WO2015182293A1 - High-pressure fuel pump - Google Patents

High-pressure fuel pump Download PDF

Info

Publication number
WO2015182293A1
WO2015182293A1 PCT/JP2015/062167 JP2015062167W WO2015182293A1 WO 2015182293 A1 WO2015182293 A1 WO 2015182293A1 JP 2015062167 W JP2015062167 W JP 2015062167W WO 2015182293 A1 WO2015182293 A1 WO 2015182293A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
flow path
fuel pump
pressure fuel
pressurizing chamber
Prior art date
Application number
PCT/JP2015/062167
Other languages
French (fr)
Japanese (ja)
Inventor
宏泰 城吉
俊亮 有冨
徳尾 健一郎
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015182293A1 publication Critical patent/WO2015182293A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a structure of an electromagnetic valve used for an electromagnetic suction valve for adjusting a fuel discharge amount in a high-pressure fuel pump, and a high-pressure fuel pump including the structure.
  • a high-pressure fuel pump that supplies pressurized fuel to an internal combustion engine can be used in a fuel supply system based on a direct injection operation in which fuel is directly injected into a combustion chamber of the internal combustion engine by an injector. Since the pressurized fuel directly injected into the combustion chamber of the internal combustion engine is pressurized and supplied by the high-pressure fuel pump, it is necessary to adjust the flow rate discharged from the high-pressure fuel pump according to the amount of fuel consumed.
  • the amount of high-pressure pumped fuel from the high-pressure fuel pump is adjusted by controlling the ON (energization) timing to the solenoid of the solenoid valve.
  • the solenoid is turned on (energized) during the compression process by the piston plunger of the high-pressure fuel pump, the plunger rod moves away from the intake valve, and the intake valve is driven by the force of the spring and the pressure of the pressurized fuel. Moved to the closed position.
  • Patent Document 1 describes that by providing the second current supply region at this time, it is possible to reduce the collision noise caused by the collision between the plunger rod / suction valve and the valve stopper.
  • Patent Document 2 it is described that the collision noise of the plunger rod can be reduced by setting a high value section and a low value section for the current supplied to the solenoid of the solenoid valve.
  • Patent Document 1 and Patent Document 2 both relate to the reduction of operating noise of a high-pressure fuel pump. Particularly in passenger cars, when the engine is idling, the operating noise of the high-pressure fuel pump becomes noticeable, and efforts to find further noise reduction methods continue. Therefore, an object of the present invention is to reduce a collision force when a mover collides in a high-pressure fuel pump, and to reduce an operation sound caused by the collision of the mover.
  • the present invention provides a high pressure chamber comprising a pressurizing chamber for pressurizing fuel, and an electromagnetic suction valve mechanism provided on the suction side of the pressurizing chamber for opening and closing the fuel flow path.
  • the electromagnetic suction valve mechanism includes a movable portion that moves by a magnetic attraction force, and a cavity portion that increases or decreases in volume due to the movement of the movable portion is formed on an outer peripheral side of the movable portion.
  • a fuel flow path for supplying fuel is formed on the side of the pressurizing chamber, and the flow path area of the fuel discharged from the fuel flow path is configured to decrease as the movable portion moves by a magnetic attraction force. It is characterized by that.
  • FIG. 1 is a diagram schematically showing the overall configuration of the high-pressure fuel pump.
  • a portion surrounded by a broken line indicates a high-pressure pump main body, and the mechanism and components shown in the broken line indicate that the high-pressure pump main body 1 is integrated.
  • the fuel in the fuel tank 20 is pumped up by the feed pump 21 and sent to the suction joint 10 a of the pump body 1 through the suction pipe 28.
  • the fuel that has passed through the suction joint 10a reaches the suction port 30a of the electromagnetic suction valve mechanism 30 that constitutes the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10d.
  • the electromagnetic suction valve mechanism 30 includes an electromagnetic coil 30b. When the electromagnetic coil 30b is not energized, the movable element 30c moves to the right in FIG. 1 and the spring 33 is not compressed. A suction valve body 31 attached to the tip of the mover 30c opens a suction port 32 connected to the pressurizing chamber 11 of the high-pressure pump. Due to the biasing force of the spring 33, the suction valve body 31 is biased in the valve opening direction, and the suction port 32 is open.
  • the compression process of the plunger 2 (the ascending process from the lower start point to the upper start point) includes a return process and a discharge process.
  • the magnetic attractive force acting on the mover 30c is after a certain time (after magnetic and mechanical delay time). Erased.
  • the amount of high-pressure fuel discharged can be controlled. If the timing of starting energization to the electromagnetic coil 30b is advanced, the ratio of the return process in the compression process is small and the ratio of the discharge process is large. That is, the amount of fuel returned to the suction passage 10d (suction port 30a) is small, and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of starting the input voltage is delayed, the ratio of the return process in the compression process is large and the ratio of the discharge process is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small.
  • the timing at which the electromagnetic coil 30b is de-energized is controlled by a command from the ECU.
  • the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the timing at which the energization of the electromagnetic coil 30b is released.
  • a discharge valve mechanism 8 is provided at the outlet of the pressurizing chamber 11.
  • the discharge valve mechanism 8 includes a discharge valve seat 8a, a discharge valve 8b, and a discharge valve spring 8c.
  • the discharge valve 8b When there is no fuel differential pressure in the pressurizing chamber 11 and the fuel discharge port 12, the discharge valve 8b is biased by the discharge valve spring 8c. Is pressed against the discharge valve seat 8a and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the fuel discharge port 12, the discharge valve 8 b opens against the discharge valve spring 8 c, and the fuel in the pressurization chamber 11 is discharged from the fuel discharge port. 12 is discharged to the common rail 23 through a high pressure.
  • the fuel guided to the fuel suction port 10 a is pressurized to a high pressure by the reciprocating motion of the plunger 2 in the pressurizing chamber 11 of the pump body 1, and is pumped from the fuel discharge port 12 to the common rail 23.
  • the common rail 23 is provided with an injector 24 and a pressure sensor 26.
  • the injectors 24 are mounted in accordance with the number of cylinders of the internal combustion engine, and are opened and closed according to a control signal from an engine control unit (ECU) 27 to inject fuel into the cylinders.
  • ECU engine control unit
  • the pump main body 1 is further provided with a relief passage 100A that communicates the downstream side of the discharge valve 8b and the pressurizing chamber 11, bypassing the discharge valve, separately from the discharge flow path.
  • the relief passage 100A is provided with a relief valve 102 that restricts the flow of fuel in only one direction from the discharge passage to the pressurizing chamber 11.
  • the relief valve 102 is pressed against the relief valve seat 101 by a relief spring 104 that generates a pressing force.
  • the relief valve 102 is The valve is set to be opened away from the seat 101.
  • FIG. 2 is a cross-sectional view seen from the front of the high-pressure fuel pump.
  • a pressurizing chamber 11 is formed at the center of the pump body, and an electromagnetic suction valve mechanism 30 for supplying fuel to the pressurizing chamber 11 and a discharge valve for discharging fuel from the pressurizing chamber 11 to the discharge passage.
  • a mechanism is provided.
  • the cylinder 6 that guides the forward and backward movement of the plunger 2 is attached so as to face the pressurizing chamber 11.
  • the outer periphery of the cylinder 6 is held by a cylinder holder 7 and is fixed to the pump body 1.
  • the cylinder 6 holds the plunger 2 that moves forward and backward in the pressurizing chamber so as to be slidable along the forward and backward movement direction.
  • the lower end of the plunger 2 is provided with a tappet 3 that converts the rotational motion of the cam 5 attached to the camshaft of the engine into a vertical motion and transmits it to the plunger 2. Thereby, the plunger 2 can be moved back and forth (reciprocated) up and down with the rotational movement of the cam 5.
  • the damper cover 14 is provided with a pressure pulsation reduction mechanism 9 that reduces the pressure pulsation generated in the pump from spreading to the fuel pipe 28.
  • the electromagnetic suction valve mechanism 30 includes the electromagnetic coil 30b.
  • the movable element 30c moves to the right in FIG. 1 and the spring 33 is not compressed. It is.
  • a suction valve body 31 attached to the tip of the mover 30c opens a suction port 32 connected to the pressurizing chamber 11 of the high-pressure pump. Due to the biasing force of the spring 33, the suction valve body 31 is biased in the valve opening direction, and the suction port 32 is open.
  • the present invention realizes that the movable element 30c is decelerated immediately before it collides with the stator 34 by using the force of the fluid.
  • FIG. 3 is a detailed cross-sectional view of the movable element 30c, the stator 34, and the members that support the movable element 30c in the first embodiment.
  • the volume of the cavity 301 changes before and after the mover 30c starts to move, and the changed volume of fuel enters and exits the cavity 301.
  • a passage 302 connecting the cavity 301 and the suction port 30a is provided in the support member 306 so that the fuel can enter and exit the cavity 301.
  • the protrusion 304 is provided on the mover 30c so as to overlap the passage 302 when viewed from the moving direction of the mover.
  • the protrusion 304 covers and closes the exit of the passage 302.
  • the flow path of the fuel flowing through the passage 302 becomes narrower when the projection 304 closes the outlet of the passage 302. That is, in the fuel flow path from the cavity 301 to the suction port 30a, the minimum flow path area is reduced by the movement of the mover 30c.
  • the smallest flow path is an axial gap formed by the mover 30 c and the wall surface of the support member 306.
  • the high-pressure fuel pump of this embodiment is provided with a pressurizing chamber 11 for pressurizing the fuel, and an electromagnetic that is provided on the suction side of the pressurizing chamber and opens and closes the fuel flow path (suction passage 10b) on the suction side.
  • an intake valve mechanism 30 is provided.
  • the electromagnetic suction valve mechanism 30 includes a movable portion (movable element 30c) that moves by a magnetic attractive force, and a cavity whose volume is increased or decreased by the movement of the movable portion (movable element 30c) on the outer peripheral side of the movable portion (movable element 30c). Part 301 is formed.
  • a fuel flow path (passage 302) for supplying fuel from the cavity 301 to the pressurizing chamber 11 side is formed, and the area of the fuel discharged from the fuel flow path (passage 302) is magnetically attracted by the mover 30c. It is configured to decrease by moving by force.
  • the movable portion (movable element 30c) is formed with a protrusion 304 that protrudes toward the outer peripheral side on the side of the pressurizing chamber 11 with respect to the fuel flow path (passage 302).
  • the protrusion 304 is connected to the fuel flow path (passage 302). It is formed to overlap in the movable direction.
  • the fuel flow path (passage 302) is formed in the support member 306 provided on the outer peripheral side of the movable portion (movable element 30c) and closer to the pressurizing chamber 11 side than the cavity portion 301.
  • the fuel flow path (passage 302) opens from both the end surface on the pressurizing chamber 11 side of the support member 306 to the end surface on the cavity portion 301 side, and penetrates the support member 306 in a substantially linear shape.
  • a plurality of support members 306 may be provided in the circumferential direction.
  • the protrusion 304 is formed in a substantially disk shape having a predetermined thickness, and is disposed corresponding to the support member 306.
  • the flow path area of the fuel that is, the gap between the support member 306 and the protrusion 304 in the moving direction of the mover 30c is reduced by the movement of the mover 30c by the magnetic attractive force, and the flow path area is reduced.
  • the flow path area When the flow path area is reduced, that is, the flow path is narrowed, the fuel flowing through the passage 302 to the suction port 30a becomes difficult to flow. Since it becomes difficult for the fuel passing through the passage 302 to flow, the movement of the mover 30c is obstructed and the moving speed is reduced. Specifically, since the fuel flowing through the passage 302 becomes difficult to flow, the fuel in the cavity 301 is compressed by the mover 30c, and the pressure in the cavity 301 temporarily rises. As the pressure in the cavity 301 rises, the mover 30c receives the pressure and the moving speed becomes slow.
  • the mover 30c can be greatly decelerated immediately before the mover 30c collides with the stator 34, and the effect of reducing the collision noise of the mover 30c can be obtained without impairing the response when the intake valve is closed. it can.
  • the minimum flow passage area is set to a predetermined value larger than zero. That is, the protrusion 304 is configured so that a flow path for sending fuel from the fuel flow path (passage 302) to the pressurizing chamber 11 side is formed even when the movable element 30c collides with the stator 34. Specifically, when the movable element 30c shown in FIG. 3 collides with the stator 34, a part or all of the protrusions 304 of the movable element 30c do not come into contact with the passage 302.
  • the protrusion 304 and the exit of the passage 302 By making the distance between the protrusion 304 and the exit of the passage 302 larger than the moving distance of the mover 30c, when the mover 30c collides with the stator 34 and stops, the protrusion 304 and the exit of the passage 302 (opening) (A side end surface). That is, at the position corresponding to the passage 302, the protrusion 304 is formed so as to be recessed on the opposite side of the passage 302, so that the minimum flow passage area does not become zero even after the mover 30c stops. , Make fuel flow.
  • FIG. 4 is a detailed sectional view of the movable element 30c, the stator 34, and the members that support the movable element 30c in the second embodiment.
  • the volume of the cavity 301 changes before and after the mover 30c starts moving, and the changed volume of fuel enters and exits the cavity 301.
  • a passage 302 connecting the cavity 301 and the suction port 30a is provided in the movable element 30c so that the fuel can enter and exit the cavity 301.
  • an outlet to the suction port 30a of the passage 302 provided in the mover 30c is provided so as to be perpendicular to the moving direction of the mover 30c, and when the mover 30c moves to the left in FIG.
  • the support member 306 and the outlet of the passage 302 overlap each other.
  • the flow path of the fuel flowing through the passage 302 is narrowed by the support member 306 closing the outlet of the passage 302. That is, as in the first embodiment, in the fuel flow path from the cavity 301 to the suction port 30a, the minimum flow path area is reduced as the mover 30c moves.
  • the flow path area When the flow path area is reduced, that is, the flow path is narrowed, the fuel flowing through the passage 302 to the suction port 30a becomes difficult to flow. Since it becomes difficult for the fuel passing through the passage 302 to flow, the movement of the mover 30c is obstructed and the moving speed is reduced. Specifically, since the fuel flowing through the passage 302 becomes difficult to flow, the fuel in the cavity 301 is compressed by the mover 30c, and the pressure in the cavity 301 temporarily rises. As the pressure in the cavity 301 rises, the mover 30c receives the pressure and the moving speed becomes slow.
  • the support member 306 and the outlet of the passage 302 do not overlap, so that the flow path is wide and the fuel flows relatively easily.
  • the flow path is narrowed immediately before the mover 30c collides with the stator 34, the fuel is more difficult to flow.
  • the mover 30c can be greatly decelerated immediately before the mover 30c collides with the stator 34, and the effect of reducing the collision noise of the mover 30c can be obtained without impairing the response when the intake valve is closed. it can.

