WO2015182546A1 - Polyester resin composition, master pellet, polyester film, back sheet for solar cell module, and solar cell module - Google Patents

Polyester resin composition, master pellet, polyester film, back sheet for solar cell module, and solar cell module Download PDF

Info

Publication number
WO2015182546A1
WO2015182546A1 PCT/JP2015/064890 JP2015064890W WO2015182546A1 WO 2015182546 A1 WO2015182546 A1 WO 2015182546A1 JP 2015064890 W JP2015064890 W JP 2015064890W WO 2015182546 A1 WO2015182546 A1 WO 2015182546A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
general formula
group
polyester
resin composition
Prior art date
Application number
PCT/JP2015/064890
Other languages
French (fr)
Japanese (ja)
Inventor
福田 誠
上平 茂生
圭 原田
山▲崎▼ 一樹
倫弘 小川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016523483A priority Critical patent/JP6341998B2/en
Publication of WO2015182546A1 publication Critical patent/WO2015182546A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyester resin composition containing an imino ether compound, a master pellet formed using the polyester resin composition, and a polyester film. Furthermore, this invention relates to a solar cell module provided with the backsheet for solar cell modules which has a polyester film, and a backsheet for solar cell modules.
  • a solar cell module generally has a structure in which glass or a front sheet / transparent filling material (sealing material) / solar cell element / sealing material / back sheet are laminated in this order from the light-receiving surface side where sunlight enters. is doing.
  • a solar cell element is generally structured to be embedded in a resin (sealing material) such as EVA (ethylene-vinyl acetate copolymer) and further to a solar cell protective sheet.
  • the protection sheet for solar cells, particularly the back sheet for the solar cell module, which is the outermost layer is supposed to be placed in an environment where it is exposed to outdoor wind and rain, direct sunlight, etc. for a long period of time. Therefore, excellent weather resistance (moisture and heat resistance, heat resistance) is required.
  • polyester film particularly a polyethylene terephthalate (hereinafter referred to as PET) film has been used for a back sheet for a solar cell module.
  • PET polyethylene terephthalate
  • Polyester films are widely used industrially because they have excellent heat resistance, mechanical properties, chemical resistance, and the like.
  • a white polyester film to which a white pigment is added may be used for the solar cell module backsheet in order to increase concealability and sunlight reflectance (Patent Documents 1 and 2).
  • polyester film has poor hydrolysis resistance, the molecular weight decreases due to hydrolysis, and embrittlement progresses, resulting in a decrease in mechanical properties. For this reason, practical strength could not be maintained over a long period of time as a back sheet for solar cells.
  • Patent Document 3 discloses a polyester film containing a carbodiimide compound or a cyclic imino ether compound.
  • Patent Document 3 it is proposed to improve the dimensional stability and hydrolysis resistance of a polyester by reacting a carbodiimide compound and a cyclic imino ether compound with a carboxylic acid at the terminal of the polyester.
  • an oxazoline compound or an oxazine compound is used as the cyclic imino ether compound.
  • Patent Documents 1 and 2 the concealability and reflectance of visible light can be increased by mixing a white pigment with a polyester film.
  • Patent Documents 1 and 2 it is also studied to increase the hydrolysis resistance of the white polyester film by adjusting the layer structure and the amount of white pigment added.
  • the inventors have found that the polyester films disclosed in Patent Documents 1 and 2 have insufficient hydrolysis resistance.
  • hydrolysis tends to proceed more easily than the polyester film to which the white pigment is not added, and it is the present inventors that the conventional method cannot sufficiently suppress hydrolysis. It became clear by examination.
  • a cyclic imino ether compound as an end-capping agent that is considered to generate little volatilization gas.
  • the cyclic imino ether compound is known to self-polymerize, and it has been clarified by the present inventors that the self-polymerized cyclic imino ether compound exists as a gel component in the polyester resin. Such a gel component raises the viscosity of the polyester resin, which causes a problem of deteriorating the surface state of the polyester film.
  • the present inventors have proceeded with a study for the purpose of providing a polyester film having both hydrolysis resistance and visible light hiding property.
  • the inventors of the present invention have studied for the purpose of suppressing the generation of irritating gas in the production process of a polyester film having both hydrolysis resistance and visible light hiding property.
  • the inventors of the present invention have studied in the production process of the polyester film for the purpose of suppressing the increase in the viscosity of the polyester resin composition and providing a polyester film having a good surface shape.
  • the present inventors have used an imino ether compound having a specific structure as an end-capping agent, and by adding a pigment, the hydrolysis resistance of the polyester film It was found that both the visible light concealment property can be improved. Furthermore, it has been found that by using an imino ether compound having a specific structure as an end-capping agent, generation of an irritating gas in the production process of a polyester film can be suppressed, and a polyester film having a good film surface shape can be obtained. It was. Specifically, the present invention has the following configuration.
  • a polyester resin composition comprising a compound represented by the following general formula (1), a pigment, and a polyester;
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring.
  • R 3 is represented by the following general formula (2)
  • the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent.
  • R 31 , R 32 and R 33 may be connected to each other to form a ring.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • N represents an integer of 0 to 5.
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom.
  • the p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  • R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • P represents an integer of 2 to 4
  • L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom.
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • [12] A polyester film formed using the polyester resin composition according to any one of [1] to [10].
  • the polyester film according to [12] containing 0.1 to 2% by mass of the compound represented by the general formula (1) with respect to the total mass of the polyester film.
  • a solar cell module comprising the solar cell module backsheet according to [16].
  • a polyester film having both hydrolysis resistance and visible light hiding property can be provided. Moreover, according to this invention, generation
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the imino ether compound used in the present invention is represented by the following general formula (1).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring.
  • the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • N represents an integer of 0 to 5.
  • * represents a position bonded to a nitrogen atom.
  • the alkyl group represented by R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group represented by R 2 may be linear or branched. Further, the alkyl group represented by R 2 may be a cycloalkyl group.
  • Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group.
  • the alkyl group represented by R 2 may further have a substituent.
  • substituents include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • the number of carbon atoms of the alkyl group represented by R 2 may indicate the number of carbon that does not contain a substituent group.
  • the aryl group represented by R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group represented by R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable.
  • the aryl group represented by R 2 may further have a substituent.
  • said substituent said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict
  • the number of carbon atoms of the aryl group represented by R 2 is the number of carbon atoms not including a substituent.
  • the alkoxy group represented by R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 6 carbon atoms. Is particularly preferred.
  • the alkoxy group represented by R 2 may be linear, branched or cyclic.
  • Preferable examples of the alkoxy group represented by R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 2 .
  • the alkoxy group represented by R 2 may further have a substituent.
  • said substituent can be illustrated similarly, However, as long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict
  • R 3 represents an alkyl group represented by the general formula (2) or an aryl group represented by the general formula (3).
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. When R 31 , R 32 and R 33 are substituents, they may be linked to each other to form a ring. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • R 31 , R 32 and R 33 may be all hydrogen atoms or the same substituent or different substituents.
  • the alkyl group represented by the general formula (2) may be linear or branched.
  • the alkyl group represented by the general formula (2) may be a cycloalkyl group.
  • R 41 represents a substituent, and n represents an integer of 0 to 5. When n is 2 or more, R 41 may be the same or different. In addition, as a substituent, said substituent can be illustrated similarly. N is more preferably from 0 to 3, and further preferably from 0 to 2.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • the alkyl group and aryl group can be exemplified similarly an alkyl group and aryl group R 2 can be taken.
  • R 2 , R 3 , R 11 , R 12 and R 13 are preferably not bonded to form a ring, but R 2 , R 3 , R 11 , R 12 and R 13 are bonded to each other to form a ring. May be.
  • R 41 and at least one of R 11 to R 13 may combine to form a ring, and a benzene ring and R 11 to R 13 A ring containing any of the above may form a condensed ring.
  • R 41 and at least one of R 11 to R 13 are not bonded to form a ring.
  • R 3 when R 3 is represented by the general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 3 is represented by the above general formula (2), the bond formed by one of R 11 to R 13 and one of R 31 to R 33 is a bond having two or more linking atoms, and a double bond A bond is preferred.
  • R 3 is represented by the general formula (2), it is preferable that at least one of R 11 to R 13 and at least one of R 31 to R 33 are not bonded to form a ring.
  • General formula (1) may include a repeating unit.
  • at least one of R 2 , R 3 or R 11 to R 13 is a repeating unit, and this repeating unit preferably includes an imino ether part.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (4).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (5).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5
  • m represents an integer of 0 to 5.
  • R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R 41 is the same as that in the general formula (3), and the preferred range is also the same. Incidentally, it is possible to illustrate the same substituents as R 41 in the R 21 also, the general formula (3).
  • n is preferably 0 to 3, and more preferably 0 to 2.
  • m is preferably 0 to 3, and more preferably 0 to 2.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (6).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom.
  • the p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  • R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • L 1 may have an alkylene part that may have a substituent, a cycloalkylene part that may have a substituent, or a substituent at the terminal of the bond with the carbon atom.
  • a p-valent group which is an arylene part or an alkoxylene part which may have a substituent is represented.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of the divalent group include an alkylene group that may have a substituent, a cycloalkylene group that may have a substituent, an arylene group that may have a substituent, and a substituent.
  • an alkoxylene group which may be used is an alkylene group that may have a substituent, a cycloalkylene part that may have a substituent, an arylene group that may have a substituent, and a substituent.
  • the bond terminal to the carbon atom has an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, an arylene part which may have a substituent, or a substituent.
  • a partial structure such as —SO 2 —, —CO—, a substituted or unsubstituted alkylene part, a substituted or unsubstituted alkenylene part, an alkynylene part, a substituted or unsubstituted phenylene part, And a group containing at least one selected from a substituted or unsubstituted biphenylene moiety, a substituted or unsubstituted naphthylene moiety, —O—, —S— and —SO—.
  • trivalent group examples include, for example, a group obtained by removing one hydrogen atom from those having a substituent among the groups listed as examples of the divalent group.
  • tetravalent group examples include, for example, a group obtained by removing two hydrogen atoms from those having a substituent among the groups listed as examples of the divalent group.
  • a compound having two or more imino ether moieties in one molecule can be obtained, and a more excellent end-capping effect can be exhibited. Furthermore, by using a compound having two or more imino ether moieties in one molecule, the imino ether value (total molecular weight / number of functional groups of imino ether) can be lowered, and the imino ether compound and the terminal carboxyl group of the polyester can be efficiently produced. Can be reacted.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (7).
  • R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • P represents an integer of 2 to 4
  • L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
  • R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • L 2 represents a p-valent group whose bond terminal to the nitrogen atom is an arylene part that may have a substituent or a cycloalkylene part that may have a substituent.
  • L 2 is preferably a p-valent group whose bond terminal to the nitrogen atom is an arylene moiety that may have a substituent.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of L 2 include an arylene group which may have a substituent and a cycloalkylene group which may have a substituent.
  • the bond terminal to the nitrogen atom is an arylene moiety which may have a substituent or a cycloalkylene moiety which may have a substituent, and as a partial structure, —SO 2 —, —CO—, Substituted or unsubstituted alkylene part, substituted or unsubstituted alkenylene part, alkynylene part, substituted or unsubstituted phenylene part, substituted or unsubstituted biphenylene part, substituted or unsubstituted naphthylene part, -O-, -S- And a group containing at least one selected from —SO—.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (8).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • R 2 are each as agreed in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part.
  • the alkylene part of L 3 part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of L 3 include an alkylene group.
  • the bond terminal to the oxygen atom is an alkylene moiety
  • the partial structure includes —SO 2 —, —CO—, a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, an alkynylene group, substituted or unsubstituted And a group containing at least one selected from a substituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, —O—, —S— and —SO—.
  • the molecular weight per iminoether part of the iminoether compound is preferably 1000 or less, more preferably 750 or less, and even more preferably 500 or less. By setting the molecular weight per imino ether part within this range, it is possible to seal the terminal carboxylic acid group of the polyester with a low addition amount.
  • the molecular weight of the whole imino ether compound is preferably 300 or more, and more preferably 400 or more. By setting the molecular weight of the imino ether within this range, volatilization can be more effectively suppressed.
  • the imino ether compound is preferably a bifunctional or higher functional compound, and more preferably a bifunctional, trifunctional or tetrafunctional compound from the viewpoint of ease of synthesis.
  • the functional number represents the number of imino ether parts contained in the compound
  • the bifunctional imino ether compound means a compound containing two imino ether parts.
  • Chemical modification of the terminal carboxyl group of the polyester can be performed by mixing the iminoether compound represented by the general formula (1) and the polyester in a molten state.
  • the imino ether compound and the polyester are reacted at 100 to 350 ° C.
  • the imino ether group and the polyester terminal carboxyl group react to form a carboxylic acid ester as shown in the following reaction scheme.
  • the imino ether compound represented by the general formula (1) becomes an amide compound by reacting with the terminal carboxyl group of the polyester, the amide compound is also included in the polyester resin composition.
  • the reaction rate between the imino ether compound represented by the general formula (1) and the polyester terminal carboxyl group is preferably 0.1 to 99%, more preferably 1 to 90%, and more preferably 2 to 80%. More preferably.
  • the hydrolysis resistance can be sufficiently improved.
  • the generated amide compound can be prevented from crying from the polyester film, and the surface state of the polyester film can be made better.
  • carboxylic acid has been esterified by reacting oxazoline or oxazine with carboxylic acid. It is known that a ring-opening reaction occurs when oxazoline or oxazine is used as a terminal blocking agent. It is also known that self-condensation proceeds as a side reaction simultaneously with the ring-opening reaction.
  • the self-condensation accompanied by the ring-opening reaction as described above is considered to be caused by the high nucleophilicity of the amide group of the alkylamide generated by the ring-opening reaction.
  • the chain compounds of the imino ethers of the present invention are not self-condensed, and those of cyclic compounds are not highly nucleophilic in the aromatic amide obtained by the esterification reaction. It is thought that there is nothing. Thereby, it can suppress that an imino ether compound gelatinizes in a polyester resin.
  • the polyester resin composition of the present invention contains a pigment.
  • the pigment include inorganic pigments such as titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It is done. Among these, it is preferable to use a white pigment, more preferably titanium oxide, barium sulfate or calcium carbonate, and particularly preferably titanium oxide.
  • the average particle diameter of the pigment is preferably 0.03 to 0.8 ⁇ m in volume average particle diameter, and more preferably 0.15 to 0.5 ⁇ m. By setting the average particle size within the above range, the light reflection efficiency can be increased.
  • the average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • A A method in which a pigment is added before the end of the transesterification or esterification reaction during the synthesis of the polyester, or a pigment is added before the start of the polycondensation reaction.
  • B A method in which a pigment is added to polyester and melt-kneaded.
  • C Master pellets (also referred to as master batches) to which a large amount of pigment is added in the methods (A) and (B) above are produced, and these are kneaded with a polyester not containing a pigment to obtain a predetermined amount of pigment. The method of containing.
  • D The method of using the master pellet of said (C) as it is.
  • the method for adding the pigment to the polyester resin composition it is preferable to employ the method (C).
  • the method (C) it is also possible to employ a method in which a polyester resin and a pigment that have not been dried in advance are put into an extruder and master pellets are produced while degassing moisture and air.
  • the moisture content of the polyester When preparing master pellets, it is preferable to reduce the moisture content of the polyester to be added in advance by drying.
  • the drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less.
  • the mixing may be performed by a batch method, or may be performed by a single-screw or biaxial or more kneading extruder.
  • the polyester resin When producing master pellets while deaeration, the polyester resin is melted at a temperature of 250 to 300 ° C., preferably 270 to 280 ° C., and one, preferably two or more deaeration ports are provided in the kneader. It is preferable to adopt a method such as performing continuous suction deaeration of 0.05 MPa or more, more preferably 0.1 MPa or more, and maintaining the reduced pressure in the mixer.
  • polyester resin composition of the present invention contains polyester.
  • the polyester that can be used in the present invention is not particularly limited, but is preferably a saturated polyester. By using a saturated polyester, a polyester film that is superior in terms of mechanical strength as compared with a film using an unsaturated polyester can be obtained.
  • Polyester has a —COO— bond or —OCO— bond in one molecular chain of the polymer.
  • the terminal group of the polyester is an OH group, a COOH group, or a protected group OR X group or COOR X group (R X is an arbitrary substituent such as an alkyl group), which is an aromatic dibasic acid or
  • R X is an arbitrary substituent such as an alkyl group
  • a linear saturated polyester synthesized from the ester-forming derivative and diol or the ester-forming derivative is preferable.
  • the linear saturated polyester for example, those described in JP-A-2009-155479 and JP-A-2010-235824 can be appropriately used.
  • linear saturated polyester examples include polyethylene terephthalate (PET), polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate, of which polyethylene terephthalate or Polyethylene-2,6-naphthalate is particularly preferred from the viewpoint of the balance between mechanical properties and cost, and polyethylene terephthalate is more particularly preferred.
  • the polyester may be a homopolymer or a copolymer. Further, polyester may be blended with other kinds of resins such as polyimide in a small amount. Moreover, as polyester, you may use crystalline polyester which can form anisotropy at the time of melt film forming.
  • the weight average molecular weight (Mw) is preferably 5000 to 100,000, more preferably 8000 to 80,000, and particularly preferably 12,000 to 60,000 from the viewpoints of heat resistance and viscosity.
  • Mw weight average molecular weight
  • a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
  • Polyester can be synthesized by a known method.
  • polyester can be synthesized by a known polycondensation method or ring-opening polymerization method, and any of transesterification and direct polymerization can be applied.
  • the component derived from the carboxylic acid of the polyester is preferably a component derived from an aromatic dibasic acid or an ester-forming derivative thereof.
  • the polyester used in the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • An aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof can be produced by an esterification reaction or an ester exchange reaction and then a polycondensation reaction.
  • the carboxylic acid value and intrinsic viscosity of the polyester can be controlled by selecting the raw material and reaction conditions. In order to effectively advance the esterification reaction or transesterification reaction and polycondensation reaction, it is preferable to add a polymerization catalyst during these reactions.
  • a polymerization catalyst for polymerizing the polyester it is preferable to use Al-based, Sb-based, Ge-based, and Ti-based compounds from the viewpoint of suppressing the carboxyl group content to a predetermined range or less. It is preferable to use it.
  • a Ti compound an embodiment in which polymerization is performed by using the Ti compound as a catalyst in the range of 1 to 30 ppm, more preferably 3 to 15 ppm is preferable.
  • the proportion of the Ti-based compound is within the above range, the terminal carboxyl group can be adjusted within a predetermined range, and the hydrolysis resistance of the polymer substrate can be kept low.
  • Examples of the synthesis of polyester using a Ti compound include Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 397756, Japanese Patent No. 3996226, Japanese Patent No. 3997866, Japanese Patent No. 39968661,
  • the methods described in Japanese Patent No. 40000867, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269704, Japanese Patent No. 413538, and the like can be applied, and the contents thereof are incorporated herein.
  • the polyester is preferably one that has been solid-phase polymerized after polymerization.
  • the solid-phase polymerization method may be a continuous method (a method in which a tower is filled with a resin, and this is slowly heated for a predetermined time and then sent out), or a batch method (a resin is placed in a container). Or a method of heating for a predetermined time).
  • solid phase polymerization is described in Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392, Japanese Patent No. 4167159, etc. Methods can be applied, the contents of which are incorporated herein.
  • the temperature of the solid phase polymerization is preferably 170 to 240 ° C, more preferably 180 to 230 ° C, and further preferably 190 to 220 ° C.
  • the solid phase polymerization time is preferably 5 to 100 hours, more preferably 10 to 75 hours, and further preferably 15 to 50 hours.
  • the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
  • the polyester resin composition of the present invention contains the above-described imino ether compound, a pigment, and polyester. In addition, unless the polyester resin composition of this invention is contrary to the meaning of this invention, it does not refuse containing compounds other than the imino ether compound mentioned above. For example, a carbodiimide compound, a ketene imine compound, an epoxy compound, an oxazoline compound, and the like can be used in combination.
  • the content of the imino ether compound contained in the polyester resin composition of the present invention is preferably 70% by mass or more and more preferably 80% by mass or more with respect to the organic compound other than the polyester. More preferably, it is 90% by mass or more.
  • the imino ether compound described above is preferably contained in an amount of 0.05 to 35% by mass, more preferably 0.05 to 20% by mass, and more preferably 0.5 to 20% by mass with respect to the total mass of the polyester resin composition. % Is more preferable, and 1 to 20% by mass is particularly preferable.
  • the pigment is preferably contained in an amount of 0.2 to 50% by mass, more preferably 0.4 to 50% by mass, and further preferably 5 to 50% by mass based on the total mass of the polyester resin composition. preferable.
  • the above-mentioned imino ether compound contained in the polyester resin composition suppresses hydrolysis of the polyester by sealing the end of the polyester.
  • the polyester In the step of kneading the white pigment into the polyester, the polyester may be hydrolyzed due to moisture contained in the pigment, and the polyester may be thermally decomposed due to heat generated by the shearing of the pigment particles.
  • the above-described imino ether compound can suppress thermal decomposition of polyester promoted by heat generated by shearing of pigment particles.
  • polyester resin composition of the present invention various additives such as compatibilizers, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants are included in the polyester resin composition of the present invention as long as the effects of the present invention are not impaired. Further, it may contain an antistatic agent, a brightening agent, a coloring agent, a conductive agent, an ultraviolet absorber, a flame retardant, a flame retardant aid, a dye, and the like.
  • the present invention also relates to a master pellet formed using the above-described polyester resin composition.
  • the master pellet is a kneaded polyester resin composition formed into chips, and is formed by extrusion molding of the polyester resin composition.
  • Examples of the shape of the master pellet include a cylindrical shape, and the length may be 1 to 10 mm in length and the base diameter may be 1 to 10 mm.
  • the master pellet of the present invention contains the above-described iminoether compound and pigment, and the preferred content is the same as the content range contained in the polyester resin composition. That is, the above-mentioned imino ether compound is preferably contained in an amount of 0.05 to 35% by mass, more preferably 0.05 to 20% by mass, and more preferably 0.5 to 20% by mass with respect to the total mass of the master pellet. % Is more preferable, and 1 to 20% by mass is particularly preferable. Further, the pigment is preferably contained in an amount of 0.2 to 50% by mass, more preferably 0.4 to 50% by mass, and further preferably 5 to 50% by mass with respect to the total mass of the master pellet. preferable.
  • the present invention also relates to a polyester film formed using the above-described polyester resin composition.
