所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述通道为发射通道 时, 通过无线空口耦合校准方式确定所述阵元组中除所述参考通道外的其他 通道的响应特性与所述参考通道的响应特性之间的比值, 包括:
确定所述阵元组中的通道与组内校准接收通道之间的空口响应特性; 所述阵元组中的通道向所述组内校准接收通道发送第一校准信号; 所述组内校准接收通道根据接收的所述第一校准信号和确定的所述空口 响应特性, 确定所述阵元组中的通道的响应特性;
确定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考 通道的响应特性之间的比值。
5、 根据权利要求 4 所述的方法, 其特征在于, 通过有线耦合校准方式 确定所述每个阵元组中的参考通道的组间校准系数, 包括:
所述每个阵元组中的参考通道向组间校准接收通道发送第二校准信号; 所述组间校准接收通道根据接收的所述第二校准信号, 确定所述每个阵 元组中的参考通道的响应特性;
根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
6、 根据权利要求 2或 3所述的方法, 其特征在于, 所述通道为接收通道 时, 通过无线空口耦合校准方式确定所述阵元组中除所述参考通道外的其他 通道的响应特性与所述参考通道的响应特性之间的比值, 包括:
确定所述阵元组中的通道与组内校准发射通道之间的空口响应特性; 所述阵元组中的通道接收所述组内校准发射通道发送的第三校准信号; 所述阵元组中的通道根据接收的所述第三校准信号和确定的所述空口响 应特性, 确定所述阵元组中的通道的响应特性;
确定所述阵元组中除所述参考通道外的其他通道的响应特性与所述参考 通道的响应特性之间的比值。
7、 根据权利要求 6 所述的方法, 其特征在于, 通过有线耦合校准方式 确定所述每个阵元组中的参考通道的组间校准系数, 包括:
所述每个阵元组中的参考通道接收组间校准发射通道发送的第四校准信 号;
所述每个阵元组中的参考通道根据接收的所述第四校准信号, 确定所述 每个阵元组中的参考通道的响应特性;
根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
8、 一种阵列天线校准装置, 其特征在于, 包括:
组内处理模块, 用于通过无线空口耦合校准方式确定阵列天线的每个阵 元组中的通道的组内校准系数, 所述阵列天线的阵元被分为至少两个阵元 组, 所述通道对应所述阵列天线的一个或多个阵元;
组间处理模块, 用于通过有线耦合校准方式确定所述每个阵元组中的通 道的组间校准系数;
综合处理模块, 用于根据所述组内校准系数和所述组间校准系数确定所 述阵列天线的阵元的校准系数, 并根据所述校准系数对所述阵列天线的阵元 进行补偿。
9、 根据权利要求 8 所述的装置, 其特征在于, 所述组内处理模块包 括:
参考通道确定单元, 用于确定任一个阵元组中的参考通道, 所述参考通 道为所述阵元组中的任一个通道;
参考系数确定单元, 用于确定所述参考通道的组内校准系数为 1 ;
比值确定单元, 用于通过无线空口耦合校准方式确定所述阵元组中除所 述参考通道外的其他通道的响应特性与所述参考通道的响应特性之间的比 值;
组内校准系数确定单元, 用于根据所述比值确定所述阵元组中除所述参 考通道外的其他通道的组内校准系数。
10、 根据权利要求 9所述的装置, 其特征在于, 所述组间处理模块, 具 体用于通过有线耦合校准方式确定所述每个阵元组中的参考通道的响应特 性; 根据所述每个阵元组中的参考通道的响应特性, 确定所述组间校准系 数。
11、 根据权利要求 9或 10所述的装置, 其特征在于, 所述通道为发射通 道时, 所述比值确定单元, 具体用于确定所述阵元组中的通道与组内校准接 收通道之间的空口响应特性; 所述阵元组中的通道向所述组内校准接收通道 发送第一校准信号; 所述组内校准接收通道根据接收的所述第一校准信号和 确定的所述空口响应特性, 确定所述阵元组中的通道的响应特性; 确定所述 阵元组中除所述参考通道外的其他通道的响应特性与所述参考通道的响应特 性之间的比值。
12、 根据权利要求 11 所述的装置, 其特征在于, 所述组间处理模块, 具体用于所述每个阵元组中的参考通道向组间校准接收通道发送第二校准信 号; 所述组间校准接收通道根据接收的所述第二校准信号, 确定所述每个阵 元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通道的响应特 性, 确定所述组间校准系数。
13、 根据权利要求 9或 10所述的装置, 其特征在于, 所述通道为接收通 道时, 所述比值确定单元, 具体用于确定所述阵元组中的通道与组内校准发 射通道之间的空口响应特性; 所述阵元组中的通道接收所述组内校准发射通 道发送的第三校准信号; 所述阵元组中的通道根据接收的所述第三校准信号 和确定的所述空口响应特性, 确定所述阵元组中的通道的响应特性; 确定所 述阵元组中除所述参考通道外的其他通道的响应特性与所述参考通道的响应 特性之间的比值。
14、 根据权利要求 13 所述的装置, 其特征在于, 所述组间处理模块, 具体用于所述每个阵元组中的参考通道接收组间校准发射通道发送的第四校 准信号; 所述每个阵元组中的参考通道根据接收的所述第四校准信号, 确定 所述每个阵元组中的参考通道的响应特性; 根据所述每个阵元组中的参考通 道的响应特性, 确定所述组间校准系数。
