본 발명의 중공 실리카 입자의 제조공정 및 물성을 자세히 설명한다.The manufacturing process and physical properties of the hollow silica particles of the present invention will be described in detail.
중공실리카 입자의 제조Preparation of Hollow Silica Particles
본 발명의 중공실리카 입자는, 출발 원료로서 실란을 사용하고, 수용액에서 교반하여 액적을 만든 후 산을 가하여 수화시킨 후, 염기성 수용액을 첨가하여 액적 간의 결합으로 1차 입자를 형성한 후 중합시켜 쉘을 형성한 후 쉘 내부를 유기용매로 에칭시켜 중공을 형성하고, 여과, 건조를 통해 최종 중공실리카 입자 분말이 제조된다. 이때 상기 여과물을 소니케이션(sonication)하는 단계를 더 포함할 수 있다.The hollow silica particles of the present invention are made of silane as a starting material, stirred in an aqueous solution to form a droplet, and then hydrated by adding an acid, followed by addition of a basic aqueous solution to form primary particles by bonding between the droplets, followed by polymerization and shelling. After forming the hollow inside the shell by etching with an organic solvent to form a hollow hollow silica particle powder through filtration, drying. In this case, the method may further include the step of sonicating the filtrate.
1. 원료 물질1. Raw material
중공실리카 입자의 원료물질로서 페닐계 실란, TEOS, TMOS, SiCl4, 및 페닐기 이외의 유기그룹을 갖는 실란으로 이루어진 군으로부터 선택되는 1 이상 또는 그들의 혼합물을 사용할 수 있다. 페닐계 실란과 그 외의 실란과의 혼합물을 사용할 경우 페닐계 실란은 80중량% 이상, 그외의 실란은 20중량% 이하로 혼합하여 사용함이 바람직하고, 특히 페닐계 실란으로는 하기 화학식 1의 구조를 가지는 PTMS(페닐트리메톡시실란,C9H14O3Si)를 사용하는 것이 바람직하다.As a raw material of the hollow silica particles, at least one selected from the group consisting of phenyl silane, TEOS, TMOS, SiCl 4 , and silane having an organic group other than a phenyl group, or a mixture thereof may be used. When using a mixture of phenyl silane and other silanes, it is preferable to use a mixture of phenyl silane at least 80% by weight and other silanes at 20% by weight or less. Particularly, as the phenyl silane, the structure of Formula 1 It is preferable to use PTMS (phenyltrimethoxysilane, C 9 H 14 O 3 Si) for the branch.
상기 PTMS 와 TEOS, TMOS, SiCl4, 및 페닐기 이외의 유기그룹을 갖는 실란 중에서 선택되는 1종 이상의 실란을 혼합하여 사용할 경우 각각은 4:1의 중량비로 혼합하는 것이 바람직하다.When using at least one silane selected from PTMS and a silane having an organic group other than TEOS, TMOS, SiCl 4 , and a phenyl group, it is preferable to mix each in a weight ratio of 4: 1.
실란의 농도는 양은 수용액에서 0.1몰% 이하를 사용하여야 1㎛ 이하의 작은 입자를 얻을 수 있다. The concentration of silane should be 0.1 mol% or less in the aqueous solution to obtain small particles of 1 μm or less.
2. 액적 생성 2. Droplet generation
수용액에 0.1 ~ 2 몰% 의 실란을 첨가하면 실란은 수용액에 섞이지 못하므로 층 분리가 일어나게 되고 계속 교반하면 실란 액적을 형성하여 수용액에 분산된다.When 0.1 to 2 mol% of silane is added to the aqueous solution, the silane is not mixed with the aqueous solution, and thus layer separation occurs. If the stirring is continued, silane droplets are formed and dispersed in the aqueous solution.
3. 액적 수화3. Droplet Hydration
상기 수용액에 산을 첨가하면 산의 촉매역할에 의해 도 1의 (a)와 같이 실란의 -OR 기가 -OH기로 치환되고, 교반을 계속해주면 수화된 실란의 액적이 균일하게 수용액에 섞이게 된다. 산은 HCl, HNO3, H2SO4 등을 사용하고 반응용액의 pH 가 0.5 ~ 5 인 것이 바람직하다. 이때 반응액의 pH가 낮을수록 실란의 체인이 끊어져서 입자의 크기가 작아지므로 pH 1 의 강산성일 때 실란의 양은 소량으로 사용하여야 하는데, 실란의 양이 많을 경우에는 쉽게 젤 형태로 반응이 진행되거나 입자 내에 중공이 형성되지 않기 때문에 입자 생성의 제어가 어렵기 때문이다. 또한 pH 가 5 이상일 때는 실란을 소량으로 사용하면 입자 및 중공이 형성되지 않는 문제점이 있다.When the acid is added to the aqueous solution, the -OR group of the silane is replaced with the -OH group by the role of the acid as shown in FIG. 1 (a). When the stirring is continued, droplets of the hydrated silane are uniformly mixed in the aqueous solution. The acid is preferably HCl, HNO 3, H 2 SO 4 and the like and the pH of the reaction solution is 0.5 ~ 5. In this case, the lower the pH of the reaction solution, the smaller the size of the particles due to the breakage of the chain of silane. Therefore, when the pH is strongly acidic, the amount of silane should be used in small amounts. This is because control of particle generation is difficult because no hollow is formed in the inside. In addition, when the pH is 5 or more, when a small amount of silane is used, particles and hollows are not formed.
한편, 상기 산 첨가 후, 교반시간이 길수록 최종 생성되는 입자크기가 작아지나 입자가 응집하여 겔이 되어 중공이 형성되기 어렵고, 교반시간이 너무 짧으면 실란 액적의 수화가 충분히 일어나지 않아서 중공 입자가 생성되기 어렵다. 따라서 교반시간은 바람직하게는 0.5 ~ 10 분 사이, 더욱 바람직하게는 1~5분 사이가 적절하다.On the other hand, after the addition of the acid, the longer the stirring time is, the smaller the final particle size is produced, but the particles are aggregated to form a gel, which is difficult to form a hollow. If the stirring time is too short, hydration of the silane droplets does not sufficiently occur to form hollow particles. It is difficult. Therefore, the stirring time is preferably between 0.5 and 10 minutes, more preferably between 1 and 5 minutes.
액적의 크기는 반응기 대비 교반기 크기가 80% 정도되었을 때 교반속도 200rpm 을 초과하면 차이가 없으나 200rpm 이하일 때는 입자크기가 커지므로, 교반속도는 200rpm 이상이 바람직하고, 수화된 액적의 크기는 8 ~ 12 ㎛ 인 것이 바람직하하며 액적의 크기에 따라 최종입자 크기가 결정되게 된다.The droplet size is not different when the stirring speed exceeds 200rpm when the size of the stirrer is about 80% compared to the reactor, but when the stirring speed is 200rpm or less, the particle size increases, so the stirring speed is preferably 200rpm or more, and the size of the hydrated droplet is 8 to 12 It is preferable that the thickness is µm and the final particle size is determined according to the size of the droplets.
반응의 온도는 40~80℃가 바람직하다. 40℃ 미만에서는 입자생성이 어렵고, 고농도에서는 입자끼리 응집하여 겔 형태가 되기 쉬우며, 쉘의 두께가 두꺼워져 중공의 크기가 작아지는 문제가 있으며, 80℃ 를 초과하면 염기가 휘발하여 반응조건을 조절하기 어렵고, 쉘의 내부가 녹지 않아 중공입자가 만들어지지 않는다. PTMS의 수화 반응식은 하기와 같다.As for the temperature of reaction, 40-80 degreeC is preferable. It is difficult to produce particles at less than 40 ℃, it is easy to agglomerate particles in a high concentration to form a gel, the thickness of the shell is thickened, there is a problem that the size of the hollow is reduced, if the temperature exceeds 80 ℃ the base volatilize the reaction conditions It is difficult to control, and the inside of the shell does not melt and no hollow particles are made. The hydration scheme of PTMS is as follows.
