WO2015182337A1 - Insertion device and surgical system - Google Patents

Insertion device and surgical system Download PDF

Info

Publication number
WO2015182337A1
WO2015182337A1 PCT/JP2015/063135 JP2015063135W WO2015182337A1 WO 2015182337 A1 WO2015182337 A1 WO 2015182337A1 JP 2015063135 W JP2015063135 W JP 2015063135W WO 2015182337 A1 WO2015182337 A1 WO 2015182337A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft portion
shaft
bending
power
extending direction
Prior art date
Application number
PCT/JP2015/063135
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 岡本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201590000101.7U priority Critical patent/CN205649480U/en
Publication of WO2015182337A1 publication Critical patent/WO2015182337A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention includes an insertion device including a shaft portion that transmits power for operating an operation portion that is provided in or attached to the insertion portion by rotating about the shaft axis, and the insertion device. It relates to a surgical system.
  • Patent Document 1 discloses an ultrasonic diagnostic apparatus which is an insertion device (insertion apparatus) in which an ultrasonic transducer as an operation part is provided at a distal end portion of an insertion part extending along a longitudinal axis.
  • the shaft portion extends from the proximal direction to the distal direction through the inside of the insertion portion.
  • rotational torque drive torque
  • the shaft portion rotates about the shaft axis.
  • power for operating the ultrasonic transducer is transmitted to the ultrasonic transducer via the shaft portion.
  • the ultrasonic transducer rotates.
  • diagnosis is performed with the ultrasonic transducer rotated.
  • a tube which is a covering portion extends from the proximal end direction to the distal end direction inside the insertion portion.
  • the shaft portion is inserted through the tube.
  • a lubricant such as oil is filled between the outer surface of the shaft portion and the inner surface of the tube.
  • the lubricant reduces the friction between the shaft portion and the tube when the shaft portion is rotating. For this reason, even when the shaft portion contacts the tube in a state where the shaft portion rotates, the rotation speed does not decrease at the portion that contacts the tube, and the shaft portion rotates smoothly. Thereby, in the state which a shaft part rotates, generation
  • the present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to keep the change in the rotational speed of the shaft portion and the operating speed of the operating portion over time due to the power small, and the operation of the operating portion.
  • An object of the present invention is to provide an insertion device that ensures stability. Moreover, it is providing the operation system provided with the insertion apparatus.
  • an insertion device includes an insertion portion that extends along a longitudinal axis, and is provided in the insertion portion, or attached to the insertion portion, and has power.
  • the first extending direction from the first extending direction by having an operating part that operates by being transmitted and a shaft, and rotating about the shaft axis by the power that operates the operating part
  • the power source is provided by covering the outer surface of the shaft portion and between the shaft portion and the operating portion, and reducing the operating speed of the operation by the power transmitted through the shaft portion. Action by Between the outer surface of the shaft portion and the inner surface of the covering portion, and the driving torque to be applied is increased to transmit the power with the increased driving torque toward the operating portion. And a resistance portion that provides a certain resistance to the rotating shaft portion.
  • the present invention it is possible to provide an insertion device in which changes in the rotation speed of the shaft portion and the operation speed of the operation portion due to power are kept small, and the operation stability of the operation portion is ensured. Moreover, a surgery system provided with the insertion device can be provided.
  • FIG. 1 is a schematic diagram illustrating an endoscope system in which an endoscope according to a first embodiment is used. It is the schematic which shows the structure which curves the bending part which concerns on 1st Embodiment. It is the schematic which shows the structure which transmits the motive power which generate
  • FIG. It is sectional drawing which shows roughly the structure of the site
  • FIG. 1 is a diagram illustrating an endoscope system 1 that is a surgical system in which an endoscope 2 that is an insertion device (insertion apparatus) according to the present embodiment is used.
  • an endoscope 2 as an insertion device has a longitudinal axis C.
  • One of the directions parallel to the longitudinal axis C is the proximal direction (the direction of the arrow C1 in FIG. 1), and the opposite direction to the proximal direction is the distal direction (the direction of the arrow C2 in FIG. 1). Further, the proximal direction and the distal direction are parallel to the longitudinal axis C.
  • the endoscope 2 includes an insertion portion (endoscope insertion portion) 3 extending along the longitudinal axis C, and an operation portion (endoscope operation portion) 5 provided on the proximal direction side from the insertion portion 3. .
  • the insertion portion 3 extends along the longitudinal axis C, and is inserted into a body cavity when the endoscope system 1 is used.
  • a universal cord 6 is connected to the operation unit 5.
  • the universal cord 6 extends from the first extending direction (the direction of the arrow E1 in FIG. 1) to the second extending direction (the direction of the arrow E2 in FIG. 1) that is opposite to the first extending direction. It is extended. Therefore, the end of the universal cord 6 on the second extending direction side is connected to the operation unit 5.
  • a connector 7 is provided at the end of the universal cord 6 on the first extending direction side.
  • the endoscope system 1 includes an image processing unit 11 such as an image processor, a light source unit 12 including a light source such as a lamp, a display unit 13 such as a monitor, and a drive control unit as peripheral units of the endoscope 2. 15 is provided.
  • the drive control unit 15 is a control device provided with a processor including, for example, a CPU (Central Processing Unit) or an ASIC (application specific integrated circuit).
  • the connector 7 of the universal cord 6 is connected to the light source unit 12. Therefore, in the universal cord 6, the first extending direction is a direction away from the operation unit 5, and the second extending direction is a direction toward the operation unit 5.
  • an imaging cable (not shown) and a light guide (not shown) are extended through the insertion portion 3, the operation portion 5, and the universal cord 6.
  • An imaging element (not shown) such as a CCD is provided inside the distal end portion of the insertion portion 3.
  • the imaging element images a subject through an observation window (not shown) provided on the distal end surface of the insertion portion 3.
  • the imaging signal is transmitted to the image processing unit 11 via the imaging cable, and the image processing unit 11 performs image processing.
  • a subject image is generated by the image processing unit 11, and the generated subject image is displayed on the display unit 13.
  • the light emitted from the light source unit 12 is guided through the light guide.
  • the guided light is irradiated to the subject from an illumination window (not shown) provided on the distal end surface of the insertion portion 3.
  • the insertion portion 3 includes a distal end rigid portion 21 that forms the distal end of the insertion portion 3, a bending section 22 provided on the proximal direction side from the distal end rigid portion 21, and a proximal end side from the bending portion 22.
  • the bending portion 22 performs a bending operation when power is transmitted.
  • the bending portion 22 is an operating portion that is provided in the insertion portion 3 and operates when power is transmitted.
  • the bending portion 22 can be bent in a first bending direction (the direction of arrow B1 and the direction of arrow B2 in FIG. 1) and in the second bending direction (the direction of arrow B3 and the direction of arrow B4 in FIG. 1). is there.
  • the first bending direction is two directions that are perpendicular to (intersect) the longitudinal axis C and are opposite to each other, and the second bending direction is perpendicular (intersect) to the longitudinal axis C.
  • the first bending direction coincides with the bending Up direction and the bending Down direction
  • the second bending direction coincides with the bending Left direction and the bending Right direction.
  • the first bending direction coincides with the bending Left direction and the bending Right direction
  • the second bending direction coincides with the bending Up direction and the bending Down direction.
  • FIG. 2 is a diagram showing a configuration in which the bending portion 22 is bent (operated).
  • the operation unit 5 includes an operation unit case 25 that is a storage case.
  • a bending operation knob 26 and a bending operation dial 27 are attached to the operation portion case 25 as bending operation input portions.
  • a bending operation (first bending operation) for bending the bending portion 22 in the first bending direction is input by the bending operation knob 26.
  • a bending operation (second bending operation) for bending the bending portion 22 in the second bending direction is input by the bending operation dial 27.
  • Rotating member (first rotating member) 31 that is a pulley or a sprocket is provided inside the operation unit case 25.
  • the rotation operation member 31 is connected to the bending operation knob 26, and the rotation operation member 31 rotates by rotating the bending operation knob 26.
  • the rotation operation member 31 is connected to proximal ends of two bending wires (first bending wires) 32A and 32B.
  • the bending wires 32 ⁇ / b> A and 32 ⁇ / b> B extend through the inside of the insertion portion 3, and the distal ends of the bending wires 32 ⁇ / b> A and 32 ⁇ / b> B are connected to the distal end portion of the bending portion 22.
  • the bending portion 22 performs a bending operation and is bent in one of the first bending directions (for example, the bending Up direction or the bending Down direction).
  • a rotation amount detection unit 33 such as a potentiometer is provided.
  • the rotation amount detection unit 33 detects the rotation amount of the bending operation dial 27 by the input of the bending operation (second bending operation).
  • One end of an electric signal line 38 is connected to the rotation amount detection unit 33.
  • the electric signal line 38 extends through the inside of the universal cord 6, and the other end of the electric signal line 38 is connected to the drive control unit 15.
  • a detection signal indicating the rotation amount of the bending operation dial 27 is transmitted from the rotation amount detection unit 33 to the drive control unit 15.
  • An electric motor 35 as a drive source is provided at the connector 7 (end portion on the first extending direction side) of the universal cord 6.
  • the electric motor 35 is electrically connected to the drive control unit 15 via an electrical wiring 36.
  • the drive control unit 15 adjusts the supply state of power (drive current) to the electric motor 35 based on the detection signal indicating the detection result in the rotation amount detection unit 33. That is, the drive control unit 15 controls the drive state of the electric motor 35 that is a drive source based on an input of a bending operation (second bending operation) with the bending operation dial 27.
  • Driving the electric motor 35 generates power that bends (operates) the bending portion 22 that is the operation portion in the second bending direction.
  • FIG. 3 is a diagram showing a configuration for transmitting the power generated by the electric motor 35 to the bending portion 22 which is an operation portion.
  • the power generated by the electric motor 35 is transmitted to the bending portion 22 via the power transmission unit 40.
  • the power transmission unit 40 includes a shaft portion 41 extending inside the universal cord 6.
  • the shaft portion 41 has a shaft axis S as a central axis.
  • the shaft portion 41 extends from the first extending direction (the direction of the arrow E1 in FIGS. 2 and 3) toward the second extending direction (the direction of the arrow E2 in FIGS. 2 and 3).
  • An end on the first extending direction side of the shaft portion 41 is connected to a motor shaft 37 of the electric motor 35 via a coupling 42.
  • a cylindrical covering portion 43 is extended inside the universal cord 6.
  • the covering portion 43 extends from the first extending direction toward the second extending direction.
  • the shaft portion 41 is inserted through the covering portion 43, and the covering portion 43 covers the outer surface of the shaft portion 41.
  • the end of the covering portion 43 on the first extending direction side is connected to a case (not shown) that houses the electric motor 35.
  • Power is transmitted to the shaft portion 41 by driving the electric motor 35 that is a drive source.
  • the shaft portion 41 rotates about the shaft axis S with respect to the covering portion 43.
  • power for bending the bending portion 22 is transmitted from the first extending direction to the second extending direction.
  • a speed reduction unit (torque amplification unit) 45 that is a part of the power transmission unit 40 is provided.
  • An end of the shaft portion 41 on the second extending direction side is connected to a speed reduction portion (torque amplification portion) 45.
  • the deceleration part 45 is provided in the power transmission unit 40 between the shaft part 41 and the bending part 22 which is an operation
  • the end of the covering portion 43 on the second extending direction side is connected to the operation portion case 25.
  • the speed reduction unit 45 includes a bevel gear 46A to which the shaft portion 41 is connected and a bevel gear 46B that meshes with the bevel gear 46A.
  • the speed reduction unit 45 includes a spur gear (first rotating body) 47A connected to the bevel gear 46B and a spur gear (second rotating body) 47B that meshes with the spur gear 47A. Power generated by the electric motor 35 is transmitted to the speed reduction unit 45 through the shaft portion 41. In the speed reduction portion 45, power is transmitted from the shaft portion 41 to the spur gear 47A through the bevel gears 46A and 46B, and the spur gear 47A rotates.
  • the spur gear (second rotating body) 47B has a larger number of teeth than the spur gear (first rotating body) 47A and a larger outer diameter than the spur gear 47A. Therefore, when power is transmitted from the spur gear 47A, the spur gear (second rotating body) 47B rotates at a rotational angular velocity smaller than that of the spur gear (first rotating body) 47A. Thereby, the operation speed of the operation by power decreases.
  • the speed reduction portion 45 including the spur gears 47A and 47B reduces the operating speed by the power and increases the driving torque to be applied in the operation by the power.
  • the portion closer to the bending portion 22 than the speed reducing portion 45 has a lower operation speed than the portion farther from the bending portion 22 than the speed reducing portion 45, so that the operation speed is increased.
  • Driving torque increases.
  • the outer diameter (the number of teeth) of the spur gear (second rotating body) 47B is doubled with respect to the spur gear (first rotating body) 47A.
  • the operation speed of the operation by the power is halved compared to the portion farther from the bending portion 22 than the speed reduction portion 45.
  • the driving torque to be applied is doubled.
  • Rotating member (second rotating member) 51 which is a pulley or a sprocket, is provided inside the operation unit case 25.
  • the rotational operation member 51 is connected to a spur gear 47B of the speed reducing portion 45.
  • the rotational operation member 51 rotates by transmitting the power with the increased driving torque in the speed reduction unit 45.
  • the power whose driving torque has been increased by the speed reduction unit 45 is transmitted to the bending portion 22 which is the operating portion through the rotating operation member 51.
  • the rotation operation member 51 is connected to the proximal ends of two bending wires (second bending wires) 52 ⁇ / b> A and 52 ⁇ / b> B via a chain 53.
  • the bending wires 52 ⁇ / b> A and 52 ⁇ / b> B are extended through the insertion portion 3, and the distal ends of the bending wires 52 ⁇ / b> A and 52 ⁇ / b> B are connected to the distal end portion of the bending portion 22.
  • the bending wires 52A and 52B move along the longitudinal axis C, and one of the bending wires 52A and 52B is pulled in the proximal direction. Accordingly, the bending portion 22 performs a bending operation and bends in one of the second bending directions (for example, the bending left direction or the bending right direction).
  • FIG. 4 is a diagram showing a configuration of a portion on the second extending direction side of the shaft portion 41 and the covering portion 43.
  • the shaft portion 41 includes a flexible shaft portion 55 and a rigid shaft portion 56 that is continuous to the second extending direction side of the flexible shaft portion 55.
  • the rigid shaft portion 56 is harder than the flexible shaft portion 55 and forms an end of the shaft portion 41 on the second extending direction side.
  • the rigid shaft portion 56 is connected to the speed reducing portion 45.
  • the flexible shaft portion 55 is made of, for example, stainless steel
  • the rigid shaft portion 56 is made of, for example, a metal such as stainless steel.
  • the dimension along the shaft axis S of the flexible shaft portion 55 is much larger than the dimension along the shaft axis S of the rigid shaft portion 56.
  • the rigid shaft portion 56 is provided only at the end portion of the shaft portion 41 on the second extending direction side, and most of the shaft portion 41 is formed from the flexible shaft portion 55.
  • the covering portion 43 includes a tube member 57 that is a soft covering portion and a base 58 that is a hard covering portion connected to the second extending direction side of the tube member 57.
  • the base 58 is continuous to the second extending direction side of the tube member 57.
  • the base 58 is harder than the tube member 57 and forms an end of the covering portion 43 on the second extending direction side.
  • the base 58 is connected to the operation portion case 25.
  • the tube member 57 that is a soft covering portion is a tube formed from, for example, a resin
  • the base 58 that is a hard covering portion is formed from, for example, a metal.
  • the outer surface of the soft shaft portion 55 is covered with a tube member 57. Further, most of the outer surface of the rigid shaft portion 56 is covered with a base 58. For this reason, the dimension of the tube member 57 along the shaft axis S is much larger than the dimension of the base 58 along the shaft axis S. Therefore, the base 58 is provided only at the end of the covering portion 43 on the second extending direction side, and most of the covering portion 43 is formed from the tube member 57.
  • the base 58 includes a small diameter portion 61 whose outer diameter is substantially the same as that of the tube member 57, and a large diameter portion 62 whose outer diameter is larger than that of the small diameter portion 61.
  • the large diameter portion 62 is provided on the second extending direction side from the small diameter portion 61, and the end of the covering portion 43 on the second extending direction side is formed by the large diameter portion 62. Further, a stepped portion 63 is formed between the small diameter portion 61 and the large diameter portion 62.
  • a cylindrical nut 65 is connected to the large diameter portion 62 of the base 58 from the second extending direction side.
  • the rigid shaft portion 56 is provided with a protruding portion 66 from which the outer surface of the shaft portion 41 protrudes outward.
  • a bearing 67 is provided between the outer surface of the rigid shaft portion 56 (the outer surface of the shaft portion 41) and the inner surface of the large-diameter portion 62 of the base 58 (the inner surface of the covering portion 43).
  • the bearing 67 is located between the protruding portion 66 of the shaft portion 41 and the nut 65 in the direction parallel to the shaft axis S (that is, the first extending direction and the second extending direction).
  • the protrusion 66 restricts the movement of the bearing 67 in the first extending direction with respect to the shaft portion 41 and the covering portion 43, and the nut 65 causes the second extending direction of the bearing 67 to the shaft portion 41 and the covering portion 43. Movement to is regulated.
  • the rigid shaft portion 56 is provided with a recess 71 in which the outer surface of the shaft portion 41 is recessed inward.
  • the recess 71 is located on the first extending direction side from the protrusion 66.
  • An O-ring 72 that is a resistance portion is disposed in the recess 71.
  • the O-ring 72 is disposed in a compressed state between the outer surface of the rigid shaft portion 56 (the outer surface of the shaft portion 41) and the inner surface of the small-diameter portion 61 of the base 58 (the inner surface of the covering portion 43).
  • the outer surface of the shaft portion 56 and the inner surface of the small diameter portion 61 of the base 58 are in contact.
  • a restoring force that restores torsion acts on the shaft portion 41.
  • the resistance in the direction opposite to the restoring force is applied to the shaft portion 41 by the O-ring 72 that is the resistance portion.
  • the O-ring 72 gives a certain resistance to the rotating shaft portion 41. The details of applying resistance to the shaft portion 41 by the O-ring 72 will be described later.
  • the insertion unit 3 is inserted into the lumen.
  • a bending operation (first bending operation) for bending the bending portion 22 is input by rotating (turning) the bending operation knob 26.
  • the rotation operation member (first rotation operation member) 31 rotates, and the bending wires (first bending wires) 32A and 32B move along the longitudinal axis C.
  • the bending portion 22 is bent in one of the first bending directions.
  • a bending operation (second bending operation) is input by the bending operation dial 27. Accordingly, electric power is supplied from the drive control unit 15 to the electric motor 35 based on the detection signal from the rotation amount detection unit 33. As a result, the electric motor 35 is driven, the power for bending the bending portion 22 is transmitted to the shaft portion 41, and the shaft portion 41 rotates about the shaft axis S. Thereby, in the shaft part 41, power is transmitted from the first extending direction to the second extending direction.
  • the driving torque that is applied in the operation by the power in the speed reduction unit (torque amplifying unit) 45 increases, and the power with the increased driving torque is transmitted to the rotation operation member (second rotation operation member) 51.
  • the rotating operation member 51 rotates by the transmitted power, and the bending wires (second bending wires) 52A and 52B move along the longitudinal axis C. As a result, the bending portion 22 is bent in one of the second bending directions.
  • the driving torque that is applied in the operation by the power is increased by the speed reducing unit 45 including the spur gears 47A and 47B.
  • the drive torque that is applied in the operation by the power is larger in the portion closer to the bending portion 22 than the speed reduction portion 45 compared to the portion farther from the bending portion 22 than the speed reduction portion 45. Therefore, the driving torque that acts on the bending portion 22 in the operation (curving) by power increases, and the driving torque having an appropriate magnitude can be applied to the bending portion 22.
  • FIG. 5 is a diagram for explaining the operation at the contact portion with the covering portion 43 when the shaft portion 41 is in contact with the covering portion 43.
  • FIG. 6 shows changes over time in the friction ( ⁇ F, ⁇ ′F) at the contact portion of the shaft portion 41 with the covering portion 43 and the rotational speed at the contact portion of the shaft portion 41 with the covering portion 43.
  • FIG. 6 An example of the change with time of (V) is shown.
  • the friction is switched from static friction ⁇ F to dynamic friction ⁇ ′F at time t1 and time t2.
  • the change with time of friction is indicated by a solid line
  • the change with time of rotation is indicated by a broken line.
  • a change with time in the rotation speed when the O-ring (resistor portion) 72 is not provided is indicated by a one-dot chain line as a comparative example of the present embodiment.
  • the friction between the shaft portion 41 and the covering portion 43 is switched from the static friction ⁇ F to the dynamic friction ⁇ ′F, and the friction is reduced, so that the shaft portion 41 contacts the covering portion 43.
  • the rotation speed V increases.
  • an O-ring 72 is provided as a resistance portion between the outer surface of the shaft portion 41 and the inner surface of the covering portion 43.
  • the static friction ⁇ F is changed to the dynamic friction ⁇ ′F as compared with the comparative example in which the O-ring 72 is not provided (that is, the resistance R does not act on the shaft portion 41).
  • the increase amount (change amount) of the rotation speed V at the contact portion of the shaft portion 41 with the covering portion 43 becomes small.
  • the resistance R acts by the O-ring 72, the (abrupt) increase in the amount of change in the rotation speed is suppressed at the contact portion of the shaft portion 41 with the covering portion 43.
  • the resistance R is large enough to suppress an increase in the amount of change in the rotational speed of the shaft portion 41 due to the restoring force P, and does not increase to such an extent that the rotation of the shaft portion 41 is stopped.
  • the O-ring 72 is in contact with the shaft portion 41 at the outer surface of the hard rigid shaft portion 56 and is in contact with the covering portion 43 at the inner surface of the hard base 58. Since the O-ring 72 is in contact with the hard portion of the shaft portion 41 and the hard portion of the covering portion 43, the resistance R against the restoring force P that restores the twist of the shaft portion 41 is caused to act appropriately on the shaft portion 41. Can do.
  • the rigid shaft portion 56 with which the O-ring 72 abuts forms the end of the shaft portion 41 on the second extending direction side, and the base 58 with which the O-ring 72 abuts is the second extending portion of the covering portion 43.
  • An end on the direction side is formed. That is, the O-ring 72 that is a resistance portion is in contact with the shaft portion 41 at the end portion on the second extending direction side of the shaft portion 41 (end portion on the side close to the bending portion 22).
  • the resistance R against the restoring force P that restores the twist can be appropriately applied to the shaft portion 41, regardless of where the twist occurs. That is, the resistance R against the restoring force P can be appropriately applied to the shaft portion 41 regardless of the position where twisting occurs.
  • the O-ring 72 which is a resistance portion is provided on the electric motor 35 side (drive source side) from the speed reduction portion (torque amplification portion) 45. For this reason, in the power transmission unit 40, the resistance R by the O-ring 72 acts only on the site where the drive torque before being amplified acts. For this reason, it is not necessary to increase the resistance R, and the O-ring 72 can be downsized. Further, since the resistance R does not increase, loss of driving torque can be reduced in the transmission of power to the bending portion 22.
  • the O-ring 72 is in contact with the outer surface of the rigid shaft portion 56 and the inner surface of the base 8 (hard covering portion) 58, but is not limited thereto.
  • the O-ring 72 is in contact with the outer surface of the rigid shaft portion 56 and is positioned between the outer surface of the rigid shaft portion 56 and the inner surface of the tube member (soft covering portion) 57. .
  • the O-ring 72 does not contact the base 58.
  • the O-ring 72 is in contact with the inner surface of the base 58 and is positioned between the outer surface of the flexible shaft portion 55 and the inner surface of the base 58. For this reason, the O-ring 72 does not contact the rigid shaft portion 56. That is, the O-ring 72 may be in contact with at least one of the outer surface of the hard shaft portion 56 and the inner surface of the base (hard coating portion) 58.
  • a member other than the O-ring 72 may be used as the resistance portion.
  • a friction plate 73 may be provided as a resistance portion.
  • the friction plate 73 is a protrusion 66 and is in contact with the outer surface of the rigid shaft portion 56 of the shaft portion 41. Further, the friction plate 73 is in contact with the inner surface of the base (hard covering portion) 58 of the covering portion 43 at the step portion 63.
  • a resistance fluid 75 may be provided as a resistance portion.
  • the resistance fluid 75 is filled between the rigid shaft portion 56 and the base 58.
  • a resistance fluid 75 is filled between the sealing ring 76A and the sealing ring 76B in the direction parallel to the shaft axis S.
  • the sealing ring 76 ⁇ / b> A keeps the space between the rigid shaft portion 56 and the small diameter portion 61 of the base 58 liquid-tight. For this reason, the sealing ring 76A prevents the resistance fluid 75 from flowing out toward the first extending direction.
  • the sealing ring 76 ⁇ / b> B keeps a liquid-tight space between the protruding portion 66 of the rigid shaft portion 56 and the large diameter portion 62 of the base 58. For this reason, the sealing ring 76B prevents the resistance fluid 75 from flowing out toward the second extending direction.
  • the resistance fluid 75 is, for example, antiwear grease, and has high viscosity and fluid resistance. Therefore, the oil or the like used as a lubricant in Patent Document 1 is not used as the resistance fluid 75 of the present embodiment because of low viscosity and fluid resistance. In addition, the friction by the sealing rings 76A and 76B is small, and the influence of the friction by the sealing rings 76A and 76B on the resistance R with respect to the restoring force P is small.
  • a resistance fluid 75 is provided, and a plurality of wings 77 may be arranged in parallel with the rigid shaft portion 56 in the direction around the shaft axis S.
  • the outer surface of the shaft portion 41 protrudes outward.
  • the wing portion 77 is located on the first extending direction side from the protruding portion 66 of the rigid shaft portion 56, and is located between the sealing ring 76A and the sealing ring 76B in the direction parallel to the shaft axis S. Yes. Therefore, the wings 77 are located in the region filled with the resistance fluid 75, and each wing 77 receives fluid resistance from the resistance fluid 75.
  • FIG. 10 shows the shaft portion 41 in a cross section perpendicular to the shaft axis S and passing through the wing portion 77.
  • a ball 81 may be provided as a resistance portion.
  • a groove portion 82 whose inner surface is recessed outward is formed in the small diameter portion 61 of the base 58.
  • a spring 83 is provided in the groove portion 82.
  • One end of the spring 83 is connected to the base 58 at the bottom of the groove 82.
  • the other end of the spring 83 is connected to the ball 81.
  • the ball 81 is located on the first extending direction side from the protrusion 66.
  • the ball 81 is urged toward the rigid shaft portion 56 by the spring 83, and the outer surface of the rigid shaft portion 56 is pressed by the ball 81. That is, a ball plunger is formed by the ball 81 and the spring 83.
  • friction is generated in the shaft portion 41 by the ball 81 in a state where the shaft portion 41 rotates.
  • a resistance R against the restoring force P that restores the twist acts.
  • the spur gears 47A and 47B reduce the operation speed of the operation by the power and increase the drive torque to be applied in the operation by the power.
  • the configuration for amplifying the drive torque is limited to this. is not.
  • columnar bodies 85A and 85B may be provided in the speed reduction portion 45 instead of the spur gears 47A and 47B.
  • the columnar body (first rotating body) 85 ⁇ / b> A and the columnar body (second rotating body) 85 ⁇ / b> B are connected via a belt 86.
  • the power generated by the electric motor 35 is transmitted to the columnar body 85A through the shaft portion 41, and the columnar body 85A rotates.
  • power is transmitted from the columnar body 85A to the columnar body 85B through the belt 86, and the columnar body 85B rotates.
  • Columnar body (second rotating body) 85B has a larger outer diameter than columnar body (first rotating body) 85A. For this reason, when power is transmitted from the columnar body 85A, the columnar body 85B rotates at a smaller rotational angular velocity than the columnar body 85A. Thereby, the operation speed of the operation by power decreases. As in the first embodiment, in the transmission of power from the columnar body 85A to the columnar body 85B, the driving torque applied in the operation by the power increases.
  • a lubricant 87 such as silicon oil may be filled between the outer surface of the shaft portion 41 and the inner surface of the covering portion 43.
  • a rigid shaft portion (first rigid shaft portion) 91 is continuous with the first extending direction side of the flexible shaft portion 55, and the first extending portion of the shaft portion 41 is formed by the rigid shaft portion 91. An end on the direction side is formed.
  • the rigid shaft portion (second rigid shaft portion) 56 is continuous with the second extending direction side of the flexible shaft portion 55, and the shaft portion is formed by the rigid shaft portion 56. An end of 41 in the second extending direction is formed.
  • the rigid shaft portion 91 is harder than the flexible shaft portion 55 and has substantially the same hardness as the rigid shaft portion 56.
  • a rigid shaft portion 91 is connected to the motor shaft 37 of the electric motor 35 via the coupling 42.
  • a base (first hard coating portion) 92 is connected to the first extending direction side of the tube member (soft coating portion) 57 in the covering portion 43, and the covering portion 43 is connected by the base 92. An end on the first extending direction side is formed.
  • the base (second hard covering portion) 58 is connected to the second extending direction side of the tube member 57, and the second portion of the covering portion 43 is connected by the base 58 as in the first embodiment. An end on the extending direction side is formed.
  • the base 92 is harder than the tube member 57 and has substantially the same hardness as the base 58. Further, the base 92 is connected to a case (not shown) that houses the electric motor 35.
  • a sealing ring (first seal portion) 93 is disposed between a hard shaft portion (first hard shaft portion) 91 and a base (first hard coating portion) 92.
  • the sealing ring 93 keeps a liquid-tight space between the outer surface of the rigid shaft portion 91 and the inner surface of the base 92.
  • the lubricant 87 is filled in the second extending direction from the sealing ring 93. For this reason, the seal ring 93 prevents the lubricant 87 from flowing out toward the first extending direction.
  • an O-ring 72 is provided as a resistance portion between the rigid shaft portion 56 and the base 58 as in the first embodiment. Then, in a state in which the shaft portion 41 is twisted, a resistance R against the restoring force P that restores the twist acts by the O-ring 72.
  • the O-ring 72 keeps the liquid-tight space between the outer surface of the rigid shaft portion 56 and the inner surface of the base 58.
  • the sealing ring 93 is located on the first extending direction side from the O-ring 72, and the lubricant 87 is filled on the first extending direction side from the O-ring 72. For this reason, the O-ring 72 prevents the lubricant 87 from flowing out toward the second extending direction. That is, in the present modification, the O-ring 72 serves as a seal portion (second seal portion) that prevents the lubricant 87 from flowing out toward the second extending direction.
  • the lubricant 87 is filled between the sealing ring 93 and the O-ring 72. Therefore, the lubricant 87 is filled over the entire length in the direction parallel to the shaft axis S between the flexible shaft portion 55 and the tube member (soft covering portion) 57.
  • Lubricant 87 reduces friction between the shaft portion 41 (soft shaft portion 55) and the covering portion 43 (tube member 57) when the shaft portion 41 is rotated by power. For this reason, even when the shaft portion 41 abuts on the covering portion 43, the rotation speed V is suppressed from decreasing at the abutting portion against the covering portion. As a result, the probability that twisting occurs in the shaft portion 41 is reduced, and the amount of twisting is reduced even when twisting occurs in the shaft portion 41. Thereby, the change with time of the rotational speed of the shaft portion 41 is further reduced. For this reason, the change with time of the operation speed (bending speed) due to the power of the bending section (operation section) 22 is further reduced. Thereby, the bending part 22 can perform a bending operation more stably.
  • the lubricant 87 also has a low viscosity such as oil and fluid resistance, and the influence of the lubricant 87 on the resistance R with respect to the restoring force P is small.
  • the above-described configuration can be applied even when the bending portion 22 is bent in the first bending direction.
  • the operating portion is the curved portion 22, but is not limited thereto.
  • the operation unit is an ultrasonic transducer
  • power may be transmitted to the ultrasonic transducer using the same configuration as in the first embodiment.
  • the endoscope (2) is described as an example of the insertion device, but the insertion device is not limited to the endoscope (2).
  • the above-described configuration may be applied to a surgical system that uses a manipulator as an insertion device.
  • the insertion device (2) is provided in the insertion portion (3) extending along the longitudinal axis (C) and the insertion portion (3), or the insertion portion ( 3), and an operating part (22) that operates by transmitting power.
  • the shaft portion (41) of the power transmission unit (40) is rotated from the first extending direction (E1) by rotating about the shaft axis (S) by the power that operates the operating portion (22). Power is transmitted in a second extending direction (E2) that is opposite to the extending direction (E1).
  • the shaft portion (41) is inserted through the covering portion (43), and the outer surface of the shaft portion (41) is covered with the covering portion (43).
  • the power transmission unit (40) is provided with a speed reduction part (45) between the shaft part (41) and the operation part (22).
  • a speed reduction part (45) by reducing the operation speed of the operation by the power transmitted through the shaft part (41), the driving torque applied in the operation by the power is increased, and the power having the increased driving torque is supplied to the operation part. Transmit to (22).
  • a resistance portion (72; 73; 75; 81) is provided between the outer surface of the shaft portion (41) and the inner surface of the covering portion (43). In a state where the restoring force (P) for restoring the twist generated in the rotating shaft portion (41) acts on the shaft portion (41), the restoring force (P) is generated by the resistance portion (72; 73; 75; 81). Resistance (R) in the opposite direction acts on the shaft portion (41).