  • the polyester film of the present invention can be formed by melting and extruding the above-described polyester resin composition, or by melt-kneading and extruding the above-described polyester resin composition and another polyester resin composition. It can also be formed.
  • another polyester resin composition is a polyester resin composition comprised from the polyester contained in the polyester resin composition mentioned above.
  • the polyester film of the present invention contains the above-described imino ether compound.
  • the imino ether compound is preferably contained in an amount of 0.05 to 3% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.1 to 1.5% by weight based on the total weight of the polyester film. More preferably.
  • the polyester film of the present invention contains a pigment.
  • the pigment is preferably contained in an amount of 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, and further preferably 0.5 to 5% by mass with respect to the total mass of the polyester film. preferable.
  • the thickness of the polyester film of the present invention varies depending on the application, but when used as a member of a back sheet for a solar cell module, it is preferably 25 ⁇ m to 300 ⁇ m, more preferably 120 to 300 ⁇ m. When the thickness is 25 ⁇ m or more, sufficient mechanical strength is obtained, and when the thickness is 300 ⁇ m or less, a merit in cost can be obtained.
  • the polyester film of the present invention is preferably stretched and more preferably biaxially stretched. That is, the polyester film of the present invention is preferably a biaxially oriented film. Especially, it is especially preferable compared with extending
  • the biaxially stretched polyester film is stretched in the longitudinal direction (MD: Machine Direction) (hereinafter also referred to as “longitudinal stretching”) and in the width direction (TD: Transverse Direction) (hereinafter also referred to as “lateral stretching”). It is a film that has been applied.
  • MD Machine Direction
  • TD Transverse Direction
  • the MD orientation and TD orientation of the polyester film of the present invention are each preferably 0.14 or more, more preferably 0.155 or more, and particularly preferably 0.16 or more.
  • the degree of orientation is 0.14 or more, the restraint property of the amorphous chain is improved (the mobility is lowered), and the hydrolysis resistance is improved.
  • MD and TD orientations were measured using x, y, and biaxially oriented films in a 25 ° C. atmosphere using an Abbe refractometer, a monochromatic sodium D line as a light source, and methylene iodide as a mounting solution.
  • the refractive index in the z direction is measured, and can be calculated from MD orientation degree: ⁇ n (xz), TD orientation degree; ⁇ n (yz).
  • the terminal carboxyl group content in the polyester film (the carboxylic acid value of the polyester, hereinafter also referred to as AV) is preferably 25 eq / ton or less, more preferably 20 eq / ton or less, particularly preferably 16 eq / ton or less with respect to the polyester. And more particularly preferably 15 eq / ton or less.
  • the carboxyl group content is 25 eq / ton or less, it is possible to maintain the hydrolysis resistance and heat resistance of the polyester film by combining with the imino ether compound, and it is possible to suppress a decrease in strength when the moisture and heat age. .
  • the terminal carboxyl group content in the polyester can be adjusted by polymerization catalyst species, polymerization time, and film forming conditions (film forming temperature and time).
  • the carboxyl group content is H.264. A. Pohl, Anal. Chem. 26 (1954) 2145, and can be measured by a titration method. Specifically, the polyester is dissolved in benzyl alcohol at 205 ° C., a phenol red indicator is added, and titrated with a solution of sodium hydroxide in water / methanol / benzyl alcohol to determine the carboxylic acid value (eq / ton) can be calculated.
  • the terminal hydroxyl group content in the polyester film is preferably 120 eq / ton or less, more preferably 90 eq / ton or less, based on the polyester.
  • the lower limit of the hydroxyl group content is preferably 20 eq / ton or more from the viewpoint of adhesion to the upper layer.
  • the hydroxyl group content in the polyester can be adjusted by the polymerization catalyst species, the polymerization time, and the film forming conditions (film forming temperature and time).
  • As the terminal hydroxyl group content a value measured by 1 H-NMR using a deuterated hexafluoroisopropanol solvent can be used.
  • the intrinsic viscosity (IV) of the polyester film of the present invention is preferably from 0.55 to 0.94 dl / g, more preferably from 0.60 to 0.84 dl / g, and from 0.62 to 0.80 dl / g. Particularly preferred.
  • the intrinsic viscosity (IV) of the polyester is the intrinsic viscosity of the polyester in which all the polyesters are mixed when there are two or more kinds of polyesters used in film formation (such as when the recovered polyesters of JP2011-256337A are used). It is preferable that the viscosity satisfies the above range.
  • the intrinsic viscosity (IV) of the polyester can be calculated from the solution viscosity measured at 25 ° C. by dissolving the polyester in orthochlorophenol, using the following equation.
  • ⁇ sp / C [ ⁇ ] + K [ ⁇ ] 2 ⁇ C
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement)
  • K is the Huggins constant (0.343)
  • the solution viscosity and the solvent viscosity can be measured using an Ostwald viscometer.
  • an unstretched film can be formed by pouring a melt obtained by melting a mixture containing polyester, the above-described iminoether compound, and a pigment and cooling and solidifying the melt.
  • the melt is preferably passed through a gear pump or a filter, and the melt that has passed through the filter is extruded through a die to a cooling roll and cooled and solidified.
  • the extruded melt can be brought into close contact with the cooling roll using an electrostatic application method.
  • the surface temperature of the cooling roll is preferably about 10 to 40 ° C.
  • the (unstretched) film formed by the film forming step can be subjected to a stretching treatment in the stretching step.
  • the film that has been cooled and solidified with a cooling roll (unstretched) is preferably stretched in one or two directions, and more preferably stretched in two directions.
  • the longitudinal stretching and the lateral stretching may each be performed once, or may be performed a plurality of times, and may be simultaneously performed in the longitudinal and lateral directions.
  • the stretching treatment is preferably performed at a glass temperature (Tg) ° C. to (Tg + 60) ° C. of the film, more preferably Tg + 3 ° C. to Tg + 40 ° C., and further preferably Tg + 5 ° C. to Tg + 30 ° C.
  • the preferred draw ratio is at least 280 to 500%, more preferably 300 to 480%, still more preferably 320 to 460%.
  • the film may be stretched evenly in the vertical and horizontal directions, but it is more preferable to stretch one of the stretch ratios more than the other and unevenly stretch. Either vertical (MD) or horizontal (TD) may be increased.
  • the biaxial stretching treatment is performed, for example, at (Tg 1 ) ° C. to (Tg 1 +60) ° C., which is the glass transition temperature of the film, so that the total magnification becomes 3 to 6 times, once or twice in the longitudinal direction. Thereafter, the film can be applied at (Tg 1 ) ° C. to (Tg + 60) ° C. so that the magnification is 3 to 5 times in the width direction.
  • the biaxial stretching process can be stretched in the longitudinal direction using two or more pairs of nip rolls whose peripheral speed on the outlet side is increased (longitudinal stretching), and both ends of the film are gripped by chucks and orthogonally oriented (longitudinal direction). (Perpendicular direction) can be performed (lateral stretching).
  • the film in the stretching step, can be heat-treated before or after the stretching treatment, preferably after the stretching treatment.
  • the film may be subjected to a heat treatment at about 180 to 210 ° C. (more preferably 185 to 220 ° C.) for 1 to 60 seconds (more preferably 2 to 30 seconds).
  • a thermal relaxation treatment can be performed after the heat treatment.
  • the thermal relaxation treatment is a treatment for shrinking the film by applying heat to the film for stress relaxation.
  • the thermal relaxation treatment is preferably performed in both the MD and TD directions of the film.
  • the various conditions in the thermal relaxation treatment are preferably treatment at a temperature lower than the heat treatment temperature, and preferably 130 to 220 ° C.
  • the thermal shrinkage (150 ° C.) of the film is preferably 1 to 12%, more preferably 1 to 10% for both MD and TD.
  • the polyester film of the present invention can also be used as a laminated film in which a coating layer such as an easy adhesion layer is provided thereon.
  • multilayer film of this invention can be used suitably as a solar cell module backsheet (protective sheet of a solar cell module). Since the polyester film of the present invention has a good surface shape and excellent moisture and heat resistance, when used in a back sheet for a solar cell module, the solar cell module can be protected for a long period of time. Furthermore, since the polyester film of the present invention has visible light concealability and can reflect sunlight, the power generation efficiency of the solar cell module is not impaired.
  • a back sheet for a solar cell module can be formed by laminating the following functional layer on the polyester film of the present invention.
  • laminating functional layers it is preferable to provide an easy-adhesion layer in between.
  • surface-treat the surface of a polyester film for example, a flame treatment, a corona treatment, a plasma treatment, an ultraviolet treatment etc. can be given.
  • the polyester film of this invention can also exhibit the function as a reflective layer (colored layer)
  • the solar cell module backsheet may further have a reflective layer (colored layer) as a functional layer.
  • the colored layer is a layer arranged in contact with the surface of the polyester film or through another layer, and can be constituted using a pigment or a binder.
  • binder As the binder used in the reflective layer, acrylic, polyester, polyurethane, and polyolefin polymers can be used. Of these, polyolefin polymers are preferred.
  • the solar cell module backsheet of the present invention is preferably provided with a light reflecting layer on the inner side surface (side to be bonded to the sealing material).
  • the reflective layer preferably contains an epoxy-based, isocyanate-based, oxazoline-based, carbodiimide-based or the like crosslinking agent in order to further improve the adhesion with the sealing material.
  • cross-linking agents carbodiimide cross-linking agents and oxazoline cross-linking agents are particularly preferable from the viewpoint of ensuring adhesion after wet heat aging.
  • a white pigment to the reflective layer for the purpose of increasing the reflectance.
  • Preferred examples of the white pigment include titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, and talc. Of these, titanium oxide is particularly preferable from the viewpoints of whiteness, reflectance, and durability. Titanium oxide has three types of crystal systems of rutile, anatase, and brookite, but those having a rutile crystal structure are preferred because of their high refractive index, whiteness, and low photocatalytic activity.
  • surfactant examples include known surfactants such as anionic and nonionic surfactants.
  • anionic surfactant examples include sodium alkyl sulfate and sodium alkylbenzene sulfonate, and examples of the nonionic surfactant include polyoxyethylene alkyl ether.
  • fluorosurfactants such as sodium perfluoroalkyl sulfate.
  • the thickness of the reflective layer is preferably 3 to 10 ⁇ m, more preferably 4 to 8 ⁇ m. By making the thickness of the reflective layer in the range of 3 to 10 ⁇ m, it is possible to achieve both required reflectance and adhesiveness.
  • the method for forming the reflective layer is not particularly limited, and can be formed using a known coating method such as a roll coating method, a bar coater method, a slide die method, or a gravure coater method.
  • a coating solvent You may use organic solvent type
  • the coating solvent may be used alone or in combination. In particular, in the case of an aqueous coating solvent, a mixed solvent obtained by adding a small amount of a water-miscible organic solvent to water may be used.
  • the drying of the reflective layer it is preferable to dry at a temperature of about 120 to 200 ° C. for about 1 to 10 minutes from the viewpoint of shortening the drying time.
  • the drying temperature is less than 120 ° C., the drying time becomes long, which is disadvantageous in production. Conversely, if it exceeds 200 ° C., the flatness of the resulting backsheet may be impaired.
  • the back sheet for a solar cell module of the present invention may be provided with an overcoat layer on the reflective layer for the purpose of improving the adhesion to the sealing material.
  • binder for the overcoat layer those described for the reflective layer can be preferably used.
  • type of crosslinking agent for the overcoat layer those described for the reflective layer can be preferably used.
  • type and amount of other additives in the overcoat layer those described in the reflective layer can be preferably used.
  • the film thickness of the overcoat layer is preferably in the range of 0.1 to 1.0 ⁇ m, more preferably 0.2 to 0.8 ⁇ m. By setting the thickness of the overcoat layer in the range of 0.1 to 1.0 ⁇ m, it is possible to obtain strong adhesiveness with the sealing material.
  • the coating solvent, and the drying method those described in the reflective layer can be preferably used.
  • the back sheet for a solar cell module of the present invention is preferably provided with a back layer for protecting the support on the outer surface (the surface on the opposite side of the solar cells).
  • a silicone-based composite polymer described below from the viewpoint of durability and adhesion to the support.
  • the silicone-based composite polymer includes a — (Si (R 1 ) (R 2 ) —O) n — moiety in the molecule and a polymer structure part that is copolymerized with the above-described part. It is a polymer.
  • the silicone composite polymer is preferably in the form of an aqueous polymer dispersion (so-called latex).
  • the silicone-based composite polymer is an aqueous polymer in the form of latex
  • the silicone-based composite polymer preferably has a water-affinity functional group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, or an amide group.
  • the silicone composite polymer has a carboxyl group, the carboxyl group may be neutralized with sodium, ammonium, amine or the like.
  • silicone composite polymers when silicone composite polymers are used in the form of latex, emulsification stability of surfactants (eg, anionic and nonionic surfactants) and polymers (eg: polyvinyl alcohol) to improve stability
  • An agent may be included.
  • a pH adjuster eg, ammonia, triethylamine, sodium bicarbonate, etc.
  • preservative eg: 1,3,5-hexahydro- (2-hydroxyethyl) -s-triazine, 2- (4 -Thiazolyl) benzimidazole
  • thickeners eg, sodium polyacrylate, methylcellulose, etc.
  • film-forming aids eg: butyl carbitol acetate, etc.
  • crosslinking agent it is preferable to add a crosslinking agent to the back layer in order to improve adhesion to the support.
  • a crosslinking agent those described for the reflective layer can be used.
  • ultraviolet absorber it is preferable to add an ultraviolet absorber to the back layer.
  • ultraviolet absorbers include, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based ultraviolet stabilizers, and the like in the case of organic ultraviolet absorbers.
  • inorganic ultraviolet absorbers include metal oxides such as titanium oxide, zinc oxide, and cerium oxide, and carbon-based components such as carbon, fullerene, carbon fiber, and carbon nanotube. Of these, titanium oxide is particularly preferable from the viewpoint of cost and durability.
  • a white pigment may be added to the back layer for the purpose of supplementing the reflectance of the reflective layer.
  • the white pigment described in the reflective layer can be preferably used.
  • a titanium oxide as a white pigment, it can serve as a pigment and a ultraviolet absorber.
  • the types and addition amounts of other additives in the back layer those described in the reflective layer can be preferably used.
  • the thickness of the back layer is preferably 3 to 12 ⁇ m, more preferably 4 to 8 ⁇ m. By setting the thickness of the back layer in the range of 3 to 12 ⁇ m, both necessary durability and adhesiveness can be achieved.
  • the back layer forming method coating solvent, and drying method, those described in the reflective layer can be preferably used.
  • a back surface protective layer may be provided on the back surface layer for the purpose of further improving durability.
  • the binder for the back surface protective layer is preferably a fluoropolymer from the viewpoint of durability.
  • the fluorine-based polymer that can be preferably used in the present invention is a polymer containing a fluorine-containing monomer in the main chain or side chain.
  • the fluorine-containing monomer may be contained in either the main chain or the side chain, but is preferably contained in the main chain from the viewpoint of durability.
  • the particle size is preferably about 50 to 500 nm, and the solid content concentration is preferably about 15 to 50% by mass.
  • the fluorine-based polymer preferably has a water-affinity functional group such as a carboxyl group, a sulfonic acid group, a hydroxyl group or an amide group when the aqueous polymer is in the form of latex.
  • crosslinking agent to the back surface protective layer in order to improve the adhesion to the support.
  • the kind of the cross-linking agent those described for the reflective layer can be used.
  • a slipping agent may be added to the back surface protective layer as necessary.
  • the slip agent include synthetic wax compounds, natural wax compounds, surfactant compounds, inorganic compounds, organic resin compounds, and the like. Among these, from the viewpoint of the surface strength of the polymer layer, a compound selected from synthetic wax compounds, natural wax compounds, and surfactant compounds is preferable.
  • colloidal silica may be added to the back surface protective layer.
  • colloidal silica fine particles containing silicon oxide as a main component are present in a fine particle state with water or a monovalent alcohol or diol or a mixture thereof as a dispersion medium.
  • additives for the back surface protective layer those described for the reflective layer can be preferably used.
  • the thickness of the back surface protective layer is preferably 0.5 to 6 ⁇ m, more preferably 1 to 5 ⁇ m. If the thickness of the back surface protective layer is 0.5 ⁇ m or more, the durability is sufficient, and if it is 6 ⁇ m or less, it is advantageous in terms of cost.
  • the coating method, coating solvent, and drying method for the back surface protective layer those described in the reflective layer can be preferably used.
  • the solar cell module of the present invention includes the polyester film of the present invention or the back sheet for the solar cell module of the present invention.
  • the solar cell module of the present invention comprises a solar cell element that converts light energy of sunlight into electric energy, a transparent substrate on which sunlight is incident, and the polyester film (back sheet for solar cell) of the present invention described above. It is arranged and arranged between.
  • the substrate and the polyester film can be formed by sealing with a resin (so-called sealing material) such as an ethylene-vinyl acetate copolymer.
  • the transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better.
  • a transparent resin such as an acrylic resin, or the like can be suitably used.
  • Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as -VI group compound semiconductor systems can be applied.
  • the imino ethers (1) to (7) used in Examples and Comparative Examples were synthesized by the following synthesis method.
  • the reaction was carried out with an average residence time of about 4.3 hours to obtain an oligomer.
  • the citric acid chelate titanium complex was continuously added so that the amount of Ti added was 9 ppm in terms of element.
  • the acid value of the obtained oligomer was 550 eq / ton.
  • the obtained oligomer was transferred to the second esterification reaction tank and reacted with stirring at a reaction tank temperature of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 180 eq / ton.
  • the inside of the second esterification reaction tank is divided into three zones from the first zone to the third zone. From the second zone, an ethylene glycol solution of magnesium acetate is added, and the amount of Mg added is 75 ppm in terms of element. Then, from the third zone, an ethylene glycol solution of trimethyl phosphate was continuously supplied so that the addition amount of P was 65 ppm in terms of element.
  • the ethylene glycol solution of trimethyl phosphate was prepared by adding a 25 ° C. trimethyl phosphate solution to a 25 ° C. ethylene glycol solution and stirring at 25 ° C. for 2 hours (phosphorus compound content in the solution: 3 .8% by mass). As a result, an esterification reaction product was obtained.
  • reaction product was transferred from the first polycondensation reaction tank to the second double condensation reaction tank. Thereafter, the reaction product was stirred in the second double condensation reaction vessel at a reaction vessel temperature of 276 ° C. and a reaction vessel pressure of 5 torr (6.67 ⁇ 10 ⁇ 4 MPa), and the reaction was conducted under the condition of a residence time of about 1.2 hours. (Transesterification reaction).
  • the reaction product obtained by the transesterification reaction is further transferred from the second double condensation reaction tank to the third triple condensation reaction tank.
  • the reaction tank temperature is 278 ° C. and the reaction tank pressure is 1.
  • Polyethylene terephthalate having a carboxylic acid number of 24 eq / ton and an intrinsic viscosity of 0.63 dl / g was reacted (transesterification reaction) with stirring at 5 torr (2.0 ⁇ 10 ⁇ 4 MPa) and a residence time of 1.5 hours.
  • a resin (PET (1)) was obtained.
  • the master pellet (1) was prepared by mixing 0.5 parts by mass of iminoether (1) and 44.0 parts by mass of titanium oxide with respect to 55.5 parts by mass of PET (2) solid-phase polymerized by the above method. .
  • the master pellet was prepared using a twin-screw kneading extruder. That is, PET resin was added from a hopper, and the end-capping agent of the powder was added and kneaded while being measured from the hopper using a feeder. The kneaded composition was extruded into a strand shape, then cooled with water and cut to prepare a master pellet (1).
  • the master pellet (1) was a cylindrical size having a length of 3 mm and a base diameter of 2 mm.
  • Master pellets (2) to (27) were prepared in the same manner as the master pellet (1), except that the types and addition amounts of the resin, end-capping agent and pigment were changed to the conditions shown in Table 1 below. did.
  • the PEN (polyethylene naphthalate) used in the master pellet (17) was Teonex TN-80655 (manufactured by Teijin Limited).
  • PBT polybutylene terephthalate
  • DURANEX 2000 manufactured by Polyplastics
  • the following Stabaxol P400 manufactured by Rhein Chemie was used as a terminal blocking agent.
  • the master pellet (25) In the master pellet (25), the following BOXA (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the end-capping agent. In the master pellet (26), POXA Epocross RPS (manufactured by Nippon Shokubai Co., Ltd.) was used as the end-capping agent. In the master pellet (27), the imino ether compound (7) synthesized in Synthesis Example 7 was used as a terminal blocking agent.
  • the use of the iminoether compound represented by the general formula (1) of the present invention suppresses the generation of white smoke during the preparation of the master pellet (master pellets (1) to (21)).
  • generation of both odor and white smoke can be suppressed by using an imino ether compound represented by the general formula (1) and having a molecular weight of 300 or more (master pellet (1 ) To (13) and master pellets (15) to (19)).
  • the addition amount of the imino ether compound represented by the general formula (1) is preferably 0.05 to 35% by mass with respect to the total mass of the master pellet, and the addition amount of the pigment is 0.2 to 50%. It can be seen that the content is preferably mass% (master pellets (19) to (21)).
  • a polyester film was prepared using the master pellets (1) to (18) and (22) to (27), and the performance was evaluated.
  • This melt was extruded through a gear pump, a filter and a die onto a chill roll to produce an unstretched film having a thickness of 3222 mm. did.
  • the film After heating this unstretched film with a radiant heater until the film surface temperature reaches about 85 ° C., the film is heated 3.0 times in the longitudinal direction (conveying direction) and then sent to the tenter until the film surface temperature reaches about 140 ° C. Thereafter, the film was stretched 4.2 times in the width direction and heat treated at 220 ° C. to obtain a biaxially stretched film having a thickness of 250 ⁇ m and a width of 1100 mm. This was designated as the polyester film of Example 1.
  • Examples 2 to 18 A polyester film was produced in the same manner as in Example 1 using master pellets (2) to (18). When the polyester film was produced, the master pellets (2) to (18) were mixed with the same resin as that used for producing the master pellet.
  • the polyester films containing the master pellets (2) to (18) correspond to the polyester films of Examples 2 to 18, respectively.
  • ⁇ sp / C [ ⁇ ] + K [ ⁇ ] 2 ⁇ C
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement)
  • K is the Huggins constant (0.343)
  • the solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
  • the hydrolysis resistance was evaluated based on the half life of elongation at break.
  • the elongation at break half life is that the polyester film obtained in the examples and comparative examples is subjected to a storage treatment (heat treatment) under the conditions of 120 ° C. and a relative humidity of 100%.
  • the breaking elongation (%) shown was evaluated by measuring a storage time at which the breaking elongation (%) shown by the polyester film before storage was 50%.
  • the obtained results are shown in Table 2 below. It shows that the hydrolysis resistance of a polyester film is excellent, so that break elongation retention half-life is long.
  • the breaking elongation half-life is preferably 80 hours or longer, more preferably 90 hours or longer.
  • the obtained polyester film was heated at 280 ° C. for 10 minutes, and the generated gas was detected.
  • the amount of the volatile component in the film was measured by gas chromatography (manufactured by JASCO Corporation, trade name P & T-GC / MS) according to the following criteria, and evaluated according to the following criteria.
  • the volatilization component contains an imino ether-derived compound, specifically, an imino ether compound and an amide compound. That is, a small amount of volatilized component detected means that the volatilization of the imino ether compound and the amide compound is small and the production environment is improved.
  • the detected amount of the volatilized component is preferably 100 ppm or less, more preferably the detection limit (1 ppm or less).
  • Volatile component derived from imino ether is below detection limit
  • B Volatile component derived from imino ether was detected at 100 ppm or less
  • C Volatile component derived from imino ether was detected at 100 ppm or more
  • OD optical density
  • OD optical density
  • B Optical density exceeding 0.4 (OD) and not more than 0.6 (OD)
  • C Optical density Of 0.4 or less (OD)
  • the polyester films obtained in Examples 1 to 18 have a sufficient visible light hiding property, and the film has a good surface shape.
  • the iminoether compound is contained in an amount of 2% by mass or less with respect to the total mass of the polyester film and the pigment is contained in an amount of 0.5% by mass or more with respect to the total mass of the polyester film, the visible light hiding property is increased.
  • the present invention it is possible to provide a polyester film having both hydrolysis resistance and visible light concealing property and having a good film surface shape. Moreover, according to this invention, generation

Abstract

The present invention addresses the problem of providing a polyester film having a good surface state and being provided with both hydrolysis resistance and visible-light shielding properties, and suppressing the formation of irritant gas in the manufacturing process. The present invention relates to a polyester resin composition including a compound represented by general formula (1), a pigment, and a polyester. The present invention further relates to a master pellet, a polyester film, a back sheet for a solar cell module, and a solar cell module. In general formula (1), R2 represents an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or an alkoxy group which may have a substituent, R3 represents a specific alkyl group or a specific aryl group, and R11, R12, and R13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.