[반응식 1] Scheme 1
PhSi(OMt)3 + H2O --> PhSi(OH)(OMt)2
PhSi (OMt) 3 + H 2 O-> PhSi (OH) (OMt) 2
PhSi(OH)(OMt)2 + H2O --> PhSi(OH)2(OMt) PhSi (OH) (OMt) 2 + H 2 O-> PhSi (OH) 2 (OMt)
PhSi(OH)2(OMt) + H2O --> PhSi(OH)3
PhSi (OH) 2 (OMt) + H 2 O-> PhSi (OH) 3
4. 1차 입자 형성4. Primary Particle Formation
상기 실란이 수화된 용액에 염기 용액을 첨가하면 염기 용액이 촉매 역할 을 하여 실란 액적간의 반응으로 도 1의 (b)에서 나타낸 바와 같이 1차 입자가 형성된다. 염기 용액은 NaOH, Ca(OH)2, KOH, NH4OH 등의 염기, 바람직하게는 NH4OH 또는 알킬아민 종류의 무기염기를 사용하며 전체 반응액이 pH 10 이상이 되도록 한다. 알킬아민은 NH4OH, 또는 TMAH(Tetramethyl ammonium hydroxide), 옥틸아민 (octylamine, OA, CH3(CH2)6CH2H2), 도데실아민(dodecylamine, DDA, CH3(CH2)10CH2NH2), 헥사데실아민(hexadecylamine, HDA, CH3(CH2)14CH2NH2), 2-아미노프로판올, 2-(메틸페닐아미노)에탄올, 2-(에틸페닐아미노)에탄올, 2-아미노-1-부탄올, (다이이소프로필아미노)에탄올, 2-다이에틸아미노에탄올, 4-아미노페닐아미노이소프로판올, N-에틸아미노에탄올, 모노에탄올아민, 다이에탄올아민, 트리에탄올아민, 모노이소프로판올아민, 다이이소프로판올아민, 트리이소프로판올아민, 메틸디에탄올아민, 디메틸모노에탄올아민, 에틸디에탄올아민, 디에틸모노에탄올아민으로 이루어지 군으로부터 선택된다.When the base solution is added to the silane-hydrated solution, the base solution acts as a catalyst to form primary particles as shown in FIG. The base solution is a base such as NaOH, Ca (OH) 2 , KOH, NH 4 OH, preferably NH 4 OH or an alkylamine type inorganic base so that the total reaction solution is at least pH 10. Alkylamines are NH 4 OH, or tetramethyl ammonium hydroxide (TMAH), octylamine, OA, CH 3 (CH 2 ) 6 CH 2 H 2 ), dodecylamine, DDA, CH 3 (CH 2 ) 10 CH 2 NH 2 ), hexadecylamine, HDA, CH 3 (CH 2 ) 14 CH 2 NH 2 ), 2-aminopropanol, 2- (methylphenylamino) ethanol, 2- (ethylphenylamino) ethanol, 2 -Amino-1-butanol, (diisopropylamino) ethanol, 2-diethylaminoethanol, 4-aminophenylaminoisopropanol, N-ethylaminoethanol, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, Diisopropanolamine, triisopropanolamine, methyldiethanolamine, dimethyl monoethanolamine, ethyl diethanolamine, diethyl monoethanolamine.
상기 반응은 40℃ 미만에서는 입자끼리 응집하여 겔 형태가 되기 쉬우므로 중공 입자의 생성이 어렵고, 쉘의 두께가 너무 두꺼워져 중공의 크기가 작아지는 문제가 있으며, 80℃ 를 초과하면 염기가 휘발하여 반응조건을 조절하기 어렵고, 쉘의 내부가 녹지 않아 중공입자가 만들어지지 않기 때문에 40~80℃에서 진행함이 바람직하다.The reaction is difficult to produce hollow particles because the particles are easily aggregated together to form a gel at less than 40 ℃, the thickness of the shell is too thick, there is a problem that the size of the hollow is reduced, if the base exceeds 80 ℃ volatilized It is preferable to proceed at 40 ~ 80 ℃ because it is difficult to control the reaction conditions, the inside of the shell does not melt and hollow particles are not made.
[반응식 2] Scheme 2
2Ph-Si(OH)3 → Ph-Si(OH)2-O-Si(OH)2-Ph 2Ph-Si (OH) 3 → Ph-Si (OH) 2 -O-Si (OH) 2 -Ph
5. 쉘 형성5. Shell Formation
상기 염기 용액이 첨가된 수용액을 교반하여 1차 입자들을 실록산 결합에 의해 중합시켜서 유기용매에 불용성인 쉘을 형성한다. 상기 쉘의 두께는 실리카 입자의 평균직경의 5 ~ 45% 가 바람직하다. PTMS를 원료물질로 하여 입자를 형성할 경우 쉘의 구조는 망상의 PPSQ 구조이다.The aqueous solution to which the base solution is added is stirred to polymerize the primary particles by siloxane bonds to form a shell insoluble in the organic solvent. The thickness of the shell is preferably 5 to 45% of the average diameter of the silica particles. When particles are formed by using PTMS as a raw material, the shell structure is a network PPSQ structure.
[반응식 3]Scheme 3
Ph-Si(OH)2-O-Si(OH)2-Ph → +n[Ph-Si(OH)3] → 망상의 PPSQ(Networked polyphenylsilsesquioxane)Ph-Si (OH) 2 -O-Si (OH) 2 -Ph → + n [Ph-Si (OH) 3 ] → Networked polyphenylsilsesquioxane (PPSQ)
6. 에칭6. Etching
상기 불용성 쉘의 내부에는 실란 올리고머 및 미반응 액적이 존재하며, 이들을 유기용매를 사용하여 에칭시킴으로써 내부의 중공Silane oligomer and unreacted droplets are present in the insoluble shell, and the hollow inside is etched by using an organic solvent.
을 형성한다. 유기용매는 에탄올 또는 메탄올 등을 포함하여 일반적으로 사용되는 것이면 무방하다.To form. The organic solvent may be generally used, including ethanol or methanol.
한편, 상기 여과물을 소니케이터를 이용하여 추가로 소니케이션(sonication)함으로써 입자의 표면의 불순물을 제거하여 입자표면을 더욱 매끄럽게 만들 수 있고, 소니케이션은 5초 ~ 40분 이내로 실시하는 것이 바람직하다.Meanwhile, by further sonicating the filtrate using a sonicator, impurities on the surface of the particles may be removed to make the surface of the particles smoother, and the sonication may be performed within 5 seconds to 40 minutes. Do.
7. 여과 및 건조7. Filtration and drying
상기 여과물을 250℃ 미만에서 건조, 더욱 바람직하게는 150℃ 미만에서 진공오븐에서 1~10시간 건조시키면 진공도에 상응한 온도에서 수분의 증발 또는 승화가 일어나 건조된다.When the filtrate is dried at less than 250 ℃, more preferably less than 150 ℃ 1 to 10 hours in a vacuum oven to evaporate or sublimate moisture at a temperature corresponding to the degree of vacuum to dry.