Abstract

 The insertion device according to the present invention is provided with: a shaft part for rotating about a shaft axis by a motive force for causing an operating part to operate, and thereby transmitting the motive force from a first extension direction to a second extension direction; and a sheathing part for covering an external surface of the shaft part. The insertion device is provided with a speed-reducing part for increasing a drive torque applied in operation by the motive force and transmitting the motive force for which the drive torque was increased toward the operating part. A constant resistance is imparted to the rotating shaft part by a resistance part provided between the external surface of the shaft part and an internal surface of the sheathing part.

Description

挿入機器及び手術システムInsertion device and surgical system
 本発明は、シャフト軸を中心として回転することにより、挿入部に設けられる、又は、挿入部に取付けられる動作部を動作させる動力を伝達するシャフト部を備える挿入機器、及び、その挿入機器を備える手術システムに関する。 The present invention includes an insertion device including a shaft portion that transmits power for operating an operation portion that is provided in or attached to the insertion portion by rotating about the shaft axis, and the insertion device. It relates to a surgical system.
 特許文献1には、長手軸に沿って延設される挿入部の先端部に動作部である超音波トランスデューサが設けられる挿入機器(挿入装置)である超音波診断装置が開示されている。この超音波診断装置では、挿入部の内部を通って、シャフト部が基端方向から先端方向へ延設されている。シャフト部に動力が伝達されることにより、シャフト部に回転トルク(駆動トルク)が作用し、シャフト軸を中心としてシャフト部が回転する。シャフト部が回転することにより、超音波トランスデューサを動作させる動力が、シャフト部を介して超音波トランスデューサに伝達される。動力が伝達されることにより、超音波トランスデューサは回転する。超音波診断装置では、超音波トランスデューサを回転させた状態で、診断が行われる。 Patent Document 1 discloses an ultrasonic diagnostic apparatus which is an insertion device (insertion apparatus) in which an ultrasonic transducer as an operation part is provided at a distal end portion of an insertion part extending along a longitudinal axis. In this ultrasonic diagnostic apparatus, the shaft portion extends from the proximal direction to the distal direction through the inside of the insertion portion. When power is transmitted to the shaft portion, rotational torque (drive torque) acts on the shaft portion, and the shaft portion rotates about the shaft axis. When the shaft portion rotates, power for operating the ultrasonic transducer is transmitted to the ultrasonic transducer via the shaft portion. When the power is transmitted, the ultrasonic transducer rotates. In the ultrasonic diagnostic apparatus, diagnosis is performed with the ultrasonic transducer rotated.
 また、挿入部の内部には、基端方向から先端方向へ被覆部であるチューブが延設されている。シャフト部は、チューブに挿通されている。シャフト部の外表面とチューブの内表面との間には、オイル等の潤滑剤が充填されている。潤滑剤によって、シャフト部が回転している状態において、シャフト部とチューブとの間の摩擦が小さくなる。このため、シャフト部が回転する状態において、シャフト部がチューブに当接した場合でも、チューブに当接した部分において回転速度が小さくならず、滑らかにシャフト部が回転する。これにより、シャフト部が回転する状態において、シャフト部での捻じれの発生が防止される。 Also, a tube which is a covering portion extends from the proximal end direction to the distal end direction inside the insertion portion. The shaft portion is inserted through the tube. A lubricant such as oil is filled between the outer surface of the shaft portion and the inner surface of the tube. The lubricant reduces the friction between the shaft portion and the tube when the shaft portion is rotating. For this reason, even when the shaft portion contacts the tube in a state where the shaft portion rotates, the rotation speed does not decrease at the portion that contacts the tube, and the shaft portion rotates smoothly. Thereby, in the state which a shaft part rotates, generation | occurrence | production of the twist in a shaft part is prevented.
特開平5-176931号公報Japanese Patent Laid-Open No. 5-176931
 前記特許文献1の超音波診断装置のように、動作部として超音波トランスデューサを動力によって回転させる場合は、動作させる際の超音波トランスデューサへの負荷は小さくなる。このため、動力による動作(回転)において超音波トランスデューサに作用させる駆動トルクが小さい場合でも、超音波トランスデューサは適切に回転する。しかし、例えば、挿入部に設けられる湾曲部が動力によって湾曲する(動作する)動作部となる電動湾曲内視鏡では、動作させる際の湾曲部への負荷は大きくなる。このため、動力による動作(湾曲)において湾曲部に作用させる駆動トルクを大きくする必要がある。動作部に作用させる駆動トルクが大きくなることにより、動力によってシャフト部に作用させる駆動トルク(回転トルク)も大きくなる。 As in the ultrasonic diagnostic apparatus disclosed in Patent Document 1, when the ultrasonic transducer is rotated by power as the operation unit, the load on the ultrasonic transducer during operation is reduced. For this reason, even when the driving torque applied to the ultrasonic transducer in the operation (rotation) by the power is small, the ultrasonic transducer rotates appropriately. However, for example, in an electric bending endoscope in which a bending portion provided in an insertion portion is an operation portion that bends (operates) by power, a load on the bending portion when operating is increased. For this reason, it is necessary to increase the driving torque applied to the bending portion in the operation (curving) by the power. As the driving torque applied to the operating portion increases, the driving torque (rotational torque) applied to the shaft portion by the power also increases.
 シャフト部の回転トルクが大きくなることにより、シャフト部と被覆部(チューブ)との間に潤滑剤が充填される場合でも、シャフト部が回転している状態において、シャフト部とチューブとの間の摩擦が大きくなる。このため、シャフト部が回転する状態においてシャフト部が被覆部に当接した場合、被覆部に当接した部分において、被覆部への当接部分より駆動源側の部位に比べて、回転速度が小さくなる。これにより、シャフト部が回転する状態において、シャフト部に捻じれが発生する。シャフト部に捻じれが発生することにより、捻じれを復元する復元力がシャフト部に作用する。シャフト部での捻じれが大きくなると、復元力は大きくなる。そして、復元力がある閾値以上になると、被覆部への当接部分において、シャフト部とチューブとの間の摩擦が静止摩擦から動摩擦に切替わり、摩擦が小さくなる。これにより、シャフト部の被覆部への当接部分において、回転速度が大きくなる。 By increasing the rotational torque of the shaft portion, even when a lubricant is filled between the shaft portion and the covering portion (tube), the shaft portion is in a rotating state between the shaft portion and the tube. Friction increases. For this reason, when the shaft portion comes into contact with the covering portion in a state where the shaft portion rotates, the rotational speed is higher in the portion in contact with the covering portion than in the portion closer to the driving source than the contact portion with the covering portion. Get smaller. Thereby, in the state which a shaft part rotates, a twist generate | occur | produces in a shaft part. When the twist is generated in the shaft portion, a restoring force for restoring the twist acts on the shaft portion. When the twist at the shaft portion increases, the restoring force increases. When the restoring force exceeds a certain threshold value, the friction between the shaft portion and the tube is switched from static friction to dynamic friction at the contact portion with the covering portion, and the friction is reduced. As a result, the rotational speed increases at the contact portion of the shaft portion with the covering portion.
 前述のような現象が発生することにより、シャフト部が回転する状態では、シャフト部(特に、被覆部への当接部分)において、回転速度が経時的に大きく変化する。動作部へ動力を伝達する動力伝達ユニットの一部であるシャフト部において回転速度が経時的に大きく変化するため、湾曲部等の動作部の動力による動作速度(湾曲速度)も、経時的に大きく変化する。これにより、動作部の動作が不安定になる。 When the phenomenon as described above occurs, in the state where the shaft portion rotates, the rotation speed greatly changes with time in the shaft portion (particularly, the contact portion with the covering portion). Since the rotational speed of the shaft part, which is a part of the power transmission unit that transmits power to the operating part, changes greatly with time, the operating speed (curving speed) by the power of the operating part such as the bending part also increases with time. Change. Thereby, operation | movement of an operation | movement part becomes unstable.
 本発明は前記課題に着目してなされたものであり、その目的とするところは、動力によるシャフト部の回転速度及び動作部の動作速度の経時的な変化が小さく保たれ、動作部の動作の安定性が確保される挿入機器を提供することにある。また、その挿入機器を備える手術システムを提供することにある。 The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to keep the change in the rotational speed of the shaft portion and the operating speed of the operating portion over time due to the power small, and the operation of the operating portion. An object of the present invention is to provide an insertion device that ensures stability. Moreover, it is providing the operation system provided with the insertion apparatus.
 前記目的を達成するために、本発明のある態様の挿入機器は、長手軸に沿って延設される挿入部と、前記挿入部に設けられるか、又は、前記挿入部に取付けられ、動力が伝達されることにより動作する動作部と、シャフト軸を有し、前記動作部を動作させる前記動力によって前記シャフト軸を中心として回転することにより、第1の延設方向から前記第1の延設方向とは反対方向である第2の延設方向へ前記動力を伝達するシャフト部と、前記第1の延設方向から前記第2の延設方向に向かって延設され、前記シャフト部が挿通され、前記シャフト部の外表面を覆う被覆部と、前記シャフト部と前記動作部との間に設けられ、前記シャフト部を通して伝達された前記動力による動作の動作速度を減少させることにより、前記動力による動作において作用させる駆動トルクを増加し、前記駆動トルクが増加された前記動力を前記動作部に向かって伝達する減速部と、前記シャフト部の前記外表面と前記被覆部の内表面との間に設けられ、回転する前記シャフト部に一定の抵抗を付与する抵抗部と、を備える。 In order to achieve the above object, an insertion device according to an aspect of the present invention includes an insertion portion that extends along a longitudinal axis, and is provided in the insertion portion, or attached to the insertion portion, and has power. The first extending direction from the first extending direction by having an operating part that operates by being transmitted and a shaft, and rotating about the shaft axis by the power that operates the operating part A shaft portion that transmits the power in a second extending direction that is opposite to the direction, and extends from the first extending direction toward the second extending direction, and the shaft portion is inserted therethrough. The power source is provided by covering the outer surface of the shaft portion and between the shaft portion and the operating portion, and reducing the operating speed of the operation by the power transmitted through the shaft portion. Action by Between the outer surface of the shaft portion and the inner surface of the covering portion, and the driving torque to be applied is increased to transmit the power with the increased driving torque toward the operating portion. And a resistance portion that provides a certain resistance to the rotating shaft portion.
 本発明によれば、動力によるシャフト部の回転速度及び動作部の動作速度の経時的な変化が小さく保たれ、動作部の動作の安定性が確保される挿入機器を提供することができる。また、その挿入機器を備える手術システムを提供することができる。 According to the present invention, it is possible to provide an insertion device in which changes in the rotation speed of the shaft portion and the operation speed of the operation portion due to power are kept small, and the operation stability of the operation portion is ensured. Moreover, a surgery system provided with the insertion device can be provided.
第1の実施形態に係る内視鏡が用いられる内視鏡システムを示す概略図である。1 is a schematic diagram illustrating an endoscope system in which an endoscope according to a first embodiment is used. 第1の実施形態に係る湾曲部を湾曲させる構成を示す概略図である。It is the schematic which shows the structure which curves the bending part which concerns on 1st Embodiment. 第1の実施形態に係る電動モータで発生した動力を湾曲部に伝達する構成を示す概略図である。It is the schematic which shows the structure which transmits the motive power which generate | occur | produced with the electric motor which concerns on 1st Embodiment to a bending part. 第1の実施形態に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on 1st Embodiment, and a coating | coated part. 第1の実施形態に係るシャフト部が被覆部に当接した場合において、被覆部への当接部分での動作を説明する概略図である。It is the schematic explaining operation | movement in the contact part to a coating | coated part, when the shaft part which concerns on 1st Embodiment contacts the coating | coated part. 第1の実施形態に係るシャフト部の被覆部への当接部分での摩擦の経時的な変化、及び、シャフト部の被覆部への当接部分での回転速度の経時的な変化の一例を示す概略図である。An example of a change with time of friction at a contact portion of the shaft portion with the covering portion according to the first embodiment and a change with time of rotation speed at the contact portion of the shaft portion with the covering portion. FIG. 第1の変形例に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on a 1st modification, and a coating | coated part. 第2の変形例に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on a 2nd modification, and a coating | coated part. 第3の変形例に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on a 3rd modification, and a coating | coated part. 第3の変形例に係るシャフト部を、シャフト軸に垂直、かつ、羽部を通る断面で概略的に示す断面図である。It is sectional drawing which shows schematically the shaft part which concerns on a 3rd modification in the cross section perpendicular | vertical to a shaft axis and passing a wing | blade part. 第4の変形例に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on a 4th modification, and a coating | coated part. 第5の変形例に係る減速部の構成を示す概略図である。It is the schematic which shows the structure of the deceleration part which concerns on a 5th modification. 第6の変形例に係るシャフト部及び被覆部の第2の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 2nd extension direction of the shaft part which concerns on a 6th modification, and a coating | coated part. 第6の変形例に係るシャフト部及び被覆部の第1の延設方向側の部位の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the site | part by the side of the 1st extension direction of the shaft part which concerns on a 6th modification, and a coating | coated part.
 (第1の実施形態) 
 本発明の第1の実施形態について、図1乃至図6を参照して説明する。図1は、本実施形態の挿入機器(挿入装置)である内視鏡2が用いられる手術システムである内視鏡システム1を示す図である。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an endoscope system 1 that is a surgical system in which an endoscope 2 that is an insertion device (insertion apparatus) according to the present embodiment is used.
 図1に示すように、挿入機器である内視鏡2は、長手軸Cを有する。長手軸Cに平行な方向の一方が基端方向(図1の矢印C1の方向)であり、基端方向とは反対方向が先端方向(図1の矢印C2の方向)である。また、基端方向及び先端方向が、長手軸Cに平行な長手方向となる。内視鏡2は、長手軸Cに沿って延設される挿入部(内視鏡挿入部)3と、挿入部3より基端方向側に設けられる操作部(内視鏡操作部)5と、を備える。挿入部3は、長手軸Cに沿って延設され、内視鏡システム1の使用時には体腔内に挿入される。 As shown in FIG. 1, an endoscope 2 as an insertion device has a longitudinal axis C. One of the directions parallel to the longitudinal axis C is the proximal direction (the direction of the arrow C1 in FIG. 1), and the opposite direction to the proximal direction is the distal direction (the direction of the arrow C2 in FIG. 1). Further, the proximal direction and the distal direction are parallel to the longitudinal axis C. The endoscope 2 includes an insertion portion (endoscope insertion portion) 3 extending along the longitudinal axis C, and an operation portion (endoscope operation portion) 5 provided on the proximal direction side from the insertion portion 3. . The insertion portion 3 extends along the longitudinal axis C, and is inserted into a body cavity when the endoscope system 1 is used.
 操作部5には、ユニバーサルコード6の一端が接続されている。ユニバーサルコード6は、第1の延設方向(図1の矢印E1の方向)から第1の延設方向とは反対方向である第2の延設方向(図1の矢印E2の方向)へ向かって延設されている。したがって、ユニバーサルコード6の第2の延設方向側の端が、操作部5に接続されている。また、ユニバーサルコード6の第1の延設方向側の端部には、コネクタ7が設けられている。 一端 One end of a universal cord 6 is connected to the operation unit 5. The universal cord 6 extends from the first extending direction (the direction of the arrow E1 in FIG. 1) to the second extending direction (the direction of the arrow E2 in FIG. 1) that is opposite to the first extending direction. It is extended. Therefore, the end of the universal cord 6 on the second extending direction side is connected to the operation unit 5. A connector 7 is provided at the end of the universal cord 6 on the first extending direction side.