Description

ポリエステル樹脂組成物、マスターペレット、ポリエステルフィルム、太陽電池モジュール用バックシート及び太陽電池モジュールPolyester resin composition, master pellet, polyester film, solar cell module back sheet and solar cell module
 本発明は、イミノエーテル化合物を含有したポリエステル樹脂組成物、ポリエステル樹脂組成物を用いて形成されるマスターペレット、及びポリエステルフィルムに関する。さらに、本発明は、ポリエステルフィルムを有する太陽電池モジュール用バックシート、太陽電池モジュール用バックシートを備える太陽電池モジュールに関する。 The present invention relates to a polyester resin composition containing an imino ether compound, a master pellet formed using the polyester resin composition, and a polyester film. Furthermore, this invention relates to a solar cell module provided with the backsheet for solar cell modules which has a polyester film, and a backsheet for solar cell modules.
 太陽電池モジュールは、一般に、太陽光が入射する受光面側からガラス又はフロントシート/透明な充填材料(封止材)/太陽電池素子/封止材/バックシートがこの順に積層された構造を有している。具体的には、太陽電池素子は一般にEVA(エチレン-酢酸ビニル共重合体)等の樹脂(封止材)で包埋し、さらにこの上に太陽電池用保護シートを貼り付けた構造に構成される。太陽電池用保護シート、その中でも特に最外層となる太陽電池モジュール用のバックシートは、屋外の風雨や直射日光などに曝されるような環境下に長期間置かれる状況が想定されるものであるため、優れた耐候性(耐湿熱性、耐熱性)が求められる。 A solar cell module generally has a structure in which glass or a front sheet / transparent filling material (sealing material) / solar cell element / sealing material / back sheet are laminated in this order from the light-receiving surface side where sunlight enters. is doing. Specifically, a solar cell element is generally structured to be embedded in a resin (sealing material) such as EVA (ethylene-vinyl acetate copolymer) and further to a solar cell protective sheet. The The protection sheet for solar cells, particularly the back sheet for the solar cell module, which is the outermost layer, is supposed to be placed in an environment where it is exposed to outdoor wind and rain, direct sunlight, etc. for a long period of time. Therefore, excellent weather resistance (moisture and heat resistance, heat resistance) is required.
 太陽電池モジュール用バックシートには、従来、ポリエステルフィルム、特にポリエチレンテレフタレート(以下、PET)フィルムが使用されている。ポリエステルフィルムは、優れた耐熱性、機械特性及び耐薬品性などを有しているため、工業的に多く用いられている。また、太陽電池モジュール用バックシートには、隠蔽性や太陽光の反射率を高める目的で白色顔料が添加された白色ポリエステルフィルムが用いられる場合がある(特許文献1及び2)。 Conventionally, a polyester film, particularly a polyethylene terephthalate (hereinafter referred to as PET) film has been used for a back sheet for a solar cell module. Polyester films are widely used industrially because they have excellent heat resistance, mechanical properties, chemical resistance, and the like. In addition, a white polyester film to which a white pigment is added may be used for the solar cell module backsheet in order to increase concealability and sunlight reflectance (Patent Documents 1 and 2).
 しかし、ポリエステルフィルムは、耐加水分解性に乏しいため、加水分解により分子量が低下し、脆化が進行して機械物性などが低下する。このため、太陽電池用のバックシートとして長期間に亘り実用的な強度を保持することができなかった。 However, since the polyester film has poor hydrolysis resistance, the molecular weight decreases due to hydrolysis, and embrittlement progresses, resulting in a decrease in mechanical properties. For this reason, practical strength could not be maintained over a long period of time as a back sheet for solar cells.
 ポリエステルフィルムの加水分解を抑制する方法としては、ポリエステルの末端に残存するカルボン酸を封止する方法が知られている。ポリエステルの末端に残存するカルボン酸を封止する末端封止剤としては、例えば、カルボジイミド化合物又は環状イミノエーテル化合物などが挙げられる。例えば、特許文献3には、カルボジイミド化合物又は環状イミノエーテル化合物を含有するポリエステルフィルムが開示されている。この文献では、カルボジイミド化合物、環状イミノエーテル化合物をポリエステルの末端のカルボン酸と反応させることにより、ポリエステルの寸法安定性や耐加水分解性を向上させることが提案されている。なお、特許文献3では、環状イミノエーテル化合物として、オキサゾリン化合物やオキサジン化合物を用いている。 As a method for suppressing hydrolysis of a polyester film, a method of sealing carboxylic acid remaining at the terminal of polyester is known. Examples of the terminal blocking agent that seals the carboxylic acid remaining at the terminal of the polyester include a carbodiimide compound or a cyclic imino ether compound. For example, Patent Document 3 discloses a polyester film containing a carbodiimide compound or a cyclic imino ether compound. In this document, it is proposed to improve the dimensional stability and hydrolysis resistance of a polyester by reacting a carbodiimide compound and a cyclic imino ether compound with a carboxylic acid at the terminal of the polyester. In Patent Document 3, an oxazoline compound or an oxazine compound is used as the cyclic imino ether compound.
国際公報WO2010/113920号公報International Publication WO2010 / 113920 特許第5288068号公報Japanese Patent No. 5288068 特開2010-31174号公報JP 2010-31174 A
 特許文献1及び2では、白色顔料をポリエステルフィルムに混合することによって可視光の隠蔽性や反射率を高めることができる。また、特許文献1及び2では、層構成や白色顔料の添加量等の調整を行うことで白色ポリエステルフィルムの耐加水分解性を高めることも検討されている。しかし、特許文献1及び2に開示されたポリエステルフィルムにおいては、耐加水分解性が十分ではないということが本発明者らの検討により明らかとなった。さらに、白色顔料を添加したポリエステルフィルムにおいては、白色顔料を添加していないポリエステルフィルムに比べて加水分解が進行しやすい傾向となり、従来の方法では加水分解を十分に抑制できないことが本発明者らの検討により明らかとなった。 In Patent Documents 1 and 2, the concealability and reflectance of visible light can be increased by mixing a white pigment with a polyester film. In Patent Documents 1 and 2, it is also studied to increase the hydrolysis resistance of the white polyester film by adjusting the layer structure and the amount of white pigment added. However, the inventors have found that the polyester films disclosed in Patent Documents 1 and 2 have insufficient hydrolysis resistance. Furthermore, in the polyester film to which the white pigment is added, hydrolysis tends to proceed more easily than the polyester film to which the white pigment is not added, and it is the present inventors that the conventional method cannot sufficiently suppress hydrolysis. It became clear by examination.
 ポリエステルフィルムの加水分解を抑制するためには、特許文献3に記載されたように、末端封止剤を添加することが検討されている。しかしながら、特許文献3に記載されたカルボジイミド化合物を用いた場合、遊離のイソシアネートが揮散するという問題がある。このような揮散ガスは刺激性のガスであるため、揮散が抑制されることが望まれていた。 In order to suppress hydrolysis of the polyester film, as described in Patent Document 3, it has been studied to add a terminal blocking agent. However, when the carbodiimide compound described in Patent Document 3 is used, there is a problem that free isocyanate is volatilized. Since such a volatilizing gas is an irritating gas, it has been desired that the volatilization be suppressed.
 揮散ガスの発生が少ないと考えられる末端封止剤として、環状イミノエーテル化合物を用いることが考えられる。しかし、環状イミノエーテル化合物は自己重合することが知られており、自己重合した環状イミノエーテル化合物は、ポリエステル樹脂中のゲル成分として存在することが本発明者らの検討により明らかとなった。このようなゲル成分は、ポリエステル樹脂の粘度を上昇させることとなり、ポリエステルフィルムの面状を悪化させる原因となるため問題となる。 It is conceivable to use a cyclic imino ether compound as an end-capping agent that is considered to generate little volatilization gas. However, the cyclic imino ether compound is known to self-polymerize, and it has been clarified by the present inventors that the self-polymerized cyclic imino ether compound exists as a gel component in the polyester resin. Such a gel component raises the viscosity of the polyester resin, which causes a problem of deteriorating the surface state of the polyester film.
 そこで本発明者らは、このような従来技術の課題を解決するために、耐加水分解性と可視光隠蔽性の両方を兼ね備えたポリエステルフィルムを提供することを目的として検討を進めた。また、本発明者らは、耐加水分解性と可視光隠蔽性の両方を兼ね備えたポリエステルフィルムの製造工程において、刺激性ガスの発生を抑制することを目的として検討を進めた。さらに、本発明者らは、ポリエステルフィルムの製造工程において、ポリエステル樹脂組成物の粘度上昇を抑制し、面状が良好なポリエステルフィルムを提供することを目的として検討を進めた。 Therefore, in order to solve such problems of the prior art, the present inventors have proceeded with a study for the purpose of providing a polyester film having both hydrolysis resistance and visible light hiding property. In addition, the inventors of the present invention have studied for the purpose of suppressing the generation of irritating gas in the production process of a polyester film having both hydrolysis resistance and visible light hiding property. Furthermore, the inventors of the present invention have studied in the production process of the polyester film for the purpose of suppressing the increase in the viscosity of the polyester resin composition and providing a polyester film having a good surface shape.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、特定構造を有するイミノエーテル化合物を末端封止剤として用い、顔料を添加することで、ポリエステルフィルムの耐加水分解性と可視光隠蔽性の両方を高められることを見出した。さらに、特定構造を有するイミノエーテル化合物を末端封止剤として用いることにより、ポリエステルフィルムの製造工程における刺激性ガスの発生を抑制でき、かつフィルム面状が良好なポリエステルフィルムを得ることができることを見出した。
 具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors have used an imino ether compound having a specific structure as an end-capping agent, and by adding a pigment, the hydrolysis resistance of the polyester film It was found that both the visible light concealment property can be improved. Furthermore, it has been found that by using an imino ether compound having a specific structure as an end-capping agent, generation of an irritating gas in the production process of a polyester film can be suppressed, and a polyester film having a good film surface shape can be obtained. It was.
Specifically, the present invention has the following configuration.
[1]下記一般式(1)で表される化合物と、顔料と、ポリエステルとを含むポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。
[2]ポリエステル樹脂組成物の全質量に対し、一般式(1)で表される化合物を0.05~35質量%含む[1]に記載のポリエステル樹脂組成物。
[3]ポリエステル樹脂組成物の全質量に対し、顔料を0.2~50質量%含む[1]又は[2]に記載のポリエステル樹脂組成物。
[4]化合物が下記一般式(4)で表される[1]~[3]のいずれかに記載のポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000010
 一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。
[5]化合物が下記一般式(5)で表される[1]~[4]のいずれかに記載のポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000011
 一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。
[6]化合物が下記一般式(6)で表される[1]~[5]のいずれかに記載のポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000012
 一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。
[7]化合物が下記一般式(7)で表される[1]~[6]のいずれかに記載のポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000013
 一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。
[8]化合物が下記一般式(8)で表される[1]~[7]のいずれかに記載のポリエステル樹脂組成物;
Figure JPOXMLDOC01-appb-C000014
 一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。
[9]顔料が白色顔料である[1]~[8]のいずれかに記載のポリエステル樹脂組成物。
[10]顔料が酸化チタンである[1]~[9]のいずれかに記載のポリエステル樹脂組成物。
[11][1]~[10]のいずれかに記載のポリエステル樹脂組成物を用いて形成されるマスターペレット。
[12][1]~[10]のいずれかに記載のポリエステル樹脂組成物を用いて形成されるポリエステルフィルム。
[13]ポリエステルフィルムの全質量に対し、一般式(1)で表される化合物を0.1~2質量%含む[12]に記載のポリエステルフィルム。
[14]ポリエステルフィルムの全質量に対し、顔料を0.5~10質量%含む[12]又は[13]に記載のポリエステルフィルム。
[15]2軸配向フィルムである[12]~[14]のいずれかに記載のポリエステルフィルム。
[16][12]~[15]のいずれかに記載のポリエステルフィルムを用いた太陽電池モジュール用バックシート。
[17][16]に記載の太陽電池モジュール用バックシートを備える太陽電池モジュール。
[1] A polyester resin composition comprising a compound represented by the following general formula (1), a pigment, and a polyester;
Figure JPOXMLDOC01-appb-C000008
In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
Figure JPOXMLDOC01-appb-C000009
In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
[2] The polyester resin composition according to [1], containing 0.05 to 35% by mass of the compound represented by the general formula (1) with respect to the total mass of the polyester resin composition.
[3] The polyester resin composition according to [1] or [2], which contains 0.2 to 50% by mass of pigment with respect to the total mass of the polyester resin composition.
[4] The polyester resin composition according to any one of [1] to [3], wherein the compound is represented by the following general formula (4);
Figure JPOXMLDOC01-appb-C000010
In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
[5] The polyester resin composition according to any one of [1] to [4], wherein the compound is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000011
In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
[6] The polyester resin composition according to any one of [1] to [5], wherein the compound is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000012
In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
[7] The polyester resin composition according to any one of [1] to [6], wherein the compound is represented by the following general formula (7);
Figure JPOXMLDOC01-appb-C000013
In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
[8] The polyester resin composition according to any one of [1] to [7], wherein the compound is represented by the following general formula (8);
Figure JPOXMLDOC01-appb-C000014
In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
[9] The polyester resin composition according to any one of [1] to [8], wherein the pigment is a white pigment.
[10] The polyester resin composition according to any one of [1] to [9], wherein the pigment is titanium oxide.
[11] A master pellet formed using the polyester resin composition according to any one of [1] to [10].
[12] A polyester film formed using the polyester resin composition according to any one of [1] to [10].
[13] The polyester film according to [12], containing 0.1 to 2% by mass of the compound represented by the general formula (1) with respect to the total mass of the polyester film.
[14] The polyester film according to [12] or [13], which contains 0.5 to 10% by mass of pigment with respect to the total mass of the polyester film.
[15] The polyester film according to any one of [12] to [14], which is a biaxially oriented film.
[16] A back sheet for a solar cell module using the polyester film according to any one of [12] to [15].
[17] A solar cell module comprising the solar cell module backsheet according to [16].
 本発明によれば、耐加水分解性と可視光隠蔽性の両方を兼ね備えたポリエステルフィルムを提供することができる。また、本発明によれば、耐加水分解性と可視光隠蔽性の両方を兼ね備えたポリエステルフィルムの製造工程において、刺激性ガスの発生を抑制することができる。さらに、本発明によれば、末端封止剤を含有した場合であってもポリエステル樹脂の粘度を上昇させることがなく、フィルム面状が良好なポリエステルフィルムを得ることができる。 According to the present invention, a polyester film having both hydrolysis resistance and visible light hiding property can be provided. Moreover, according to this invention, generation | occurrence | production of stimulating gas can be suppressed in the manufacturing process of the polyester film which has both hydrolysis resistance and visible-light concealment property. Furthermore, according to this invention, even if it contains a terminal blocker, the viscosity of the polyester resin is not increased, and a polyester film having a good film surface shape can be obtained.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
(イミノエーテル化合物)
 本発明に用いるイミノエーテル化合物は、下記一般式(1)で表される。
(Imino ether compound)
The imino ether compound used in the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。 In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。 In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
 一般式(1)において、Rで表されるアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。Rが表すアルキル基は直鎖であっても分枝鎖であってもよい。また、Rで表されるアルキル基は、シクロアルキル基であってもよい。Rが表すアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができる。中でもメチル基、エチル基、n-プロピル基、iso-プロピル基、iso-ブチル基、シクロヘキシル基とすることがより好ましい。
 Rが表すアルキル基はさらに置換基を有していてもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。なお、Rが表すアルキル基の炭素数は、置換基を含まない炭素数を示す。
In the general formula (1), the alkyl group represented by R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms. The alkyl group represented by R 2 may be linear or branched. Further, the alkyl group represented by R 2 may be a cycloalkyl group. Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group. Of these, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an iso-butyl group, and a cyclohexyl group are more preferable.
The alkyl group represented by R 2 may further have a substituent. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group. The number of carbon atoms of the alkyl group represented by R 2 may indicate the number of carbon that does not contain a substituent group.
 Rで表されるアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましい。Rが表すアリール基としては、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基が特に好ましい。Rが表すアリール基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができるが、イミノエーテル基とカルボキシル基との反応を進行させ得る限り、置換基は特に制限されない。また、Rが表すアリール基の炭素数は、置換基を含まない炭素数を示す。 The aryl group represented by R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms. Examples of the aryl group represented by R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable. The aryl group represented by R 2 may further have a substituent. In addition, as said substituent, said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict | limited. The number of carbon atoms of the aryl group represented by R 2 is the number of carbon atoms not including a substituent.
 Rで表されるアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~12のアルコキシ基であることがより好ましく、炭素数2~6のアルコキシ基であることが特に好ましい。Rが表すアルコキシ基は直鎖であっても分枝であっても環状であってもよい。Rが表すアルコキシ基の好ましい例としては、Rが表すアルキル基の末端に-O-が連結した基を挙げることができる。Rが表すアルコキシ基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができるが、イミノエーテル基とカルボキシル基との反応を進行させ得る限り、置換基は特に制限されない。また、Rが表すアルコキシ基の炭素数は、置換基を含まない炭素数を示す。 The alkoxy group represented by R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 6 carbon atoms. Is particularly preferred. The alkoxy group represented by R 2 may be linear, branched or cyclic. Preferable examples of the alkoxy group represented by R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 2 . The alkoxy group represented by R 2 may further have a substituent. In addition, as said substituent, said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict | limited. The number of carbon atoms of the alkoxy group represented by R 2, indicate the number of carbon that does not contain a substituent group.
 Rは上記一般式(2)で表されるアルキル基、又は上記一般式(3)で表されるアリール基を表す。一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33が置換基である場合、互いに連結して環を形成してもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。R31、R32及びR33は全てが水素原子であるか又は同一の置換基であってもよく、異なる置換基であってもよい。また、一般式(2)で表されるアルキル基は、直鎖であっても分枝であってもよい。また、一般式(2)で表されるアルキル基は、シクロアルキル基であってもよい。
 一般式(3)中、R41は置換基を表し、nは0~5の整数を表す。nが2以上の場合、R41は同じであっても、異なっていてもよい。なお、置換基としては、上記の置換基を同様に例示することができる。なお、nは0~3であることがより好ましく、0~2であることがさらに好ましい。
R 3 represents an alkyl group represented by the general formula (2) or an aryl group represented by the general formula (3). In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. When R 31 , R 32 and R 33 are substituents, they may be linked to each other to form a ring. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group. R 31 , R 32 and R 33 may be all hydrogen atoms or the same substituent or different substituents. Further, the alkyl group represented by the general formula (2) may be linear or branched. Further, the alkyl group represented by the general formula (2) may be a cycloalkyl group.
In the general formula (3), R 41 represents a substituent, and n represents an integer of 0 to 5. When n is 2 or more, R 41 may be the same or different. In addition, as a substituent, said substituent can be illustrated similarly. N is more preferably from 0 to 3, and further preferably from 0 to 2.
 R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。アルキル基及びアリール基としては、Rが取り得るアルキル基及びアリール基を同様に例示することができる。 R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. The alkyl group and aryl group can be exemplified similarly an alkyl group and aryl group R 2 can be taken.
 R、R、R11、R12及びR13は互いに結合して環を形成しないことが好ましいが、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。例えば、Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成してもよく、ベンゼン環と、R11~R13のいずれかを含む環が縮合環を形成してもよい。Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成しないことが好ましい。
 但し、Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。Rが上記一般式(2)で表される場合、R11~R13の1つとR31~R33の1つが形成する結合は連結原子数が2以上の結合であり、かつ、二重結合であることが好ましい。Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが結合して環を形成しないことが好ましい。
R 2 , R 3 , R 11 , R 12 and R 13 are preferably not bonded to form a ring, but R 2 , R 3 , R 11 , R 12 and R 13 are bonded to each other to form a ring. May be. For example, when R 3 is represented by the above general formula (3), R 41 and at least one of R 11 to R 13 may combine to form a ring, and a benzene ring and R 11 to R 13 A ring containing any of the above may form a condensed ring. When R 3 is represented by the general formula (3), it is preferable that R 41 and at least one of R 11 to R 13 are not bonded to form a ring.
However, when R 3 is represented by the general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms. When R 3 is represented by the above general formula (2), the bond formed by one of R 11 to R 13 and one of R 31 to R 33 is a bond having two or more linking atoms, and a double bond A bond is preferred. When R 3 is represented by the general formula (2), it is preferable that at least one of R 11 to R 13 and at least one of R 31 to R 33 are not bonded to form a ring.
 一般式(1)は、繰り返し単位を含んでいてもよい。この場合、R、R又はR11~R13の少なくとも1つが繰り返し単位であり、この繰り返し単位には、イミノエーテル部が含まれることが好ましい。 General formula (1) may include a repeating unit. In this case, at least one of R 2 , R 3 or R 11 to R 13 is a repeating unit, and this repeating unit preferably includes an imino ether part.
 また、本発明に用いるイミノエーテル化合物は、下記一般式(4)で表されることが好ましい。 In addition, the imino ether compound used in the present invention is preferably represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。 In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
 一般式(4)中、R、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(4)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (4), R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (4), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 本発明に用いるイミノエーテル化合物は、下記一般式(5)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。 In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
 一般式(5)中、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。一般式(5)中、R41は一般式(3)におけるそれと同意であり、好ましい範囲も同様である。なお、R21についても、一般式(3)におけるR41と同様の置換基を例示することができる。 In the general formula (5), R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. In the general formula (5), R 41 is the same as that in the general formula (3), and the preferred range is also the same. Incidentally, it is possible to illustrate the same substituents as R 41 in the R 21 also, the general formula (3).
 また、一般式(5)中、nは0~3であることが好ましく、0~2であることがより好ましい。また、mは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (5), n is preferably 0 to 3, and more preferably 0 to 2. Further, m is preferably 0 to 3, and more preferably 0 to 2.
 本発明に用いるイミノエーテル化合物は、下記一般式(6)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。 In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
 一般式(6)中、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(6)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (6), R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (6), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 一般式(6)中、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。pは2~4の整数を表し、pは2又は3であることが好ましい。
 二価の基の具体例としては、例えば、置換基を有してもよいアルキレン基、置換基を有してもよいシクロアルキレン基、置換基を有してもよいアリーレン基、置換基を有してもよいアルコキシレン基が挙げられる。また、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン部、置換もしくは無置換のアルケニレン部、アルキニレン部、置換もしくは無置換のフェニレン部、置換もしくは無置換のビフェニレン部、置換もしくは無置換のナフチレン部、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
 三価の基の具体例としては、例えば、二価の基の例として挙げた基のうち置換基を有するものから1つの水素原子を取り除いた基が挙げられる。
 四価の基の具体例としては、例えば、二価の基の例として挙げた基のうち置換基を有するものから2つの水素原子を取り除いた基が挙げられる。