상기 생성된 중공실리카입자에 실란 커플링제를 처리하여 질산화, 술폰화, 아민화, 할로겐화, 등의 알려진 방법에 의해 입자의 표면을 개질하는 단계를 더 적용할 수 있다. 실란 커플링제는 실란계, 알루미늄계, 티타늄계, 지르코늄계 커플링제를 사용할 수 있다. 이와 같이 표면 개질된 중공 실리카 입자는 기능성 세라믹, 마이크로 캡슐, 나노 리엑터, DDS, 촉매, 센서 등의 다양한 분야에 적용 가능하다. 이와 같이 표면 처리제로 처리하면 수지나 유기용제등의 소수성 분산매에의 분산성이 개선되고 수지와의 밀착성, 박리강도 등도 향상된다.The step of modifying the surface of the particles by a known method such as nitrification, sulfonation, amination, halogenation by treating the silane coupling agent to the resulting hollow silica particles may be further applied. A silane coupling agent can use a silane type, aluminum type, titanium type, zirconium type coupling agent. The surface modified hollow silica particles can be applied to various fields such as functional ceramics, microcapsules, nanoreactors, DDS, catalysts, sensors, and the like. In this way, the treatment with the surface treatment agent improves the dispersibility to hydrophobic dispersion mediums such as resins and organic solvents, and improves adhesion to resins, peel strength, and the like.
또한 중공입자 제조시 템플릿이 필요없으며, 많은 시간과 높은 에너지 비용을 요하는 소성 공정을 필요로 하지 않으므로 간단한 제조공정을 통하여 중공실리카 입자를 얻을 수 있다는 장점이 있다.In addition, there is no need for a template for the production of hollow particles, and does not require a firing process requiring a lot of time and high energy costs, there is an advantage that the hollow silica particles can be obtained through a simple manufacturing process.
중공실리카 입자Hollow silica particles
상기 제조방법에 의해 제조된 중공 실리카 입자는 굴절율이 1.2 ~ 1.4, 열전도율 0.1 W/m·K 미만, 오일 흡수율이 0.1 ml/g 이하이고, 레진과 혼합시에 기공율이 90% 이상이며 입자분포 변동계수(CV 값)가 10% 이하인 단분산의 물성을 가진다. 또한 입자의 평균 직경이 1㎛ 이하, 중공 부분의 내경이 입자의 평균 직경의10~90 % 이며, 쉘의 두께는 평균입자 직경의 5~45% 이며 구형화도가 0.9 이상인 진구형의 입자이다.Hollow silica particles prepared by the above production method has a refractive index of 1.2 to 1.4, a thermal conductivity of less than 0.1 W / m · K, an oil absorption of 0.1 ml / g or less, a porosity of 90% or more when mixed with resin, and a particle distribution variation. The coefficient (CV value) has a monodispersity of 10% or less. In addition, the average diameter of the particles is 1 µm or less, the inner diameter of the hollow portion is 10 to 90% of the average diameter of the particles, and the shell thickness is 5 to 45% of the average particle diameter and spherical particles having a sphericity of 0.9 or more.
이하에서는 본 발명의 중공실리카 입자가 가지는 물성 및 그 측정방법을 함께 설명한다.Hereinafter, the physical properties of the hollow silica particles of the present invention and a measuring method thereof will be described together.
1) 굴절률1) refractive index
먼저 중공 실리카를 소르비톨 시럽 (70% 소르비톨)/물 혼합물에 분산시킨다. 통상 1 시간을 탈기시킨 후, 589 nm 에서 분광 광도계를 사용하여 분산액의 투광성을 측정하고, 물을 맹검(盲檢) 시료로서 사용한다. 각 분산액의 굴절률은 압베(Abbe) 굴절계를 이용해서 측정한다. 굴절률에 대해 도시한 투광률의 그래프로부터 투광률이 70%를 넘는 굴절률의 범위를 알 수 있다. 시료의 최대 투광률 및 이러한 투광률이 얻어지는 굴절률을 이 그래프로부터 역시 얻을 수 있다.The hollow silica is first dispersed in sorbitol syrup (70% sorbitol) / water mixture. After 1 hour of degassing, the light transmittance of the dispersion is measured using a spectrophotometer at 589 nm, and water is used as a blind sample. The refractive index of each dispersion is measured using an Abbe refractometer. From the graph of the transmittance | permeability shown with respect to a refractive index, the range of the refractive index over 70% can be seen. The maximum light transmittance of the sample and the refractive index from which this light transmittance is obtained can also be obtained from this graph.
2) 열전도율2) thermal conductivity
열전도율의 측정은 먼저 세로 30 ㎝, 가로 30 ㎝, 두께 5 ㎝의 단열시트의 중심부를 세로 24 ㎝, 가로 24 ㎝의 정방 형상으로 도려내어, 프레임을 형성한다. 프레임의 한쪽에 세로 30 ㎝, 가로 30 ㎝의 알루미늄박을 접착하여 오목부를 형성하고, 시료대로 한다. 또한, 알루미늄박으로 덮은 면을 시료대의 바닥면으로 하고, 단열시트의 두께 방향에 대한 다른 한쪽의 면을 천장면으로 한다. 분체상의 단열재를 탭이나 가압을 하지 않고서 오목부에 충전하여, 레벨링을 한 후, 천장면에 세로 30 ㎝, 가로 30 ㎝의 알루미늄박을 얹은 것을 측정 시료로 한다. 측정시료를 이용하여, 30℃에서의 열전도율을, 히트 플로우 미터 HFM 436 Lambda(상품명, NETZSCH사 제조)를 사용하여 열전도율을 측정한다. 교정은, JISA1412-2에 따라, 밀도 163.12 ㎏/㎥, 두께 25.32 ㎜의 NIST SRM 1450c 교정용 표준판을 사용하여, 고온측과 저온측의 온도차가 20℃의 조건에서, 15, 20, 24, 30, 40, 50, 60, 65℃에서 미리 실시한다. 800℃에서의 열전도율은, JIS A 1421-1의 방법에 준거하여 측정한다. 직경 30 ㎝, 두께 20 ㎜의 원판형으로 한 단열시트 2장을 측정 시료로 하고, 측정 장치로서, 보호 열판법 열전도율 측정 장치(에이코세이키 가부시키가이샤 제조)를 사용한다.The measurement of thermal conductivity first cuts out the center part of the thermal insulation sheet of 30 cm long, 30 cm wide, and 5 cm thick to square shape of 24 cm and 24 cm, and forms a frame. An aluminum foil of 30 cm in length and 30 cm in width is bonded to one side of the frame to form a concave portion, and a sample is taken. Moreover, the surface covered with aluminum foil is made into the bottom surface of a sample stand, and the other surface with respect to the thickness direction of a heat insulation sheet is made into the ceiling surface. After filling a powder-form heat insulating material into a recessed part without tapping or pressurizing, and leveling, what put the aluminum foil of 30 cm in length and 30 cm in width on the ceiling surface is used as a measurement sample. Using the measurement sample, the thermal conductivity at 30 ° C. was measured using a heat flow meter HFM 436 Lambda (trade name, manufactured by NETZSCH). The calibration is carried out in accordance with JIS A1412-2 using a standard plate for calibration of NIST SRM 1450c with a density of 163.12 kg / m 3 and thickness of 25.32 mm, on the condition that the temperature difference between the high temperature side and the low temperature side is 20 ° C., 15, 20, 24, 30 , 40, 50, 60, 65 ℃ in advance. Thermal conductivity in 800 degreeC is measured based on the method of JISA1421-1. Two sheets of a heat insulating sheet having a diameter of 30 cm and a disc shape having a thickness of 20 mm were used as measurement samples, and a protective heat plate method thermal conductivity measuring device (manufactured by Eiko Seiki Co., Ltd.) was used as the measuring device.