 また、内視鏡システム1には、内視鏡2の周辺ユニットとして、画像プロセッサ等の画像処理ユニット11、ランプ等の光源を備える光源ユニット12、モニタ等の表示ユニット13、及び、駆動制御ユニット15が、設けられている。駆動制御ユニット15は、例えば、CPU(Central Processing Unit)又はASIC(application specific integrated circuit)を備えるプロセッサが設けられる制御装置である。本実施形態では、ユニバーサルコード6のコネクタ7は、光源ユニット12に接続される。したがって、ユニバーサルコード6では、第1の延設方向が操作部5から離れる方向となり、第2の延設方向が操作部5へ向かう方向となる。 The endoscope system 1 includes an image processing unit 11 such as an image processor, a light source unit 12 including a light source such as a lamp, a display unit 13 such as a monitor, and a drive control unit as peripheral units of the endoscope 2. 15 is provided. The drive control unit 15 is a control device provided with a processor including, for example, a CPU (Central Processing Unit) or an ASIC (application specific integrated circuit). In the present embodiment, the connector 7 of the universal cord 6 is connected to the light source unit 12. Therefore, in the universal cord 6, the first extending direction is a direction away from the operation unit 5, and the second extending direction is a direction toward the operation unit 5.
 また、内視鏡2では、挿入部3の内部、操作部5の内部、及び、ユニバーサルコード6の内部を通って撮像ケーブル(図示しない)及びライトガイド(図示しない)が延設されている。挿入部3の先端部の内部には、CCD等の撮像素子(図示しない)が設けられている。撮像素子は、挿入部3の先端面に設けられる観察窓(図示しない)を通して、被写体を撮像する。そして、撮像ケーブルを介して、撮像信号が画像処理ユニット11に伝達され、画像処理ユニット11で画像処理が行わる。これにより、画像処理ユニット11で被写体の画像が生成され、生成された被写体の画像が、表示ユニット13に表示される。また、光源ユニット12から出射された光は、ライトガイドを通して、導光される。そして、導光された光が、挿入部3の先端面に設けられる照明窓(図示しない)から被写体に照射される。 In the endoscope 2, an imaging cable (not shown) and a light guide (not shown) are extended through the insertion portion 3, the operation portion 5, and the universal cord 6. An imaging element (not shown) such as a CCD is provided inside the distal end portion of the insertion portion 3. The imaging element images a subject through an observation window (not shown) provided on the distal end surface of the insertion portion 3. Then, the imaging signal is transmitted to the image processing unit 11 via the imaging cable, and the image processing unit 11 performs image processing. As a result, a subject image is generated by the image processing unit 11, and the generated subject image is displayed on the display unit 13. The light emitted from the light source unit 12 is guided through the light guide. Then, the guided light is irradiated to the subject from an illumination window (not shown) provided on the distal end surface of the insertion portion 3.
 挿入部3は、挿入部3の先端を形成する先端硬性部21と、先端硬性部21より基端方向側に設けられる湾曲部(bending section)22と、湾曲部22より基端方向側に設けられる蛇管部(flexible tube section)23と、を備える。湾曲部22は、動力が伝達されることにより、湾曲動作を行う。すなわち、湾曲部22は、挿入部3に設けられ、動力が伝達されることにより動作する動作部である。湾曲部22は、第1の湾曲方向(図1の矢印B1の方向及矢印B2の方向)、及び、第2の湾曲方向(図1の矢印B3の方向及び矢印B4の方向)に湾曲可能である。ここで、第1の湾曲方向は、長手軸Cに対して垂直な(交差する)互いに対して反対のある2方向であり、第2の湾曲方向は、長手軸Cに垂直(交差し)、かつ、第1の湾曲方向に垂直な2方向である。ある実施例では、第1の湾曲方向は、湾曲Up方向及び湾曲Down方向に一致し、第2の湾曲方向は、湾曲Left方向及び湾曲Right方向に一致する。別のある実施例では、第1の湾曲方向は、湾曲Left方向及び湾曲Right方向に一致し、第2の湾曲方向は、湾曲Up方向及び湾曲Down方向に一致する。 The insertion portion 3 includes a distal end rigid portion 21 that forms the distal end of the insertion portion 3, a bending section 22 provided on the proximal direction side from the distal end rigid portion 21, and a proximal end side from the bending portion 22. A flexible tube section (flexible tube section) 23. The bending portion 22 performs a bending operation when power is transmitted. In other words, the bending portion 22 is an operating portion that is provided in the insertion portion 3 and operates when power is transmitted. The bending portion 22 can be bent in a first bending direction (the direction of arrow B1 and the direction of arrow B2 in FIG. 1) and in the second bending direction (the direction of arrow B3 and the direction of arrow B4 in FIG. 1). is there. Here, the first bending direction is two directions that are perpendicular to (intersect) the longitudinal axis C and are opposite to each other, and the second bending direction is perpendicular (intersect) to the longitudinal axis C. In addition, there are two directions perpendicular to the first bending direction. In one embodiment, the first bending direction coincides with the bending Up direction and the bending Down direction, and the second bending direction coincides with the bending Left direction and the bending Right direction. In another embodiment, the first bending direction coincides with the bending Left direction and the bending Right direction, and the second bending direction coincides with the bending Up direction and the bending Down direction.
 図2は、湾曲部22を湾曲させる(動作させる)構成を示す図である。図1及び図2に示すように、操作部5には、収容ケースである操作部ケース25を備える。操作部ケース25には、湾曲操作入力部として湾曲操作ノブ26及び湾曲操作ダイヤル27が取付けられている。湾曲操作ノブ26によって、湾曲部22を第1の湾曲方向について湾曲させる湾曲操作(第1の湾曲操作)が入力される。また、湾曲操作ダイヤル27によって、湾曲部22を第2の湾曲方向について湾曲させる湾曲操作(第2の湾曲操作)が入力される。 FIG. 2 is a diagram showing a configuration in which the bending portion 22 is bent (operated). As shown in FIGS. 1 and 2, the operation unit 5 includes an operation unit case 25 that is a storage case. A bending operation knob 26 and a bending operation dial 27 are attached to the operation portion case 25 as bending operation input portions. A bending operation (first bending operation) for bending the bending portion 22 in the first bending direction is input by the bending operation knob 26. Further, a bending operation (second bending operation) for bending the bending portion 22 in the second bending direction is input by the bending operation dial 27.
 操作部ケース25の内部には、プーリ又はスプロケットである回転動作部材(第1の回転動作部材)31が設けられている。回転動作部材31は、湾曲操作ノブ26に連結され、湾曲操作ノブ26を回転させることにより、回転動作部材31が回転する。回転動作部材31には、2本の湾曲ワイヤ(第1の湾曲ワイヤ)32A,32Bの基端が接続されている。湾曲ワイヤ32A,32Bは、挿入部3の内部を通って延設され、湾曲ワイヤ32A,32Bの先端は、湾曲部22の先端部に接続されている。回転動作部材31が回転することにより、湾曲ワイヤ32A,32Bが長手軸Cに沿って移動し、湾曲ワイヤ32A,32Bの一方が基端方向へ牽引される。これにより、湾曲部22は湾曲動作を行い、第1の湾曲方向の一方(例えば湾曲Up方向又は湾曲Down方向)に湾曲する。 Rotating member (first rotating member) 31 that is a pulley or a sprocket is provided inside the operation unit case 25. The rotation operation member 31 is connected to the bending operation knob 26, and the rotation operation member 31 rotates by rotating the bending operation knob 26. The rotation operation member 31 is connected to proximal ends of two bending wires (first bending wires) 32A and 32B. The bending wires 32 </ b> A and 32 </ b> B extend through the inside of the insertion portion 3, and the distal ends of the bending wires 32 </ b> A and 32 </ b> B are connected to the distal end portion of the bending portion 22. As the rotary operation member 31 rotates, the bending wires 32A and 32B move along the longitudinal axis C, and one of the bending wires 32A and 32B is pulled in the proximal direction. Accordingly, the bending portion 22 performs a bending operation and is bent in one of the first bending directions (for example, the bending Up direction or the bending Down direction).
 操作部ケース25の内部には、ポテンションメータ等の回転量検知部33が設けられている。回転量検知部33によって、湾曲操作(第2の湾曲操作)の入力による湾曲操作ダイヤル27の回転量が検知される。回転量検知部33には、電気信号線38の一端が接続されている。電気信号線38は、ユニバーサルコード6の内部を通って延設され、電気信号線38の他端は、駆動制御ユニット15に接続されている。湾曲操作ダイヤル27の回転量を示す検知信号は、回転量検知部33から駆動制御ユニット15に伝達される。 In the operation unit case 25, a rotation amount detection unit 33 such as a potentiometer is provided. The rotation amount detection unit 33 detects the rotation amount of the bending operation dial 27 by the input of the bending operation (second bending operation). One end of an electric signal line 38 is connected to the rotation amount detection unit 33. The electric signal line 38 extends through the inside of the universal cord 6, and the other end of the electric signal line 38 is connected to the drive control unit 15. A detection signal indicating the rotation amount of the bending operation dial 27 is transmitted from the rotation amount detection unit 33 to the drive control unit 15.
 ユニバーサルコード6のコネクタ7(第1の延設方向側の端部)には、駆動源である電動モータ35が、設けられている。電動モータ35は、電気配線36を介して駆動制御ユニット15に電気的に接続されている。駆動制御ユニット15は、回転量検知部33での検知結果を示す検知信号に基づいて、電動モータ35への電力(駆動電流)の供給状態を調整している。すなわち、駆動制御ユニット15は、湾曲操作ダイヤル27での湾曲操作(第2の湾曲操作)の入力に基づいて、駆動源である電動モータ35の駆動状態を制御している。電動モータ35が駆動されることにより、動作部である湾曲部22を第2の湾曲方向について湾曲させる(動作させる)動力が発生する。 An electric motor 35 as a drive source is provided at the connector 7 (end portion on the first extending direction side) of the universal cord 6. The electric motor 35 is electrically connected to the drive control unit 15 via an electrical wiring 36. The drive control unit 15 adjusts the supply state of power (drive current) to the electric motor 35 based on the detection signal indicating the detection result in the rotation amount detection unit 33. That is, the drive control unit 15 controls the drive state of the electric motor 35 that is a drive source based on an input of a bending operation (second bending operation) with the bending operation dial 27. Driving the electric motor 35 generates power that bends (operates) the bending portion 22 that is the operation portion in the second bending direction.
 図3は、電動モータ35で発生した動力を動作部である湾曲部22に伝達する構成を示す図である。図2及び図3に示すように、電動モータ35で発生した動力は、動力伝達ユニット40を介して、湾曲部22に伝達される。動力伝達ユニット40は、ユニバーサルコード6の内部に延設されるシャフト部41を備える。シャフト部41は、中心軸としてシャフト軸Sを有する。シャフト部41は、第1の延設方向(図2及び図3の矢印E1の方向)から第2の延設方向(図2及び図3の矢印E2の方向)へ向かって延設されている。シャフト部41の第1の延設方向側の端は、電動モータ35のモータシャフト37に、カップリング42を介して、接続されている。 FIG. 3 is a diagram showing a configuration for transmitting the power generated by the electric motor 35 to the bending portion 22 which is an operation portion. As shown in FIGS. 2 and 3, the power generated by the electric motor 35 is transmitted to the bending portion 22 via the power transmission unit 40. The power transmission unit 40 includes a shaft portion 41 extending inside the universal cord 6. The shaft portion 41 has a shaft axis S as a central axis. The shaft portion 41 extends from the first extending direction (the direction of the arrow E1 in FIGS. 2 and 3) toward the second extending direction (the direction of the arrow E2 in FIGS. 2 and 3). . An end on the first extending direction side of the shaft portion 41 is connected to a motor shaft 37 of the electric motor 35 via a coupling 42.
 また、ユニバーサルコード6の内部には、筒状の被覆部43が延設されている。被覆部43は、第1の延設方向から第2の延設方向へ向かって延設されている。被覆部43には、シャフト部41が挿通され、被覆部43は、シャフト部41の外表面を覆っている。被覆部43の第1の延設方向側の端は、電動モータ35を収容するケース(図示しない)に接続されている。 In addition, a cylindrical covering portion 43 is extended inside the universal cord 6. The covering portion 43 extends from the first extending direction toward the second extending direction. The shaft portion 41 is inserted through the covering portion 43, and the covering portion 43 covers the outer surface of the shaft portion 41. The end of the covering portion 43 on the first extending direction side is connected to a case (not shown) that houses the electric motor 35.
 駆動源である電動モータ35が駆動されることにより、動力がシャフト部41に伝達される。これにより、シャフト部41が被覆部43に対してシャフト軸Sを中心として回転する。シャフト部41が回転することにより、第1の延設方向から第2の延設方向へ、湾曲部22を湾曲させる動力が伝達される。 Power is transmitted to the shaft portion 41 by driving the electric motor 35 that is a drive source. As a result, the shaft portion 41 rotates about the shaft axis S with respect to the covering portion 43. As the shaft portion 41 rotates, power for bending the bending portion 22 is transmitted from the first extending direction to the second extending direction.
 操作部ケース25の内部には、動力伝達ユニット40の一部となる減速部(トルク増幅部)45が設けられている。シャフト部41の第2の延設方向側の端は、減速部(トルク増幅部)45に接続されている。このため、減速部45は、動力伝達ユニット40において、シャフト部41と動作部である湾曲部22との間に設けられている。また、被覆部43の第2の延設方向側の端は、操作部ケース25に接続されている。 In the operation unit case 25, a speed reduction unit (torque amplification unit) 45 that is a part of the power transmission unit 40 is provided. An end of the shaft portion 41 on the second extending direction side is connected to a speed reduction portion (torque amplification portion) 45. For this reason, the deceleration part 45 is provided in the power transmission unit 40 between the shaft part 41 and the bending part 22 which is an operation | movement part. The end of the covering portion 43 on the second extending direction side is connected to the operation portion case 25.
 減速部45は、シャフト部41が接続される傘歯車46Aと、傘歯車46Aと噛合う傘歯車46Bと、を備える。また、減速部45は、傘歯車46Bに連結される平歯車(第1の回転体)47Aと、平歯車47Aと噛合う平歯車(第2の回転体)47Bと、を備える。減速部45には、電動モータ35で発生した動力が、シャフト部41を通して伝達される。減速部45では、シャフト部41から傘歯車46A,46Bを通して、平歯車47Aに動力が伝達され、平歯車47Aが回転する。 The speed reduction unit 45 includes a bevel gear 46A to which the shaft portion 41 is connected and a bevel gear 46B that meshes with the bevel gear 46A. The speed reduction unit 45 includes a spur gear (first rotating body) 47A connected to the bevel gear 46B and a spur gear (second rotating body) 47B that meshes with the spur gear 47A. Power generated by the electric motor 35 is transmitted to the speed reduction unit 45 through the shaft portion 41. In the speed reduction portion 45, power is transmitted from the shaft portion 41 to the spur gear 47A through the bevel gears 46A and 46B, and the spur gear 47A rotates.
 平歯車(第2の回転体)47Bは、平歯車(第1の回転体)47Aより歯数が多く、平歯車47Aより外径が大きい。このため、平歯車47Aから動力が伝達されることにより、平歯車(第2の回転体)47Bは、平歯車(第1の回転体)47Aより小さい回転角速度で回転する。これにより、動力による動作の動作速度が減少する。 The spur gear (second rotating body) 47B has a larger number of teeth than the spur gear (first rotating body) 47A and a larger outer diameter than the spur gear 47A. Therefore, when power is transmitted from the spur gear 47A, the spur gear (second rotating body) 47B rotates at a rotational angular velocity smaller than that of the spur gear (first rotating body) 47A. Thereby, the operation speed of the operation by power decreases.