In General Formula (6), L 1 may have an alkylene part that may have a substituent, a cycloalkylene part that may have a substituent, or a substituent at the terminal of the bond with the carbon atom. A p-valent group which is an arylene part or an alkoxylene part which may have a substituent is represented. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of the divalent group include an alkylene group that may have a substituent, a cycloalkylene group that may have a substituent, an arylene group that may have a substituent, and a substituent. And an alkoxylene group which may be used. In addition, the bond terminal to the carbon atom has an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, an arylene part which may have a substituent, or a substituent. A partial structure, such as —SO 2 —, —CO—, a substituted or unsubstituted alkylene part, a substituted or unsubstituted alkenylene part, an alkynylene part, a substituted or unsubstituted phenylene part, And a group containing at least one selected from a substituted or unsubstituted biphenylene moiety, a substituted or unsubstituted naphthylene moiety, —O—, —S— and —SO—.
Specific examples of the trivalent group include, for example, a group obtained by removing one hydrogen atom from those having a substituent among the groups listed as examples of the divalent group.
Specific examples of the tetravalent group include, for example, a group obtained by removing two hydrogen atoms from those having a substituent among the groups listed as examples of the divalent group.
 本発明では、pを2~4とすることにより、イミノエーテル部を一分子中に2以上有する化合物とすることができ、より優れた末端封止効果を発揮することができる。さらに、イミノエーテル部を一分子中に2以上有する化合物とすることにより、イミノエーテル価(全分子量/イミノエーテルの官能基数)を低くすることができ、効率良くイミノエーテル化合物とポリエステルの末端カルボキシル基を反応させることができる。 In the present invention, by setting p to 2 to 4, a compound having two or more imino ether moieties in one molecule can be obtained, and a more excellent end-capping effect can be exhibited. Furthermore, by using a compound having two or more imino ether moieties in one molecule, the imino ether value (total molecular weight / number of functional groups of imino ether) can be lowered, and the imino ether compound and the terminal carboxyl group of the polyester can be efficiently produced. Can be reacted.
 本発明に用いるイミノエーテル化合物は、下記一般式(7)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。 In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
 一般式(7)中、R、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。 In the general formula (7), R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
 一般式(7)中、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部であるp価の基が好ましい。pは2~4の整数を表し、pは2又は3であることが好ましい。
 Lの具体例としては、置換基を有してもよいアリーレン基、置換基を有してもよいシクロアルキレン基が挙げられる。また、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン部、置換もしくは無置換のアルケニレン部、アルキニレン部、置換もしくは無置換のフェニレン部、置換もしくは無置換のビフェニレン部、置換もしくは無置換のナフチレン部、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
In General Formula (7), L 2 represents a p-valent group whose bond terminal to the nitrogen atom is an arylene part that may have a substituent or a cycloalkylene part that may have a substituent. To express. L 2 is preferably a p-valent group whose bond terminal to the nitrogen atom is an arylene moiety that may have a substituent. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of L 2 include an arylene group which may have a substituent and a cycloalkylene group which may have a substituent. The bond terminal to the nitrogen atom is an arylene moiety which may have a substituent or a cycloalkylene moiety which may have a substituent, and as a partial structure, —SO 2 —, —CO—, Substituted or unsubstituted alkylene part, substituted or unsubstituted alkenylene part, alkynylene part, substituted or unsubstituted phenylene part, substituted or unsubstituted biphenylene part, substituted or unsubstituted naphthylene part, -O-, -S- And a group containing at least one selected from —SO—.
 本発明に用いるイミノエーテル化合物は、下記一般式(8)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。 In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
 一般式(8)中、Rは、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(8)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (8), R 2 are each as agreed in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (8), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 一般式(8)中、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。pは2~4の整数を表し、pは2又は3であることが好ましい。
 Lの具体例としては、アルキレン基が挙げられる。また、酸素原子との結合末端が、アルキレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルケニレン基、アルキニレン基、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
In General Formula (8), L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. In the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of L 3 include an alkylene group. In addition, the bond terminal to the oxygen atom is an alkylene moiety, and the partial structure includes —SO 2 —, —CO—, a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, an alkynylene group, substituted or unsubstituted And a group containing at least one selected from a substituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, —O—, —S— and —SO—.
 イミノエーテル化合物のイミノエーテル部あたりの分子量は1000以下であることが好ましく、750以下であることがより好ましく、500以下であることがさらに好ましい。イミノエーテル部あたりの分子量をこの範囲とすることで、低添加量にてポリエステルの末端カルボン酸基を封止することが可能となる。 The molecular weight per iminoether part of the iminoether compound is preferably 1000 or less, more preferably 750 or less, and even more preferably 500 or less. By setting the molecular weight per imino ether part within this range, it is possible to seal the terminal carboxylic acid group of the polyester with a low addition amount.
 イミノエーテル化合物全体の分子量は、300以上であることが好ましく、400以上であることがより好ましい。イミノエーテルの分子量をこの範囲とすることで、揮散をより効果的に抑制することができる。 The molecular weight of the whole imino ether compound is preferably 300 or more, and more preferably 400 or more. By setting the molecular weight of the imino ether within this range, volatilization can be more effectively suppressed.
 イミノエーテル化合物は、2官能以上の化合物であることが好ましく、合成し易さの観点から2官能、3官能又は4官能の化合物であることがより好ましい。ここで、官能数は、化合物に含まれているイミノエーテル部の数を表し、2官能のイミノエーテル化合物は、イミノエーテル部を2つ含む化合物を意味する。イミノエーテル化合物を2官能以上の化合物とすることにより、末端封止効果をより高めることができる。 The imino ether compound is preferably a bifunctional or higher functional compound, and more preferably a bifunctional, trifunctional or tetrafunctional compound from the viewpoint of ease of synthesis. Here, the functional number represents the number of imino ether parts contained in the compound, and the bifunctional imino ether compound means a compound containing two imino ether parts. By making the iminoether compound a bifunctional or higher compound, the end-capping effect can be further enhanced.
下記に一般式(1)の好ましい具体例を示すが、本発明はこれに限定されない。 Although the preferable specific example of General formula (1) is shown below, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(ポリエステル末端カルボキシル基の化学修飾方法)
 ポリエステル末端カルボキシル基の化学修飾は、一般式(1)で表されるイミノエーテル化合物とポリエステルを溶融状態で混合することで行うことができる。イミノエーテル化合物とポリエステルを100~350℃で反応させた場合、下記反応スキームのようにイミノエーテル基とポリエステル末端カルボキシル基が反応し、カルボン酸エステルを生成する。また、一般式(1)で表されるイミノエーテル化合物は、ポリエステル末端カルボキシル基と反応することでアミド化合物となるため、ポリエステル樹脂組成物中にはアミド化合物も含まれることとなる。
(Chemical modification method of terminal carboxyl group of polyester)
Chemical modification of the terminal carboxyl group of the polyester can be performed by mixing the iminoether compound represented by the general formula (1) and the polyester in a molten state. When the imino ether compound and the polyester are reacted at 100 to 350 ° C., the imino ether group and the polyester terminal carboxyl group react to form a carboxylic acid ester as shown in the following reaction scheme. Moreover, since the imino ether compound represented by the general formula (1) becomes an amide compound by reacting with the terminal carboxyl group of the polyester, the amide compound is also included in the polyester resin composition.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 一般式(1)で表されるイミノエーテル化合物とポリエステル末端カルボキシル基との反応率は、0.1~99%であることが好ましく、1~90%であることがより好ましく、2~80%であることがさらに好ましい。反応率を上記範囲内とすることにより、耐加水分解性を十分に向上させることができる。さらに、反応率を上記範囲内とすることにより、生成したアミド化合物がポリエステルフィルムから泣き出すことを抑制することができ、ポリエステルフィルムの面状をより良好なものにすることができる。 The reaction rate between the imino ether compound represented by the general formula (1) and the polyester terminal carboxyl group is preferably 0.1 to 99%, more preferably 1 to 90%, and more preferably 2 to 80%. More preferably. By setting the reaction rate within the above range, the hydrolysis resistance can be sufficiently improved. Furthermore, by setting the reaction rate within the above range, the generated amide compound can be prevented from crying from the polyester film, and the surface state of the polyester film can be made better.
 従来は、オキサゾリンやオキサジンとカルボン酸を反応させることによりカルボン酸をエステル化することが行われていた。オキサゾリンやオキサジンを末端封止剤として用いた場合、開環反応が起こることが知られている。また、開環反応と同時に自己縮合が副反応として進行することも知られている。 Conventionally, carboxylic acid has been esterified by reacting oxazoline or oxazine with carboxylic acid. It is known that a ring-opening reaction occurs when oxazoline or oxazine is used as a terminal blocking agent. It is also known that self-condensation proceeds as a side reaction simultaneously with the ring-opening reaction.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記のような開環反応を伴う自己縮合は、開環反応により生じるアルキルアミドのアミド基の求核性が高いため生じるものであると考えられる。一方、本発明のイミノエーテルで鎖状化合物のものは自己縮合することはなく、また環状化合物のものはエステル化反応で得られる芳香族アミドはその求核性が高くないため、自己縮合が生じないものと考えられる。これにより、イミノエーテル化合物がポリエステル樹脂中でゲル化することを抑制することができる。 The self-condensation accompanied by the ring-opening reaction as described above is considered to be caused by the high nucleophilicity of the amide group of the alkylamide generated by the ring-opening reaction. On the other hand, the chain compounds of the imino ethers of the present invention are not self-condensed, and those of cyclic compounds are not highly nucleophilic in the aromatic amide obtained by the esterification reaction. It is thought that there is nothing. Thereby, it can suppress that an imino ether compound gelatinizes in a polyester resin.
(顔料)
 本発明のポリエステル樹脂組成物は、顔料を含有する。顔料としては、例えば、酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料が挙げられる。中でも、白色顔料を用いることが好ましく、酸化チタン、硫酸バリウム又は炭酸カルシウムを用いることがより好ましく、酸化チタンを用いることが特に好ましい。
(Pigment)
The polyester resin composition of the present invention contains a pigment. Examples of the pigment include inorganic pigments such as titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It is done. Among these, it is preferable to use a white pigment, more preferably titanium oxide, barium sulfate or calcium carbonate, and particularly preferably titanium oxide.
 顔料の平均粒径は、体積平均粒径で0.03~0.8μmであることが好ましく、0.15~0.5μmであることがより好ましい。平均粒径を上記範囲内とすることにより、光の反射効率を高めることができる。なお、平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。 The average particle diameter of the pigment is preferably 0.03 to 0.8 μm in volume average particle diameter, and more preferably 0.15 to 0.5 μm. By setting the average particle size within the above range, the light reflection efficiency can be increased. The average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
 ポリエステル樹脂組成物への顔料の添加方法としては、従来から公知の各種の方法を用いることができる。その代表的な方法として、下記の方法を挙げることができる。
(A)ポリエステル合成時のエステル交換反応もしくはエステル化反応終了前に顔料を添加、または重縮合反応開始前に顔料を添加する方法。
(B)ポリエステルに顔料を添加し、溶融混練する方法。
(C)上記(A)、(B)の方法において顔料を多量に添加したマスターペレット(またはマスターバッチとも云う)を製造し、これらと顔料を含有しないポリエステルとを混練して、所定量の顔料を含有させる方法。
(D)上記(C)のマスターペレットをそのまま使用する方法。
As a method for adding the pigment to the polyester resin composition, various conventionally known methods can be used. The following method can be mentioned as the typical method.
(A) A method in which a pigment is added before the end of the transesterification or esterification reaction during the synthesis of the polyester, or a pigment is added before the start of the polycondensation reaction.
(B) A method in which a pigment is added to polyester and melt-kneaded.
(C) Master pellets (also referred to as master batches) to which a large amount of pigment is added in the methods (A) and (B) above are produced, and these are kneaded with a polyester not containing a pigment to obtain a predetermined amount of pigment. The method of containing.
(D) The method of using the master pellet of said (C) as it is.
 中でも、ポリエステル樹脂組成物への顔料の添加方法としては、上記(C)の方法を採用することが好ましい。上記(C)の方法では、事前に乾燥させていないポリエステル樹脂と顔料を押出機に投入し、水分や空気などを脱気しながらマスターペレットを作製する方法を採用することもできる。なお、事前に少しでも乾燥したポリエステル樹脂を用いてマスターペレットを作製する方が、ポリエステルの酸価上昇を抑えられるため好ましい。 Among these, as the method for adding the pigment to the polyester resin composition, it is preferable to employ the method (C). In the method (C), it is also possible to employ a method in which a polyester resin and a pigment that have not been dried in advance are put into an extruder and master pellets are produced while degassing moisture and air. In addition, it is preferable to prepare a master pellet using a polyester resin which has been dried in advance, because an increase in the acid value of the polyester can be suppressed.
 マスターペレットを作製する場合は投入するポリエステルはあらかじめ乾燥により水分率を低減させることが好ましい。乾燥条件としては、好ましくは100~200℃、より好ましくは120~180℃において、1時間以上、より好ましくは3時間以上、さらに好ましくは6時間以上乾燥する。これにより、ポリエステル樹脂の水分量を好ましくは50ppm以下、より好ましくは30ppm以下になるように十分乾燥する。混合は、バッチによる方法でもよいし、単軸もしくは二軸以上の混練押出機によって行ってもよい。脱気しながらマスターペレットを作製する場合は、250~300℃、好ましくは270~280℃の温度でポリエステル樹脂を融解し、混練機に一つ、好ましくは2以上の脱気口を設け、0.05MPa以上、より好ましくは0.1MPa以上の連続吸引脱気を行い、混合機内の減圧を維持すること等の方法を採用することが好ましい。 When preparing master pellets, it is preferable to reduce the moisture content of the polyester to be added in advance by drying. The drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less. The mixing may be performed by a batch method, or may be performed by a single-screw or biaxial or more kneading extruder. When producing master pellets while deaeration, the polyester resin is melted at a temperature of 250 to 300 ° C., preferably 270 to 280 ° C., and one, preferably two or more deaeration ports are provided in the kneader. It is preferable to adopt a method such as performing continuous suction deaeration of 0.05 MPa or more, more preferably 0.1 MPa or more, and maintaining the reduced pressure in the mixer.
(ポリエステル)
 本発明のポリエステル樹脂組成物は、ポリエステルを含有する。本発明で用いることができるポリエステルは特に限定されるものではないが、飽和ポリエステルであることが好ましい。飽和ポリエステルを用いることで、不飽和のポリエステルを用いたフィルムと比べて力学強度の観点で優れるポリエステルフィルムを得ることができる。
(polyester)
The polyester resin composition of the present invention contains polyester. The polyester that can be used in the present invention is not particularly limited, but is preferably a saturated polyester. By using a saturated polyester, a polyester film that is superior in terms of mechanical strength as compared with a film using an unsaturated polyester can be obtained.
 ポリエステルは、高分子の一分子鎖中に、-COO-結合、又は、-OCO-結合を有する。また、ポリエステルの末端基は、OH基、COOH基又はこれらが保護された基OR基、COOR基(Rは、アルキル基等任意の置換基)であって、芳香族二塩基酸又はそのエステル形成性誘導体と、ジオール又はそのエステル形成性誘導体から合成される線状飽和ポリエステルであることが好ましい。線状飽和ポリエステルとしては、例えば、特開2009-155479号公報や特開2010-235824号公報に記載のものを適宜用いることができる。 Polyester has a —COO— bond or —OCO— bond in one molecular chain of the polymer. The terminal group of the polyester is an OH group, a COOH group, or a protected group OR X group or COOR X group (R X is an arbitrary substituent such as an alkyl group), which is an aromatic dibasic acid or A linear saturated polyester synthesized from the ester-forming derivative and diol or the ester-forming derivative is preferable. As the linear saturated polyester, for example, those described in JP-A-2009-155479 and JP-A-2010-235824 can be appropriately used.
 線状飽和ポリエステルの具体例として、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレート、このうち、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが、力学的物性及びコストのバランスの点で特に好ましく、ポリエチレンテレフタレートがより特に好ましい。 Specific examples of the linear saturated polyester include polyethylene terephthalate (PET), polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate, of which polyethylene terephthalate or Polyethylene-2,6-naphthalate is particularly preferred from the viewpoint of the balance between mechanical properties and cost, and polyethylene terephthalate is more particularly preferred.
 ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。さらに、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。また、ポリエステルとして、溶融製膜時に異方性を形成することができる結晶性のポリエステルを用いてもよい。 The polyester may be a homopolymer or a copolymer. Further, polyester may be blended with other kinds of resins such as polyimide in a small amount. Moreover, as polyester, you may use crystalline polyester which can form anisotropy at the time of melt film forming.
 ポリエステルの分子量は、耐熱性や粘度の観点から、重量平均分子量(Mw)が5000~100000であることが好ましく、8000~80000であることがさらに好ましく、12000~60000であることが特に好ましい。ポリエステルの重量平均分子量は、ヘキサフルオロイソプロパノールを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリメチルメタクリレート(PMMA)換算の値を用いることができる。 As for the molecular weight of the polyester, the weight average molecular weight (Mw) is preferably 5000 to 100,000, more preferably 8000 to 80,000, and particularly preferably 12,000 to 60,000 from the viewpoints of heat resistance and viscosity. As the weight average molecular weight of the polyester, a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
 ポリエステルは公知の方法によって合成することができる。例えば、公知の重縮合法や開環重合法などによってポリエステルを合成することができ、エステル交換反応及び直接重合による反応のいずれでも適用することができる。 Polyester can be synthesized by a known method. For example, polyester can be synthesized by a known polycondensation method or ring-opening polymerization method, and any of transesterification and direct polymerization can be applied.
 ポリエステルのカルボン酸由来の成分は、芳香族二塩基酸又はそのエステル形成性誘導体由来の成分であることが好ましい。本発明で用いるポリエステルが、芳香族二塩基酸又はそのエステル形成性誘導体と、ジオール又はそのエステル形成性誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である場合には、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とを、エステル化反応又はエステル交換反応させ、次いで重縮合反応させることによって製造することができる。また、原料物質や反応条件を選択することにより、ポリエステルのカルボン酸価や固有粘度を制御することができる。なお、エステル化反応又はエステル交換反応及び重縮合反応を効果的に進めるために、これらの反応時に重合触媒を添加することが好ましい。 The component derived from the carboxylic acid of the polyester is preferably a component derived from an aromatic dibasic acid or an ester-forming derivative thereof. When the polyester used in the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, An aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof can be produced by an esterification reaction or an ester exchange reaction and then a polycondensation reaction. Moreover, the carboxylic acid value and intrinsic viscosity of the polyester can be controlled by selecting the raw material and reaction conditions. In order to effectively advance the esterification reaction or transesterification reaction and polycondensation reaction, it is preferable to add a polymerization catalyst during these reactions.
 ポリエステルを重合する際の重合触媒としては、カルボキシル基含量を所定の範囲以下に抑える観点から、Al系、Sb系、Ge系、及びTi系の化合物を用いることが好ましいが、特にTi系化合物を用いることが好ましい。Ti系化合物を用いる場合、Ti系化合物を1~30ppm、より好ましくは3~15ppmの範囲で触媒として用いることにより重合する態様が好ましい。Ti系化合物の割合が上記範囲内であると、末端カルボキシル基を所定の範囲内に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。 As a polymerization catalyst for polymerizing the polyester, it is preferable to use Al-based, Sb-based, Ge-based, and Ti-based compounds from the viewpoint of suppressing the carboxyl group content to a predetermined range or less. It is preferable to use it. In the case of using a Ti compound, an embodiment in which polymerization is performed by using the Ti compound as a catalyst in the range of 1 to 30 ppm, more preferably 3 to 15 ppm is preferable. When the proportion of the Ti-based compound is within the above range, the terminal carboxyl group can be adjusted within a predetermined range, and the hydrolysis resistance of the polymer substrate can be kept low.
 Ti系化合物を用いたポリエステルの合成には、例えば、特公平8-301198号公報、特許第2543624、特許第3335683、特許第3717380、特許第3897756、特許第3962226、特許第3979866、特許第3996871、特許第4000867、特許第4053837、特許第4127119、特許第4134710、特許第4159154、特許第4269704、特許第4313538等に記載の方法を適用でき、これらの内容は本明細書に組み込まれる。 Examples of the synthesis of polyester using a Ti compound include Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 397756, Japanese Patent No. 3996226, Japanese Patent No. 3997866, Japanese Patent No. 39968661, The methods described in Japanese Patent No. 40000867, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269704, Japanese Patent No. 413538, and the like can be applied, and the contents thereof are incorporated herein.
 ポリエステルは、重合後に固相重合されたものであることが好ましい。固相重合の方法は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合には、特許第2621563、特許第3121876、特許第3136774、特許第3603585、特許第3616522、特許第3617340、特許第3680523、特許第3717392、特許第4167159等に記載の方法を適用することができ、これらの内容は本明細書に組み込まれる。 The polyester is preferably one that has been solid-phase polymerized after polymerization. The solid-phase polymerization method may be a continuous method (a method in which a tower is filled with a resin, and this is slowly heated for a predetermined time and then sent out), or a batch method (a resin is placed in a container). Or a method of heating for a predetermined time). Specifically, solid phase polymerization is described in Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392, Japanese Patent No. 4167159, etc. Methods can be applied, the contents of which are incorporated herein.
 固相重合の温度は、170~240℃が好ましく、より好ましくは180~230℃であり、さらに好ましくは190~220℃である。また、固相重合時間は、5~100時間が好ましく、より好ましくは10~75時間であり、さらに好ましくは15~50時間である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。 The temperature of the solid phase polymerization is preferably 170 to 240 ° C, more preferably 180 to 230 ° C, and further preferably 190 to 220 ° C. The solid phase polymerization time is preferably 5 to 100 hours, more preferably 10 to 75 hours, and further preferably 15 to 50 hours. The solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
(ポリエステル樹脂組成物)
 本発明のポリエステル樹脂組成物は、上述したイミノエーテル化合物と、顔料と、ポリエステルとを含む。なお、本発明のポリエステル樹脂組成物は、本発明の趣旨に反しない限りにおいて、上述したイミノエーテル化合物以外の化合物を含むことを拒むものではない。例えば、カルボジイミド化合物、ケテンイミン化合物、エポキシ化合物、オキサゾリン化合物などを併用することができる。ただし、本発明のポリエステル樹脂組成物中に含まれるイミノエーテル化合物の含有量は、ポリエステル以外の有機化合物に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
(Polyester resin composition)
The polyester resin composition of the present invention contains the above-described imino ether compound, a pigment, and polyester. In addition, unless the polyester resin composition of this invention is contrary to the meaning of this invention, it does not refuse containing compounds other than the imino ether compound mentioned above. For example, a carbodiimide compound, a ketene imine compound, an epoxy compound, an oxazoline compound, and the like can be used in combination. However, the content of the imino ether compound contained in the polyester resin composition of the present invention is preferably 70% by mass or more and more preferably 80% by mass or more with respect to the organic compound other than the polyester. More preferably, it is 90% by mass or more.