3) 오일흡수율3) oil absorption rate
본 발명의 중공실리카 입자는 제조 후에 별도의 소성 및 표면처리를 하지 않아도 구형의 표면이 실질적으로 평활하다는 특징이 있다. 여기서 "평활" 이란 표면에 미세한 세공이 거의 존재하지 않고 쉘의 표면이 파임, 틈, 흠, 균열, 돌출, 홈 등과 같은 임의의 고르지않은 부분이 없다는 것을 의미한다. 이러한 표면 특성은 종래 제조법에 의해 얻어지는 중공실리카 입자에는 보이지 않는다. 본 발명의 입자의 평활도는 주사 전자 현미경으로 측정할 수 있고 오일 흡수율, 레진과 혼합시 기공율 등을 통하여 확인할 수 있다.Hollow silica particles of the present invention is characterized in that the spherical surface is substantially smooth even after the separate firing and surface treatment. By "smooth" it is meant that there are very few fine pores on the surface and that the surface of the shell is free of any irregularities such as pits, gaps, nicks, cracks, protrusions, grooves and the like. Such surface properties are not seen in the hollow silica particles obtained by the conventional manufacturing method. The smoothness of the particles of the present invention can be measured by scanning electron microscopy and can be confirmed through oil absorption, porosity when mixed with resin, and the like.
오일 흡수율은 러브-아웃 방법(rub-out method; ASTM D281)을 이용하여 측정되었다. 이러한 방법은 뻣뻣한 퍼티(stiff putty)형 페이스트가 형성될 때까지 매끄러운 표면 상에 스패튤라를 이용하여 아마인유/실리카 혼합물을 문지름으로써 아마인유를 실리카와 혼합하는 원리를 기초로 한다. 분무될 때 감겨지는(curl) 페이스트 혼합물을 갖도록 요구되는 오일의 양을 측정함으로써, 실리카의 오일 흡수율이 계산될 수 있는데, 이는 실리카 흡착 능력을 포화시키기 위해 실리카 단위 중량 당 요구되는 오일의 부피를 나타낸다. 오일 흡수 수준이 높으면 표면의 세공이 다수 존재하거나 세공의 크기가 크다는 것을 의미하며 낮은 수준의 값은 실리카 입자의 쉘 표면에 세공이 거의 존재하지 않는다는 것을 나타낸다. 오일 흡수율은 하기 방정식으로부터 결정될 수 있다:Oil absorption was measured using the rub-out method (ASTM D281). This method is based on the principle of mixing linseed oil with silica by rubbing the linseed oil / silica mixture with a spatula on a smooth surface until a stiff putty-type paste is formed. By measuring the amount of oil required to have a paste mixture that is curled when sprayed, the oil absorption of silica can be calculated, indicating the volume of oil required per unit weight of silica to saturate the silica adsorption capacity. . High levels of oil absorption indicate that there are many pores on the surface or that the pores are large in size, while lower values indicate that there are few pores on the shell surface of the silica particles. Oil absorption can be determined from the equation:
오일흡수율 = 오일량 ㎖ / 실리카 100gOil absorption rate = oil volume ㎖ / silica 100g
4) 기공율4) Porosity
중공실리카 입자를 레진과 혼합하였을 때 중공 내부로 스며든 레진의 양으로 확인할 수 있다. 상기 중공내부로 스며든 레진의 양은 오일흡수율과 동일하게 측정하고 레진의 양이 적을 수록 내부의 중공이 유지됨을 나타낸다.When the hollow silica particles are mixed with the resin, the amount of resin permeated into the hollow interior can be confirmed. The amount of resin penetrated into the hollow is measured in the same manner as the oil absorption rate, and as the amount of the resin is smaller, the hollow inside is maintained.
즉, 입자의 표면이 매끈하고 세공이 거의 존재하지 않는 구조는, 이 중공 실리카 입자의 레진내 충진하는 경우 바인더를 구성하는 레진 또는 오일이 입자의 중공내로 스며들지 못하기 때문에 기공율이 증가되어 입자의 투명 및 낮은 열전도율을 나타내고 상기 입자를 포함한 조성물로 코팅된 단열시트의 투명 단열 성능을 높이는 것이 가능하다는 것을 의미한다.That is, the structure of the particles having a smooth surface and almost no pores increases the porosity because the resin or oil constituting the binder does not penetrate into the hollow of the particles when the hollow silica particles are filled in the resin. It means that it is possible to increase the transparent heat insulating performance of the heat insulating sheet coated with the composition containing the particles and exhibiting transparent and low thermal conductivity.
5) 입자분포 변동계수(CV 값)(단분산도)5) Particle distribution variation coefficient (CV value) (monovariance)
주사전자 현미경을 이용하여 입자를 촬영(25만배)하고, 이 화상의 25개의 입자에 대해 화상해석장치를 이용하고, 평균입자직경을 측정하여, 입자직경분포에 관한 변동계수(CV 값)를 산정하였다. 구체적으로는 입자 250개에 대해 각각의 입자 직경을 측정하여 그 값으로부터 평균 입자 직경 및 입자 직경의 표준편차를 요구해 하기 식으로부터 산정하였다. Particles were photographed (250,000 times) using a scanning electron microscope, an average particle diameter was measured using an image analyzer for 25 particles of this image, and the coefficient of variation (CV value) related to the particle diameter distribution was calculated. It was. Specifically, each particle diameter was measured with respect to 250 particles, and the standard deviation of the average particle diameter and the particle diameter was calculated from the values, and calculated from the following equation.
입자분포 변동계수(CVD (%)) = (입자 직경의 표준 편차(σ)/평균 입자 직경(Dn))×100Particle Distribution Variation Coefficient (CVD (%)) = (Standard Deviation (σ) / Average Particle Diameter (Dn) of Particle Diameter) × 100
6) 구형화도6) Spherical degree
매우 둥근형으로서의 본 발명의 실리카 입자의 특징 분석은 입자의 단면구조를 도시하는 주사전자현미경(SEM) 사진으로 측정하여 짧은 직경(DS)과 긴 직경(DL)과의 비(DS/DL)로 표현된다. 실리카 입자의 대표적인 샘플을 수집하고 주사전자현미경(SEM)으로 시험하였다. 도 2의 전자 현미경 사진으로부터 이해되는 바와 같이, 본 발명의 입자의 구형화도(S80)가 0.9 이상으로 매우 진구에 가까운 구형 형상 입자임을 알 수 있다. 본원에서 사용되는 "S80"은 하기와 같이 정의되고 계산된다. 실리카 입자 샘플의 대표예인 20,000배로 확대된 SEM 이미지는 포토 이미징 소프트웨어(photo imaging software)로 불러들여지며 각 입자의 윤곽(2차원)이 추적된다. 서로 근접하게 가깝지만 서로 부착되지 않은 입자들은 평가를 위해 별도의 입자들로 고려되어야 한다. 윤곽분석된 입자들은 이후에 칼라로 채워지며, 이미지는 입자의 둘레 및적을 결정할 수 있는 입자 특징화 소프트웨어(예를 들어, Media Cybernetics, Inc.(Bethesda, Maryland)로부터 입수 가능한 MAGE-PRO PLUS)로 불러들여진다. 입자의 구형화도는 이후에 하기 방정식에 따라 계산될 수 있다.Characterization of the silica particles of the present invention as a very round shape is measured by a scanning electron microscope (SEM) photograph showing the cross-sectional structure of the particles and expressed as the ratio of the short diameter (DS) to the long diameter (DL) (DS / DL). do. Representative samples of silica particles were collected and tested by scanning electron microscopy (SEM). As understood from the electron micrograph of FIG. 2, it can be seen that the sphericity degree (S 80 ) of the particles of the present invention is 0.9 or more, which is very spherical particles. As used herein, “S 80 ” is defined and calculated as follows. A representative 20,000-fold magnified SEM image of the silica particle sample is loaded into photo imaging software and the contour (two-dimensional) of each particle is traced. Particles close to each other but not attached to each other should be considered as separate particles for evaluation. The contoured particles are then filled with color, and the image is taken with particle characterization software (e.g. MAGE-PRO PLUS available from Media Cybernetics, Inc. (Bethesda, Maryland)) that can determine the particle's perimeter and product. It is called. The degree of sphericity of the particles can then be calculated according to the following equation.