Abstract

The purpose of the present invention is to reduce the striking force of the movable element of a high-pressure fuel pump to thereby reduce operation noise caused by the striking of the movable element. A high-pressure fuel pump is provided with: a pressurizing chamber for pressurizing fuel; and an electromagnetic suction valve mechanism provided on the suction side of the pressurizing chamber and opening and closing a fuel passage located on the suction side. The high-pressure fuel pump is configured in such a manner that: the electromagnetic suction valve mechanism is provided with a movable section moved by magnetic attraction force; a cavity section, the volume of which is increased and decreased by the movement of the movable section, is formed on the outer peripheral side of the movable section; a fuel passage for supplying fuel from the cavity section toward the pressurizing chamber is formed; and the area of a flow passage for fuel discharged from the fuel passage decreases as the movable section is moved by magnetic attraction force.

Description

高圧燃料ポンプHigh pressure fuel pump
 本発明は、高圧燃料ポンプにおいて、燃料の吐出量を調節する電磁式吸入弁などに用いられる電磁弁の構造、および当該構造を備える高圧燃料ポンプに関する。 The present invention relates to a structure of an electromagnetic valve used for an electromagnetic suction valve for adjusting a fuel discharge amount in a high-pressure fuel pump, and a high-pressure fuel pump including the structure.
 加圧燃料を内燃機関に供給する高圧燃料ポンプは、噴射器によって内燃機関の燃焼室内へ燃料が直接噴射される直接噴射運転に基づいた燃料供給系に使用することができる。内燃機関の燃焼室内へ直接噴射される加圧燃料は、高圧燃料ポンプによって加圧・供給されるため、消費される燃料の量に応じて高圧燃料ポンプは吐出する流量を調節する必要がある。 A high-pressure fuel pump that supplies pressurized fuel to an internal combustion engine can be used in a fuel supply system based on a direct injection operation in which fuel is directly injected into a combustion chamber of the internal combustion engine by an injector. Since the pressurized fuel directly injected into the combustion chamber of the internal combustion engine is pressurized and supplied by the high-pressure fuel pump, it is necessary to adjust the flow rate discharged from the high-pressure fuel pump according to the amount of fuel consumed.
 例えば特許文献1では高圧燃料ポンプから高圧圧送される燃料の量は電磁弁のソレノイドへのON(通電)タイミングを制御することにより調節する。具体的には高圧燃料ポンプのピストンプランジャによる圧縮工程の途中でソレノイドをON(通電)すると、プランジャロッドが吸入弁から離れて移動して、吸入弁がばねの力と加圧燃料の圧力とによって閉弁位置に移動される。ピストンプランジャが下死点に向かって移動し始めて加圧室内の圧力が下がると、プランジャロッド、および吸入弁は開弁方向へ移動する。この時に第二電流供給領域を設けることで、プランジャロッド・吸入弁とバルブストッパとの衝突に起因する衝突音を低減できると特許文献1に記載されている。 For example, in Patent Document 1, the amount of high-pressure pumped fuel from the high-pressure fuel pump is adjusted by controlling the ON (energization) timing to the solenoid of the solenoid valve. Specifically, when the solenoid is turned on (energized) during the compression process by the piston plunger of the high-pressure fuel pump, the plunger rod moves away from the intake valve, and the intake valve is driven by the force of the spring and the pressure of the pressurized fuel. Moved to the closed position. When the piston plunger starts moving toward the bottom dead center and the pressure in the pressurizing chamber decreases, the plunger rod and the suction valve move in the valve opening direction. Patent Document 1 describes that by providing the second current supply region at this time, it is possible to reduce the collision noise caused by the collision between the plunger rod / suction valve and the valve stopper.
 また、特許文献2では電磁弁のソレノイドへの供給電流を高い値の区間と低い値の区間を設定することで、プランジャロッドの衝突音を低減できると記載されている。 In Patent Document 2, it is described that the collision noise of the plunger rod can be reduced by setting a high value section and a low value section for the current supplied to the solenoid of the solenoid valve.
特開2013-32750JP2013-32750A 特開2012-36886JP 2012-36886
 特許文献1や特許文献2はいずれも高圧燃料ポンプの動作音の低減に関するものである。特に乗用車において、エンジンがアイドル運転しているときは高圧燃料ポンプの作動音が目立ってしまい、さらなる騒音の低減方法を見出す努力が継続されている。そこで本発明は高圧燃料ポンプにおいて可動子が衝突する際の衝突力を低減し、可動子の衝突に起因する動作音を低減することを目的とする。 Patent Document 1 and Patent Document 2 both relate to the reduction of operating noise of a high-pressure fuel pump. Particularly in passenger cars, when the engine is idling, the operating noise of the high-pressure fuel pump becomes noticeable, and efforts to find further noise reduction methods continue. Therefore, an object of the present invention is to reduce a collision force when a mover collides in a high-pressure fuel pump, and to reduce an operation sound caused by the collision of the mover.
 上記目的を達成するために本発明は、燃料を加圧するための加圧室と、前記加圧室の吸入側に設けられ、燃料の流路開閉を行う電磁吸入弁機構と、を備えた高圧燃料ポンプにおいて、前記電磁吸入弁機構は磁気吸引力によって移動する可動部を備え、前記可動部の外周側に前記可動部の移動により体積が増減する空洞部が形成されるとともに、前記空洞部から前記加圧室の側に燃料を供給する燃料流路が形成され、前記燃料流路から吐出される燃料の流路面積は前記可動部が磁気吸引力により移動することにより減少するように構成されることを特徴とする。 In order to achieve the above object, the present invention provides a high pressure chamber comprising a pressurizing chamber for pressurizing fuel, and an electromagnetic suction valve mechanism provided on the suction side of the pressurizing chamber for opening and closing the fuel flow path. In the fuel pump, the electromagnetic suction valve mechanism includes a movable portion that moves by a magnetic attraction force, and a cavity portion that increases or decreases in volume due to the movement of the movable portion is formed on an outer peripheral side of the movable portion. A fuel flow path for supplying fuel is formed on the side of the pressurizing chamber, and the flow path area of the fuel discharged from the fuel flow path is configured to decrease as the movable portion moves by a magnetic attraction force. It is characterized by that.
 本発明によれば、可動子が衝突する際の衝突力を低減し、可動子の衝突に起因する動作音を低減させる効果がある。本発明のその他の構成、作用、効果は以下の実施例において詳細に説明する。 According to the present invention, it is possible to reduce the collision force when the mover collides, and to reduce the operation sound caused by the collision of the mover. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
高圧燃料ポンプ全体のシステム概略図System schematic of the entire high-pressure fuel pump 高圧燃料ポンプを正面から見た断面図Cross section of high pressure fuel pump as seen from the front 本発明の第一実施例における電磁吸入弁の詳細な断面図Detailed sectional view of the electromagnetic suction valve in the first embodiment of the present invention 本発明の第二実施例における電磁吸入弁の詳細な断面図Detailed sectional view of the electromagnetic suction valve in the second embodiment of the present invention
 以下、図面を用いて、本発明の実施例について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. *
 以下、図1~図3を用いて、本発明の第一実施例を説明する。 
 まず図1の全体概略図を用いてシステムの構成と動作を説明する。図1は高圧燃料ポンプの全体の構成を模式的に表した図である。 
 破線で囲まれた部分が高圧ポンプ本体を示し、この破線の中に示されている機構、部品は高圧ポンプ本体1に一体に組み込まれていることを示す。燃料タンク20の燃料はフィードポンプ21によって汲み上げられ、吸入配管28を通してポンプ本体1の吸入ジョイント10aに送られる。吸入ジョイント10aを通過した燃料は圧力脈動低減機構9、吸入通路10dを介して容量可変機構を構成する電磁吸入弁機構30の吸入ポート30aに至る。
The first embodiment of the present invention will be described below with reference to FIGS.
First, the configuration and operation of the system will be described with reference to the overall schematic diagram of FIG. FIG. 1 is a diagram schematically showing the overall configuration of the high-pressure fuel pump.
A portion surrounded by a broken line indicates a high-pressure pump main body, and the mechanism and components shown in the broken line indicate that the high-pressure pump main body 1 is integrated. The fuel in the fuel tank 20 is pumped up by the feed pump 21 and sent to the suction joint 10 a of the pump body 1 through the suction pipe 28. The fuel that has passed through the suction joint 10a reaches the suction port 30a of the electromagnetic suction valve mechanism 30 that constitutes the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10d.