15、 一种发射通道校准系统, 其特征在于, 包括: 组间单元、 综合计算 器以及多个组内单元, 其中, 所述组内单元包括阵列天线的多个阵元、 耦合 器、 发送电路、 数模转换器 DAC、 模数转换器 ADC、 信号产生器、 组内接 收电路以及组内校准系数计算器; 所述组间单元包括合路器、 组间接收电 路、 ADC和组间校准系数计算器;
所述信号产生器, 用于产生校准信号;
所述组内单元中的 DAC, 用于将所述校准信号转换成发送模拟信号; 所述发送电路, 用于对所述发送模拟信号进行滤波放大处理后输出至所 述耦合器;
所述耦合器, 用于将所述发送模拟信号分成两路, 其中一路通过直通端 发送至阵列天线, 另一路通过耦合端发送至所述组间接收电路;
所述组内接收电路, 用于接收阵元组中的发射通道发送的校准信号; 所述组内单元中的 ADC , 用于将所述组内接收电路接收的校准信号转 换成数字信号;
所述组内校准系数计算器, 用于根据所述组内单元中的 ADC输出的数 字信号确定组内校准系数;
所述合路器, 用于对至少两个阵元组中的参考通道发送的校准信号进行 合路处理; 所述组间接收电路, 用于接收合路后的校准信号;
所述组间单元中的 ADC, 用于将所述合路后的校准信号转换成数字信 号;
所述组间校准系数计算器, 用于根据所述组间单元中的 ADC输出的数 字信号确定组间校准系数;
所述综合计算器, 用于根据所述组内校准系数和所述组间校准系数计算 获取所述阵列天线的阵元的校准系数, 并将所述校准系数输入至所述信号产 生器以使所述信号产生器根据所述校准系数对产生的数字信号进行调整, 对 所述阵列天线的阵元进行补偿。
16、 一种接收通道校准系统, 其特征在于, 包括: 组间单元、 综合计算 器以及多个组内单元, 其中, 所述组内单元包括阵列天线的多个阵元、 耦合 器、 接收电路、 模数转换器 ADC、 数模转换器 DAC、 信号产生器、 组内发 送电路、 组内校准系数计算器和接收补偿器; 所述组间单元包括分路器、 组 间发送电路、 DAC、 信号产生器和组间校准系数计算器;
所述组内单元中的信号产生器, 用于产生阵元组内的校准信号; 所述组内单元中的 DAC, 用于将所述阵元组内的校准信号转换成发送 模拟信号;
所述组内发送电路, 用于将所述发送模拟信号发送至所述耦合器; 所述耦合器, 用于通过直通端接收所述组内发送电路发送的所述发送模 拟信号, 通过耦合端接收所述组间发送电路发送的模拟信号;
所述接收电路, 用于接收所述模拟信号;
所述组内单元中的 ADC, 用于将所述接收电路接收的模拟信号转换成 数字信号;
所述组内校准系数计算器, 用于根据所述组内单元中的 ADC输出的数 字信号确定组内校准系数;
所述组间单元中的信号产生器, 用于产生阵元组间的校准信号; 所述组间单元中的 DAC, 用于将所述阵元组间的校准信号转换成模拟 信号;
所述组间发送电路, 用于将所述模拟信号发送至所述分路器;
所述分路器, 用于将所述模拟信号分路成与阵元组对应的多路校准信 号, 并将分路后的模拟信号输入至阵元组中的参考通道;
所述组间校准系数计算器, 用于根据所述阵元组中的参考通道的 ADC 输出的数字信号确定组间校准系数;
所述综合计算器, 用于根据所述组内校准系数和所述组间校准系数计算 获取所述阵列天线的阵元的校准系数, 并将所述校准系数输入至所述接收补 偿器;
所述接收补偿器, 用于根据所述校准系数对所述组内单元中的信号产生 器产生的数字信号进行调整, 对所述阵列天线的阵元进行补偿。
PCT/CN2014/079360 2014-06-06 2014-06-06 阵列天线校准方法、装置和系统 WO2015184638A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480046795.8A CN105518934B (zh) 2014-06-06 2014-06-06 阵列天线校准方法、装置和系统
PCT/CN2014/079360 WO2015184638A1 (zh) 2014-06-06 2014-06-06 阵列天线校准方法、装置和系统
EP14893708.9A EP3142188B1 (en) 2014-06-06 2014-06-06 Array antenna calibration method, device and system
US15/370,863 US20170084995A1 (en) 2014-06-06 2016-12-06 Array antenna calibration method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079360 WO2015184638A1 (zh) 2014-06-06 2014-06-06 阵列天线校准方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/370,863 Continuation US20170084995A1 (en) 2014-06-06 2016-12-06 Array antenna calibration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2015184638A1 true WO2015184638A1 (zh) 2015-12-10