 ポリエステル樹脂組成物の全質量に対し、上述したイミノエーテル化合物は、0.05~35質量%含まれることが好ましく、0.05~20質量%含まれることがより好ましく、0.5~20質量%含まれることがさらに好ましく、1~20質量%含まれることが特に好ましい。イミノエーテル化合物の含有量を上記範囲内とすることにより、ポリエステルフィルムの耐加水分解性を高めることができる。さらに、イミノエーテル化合物の含有量を上記範囲内とすることにより、ポリエステルフィルムの可視光隠蔽性も向上させることに加えて、ポリエステルフィルムを製膜する際の膜厚均一性を改善することができる。 The imino ether compound described above is preferably contained in an amount of 0.05 to 35% by mass, more preferably 0.05 to 20% by mass, and more preferably 0.5 to 20% by mass with respect to the total mass of the polyester resin composition. % Is more preferable, and 1 to 20% by mass is particularly preferable. By making content of an imino ether compound into the said range, the hydrolysis resistance of a polyester film can be improved. Furthermore, by setting the content of the imino ether compound within the above range, in addition to improving the visible light hiding property of the polyester film, it is possible to improve the film thickness uniformity when the polyester film is formed. .
 ポリエステル樹脂組成物の全質量に対し、顔料は、0.2~50質量%含まれることが好ましく、0.4~50質量%含まれることがより好ましく、5~50質量%含まれることがさらに好ましい。ポリエステル樹脂組成物中の顔料の含有量を上記範囲内とすることにより、ポリエステルフィルムの可視光隠蔽性を向上させることができ、さらに太陽光の反射率を高めることができる。 The pigment is preferably contained in an amount of 0.2 to 50% by mass, more preferably 0.4 to 50% by mass, and further preferably 5 to 50% by mass based on the total mass of the polyester resin composition. preferable. By making content of the pigment in a polyester resin composition into the said range, the visible light concealment property of a polyester film can be improved, and also the reflectance of sunlight can be improved.
 ポリエステル樹脂組成物に含まれる上述したイミノエーテル化合物は、ポリエステルの末端を封止することでポリエステルの加水分解を抑制する。ポリエステルに白色顔料を練込む工程では、顔料に含まれる水分によりポリエステルの加水分解が生じる場合があり、また顔料粒子のせん断により生じる発熱によりポリエステルの熱分解が生じる場合がある。上述したイミノエーテル化合物は、顔料粒子のせん断により生じる発熱によって促進されるポリエステルの熱分解を抑制することができる。 The above-mentioned imino ether compound contained in the polyester resin composition suppresses hydrolysis of the polyester by sealing the end of the polyester. In the step of kneading the white pigment into the polyester, the polyester may be hydrolyzed due to moisture contained in the pigment, and the polyester may be thermally decomposed due to heat generated by the shearing of the pigment particles. The above-described imino ether compound can suppress thermal decomposition of polyester promoted by heat generated by shearing of pigment particles.
 さらに、本発明の効果を阻害しない範囲内であれば、本発明のポリエステル樹脂組成物には、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、紫外線吸収剤、難燃剤、難燃助剤及び染料などを含むこととしてもよい。 Further, various additives such as compatibilizers, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants are included in the polyester resin composition of the present invention as long as the effects of the present invention are not impaired. Further, it may contain an antistatic agent, a brightening agent, a coloring agent, a conductive agent, an ultraviolet absorber, a flame retardant, a flame retardant aid, a dye, and the like.
(マスターペレット)
 本発明は、上述したポリエステル樹脂組成物を用いて形成されるマスターペレットに関するものでもある。マスターペレットは、混練したポリエステル樹脂組成物をチップ化したものであり、ポリエステル樹脂組成物を押出成形して形成される。マスターペレットの形状としては、例えば、円柱状のものが挙げられ、長さは1~10mm、底辺直径は1~10mmのサイズとすることができる。
(Master pellet)
The present invention also relates to a master pellet formed using the above-described polyester resin composition. The master pellet is a kneaded polyester resin composition formed into chips, and is formed by extrusion molding of the polyester resin composition. Examples of the shape of the master pellet include a cylindrical shape, and the length may be 1 to 10 mm in length and the base diameter may be 1 to 10 mm.
 本発明のマスターペレットにも上述したイミノエーテル化合物や顔料が含有され、好ましい含有量は、ポリエステル樹脂組成物に含まれる含有量の範囲と同様である。すなわち、マスターペレットの全質量に対し、上述したイミノエーテル化合物は、0.05~35質量%含まれることが好ましく、0.05~20質量%含まれることがより好ましく、0.5~20質量%含まれることがさらに好ましく、1~20質量%含まれることが特に好ましい。また、マスターペレットの全質量に対し、顔料は、0.2~50質量%含まれることが好ましく、0.4~50質量%含まれることがより好ましく、5~50質量%含まれることがさらに好ましい。 The master pellet of the present invention contains the above-described iminoether compound and pigment, and the preferred content is the same as the content range contained in the polyester resin composition. That is, the above-mentioned imino ether compound is preferably contained in an amount of 0.05 to 35% by mass, more preferably 0.05 to 20% by mass, and more preferably 0.5 to 20% by mass with respect to the total mass of the master pellet. % Is more preferable, and 1 to 20% by mass is particularly preferable. Further, the pigment is preferably contained in an amount of 0.2 to 50% by mass, more preferably 0.4 to 50% by mass, and further preferably 5 to 50% by mass with respect to the total mass of the master pellet. preferable.
(ポリエステルフィルム)
 本発明は、上述したポリエステル樹脂組成物を用いて形成されるポリエステルフィルムに関するものでもある。本発明のポリエステルフィルムは、上述したポリエステル樹脂組成物を溶融し、押出すことによって形成することもできるし、上述したポリエステル樹脂組成物と他のポリエステル樹脂組成物を溶融混練し、押出すことによって形成することもできる。ここで、他のポリエステル樹脂組成は、上述したポリエステル樹脂組成物に含まれるポリエステルから構成されるポリエステル樹脂組成であることが好ましい。
(Polyester film)
The present invention also relates to a polyester film formed using the above-described polyester resin composition. The polyester film of the present invention can be formed by melting and extruding the above-described polyester resin composition, or by melt-kneading and extruding the above-described polyester resin composition and another polyester resin composition. It can also be formed. Here, it is preferable that another polyester resin composition is a polyester resin composition comprised from the polyester contained in the polyester resin composition mentioned above.
 本発明のポリエステルフィルムは、上述したイミノエーテル化合物を含む。イミノエーテル化合物は、ポリエステルフィルムの全質量に対し、0.05~3質量%含まれることが好ましく、0.1~2質量%含まれることがより好ましく、0.1~1.5質量%含まれることがさらに好ましい。イミノエーテル化合物の含有量を上記範囲内とすることにより、ポリエステルフィルムの耐加水分解性を高めることができる。さらに、イミノエーテル化合物の含有量を上記範囲内とすることにより、ポリエステルフィルムの可視光隠蔽性も向上させることに加えて、ポリエステルフィルムを製膜する際の膜厚均一性を改善することができる。 The polyester film of the present invention contains the above-described imino ether compound. The imino ether compound is preferably contained in an amount of 0.05 to 3% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.1 to 1.5% by weight based on the total weight of the polyester film. More preferably. By making content of an imino ether compound into the said range, the hydrolysis resistance of a polyester film can be improved. Furthermore, by setting the content of the imino ether compound within the above range, in addition to improving the visible light hiding property of the polyester film, it is possible to improve the film thickness uniformity when the polyester film is formed. .
 さらに、本発明のポリエステルフィルムは、顔料を含む。顔料は、ポリエステルフィルムの全質量に対し、0.1~10質量%含まれることが好ましく、0.5~10質量%含まれることがより好ましく、0.5~5質量%含まれることがさらに好ましい。ポリエステルフィルム中の顔料の含有量を上記範囲内とすることにより、ポリエステルフィルムの可視光隠蔽性を向上させることができ、さらに太陽光の反射率を高めることができる。 Furthermore, the polyester film of the present invention contains a pigment. The pigment is preferably contained in an amount of 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, and further preferably 0.5 to 5% by mass with respect to the total mass of the polyester film. preferable. By making content of the pigment in a polyester film into the said range, the visible light concealment property of a polyester film can be improved, and also the reflectance of sunlight can be raised.
 本発明のポリエステルフィルムの厚みは、用途によって異なるが、太陽電池モジュール用バックシートの部材として用いる場合には、25μm~300μmであることが好ましく、120~300μmであることがより好ましい。厚みが25μm以上であることで、十分な力学強度が得られ、300μm以下とすることで、コスト上のメリットが得られる。 The thickness of the polyester film of the present invention varies depending on the application, but when used as a member of a back sheet for a solar cell module, it is preferably 25 μm to 300 μm, more preferably 120 to 300 μm. When the thickness is 25 μm or more, sufficient mechanical strength is obtained, and when the thickness is 300 μm or less, a merit in cost can be obtained.
 本発明のポリエステルフィルムは延伸されていることが好ましく、2軸延伸されていることがさらに好ましい。すなわち、本発明のポリエステルフィルムは2軸配向フィルムであることが好ましい。中でも、平面2軸延伸されていることがチューブラーなどの延伸と比較して特に好ましく、逐次2軸延伸されていることがより特に好ましい。2軸延伸されたポリエステルフィルムは、長手方向(MD:Machine Direction)の延伸(以下「縦延伸」ともいう)と幅方向(TD:Transverse Direction)の延伸(以下、「横延伸」ともいう)が施されたフィルムである。縦延伸、横延伸は各々1回で行っても良く、複数回に亘って実施しても良く、同時に縦、横に延伸してもよい。 The polyester film of the present invention is preferably stretched and more preferably biaxially stretched. That is, the polyester film of the present invention is preferably a biaxially oriented film. Especially, it is especially preferable compared with extending | stretching of tubular etc. that it is plane biaxially stretched, and it is more especially preferable that it is biaxially stretched sequentially. The biaxially stretched polyester film is stretched in the longitudinal direction (MD: Machine Direction) (hereinafter also referred to as “longitudinal stretching”) and in the width direction (TD: Transverse Direction) (hereinafter also referred to as “lateral stretching”). It is a film that has been applied. Each of the longitudinal stretching and the lateral stretching may be performed once, may be performed a plurality of times, and may be stretched longitudinally and laterally at the same time.
 本発明のポリエステルフィルムのMD配向度、及び、TD配向度は、それぞれ0.14以上であることが好ましく、0.155以上がさらに好ましく、0.16以上が特に好ましい。各配向度が0.14以上であると、非晶鎖の拘束性が向上し(運動性が低下)、耐加水分解性が向上する。MD及びTD配向度は、アッベの屈折率計を用い、光源としては単色光ナトリウムD線を用い、マウント液としてはヨウ化メチレンを用いて25℃雰囲気中で2軸配向フィルムのx、y、z方向の屈折率を測定し、MD配向度:Δn(x-z)、TD配向度;Δn(y-z)から算出することができる。 The MD orientation and TD orientation of the polyester film of the present invention are each preferably 0.14 or more, more preferably 0.155 or more, and particularly preferably 0.16 or more. When the degree of orientation is 0.14 or more, the restraint property of the amorphous chain is improved (the mobility is lowered), and the hydrolysis resistance is improved. MD and TD orientations were measured using x, y, and biaxially oriented films in a 25 ° C. atmosphere using an Abbe refractometer, a monochromatic sodium D line as a light source, and methylene iodide as a mounting solution. The refractive index in the z direction is measured, and can be calculated from MD orientation degree: Δn (xz), TD orientation degree; Δn (yz).
 ポリエステルフィルム中の末端カルボキシル基含量(ポリエステルのカルボン酸価、以下、AVともいう)は、ポリエステルに対して25eq/ton以下が好ましく、20eq/ton以下がより好ましく、特に好ましくは16eq/ton以下であり、より特に好ましくは15eq/ton以下である。カルボキシル基含量が25eq/ton以下であると、イミノエーテル化合物と組み合わせることでポリエステルフィルムの耐加水分解性、耐熱性を保持することができ、湿熱経時したときの強度低下を小さく抑制することができる。ポリエステル中の末端カルボキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。カルボキシル基含量は、H.A.Pohl,Anal.Chem.26(1954)2145に記載の方法に従って、滴定法にて測定することができる。具体的には、ポリエステルを、ベンジルアルコールに205℃で溶解し、フェノールレッド指示薬を加え、水酸化ナトリウムの水/メタノール/ベンジルアルコール溶液で滴定することで、その適定量からカルボン酸価(eq/ton)を算出することができる。 The terminal carboxyl group content in the polyester film (the carboxylic acid value of the polyester, hereinafter also referred to as AV) is preferably 25 eq / ton or less, more preferably 20 eq / ton or less, particularly preferably 16 eq / ton or less with respect to the polyester. And more particularly preferably 15 eq / ton or less. When the carboxyl group content is 25 eq / ton or less, it is possible to maintain the hydrolysis resistance and heat resistance of the polyester film by combining with the imino ether compound, and it is possible to suppress a decrease in strength when the moisture and heat age. . The terminal carboxyl group content in the polyester can be adjusted by polymerization catalyst species, polymerization time, and film forming conditions (film forming temperature and time). The carboxyl group content is H.264. A. Pohl, Anal. Chem. 26 (1954) 2145, and can be measured by a titration method. Specifically, the polyester is dissolved in benzyl alcohol at 205 ° C., a phenol red indicator is added, and titrated with a solution of sodium hydroxide in water / methanol / benzyl alcohol to determine the carboxylic acid value (eq / ton) can be calculated.
 ポリエステルフィルム中の末端ヒドロキシル基含量は、ポリエステルに対して120eq/ton以下が好ましく、より好ましくは90eq/ton以下である。ヒドロキシル基含量の下限は、上層との密着性の観点から、20eq/ton以上が望ましい。ポリエステル中のヒドロキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。末端ヒドロキシル基含量は、重水素化ヘキサフルオロイソプロパノール溶媒を用いて、H-NMRにより測定した値を用いることできる。 The terminal hydroxyl group content in the polyester film is preferably 120 eq / ton or less, more preferably 90 eq / ton or less, based on the polyester. The lower limit of the hydroxyl group content is preferably 20 eq / ton or more from the viewpoint of adhesion to the upper layer. The hydroxyl group content in the polyester can be adjusted by the polymerization catalyst species, the polymerization time, and the film forming conditions (film forming temperature and time). As the terminal hydroxyl group content, a value measured by 1 H-NMR using a deuterated hexafluoroisopropanol solvent can be used.
 また、本発明のポリエステルフィルムの固有粘度(IV)は、0.55~0.94dl/gが好ましく、0.60~0.84dl/gがさらに好ましく、0.62~0.80dl/gが特に好ましい。ポリエステルフィルムの固有粘度を上記範囲内とすることにより、製膜性を改善し、膜厚均一性を改善することができる。
 ポリエステルの固有粘度(IV)は、フィルム製膜時に使用するポリエステルが2種以上である場合(特開2011-256337号公報の回収ポリエステルを使用する場合など)、すべてのポリエステルを混合したポリエステルの固有粘度が、上記範囲を満たすことが好ましい。
 ポリエステルの固有粘度(IV)は、ポリエステルをオルトクロロフェノールに溶解し、25℃で測定した溶液粘度から、下式を用いて算出することができる。
 ηsp/C=[η]+K[η]・C
 ここで、ηsp=(溶液粘度/溶媒粘度)-1であり、Cは、溶媒100mlあたりの溶解ポリマー重量であり(本測定では1g/100mlとする)、Kはハギンス定数(0.343とする)であり、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定することができる。
The intrinsic viscosity (IV) of the polyester film of the present invention is preferably from 0.55 to 0.94 dl / g, more preferably from 0.60 to 0.84 dl / g, and from 0.62 to 0.80 dl / g. Particularly preferred. By making the intrinsic viscosity of the polyester film within the above range, the film forming property can be improved and the film thickness uniformity can be improved.
The intrinsic viscosity (IV) of the polyester is the intrinsic viscosity of the polyester in which all the polyesters are mixed when there are two or more kinds of polyesters used in film formation (such as when the recovered polyesters of JP2011-256337A are used). It is preferable that the viscosity satisfies the above range.
The intrinsic viscosity (IV) of the polyester can be calculated from the solution viscosity measured at 25 ° C. by dissolving the polyester in orthochlorophenol, using the following equation.
ηsp / C = [η] + K [η] 2 · C
Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement), and K is the Huggins constant (0.343) The solution viscosity and the solvent viscosity can be measured using an Ostwald viscometer.
(ポリエステルフィルムの製造方法)
(フィルム形成工程)
 フィルム形成工程においては、ポリエステルと、上述したイミノエーテル化合物と、顔料を含む混合物を溶融させた溶融体を流涎して冷却固化させることで、未延伸フィルムを製膜することができる。溶融体は、ギアポンプや濾過器を通すことが好ましく、濾過器を通った溶融体は、ダイを介して冷却ロールに押出され、冷却固化される。なお、押出された溶融体は、静電印加法を用いて冷却ロールに密着させることができる。この際、冷却ロールの表面温度は、おおよそ10~40℃とすることが好ましい。
(Production method of polyester film)
(Film forming process)
In the film forming step, an unstretched film can be formed by pouring a melt obtained by melting a mixture containing polyester, the above-described iminoether compound, and a pigment and cooling and solidifying the melt. The melt is preferably passed through a gear pump or a filter, and the melt that has passed through the filter is extruded through a die to a cooling roll and cooled and solidified. The extruded melt can be brought into close contact with the cooling roll using an electrostatic application method. At this time, the surface temperature of the cooling roll is preferably about 10 to 40 ° C.
(延伸工程)
 フィルム形成工程によって形成された(未延伸)フィルムは、延伸工程において、延伸処理を施すことができる。延伸工程においては、冷却ロールで冷却固化させた(未延伸)フィルムに1つまたは2つの方向に延伸されることが好ましく、2つの方向に延伸されることがより好ましい。2つの方向への延伸(2軸延伸)は、縦延伸、横延伸は各々1回で行っても良く、複数回に亘って実施しても良く、同時に縦、横に延伸してもよい。
 延伸処理は、フィルムのガラス温度(Tg)℃~(Tg+60)℃で行うのが好ましく、より好ましくはTg+3℃~Tg+40℃、さらに好ましくはTg+5℃~Tg+30℃である。
(Stretching process)
The (unstretched) film formed by the film forming step can be subjected to a stretching treatment in the stretching step. In the stretching step, the film that has been cooled and solidified with a cooling roll (unstretched) is preferably stretched in one or two directions, and more preferably stretched in two directions. In stretching in two directions (biaxial stretching), the longitudinal stretching and the lateral stretching may each be performed once, or may be performed a plurality of times, and may be simultaneously performed in the longitudinal and lateral directions.
The stretching treatment is preferably performed at a glass temperature (Tg) ° C. to (Tg + 60) ° C. of the film, more preferably Tg + 3 ° C. to Tg + 40 ° C., and further preferably Tg + 5 ° C. to Tg + 30 ° C.
 好ましい延伸倍率は少なくとも一方に280~500%、より好ましくは300~480%、さらに好ましくは320~460%である。2軸延伸の場合、縦、横均等に延伸してもよいが、一方の延伸倍率を他方より大きくし不均等に延伸するほうがより好ましい。縦(MD)、横(TD)いずれを大きくしてもよい。ここでいう延伸倍率は、以下の式を用いて求めたものである。
   延伸倍率(%)=100×(延伸後の長さ)/(延伸前の長さ)
The preferred draw ratio is at least 280 to 500%, more preferably 300 to 480%, still more preferably 320 to 460%. In the case of biaxial stretching, the film may be stretched evenly in the vertical and horizontal directions, but it is more preferable to stretch one of the stretch ratios more than the other and unevenly stretch. Either vertical (MD) or horizontal (TD) may be increased. The draw ratio here is determined using the following equation.
Stretch ratio (%) = 100 × (length after stretching) / (length before stretching)
 2軸延伸処理は、例えば、フィルムのガラス転移温度である(Tg)℃~(Tg+60)℃で長手方向に1回もしくは2回以上、合計の倍率が3~6倍になるよう延伸し、その後、(Tg)℃~(Tg+60)℃で幅方向に倍率が3~5倍になるよう施すことができる。 The biaxial stretching treatment is performed, for example, at (Tg 1 ) ° C. to (Tg 1 +60) ° C., which is the glass transition temperature of the film, so that the total magnification becomes 3 to 6 times, once or twice in the longitudinal direction. Thereafter, the film can be applied at (Tg 1 ) ° C. to (Tg + 60) ° C. so that the magnification is 3 to 5 times in the width direction.
 2軸延伸処理は出口側の周速を速くした2対以上のニップロールを用いて、長手方向に延伸することができ(縦延伸)、フィルムの両端をチャックで把持しこれを直交方向(長手方向と直角方向)に広げておこなうことができる(横延伸)。 The biaxial stretching process can be stretched in the longitudinal direction using two or more pairs of nip rolls whose peripheral speed on the outlet side is increased (longitudinal stretching), and both ends of the film are gripped by chucks and orthogonally oriented (longitudinal direction). (Perpendicular direction) can be performed (lateral stretching).
 延伸工程においては、延伸処理の前又はその後、好ましくは延伸処理後に、フィルムに熱処理を施すことができる。熱処理を施すことによって、微結晶を生成し、力学特性や耐久性を向上させることができる。180~210℃程度(さらに好ましくは、185~220℃)で1~60秒間(さらに好ましくは2~30秒間)の熱処理をフィルムに施してもよい。 In the stretching step, the film can be heat-treated before or after the stretching treatment, preferably after the stretching treatment. By performing heat treatment, microcrystals can be generated, and mechanical properties and durability can be improved. The film may be subjected to a heat treatment at about 180 to 210 ° C. (more preferably 185 to 220 ° C.) for 1 to 60 seconds (more preferably 2 to 30 seconds).
 延伸工程においては、熱処理後、熱緩和処理を施すことができる。熱緩和処理とは、フィルムに対して応力緩和のために熱を加えて、フィルムを収縮させる処理である。熱緩和処理は、フィルムのMD及びTDの両方向に施すことが好ましい。熱緩和処理における諸条件は、熱処理温度より低い温度で処理することが好ましく、130~220℃が好ましい。また、熱緩和処理は、フィルムの熱収縮率(150℃)がMD及びTDがいずれも1~12%であることが好ましく、1~10%がさらに好ましい。尚、熱収縮率(150℃)は、測定方向350mm、幅50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端を固定、他端をフリーで30分間放置し、その後、室温で標点間距離を測定し、この長さをL(mm)とし、かかる測定値を用いて、下記式にて熱収縮率を求めることができる。
 150℃熱収縮率(%)=100×(300-L)/300
 また、熱収縮率が正の場合は縮みを、負は伸びを表わす。
In the stretching step, a thermal relaxation treatment can be performed after the heat treatment. The thermal relaxation treatment is a treatment for shrinking the film by applying heat to the film for stress relaxation. The thermal relaxation treatment is preferably performed in both the MD and TD directions of the film. The various conditions in the thermal relaxation treatment are preferably treatment at a temperature lower than the heat treatment temperature, and preferably 130 to 220 ° C. In the heat relaxation treatment, the thermal shrinkage (150 ° C.) of the film is preferably 1 to 12%, more preferably 1 to 10% for both MD and TD. For heat shrinkage (150 ° C), a sample with a measurement direction of 350 mm and a width of 50 mm was cut out, marked at 300 mm intervals near both ends in the longitudinal direction of the sample, and fixed at one end to an oven adjusted to a temperature of 150 ° C. The other end is left free for 30 minutes, and then the distance between the gauge points is measured at room temperature. This length is defined as L (mm), and the heat shrinkage rate is obtained by the following formula using the measured value. Can do.
150 ° C. thermal shrinkage (%) = 100 × (300−L) / 300
Further, when the thermal contraction rate is positive, it indicates shrinkage, and negative indicates elongation.
(太陽電池モジュール用バックシート)
 本発明のポリエステルフィルムは、その上に易接着層等の塗布層を設けた積層フィルムとして用いることもできる。また、本発明のポリエステルフィルムや積層フィルムは、太陽電池モジュール用バックシート(太陽電池モジュールの保護シート)として好適に用いることができる。本発明のポリエステルフィルムは、面状が良好であり、優れた耐湿熱性を有するため、太陽電池モジュール用バックシートに用いた場合、長期間に亘って太陽電池モジュールを保護することができる。さらに、本発明のポリエステルフィルムは、可視光隠蔽性を備え、太陽光を反射することができるため、太陽電池モジュールの発電効率を損ねることがない。
(Back sheet for solar cell module)
The polyester film of the present invention can also be used as a laminated film in which a coating layer such as an easy adhesion layer is provided thereon. Moreover, the polyester film and laminated | multilayer film of this invention can be used suitably as a solar cell module backsheet (protective sheet of a solar cell module). Since the polyester film of the present invention has a good surface shape and excellent moisture and heat resistance, when used in a back sheet for a solar cell module, the solar cell module can be protected for a long period of time. Furthermore, since the polyester film of the present invention has visible light concealability and can reflect sunlight, the power generation efficiency of the solar cell module is not impaired.
 本発明のポリエステルフィルムに、下記のような機能性層を積層することで太陽電池モジュール用バックシートを形成することができる。機能性層を積層する際には、易接着層を間に設けることが好ましい。なお、機能性層を積層する前に、ポリエステルフィルムの表面を表面処理することが好ましく、例えば、火炎処理、コロナ処理、プラズマ処理、紫外線処理等を施すことができる。 A back sheet for a solar cell module can be formed by laminating the following functional layer on the polyester film of the present invention. When laminating functional layers, it is preferable to provide an easy-adhesion layer in between. In addition, before laminating | stacking a functional layer, it is preferable to surface-treat the surface of a polyester film, for example, a flame treatment, a corona treatment, a plasma treatment, an ultraviolet treatment etc. can be given.
<反射層(着色層)>
 本発明のポリエステルフィルムは、反射層(着色層)としての機能を発揮することもできるが、太陽電池モジュール用バックシートはさらに機能性層として反射層(着色層)を有してもよい。着色層は、ポリエステルフィルムの表面に接触させて、あるいは他の層を介して配置される層であり、顔料やバインダーを用いて構成することができる。反射層を設けることにより太陽電池モジュールに入射した太陽光のうち、太陽電池セルをすり抜けてバックシートに到達した光を反射させて太陽電池セルに戻すことが可能になる。これにより、発電効率を向上させることができる。
<Reflective layer (colored layer)>