구형화도 = 둘레2
/4π×면적Roundness = Perimeter 2 / 4π × area
상기 식에서, 둘레는 입자의 윤곽분석된 추적으로부터 유도된 소프트웨어 측정 둘레이며, 면적은 입자의 추적된 둘레 내의 소프트웨어 측정 면적이다. 상기 계산은 SEM 이미지 내에서 전체적으로 적합한 각 입자에 대해 수행된다. 이러한 값들은 이후에 값에 따라 분류되며, 이러한 값들 중 하위 20%는 버려진다. 이러한 값들 중 나머지 80%는 S80을 얻기 위해 평균화된다. 도 2 의 입자에 대한 구형도 계수(S80)는 0.98인 것으로 확인되었다. Wherein the perimeter is the software measurement perimeter derived from the contoured tracking of the particle and the area is the software measurement area within the particle's tracked perimeter. The calculation is performed for each suitable particle as a whole in the SEM image. These values are then classified according to their values, and the lower 20% of these values are discarded. The remaining 80% of these values are averaged to obtain S 80 . The sphericity coefficient S 80 for the particles of FIG. 2 was found to be 0.98.
7) 평균입자 직경 및 쉘의 두께7) Average particle diameter and shell thickness
"평균 직경"은 샘플 내 모든 입자에 대해서 평균한 직경으로서 이해된다."Average diameter" is understood as the diameter averaged over all particles in a sample.
실리카 입자의 대표적인 샘플을 수집하고 주사전자현미경(SEM)으로 실리카 입자의 직경을 측정하였다. 그리고 중공 부분의 내경은 투과 전자현미경 사진(TEM)으로 측정하였다.Representative samples of silica particles were collected and the diameter of the silica particles was measured by scanning electron microscopy (SEM). The inner diameter of the hollow portion was measured by transmission electron micrograph (TEM).
본 발명의 중공입자의 평균 직경은 일반적으로 1 μm 이하, 바람직하게는 500nm이하, 더욱 바람직하게는 100nm이하이다. 평균 직경이 1 μm 를 초과하면, 단열시트 제조시 코팅층의 두께 안에 완전히 충진될 수 없게 되어 충진율이 저하되므로 목표로 하는 단열효과를 달성할 수 없다.The average diameter of the hollow particles of the present invention is generally 1 μm or less, preferably 500 nm or less, and more preferably 100 nm or less. If the average diameter exceeds 1 μm, the filling rate may not be completely filled in the thickness of the coating layer during the production of the insulating sheet, and thus the filling rate may be lowered.
본 발명의 중공실리카 입자는 평균 직경이 1㎛ 이하, 중공 부분의 내경이 입자의 평균 직경의 10~90 % 인 입자이다. 평균직경 100nm 의 입자의 경우 중공부분의 내경은 40nm 이상일 경우 단열효과가 좋았다. 그리고 쉘의 두께는 평균입자 직경의 5~45% 이어야 반응시 안정적이기 때문에 중공실리카 입자를 단열재료로서 이용할 수 있다.The hollow silica particles of the present invention are particles having an average diameter of 1 µm or less and an inner diameter of the hollow portion of 10 to 90% of the average diameter of the particles. In the case of particles with an average diameter of 100 nm, the inner diameter of the hollow portion was good at more than 40 nm. In addition, since the thickness of the shell is 5 to 45% of the average particle diameter and is stable during the reaction, hollow silica particles may be used as a heat insulating material.
8) 관능기8) functional group
또한 상기 입자는 페닐계 실란을 원료물질로 할 경우 표면에 -OH기 및 페닐기를 작용기로서 가지며 페닐기로 인하여 다른 실리카 입자에 비하여 굴절률이 높아져서 레진과 비슷한 굴절률을 가지게 되어 레진과 굴절률 차이를 최소화할 수 있어서 투명한 단열시트를 만들 수 있다.In addition, when the phenyl silane is used as a raw material, the particles have -OH groups and phenyl groups as functional groups, and the phenyl group has a refractive index higher than that of other silica particles, and thus has a refractive index similar to that of resin, thereby minimizing the difference between the resin and the refractive index. Therefore, a transparent insulation sheet can be made.
중공실리카 입자와 레진을 포함하는 코팅용 조성물Coating composition comprising hollow silica particles and resin
본 발명의 또 다른 실시예로서, 기재에 투명 단열 코팅층을 형성하기 위한 조성물이 제공된다. 본 발명의 조성물은 앞서 설명한 바와 같은 복합적 물성을 지니는 중공실리카 입자와 레진, 유기용매 등을 혼합하여 제조할 수 있다.In still another embodiment of the present invention, a composition for forming a transparent heat insulating coating layer on a substrate is provided. The composition of the present invention may be prepared by mixing hollow silica particles having a complex physical property as described above, resin, an organic solvent and the like.
본 발명의 전체 조성물 중의 중공실리카 입자는 30~80 중량% 가 바람직하다. 30중량% 보다 적은 경우에는 코팅층의 단열성능을 충분히 달성할 수 없고, 80중량% 를 초과할 경우에는 투명성이 감소하며 레진의 함량이 적어져서 경화효율이 떨어지기 때문이다.As for the hollow silica particle in the whole composition of this invention, 30 to 80 weight% is preferable. If less than 30% by weight can not sufficiently achieve the thermal insulation performance of the coating layer, if it exceeds 80% by weight because the transparency is reduced and the content of the resin is less hardening efficiency is lowered.
그리고 본 발명의 전체 조성물 중의 레진은 20-70 중량% 으로 혼합할 수 있다. 상기 실리카 입자와의 굴절률을 조절하여 투명한 조액을 만들기 위해서는 레진의 굴절률은 1.5 미만이 바람직하며, 바람직하게는 UV경화성 수지 중에서 중공 입자와 굴절률 유사한 수지를 선택하여 사용한다.And the resin in the total composition of the present invention can be mixed in 20-70% by weight. The refractive index of the resin is preferably less than 1.5 to adjust the refractive index with the silica particles, and preferably, a resin similar to the refractive index with the hollow particles is selected from among UV curable resins.