Family

ID=54765972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079360 WO2015184638A1 (zh) 2014-06-06 2014-06-06 阵列天线校准方法、装置和系统

Country Status (4)

Country Link
US (1) US20170084995A1 (zh)
EP (1) EP3142188B1 (zh)
CN (1) CN105518934B (zh)
WO (1) WO2015184638A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991177B (zh) * 2015-02-11 2019-11-08 电信科学技术研究院 一种天线校准的方法及装置
US20180062260A1 (en) * 2016-08-26 2018-03-01 Analog Devices Global Antenna array calibration systems and methods
CN107809273A (zh) * 2016-09-05 2018-03-16 中兴通讯股份有限公司 一种多天线补偿方法及其装置、射频设备
CN107483126B (zh) * 2017-06-30 2021-01-05 华为技术有限公司 一种天线校准、校准值验证方法及校准装置
FR3087977B1 (fr) * 2018-10-29 2021-12-10 Safran Electronics & Defense Auto-etalonnage d'un reseau d'antennes
CN112448746A (zh) * 2019-09-03 2021-03-05 中兴通讯股份有限公司 数模混合波束赋形多通道的校正装置方法及装置
CN110824466A (zh) * 2019-10-28 2020-02-21 南京理工大学 一种多目标跟踪系统及其dbf通道校准fpga实现方法
US11804914B1 (en) * 2020-05-07 2023-10-31 Amazon Technologies, Inc. Calibration of a phased array antenna by using a probe antenna
CN114252707B (zh) * 2020-09-23 2024-03-15 上海华为技术有限公司 一种阵列天线校准装置、方法及系统
US11641224B2 (en) 2020-12-23 2023-05-02 Samsung Electronics Co., Ltd. Method and apparatus for robust MIMO transmission
CN113406403B (zh) * 2021-08-19 2021-11-19 上海莱天通信技术有限公司 基于分组旋转矢量法的相控阵天线校准方法及装置
CN116008679B (zh) * 2023-03-23 2023-06-06 中山香山微波科技有限公司 近场幅相数据提取电路及近场幅相数据提取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434300A (zh) * 2002-01-21 2003-08-06 日本电气株式会社 阵列天线校准装置和阵列天线校准方法
US20070054699A1 (en) * 2005-09-07 2007-03-08 Samsung Electronics Co., Ltd. Method and system for calibrating multiple types of base stations in a wireless network
CN102780522A (zh) * 2011-05-12 2012-11-14 中国移动通信集团设计院有限公司 一种天线阵列、基于该天线阵列的通信系统以及通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
JP4303373B2 (ja) * 1999-09-14 2009-07-29 株式会社日立コミュニケーションテクノロジー 無線基地局装置
KR100444822B1 (ko) * 2001-08-07 2004-08-18 한국전자통신연구원 적응 배열 안테나 시스템의 오차 보정 장치 및 그 방법
US7423586B2 (en) * 2003-07-30 2008-09-09 Siemens Aktiengesellschaft Antennas array calibration arrangement and method
US7619487B2 (en) * 2007-09-14 2009-11-17 Infineon Technologies Ag Polar modulation without analog filtering
US8193971B2 (en) * 2008-11-10 2012-06-05 Motorola Mobility, Inc. Antenna reciprocity calibration
CN104205659A (zh) * 2011-10-21 2014-12-10 奥普蒂斯蜂窝技术有限责任公司 阵列天线系统中的天线设备校准方法、处理装置、计算机程序、计算机程序产品和天线设备
CN103731914B (zh) * 2012-10-15 2018-04-27 上海诺基亚贝尔股份有限公司 在无线网络基站中校准rrh间的信道互易性的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434300A (zh) * 2002-01-21 2003-08-06 日本电气株式会社 阵列天线校准装置和阵列天线校准方法
US20070054699A1 (en) * 2005-09-07 2007-03-08 Samsung Electronics Co., Ltd. Method and system for calibrating multiple types of base stations in a wireless network
CN102780522A (zh) * 2011-05-12 2012-11-14 中国移动通信集团设计院有限公司 一种天线阵列、基于该天线阵列的通信系统以及通信方法