 電磁吸入弁機構30は電磁コイル30bを備え、この電磁コイル30bが通電されていない状態では可動子30cが図1の右方に移動した状態で、ばね33が圧縮されていない状態である。可動子30cの先端に取り付けられた吸入弁体31が高圧ポンプの加圧室11につながる吸入口32を開いている。このばね33の付勢力により、吸入弁体31は開弁方向に付勢され吸入口32は開いた状態となっている。 The electromagnetic suction valve mechanism 30 includes an electromagnetic coil 30b. When the electromagnetic coil 30b is not energized, the movable element 30c moves to the right in FIG. 1 and the spring 33 is not compressed. A suction valve body 31 attached to the tip of the mover 30c opens a suction port 32 connected to the pressurizing chamber 11 of the high-pressure pump. Due to the biasing force of the spring 33, the suction valve body 31 is biased in the valve opening direction, and the suction port 32 is open.
 具体的には以下のように動作する。 
 後述するカム5の回転により、プランジャ2が図1の下方に変位して吸入工程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この工程で加圧室11内の燃料圧力が吸入通路10d(吸入ポート30a)の圧力よりも低くなり、吸入ポート30aから吸入口32を通り燃料が加圧室11内に流れ込む。
Specifically, it operates as follows.
When the plunger 2 is displaced downward in FIG. 1 by the rotation of the cam 5 described later and is in the suction process state, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. In this step, the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction passage 10d (suction port 30a), and fuel flows from the suction port 30a through the suction port 32 into the pressurization chamber 11.
 プランジャ2が吸入工程を終了し、圧縮工程(図1の上方へ移動する状態)に移る時、依然として吸入弁体31は開弁したままである。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度加圧室11に吸入された燃料が、再び開弁状態の吸入弁体31を通して吸入通路10d(吸入ポート30a)へと戻されるので、加圧室の圧力が上昇することは無い。この工程を戻し工程と称す。この状態にて、エンジンコントロールユニット27(以下ECUと称す)からの制御信号が電磁吸入弁機構30に印加されると電磁吸入弁機構30の電磁コイル30bには電流が流れ、磁気吸引力により可動子30cが図1の左に移動し、ばね33が圧縮される。その結果、吸入弁体31も図1の左に移動し、吸入口32が閉じられる。 When the plunger 2 finishes the suction process and moves to the compression process (a state of moving upward in FIG. 1), the suction valve body 31 still remains open. The volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 passes through the suction valve body 31 that is opened again, and the suction passage 10 d (suction). Since the pressure is returned to the port 30a), the pressure in the pressurizing chamber does not increase. This process is called a return process. In this state, when a control signal from the engine control unit 27 (hereinafter referred to as ECU) is applied to the electromagnetic intake valve mechanism 30, an electric current flows through the electromagnetic coil 30b of the electromagnetic intake valve mechanism 30 and is movable by the magnetic attractive force. The child 30c moves to the left in FIG. 1, and the spring 33 is compressed. As a result, the suction valve body 31 also moves to the left in FIG. 1 and the suction port 32 is closed.
 吸入口32が閉じるとこのときから加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇する。そして、燃料吐出口12の圧力以上になると、吐出弁機構8を介して加圧室11に残っている燃料の高圧吐出が行われ、コモンレール23へと供給される。この工程を吐出工程と称す。すなわち、プランジャ2の圧縮工程(下始点から上始点までの間の上昇工程)は、戻し工程と吐出工程からなる。この状態で、ECU27からの制御信号を解除して、電磁コイル30bへの通電を断つと、可動子30cに働いている磁気吸引力は一定の時間後(磁気的、機械的遅れ時間後)に消去される。可動子30cにはばね33による付勢力が働いているので、図1の右方向に移動しようとする。しかし、プランジャ2の圧縮行程中は加圧室11内の圧力が高く、その圧力によって吸入弁体31は閉弁状態が維持される。そのため可動子30cはECU27からの制御信号が解除された後でも、プランジャ2の圧縮行程中は図1の左に移動した状態が維持される。
プランジャ2の圧縮行程が終了し再び吸入行程が開始すると、加圧室11内の圧力が下がり吸入弁体31は図1の右に移動し吸入口32が開かれる。これに伴い可動子30cも図1の右に移動する。
When the suction port 32 is closed, the fuel pressure in the pressurizing chamber 11 increases with the upward movement of the plunger 2 from this time. When the pressure exceeds the pressure of the fuel discharge port 12, high pressure discharge of the fuel remaining in the pressurizing chamber 11 is performed via the discharge valve mechanism 8 and supplied to the common rail 23. This process is called a discharge process. That is, the compression process of the plunger 2 (the ascending process from the lower start point to the upper start point) includes a return process and a discharge process. In this state, when the control signal from the ECU 27 is canceled and the electromagnetic coil 30b is de-energized, the magnetic attractive force acting on the mover 30c is after a certain time (after magnetic and mechanical delay time). Erased. Since the urging force of the spring 33 is acting on the mover 30c, it tries to move in the right direction in FIG. However, during the compression stroke of the plunger 2, the pressure in the pressurizing chamber 11 is high, and the suction valve body 31 is maintained in the closed state by the pressure. Therefore, even after the control signal from the ECU 27 is released, the mover 30c is maintained in the state of moving to the left in FIG. 1 during the compression stroke of the plunger 2.
When the compression stroke of the plunger 2 is completed and the suction stroke is started again, the pressure in the pressurizing chamber 11 decreases, the suction valve body 31 moves to the right in FIG. 1, and the suction port 32 is opened. Accordingly, the mover 30c also moves to the right in FIG.
 電磁吸入弁機構30の電磁コイル30bへの通電を開始するタイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイルへ30bへの通電を開始するタイミングを早くすれば、圧縮工程中の戻し工程の割合が小さく、吐出工程の割合が大きい。すなわち、吸入通路10d(吸入ポート30a)に戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、入力電圧を開始するタイミングを遅くすれば、圧縮工程中の、戻し工程の割合が大きく、吐出工程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイルへ30bへの通電を解除するタイミングは、ECUからの指令によって制御される。
以上のように構成することで、電磁コイルへ30bへの通電を解除するタイミングを制
御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
By controlling the timing of starting energization of the electromagnetic coil 30b of the electromagnetic intake valve mechanism 30, the amount of high-pressure fuel discharged can be controlled. If the timing of starting energization to the electromagnetic coil 30b is advanced, the ratio of the return process in the compression process is small and the ratio of the discharge process is large. That is, the amount of fuel returned to the suction passage 10d (suction port 30a) is small, and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of starting the input voltage is delayed, the ratio of the return process in the compression process is large and the ratio of the discharge process is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small. The timing at which the electromagnetic coil 30b is de-energized is controlled by a command from the ECU.
By configuring as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the timing at which the energization of the electromagnetic coil 30b is released.
 加圧室11の出口には吐出弁機構8が設けられている。吐出弁機構8は吐出弁シート8a、吐出弁8b、吐出弁ばね8cを備え、加圧室11と燃料吐出口12に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、燃料吐出口12の燃料圧力よりも大きくなった時に始めて、吐出弁8bは吐出弁ばね8cに逆らって開弁し、加圧室11内の燃料は燃料吐出口12を経てコモンレール23へと高圧吐出される。 A discharge valve mechanism 8 is provided at the outlet of the pressurizing chamber 11. The discharge valve mechanism 8 includes a discharge valve seat 8a, a discharge valve 8b, and a discharge valve spring 8c. When there is no fuel differential pressure in the pressurizing chamber 11 and the fuel discharge port 12, the discharge valve 8b is biased by the discharge valve spring 8c. Is pressed against the discharge valve seat 8a and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the fuel discharge port 12, the discharge valve 8 b opens against the discharge valve spring 8 c, and the fuel in the pressurization chamber 11 is discharged from the fuel discharge port. 12 is discharged to the common rail 23 through a high pressure.