UV 경화성 수지들의 예는 우레탄 수지, 아크릴 수지, 폴리에스테르 수지, 에폭시 수지 및 이들의 혼합물들을 포함하나 이에 한정되는 것은 아니고, 열전도율이 낮은 수지로서 아크릴레이트계 고분자 수지, 폴리이미드(PI) 수지, C-PVC수지, PVDF 수지(내열온도 300℃ 정도), ABS수지, CTFE 등으로부터 1종 이상 또는 이들을 혼합하여 사용할 수 있다 .Examples of UV curable resins include, but are not limited to, urethane resins, acrylic resins, polyester resins, epoxy resins, and mixtures thereof, and are resins having low thermal conductivity, such as acrylate-based polymer resins, polyimide (PI) resins, C -It can use 1 or more types or mixed from PVC resin, PVDF resin (heat-resistant temperature about 300 degreeC), ABS resin, CTFE, etc.
그리고 상기 조성물에는 하드코팅제, UV 차단제, 또는 IR 차단제를 추가로 포함할 수 있으며, 상기 첨가제는 공지의 것을 사용하며 그 외에 필요한 경우 추가적 기능을 부여하는 첨가제를 더 포함할 수 있다.In addition, the composition may further include a hard coating agent, a UV blocker, or an IR blocker, and the additive may further include an additive that uses a known one and additionally provides additional functions if necessary.
본원에서 사용되는 "조성물"은 기재에 적용 후 고체 필름으로 전환되는, 실리카를 포함하는 어떠한 액체, 액화가능 또는 매스틱(mastic) 조성물을 나타낸다. 상기 조성물은 어떠한 구조물의 표면의 내부 또는 외부에 적용될 수 있다.As used herein, “composition” refers to any liquid, liquefiable or mastic composition comprising silica that is converted to a solid film after application to a substrate. The composition can be applied inside or outside the surface of any structure.
조성물은 중공 실리카 입자생성물을 포함하며 본원에 기재된 실리카 생성물은 조성물의 단열, 투명성 부여에 유용한, 경도, 구형화도, 굴절률, 오일흡수율, 열전도율 등을 포함하는 특이적인 입자 물성을 지닌다. 상기 조성물은 어떠한 코팅 조성물일 수 있으며, 어떠한 기재에 적용될 수 있다. 조성물은 코팅에 존재할 수 있는 폴리머 및 안료 매트릭스의 무결성을 유지시키면서 우수한 투명성 및 단열성을 나타냄에 따라 단열시트, 유리창 등의 주택, 건축분야, 자동차 창 등의 코팅으로서 유용하다. 또한, 본원에 기재된 조성물은 우수한 단열, 투명 특성을 나타낼 뿐만 아니라 포뮬레이션의 물리적 특성을 증진시킴에 따라 플라스틱 화합물 및 마스터배치(masterbatch) 포뮬레이션에 유용하다.The composition comprises a hollow silica particle product and the silica product described herein has specific particle properties including hardness, sphericity, refractive index, oil absorption rate, thermal conductivity, and the like, which are useful for adiabatic, imparting transparency to the composition. The composition can be any coating composition and can be applied to any substrate. The compositions are useful as coatings for houses, constructions, automotive windows, and the like, such as insulation sheets, glass windows, as they exhibit excellent transparency and thermal insulation while maintaining the integrity of the polymer and pigment matrix that may be present in the coating. In addition, the compositions described herein are useful in plastic compound and masterbatch formulations, as well as exhibiting good thermal and transparent properties as well as enhancing the physical properties of the formulation.
단열시트Insulation Sheet
본 발명의 또 다른 실시태양으로, 기재를 준비하고, 상기 기재에 본 발명의 조성물을 적층 또는 도포하여 UV 경화시켜서 코팅층을 형성함으로써 단열시트를 제조할 수 있다. 코팅방법은 당해 기술 분야에서 공지된 적당한 임의의 코팅 방법을 사용할 수 있고 공지된 방법의 예로는 그라비아 코팅, 오프셋 그라비아 코팅, 2 및 3개의 롤 가압 코팅(roll pressure coating),2개 및 3개의 롤리버스 코팅(roll reverse coating), 침지 코팅, 1 및 2개의 롤키스 코팅, 트레일링 블레이드 코팅(trailing balde coating), 니프 코팅(nip coating), 폴렉소그라픽 코팅(flexographic coating), 인버티드 나이프 코팅(inverted knife coating), 폴리싱 바아 코팅(polishing bar coating) 및 선권득터 코팅(wire wound doctor coating)을 포함한다. 코팅시킨후 코팅층을 UV 광선으로 경화시키기며 경화처리는 보통 약 1 내지 약 60초의 비교적 짧은 기간의 시간에 완결된다.In another embodiment of the present invention, a heat insulating sheet may be prepared by preparing a substrate, and laminating or applying the composition of the present invention to the substrate to UV-cure to form a coating layer. The coating method may use any suitable coating method known in the art, and examples of known methods are gravure coating, offset gravure coating, two and three roll pressure coating, two and three rolleys. Roll reverse coating, immersion coating, 1 and 2 roll kiss coating, trailing balde coating, nip coating, flexographic coating, inverted knife coating ( inverted knife coating, polishing bar coating and wire wound doctor coating. After coating, the coating layer is cured with UV light and curing is usually completed in a relatively short period of time from about 1 to about 60 seconds.
상기 조성물에 의해 코팅층을 형성하는 기재는 특히 한정되지 않지만, 예를 들어, 글라스로 대표되는 무기계 기재, 금속기재, 폴리카보네이트나 폴리에틸렌테레프탈레이트, 아크릴수지, 불소수지, 트리아세틸셀루로오스, 폴리이미드 수지로 대표되는 유기계 기재를 들 수 있다. 바람직하게는 폴리머 물질의 시트, 섬유, 필름, 또는 유리 등이며, 특히 필름 기재는 PET, PE 등 통상적으로 적용될 수 있는 필름일 수 있다. 같은 기재는 단독이어도 상관없으며, 이종재료가 적층되어 있는 것이어도 상관없다. 또한, 기재표면에 미리 다른 층이 적어도 1층 이상이 형성되어 있어도 상관없다. 예를 들어, 다른 층으로서, 자외선 경화형 하드코드층, 전자선 경화형 하드코드층, 열경화형 하드코드층을 들 수 있다.Although the base material which forms a coating layer by the said composition is not specifically limited, For example, the inorganic base material represented by glass, a metal base material, a polycarbonate or polyethylene terephthalate, an acrylic resin, a fluororesin, a triacetyl cellulose, a polyimide The organic base material represented by resin is mentioned. It is preferably a sheet of a polymer material, a fiber, a film, a glass or the like, in particular the film substrate may be a film that can be commonly applied, such as PET, PE. The same base material may be independent, and the heterogeneous material may be laminated | stacked. Moreover, at least 1 layer or more of another layer may be previously formed in the base material surface. For example, an ultraviolet curable hard cord layer, an electron beam hardening type hard cord layer, and a thermosetting hard cord layer are mentioned as another layer.
상기 코팅층의 두께는 제품 및 용도에 따라 임의로 선택하여 조절할 수 있으며 바람직하게는 1~500㎛의 두께로 코팅하는 것이 좋으며 상기 범위를 벗어날 경우에는 열전도율이 높아지거나 가시광선 투과율이 떨어질 수 있다. 코팅층은 UV 차단 및 IR 차단기능을 추가로 가질 수 있으며, 상기 코팅층에 별도로 UV 차단층 및 IR 차단층을 적층하여 제조할 수도 있다. 본 발명에 따른 조성물을 이용한 단열시트는 입자의 충진율이 30-80% 이며 가시광선 투과율 70% 이상이고, 열전도율 0.1w/m.k 미만을 나타내며, 따라서 투명 단열 특성을 갖는 것이 가능하다.The thickness of the coating layer can be arbitrarily selected and adjusted according to the product and the use, and preferably coated with a thickness of 1 ~ 500㎛, if out of the above range may increase the thermal conductivity or the visible light transmittance. The coating layer may further have a UV blocking and IR blocking function, and may be prepared by laminating a UV blocking layer and an IR blocking layer separately on the coating layer. The insulating sheet using the composition according to the present invention has a filling rate of 30-80% and a visible light transmittance of 70% or more, and exhibits a thermal conductivity of less than 0.1w / m.k, thus enabling transparent insulating properties.