Although the polyester film of this invention can also exhibit the function as a reflective layer (colored layer), the solar cell module backsheet may further have a reflective layer (colored layer) as a functional layer. The colored layer is a layer arranged in contact with the surface of the polyester film or through another layer, and can be constituted using a pigment or a binder. By providing the reflective layer, it is possible to reflect the light that has passed through the solar cell and reaches the back sheet out of the sunlight incident on the solar cell module, and return it to the solar cell. Thereby, power generation efficiency can be improved.
(バインダー)
 反射層に用いるバインダーとしてはアクリル系、ポリエステル系、ポリウレタン系、ポリオレフィン系ポリマー等を用いることができるが、この中ではポリオレフィン系ポリマーが好ましい。
(binder)
As the binder used in the reflective layer, acrylic, polyester, polyurethane, and polyolefin polymers can be used. Of these, polyolefin polymers are preferred.
 本発明の太陽電池モジュール用バックシートは内側面(封止材に接着する側)に光の反射層を設けることが好ましい。反射層は、封止材との接着性をより向上させるため、エポキシ系、イソシアネート系、オキサゾリン系、カルボジイミド系等の架橋剤を含有することが好ましい。これらの架橋剤のうち、湿熱経時後の接着性を確保する観点から、カルボジイミド系架橋剤、オキサゾリン系架橋剤が特に好ましい。 The solar cell module backsheet of the present invention is preferably provided with a light reflecting layer on the inner side surface (side to be bonded to the sealing material). The reflective layer preferably contains an epoxy-based, isocyanate-based, oxazoline-based, carbodiimide-based or the like crosslinking agent in order to further improve the adhesion with the sealing material. Of these cross-linking agents, carbodiimide cross-linking agents and oxazoline cross-linking agents are particularly preferable from the viewpoint of ensuring adhesion after wet heat aging.
 反射層には反射率を上げる目的で白色顔料を添加することが好ましい。好ましい白色顔料としては、例えば酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク等を挙げることができる。これらの内で白色度、反射率、耐久性の観点から酸化チタンは特に好ましい。酸化チタンにはルチル、アナターゼ、ブルカイトの3種類の結晶系があるが、高い屈折率と白色度、及び低い光触媒活性からルチル型の結晶構造を持つものが好ましい。 It is preferable to add a white pigment to the reflective layer for the purpose of increasing the reflectance. Preferred examples of the white pigment include titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, and talc. Of these, titanium oxide is particularly preferable from the viewpoints of whiteness, reflectance, and durability. Titanium oxide has three types of crystal systems of rutile, anatase, and brookite, but those having a rutile crystal structure are preferred because of their high refractive index, whiteness, and low photocatalytic activity.
 反射層には必要に応じて界面活性剤、防腐剤などの公知の添加剤を添加してもよい。界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤が挙げることができる。アニオン系界面活性剤としてはアルキル硫酸ナトリウム塩、アルキルベンゼンスルホン酸ナトリウム塩などがあり、ノニオン系界面活性剤としてはポリオキシエチレンアルキルエーテルなどがある。また、パーフロロアルキル硫酸ナトリウム塩のようなフッ素系界面活性剤も好ましい。 In the reflective layer, known additives such as surfactants and preservatives may be added as necessary. Examples of the surfactant include known surfactants such as anionic and nonionic surfactants. Examples of the anionic surfactant include sodium alkyl sulfate and sodium alkylbenzene sulfonate, and examples of the nonionic surfactant include polyoxyethylene alkyl ether. Also preferred are fluorosurfactants such as sodium perfluoroalkyl sulfate.
 反射層の厚みは3~10μm、より好ましくは4~8μmの範囲が好ましい。反射層の厚みを3~10μmの範囲にすることで、必要な反射率と接着性を両立することができる。 The thickness of the reflective layer is preferably 3 to 10 μm, more preferably 4 to 8 μm. By making the thickness of the reflective layer in the range of 3 to 10 μm, it is possible to achieve both required reflectance and adhesiveness.
 反射層の形成方法は特に制限はなく、ロールコート法、バーコーター法、スライドダイ法、グラビアコーター法などの公知の塗布方法を用いて形成できる。塗布溶媒にも制約はなく、メチルエチルケトン、トルエン、キシレンのような有機溶剤系の溶媒を用いても、水を溶媒として用いてもよい。環境負荷が小さいことを考えると水を溶媒として用いることは特に好ましい。塗布溶媒は単独で用いても混合して用いてもよい。特に水系の塗布溶媒の場合、水に水混和性の有機溶剤を少量加えた混合溶媒として用いてもよい。
 反射層の乾燥にも特に制限はないが、乾燥時間の短縮化の観点から120~200℃程度の温度で1~10分間程度乾燥させることが好ましい。乾燥温度が120℃未満の場合、乾燥時間が長くなり製造をする上で不利である。逆に200℃を超えると得られるバックシートの平面性が損なわれる場合がある。
The method for forming the reflective layer is not particularly limited, and can be formed using a known coating method such as a roll coating method, a bar coater method, a slide die method, or a gravure coater method. There is no restriction | limiting also in a coating solvent, You may use organic solvent type | system | group solvents like methyl ethyl ketone, toluene, and xylene, or you may use water as a solvent. Considering that the environmental load is small, it is particularly preferable to use water as a solvent. The coating solvent may be used alone or in combination. In particular, in the case of an aqueous coating solvent, a mixed solvent obtained by adding a small amount of a water-miscible organic solvent to water may be used.
Although there is no particular limitation on the drying of the reflective layer, it is preferable to dry at a temperature of about 120 to 200 ° C. for about 1 to 10 minutes from the viewpoint of shortening the drying time. When the drying temperature is less than 120 ° C., the drying time becomes long, which is disadvantageous in production. Conversely, if it exceeds 200 ° C., the flatness of the resulting backsheet may be impaired.
 <オーバーコート層>
 本発明の太陽電池モジュール用バックシートは、封止材との接着性を向上させる目的で反射層の上にオーバーコート層を設けてもよい。
<Overcoat layer>
The back sheet for a solar cell module of the present invention may be provided with an overcoat layer on the reflective layer for the purpose of improving the adhesion to the sealing material.
 オーバーコート層のバインダーとしては反射層のところで述べたものを好ましく用いることができる。オーバーコート層の架橋剤種としては反射層のところで述べたものを好ましく用いることができる。
 また、オーバーコート層のその他の添加剤の種類と添加量としては反射層のところで述べたものを好ましく用いることができる。
As the binder for the overcoat layer, those described for the reflective layer can be preferably used. As the type of crosslinking agent for the overcoat layer, those described for the reflective layer can be preferably used.
Further, as the type and amount of other additives in the overcoat layer, those described in the reflective layer can be preferably used.
 オーバーコート層の膜厚は0.1~1.0μm、より好ましくは0.2~0.8μmの範囲が好ましい。オーバーコート層の厚みを0.1~1.0μmの範囲にすることで、封止材との強固な接着性を得ることができる。 The film thickness of the overcoat layer is preferably in the range of 0.1 to 1.0 μm, more preferably 0.2 to 0.8 μm. By setting the thickness of the overcoat layer in the range of 0.1 to 1.0 μm, it is possible to obtain strong adhesiveness with the sealing material.
 オーバーコート層の形成方法、塗布溶媒、乾燥方法については反射層のところで述べたものや方法を好ましく用いることができる。 As the method for forming the overcoat layer, the coating solvent, and the drying method, those described in the reflective layer can be preferably used.
 <裏面層>
 本発明の太陽電池モジュール用バックシートは外側面(太陽電池セルの反対側の面)に支持体を保護するための裏面層を設けることが好ましい。裏面層のバインダーとしては耐久性と支持体との接着性の点から以下に述べるシリコーン系複合ポリマーを用いることが好ましい。シリコーン系複合ポリマー(以降「複合ポリマー」と言う場合がある)は、分子中に-(Si(R)(R)-O)-部分と上記部分に共重合するポリマー構造部分を含むポリマーである。裏面層のバインダーとしてシリコーン系複合ポリマーを用いることにより、裏面層と支持体の間の接着性を特に良好にすることが可能になり、長期間経時させても接着性の低下を小さく保つことが可能になる。
<Back layer>
The back sheet for a solar cell module of the present invention is preferably provided with a back layer for protecting the support on the outer surface (the surface on the opposite side of the solar cells). As the binder for the back layer, it is preferable to use a silicone-based composite polymer described below from the viewpoint of durability and adhesion to the support. The silicone-based composite polymer (hereinafter sometimes referred to as “composite polymer”) includes a — (Si (R 1 ) (R 2 ) —O) n — moiety in the molecule and a polymer structure part that is copolymerized with the above-described part. It is a polymer. By using a silicone-based composite polymer as a binder for the back surface layer, it becomes possible to make the adhesion between the back surface layer and the support particularly good, and it is possible to keep the decrease in adhesion small even after a long period of time. It becomes possible.
 シリコーン系複合ポリマーは水系のポリマー分散物(いわゆるラテックス)の形とすることが好ましい。シリコーン系複合ポリマーを、水系のポリマーをラテックスの形態とする場合、カルボキシル基、スルホン酸基、水酸基、アミド基などの水親和性の官能基を持つものであることが好ましい。シリコーン系複合ポリマーが、カルボキシル基を持つ場合、カルボキシル基はナトリウム、アンモニウム、アミンなどで中和されていてもよい。
 また、シリコーン系複合ポリマーを、ラテックスの形態で使用する場合、安定性を向上させるために界面活性剤(例:アニオン系やノニオン系界面活性剤)、ポリマー(例:ポリビニルアルコール)等の乳化安定剤を含有させてもよい。さらに、必要に応じてpH調整剤(例:アンモニア、トリエチルアミン、炭酸水素ナトリウム等)、防腐剤(例:1、3、5-ヘキサヒドロ-(2-ヒドロキシエチル)-s-トリアジン、2-(4-チアゾリル)ベンズイミダゾール等)、増粘剤(例:ポリアクリル酸ナトリウム、メチルセルロース等)、造膜助剤(例:ブチルカルビトールアセテート等)等のラテックスの添加剤として公知の化合物を添加してもよい。
The silicone composite polymer is preferably in the form of an aqueous polymer dispersion (so-called latex). When the silicone-based composite polymer is an aqueous polymer in the form of latex, the silicone-based composite polymer preferably has a water-affinity functional group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, or an amide group. When the silicone composite polymer has a carboxyl group, the carboxyl group may be neutralized with sodium, ammonium, amine or the like.
In addition, when silicone composite polymers are used in the form of latex, emulsification stability of surfactants (eg, anionic and nonionic surfactants) and polymers (eg: polyvinyl alcohol) to improve stability An agent may be included. Further, if necessary, a pH adjuster (eg, ammonia, triethylamine, sodium bicarbonate, etc.), preservative (eg: 1,3,5-hexahydro- (2-hydroxyethyl) -s-triazine, 2- (4 -Thiazolyl) benzimidazole), thickeners (eg, sodium polyacrylate, methylcellulose, etc.), film-forming aids (eg: butyl carbitol acetate, etc.), etc. Also good.
 裏面層には支持体への接着性を向上させるため架橋剤を添加する事が好ましい。架橋剤の種類については反射層のところで述べたものを使用することができる。 It is preferable to add a crosslinking agent to the back layer in order to improve adhesion to the support. As the kind of the cross-linking agent, those described for the reflective layer can be used.
 裏面層には紫外線吸収剤を添加することが好ましい。紫外線吸収剤の例としては、例えば、有機系の紫外線吸収剤の場合は、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤およびヒンダードアミン系等の紫外線安定剤などが挙げられる。また、無機系の紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物や、カーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系成分等が挙げられる。 これらの中でコストと耐久性の観点から酸化チタンは特に好ましい。 It is preferable to add an ultraviolet absorber to the back layer. Examples of ultraviolet absorbers include, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based ultraviolet stabilizers, and the like in the case of organic ultraviolet absorbers. . Examples of inorganic ultraviolet absorbers include metal oxides such as titanium oxide, zinc oxide, and cerium oxide, and carbon-based components such as carbon, fullerene, carbon fiber, and carbon nanotube. Of these, titanium oxide is particularly preferable from the viewpoint of cost and durability.
 裏面層には反射層の反射率を補う目的で白色顔料を添加してもよい。白色顔料の種類については反射層のところで述べた白色顔料を好ましく使用することができる。なお、白色顔料として酸化チタンを用いる場合は顔料と紫外線吸収剤を兼ねることができる。裏面層のその他の添加剤の種類と添加量としては反射層のところで述べたものを好ましく用いることができる。 A white pigment may be added to the back layer for the purpose of supplementing the reflectance of the reflective layer. Regarding the type of white pigment, the white pigment described in the reflective layer can be preferably used. In addition, when using a titanium oxide as a white pigment, it can serve as a pigment and a ultraviolet absorber. As the types and addition amounts of other additives in the back layer, those described in the reflective layer can be preferably used.
 裏面層の厚みは3~12μm、より好ましくは4~8μmの範囲が好ましい。裏面層の厚みを3~12μmの範囲にすることで、必要な耐久性と接着性を両立することができる。 The thickness of the back layer is preferably 3 to 12 μm, more preferably 4 to 8 μm. By setting the thickness of the back layer in the range of 3 to 12 μm, both necessary durability and adhesiveness can be achieved.
 裏面層の形成方法、塗布溶媒、乾燥方法については反射層のところで述べたものや方法を好ましく用いることができる。 As the back layer forming method, coating solvent, and drying method, those described in the reflective layer can be preferably used.
<裏面保護層>
 本発明の太陽電池モジュール用バックシートでは、耐久性をさらに向上させる目的で裏面層の上に裏面保護層を設けてもよい。
<Back side protective layer>
In the solar cell module backsheet of the present invention, a back surface protective layer may be provided on the back surface layer for the purpose of further improving durability.
 裏面保護層のバインダーは耐久性の観点からフッ素系ポリマーが好ましい。本発明で好ましく用いることができるフッ素系ポリマーは、主鎖又は側鎖にフッ素含有モノマーを含むポリマーである。フッ素含有モノマーは主鎖、側鎖のどちらに含まれていてもよいが、耐久性の観点から主鎖に含まれている事が好ましい。 The binder for the back surface protective layer is preferably a fluoropolymer from the viewpoint of durability. The fluorine-based polymer that can be preferably used in the present invention is a polymer containing a fluorine-containing monomer in the main chain or side chain. The fluorine-containing monomer may be contained in either the main chain or the side chain, but is preferably contained in the main chain from the viewpoint of durability.
 フッ素系ポリマーをラテックス形態で使用する場合、粒径は50~500nm程度が好ましく、固形分濃度は15~50質量%程度が好ましい。フッ素系ポリマーは水系のポリマーをラテックスの形態とする場合、カルボキシル基、スルホン酸基、水酸基、アミド基などの水親和性の官能基を持つものであることが好ましい。 When the fluoropolymer is used in a latex form, the particle size is preferably about 50 to 500 nm, and the solid content concentration is preferably about 15 to 50% by mass. The fluorine-based polymer preferably has a water-affinity functional group such as a carboxyl group, a sulfonic acid group, a hydroxyl group or an amide group when the aqueous polymer is in the form of latex.
 裏面保護層には支持体への接着性を向上させるため架橋剤を添加する事が好ましい。架橋剤の種類については反射層のところで述べたものを使用することができる。 It is preferable to add a crosslinking agent to the back surface protective layer in order to improve the adhesion to the support. As the kind of the cross-linking agent, those described for the reflective layer can be used.
 裏面保護層には必要に応じてすべり剤を添加してもよい。すべり剤としては、例えば、合成ワックス系化合物、天然ワックス系化合物、界面活性剤系化合物、無機系化合物、有機樹脂系化合物などが挙げられる。中でも、ポリマー層の表面強度の点で、合成ワックス系化合物、天然ワックス系化合物、及び界面活性剤系化合物から選ばれる化合物が好ましい。 ) A slipping agent may be added to the back surface protective layer as necessary. Examples of the slip agent include synthetic wax compounds, natural wax compounds, surfactant compounds, inorganic compounds, organic resin compounds, and the like. Among these, from the viewpoint of the surface strength of the polymer layer, a compound selected from synthetic wax compounds, natural wax compounds, and surfactant compounds is preferable.
 裏面保護層には必要に応じてコロイダルシリカを添加してもよい。コロイダルシリカは、ケイ素酸化物を主成分とする微粒子が水または単価のアルコール類またはジオール類またはこれらの混合物を分散媒として微粒子状態で存在するものである。 If necessary, colloidal silica may be added to the back surface protective layer. In colloidal silica, fine particles containing silicon oxide as a main component are present in a fine particle state with water or a monovalent alcohol or diol or a mixture thereof as a dispersion medium.
 裏面保護層のその他の添加剤の種類と添加量としては反射層のところで述べたものを好ましく用いることができる。 As the types and addition amounts of other additives for the back surface protective layer, those described for the reflective layer can be preferably used.
 裏面保護層の厚みは0.5~6μm、より好ましくは1~5μmの範囲が好ましい。裏面保護層の厚みが0.5μm以上になると耐久性が充分になり、6μm以下であるとコスト上有利である。裏面保護層の塗布方法、塗布溶媒、乾燥方法については反射層のところで述べたものや方法を好ましく用いることができる。 The thickness of the back surface protective layer is preferably 0.5 to 6 μm, more preferably 1 to 5 μm. If the thickness of the back surface protective layer is 0.5 μm or more, the durability is sufficient, and if it is 6 μm or less, it is advantageous in terms of cost. As the coating method, coating solvent, and drying method for the back surface protective layer, those described in the reflective layer can be preferably used.
(太陽電池モジュール)
 本発明の太陽電池モジュールは、本発明のポリエステルフィルムまたは本発明の太陽電池モジュール用バックシートを備える。本発明の太陽電池モジュールは、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する透明性の基板と既述の本発明のポリエステルフィルム(太陽電池用バックシート)との間に配置して構成されている。基板とポリエステルフィルムとの間は、例えばエチレン-酢酸ビニル共重合体等の樹脂(いわゆる封止材)で封止して構成することができる。
(Solar cell module)
The solar cell module of the present invention includes the polyester film of the present invention or the back sheet for the solar cell module of the present invention. The solar cell module of the present invention comprises a solar cell element that converts light energy of sunlight into electric energy, a transparent substrate on which sunlight is incident, and the polyester film (back sheet for solar cell) of the present invention described above. It is arranged and arranged between. The substrate and the polyester film can be formed by sealing with a resin (so-called sealing material) such as an ethylene-vinyl acetate copolymer.
 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。 Components other than solar cell modules, solar cells, and backsheets are described in detail in, for example, “Solar Power Generation System Constituent Materials” (supervised by Eiichi Sugimoto, Industrial Research Committee, Inc., issued in 2008).
 透明性の基板は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。 The transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better. For such a substrate, for example, a glass substrate, a transparent resin such as an acrylic resin, or the like can be suitably used.
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。 Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as -VI group compound semiconductor systems can be applied.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 実施例及び比較例で用いたイミノエーテル(1)~(7)は以下の合成方法にて合成した。 The imino ethers (1) to (7) used in Examples and Comparative Examples were synthesized by the following synthesis method.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例1]
<イミノエーテル(1)の合成>
Figure JPOXMLDOC01-appb-C000033
[Synthesis Example 1]
<Synthesis of iminoether (1)>
Figure JPOXMLDOC01-appb-C000033
 5L三口フラスコに、トリエトキシメチルベンゼン600g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたエタノールはDean-Stark装置にて取り除いた。TLC(薄層クロマトグラフィー)にて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(1)777g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, 600 g (2.80 mol) of triethoxymethylbenzene, 498 g (1.28 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 480 ml of toluene, 0.24 g of methanesulfonic acid ( 2.5 mmol) was added, and the mixture was stirred for 2 hours with heating under reflux. The reaction system temperature was set to 100 ° C. or lower, and the refluxed ethanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC (thin layer chromatography), the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 777 g of iminoether (1) (yield 95%). The obtained compound was identified by 1 H-NMR.
[合成例2]
<イミノエーテル(2)の合成>
Figure JPOXMLDOC01-appb-C000034
[Synthesis Example 2]
<Synthesis of iminoether (2)>
Figure JPOXMLDOC01-appb-C000034
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(2)745g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, 512 g (2.80 mol) of trimethoxymethylbenzene, 498 g (1.28 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 480 ml of toluene, 0.24 g of methanesulfonic acid ( 2.5 mmol) was added, and the mixture was stirred for 2 hours with heating under reflux. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 745 g of iminoether (2) (yield 95%). The obtained compound was identified by 1 H-NMR.
[合成例3]
<イミノエーテル(3)の合成>
Figure JPOXMLDOC01-appb-C000035
[Synthesis Example 3]
<Synthesis of iminoether (3)>
Figure JPOXMLDOC01-appb-C000035
 5L三口フラスコに、オルト酢酸トリメチル338g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(3)615g(収率92%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, trimethyl orthoacetate 338 g (2.80 mol), 2,2-bis [4- (4-aminophenoxy) phenyl] propane 498 g (1.28 mol), toluene 480 ml, methanesulfonic acid 0.24 g (2 0.5 mmol), and the mixture was stirred for 2 hours under reflux with heating. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the mixture was cooled to room temperature, and methanol was added for crystallization to obtain 615 g of iminoether (3) (yield 92%). The obtained compound was identified by 1 H-NMR.
[合成例4]
<イミノエーテル(4)の合成>
Figure JPOXMLDOC01-appb-C000036
[Synthesis Example 4]
<Synthesis of iminoether (4)>
Figure JPOXMLDOC01-appb-C000036
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、4,4‘-ジアミノベンズアニリド310g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(4)504g(収率85%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 512 g (2.80 mol) of trimethoxymethylbenzene, 310 g (1.28 mol) of 4,4′-diaminobenzanilide, 480 ml of toluene, and 0.24 g (2.5 mmol) of methanesulfonic acid, and heated to reflux. Stir for 2 hours. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 504 g (yield 85%) of iminoether (4). The obtained compound was identified by 1 H-NMR.
[合成例5]
<イミノエーテル(5)の合成>
Figure JPOXMLDOC01-appb-C000037
[Synthesis Example 5]
<Synthesis of iminoether (5)>
Figure JPOXMLDOC01-appb-C000037
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、4-アミノアセトアニリド191.8g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(5)309g(収率90%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 512 g (2.80 mol) of trimethoxymethylbenzene, 191.8 g (1.28 mol) of 4-aminoacetanilide, 480 ml of toluene, and 0.24 g (2.5 mmol) of methanesulfonic acid. Stir for hours. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the mixture was cooled to room temperature, and methanol was added for crystallization to obtain 309 g of iminoether (5) (yield 90%). The obtained compound was identified by 1 H-NMR.
[合成例6]
<イミノエーテル(6)の合成>
Figure JPOXMLDOC01-appb-C000038
[Synthesis Example 6]
<Synthesis of iminoether (6)>
Figure JPOXMLDOC01-appb-C000038
 5L三口フラスコに、4,4‘-メチレンビス(シクロヘキシルアミン)210g(1.0mol)、トリエチルアミン243g(2.4mol)、ジメチルアセトアミド1.0Lを仕込み、氷浴下でベンゾイルクロライド336g(2.4mol)を滴下した後、室温下で1時間攪拌した。1mol/Lの塩酸水2.0Lを加え、1時間攪拌し、ろ過することで(6-1)397g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 210 g (1.0 mol) of 4,4′-methylenebis (cyclohexylamine), 243 g (2.4 mol) of triethylamine and 1.0 L of dimethylacetamide, and 336 g (2.4 mol) of benzoyl chloride in an ice bath. Was added dropwise, and the mixture was stirred at room temperature for 1 hour. 2.0 L of 1 mol / L hydrochloric acid water was added, and the mixture was stirred for 1 hour and filtered to obtain 397 g (yield 95%) of (6-1). The obtained compound was identified by 1 H-NMR.
 5L三口フラスコに、(6-1)300g、塩化チオニル1.0Lを加え、65℃で2時間攪拌した後、過剰量の塩化チオニルを減圧下で除去した。室温まで冷却しTHF(テトラヒドロフラン)1.0mlを加え、氷浴下でSM-28(ナトリウムメチラート28%メタノール溶液)を310g(1.6mol)滴下した後、室温下で1時間攪拌した。酢酸エチル1.5Lと純水1.0Lを加えて分液し、硫酸マグネシウムで乾燥した後、濃縮することで固体が得られた。そこへメタノール2.0Lを加え、室温下で1時間攪拌し、ろ過することでイミノエーテル(6)288g(収率90%)を得た。得られた化合物はH-NMRにて同定した。 To a 5 L three-necked flask, 300 g of (6-1) and 1.0 L of thionyl chloride were added and stirred at 65 ° C. for 2 hours, and then excess thionyl chloride was removed under reduced pressure. After cooling to room temperature, 1.0 ml of THF (tetrahydrofuran) was added, and 310 g (1.6 mol) of SM-28 (sodium methylate 28% methanol solution) was added dropwise in an ice bath, followed by stirring at room temperature for 1 hour. 1.5 L of ethyl acetate and 1.0 L of pure water were added for liquid separation, dried over magnesium sulfate, and concentrated to obtain a solid. Methanol 2.0L was added there, and it stirred at room temperature for 1 hour, and obtained 288 g (yield 90%) of imino ether (6) by filtering. The obtained compound was identified by 1 H-NMR.