 かくして、燃料吸入口10aに導かれた燃料はポンプ本体1の加圧室11にてプランジャ2の往復動によって必要な量が高圧に加圧され、燃料吐出口12からコモンレール23に圧送される。 Thus, the fuel guided to the fuel suction port 10 a is pressurized to a high pressure by the reciprocating motion of the plunger 2 in the pressurizing chamber 11 of the pump body 1, and is pumped from the fuel discharge port 12 to the common rail 23.
 コモンレール23には、インジェクタ24、圧力センサ26が装着されている。インジェクタ24は、内燃機関の気筒数に合わせて装着されており、エンジンコントロールユニット(ECU)27の制御信号にてしたがって開閉弁して、燃料をシリンダ内に噴射する。 The common rail 23 is provided with an injector 24 and a pressure sensor 26. The injectors 24 are mounted in accordance with the number of cylinders of the internal combustion engine, and are opened and closed according to a control signal from an engine control unit (ECU) 27 to inject fuel into the cylinders.
 ポンプ本体1にはさらに、吐出弁8bの下流側と加圧室11とを連通するリリーフ通路100Aが吐出流路とは別に吐出弁をバイパスして設けられている。リリーフ通路100Aには燃料の流れを吐出流路から加圧室11への一方向のみに制限するリリーフ弁102が設けられている。リリーフ弁102は、押付力を発生するリリーフばね104によりリリーフ弁シート101に押付けられており、加圧室内とリリーフ通路内との間の圧力差が規定の圧力以上になるとリリーフ弁102がリリーフ弁シート101から離れ、開弁するように設定している。 The pump main body 1 is further provided with a relief passage 100A that communicates the downstream side of the discharge valve 8b and the pressurizing chamber 11, bypassing the discharge valve, separately from the discharge flow path. The relief passage 100A is provided with a relief valve 102 that restricts the flow of fuel in only one direction from the discharge passage to the pressurizing chamber 11. The relief valve 102 is pressed against the relief valve seat 101 by a relief spring 104 that generates a pressing force. When the pressure difference between the pressurizing chamber and the relief passage exceeds a specified pressure, the relief valve 102 is The valve is set to be opened away from the seat 101.
 インジェクタ24の故障等によりコモンレール23等に異常高圧が発生した場合、リリーフ通路100Aと加圧室11の差圧がリリーフ弁102の開弁圧力以上になると、リリーフ弁102が開弁し、異常高圧となった燃料はリリーフ通路100Aから加圧室11へと戻され、コモンレール23等の高圧部配管が保護される。 When an abnormally high pressure is generated in the common rail 23 or the like due to a failure of the injector 24 or the like, when the differential pressure between the relief passage 100A and the pressurizing chamber 11 becomes equal to or higher than the opening pressure of the relief valve 102, the relief valve 102 opens and the abnormally high pressure is generated. The fuel thus obtained is returned from the relief passage 100A to the pressurizing chamber 11, and the high-pressure section piping such as the common rail 23 is protected.
 以下に高圧燃料ポンプの構成、動作を図2を用いてさらに詳しく説明する。図2は高圧燃料ポンプの正面から見た断面図である。 Hereinafter, the configuration and operation of the high-pressure fuel pump will be described in more detail with reference to FIG. FIG. 2 is a cross-sectional view seen from the front of the high-pressure fuel pump.
 ポンプ本体には中心に加圧室11が形成されており、さらに加圧室11に燃料を供給するための電磁吸入弁機構30と加圧室11から吐出通路に燃料を吐出するための吐出弁機構が設けられている。 A pressurizing chamber 11 is formed at the center of the pump body, and an electromagnetic suction valve mechanism 30 for supplying fuel to the pressurizing chamber 11 and a discharge valve for discharging fuel from the pressurizing chamber 11 to the discharge passage. A mechanism is provided.
 プランジャ2の進退運動をガイドするシリンダ6が加圧室11に臨むようにして取り付けられている。シリンダ6は外周がシリンダホルダ7で保持され、ポンプ本体1に固定される。シリンダ6は加圧室内で進退運動するプランジャ2をその進退運動方向に沿って摺動可能に保持する。 The cylinder 6 that guides the forward and backward movement of the plunger 2 is attached so as to face the pressurizing chamber 11. The outer periphery of the cylinder 6 is held by a cylinder holder 7 and is fixed to the pump body 1. The cylinder 6 holds the plunger 2 that moves forward and backward in the pressurizing chamber so as to be slidable along the forward and backward movement direction.
 プランジャ2の下端には、エンジンのカムシャフトに取り付けられたカム5の回転運動を上下運動に変換し、プランジャ2に伝達するタペット3が設けられている。これによりカム5の回転運動に伴い、プランジャ2を上下に進退(往復)運動させることができる。ダンパカバー14には、ポンプ内で発生した圧力脈動が燃料配管28へ波及するのを低減させる圧力脈動低減機構9が設置されている。 The lower end of the plunger 2 is provided with a tappet 3 that converts the rotational motion of the cam 5 attached to the camshaft of the engine into a vertical motion and transmits it to the plunger 2. Thereby, the plunger 2 can be moved back and forth (reciprocated) up and down with the rotational movement of the cam 5. The damper cover 14 is provided with a pressure pulsation reduction mechanism 9 that reduces the pressure pulsation generated in the pump from spreading to the fuel pipe 28.
 圧力脈動低減機構9を通った燃料は吸入通路10b、吸入ポート30aの順に吸入口32を通って加圧室11内へ流れる。先述の通り、電磁吸入弁機構30は電磁コイル30bを備え、この電磁コイル30bが通電されていない状態では可動子30cが図1の右方に移動した状態で、ばね33が圧縮されていない状態である。可動子30cの先端に取り付けられた吸入弁体31が高圧ポンプの加圧室11につながる吸入口32を開いている。このばね33の付勢力により、吸入弁体31は開弁方向に付勢され吸入口32は開いた状態となっている。 The fuel that has passed through the pressure pulsation reducing mechanism 9 flows into the pressurizing chamber 11 through the suction port 32 in the order of the suction passage 10b and the suction port 30a. As described above, the electromagnetic suction valve mechanism 30 includes the electromagnetic coil 30b. When the electromagnetic coil 30b is not energized, the movable element 30c moves to the right in FIG. 1 and the spring 33 is not compressed. It is. A suction valve body 31 attached to the tip of the mover 30c opens a suction port 32 connected to the pressurizing chamber 11 of the high-pressure pump. Due to the biasing force of the spring 33, the suction valve body 31 is biased in the valve opening direction, and the suction port 32 is open.
 プランジャ2の圧縮期間中に制御信号が電磁吸入弁機構30に印加されると電磁吸入弁機構30の電磁コイル30bには電流が流れ、磁気吸引力により可動子30cが図1の左に移動し、ばね33が圧縮される。この時可動子30cは固定子34に衝突するまで移動し、固定子34に衝突した際に衝撃音が発生する。一般論として、衝突する物体の速度が速ければ速いほど衝突音も大きいことが言え、可動子30cが固定子34と衝突して発せされる音も、可動子30の移動速度を遅くすることで音を低減できる。 When a control signal is applied to the electromagnetic suction valve mechanism 30 during the compression period of the plunger 2, a current flows through the electromagnetic coil 30b of the electromagnetic suction valve mechanism 30, and the mover 30c moves to the left in FIG. The spring 33 is compressed. At this time, the mover 30c moves until it collides with the stator 34, and an impact sound is generated when it collides with the stator 34. In general, it can be said that the faster the speed of the colliding object, the louder the collision sound, and the sound generated when the mover 30c collides with the stator 34 also reduces the moving speed of the mover 30. Sound can be reduced.
 可動子30cの移動速度を遅くするためには、電磁コイル30bによる磁気吸引力を小さくすることも考えられる。しかし磁気吸引力を小さくすると可動子の動きに時間がかかってしまい、吸入弁体31が所定の応答時間で吸入弁を開閉できなくなってしまう。吸入弁が所定の応答時間を維持しつつ、衝突音を低減させるためには可動子30cが固定子34と衝突する直前に減速することが望ましい。そこで本発明は流体の力を利用して可動子30cが固定子34と衝突する直前に減速させることを実現した。 In order to slow down the moving speed of the mover 30c, it is conceivable to reduce the magnetic attractive force by the electromagnetic coil 30b. However, if the magnetic attractive force is reduced, it takes time for the mover to move, and the intake valve body 31 cannot open and close the intake valve within a predetermined response time. In order to reduce collision noise while maintaining a predetermined response time for the suction valve, it is desirable to decelerate immediately before the movable element 30c collides with the stator 34. Therefore, the present invention realizes that the movable element 30c is decelerated immediately before it collides with the stator 34 by using the force of the fluid.