 平歯車47Aから平歯車47Bへの動力の伝達において、動力の大きさは変化しない。このため、動作速度が減少することにより、平歯車47Aから平歯車47Bへの動力の伝達では、動力による動作において作用させる駆動トルクが増加する。すなわち、平歯車47A,47Bを含む減速部45によって、動力による動作速度が減少されるとともに、動力による動作において作用させる駆動トルクが増加する。これにより、動力伝達ユニット40において、減速部45より湾曲部22に近い部位では、減速部45より湾曲部22から遠い部位に比べて、動力による動作の動作速度が小さく、動力による動作において作用させる駆動トルクが大きくなる。例えば、平歯車(第1の回転体)47Aに対して平歯車(第2の回転体)47Bの外径(歯数)を2倍にする。この場合、動力伝達ユニット40において、減速部45より湾曲部22に近い部位では、減速部45より湾曲部22から遠い部位に対して、動力による動作の動作速度が半分になり、動力による動作において作用させる駆動トルクが2倍になる。 In the transmission of power from the spur gear 47A to the spur gear 47B, the magnitude of the power does not change. For this reason, when the operating speed decreases, in the transmission of power from the spur gear 47A to the spur gear 47B, the driving torque applied in the operation by the power increases. That is, the speed reduction portion 45 including the spur gears 47A and 47B reduces the operating speed by the power and increases the driving torque to be applied in the operation by the power. As a result, in the power transmission unit 40, the portion closer to the bending portion 22 than the speed reducing portion 45 has a lower operation speed than the portion farther from the bending portion 22 than the speed reducing portion 45, so that the operation speed is increased. Driving torque increases. For example, the outer diameter (the number of teeth) of the spur gear (second rotating body) 47B is doubled with respect to the spur gear (first rotating body) 47A. In this case, in the power transmission unit 40, in the portion closer to the bending portion 22 than the speed reduction portion 45, the operation speed of the operation by the power is halved compared to the portion farther from the bending portion 22 than the speed reduction portion 45. The driving torque to be applied is doubled.
 操作部ケース25の内部には、プーリ又はスプロケットである回転動作部材(第2の回転動作部材)51が設けられている。回転動作部材51は、減速部45の平歯車47Bに連結されている。減速部45において駆動トルクが増加した動力が伝達されることにより、回転動作部材51は、回転する。すなわち、減速部45で駆動トルクが増加された動力は、回転動作部材51を通して、動作部である湾曲部22に向かって伝達される。回転動作部材51には、チェーン53を介して、2本の湾曲ワイヤ(第2の湾曲ワイヤ)52A,52Bの基端が接続されている。湾曲ワイヤ52A,52Bは、挿入部3の内部を通って延設され、湾曲ワイヤ52A,52Bの先端は、湾曲部22の先端部に接続されている。回転動作部材51が回転することにより、湾曲ワイヤ52A,52Bが長手軸Cに沿って移動し、湾曲ワイヤ52A,52Bの一方が基端方向へ牽引される。これにより、湾曲部22は湾曲動作を行い、第2の湾曲方向の一方(例えば湾曲Left方向又は湾曲Right方向)に湾曲する。 Rotating member (second rotating member) 51, which is a pulley or a sprocket, is provided inside the operation unit case 25. The rotational operation member 51 is connected to a spur gear 47B of the speed reducing portion 45. The rotational operation member 51 rotates by transmitting the power with the increased driving torque in the speed reduction unit 45. In other words, the power whose driving torque has been increased by the speed reduction unit 45 is transmitted to the bending portion 22 which is the operating portion through the rotating operation member 51. The rotation operation member 51 is connected to the proximal ends of two bending wires (second bending wires) 52 </ b> A and 52 </ b> B via a chain 53. The bending wires 52 </ b> A and 52 </ b> B are extended through the insertion portion 3, and the distal ends of the bending wires 52 </ b> A and 52 </ b> B are connected to the distal end portion of the bending portion 22. By rotating the rotary operation member 51, the bending wires 52A and 52B move along the longitudinal axis C, and one of the bending wires 52A and 52B is pulled in the proximal direction. Accordingly, the bending portion 22 performs a bending operation and bends in one of the second bending directions (for example, the bending left direction or the bending right direction).
 図4は、シャフト部41及び被覆部43の第2の延設方向側の部位の構成を示す図である。図4に示すように、シャフト部41は、軟性シャフト部55と、軟性シャフト部55の第2の延設方向側に連続する硬性シャフト部56と、を備える。硬性シャフト部56は、軟性シャフト部55より硬く、シャフト部41の第2の延設方向側の端を形成する。シャフト部41では、硬性シャフト部56が減速部45に接続される。軟性シャフト部55は、例えばステンレスから形成され、硬性シャフト部56は、例えばステンレス等の金属から形成されている。軟性シャフト部55のシャフト軸Sに沿った寸法は、硬性シャフト部56のシャフト軸Sに沿った寸法より、遥かに大きい。このため、硬性シャフト部56は、シャフト部41の第2の延設方向側の端部にのみ設けられ、シャフト部41の大部分は、軟性シャフト部55から形成されている。 FIG. 4 is a diagram showing a configuration of a portion on the second extending direction side of the shaft portion 41 and the covering portion 43. As shown in FIG. 4, the shaft portion 41 includes a flexible shaft portion 55 and a rigid shaft portion 56 that is continuous to the second extending direction side of the flexible shaft portion 55. The rigid shaft portion 56 is harder than the flexible shaft portion 55 and forms an end of the shaft portion 41 on the second extending direction side. In the shaft portion 41, the rigid shaft portion 56 is connected to the speed reducing portion 45. The flexible shaft portion 55 is made of, for example, stainless steel, and the rigid shaft portion 56 is made of, for example, a metal such as stainless steel. The dimension along the shaft axis S of the flexible shaft portion 55 is much larger than the dimension along the shaft axis S of the rigid shaft portion 56. For this reason, the rigid shaft portion 56 is provided only at the end portion of the shaft portion 41 on the second extending direction side, and most of the shaft portion 41 is formed from the flexible shaft portion 55.
 また、被覆部43は、軟性被覆部であるチューブ部材57と、チューブ部材57の第2の延設方向側に接続される硬性被覆部である口金58と、を備える。口金58は、チューブ部材57の第2の延設方向側に連続している。また、口金58は、チューブ部材57より硬く、被覆部43の第2の延設方向側の端を形成する。被覆部43では、口金58が操作部ケース25に接続される。軟性被覆部であるチューブ部材57は、例えば樹脂等から形成されるチューブであり、硬性被覆部である口金58は、例えば金属から形成されている。 The covering portion 43 includes a tube member 57 that is a soft covering portion and a base 58 that is a hard covering portion connected to the second extending direction side of the tube member 57. The base 58 is continuous to the second extending direction side of the tube member 57. The base 58 is harder than the tube member 57 and forms an end of the covering portion 43 on the second extending direction side. In the covering portion 43, the base 58 is connected to the operation portion case 25. The tube member 57 that is a soft covering portion is a tube formed from, for example, a resin, and the base 58 that is a hard covering portion is formed from, for example, a metal.
 軟性シャフト部55の外表面の大部分は、チューブ部材57によって覆われている。また、硬性シャフト部56の外表面の大部分は、口金58によって覆われている。このため、チューブ部材57のシャフト軸Sに沿った寸法は、口金58のシャフト軸Sに沿った寸法より、遥かに大きい。このため、口金58は、被覆部43の第2の延設方向側の端部にのみ設けられ、被覆部43の大部分は、チューブ部材57から形成されている。 Most of the outer surface of the soft shaft portion 55 is covered with a tube member 57. Further, most of the outer surface of the rigid shaft portion 56 is covered with a base 58. For this reason, the dimension of the tube member 57 along the shaft axis S is much larger than the dimension of the base 58 along the shaft axis S. Therefore, the base 58 is provided only at the end of the covering portion 43 on the second extending direction side, and most of the covering portion 43 is formed from the tube member 57.
 口金58は、外径がチューブ部材57と略同一となる小径部61と、小径部61より外径が大きい大径部62と、を備える。大径部62は、小径部61より第2の延設方向側に設けられ、被覆部43の第2の延設方向側の端は、大径部62により形成されている。また、小径部61と大径部62との間には、段差部63が形成されている。また、口金58の大径部62には、第2の延設方向側から筒状のナット65が連結されている。また、硬性シャフト部56には、シャフト部41の外表面が外側に突出する突出部66が設けられている。 The base 58 includes a small diameter portion 61 whose outer diameter is substantially the same as that of the tube member 57, and a large diameter portion 62 whose outer diameter is larger than that of the small diameter portion 61. The large diameter portion 62 is provided on the second extending direction side from the small diameter portion 61, and the end of the covering portion 43 on the second extending direction side is formed by the large diameter portion 62. Further, a stepped portion 63 is formed between the small diameter portion 61 and the large diameter portion 62. Further, a cylindrical nut 65 is connected to the large diameter portion 62 of the base 58 from the second extending direction side. Further, the rigid shaft portion 56 is provided with a protruding portion 66 from which the outer surface of the shaft portion 41 protrudes outward.
 硬性シャフト部56の外表面(シャフト部41の外表面)と口金58の大径部62の内表面(被覆部43の内表面)との間には、軸受け67が設けられている。シャフト軸Sに平行な方向(すなわち、第1の延設方向及び第2の延設方向)について、軸受け67は、シャフト部41の突出部66とナット65との間に位置している。突出部66によって、軸受け67のシャフト部41及び被覆部43に対する第1の延設方向への移動が規制され、ナット65によって、軸受け67のシャフト部41及び被覆部43に対する第2の延設方向への移動が規制される。 A bearing 67 is provided between the outer surface of the rigid shaft portion 56 (the outer surface of the shaft portion 41) and the inner surface of the large-diameter portion 62 of the base 58 (the inner surface of the covering portion 43). The bearing 67 is located between the protruding portion 66 of the shaft portion 41 and the nut 65 in the direction parallel to the shaft axis S (that is, the first extending direction and the second extending direction). The protrusion 66 restricts the movement of the bearing 67 in the first extending direction with respect to the shaft portion 41 and the covering portion 43, and the nut 65 causes the second extending direction of the bearing 67 to the shaft portion 41 and the covering portion 43. Movement to is regulated.
 硬性シャフト部56には、シャフト部41の外表面が内側へ凹む凹部71が設けられている。凹部71は、突出部66より第1の延設方向側に位置している。凹部71に、抵抗部であるOリング72が配置されている。Oリング72は、硬性シャフト部56の外表面(シャフト部41の外表面)と口金58の小径部61の内表面(被覆部43の内表面)との間に圧縮した状態で配置され、硬性シャフト部56の外表面及び口金58の小径部61の内表面に当接している。シャフト部41が回転している際には、軟性シャフト部55(シャフト部41)に捻じれが発生することがある。この場合、捻じれを復元する復元力がシャフト部41に作用する。本実施形態では、抵抗部であるOリング72によって、復元力とは反対方向への抵抗がシャフト部41に作用させる。すなわち、Oリング72によって、回転するシャフト部41に一定の抵抗が付与される。なお、Oリング72によってシャフト部41に抵抗を作用させる詳細については、後述する。 The rigid shaft portion 56 is provided with a recess 71 in which the outer surface of the shaft portion 41 is recessed inward. The recess 71 is located on the first extending direction side from the protrusion 66. An O-ring 72 that is a resistance portion is disposed in the recess 71. The O-ring 72 is disposed in a compressed state between the outer surface of the rigid shaft portion 56 (the outer surface of the shaft portion 41) and the inner surface of the small-diameter portion 61 of the base 58 (the inner surface of the covering portion 43). The outer surface of the shaft portion 56 and the inner surface of the small diameter portion 61 of the base 58 are in contact. When the shaft portion 41 is rotating, the flexible shaft portion 55 (shaft portion 41) may be twisted. In this case, a restoring force that restores torsion acts on the shaft portion 41. In the present embodiment, the resistance in the direction opposite to the restoring force is applied to the shaft portion 41 by the O-ring 72 that is the resistance portion. In other words, the O-ring 72 gives a certain resistance to the rotating shaft portion 41. The details of applying resistance to the shaft portion 41 by the O-ring 72 will be described later.
 次に、本実施形態の挿入機器である内視鏡2及び内視鏡システム1の作用及び効果について、説明する。内視鏡システム1を使用する際には、挿入部3を管腔へ挿入する。湾曲部22を第1の湾曲方向の一方に湾曲させる場合には、湾曲操作ノブ26を回転(回動)することにより、湾曲部22を湾曲させる湾曲操作(第1の湾曲操作)が入力される。湾曲操作が入力されると、回転動作部材(第1の回転動作部材)31が回転し、湾曲ワイヤ(第1の湾曲ワイヤ)32A,32Bが長手軸Cに沿って移動する。これにより、第1の湾曲方向の一方に湾曲部22が湾曲する。 Next, operations and effects of the endoscope 2 and the endoscope system 1 which are insertion devices of the present embodiment will be described. When the endoscope system 1 is used, the insertion unit 3 is inserted into the lumen. When the bending portion 22 is bent in one of the first bending directions, a bending operation (first bending operation) for bending the bending portion 22 is input by rotating (turning) the bending operation knob 26. The When the bending operation is input, the rotation operation member (first rotation operation member) 31 rotates, and the bending wires (first bending wires) 32A and 32B move along the longitudinal axis C. As a result, the bending portion 22 is bent in one of the first bending directions.
 また、湾曲部22を第2の湾曲方向の一方に湾曲させる場合には、湾曲操作ダイヤル27によって、湾曲操作(第2の湾曲操作)が入力される。これにより、回転量検知部33からの検知信号に基づいて、駆動制御ユニット15から電動モータ35に電力が供給される。これにより、電動モータ35が駆動され、シャフト部41に湾曲部22を湾曲させる動力が伝達され、シャフト軸Sを中心としてシャフト部41が回転する。これにより、シャフト部41において、動力が第1の延設方向から第2の延設方向へ伝達される。そして、前述のように減速部(トルク増幅部)45において動力による動作において作用させる駆動トルクが増加し、駆動トルクが増加した動力が回転動作部材(第2の回転動作部材)51に伝達される。伝達された動力によって回転動作部材51が回転し、湾曲ワイヤ(第2の湾曲ワイヤ)52A,52Bが長手軸Cに沿って移動する。これにより、第2の湾曲方向の一方に湾曲部22が湾曲する。 Further, when the bending portion 22 is bent in one of the second bending directions, a bending operation (second bending operation) is input by the bending operation dial 27. Accordingly, electric power is supplied from the drive control unit 15 to the electric motor 35 based on the detection signal from the rotation amount detection unit 33. As a result, the electric motor 35 is driven, the power for bending the bending portion 22 is transmitted to the shaft portion 41, and the shaft portion 41 rotates about the shaft axis S. Thereby, in the shaft part 41, power is transmitted from the first extending direction to the second extending direction. Then, as described above, the driving torque that is applied in the operation by the power in the speed reduction unit (torque amplifying unit) 45 increases, and the power with the increased driving torque is transmitted to the rotation operation member (second rotation operation member) 51. . The rotating operation member 51 rotates by the transmitted power, and the bending wires (second bending wires) 52A and 52B move along the longitudinal axis C. As a result, the bending portion 22 is bent in one of the second bending directions.
 湾曲部22が電動モータ35で発生した動力によって湾曲する(動作する)際には、湾曲部22への負荷は大きくなる。本実施形態では、平歯車47A,47Bを含む減速部45によって、動力による動作において作用させる駆動トルクが増加する。これにより、動力伝達ユニット40において、減速部45より湾曲部22に近い部位では、減速部45より湾曲部22から遠い部位に比べて、動力による動作において作用させる駆動トルクが大きくなる。したがって、動力による動作(湾曲)において湾曲部22に作用させる駆動トルクが大きくなり、適切な大きさの駆動トルクを湾曲部22に作用させることができる。 When the bending portion 22 is bent (operated) by the power generated by the electric motor 35, the load on the bending portion 22 is increased. In the present embodiment, the driving torque that is applied in the operation by the power is increased by the speed reducing unit 45 including the spur gears 47A and 47B. As a result, in the power transmission unit 40, the drive torque that is applied in the operation by the power is larger in the portion closer to the bending portion 22 than the speed reduction portion 45 compared to the portion farther from the bending portion 22 than the speed reduction portion 45. Therefore, the driving torque that acts on the bending portion 22 in the operation (curving) by power increases, and the driving torque having an appropriate magnitude can be applied to the bending portion 22.
 また、シャフト部41が回転している状態では、シャフト部41が被覆部43に当接することがある。図5は、シャフト部41が被覆部43に当接した場合において、被覆部43への当接部分での動作を説明する図である。前述のように、湾曲部22を湾曲させる際に湾曲部22に作用させる駆動トルクは、大きくする必要がある。このため、減速部45において駆動トルクが増幅される前においても、動力による動作において作用させる駆動トルクはある程度大きくなる。このため、シャフト部41に作用する駆動トルク(回転トルク)も、ある程度の大きさになる。 Further, when the shaft portion 41 is rotating, the shaft portion 41 may come into contact with the covering portion 43. FIG. 5 is a diagram for explaining the operation at the contact portion with the covering portion 43 when the shaft portion 41 is in contact with the covering portion 43. As described above, it is necessary to increase the driving torque applied to the bending portion 22 when the bending portion 22 is bent. For this reason, even before the driving torque is amplified in the speed reduction unit 45, the driving torque applied in the operation by the power is increased to some extent. For this reason, the driving torque (rotational torque) acting on the shaft portion 41 also has a certain level.