[合成例7]
<イミノエーテル(7)>
Figure JPOXMLDOC01-appb-C000039
[Synthesis Example 7]
<Imino ether (7)>
Figure JPOXMLDOC01-appb-C000039
 5Lフラスコに、2-アミノベンジルアルコール296g(2.4mol)、トリエチルアミン243g(2.4mol)、ジメチルアセトアミド1.5Lを仕込み、氷浴下でテレフタル酸クロリド203g(1.0mol)を分割添加し、1時間攪拌した後、1mol/Lの塩酸水2.0Lを加えて1時間攪拌し、ろ過することで(7-1)357g(収率95%)を得た。得られた化合物はH-NMRにて同定した。
 5L三口フラスコに、(7-1)300g(0.8mol)、塩化チオニル1.0Lを加え、65℃で2時間攪拌した後、過剰の塩化チオニルを濃縮除去した。メタノール1.0Lを加えた後、氷浴下でSM-28 386g(2.0mol)をゆっくり滴下し、室温で1時間、40℃で50時間攪拌した。沈殿物をろ過して減圧下でメタノールを除去し、酢酸エチルを1.5L加え、分液した後、硫酸マグネシウムで乾燥し、メタノールを加えて晶析し、ろ過することでイミノエーテル(7)136g(収率50%)を得た。得られた化合物はH-NMRにて同定した。
A 5-L flask was charged with 296 g (2.4 mol) of 2-aminobenzyl alcohol, 243 g (2.4 mol) of triethylamine and 1.5 L of dimethylacetamide, and 203 g (1.0 mol) of terephthalic acid chloride was added in portions in an ice bath. After stirring for 1 hour, 2.0 L of 1 mol / L hydrochloric acid water was added, stirred for 1 hour, and filtered to obtain 357 g (yield 95%) of (7-1). The obtained compound was identified by 1 H-NMR.
To a 5 L three-necked flask, 300 g (0.8 mol) of (7-1) and 1.0 L of thionyl chloride were added and stirred at 65 ° C. for 2 hours, and then excess thionyl chloride was concentrated and removed. After adding 1.0 L of methanol, 386 g (2.0 mol) of SM-28 was slowly added dropwise in an ice bath, and the mixture was stirred at room temperature for 1 hour and at 40 ° C. for 50 hours. The precipitate was filtered to remove methanol under reduced pressure, 1.5 L of ethyl acetate was added, and the mixture was separated, dried over magnesium sulfate, crystallized by adding methanol, and filtered to iminoether (7) 136 g (yield 50%) was obtained. The obtained compound was identified by 1 H-NMR.
(マスターペレット(ポリエステルペレット)の作製と評価)
<ポリエチレンテレフタレート(PET(1)、PET(2))の合成>
-工程(A)-
 高純度テレフタル酸4.7トンとエチレングリコール1.8トンとを90分間かけて混合してスラリーを形成し、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。次いで、クエン酸がTi金属に配位したクエン酸キレートチタン錯体(ジョンソン・マッセイ社製、VERTEC AC-420)のエチレングリコール溶液を連続的に第一エステル化反応槽に供給し、反応槽内温度250℃として攪拌しながら平均滞留時間約4.3時間で反応を行なってオリゴマーを得た。この際、クエン酸キレートチタン錯体は、Ti添加量が元素換算値で9ppmとなるように連続的に添加した。得られたオリゴマーの酸価は550eq/tonであった。
(Production and evaluation of master pellets (polyester pellets))
<Synthesis of polyethylene terephthalate (PET (1), PET (2))>
-Process (A)-
4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol were mixed for 90 minutes to form a slurry, which was continuously supplied to the first esterification reactor at a flow rate of 3800 kg / h. Next, an ethylene glycol solution of a citrate chelate titanium complex in which citric acid is coordinated to Ti metal (manufactured by Johnson Matthey, VERTEC AC-420) is continuously supplied to the first esterification reactor, and the temperature in the reactor is increased. While stirring at 250 ° C., the reaction was carried out with an average residence time of about 4.3 hours to obtain an oligomer. At this time, the citric acid chelate titanium complex was continuously added so that the amount of Ti added was 9 ppm in terms of element. The acid value of the obtained oligomer was 550 eq / ton.
 得られたオリゴマーを第二エステル化反応槽に移送し、反応槽内温度250℃、平均滞留時間1.2時間で攪拌して反応させ、酸価が180eq/tonのオリゴマーを得た。第二エステル化反応槽は内部が第1ゾーン~第3ゾーンまでの3つのゾーンに仕切られており、第2ゾーンから酢酸マグネシウムのエチレングリコール溶液を、Mg添加量が元素換算値で75ppmになるように連続的に供給し、続いて第3ゾーンから、リン酸トリメチルのエチレングリコール溶液を、P添加量が元素換算値で65ppmになるように連続的に供給した。なお、リン酸トリメチルのエチレングリコール溶液は、25℃のエチレングリコール溶液に、25℃のリン酸トリメチル液を加え、25℃で2時間攪拌することにより調製した(溶液中のリン化合物含有量:3.8質量%)。
 以上により、エステル化反応生成物を得た。
The obtained oligomer was transferred to the second esterification reaction tank and reacted with stirring at a reaction tank temperature of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 180 eq / ton. The inside of the second esterification reaction tank is divided into three zones from the first zone to the third zone. From the second zone, an ethylene glycol solution of magnesium acetate is added, and the amount of Mg added is 75 ppm in terms of element. Then, from the third zone, an ethylene glycol solution of trimethyl phosphate was continuously supplied so that the addition amount of P was 65 ppm in terms of element. The ethylene glycol solution of trimethyl phosphate was prepared by adding a 25 ° C. trimethyl phosphate solution to a 25 ° C. ethylene glycol solution and stirring at 25 ° C. for 2 hours (phosphorus compound content in the solution: 3 .8% by mass).
As a result, an esterification reaction product was obtained.
-工程(B)-
 工程(A)で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給した。次いで、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)でエステル化反応生成物を攪拌しながら、平均滞留時間約1.8時間で重縮合(エステル交換反応)させた。
-Process (B)-
The esterification reaction product obtained in the step (A) was continuously supplied to the first polycondensation reaction tank. Next, polycondensation (ester exchange reaction) is performed with an average residence time of about 1.8 hours while stirring the esterification reaction product at a reaction temperature of 270 ° C. and a reaction vessel pressure of 20 torr (2.67 × 10 −3 MPa). It was.
 次いで、得られた反応物を、第一重縮合反応槽から第二重縮合反応槽に移送した。その後、反応物を第二重縮合反応槽において、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で攪拌し、滞留時間約1.2時間の条件で反応(エステル交換反応)させた。 Next, the obtained reaction product was transferred from the first polycondensation reaction tank to the second double condensation reaction tank. Thereafter, the reaction product was stirred in the second double condensation reaction vessel at a reaction vessel temperature of 276 ° C. and a reaction vessel pressure of 5 torr (6.67 × 10 −4 MPa), and the reaction was conducted under the condition of a residence time of about 1.2 hours. (Transesterification reaction).
 次いで、エステル交換反応によって得られた反応物を、第二重縮合反応槽から、さらに第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で攪拌しながら、滞留時間1.5時間の条件で反応(エステル交換反応)させ、カルボン酸価24eq/ton、固有粘度0.63dl/gのポリエチレンテレフタレート樹脂(PET(1))を得た。 Subsequently, the reaction product obtained by the transesterification reaction is further transferred from the second double condensation reaction tank to the third triple condensation reaction tank. In this reaction tank, the reaction tank temperature is 278 ° C. and the reaction tank pressure is 1. Polyethylene terephthalate having a carboxylic acid number of 24 eq / ton and an intrinsic viscosity of 0.63 dl / g was reacted (transesterification reaction) with stirring at 5 torr (2.0 × 10 −4 MPa) and a residence time of 1.5 hours. A resin (PET (1)) was obtained.
-工程(C)-
 上記樹脂を170℃で5時間乾燥させた。この後、固相重合槽にペレットを移し、固相重合槽に水蒸気200ppmを含むNガスを、樹脂1kgあたり1Nm/hrとなるように流しながら210℃で固相重合した。なお、固相重合時間、Nガス中に吹き込むエチレングリコール(EG)ガス濃度を変えることで、固有粘度0.78dl/g、カルボン酸価12eq/ton、融点255℃のポリエチレンテレフタレート樹脂(PET(2))を得た。
 なお、固相重合時間を長くすることでカルボン酸価は低下し、固有粘度は増加する。また、EGガスを多くすることで、カルボン酸価を低下できる。なお、EGガスを多くしても、固有粘度には影響しない。
-Process (C)-
The resin was dried at 170 ° C. for 5 hours. Thereafter, the pellets were transferred to a solid phase polymerization tank, and solid phase polymerization was performed at 210 ° C. while flowing N 2 gas containing 200 ppm of water vapor to 1 Nm 3 / hr per kg of the resin in the solid phase polymerization tank. By changing the solid-state polymerization time and the ethylene glycol (EG) gas concentration blown into the N 2 gas, a polyethylene terephthalate resin (PET ()) having an intrinsic viscosity of 0.78 dl / g, a carboxylic acid value of 12 eq / ton, and a melting point of 255 ° C. 2)) was obtained.
In addition, by increasing the solid phase polymerization time, the carboxylic acid value decreases and the intrinsic viscosity increases. Moreover, a carboxylic acid value can be reduced by increasing EG gas. Note that increasing the EG gas does not affect the intrinsic viscosity.
(マスターペレット(1)の作製)
-押出成形-
 上記方法で固相重合したPET(2)の55.5質量部に対し、イミノエーテル(1)0.5質量部、酸化チタン44.0質量部を混合し、マスターペレット(1)を調製した。具体的には、マスターペレットは2軸混練押出機を用いて調製した。すなわち、ホッパーからPET樹脂を添加し、粉体の末端封止剤はフィーダーを用いホッパーから計量しながら投入し混練した。混練した組成物をストランド状に押出した後、水冷、カッティングし、マスターペレット(1)を作製した。マスターペレット(1)は長さ3mm×底辺直径2mmの円柱状のサイズであった。
(Preparation of master pellet (1))
-Extrusion molding-
The master pellet (1) was prepared by mixing 0.5 parts by mass of iminoether (1) and 44.0 parts by mass of titanium oxide with respect to 55.5 parts by mass of PET (2) solid-phase polymerized by the above method. . Specifically, the master pellet was prepared using a twin-screw kneading extruder. That is, PET resin was added from a hopper, and the end-capping agent of the powder was added and kneaded while being measured from the hopper using a feeder. The kneaded composition was extruded into a strand shape, then cooled with water and cut to prepare a master pellet (1). The master pellet (1) was a cylindrical size having a length of 3 mm and a base diameter of 2 mm.
(マスターペレット(2)~(27)の作製)
 樹脂、末端封止剤及び顔料の種類や添加量を下記表1に記載した条件に変更した以外はマスターペレット(1)の作製方法と同様にして、マスターペレット(2)~(27)を作製した。
 なお、マスターペレット(17)で用いたPEN(ポリエチレンナフタレート)はテオネックスTN-80655(帝人社製)を用いた。マスターペレット(18)で用いたPBT(ポリブチレンテレフタレート)は、ジュラネックス2000(ポリプラスチックス社製)を用いた。
 また、マスターペレット(23)及び(24)では、末端封止剤として下記のStabaxol P400(ラインケミー社製)を用いた。マスターペレット(25)では、末端封止剤とし下記のBOXA(和光純薬社製)を用いた。マスターペレット(26)では、末端封止剤としてPOXA エポクロスRPS(日本触媒社製)を用いた。マスターペレット(27)では、末端封止剤として合成例7で合成したイミノエーテル化合物(7)を用いた。
(Preparation of master pellets (2) to (27))
Master pellets (2) to (27) were prepared in the same manner as the master pellet (1), except that the types and addition amounts of the resin, end-capping agent and pigment were changed to the conditions shown in Table 1 below. did.
The PEN (polyethylene naphthalate) used in the master pellet (17) was Teonex TN-80655 (manufactured by Teijin Limited). As the PBT (polybutylene terephthalate) used in the master pellet (18), DURANEX 2000 (manufactured by Polyplastics) was used.
Moreover, in the master pellets (23) and (24), the following Stabaxol P400 (manufactured by Rhein Chemie) was used as a terminal blocking agent. In the master pellet (25), the following BOXA (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the end-capping agent. In the master pellet (26), POXA Epocross RPS (manufactured by Nippon Shokubai Co., Ltd.) was used as the end-capping agent. In the master pellet (27), the imino ether compound (7) synthesized in Synthesis Example 7 was used as a terminal blocking agent.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
<マスターペレットの揮散性評価>
 マスターペレットを作製する際に、臭気及び白煙が発生するか否かを評価した。評価結果は表1に示した。マスターペレットを作製する際には、白煙が発生しないことが好ましく、臭気及び白煙の両方が発生しないことがより好ましい。
A:臭気、白煙共になし
B:臭気はあるが、白煙はない
C:臭気、白煙共にあり
<Evaluation of volatility of master pellet>
When producing a master pellet, it was evaluated whether odor and white smoke were generated. The evaluation results are shown in Table 1. When producing a master pellet, it is preferable that white smoke is not generated, and it is more preferable that both odor and white smoke are not generated.
A: No odor and white smoke B: Odor but no white smoke C: Both odor and white smoke
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表1より、本発明の一般式(1)で表されるイミノエーテル化合物を用いるとマスターペレット作製時の白煙の発生が抑えられていることがわかる(マスターペレット(1)~(21))。特に、一般式(1)で表されるイミノエーテル化合物であって、分子量が  300以上のイミノエーテル化合物を用いることにより、臭気と白煙の両方の発生が抑えられることがわかる(マスターペレット(1)~(13)及びマスターペレット(15)~(19))。また、一般式(1)で表されるイミノエーテル化合物の添加量は、マスターペレットの全質量に対し、0.05~35質量%であることが好ましく、顔料の添加量は0.2~50質量%であることが好ましいことがわかる(マスターペレット(19)~(21))。 From Table 1, it can be seen that the use of the iminoether compound represented by the general formula (1) of the present invention suppresses the generation of white smoke during the preparation of the master pellet (master pellets (1) to (21)). . In particular, it is understood that generation of both odor and white smoke can be suppressed by using an imino ether compound represented by the general formula (1) and having a molecular weight of 300 or more (master pellet (1 ) To (13) and master pellets (15) to (19)). Further, the addition amount of the imino ether compound represented by the general formula (1) is preferably 0.05 to 35% by mass with respect to the total mass of the master pellet, and the addition amount of the pigment is 0.2 to 50%. It can be seen that the content is preferably mass% (master pellets (19) to (21)).
 次いで、上記のマスターペレット(1)~(18)及び(22)~(27)を用いて、ポリエステルフィルムを作製し、その性能について評価を行った。 Next, a polyester film was prepared using the master pellets (1) to (18) and (22) to (27), and the performance was evaluated.
(実施例1)ポリエステルフィルムの作製と評価
<4>ポリエチレンテレフタレートフィルム(2軸延伸フィルム)の製膜
 得られたマスターペレット(1)を含水率が100ppm以下となるように乾燥した後、樹脂組成物全体に対して、イミノエーテル(1)の含有量が0.05質量%、酸化チタンの含有量が4.4質量%になるように、マスターペレットの作製時と同じPET(2)を用いて混合しながら押出し、未延伸フィルムを得た。なお、押出しには2軸押出機を用い、窒素気流下、280℃で溶融混練し、この溶融体(メルト)をギアポンプ、ろ過器、ダイを通してチルロール上に押出し、厚み3222mmの未延伸フィルムを作製した。
 この未延伸フィルムを輻射ヒーターにより膜面温度85℃程度になるまで加熱したのち、長手方向(搬送方向)に3.0倍、続いてテンターに送り込み膜面温度が140℃程度になるまで加熱したのち、幅方向に4.2倍延伸し、220℃で熱処理することで厚み250μm、幅1100mmの2軸延伸フィルムを得た。これを実施例1のポリエステルフィルムとした。
Example 1 Production and Evaluation of Polyester Film <4> Formation of Polyethylene Terephthalate Film (Biaxially Stretched Film) After drying the obtained master pellet (1) so that the water content is 100 ppm or less, the resin composition The same PET (2) as used in the preparation of the master pellet was used so that the content of iminoether (1) was 0.05% by mass and the content of titanium oxide was 4.4% by mass with respect to the entire product. And extruded while mixing to obtain an unstretched film. For extrusion, a twin screw extruder was used, and melted and kneaded at 280 ° C. in a nitrogen stream. This melt (melt) was extruded through a gear pump, a filter and a die onto a chill roll to produce an unstretched film having a thickness of 3222 mm. did.
After heating this unstretched film with a radiant heater until the film surface temperature reaches about 85 ° C., the film is heated 3.0 times in the longitudinal direction (conveying direction) and then sent to the tenter until the film surface temperature reaches about 140 ° C. Thereafter, the film was stretched 4.2 times in the width direction and heat treated at 220 ° C. to obtain a biaxially stretched film having a thickness of 250 μm and a width of 1100 mm. This was designated as the polyester film of Example 1.
(実施例2~18)
 マスターペレット(2)~(18)を用い、実施例1と同様の方法でポリエステルフィルムを作製した。なお、ポリエステルフィルムを作製する際は、マスターペレット(2)~(18)は、マスターペレットの作製時に使用した樹脂と同じ樹脂と混合した。マスターペレット(2)~(18)を含むポリエステルフィルムは、各々実施例2~18のポリエステルフィルムに相当する。
(Examples 2 to 18)
A polyester film was produced in the same manner as in Example 1 using master pellets (2) to (18). When the polyester film was produced, the master pellets (2) to (18) were mixed with the same resin as that used for producing the master pellet. The polyester films containing the master pellets (2) to (18) correspond to the polyester films of Examples 2 to 18, respectively.
(比較例1)
 上記のPET(2)のみを押出し、未延伸フィルムを得た。この未延伸フィルムに、実施例1と同様の方法で加熱処理及び延伸処理を施し、比較例1のポリエステルフィルムを得た。
(Comparative Example 1)
Only the above PET (2) was extruded to obtain an unstretched film. The unstretched film was heat-treated and stretched in the same manner as in Example 1 to obtain a polyester film of Comparative Example 1.
(比較例2~7)
 マスターペレット(22)~(27)を用いて、実施例1と同様の方法でポリエステルフィルムを作製した。なお、ポリエステルフィルムを作製する際は、マスターペレット(22)~(27)は、マスターペレットの作製時に使用した樹脂と同じ樹脂と混合した。マスターペレット(22)~(27)を含むポリエステルフィルムは、各々比較例2~7のポリエステルフィルムに相当する。
(Comparative Examples 2 to 7)
A polyester film was produced in the same manner as in Example 1 using master pellets (22) to (27). When preparing the polyester film, the master pellets (22) to (27) were mixed with the same resin as that used for preparing the master pellet. The polyester films containing the master pellets (22) to (27) correspond to the polyester films of Comparative Examples 2 to 7, respectively.
<ポリエステルフィルムの性能評価>
(粘度変化)
フィルムの固有粘度(IV)とマスターペレットの固有粘度(IV)を下記評価基準に従って評価した。固有粘度(IV)は、ポリエステルをオルトクロロフェノールに溶解し、25℃で測定した溶液粘度から、下記式を用いて算出した。
 ηsp/C=[η]+K[η]・C
 ここで、ηsp=(溶液粘度/溶媒粘度)-1であり、Cは、溶媒100mlあたりの溶解ポリマー重量であり(本測定では1g/100mlとする)、Kはハギンス定数(0.343とする)であり、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。
A:フィルムのIVがマスターペレットのIVと同等以下 
B:フィルムのIVがマスターペレットのIVより増加
<Performance evaluation of polyester film>
(Viscosity change)
The intrinsic viscosity (IV) of the film and the intrinsic viscosity (IV) of the master pellet were evaluated according to the following evaluation criteria. Intrinsic viscosity (IV) was calculated using the following formula from a solution viscosity measured at 25 ° C. by dissolving polyester in orthochlorophenol.
ηsp / C = [η] + K [η] 2 · C
Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement), and K is the Huggins constant (0.343) The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
A: IV of film is equal to or less than IV of master pellet
B: IV of film increased from IV of master pellet
(耐湿熱性(PCT試験))
 耐加水分解性の評価は破断伸度保持率半減期で評価した。破断伸度保持率半減期は、実施例及び比較例にて得られたポリエステルフィルムに対して、120℃、相対湿度100%の条件で保存処理(加熱処理)を行い、保存後のポリエステルフィルムが示す破断伸度(%)が、保存前のポリエステルフィルムが示す破断伸度(%)に対して50%となる保存時間を測定することで評価した。得られた結果を下記表2に記載した。破断伸度保持率半減期が長い程、ポリエステルフィルムの耐加水分解性が優れていることを示す。破断伸度半減期は80時間以上であることが好ましく、90時間以上であることがより好ましい。
A:破断伸度半減期が90時間以上
B:破断伸度半減期が80時間以上90時間未満
C:破断伸度半減期が70時間以上80時間未満
D:破断伸度半減期が60時間以上70時間未満
E:破断伸度半減期が60時間未満
(Moisture and heat resistance (PCT test))
The hydrolysis resistance was evaluated based on the half life of elongation at break. The elongation at break half life is that the polyester film obtained in the examples and comparative examples is subjected to a storage treatment (heat treatment) under the conditions of 120 ° C. and a relative humidity of 100%. The breaking elongation (%) shown was evaluated by measuring a storage time at which the breaking elongation (%) shown by the polyester film before storage was 50%. The obtained results are shown in Table 2 below. It shows that the hydrolysis resistance of a polyester film is excellent, so that break elongation retention half-life is long. The breaking elongation half-life is preferably 80 hours or longer, more preferably 90 hours or longer.
A: Break elongation half-life is 90 hours or more B: Break elongation half-life is 80 hours or more and less than 90 hours C: Break elongation half-life is 70 hours or more and less than 80 hours D: Break elongation half-life is 60 hours or more Less than 70 hours E: Half elongation at break is less than 60 hours
(揮散成分)
 得られたポリエステルフィルムを、280℃で10分加熱し、発生したガスを検出した。下記の基準にしたがってフィルム中の揮散成分の量をガスクロマトグラフィ(日本分光(株)社製、商品名P&T-GC/MS)により測定し、以下の基準で評価した。なお、揮散成分には、イミノエーテル由来の化合物が含まれており、具体的には、イミノエーテル化合物とアミド化合物が含まれている。すなわち、揮散成分の検出量が少ないことは、イミノエーテル化合物とアミド化合物の揮散が少なく、製造環境が良化することを意味する。揮散成分の検出量は100ppm以下であることが好ましく、検出限界(1ppm以下)であることがより好ましい。
A: イミノエーテル由来の揮散成分は検出限界以下
B: イミノエーテル由来の揮散成分が100ppm以下検出された
C: イミノエーテル由来の揮散成分が100ppm以上検出された
(Volatile component)
The obtained polyester film was heated at 280 ° C. for 10 minutes, and the generated gas was detected. The amount of the volatile component in the film was measured by gas chromatography (manufactured by JASCO Corporation, trade name P & T-GC / MS) according to the following criteria, and evaluated according to the following criteria. The volatilization component contains an imino ether-derived compound, specifically, an imino ether compound and an amide compound. That is, a small amount of volatilized component detected means that the volatilization of the imino ether compound and the amide compound is small and the production environment is improved. The detected amount of the volatilized component is preferably 100 ppm or less, more preferably the detection limit (1 ppm or less).
A: Volatile component derived from imino ether is below detection limit B: Volatile component derived from imino ether was detected at 100 ppm or less C: Volatile component derived from imino ether was detected at 100 ppm or more
(可視光隠蔽性)
 マクベス光濃度計により、可視光域(380~700nm)での光学濃度(O.D.)を測定し、下記の評価基準にしたがって評価した。A及びBが実用上許容できる基準である。
A:光学濃度が0.6(O.D.)を超えるもの
B:光学濃度が0.4(O.D.)を超え、0.6(O.D.)以下のもの
C:光学濃度が0.4(O.D.)以下のもの
(Visible light concealment)
The optical density (OD) in the visible light region (380 to 700 nm) was measured with a Macbeth light densitometer, and evaluated according to the following evaluation criteria. A and B are practically acceptable standards.
A: Optical density exceeding 0.6 (OD) B: Optical density exceeding 0.4 (OD) and not more than 0.6 (OD) C: Optical density Of 0.4 or less (OD)
(フィルム面状)
得られたポリエステルフィルムに対して、下記の基準にしたがってフィルムの面状を評価した。Aが実用上許容できる基準である。
A:フィルムを目視し、フィルム表面にブツ等がない
B:フィルムを目視し、フィルム表面にブツ等がある。
(Film surface)
With respect to the obtained polyester film, the surface state of the film was evaluated according to the following criteria. A is a practically acceptable standard.
A: The film is visually observed, and there are no irregularities on the film surface. B: The film is visually observed, and there are irregularities on the film surface.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表2より、実施例1~18で得られたポリエステルフィルムにおいては、作製時の樹脂組成物の粘度変化が少なく、イミノエーテル化合物とアミド化合物由来の揮散成分の揮散が抑えられていることがわかる。特に、イミノエーテル化合物(1)~(5)を含むポリエステルフィルムにおいては、フィルム作製時に粘度変化がより少なくなっていることがわかる。
 また、実施例1~18で得られたポリエステルフィルムの耐湿熱性も優れていることがわかる。特に、ポリエステルフィルムの全質量に対して、イミノエーテル化合物を0.1質量%以上含む場合に良好な耐湿熱性が得られていることがわかる。
 さらに、実施例1~18で得られたポリエステルフィルムは、十分な可視光隠蔽性を有しており、かつフィルムの面状も良好であることがわかる。特にポリエステルフィルムの全質量に対してイミノエーテル化合物を2質量%以下含み、かつポリエステルフィルムの全質量に対して顔料を0.5質量%以上含む場合に可視光隠蔽性が高まっている。
From Table 2, it can be seen that in the polyester films obtained in Examples 1 to 18, the viscosity change of the resin composition at the time of production was small, and the volatilization of the volatilization component derived from the imino ether compound and the amide compound was suppressed. . In particular, it can be seen that in the polyester film containing the imino ether compounds (1) to (5), the viscosity change is less during film production.
It can also be seen that the polyester films obtained in Examples 1 to 18 are excellent in heat and moisture resistance. In particular, it can be seen that good moisture and heat resistance is obtained when the iminoether compound is contained in an amount of 0.1% by mass or more based on the total mass of the polyester film.
Furthermore, it can be seen that the polyester films obtained in Examples 1 to 18 have a sufficient visible light hiding property, and the film has a good surface shape. In particular, when the iminoether compound is contained in an amount of 2% by mass or less with respect to the total mass of the polyester film and the pigment is contained in an amount of 0.5% by mass or more with respect to the total mass of the polyester film, the visible light hiding property is increased.
 本発明によれば、耐加水分解性と可視光隠蔽性の両方を兼ね備え、フィルム面状が良好なポリエステルフィルムを提供することができる。また、本発明によれば、耐加水分解性と可視光隠蔽性の両方を兼ね備えたポリエステルフィルムの製造工程において、刺激性ガスの発生を抑制することができ産業上の利用可能性が高い。
 