 以下に図3を用いて第一実施例の詳細を説明する。図3は第一実施例における可動子30cと固定子34とそれを支持する部材に関しての詳細な断面図である。 Details of the first embodiment will be described below with reference to FIG. FIG. 3 is a detailed cross-sectional view of the movable element 30c, the stator 34, and the members that support the movable element 30c in the first embodiment.
 第一実施例においては、図3の破線で示す領域の中で可動子30cと固定部材によって形成された燃料によって満たされたスペースを空洞部301と定義する。空洞部301は可動子30cが移動を開始する前と移動した後で、体積が変化し、変化した体積分の燃料が空洞部301を出入りする。この燃料が空洞部301を出入りできるように、空洞部301と吸入ポート30aの間をつなぐ通路302を支持部材306に設ける。可動子30cが先に述べたように磁気吸引力によって図3の左に移動すると、空洞部301から燃料が押し出される。押し出された燃料は303の矢印に示す流れのように通路302を通り吸入ポート30aに流れる。 In the first embodiment, the space filled with the fuel formed by the movable element 30c and the fixed member in the region indicated by the broken line in FIG. The volume of the cavity 301 changes before and after the mover 30c starts to move, and the changed volume of fuel enters and exits the cavity 301. A passage 302 connecting the cavity 301 and the suction port 30a is provided in the support member 306 so that the fuel can enter and exit the cavity 301. When the mover 30c is moved to the left in FIG. 3 by the magnetic attractive force as described above, the fuel is pushed out from the cavity 301. The pushed fuel flows through the passage 302 to the suction port 30a as shown by the arrow 303.
 ここで可動子30cに突起部304を可動子の移動方向から見て通路302と重なるように設ける。こうすることにより可動子30cが図3の左に移動した後は突起部304が通路302の出口を覆い塞ぐ形となる。この時通路302を流れている燃料の流路は、突起部304が通路302の出口を塞ぐことで狭くなる。つまり空洞部301から吸入ポート30aまでの燃料の流路において、最小となる流路面積が、可動子30cが移動したことで減少する構成となっている。この時、最小となる流路は可動子30cと支持部材306の壁面により形成される軸方向の隙間となる。 Here, the protrusion 304 is provided on the mover 30c so as to overlap the passage 302 when viewed from the moving direction of the mover. Thus, after the movable element 30c moves to the left in FIG. 3, the protrusion 304 covers and closes the exit of the passage 302. At this time, the flow path of the fuel flowing through the passage 302 becomes narrower when the projection 304 closes the outlet of the passage 302. That is, in the fuel flow path from the cavity 301 to the suction port 30a, the minimum flow path area is reduced by the movement of the mover 30c. At this time, the smallest flow path is an axial gap formed by the mover 30 c and the wall surface of the support member 306.
 つまり本実施例の高圧燃料ポンプは燃料を加圧するための加圧室11と、前記加圧室の吸入側に設けられ、吸入側の燃料流路(吸入通路10b)の流路開閉を行う電磁吸入弁機構30とを備えている。また、電磁吸入弁機構30は磁気吸引力によって移動する可動部(可動子30c)を備え、可動部(可動子30c)の外周側に可動部(可動子30c)の移動により体積が増減する空洞部301が形成される。また空洞部301から加圧室11の側に燃料を供給する燃料流路(通路302)が形成され、燃料流路(通路302)から吐出される燃料の流路面積は可動子30cが磁気吸引力により移動することにより減少するように構成される。可動部(可動子30c)は燃料流路(通路302)よりも加圧室11の側に外周側に凸となる突起部304が形成され、この突起部304は燃料流路(通路302)と可動方向で重なるように形成される。
本実施例ではこの燃料流路(通路302)が可動部(可動子30c)の外周側でかつ空洞部301よりも加圧室11側に設けられた支持部材306に形成される。燃料流路(通路302)は支持部材306の加圧室11の側の端面とから空洞部301の側の端面との双方に開口しており、支持部材306を略直線形状に貫通する様に設けられる。図3では断面図を示したが、支持部材306の周方向に複数、設けるようにしても良い。また、突起部304は所定の厚みを有する略円盤形状で構成され、支持部材306に対応して配置される。燃料の流路面積、つまり可動子30cの可動方向における支持部材306と突起部304とのすき間は可動子30cが磁気吸引力により移動することにより減少し、流路面積を減少するものである。
That is, the high-pressure fuel pump of this embodiment is provided with a pressurizing chamber 11 for pressurizing the fuel, and an electromagnetic that is provided on the suction side of the pressurizing chamber and opens and closes the fuel flow path (suction passage 10b) on the suction side. And an intake valve mechanism 30. Further, the electromagnetic suction valve mechanism 30 includes a movable portion (movable element 30c) that moves by a magnetic attractive force, and a cavity whose volume is increased or decreased by the movement of the movable portion (movable element 30c) on the outer peripheral side of the movable portion (movable element 30c). Part 301 is formed. A fuel flow path (passage 302) for supplying fuel from the cavity 301 to the pressurizing chamber 11 side is formed, and the area of the fuel discharged from the fuel flow path (passage 302) is magnetically attracted by the mover 30c. It is configured to decrease by moving by force. The movable portion (movable element 30c) is formed with a protrusion 304 that protrudes toward the outer peripheral side on the side of the pressurizing chamber 11 with respect to the fuel flow path (passage 302). The protrusion 304 is connected to the fuel flow path (passage 302). It is formed to overlap in the movable direction.
In the present embodiment, the fuel flow path (passage 302) is formed in the support member 306 provided on the outer peripheral side of the movable portion (movable element 30c) and closer to the pressurizing chamber 11 side than the cavity portion 301. The fuel flow path (passage 302) opens from both the end surface on the pressurizing chamber 11 side of the support member 306 to the end surface on the cavity portion 301 side, and penetrates the support member 306 in a substantially linear shape. Provided. Although a cross-sectional view is shown in FIG. 3, a plurality of support members 306 may be provided in the circumferential direction. Further, the protrusion 304 is formed in a substantially disk shape having a predetermined thickness, and is disposed corresponding to the support member 306. The flow path area of the fuel, that is, the gap between the support member 306 and the protrusion 304 in the moving direction of the mover 30c is reduced by the movement of the mover 30c by the magnetic attractive force, and the flow path area is reduced.
 流路面積が減少、つまり流路が狭くなることで通路302を通り吸入ポート30aに流れる燃料が流れにくくなる。通路302を通る燃料が流れにくくなることで可動子30cの移動を阻害し移動速度を減速させる作用がある。具体的には通路302を流れる燃料が流れにくくなることで空洞部301にある燃料が可動子30cによって圧縮され、空洞部301の圧力が一時的に上昇する。空洞部301の圧力が上昇することで可動子30cは圧力を受け移動速度が遅くなる。 When the flow path area is reduced, that is, the flow path is narrowed, the fuel flowing through the passage 302 to the suction port 30a becomes difficult to flow. Since it becomes difficult for the fuel passing through the passage 302 to flow, the movement of the mover 30c is obstructed and the moving speed is reduced. Specifically, since the fuel flowing through the passage 302 becomes difficult to flow, the fuel in the cavity 301 is compressed by the mover 30c, and the pressure in the cavity 301 temporarily rises. As the pressure in the cavity 301 rises, the mover 30c receives the pressure and the moving speed becomes slow.
 また、可動子30cが移動を開始した直後は突起部304と通路302との距離は離れているので流路は広く燃料は比較的流れ易い。これに対し可動子30cが固定子34と衝突する直前には流路が急激に狭くなるので燃料はより流れにくくなる構成となっている。これにより可動子30cが固定子34と衝突する直前に可動子30cを大きく減速させることができ、吸入弁の閉弁時応答を損なうことなく可動子30cの衝突音を低減させる効果を得ることができる。 Also, immediately after the mover 30c starts moving, the distance between the projection 304 and the passage 302 is long, so the flow path is wide and the fuel flows relatively easily. On the other hand, since the flow path is narrowed immediately before the mover 30c collides with the stator 34, the fuel is more difficult to flow. As a result, the mover 30c can be greatly decelerated immediately before the mover 30c collides with the stator 34, and the effect of reducing the collision noise of the mover 30c can be obtained without impairing the response when the intake valve is closed. it can.