 シャフト部41の回転トルクが大きくなることにより、シャフト部41が回転している状態において、シャフト部41の外表面と被覆部43の内表面との間の摩擦が大きくなる。このため、図5に示すように、シャフト部41が回転する状態においてシャフト部41の外表面が被覆部43の内表面に当接した場合、シャフト部41の被覆部43に当接した部分において、静止摩擦(摩擦)μFが作用する。これにより、シャフト部41の被覆部43への当接部分では、被覆部43への当接部分より第1の延設方向側(電動モータ35側)の部位に比べて回転速度が小さくなる、又は、回転速度がゼロになる。したがって、シャフト部41が回転する状態において、シャフト部41に捻じれが発生する。 As the rotational torque of the shaft portion 41 increases, the friction between the outer surface of the shaft portion 41 and the inner surface of the covering portion 43 increases when the shaft portion 41 is rotating. Therefore, as shown in FIG. 5, when the outer surface of the shaft portion 41 comes into contact with the inner surface of the covering portion 43 in a state where the shaft portion 41 rotates, in the portion that comes into contact with the covering portion 43 of the shaft portion 41. Static friction (friction) μF acts. Thereby, in the contact part to the coating | coated part 43 of the shaft part 41, rotation speed becomes small compared with the site | part of the 1st extension direction side (electric motor 35 side) rather than the contact part to the coating | coated part 43. Or, the rotation speed becomes zero. Therefore, in the state where the shaft portion 41 rotates, the shaft portion 41 is twisted.
 シャフト部41に捻じれが発生することにより、捻じれを復元する復元力Pがシャフト部41に作用する。復元力Pの作用方向は、シャフト部41の回転方向と一致する。シャフト部41での捻じれが大きくなると、復元力Pは大きくなる。そして、復元力Pがある閾値以上になると、被覆部43への当接部分において、シャフト部41と被覆部43との間の摩擦が静止摩擦μFから動摩擦μ´Fに切替わり、摩擦(μF,μ´F)が小さくなる。図6は、シャフト部41の被覆部43への当接部分での摩擦(μF,μ´F)の経時的な変化、及び、シャフト部41の被覆部43への当接部分での回転速度(V)の経時的な変化の一例を示している。図6に示す一例では、時間t1及び時間t2において、摩擦が静止摩擦μFから動摩擦μ´Fに切替わる。なお、図6では、摩擦の経時的な変化を実線で、回転速度の経時的な変化を破線で示している。また、Oリング(抵抗部)72が設けられていない場合の回転速度の経時的な変化を、本実施形態の比較例として一点鎖線で示している。 When the shaft portion 41 is twisted, a restoring force P for restoring the twist acts on the shaft portion 41. The acting direction of the restoring force P coincides with the rotation direction of the shaft portion 41. When the twist at the shaft portion 41 increases, the restoring force P increases. When the restoring force P exceeds a certain threshold value, the friction between the shaft portion 41 and the covering portion 43 is switched from the static friction μF to the dynamic friction μ′F at the contact portion with the covering portion 43, and the friction (μF , Μ′F) becomes smaller. FIG. 6 shows changes over time in the friction (μF, μ′F) at the contact portion of the shaft portion 41 with the covering portion 43 and the rotational speed at the contact portion of the shaft portion 41 with the covering portion 43. An example of the change with time of (V) is shown. In the example shown in FIG. 6, the friction is switched from static friction μF to dynamic friction μ′F at time t1 and time t2. In FIG. 6, the change with time of friction is indicated by a solid line, and the change with time of rotation is indicated by a broken line. In addition, a change with time in the rotation speed when the O-ring (resistor portion) 72 is not provided is indicated by a one-dot chain line as a comparative example of the present embodiment.
 図6に示すように、シャフト部41と被覆部43との間の摩擦が静止摩擦μFから動摩擦μ´Fに切替わり、摩擦が小さくなることにより、シャフト部41の被覆部43への当接部分において、回転速度Vが大きくなる。ここで、本実施形態では、シャフト部41の外表面と被覆部43の内表面との間に、抵抗部としてOリング72が設けられている。このため、図5に示すように、Oリング72によって回転するシャフト部41に一定の抵抗を付与することにより、シャフト部41に発生する捻じれを復元する復元力Pとは反対方向への抵抗Rがシャフト部へ作用する。したがって、図6に示すように、本実施形態では、Oリング72が設けられていない(すなわち、抵抗Rがシャフト部41に作用しない)比較例に比べて、静止摩擦μFから動摩擦μ´Fへの切替わりにおいて、シャフト部41の被覆部43への当接部分での回転速度Vの増加量(変化量)は、小さくなる。すなわち、Oリング72によって抵抗Rが作用することにより、シャフト部41の被覆部43への当接部分において、回転速度の大きい変化量での(急激な)増加が抑制される。なお、抵抗Rは、復元力Pによるシャフト部41の回転速度の大きい変化量での増加を抑制する程度の大きさであり、シャフト部41の回転を停止させる程度に大きくならない。 As shown in FIG. 6, the friction between the shaft portion 41 and the covering portion 43 is switched from the static friction μF to the dynamic friction μ′F, and the friction is reduced, so that the shaft portion 41 contacts the covering portion 43. In the portion, the rotation speed V increases. Here, in the present embodiment, an O-ring 72 is provided as a resistance portion between the outer surface of the shaft portion 41 and the inner surface of the covering portion 43. For this reason, as shown in FIG. 5, by applying a certain resistance to the shaft portion 41 rotated by the O-ring 72, the resistance in the direction opposite to the restoring force P that restores the twist generated in the shaft portion 41. R acts on the shaft portion. Therefore, as shown in FIG. 6, in this embodiment, the static friction μF is changed to the dynamic friction μ′F as compared with the comparative example in which the O-ring 72 is not provided (that is, the resistance R does not act on the shaft portion 41). In the switching, the increase amount (change amount) of the rotation speed V at the contact portion of the shaft portion 41 with the covering portion 43 becomes small. In other words, when the resistance R acts by the O-ring 72, the (abrupt) increase in the amount of change in the rotation speed is suppressed at the contact portion of the shaft portion 41 with the covering portion 43. The resistance R is large enough to suppress an increase in the amount of change in the rotational speed of the shaft portion 41 due to the restoring force P, and does not increase to such an extent that the rotation of the shaft portion 41 is stopped.
 前述のように、本実施形態では、静止摩擦μFから動摩擦μ´Fへの切替わりにおいて、シャフト部41の被覆部43への当接部分での回転速度Vの増加量(変化量)が小さくなる。このため、シャフト部41が回転する状態において、シャフト部41での回転速度の経時的な変化が、小さく保たれる。湾曲部22へ動力を伝達する動力伝達ユニット40の一部であるシャフト部41において回転速度の経時的な変化が小さくなるため、湾曲部(動作部)22の動力による動作速度(湾曲速度)の経時的な変化も、小さく保たれる。これにより、湾曲部22の湾曲動作においてムラが発生せず、湾曲部22での湾曲動作の安定性を確保することができる。 As described above, in this embodiment, when the static friction μF is switched to the dynamic friction μ′F, the increase amount (change amount) of the rotational speed V at the contact portion of the shaft portion 41 with the covering portion 43 is small. Become. For this reason, in the state which the shaft part 41 rotates, the temporal change of the rotational speed in the shaft part 41 is kept small. The change in rotational speed with time in the shaft portion 41 that is a part of the power transmission unit 40 that transmits power to the bending portion 22 is small, so that the operation speed (curving speed) by the power of the bending portion (operation portion) 22 is reduced. Changes over time are also kept small. Thereby, unevenness does not occur in the bending operation of the bending portion 22, and the stability of the bending operation in the bending portion 22 can be ensured.
 また、Oリング72は、硬い硬性シャフト部56の外表面でシャフト部41に当接し、硬い口金58の内表面で被覆部43に当接している。Oリング72がシャフト部41の硬い部分及び被覆部43の硬い部分に当接しているため、シャフト部41の捻じれを復元する復元力Pに対する抵抗Rを、シャフト部41に適切に作用させることができる。 The O-ring 72 is in contact with the shaft portion 41 at the outer surface of the hard rigid shaft portion 56 and is in contact with the covering portion 43 at the inner surface of the hard base 58. Since the O-ring 72 is in contact with the hard portion of the shaft portion 41 and the hard portion of the covering portion 43, the resistance R against the restoring force P that restores the twist of the shaft portion 41 is caused to act appropriately on the shaft portion 41. Can do.
 また、Oリング72が当接する硬性シャフト部56は、シャフト部41の第2の延設方向側の端を形成し、Oリング72が当接する口金58は、被覆部43の第2の延設方向側の端を形成している。すなわち、抵抗部であるOリング72は、シャフト部41の第2の延設方向側の端部(湾曲部22に近い側の端部)でシャフト部41に当接している。このため、シャフト部41において、いずれの位置に捻じれが発生した場合でも、捻じれを復元する復元力Pに対する抵抗Rを、シャフト部41に適切に作用させることができる。すなわち、捻じれの発生する位置に関係なく、復元力Pに対する抵抗Rをシャフト部41に適切に作用させることができる。 The rigid shaft portion 56 with which the O-ring 72 abuts forms the end of the shaft portion 41 on the second extending direction side, and the base 58 with which the O-ring 72 abuts is the second extending portion of the covering portion 43. An end on the direction side is formed. That is, the O-ring 72 that is a resistance portion is in contact with the shaft portion 41 at the end portion on the second extending direction side of the shaft portion 41 (end portion on the side close to the bending portion 22). For this reason, in the shaft portion 41, the resistance R against the restoring force P that restores the twist can be appropriately applied to the shaft portion 41, regardless of where the twist occurs. That is, the resistance R against the restoring force P can be appropriately applied to the shaft portion 41 regardless of the position where twisting occurs.
 また、抵抗部であるOリング72は、減速部(トルク増幅部)45より電動モータ35側(駆動源側)に設けられている。このため、動力伝達ユニット40では、増幅される前の駆動トルクが作用する部位にのみ、Oリング72による抵抗Rが作用する。このため、抵抗Rを大きくする必要はなく、Oリング72の小型化を実現することができる。また、抵抗Rが大きくならないため、湾曲部22への動力の伝達において、駆動トルクの損失を小さくすることができる。 Further, the O-ring 72 which is a resistance portion is provided on the electric motor 35 side (drive source side) from the speed reduction portion (torque amplification portion) 45. For this reason, in the power transmission unit 40, the resistance R by the O-ring 72 acts only on the site where the drive torque before being amplified acts. For this reason, it is not necessary to increase the resistance R, and the O-ring 72 can be downsized. Further, since the resistance R does not increase, loss of driving torque can be reduced in the transmission of power to the bending portion 22.
 (変形例) 
 なお、第1の実施形態では、Oリング72は、硬性シャフト部56の外表面及び口金8(硬性被覆部)58の内表面に当接しているが、これに限るものではない。例えば、ある変形例では、Oリング72は、硬性シャフト部56の外表面に当接し、硬性シャフト部56の外表面とチューブ部材(軟性被覆部)57の内表面との間に位置している。このため、Oリング72は、口金58には、当接しない。また、別のある変形例では、Oリング72は、口金58の内表面に当接し、軟性シャフト部55の外表面と口金58の内表面との間に位置している。このため、Oリング72は、硬性シャフト部56には、当接しない。すなわち、Oリング72は、硬性シャフト部56の外表面及び口金(硬性被覆部)58の内表面の少なくとも一方に当接していればよい。
(Modification)
In the first embodiment, the O-ring 72 is in contact with the outer surface of the rigid shaft portion 56 and the inner surface of the base 8 (hard covering portion) 58, but is not limited thereto. For example, in a modification, the O-ring 72 is in contact with the outer surface of the rigid shaft portion 56 and is positioned between the outer surface of the rigid shaft portion 56 and the inner surface of the tube member (soft covering portion) 57. . For this reason, the O-ring 72 does not contact the base 58. In another modification, the O-ring 72 is in contact with the inner surface of the base 58 and is positioned between the outer surface of the flexible shaft portion 55 and the inner surface of the base 58. For this reason, the O-ring 72 does not contact the rigid shaft portion 56. That is, the O-ring 72 may be in contact with at least one of the outer surface of the hard shaft portion 56 and the inner surface of the base (hard coating portion) 58.
 また、抵抗部としてOリング72以外の部材等が用いられてもよい。例えば、第1の変形例として図7に示すように、摩擦板73が抵抗部として設けられてもよい。摩擦板73は、突出部66で、シャフト部41の硬性シャフト部56の外表面に当接している。また、摩擦板73は、段差部63で、被覆部43の口金(硬性被覆部)58の内表面に当接している。 Further, a member other than the O-ring 72 may be used as the resistance portion. For example, as shown in FIG. 7 as a first modification, a friction plate 73 may be provided as a resistance portion. The friction plate 73 is a protrusion 66 and is in contact with the outer surface of the rigid shaft portion 56 of the shaft portion 41. Further, the friction plate 73 is in contact with the inner surface of the base (hard covering portion) 58 of the covering portion 43 at the step portion 63.
 また、第2の変形例として図8に示すように、抵抗流体75が抵抗部として設けられてもよい。抵抗流体75は、硬性シャフト部56と口金58との間に充填されている。また、シャフト軸Sに平行な方向について、封止リング76Aと封止リング76Bとの間に、抵抗流体75が充填されている。封止リング76Aは、硬性シャフト部56と口金58の小径部61との間を液密に保っている。このため、封止リング76Aによって、抵抗流体75の第1の延設方向側への流出が防止される。また、封止リング76Bは、硬性シャフト部56の突出部66と口金58の大径部62との間を液密に保っている。このため、封止リング76Bによって、抵抗流体75の第2の延設方向側への流出が防止される。 Further, as shown in FIG. 8 as a second modified example, a resistance fluid 75 may be provided as a resistance portion. The resistance fluid 75 is filled between the rigid shaft portion 56 and the base 58. Further, a resistance fluid 75 is filled between the sealing ring 76A and the sealing ring 76B in the direction parallel to the shaft axis S. The sealing ring 76 </ b> A keeps the space between the rigid shaft portion 56 and the small diameter portion 61 of the base 58 liquid-tight. For this reason, the sealing ring 76A prevents the resistance fluid 75 from flowing out toward the first extending direction. Further, the sealing ring 76 </ b> B keeps a liquid-tight space between the protruding portion 66 of the rigid shaft portion 56 and the large diameter portion 62 of the base 58. For this reason, the sealing ring 76B prevents the resistance fluid 75 from flowing out toward the second extending direction.
 抵抗流体75からの流体抵抗によって、シャフト部41に捻じれが発生した状態において、捻じれを復元する復元力Pに対する抵抗Rが作用する。なお、抵抗流体75は、例えば、アンチウェアグリスであり、粘性及び流体抵抗が高い。したがって、前記特許文献1において潤滑剤として用いられるオイル等は、粘性及び流体抵抗が低いため、本実施形態の抵抗流体75として用いられない。なお、封止リング76A,76Bによる摩擦は、小さく、復元力Pに対する抵抗Rへの封止リング76A,76Bによる摩擦の影響は、小さい。 In the state where the shaft portion 41 is twisted by the fluid resistance from the resistance fluid 75, the resistance R against the restoring force P that restores the twist acts. The resistance fluid 75 is, for example, antiwear grease, and has high viscosity and fluid resistance. Therefore, the oil or the like used as a lubricant in Patent Document 1 is not used as the resistance fluid 75 of the present embodiment because of low viscosity and fluid resistance. In addition, the friction by the sealing rings 76A and 76B is small, and the influence of the friction by the sealing rings 76A and 76B on the resistance R with respect to the restoring force P is small.
 また、第3の変形例として図9及び図10に示すように、抵抗流体75が設けられるとともに、シャフト軸S回り方向について複数の羽部77が硬性シャフト部56に並設されてもよい。羽部77では、シャフト部41の外表面が外側に向かって突出している。羽部77は、硬性シャフト部56の突出部66より第1の延設方向側に位置し、シャフト軸Sに平行な方向について、封止リング76Aと封止リング76Bとの間に位置している。したがって、羽部77は、抵抗流体75が充填された領域に位置し、それぞれの羽部77は、抵抗流体75から流体抵抗を受ける。抵抗流体75から流体抵抗を受ける羽部77を設けることにより、シャフト部41に捻じれが発生した状態において、捻じれを復元する復元力Pに対する抵抗Rが大きくなる。なお、図10は、シャフト部41を、シャフト軸Sに垂直、かつ、羽部77を通る断面で示している。 As a third modification, as shown in FIGS. 9 and 10, a resistance fluid 75 is provided, and a plurality of wings 77 may be arranged in parallel with the rigid shaft portion 56 in the direction around the shaft axis S. In the wing portion 77, the outer surface of the shaft portion 41 protrudes outward. The wing portion 77 is located on the first extending direction side from the protruding portion 66 of the rigid shaft portion 56, and is located between the sealing ring 76A and the sealing ring 76B in the direction parallel to the shaft axis S. Yes. Therefore, the wings 77 are located in the region filled with the resistance fluid 75, and each wing 77 receives fluid resistance from the resistance fluid 75. By providing the wing portion 77 that receives the fluid resistance from the resistance fluid 75, the resistance R to the restoring force P that restores the twist is increased in the state where the shaft portion 41 is twisted. FIG. 10 shows the shaft portion 41 in a cross section perpendicular to the shaft axis S and passing through the wing portion 77.