 
According to the present invention, it is possible to provide a polyester film having both hydrolysis resistance and visible light concealing property and having a good film surface shape. Moreover, according to this invention, generation | occurrence | production of stimulating gas can be suppressed in the manufacturing process of the polyester film which has both hydrolysis resistance and visible-light concealment property, and industrial applicability is high.

Claims (17)

  1.  下記一般式(1)で表される化合物と、顔料と、ポリエステルとを含むポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。
    A polyester resin composition comprising a compound represented by the following general formula (1), a pigment, and polyester;
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
  2.  前記ポリエステル樹脂組成物の全質量に対し、前記一般式(1)で表される化合物を0.05~35質量%含む請求項1に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, comprising 0.05 to 35% by mass of the compound represented by the general formula (1) with respect to the total mass of the polyester resin composition.
  3.  前記ポリエステル樹脂組成物の全質量に対し、前記顔料を0.2~50質量%含む請求項1又は2に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1 or 2, comprising 0.2 to 50% by mass of the pigment with respect to the total mass of the polyester resin composition.
  4.  前記化合物が下記一般式(4)で表される請求項1~3のいずれか1項に記載のポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000003
     一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。
    The polyester resin composition according to any one of claims 1 to 3, wherein the compound is represented by the following general formula (4):
    Figure JPOXMLDOC01-appb-C000003
    In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
  5.  前記化合物が下記一般式(5)で表される請求項1~4のいずれか1項に記載のポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000004
     一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。
    The polyester resin composition according to any one of claims 1 to 4, wherein the compound is represented by the following general formula (5):
    Figure JPOXMLDOC01-appb-C000004
    In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
  6.  前記化合物が下記一般式(6)で表される請求項1~5のいずれか1項に記載のポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000005
     一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。
    The polyester resin composition according to any one of claims 1 to 5, wherein the compound is represented by the following general formula (6):
    Figure JPOXMLDOC01-appb-C000005
    In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  7.  前記化合物が下記一般式(7)で表される請求項1~6のいずれか1項に記載のポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000006
     一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。
    The polyester resin composition according to any one of claims 1 to 6, wherein the compound is represented by the following general formula (7):
    Figure JPOXMLDOC01-appb-C000006
    In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
  8.  前記化合物が下記一般式(8)で表される請求項1~7のいずれか1項に記載のポリエステル樹脂組成物;
    Figure JPOXMLDOC01-appb-C000007
     一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。
    The polyester resin composition according to any one of claims 1 to 7, wherein the compound is represented by the following general formula (8):
    Figure JPOXMLDOC01-appb-C000007
    In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  9.  前記顔料が白色顔料である請求項1~8のいずれか1項に記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 8, wherein the pigment is a white pigment.
  10.  前記顔料が酸化チタンである請求項1~9のいずれか1項に記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 9, wherein the pigment is titanium oxide.
  11.  請求項1~10のいずれか1項に記載のポリエステル樹脂組成物を用いて形成されるマスターペレット。 Master pellets formed using the polyester resin composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載のポリエステル樹脂組成物を用いて形成されるポリエステルフィルム。 A polyester film formed using the polyester resin composition according to any one of claims 1 to 10.
  13.  前記ポリエステルフィルムの全質量に対し、前記一般式(1)で表される化合物を0.1~2質量%含む請求項12に記載のポリエステルフィルム。 The polyester film according to claim 12, comprising 0.1 to 2% by mass of the compound represented by the general formula (1) with respect to the total mass of the polyester film.
  14.  前記ポリエステルフィルムの全質量に対し、前記顔料を0.5~10質量%含む請求項12又は13に記載のポリエステルフィルム。 The polyester film according to claim 12 or 13, comprising 0.5 to 10% by mass of the pigment with respect to the total mass of the polyester film.
  15.  2軸配向フィルムである請求項12~14のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 12 to 14, which is a biaxially oriented film.
  16.  請求項12~15のいずれか1項に記載のポリエステルフィルムを用いた太陽電池モジュール用バックシート。 A solar cell module backsheet using the polyester film according to any one of claims 12 to 15.
  17.  請求項16に記載の太陽電池モジュール用バックシートを備える太陽電池モジュール。
     
    A solar cell module comprising the solar cell module backsheet according to claim 16.
PCT/JP2015/064890 2014-05-30 2015-05-25 Polyester resin composition, master pellet, polyester film, back sheet for solar cell module, and solar cell module WO2015182546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523483A JP6341998B2 (en) 2014-05-30 2015-05-25 Polyester resin composition, master pellet, polyester film, solar cell module back sheet and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014111956 2014-05-30
JP2014-111956 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182546A1 true WO2015182546A1 (en) 2015-12-03

Family

ID=54698875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064890 WO2015182546A1 (en) 2014-05-30 2015-05-25 Polyester resin composition, master pellet, polyester film, back sheet for solar cell module, and solar cell module

Country Status (2)

Country Link
JP (1) JP6341998B2 (en)
WO (1) WO2015182546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121260A1 (en) * 2015-01-27 2016-08-04 富士フイルム株式会社 Acid alkylating agent, method for producing acid alkylated product, resin composition and polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220005A (en) * 1992-07-30 1994-08-09 Sandoz Ag New imino ether
JP2010031174A (en) * 2008-07-30 2010-02-12 Teijin Ltd Polyester resin composition and biaxially oriented film using the same
WO2014192774A1 (en) * 2013-05-31 2014-12-04 富士フイルム株式会社 Solar cell back sheet, and solar cell module
WO2015087834A1 (en) * 2013-12-09 2015-06-18 富士フイルム株式会社 Imino ether compound, polyester resin composition, method for producing carboxylic acid ester, polyester film, back sheet for solar cell modules, and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220005A (en) * 1992-07-30 1994-08-09 Sandoz Ag New imino ether
JP2010031174A (en) * 2008-07-30 2010-02-12 Teijin Ltd Polyester resin composition and biaxially oriented film using the same
WO2014192774A1 (en) * 2013-05-31 2014-12-04 富士フイルム株式会社 Solar cell back sheet, and solar cell module
WO2015087834A1 (en) * 2013-12-09 2015-06-18 富士フイルム株式会社 Imino ether compound, polyester resin composition, method for producing carboxylic acid ester, polyester film, back sheet for solar cell modules, and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121260A1 (en) * 2015-01-27 2016-08-04 富士フイルム株式会社 Acid alkylating agent, method for producing acid alkylated product, resin composition and polyester film

Also Published As

Publication number Publication date
JP6341998B2 (en) 2018-06-13
JPWO2015182546A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6283576B2 (en) Imino ether compound, polyester resin composition, method for producing carboxylic acid ester, polyester film, solar cell module back sheet and solar cell module
JP5905353B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP5827255B2 (en) Aromatic polyester film, solar cell module backsheet and solar cell module
JP5852626B2 (en) Ketene imine compound, polyester film, back sheet for solar cell module and solar cell module
JP6341998B2 (en) Polyester resin composition, master pellet, polyester film, solar cell module back sheet and solar cell module
JP5856924B2 (en) Cyclic carbodiimide compound, polyester film, back sheet for solar cell module, and solar cell module
KR101711065B1 (en) Resin composition, production method therefor, polyethylene terephthalate film, and back sheet for solar cell module
JP2012227359A (en) Polyester film for solar cell backside protective material
US10005722B2 (en) Ketene imine compound, polyester film, back sheet for solar cell module, and solar cell module
JP5889776B2 (en) Polyester film, back sheet for solar cell module, and solar cell module
JP2014185244A (en) Ultraviolet-resistant polyester film
WO2013161787A1 (en) Polyester film, back sheet for solar cell module, and solar cell module
JP5770693B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP6333747B2 (en) Sealant, acid alkylating agent, method for producing acid alkylated product, resin composition, and polyester film
JP2015048404A (en) Biaxially oriented polyester film
JP2014077091A (en) Polyester film, back sheet for solar cell module, and solar cell module
JP2013237817A (en) Polyester film, backsheet for solar cell module, and solar cell module
WO2016121260A1 (en) Acid alkylating agent, method for producing acid alkylated product, resin composition and polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799369

Country of ref document: EP

Kind code of ref document: A1