 また、可動子30cが固定子34と衝突し停止した際、最小となる流路面積がゼロより大きい所定の値となるように構成する。つまり、可動子30cが固定子34と衝突した状態においても、燃料流路(通路302)からの燃料が加圧室11側に送る流路が形成されるように突起部304を構成する。具体的には、図3に示す可動子30cが固定子34と衝突した際に、可動子30cの突起部304の一部又は全部が通路302と接触しない構成にする。突起部304と通路302の出口との距離を、可動子30cの移動距離より大きくすることで、可動子30cが固定子34と衝突し停止した際には突起部304と通路302の出口(開口側端面)との間に隙間を残す構成にする。つまり突起部304を通路302と対応する位置において、通路302と反対側に凹むように凹み部を形成することで、可動子30cが停止した後も前記最小となる流路面積がゼロとならず、燃料が流れる構成にする。 Further, when the mover 30c collides with the stator 34 and stops, the minimum flow passage area is set to a predetermined value larger than zero. That is, the protrusion 304 is configured so that a flow path for sending fuel from the fuel flow path (passage 302) to the pressurizing chamber 11 side is formed even when the movable element 30c collides with the stator 34. Specifically, when the movable element 30c shown in FIG. 3 collides with the stator 34, a part or all of the protrusions 304 of the movable element 30c do not come into contact with the passage 302. By making the distance between the protrusion 304 and the exit of the passage 302 larger than the moving distance of the mover 30c, when the mover 30c collides with the stator 34 and stops, the protrusion 304 and the exit of the passage 302 (opening) (A side end surface). That is, at the position corresponding to the passage 302, the protrusion 304 is formed so as to be recessed on the opposite side of the passage 302, so that the minimum flow passage area does not become zero even after the mover 30c stops. , Make fuel flow.
 こうすることで空洞部301と吸入ポート30aを繋ぐ流路が完全に塞がれることを回避することができる。空洞部301と吸入ポート30aを繋ぐ通路302を、可動子30cに設けられた突起部304によって完全に塞いでしまうと、可動子30cが図3の左に移動する際は大きな減速効果を得ることができるが、可動子30cが図3の右に移動する際は動き出しに長い時間がかかってしまうことが考えられる。 By doing so, it is possible to avoid completely blocking the flow path connecting the cavity 301 and the suction port 30a. If the passage 302 connecting the cavity 301 and the suction port 30a is completely blocked by the protrusion 304 provided on the movable element 30c, a large deceleration effect can be obtained when the movable element 30c moves to the left in FIG. However, when the mover 30c moves to the right in FIG. 3, it may take a long time to start moving.
 これは空洞部301を燃料が出入りすることが出来なくなってしまい、可動子30cの動きを大きく阻害してしまうことに起因する。吸入弁が開弁する際に、可動子30cの動き出しに時間がかかってしまうと吸入弁の開弁に時間がかかってしまい、吸入弁の応答が遅くなってしまう。可動子30cが固定子34と衝突し停止した際、前記最小となる流路面積がゼロより大きい所定の値となるように構成することで、吸入弁が開弁する際でも、空洞部301へ燃料が出入りでき可動子30cの動き出しが阻害されることがない。これにより吸入弁の開弁時の応答も損なうことなく、可動子30cの衝突音を低減させる効果を得ることができる。 This is due to the fact that fuel can no longer enter and leave the cavity 301, which greatly hinders the movement of the mover 30c. When the intake valve opens, if it takes time to move the mover 30c, it takes time to open the intake valve, and the response of the intake valve is delayed. When the mover 30c collides with the stator 34 and stops, the minimum flow area is set to a predetermined value larger than zero, so that even when the intake valve is opened, the cavity portion 301 can be opened. Fuel can enter and exit, and movement of the mover 30c is not hindered. As a result, it is possible to obtain an effect of reducing the collision sound of the mover 30c without impairing the response when the intake valve is opened.
 以下に図4を用いて第二実施例の詳細を説明する。図4は第二実施例における可動子30cと固定子34とそれを支持する部材に関しての詳細な断面図である。 Details of the second embodiment will be described below with reference to FIG. FIG. 4 is a detailed sectional view of the movable element 30c, the stator 34, and the members that support the movable element 30c in the second embodiment.
 第二実施例においては、図4の破線で示す領域の中で可動子30cと固定部材によって形成された燃料によって満たされたスペースを空洞部301と定義する。第一実施例と同様に、空洞部301は可動子30cが移動を開始する前と移動した後で、体積が変化し、変化した体積分の燃料が空洞部301を出入りする。この燃料が空洞部301を出入りできるように、空洞部301と吸入ポート30aの間をつなぐ通路302を可動子30cに設ける。可動子30cが先に述べたように磁気吸引力によって図3の左に移動すると、空洞部301から燃料が押し出される。押し出された燃料は303の矢印に示す流れのように通路302を通り吸入ポート30aに流れる。ここで可動子30cに設けた通路302の吸入ポート30aへの出口を可動子30cの移動方向とは垂直になるように設け、可動子30cが図4の左に移動した時は可動子30cの支持部材306と通路302の出口とが重なる構成にする。この時通路302を流れている燃料の流路が、支持部材306が通路302の出口を塞ぐことで狭くなる。つまり第一実施例と同様に、空洞部301から吸入ポート30aまでの燃料の流路において、最小となる流路面積が、可動子30cが移動したことで減少する構成となっている。 In the second embodiment, the space filled with the fuel formed by the movable element 30c and the fixed member in the region indicated by the broken line in FIG. As in the first embodiment, the volume of the cavity 301 changes before and after the mover 30c starts moving, and the changed volume of fuel enters and exits the cavity 301. A passage 302 connecting the cavity 301 and the suction port 30a is provided in the movable element 30c so that the fuel can enter and exit the cavity 301. When the mover 30c is moved to the left in FIG. 3 by the magnetic attractive force as described above, the fuel is pushed out from the cavity 301. The pushed fuel flows through the passage 302 to the suction port 30a as shown by the arrow 303. Here, an outlet to the suction port 30a of the passage 302 provided in the mover 30c is provided so as to be perpendicular to the moving direction of the mover 30c, and when the mover 30c moves to the left in FIG. The support member 306 and the outlet of the passage 302 overlap each other. At this time, the flow path of the fuel flowing through the passage 302 is narrowed by the support member 306 closing the outlet of the passage 302. That is, as in the first embodiment, in the fuel flow path from the cavity 301 to the suction port 30a, the minimum flow path area is reduced as the mover 30c moves.
 流路面積が減少、つまり流路が狭くなることで通路302を通り吸入ポート30aに流れる燃料が流れにくくなる。通路302を通る燃料が流れにくくなることで可動子30cの移動を阻害し移動速度を減速させる作用がある。具体的には通路302を流れる燃料が流れにくくなることで空洞部301にある燃料が可動子30cによって圧縮され、空洞部301の圧力が一時的に上昇する。空洞部301の圧力が上昇することで可動子30cは圧力を受け移動速度が遅くなる。 When the flow path area is reduced, that is, the flow path is narrowed, the fuel flowing through the passage 302 to the suction port 30a becomes difficult to flow. Since it becomes difficult for the fuel passing through the passage 302 to flow, the movement of the mover 30c is obstructed and the moving speed is reduced. Specifically, since the fuel flowing through the passage 302 becomes difficult to flow, the fuel in the cavity 301 is compressed by the mover 30c, and the pressure in the cavity 301 temporarily rises. As the pressure in the cavity 301 rises, the mover 30c receives the pressure and the moving speed becomes slow.
 また、可動子30cが移動を開始した直後は支持部材306と通路302の出口と重なっていないので、流路は広く燃料は比較的流れ易い。これに対し可動子30cが固定子34と衝突する直前には流路が急激に狭くなるので燃料はより流れにくくなる構成となっている。これにより可動子30cが固定子34と衝突する直前に可動子30cを大きく減速させることができ、吸入弁の閉弁時応答を損なうことなく可動子30cの衝突音を低減させる効果を得ることができる。 Further, immediately after the mover 30c starts to move, the support member 306 and the outlet of the passage 302 do not overlap, so that the flow path is wide and the fuel flows relatively easily. On the other hand, since the flow path is narrowed immediately before the mover 30c collides with the stator 34, the fuel is more difficult to flow. As a result, the mover 30c can be greatly decelerated immediately before the mover 30c collides with the stator 34, and the effect of reducing the collision noise of the mover 30c can be obtained without impairing the response when the intake valve is closed. it can.
1 高圧燃料ポンプ本体
2 プランジャ
3 タペット
11 加圧室
12 燃料吐出口
8 吐出弁機構
23 コモンレール
20 燃料ランク
21 フィードポンプ
28 吸入配管
10a 吸入ジョイント
9 圧力脈動低減機構
10b 吸入通路
30  電磁吸入弁機構
102 リリーフ弁
30a 吸入ポート
30b 電磁コイル
33 ばね
30c 可動子
34 固定子
306 支持部材
303 連通路
DESCRIPTION OF SYMBOLS 1 High pressure fuel pump main body 2 Plunger 3 Tappet 11 Pressurization chamber 12 Fuel discharge port 8 Discharge valve mechanism 23 Common rail 20 Fuel rank 21 Feed pump 28 Suction piping 10a Suction joint 9 Pressure pulsation reduction mechanism 10b Suction passage 30 Electromagnetic suction valve mechanism 102 Relief Valve 30a Suction port 30b Electromagnetic coil 33 Spring 30c Movable element 34 Stator 306 Support member 303 Communication path