 また、第4の変形例として図11に示すように、ボール81が抵抗部として設けられてもよい。本変形例では、口金58の小径部61に、内表面が外側に向かって凹む溝部82が形成されている。溝部82には、バネ83が設けられている。バネ83の一端は、溝部82の底部で、口金58に接続されている。バネ83の他端は、ボール81に接続されている。このため、ボール81は、突出部66より第1の延設方向側に位置している。 Further, as shown in FIG. 11 as a fourth modification, a ball 81 may be provided as a resistance portion. In this modification, a groove portion 82 whose inner surface is recessed outward is formed in the small diameter portion 61 of the base 58. A spring 83 is provided in the groove portion 82. One end of the spring 83 is connected to the base 58 at the bottom of the groove 82. The other end of the spring 83 is connected to the ball 81. For this reason, the ball 81 is located on the first extending direction side from the protrusion 66.
 ボール81は、バネ83によって硬性シャフト部56に向かって付勢され、硬性シャフト部56の外表面は、ボール81によって押圧されている。すなわち、ボール81及びバネ83によって、ボールプランジャーが形成されている。前述のような構成にすることにより、シャフト部41が回転する状態において、ボール81によって、シャフト部41に摩擦が発生する。これにより、シャフト部41に捻じれが発生した状態において、捻じれを復元する復元力Pに対する抵抗Rが作用する。 The ball 81 is urged toward the rigid shaft portion 56 by the spring 83, and the outer surface of the rigid shaft portion 56 is pressed by the ball 81. That is, a ball plunger is formed by the ball 81 and the spring 83. With the configuration as described above, friction is generated in the shaft portion 41 by the ball 81 in a state where the shaft portion 41 rotates. As a result, in a state where the shaft portion 41 is twisted, a resistance R against the restoring force P that restores the twist acts.
 また、第1の実施形態では、平歯車47A,47Bによって、動力による動作の動作速度が減少し、動力による動作において作用させる駆動トルクが増加するが、駆動トルクを増幅させる構成はこれに限るものではない。例えば、第5の変形例として図12に示すように、減速部45に、柱状体85A,85Bが平歯車47A,47Bの代わりに設けられてもよい。柱状体(第1の回転体)85Aと柱状体(第2の回転体)85Bとの間は、ベルト86を介して連結されている。電動モータ35で発生した動力は、シャフト部41を通して柱状体85Aに伝達され、柱状体85Aは回転する。そして、ベルト86を通して、柱状体85Aから柱状体85Bに動力が伝達され、柱状体85Bが回転する。 In the first embodiment, the spur gears 47A and 47B reduce the operation speed of the operation by the power and increase the drive torque to be applied in the operation by the power. However, the configuration for amplifying the drive torque is limited to this. is not. For example, as shown in FIG. 12 as a fifth modification, columnar bodies 85A and 85B may be provided in the speed reduction portion 45 instead of the spur gears 47A and 47B. The columnar body (first rotating body) 85 </ b> A and the columnar body (second rotating body) 85 </ b> B are connected via a belt 86. The power generated by the electric motor 35 is transmitted to the columnar body 85A through the shaft portion 41, and the columnar body 85A rotates. Then, power is transmitted from the columnar body 85A to the columnar body 85B through the belt 86, and the columnar body 85B rotates.
 柱状体(第2の回転体)85Bは、柱状体(第1の回転体)85Aより外径が大きい。このため、柱状体85Aから動力が伝達されることにより、柱状体85Bは、柱状体85Aより小さい回転角速度で回転する。これにより、動力による動作の動作速度が減少する。そして、第1の実施形態と同様に、柱状体85Aから柱状体85Bへの動力の伝達では、動力による動作において作用させる駆動トルクが増加する。 Columnar body (second rotating body) 85B has a larger outer diameter than columnar body (first rotating body) 85A. For this reason, when power is transmitted from the columnar body 85A, the columnar body 85B rotates at a smaller rotational angular velocity than the columnar body 85A. Thereby, the operation speed of the operation by power decreases. As in the first embodiment, in the transmission of power from the columnar body 85A to the columnar body 85B, the driving torque applied in the operation by the power increases.
 また、第6の変形例として図13及び図14に示すように、シャフト部41の外表面と被覆部43の内表面との間に、シリコンオイル等の潤滑剤87が充填されてもよい。本変形例では、軟性シャフト部55の第1の延設方向側に、硬性シャフト部(第1の硬性シャフト部)91が連続し、硬性シャフト部91によって、シャフト部41の第1の延設方向側の端が形成されている。本変形例でも第1の実施形態と同様に、硬性シャフト部(第2の硬性シャフト部)56が軟性シャフト部55の第2の延設方向側に連続し、硬性シャフト部56によって、シャフト部41の第2の延設方向側の端が形成されている。硬性シャフト部91は、軟性シャフト部55より硬く、硬性シャフト部56と略同一の硬さに形成されている。また、硬性シャフト部91が、電動モータ35のモータシャフト37に、カップリング42を介して、接続されている。 Further, as shown in FIGS. 13 and 14 as a sixth modification, a lubricant 87 such as silicon oil may be filled between the outer surface of the shaft portion 41 and the inner surface of the covering portion 43. In the present modification, a rigid shaft portion (first rigid shaft portion) 91 is continuous with the first extending direction side of the flexible shaft portion 55, and the first extending portion of the shaft portion 41 is formed by the rigid shaft portion 91. An end on the direction side is formed. Also in this modified example, similarly to the first embodiment, the rigid shaft portion (second rigid shaft portion) 56 is continuous with the second extending direction side of the flexible shaft portion 55, and the shaft portion is formed by the rigid shaft portion 56. An end of 41 in the second extending direction is formed. The rigid shaft portion 91 is harder than the flexible shaft portion 55 and has substantially the same hardness as the rigid shaft portion 56. A rigid shaft portion 91 is connected to the motor shaft 37 of the electric motor 35 via the coupling 42.
 また、本変形例では、被覆部43においてチューブ部材(軟性被覆部)57の第1の延設方向側に、口金(第1の硬性被覆部)92が接続され、口金92によって、被覆部43の第1の延設方向側の端が形成されている。本変形例でも第1の実施形態と同様に、口金(第2の硬性被覆部)58がチューブ部材57の第2の延設方向側に接続され、口金58によって、被覆部43の第2の延設方向側の端が形成されている。口金92は、チューブ部材57より硬く、口金58と略同一の硬さに形成されている。また、口金92が、電動モータ35を収容するケース(図示しない)に接続されている。 Further, in the present modification, a base (first hard coating portion) 92 is connected to the first extending direction side of the tube member (soft coating portion) 57 in the covering portion 43, and the covering portion 43 is connected by the base 92. An end on the first extending direction side is formed. Also in this modified example, the base (second hard covering portion) 58 is connected to the second extending direction side of the tube member 57, and the second portion of the covering portion 43 is connected by the base 58 as in the first embodiment. An end on the extending direction side is formed. The base 92 is harder than the tube member 57 and has substantially the same hardness as the base 58. Further, the base 92 is connected to a case (not shown) that houses the electric motor 35.
 本変形例では、硬性シャフト部(第1の硬性シャフト部)91と口金(第1の硬性被覆部)92との間に、封止リング(第1のシール部)93が配置されている。封止リング93によって、硬性シャフト部91の外表面と口金92の内表面との間が液密に保たれる。潤滑剤87は、封止リング93より第2の延設方向側に充填されている。このため、封止リング93によって、潤滑剤87の第1の延設方向側への流出が防止される。 In this modification, a sealing ring (first seal portion) 93 is disposed between a hard shaft portion (first hard shaft portion) 91 and a base (first hard coating portion) 92. The sealing ring 93 keeps a liquid-tight space between the outer surface of the rigid shaft portion 91 and the inner surface of the base 92. The lubricant 87 is filled in the second extending direction from the sealing ring 93. For this reason, the seal ring 93 prevents the lubricant 87 from flowing out toward the first extending direction.
 また、本変形例でも第1の実施形態と同様に、硬性シャフト部56と口金58との間に抵抗部としてOリング72が設けられている。そして、シャフト部41に捻じれが発生した状態において、Oリング72によって、捻じれを復元する復元力Pに対する抵抗Rが作用する。 Also in this modification, an O-ring 72 is provided as a resistance portion between the rigid shaft portion 56 and the base 58 as in the first embodiment. Then, in a state in which the shaft portion 41 is twisted, a resistance R against the restoring force P that restores the twist acts by the O-ring 72.
 本変形例では、Oリング72によって、硬性シャフト部56の外表面と口金58の内表面との間が液密に保たれる。封止リング93は、Oリング72より第1の延設方向側に位置し、潤滑剤87は、Oリング72より第1の延設方向側に充填されている。このため、Oリング72によって、潤滑剤87の第2の延設方向側への流出が防止される。すなわち、本変形例では、Oリング72が、潤滑剤87の第2の延設方向側への流出を防止するシール部(第2のシール部)となる。 In this modification, the O-ring 72 keeps the liquid-tight space between the outer surface of the rigid shaft portion 56 and the inner surface of the base 58. The sealing ring 93 is located on the first extending direction side from the O-ring 72, and the lubricant 87 is filled on the first extending direction side from the O-ring 72. For this reason, the O-ring 72 prevents the lubricant 87 from flowing out toward the second extending direction. That is, in the present modification, the O-ring 72 serves as a seal portion (second seal portion) that prevents the lubricant 87 from flowing out toward the second extending direction.
 シャフト軸Sに平行な方向について潤滑剤87は、封止リング93とOリング72との間に充填されている。したって、軟性シャフト部55とチューブ部材(軟性被覆部)57との間では、シャフト軸Sに平行な方向について全長に渡って、潤滑剤87が充填されている。 In the direction parallel to the shaft axis S, the lubricant 87 is filled between the sealing ring 93 and the O-ring 72. Therefore, the lubricant 87 is filled over the entire length in the direction parallel to the shaft axis S between the flexible shaft portion 55 and the tube member (soft covering portion) 57.
 潤滑剤87により、シャフト部41が動力によって回転する状態において、シャフト部41(軟性シャフト部55)と被覆部43(チューブ部材57)との間の摩擦が低減する。このため、シャフト部41が被覆部43に当接した場合でも、被覆部への当接部分において、回転速度Vが低下することが抑制される。これにより、シャフト部41において捻じれが発生する確率が低くなるとともに、シャフト部41において捻じれが発生した場合でも捻じれ量が小さくなる。これにより、シャフト部41の回転速度の経時的な変化が、さらに小さくなる。このため、湾曲部(動作部)22の動力による動作速度(湾曲速度)の経時的な変化も、さらに小さくなる。これにより、湾曲部22がさらに安定して湾曲動作を行うことができる。 Lubricant 87 reduces friction between the shaft portion 41 (soft shaft portion 55) and the covering portion 43 (tube member 57) when the shaft portion 41 is rotated by power. For this reason, even when the shaft portion 41 abuts on the covering portion 43, the rotation speed V is suppressed from decreasing at the abutting portion against the covering portion. As a result, the probability that twisting occurs in the shaft portion 41 is reduced, and the amount of twisting is reduced even when twisting occurs in the shaft portion 41. Thereby, the change with time of the rotational speed of the shaft portion 41 is further reduced. For this reason, the change with time of the operation speed (bending speed) due to the power of the bending section (operation section) 22 is further reduced. Thereby, the bending part 22 can perform a bending operation more stably.
 なお、封止リング93による摩擦は、小さく、復元力Pに対する抵抗Rへの封止リング93の影響は、小さい。また、潤滑剤87も、オイル等の粘性及び流体抵抗が低いものであり、復元力Pに対する抵抗Rへの潤滑剤87の影響は、小さい。 In addition, the friction by the sealing ring 93 is small, and the influence of the sealing ring 93 on the resistance R with respect to the restoring force P is small. The lubricant 87 also has a low viscosity such as oil and fluid resistance, and the influence of the lubricant 87 on the resistance R with respect to the restoring force P is small.
 また、電動モータ35と同様のモータ及び動力伝達ユニット40と同様の動力伝達ユニットを追加することにより、湾曲部22を第1の湾曲方向について湾曲させる場合でも、前述の構成を適用可能である。 Further, by adding a motor similar to the electric motor 35 and a power transmission unit similar to the power transmission unit 40, the above-described configuration can be applied even when the bending portion 22 is bent in the first bending direction.
 また、前述の実施形態等では、動作部が湾曲部22であるが、これに限るものではない。例えば、前記特許文献1のように、動作部が超音波トランスデューサとなる挿入機器において、第1の実施形態と同様の構成を用いて、超音波トランスデューサに動力が伝達されてもよい。 Further, in the above-described embodiment, etc., the operating portion is the curved portion 22, but is not limited thereto. For example, as in Patent Document 1, in an insertion device in which the operation unit is an ultrasonic transducer, power may be transmitted to the ultrasonic transducer using the same configuration as in the first embodiment.
 また、前述の実施形態等では、挿入機器として内視鏡(2)を例として説明したが、挿入機器は内視鏡(2)に限るものではない。例えば、挿入機器としてマニピュレータ用いられる手術システムに、前述の構成が適用されてもよい。 In the above-described embodiment, the endoscope (2) is described as an example of the insertion device, but the insertion device is not limited to the endoscope (2). For example, the above-described configuration may be applied to a surgical system that uses a manipulator as an insertion device.
 すなわち、前述の実施形態等では、挿入機器(2)は、長手軸(C)に沿って延設される挿入部(3)と、挿入部(3)に設けられるか、又は、挿入部(3)に取付けられ、動力が伝達されることにより動作する動作部(22)と、を備える。動力伝達ユニット(40)のシャフト部(41)は、動作部(22)を動作させる動力によってシャフト軸(S)を中心として回転することにより、第1の延設方向(E1)から第1の延設方向(E1)とは反対方向である第2の延設方向(E2)へ動力を伝達する。シャフト部(41)は被覆部(43)に挿通され、シャフト部(41)の外表面は、被覆部(43)によって覆われている。動力伝達ユニット(40)には、シャフト部(41)と動作部(22)との間に、減速部(45)が設けられている。減速部(45)では、シャフト部(41)を通して伝達された動力による動作の動作速度を減少させることにより、動力による動作において作用させる駆動トルクを増加し、駆動トルクが増加された動力を動作部(22)に向かって伝達する。そして、シャフト部(41)の外表面と被覆部(43)の内表面との間には、抵抗部(72;73;75;81)が設けられている。回転するシャフト部(41)に発生する捻じれを復元する復元力(P)がシャフト部(41)に作用する状態では、抵抗部(72;73;75;81)によって、復元力(P)とは反対方向への抵抗(R)がシャフト部(41)に作用する。 That is, in the above-described embodiment or the like, the insertion device (2) is provided in the insertion portion (3) extending along the longitudinal axis (C) and the insertion portion (3), or the insertion portion ( 3), and an operating part (22) that operates by transmitting power. The shaft portion (41) of the power transmission unit (40) is rotated from the first extending direction (E1) by rotating about the shaft axis (S) by the power that operates the operating portion (22). Power is transmitted in a second extending direction (E2) that is opposite to the extending direction (E1). The shaft portion (41) is inserted through the covering portion (43), and the outer surface of the shaft portion (41) is covered with the covering portion (43). The power transmission unit (40) is provided with a speed reduction part (45) between the shaft part (41) and the operation part (22). In the speed reduction part (45), by reducing the operation speed of the operation by the power transmitted through the shaft part (41), the driving torque applied in the operation by the power is increased, and the power having the increased driving torque is supplied to the operation part. Transmit to (22). A resistance portion (72; 73; 75; 81) is provided between the outer surface of the shaft portion (41) and the inner surface of the covering portion (43). In a state where the restoring force (P) for restoring the twist generated in the rotating shaft portion (41) acts on the shaft portion (41), the restoring force (P) is generated by the resistance portion (72; 73; 75; 81). Resistance (R) in the opposite direction acts on the shaft portion (41).
 以上、本発明の実施形態等について説明したが、本発明は前記の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。 As mentioned above, although embodiment etc. of this invention were described, this invention is not limited to the said embodiment etc., Of course, various deformation | transformation can be made in the range which does not deviate from the summary of this invention.