이하에서 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명을 구체적으로 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하는 것이 아님은 당업자에게 있어서 명백한 사실이며, 본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for explaining the present invention in detail, and it is obvious to those skilled in the art that the scope of the present invention is not limited, and all simple modifications and changes of the present invention are included in the scope of the present invention. It can be seen as.
실시예 및 비교예에 있어서의 중공실리카 입자 및 단열시트의 각종 물성은, 상기의 기재된 방법에 의해 측정하였다. Various physical properties of the hollow silica particles and the heat insulating sheet in the Example and the comparative example were measured by the method as described above.
실시예 1Example 1
250ml 플라스크에 물(150ml), 페닐트리메톡시실란(PTMS)(1ml)을 넣은 후, 여기에 질산(60%, 0.2ml, 2.6mmol)을 첨가하고 60 ℃에서 4분 동안 교반하였다. 이어, 반응용액에 암모니아수(30%, 10ml, 308mmol)를 첨가하고 60 ℃에서 1시간 30분 동안 교반하여 쉘을 형성하고 에탄올로 쉘 내부를 에칭하였다. 생성된 반응물을 여과 및 120℃ 에서 건조시켜, 중공 실리카 입자를 얻었다.Water (150 ml) and phenyltrimethoxysilane (PTMS) (1 ml) were added to a 250 ml flask, and nitric acid (60%, 0.2 ml, 2.6 mmol) was added thereto and stirred at 60 ° C. for 4 minutes. Then, ammonia water (30%, 10ml, 308mmol) was added to the reaction solution, and stirred at 60 ° C. for 1 hour and 30 minutes to form a shell, and the inside of the shell was etched with ethanol. The resulting reaction was filtered and dried at 120 ° C. to obtain hollow silica particles.
도 2의 투과 전자현미경 사진(TEM)에 나타난 바와 같이 생성된 입자들은 단분산된 구형의 입자이고 내부에 밝게 보이는 중공이 형성된 중공입자이다. 입자들의 굴절율, 열전도율, 오일 흡수율, 레진과 혼합시에 기공율, 입자분포 변동계수(CV 값)를 표 1에 나타내었다.As shown in the transmission electron micrograph (TEM) of FIG. 2, the generated particles are monodisperse spherical particles and hollow particles having bright hollows therein. Table 1 shows the refractive index, thermal conductivity, oil absorption rate, porosity when mixing with resin, and particle distribution variation coefficient (CV value) of the particles.
실시예 2Example 2
상기 실시예 1에서 실란을 페닐트리메톡시실란(PTMS)(0.8ml)과 TEOS(0.2ml)를 혼합하여 사용한 것 이외에는 실시예 1과 동일하게 중공 실리카 입자를 얻었으며, 생성된 입자의 물성을 표 1에 나타내었다.Hollow silica particles were obtained in the same manner as in Example 1 except that the silane was used by mixing phenyltrimethoxysilane (PTMS) (0.8 ml) and TEOS (0.2 ml) in Example 1, and the physical properties of the resulting particles were obtained. Table 1 shows.
실시예 3Example 3
실시예 3은 상기 실시예 1에서 산성용액 첨가후 교반시간을 각각 9분으로 하여 입자를 제조하였다. 생성된 입자는 도 4에서와 같이 구형의 단분산된 중공입자를 형성하였으며, 물성은 표 1에 나타내었다.In Example 3, particles were prepared by adding an acidic solution in Example 1 to 9 minutes of stirring time. The resulting particles formed spherical monodispersed hollow particles as shown in Figure 4, the physical properties are shown in Table 1.
실시예 4Example 4
실시예 4는 상기 실시예 1에서 소니케이션을 추가로 실시하여 입자를 제조하였다. 생성된 입자는 도 5에서와 같이 구형의 단분산된 중공입자를 형성하였으며 실시예 3에서의 입자들보다 표면의 불순물이 거의 없이 매끈하고 진구의 형태를 나타내었다. 물성은 표 1에 나타내었다.Example 4 was further subjected to the sonication in Example 1 to prepare a particle. The resulting particles formed spherical monodisperse hollow particles as shown in FIG. 5 and exhibited a smooth and spherical shape with almost no surface impurities than the particles in Example 3. Physical properties are shown in Table 1.
비교예 1~2Comparative Examples 1 and 2
비교예 1~2는 상기 실시예 1에서 반응의 온도를 각각 30℃, 85 ℃에서 진행한 것 이외에는 실시예 1과 동일하게 반응을 진행하였다.In Comparative Examples 1 and 2, the reaction proceeded in the same manner as in Example 1 except that the reaction temperature was advanced at 30 ° C. and 85 ° C., respectively.
비교예 1에서는 입자가 형성되지 않았으며, 비교예 2에서는 입자가 형성되었으나 도 3에서와 같이 중공이 존재하지 않았다.Particles were not formed in Comparative Example 1, particles were formed in Comparative Example 2, but there was no hollow as shown in FIG.
비교예 3Comparative Example 3
비교예 3은 상기 실시예 1에서 기재된 산성용액 첨가후 15분 동안 교반하였고 반응 결과를 표 1에 나타내었다. 최종입자는 겔화되어 중공입자가 생성되지 않았으며, 이는 교반시간이 지나치게 길어짐으로써 작은 입자들이 응집하였기 때문인 것으로 보인다.Comparative Example 3 was stirred for 15 minutes after the addition of the acidic solution described in Example 1 and the reaction results are shown in Table 1. The final particles gelled and did not produce hollow particles, probably due to the aggregation of small particles due to the excessively long stirring time.
비교예 4Comparative Example 4
비교예 4는 상기 실시예 1에서 실란의 농도를 0.5몰% 로 한 것 이외에는 실시예 1과 동일하게 중공 실리카 입자를 얻었다. 그 결과 중공입자는 생성되었으나 입자의 크기가 1㎛ 를 초과하였고 단열시트 제조에 적합한 물성을 나타내지 못하였다.In Comparative Example 4, hollow silica particles were obtained in the same manner as in Example 1, except that the concentration of silane was 0.5 mol% in Example 1. As a result, hollow particles were produced, but the size of the particles exceeded 1 μm and did not show suitable physical properties for the insulation sheet production.