Claims (7)

  1.  燃料を加圧するための加圧室と、
     前記加圧室の吸入側に設けられ、燃料の流路開閉を行う電磁吸入弁機構と、を備えた高圧燃料ポンプにおいて、
     前記電磁吸入弁機構は磁気吸引力によって移動する可動部を備え、前記可動部の外周側に前記可動部の移動により体積が増減する空洞部が形成されるとともに、前記空洞部から前記加圧室の側に燃料を供給する燃料流路が形成され、前記燃料流路から吐出される燃料の流路面積は前記可動部が磁気吸引力により移動することにより減少するように構成されることを特徴とする高圧燃料ポンプ。
    A pressurizing chamber for pressurizing the fuel;
    In a high-pressure fuel pump provided on the suction side of the pressurizing chamber and having an electromagnetic suction valve mechanism that opens and closes a fuel flow path,
    The electromagnetic suction valve mechanism includes a movable portion that moves by a magnetic attraction force, and a cavity portion that increases or decreases in volume due to the movement of the movable portion is formed on the outer peripheral side of the movable portion, and from the cavity portion to the pressurizing chamber A fuel flow path for supplying fuel is formed on the side of the fuel flow path, and a flow path area of the fuel discharged from the fuel flow path is configured to be reduced by moving the movable portion by a magnetic attraction force. And high pressure fuel pump.
  2.  請求項1に記載の高圧燃料ポンプにおいて、
     前記可動部は前記燃料流路よりも前記加圧室の側に外周側に凸となる突起部が形成されることを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 1,
    The high-pressure fuel pump according to claim 1, wherein the movable portion is formed with a protruding portion that protrudes outward from the fuel flow path toward the pressurizing chamber.
  3.  請求項2に記載の高圧燃料ポンプにおいて、
     前記突起部は前記燃料流路と前記可動部の可動方向で重なるように形成されることを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 2,
    The high-pressure fuel pump according to claim 1, wherein the protrusion is formed to overlap the fuel flow path in a movable direction of the movable part.
  4.  請求項1に記載の高圧燃料ポンプにおいて、
     前記燃料流路が前記可動部の外周側でかつ前記空洞部よりも前記加圧室の側に設けられた支持部材に形成されることを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 1,
    The high-pressure fuel pump, wherein the fuel flow path is formed on a support member provided on an outer peripheral side of the movable portion and on the pressurizing chamber side with respect to the cavity portion.
  5.  請求項4に記載の高圧燃料ポンプにおいて、
     前記燃料流路は前記支持部材の前記加圧室の側の端面とから前記空洞部の側の端面との双方に開口しており、前記支持部材を略直線形状に貫通するように設けられることを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 4,
    The fuel flow path is open to both the end surface on the pressurizing chamber side of the support member and the end surface on the cavity side, and is provided so as to penetrate the support member in a substantially linear shape. High-pressure fuel pump characterized by
  6.  請求項4に記載の高圧燃料ポンプにおいて、
     前記可動部の可動方向における前記支持部材と前記突起部とのすき間は前記可動子が磁気吸引力により移動することにより減少することを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 4,
    The high-pressure fuel pump according to claim 1, wherein a gap between the support member and the protrusion in the movable direction of the movable part is reduced by moving the movable element by a magnetic attractive force.
  7.  請求項1に記載の高圧燃料ポンプにおいて、
     前記可動部が固定子と衝突した状態において、前記燃料流路からの燃料が前記加圧室の側に送る流路が形成されることを特徴とする高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 1,
    A high-pressure fuel pump characterized in that a flow path is formed in which fuel from the fuel flow path is sent to the pressurizing chamber side in a state where the movable portion collides with a stator.
PCT/JP2015/062167 2014-05-28 2015-04-22 High-pressure fuel pump WO2015182293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109658 2014-05-28
JP2014109658A JP2015224587A (en) 2014-05-28 2014-05-28 High-pressure fuel pump