Claims (13)

  1.  長手軸に沿って延設される挿入部と、
     前記挿入部に設けられるか、又は、前記挿入部に取付けられ、動力が伝達されることにより動作する動作部と、
     シャフト軸を有し、前記動作部を動作させる前記動力によって前記シャフト軸を中心として回転することにより、第1の延設方向から前記第1の延設方向とは反対方向である第2の延設方向へ前記動力を伝達するシャフト部と、
     前記第1の延設方向から前記第2の延設方向に向かって延設され、前記シャフト部が挿通され、前記シャフト部の外表面を覆う被覆部と、
     前記シャフト部と前記動作部との間に設けられ、前記シャフト部を通して伝達された前記動力による動作の動作速度を減少させることにより、前記動力による動作において作用させる駆動トルクを増加し、前記駆動トルクが増加された前記動力を前記動作部に向かって伝達する減速部と、
     前記シャフト部の前記外表面と前記被覆部の内表面との間に設けられ、回転する前記シャフト部に一定の抵抗を付与する抵抗部と、
     を具備する挿入機器。
    An insertion portion extending along the longitudinal axis;
    An operating part that is provided in the insertion part or attached to the insertion part and operates by transmitting power;
    A second shaft extending from the first extending direction is opposite to the first extending direction by having a shaft shaft and rotating about the shaft shaft by the power for operating the operating portion. A shaft portion for transmitting the power in the installation direction;
    A covering portion extending from the first extending direction toward the second extending direction, through which the shaft portion is inserted, and covering an outer surface of the shaft portion;
    The driving torque that is provided between the shaft portion and the operating portion and decreases the operating speed of the operation by the power transmitted through the shaft portion, thereby increasing the driving torque that is applied in the operation by the power, and the driving torque A speed reduction unit that transmits the increased power toward the operating unit;
    A resistance portion provided between the outer surface of the shaft portion and an inner surface of the covering portion, and imparting a certain resistance to the rotating shaft portion;
    An insertion device comprising:
  2.  前記シャフト部は、軟性シャフト部と、前記軟性シャフト部より硬い硬性シャフト部と、を備え、
     前記抵抗部は、前記硬性シャフト部の外表面に当接し、前記硬性シャフト部の前記外表面と前記被覆部の前記内表面との間に位置している、
     請求項1の挿入機器。
    The shaft portion includes a soft shaft portion and a hard shaft portion harder than the soft shaft portion,
    The resistance portion is in contact with the outer surface of the rigid shaft portion, and is positioned between the outer surface of the rigid shaft portion and the inner surface of the covering portion.
    The insertion device of claim 1.
  3.  前記硬性シャフト部は、前記軟性シャフト部の第2の延設方向側に連続し、前記シャフト部の第2の延設方向側の端を形成する、請求項2の挿入機器。 The insertion device according to claim 2, wherein the rigid shaft portion is continuous with the second extending direction side of the flexible shaft portion and forms an end of the shaft portion on the second extending direction side.
  4.  前記被覆部は、軟性被覆部と、前記軟性被覆部より硬い硬性被覆部と、を備え、
     前記抵抗部は、前記硬性被覆部の内表面に当接し、前記シャフト部の前記外表面と前記硬性被覆部の前記内表面との間に位置している、
     請求項1の挿入機器。
    The covering portion includes a soft covering portion and a hard covering portion harder than the soft covering portion,
    The resistance portion is in contact with the inner surface of the hard coating portion, and is positioned between the outer surface of the shaft portion and the inner surface of the hard coating portion.
    The insertion device of claim 1.
  5.  前記硬性被覆部は、前記軟性被覆部の第2の延設方向側に連続し、前記被覆部の第2の延設方向側の端を形成する、請求項4の挿入機器。 The insertion device according to claim 4, wherein the hard covering portion is continuous with the second extending direction side of the soft covering portion and forms an end of the covering portion on the second extending direction side.
  6.  前記抵抗部は、回転する前記シャフト部に発生する捻じれを復元する復元力が前記シャフト部に作用する状態において、前記シャフト部に前記一定の抵抗を付与することにより、前記復元力とは反対方向への抵抗を前記シャフト部に作用させる、請求項1の挿入機器。 The resistance portion is opposite to the restoring force by applying the constant resistance to the shaft portion in a state where the restoring force restoring the twist generated in the rotating shaft portion acts on the shaft portion. The insertion device according to claim 1, wherein a resistance in a direction is applied to the shaft portion.
  7.  前記シャフト部では、前記動力による回転において前記シャフト部の前記外表面が前記被覆部の前記内表面に当接し、前記シャフト部の前記被覆部への当接部分において、前記当接部分より第1の延設方向側の部位に比べて回転速度が小さくなる、又は、前記回転速度がゼロになることにより、前記捻じれが発生し、
     前記捻じれを復元する前記復元力の作用方向は、前記シャフト部の回転方向と一致する、
     請求項6の挿入機器。
    In the shaft portion, the outer surface of the shaft portion abuts on the inner surface of the covering portion during rotation by the power, and the shaft portion is in contact with the covering portion in a first portion than the abutting portion. When the rotational speed is smaller than the part on the extending direction side of the or the rotational speed becomes zero, the twist occurs,
    The direction of action of the restoring force that restores the twist corresponds to the direction of rotation of the shaft portion,
    The insertion device of claim 6.
  8.  前記減速部は、
     前記シャフト部を通して前記動力が伝達されることにより回転する第1の回転体と、
     前記第1の回転体より大きい外径を有し、前記第1の回転体から前記動力が伝達されることにより、前記第1の回転体より小さい回転角速度で回転し、前記動力による前記動作において作用させる前記駆動トルクを増加させる第2の回転体と、
     を備える、請求項1の挿入機器。
    The deceleration part is
    A first rotating body that rotates when the power is transmitted through the shaft portion;
    The outer diameter of the first rotating body is larger than that of the first rotating body, and the power is transmitted from the first rotating body to rotate at a rotational angular velocity smaller than that of the first rotating body. A second rotating body for increasing the driving torque to be applied;
    The insertion device of claim 1, comprising:
  9.  前記減速部が内部に収容される収容ケースをさらに具備し、
     前記シャフト部の第2の延設方向側の端は、前記収容ケースの内部で前記減速部に連結され、
     前記被覆部の第2の延設方向側の端は、前記収容ケースに連結される、
     請求項1の挿入機器。
    Further comprising a housing case in which the speed reducing portion is housed;
    An end of the shaft portion on the second extending direction side is connected to the speed reduction portion inside the housing case,
    An end of the covering portion on the second extending direction side is coupled to the housing case.
    The insertion device of claim 1.
  10.  前記挿入部の基端方向側に設けられ、前記収容ケースとして操作部ケースを備える操作部と、
     一端が前記操作部に接続され、内部に前記シャフト部及び被覆部が延設されるユニバーサルコードと、
     前記操作部ケースの内部に設けられ、前記減速部において前記駆動トルクが増加した前記動力が伝達されることにより回転する、回転動作部材と、
     前記挿入部の内部を通って延設され、基端が前記回転動作部材に接続される湾曲ワイヤであって、前記回転動作部材が回転することにより、長手方向について移動する湾曲ワイヤと、
     をさらに具備し、
     前記動作部は、前記挿入部に設けられる湾曲部であり、
     前記湾曲部は、前記湾曲ワイヤの先端が接続され、前記湾曲ワイヤの前記長手方向についての移動によって前記動力が伝達されることにより、湾曲する、
     請求項9の挿入機器。
    An operation portion provided on the proximal direction side of the insertion portion and including an operation portion case as the housing case;
    A universal cord having one end connected to the operation portion and the shaft portion and the covering portion extending therein;
    A rotation operation member that is provided inside the operation unit case and rotates by transmitting the power with the drive torque increased in the speed reduction unit;
    A bending wire that extends through the inside of the insertion portion and has a proximal end connected to the rotation operation member, and the rotation operation member rotates to move the bending wire in the longitudinal direction;
    Further comprising
    The operating part is a bending part provided in the insertion part,
    The bending portion is bent by connecting the distal end of the bending wire and transmitting the power by movement of the bending wire in the longitudinal direction.
    The insertion device of claim 9.
  11.  前記動作部を動作させる前記動力を発生し、発生した前記動力を前記シャフト部へ向けて伝達する駆動源をさらに具備し、
     操作部は、前記湾曲部を湾曲させる湾曲操作が入力される湾曲操作入力部を備える、
     請求項10の挿入機器。
    Further comprising a drive source for generating the power for operating the operating portion and transmitting the generated power toward the shaft portion;
    The operation unit includes a bending operation input unit to which a bending operation for bending the bending unit is input.
    The insertion device of claim 10.
  12.  請求項11の挿入機器と、
     前記湾曲操作の入力に基づいて、前記駆動源の駆動状態を制御する駆動制御ユニットと、
     を具備する手術システム。
    The insertion device of claim 11;
    A drive control unit that controls the drive state of the drive source based on the input of the bending operation;
    A surgical system comprising:
  13.  前記シャフト部の前記外表面と前記被覆部の前記内表面との間に充填され、前記シャフト部が回転する際に前記シャフト部と前記被覆部との間の摩擦を低減させる潤滑剤と、
     前記抵抗部より第1の延設方向側に設けられ、前記シャフト部の前記外表面と前記被覆部の前記内表面との間を液密に保ち、前記潤滑剤の前記第1の延設方向側への流出を防止する第1のシール部と、
     をさらに具備し、
     前記抵抗部は、前記シャフト部の前記外表面と前記被覆部の前記内表面との間を液密に保ち、前記潤滑剤の第2の延設方向側への流出を防止する第2のシール部を備える、
     請求項1の挿入機器。
    A lubricant that is filled between the outer surface of the shaft portion and the inner surface of the covering portion, and reduces friction between the shaft portion and the covering portion when the shaft portion rotates;
    The first extending direction of the lubricant is provided on the first extending direction side with respect to the resistance portion, keeps a liquid-tight state between the outer surface of the shaft portion and the inner surface of the covering portion. A first seal portion for preventing outflow to the side;
    Further comprising
    The resistance portion is a second seal that keeps the liquid-tight space between the outer surface of the shaft portion and the inner surface of the covering portion, and prevents the lubricant from flowing out to the second extending direction side. Comprising a part,
    The insertion device of claim 1.
PCT/JP2015/063135 2014-05-29 2015-05-01 Insertion device and surgical system WO2015182337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000101.7U CN205649480U (en) 2014-05-29 2015-05-01 Device for insertion and surgical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-111721 2014-05-29
JP2014111721 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182337A1 true WO2015182337A1 (en) 2015-12-03