표 1 | 중공입자형성 | 굴절율 | 열전도율(W/m·K) | CV(%) | 평균입자직경 | 오일흡수율(㎖/g) | 기공율(%) |
실시예 1 | 형성 | 1.36 | 0.03 | 3 | 100 nm | 0.018 | 90 |
실시예 2 | 형성 | 1.34 | 0.03 | 3.8 | 180 nm | 0.015 | 95 |
실시예 3 | 형성 | 1.29 | 0.03 | 4 | 100 nm | 0.018 | 92 |
실시예 4 | 형성 | 1.37 | 0.03 | 3 | 200 nm | 0.021 | 93 |
비교예 1 | 형성 안함 | - | - | - | - | - | - |
비교예 2 | 형성 안함 | 1.45 | 0.043 | 4 | 100nm | - | - |
비교예 3 | 형성 안함 | - | - | | - | - | - |
비교예 4 | 형성 | 1.36 | 0.047 | - | 2.4㎛ | 0.019 | - |
Table 1 | Hollow particle formation | Refractive index | Thermal Conductivity (W / mK) | CV (%) | Average particle diameter | Oil absorption rate (ml / g) | Porosity (%) |
Example 1 | formation | 1.36 | 0.03 | 3 | 100 nm | 0.018 | 90 |
Example 2 | formation | 1.34 | 0.03 | 3.8 | 180 nm | 0.015 | 95 |
Example 3 | formation | 1.29 | 0.03 | 4 | 100 nm | 0.018 | 92 |
Example 4 | formation | 1.37 | 0.03 | 3 | 200 nm | 0.021 | 93 |
Comparative Example 1 | Do not form | - | - | - | - | - | - |
Comparative Example 2 | Do not form | 1.45 | 0.043 | 4 | 100 nm | - | - |
Comparative Example 3 | Do not form | - | - | | - | - | - |
Comparative Example 4 | formation | 1.36 | 0.047 | - | 2.4㎛ | 0.019 | - |
실시예 5Example 5
실시예 1에 따라 제조된 중공실리카 입자를 전체 조성물의 60중량%, 폴리이미드(PI) 수지를 30중량%, 나머지 유기용매 및 개시제를 혼합하여 조성물 제조하였다. 제조된 조성물은 PET 필름의 편면에 바코팅으로 도포하면서, UV램프를 이용하여 20초간 조사해 경화시키고 두께 125 ㎛의 코팅층이 형성된 단열시트를 제조하였다. 상기 단열시트의 물성을 측정한 결과를 표 2에 나타내었다.The hollow silica particles prepared according to Example 1 were prepared by mixing 60% by weight of the total composition, 30% by weight of polyimide (PI) resin, and the remaining organic solvent and initiator. The prepared composition was applied to one side of the PET film by bar coating, and irradiated with UV for 20 seconds using a UV lamp to prepare a heat insulating sheet having a coating layer having a thickness of 125 μm. Table 2 shows the results of measuring physical properties of the insulation sheet.
실시예 6, 7Examples 6 and 7
실시예 6, 7은 실시예 5에서 중공실리카 입자를 전체 조성물의 각각 30중량%, 80중량% 비율로 혼합하여 조성물을 제조한 후 단열시트를 제조하였으며, 물성을 측정한 결과를 표 2에 나타내었다.Examples 6 and 7 were prepared by mixing the hollow silica particles in Example 5 at a ratio of 30% by weight and 80% by weight of the total composition, respectively, to prepare a heat insulating sheet, and the results of measuring physical properties are shown in Table 2. It was.
비교예 5, 6Comparative Examples 5 and 6
실시예 5에서 중공실리카 입자의 혼합비율을 전체 조성물의 각각 20중량%, 90중량%로 하여 조성물을 제조하고, 중공입자의 함량이 50% 이상이 되면 조액의 점도가 높아 코팅이 어렵기 때문에 유기용제인 MEK 를 사용하여 점도를 낮게 조절한 후 단열시트를 제조하여 물성을 측정한 결과를 표 2에 나타내었다.In Example 5, the composition was prepared using the mixing ratio of the hollow silica particles in 20% by weight and 90% by weight of the total composition, respectively, and when the content of the hollow particles was 50% or more, the viscosity of the crude liquid was high and the coating was difficult. Table 2 shows the results of measuring the physical properties of the insulating sheet after adjusting the viscosity by using a solvent MEK.
비교예 7Comparative Example 7
종래의 주형 합성법을 사용하여 제조한 입자의 직경이 200nm이고 중공 부분의 내경이 100 nm 인 중공입자를 사용하여 실시예 5와 동일하게 단열시트를 제조하였고 단열시트의 물성을 측정한 결과를 표 2에 나타내었다. 단열시트는 코팅 및 UV 경화시에 입자가 조성물 내에 분산되지 못하여 수지로부터 빠져나와 코팅층을 형성할 수 없었다.Insulation sheet was prepared in the same manner as in Example 5 using hollow particles having a diameter of 200 nm and a hollow portion of 100 nm in the hollow part prepared using a conventional mold synthesis method. Shown in The insulating sheet could not be dispersed in the composition during coating and UV curing to escape from the resin to form a coating layer.
상기 실시예 5~7, 비교예 5~7에 있어서, 중공입자의 혼합율이 50%를 넘으면 조액의 점도가 너무 높기 때문에 BP가 낮은 유기 용제를 첨가하여 점도를 낮춘 후 코팅을 진행하고 1차 건조하여 용제를 날리고 UV 경화를 진행하였다.In Examples 5 to 7 and Comparative Examples 5 to 7, when the mixing ratio of the hollow particles exceeds 50%, since the viscosity of the crude liquid is too high, an organic solvent having a low BP is added to lower the viscosity, followed by coating and primary drying. The solvent was blown out and UV curing was performed.
표 2 | 입자 혼합율(%) | 희석용제 MEK(중공입자 대비 %) | 가시광선 투과율(%) | 열전도율 (W/m·K) |
실시예 5 | 60 | 10 | 90 | 0.05 |
실시예 6 | 30 | - | 92 | 0.08 |
실시예 7 | 80 | 30 | 87 | 0.03 |
비교예 5 | 90 | 40 | 60 | 0.03 |
비교예 6 | 20 | - | 80 | 0.23 |
비교예 7 | 60 | 10 | - | - |
TABLE 2 | Particle Mixing Rate (%) | Diluted solvent MEK (% of hollow particles) | Visible light transmittance (%) | Thermal Conductivity (W / mK) |
Example 5 | 60 | 10 | 90 | 0.05 |
Example 6 | 30 | - | 92 | 0.08 |
Example 7 | 80 | 30 | 87 | 0.03 |
Comparative Example 5 | 90 | 40 | 60 | 0.03 |
Comparative Example 6 | 20 | - | 80 | 0.23 |
Comparative Example 7 | 60 | 10 | - | - |
표 2에서와 같이 중공입자의 혼합비율이 총 조성물에서 30중량% 미만이면 가시광 투과율이 높아서 투명하지만 공기 함유량이 적어서 단열효율이 낮아지고, 80%보다 많으면 가시광선 투과율이 낮아져서 불투명하고 경화수지의 양이 적어져 경화효율 떨어짐을 알 수 있다.As shown in Table 2, when the mixing ratio of the hollow particles is less than 30% by weight in the total composition, the visible light transmittance is high and transparent, but the air content is low, so that the thermal insulation efficiency is low. It can be seen that there is less curing efficiency.
또한 비교예 7에 의해 제조된 입자는 표면에 크기가 큰 세공들이 존재하였다. UV 경화성 수지와 혼합시 입자표면의 세공을 통하여 수지가 중공내로 침투하였고, 코팅 및 UV 경화시에 입자가 조성물 내에 분산되지 못하고 수지로부터 빠져나와버림으로써 코팅층을 형성할 수 없었다. 이로부터 종래의 중공실리카 입자로는 본 발명의 특성을 가지는 투명단열시트를 제조가 어려운 것으로 판단된다.In addition, the particles produced by Comparative Example 7 had large pores on the surface. The resin penetrated into the hollow through the pores of the particle surface when mixed with the UV curable resin, and during coating and UV curing, the particles could not be dispersed in the composition and escaped from the resin to form a coating layer. From this, it is judged that it is difficult to manufacture a transparent insulating sheet having the characteristics of the present invention with conventional hollow silica particles.