Also Published As

Publication number Publication date
CN105518934B (zh) 2019-04-12
EP3142188B1 (en) 2020-01-01
CN105518934A (zh) 2016-04-20
EP3142188A4 (en) 2017-05-03
US20170084995A1 (en) 2017-03-23
EP3142188A1 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2015184638A1 (zh) 阵列天线校准方法、装置和系统
KR102048509B1 (ko) 안테나 배열 자가 보정을 위한 장치 및 방법
US8140007B2 (en) Radio system and method for relaying radio signals with a power calibration of transmit radio signals
CN110915174B (zh) 校正装置和校正方法
CN105075140B (zh) 用于校准多个天线阵列的方法和装置
US8599861B2 (en) Active antenna array and method for relaying radio signals
EP3320629B1 (en) Method and apparatus for calibration in radio frequency module
US8774196B2 (en) Active antenna array and method for relaying radio signals with synchronous digital data interface
WO2013123753A1 (zh) 一种有源天线多收发通道同步校准的装置和方法
EP3565134B1 (en) Antenna correction method and device
WO2018166575A1 (en) Self-calibration of antenna array system
CN213398907U (zh) 一种耦合式实时校准的多通道相参信号模拟装置
WO2010134861A1 (en) Automatic detection of erroneous connections between antenna ports and radio frequency paths
JP2015527762A (ja) アクティブアンテナシステム無線周波数インデックスの試験方法及び装置
AU2021283545A1 (en) Channel measurement method and apparatus
US20220303020A1 (en) Central unit, remote unit, small cell system, and communication method
WO2022233323A1 (zh) 智能表面设备的波束控制方法、装置及电子设备
KR102409687B1 (ko) Rf 체인의 특성을 측정하기 위한 방법 및 장치
CN106452530B (zh) 基于极化斜投影的功放非线性影响下的mimo全双工自干扰消除方法
CN106575972B (zh) 无线全双工系统和方法
CN108540181B (zh) 一种天线校准的方法及装置
WO2020187033A1 (zh) 一种基于混合波束赋形架构的校准补偿方法及装置
WO2015188365A1 (zh) 在大规模mimo无线通信系统中使用的天线校准方法和装置
WO2019061173A1 (zh) 一种校准阵列天线的方法、装置和系统
CN210243826U (zh) 一种雷达多通道信号预处理装置及其脉冲压缩单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014893708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893708

Country of ref document: EP