Family

ID=54698677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063135 WO2015182337A1 (en) 2014-05-29 2015-05-01 Insertion device and surgical system

Country Status (2)

Country Link
CN (1) CN205649480U (en)
WO (1) WO2015182337A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176931A (en) * 1991-12-27 1993-07-20 Olympus Optical Co Ltd Intracelom ultrasonic diagnostic device
JPH05329097A (en) * 1991-03-11 1993-12-14 Olympus Optical Co Ltd Endoscope curving operation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329097A (en) * 1991-03-11 1993-12-14 Olympus Optical Co Ltd Endoscope curving operation device
JPH05176931A (en) * 1991-12-27 1993-07-20 Olympus Optical Co Ltd Intracelom ultrasonic diagnostic device

Also Published As

Publication number Publication date
CN205649480U (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5750622B1 (en) Insertion device
US9265405B2 (en) Endoscope system
EP3100666A1 (en) Medical wire and medical device
JP5802856B2 (en) Insertion device
EP3263296A1 (en) Manipulator and manipulator system
US10926420B2 (en) Manipulator
CN110682325A (en) Wrist structure of robot
JP6205304B2 (en) Introduction device
WO2015182337A1 (en) Insertion device and surgical system
CN108135451B (en) Insertion device
EP2832282A1 (en) Insertion device, rotating tubular member and drive unit
AU2015294857B2 (en) Controlled furling balloon assembly
EP3244330A3 (en) Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors
US10105038B2 (en) Insertion apparatus
US10736617B2 (en) Force transmission mechanism for medical device and medical device
CN109068952B (en) Insertion device, attachment tool, and drive force transmission unit
WO2020089893A3 (en) An orientation controller and a disposable endoscope
US20200345213A1 (en) Tube body and endoscope
JP6230766B1 (en) Insertion device, mounting tool and driving force transmission unit
EP3097842A1 (en) Insertion device
CN107072497B (en) Drive shaft, insertion device, and insertion device
JP6230767B1 (en) Insertion tool and insertion device
WO2016132598A1 (en) Drive force transmitting unit
CN112074222A (en) Driving force transmission mechanism of endoscope
EP3272263A1 (en) Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15799152

Country of ref document: EP

Kind code of ref document: A1