Publications (1)

Publication Number Publication Date
WO2015182293A1 true WO2015182293A1 (en) 2015-12-03

Family

ID=54698634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062167 WO2015182293A1 (en) 2014-05-28 2015-04-22 High-pressure fuel pump

Country Status (2)

Country Link
JP (1) JP2015224587A (en)
WO (1) WO2015182293A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161522A (en) * 1998-11-27 2000-06-16 Toyota Motor Corp Solenoid valve
JP2013032750A (en) * 2011-08-03 2013-02-14 Hitachi Automotive Systems Ltd Control method of solenoid valve, control method of electromagnetically controlled inlet valve of high pressure fuel supply pump, and control device for electromagnetic drive mechanism of electromagnetically controlled inlet valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161522A (en) * 1998-11-27 2000-06-16 Toyota Motor Corp Solenoid valve
JP2013032750A (en) * 2011-08-03 2013-02-14 Hitachi Automotive Systems Ltd Control method of solenoid valve, control method of electromagnetically controlled inlet valve of high pressure fuel supply pump, and control device for electromagnetic drive mechanism of electromagnetically controlled inlet valve

Also Published As

Publication number Publication date
JP2015224587A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6044664B2 (en) Control method of direct injection type fuel injection pump
JP5331731B2 (en) Electromagnetic flow control valve and high-pressure fuel supply pump using the same
JP5687158B2 (en) Control method and control apparatus for high-pressure fuel supply pump
JPWO2016031378A1 (en) High pressure fuel supply pump
JP2004218633A (en) High pressure fuel pump
KR101871299B1 (en) Method and device for controlling a valve
US20180128229A1 (en) High-Pressure Fuel Pump
JP6710045B2 (en) Control method of high-pressure fuel supply pump and high-pressure fuel supply pump using the same
JP7198363B2 (en) Electromagnetic intake valve and high pressure fuel supply pump
US9080527B2 (en) Method and device for controlling a quantity control valve
WO2016088340A1 (en) High-pressure pump
US9791064B2 (en) Quantity control valve and high-pressure pump with quantity control valve
WO2015182293A1 (en) High-pressure fuel pump
WO2019097915A1 (en) High-pressure fuel pump
JP6530978B2 (en) Solenoid valve and high pressure fuel supply pump
JP2015017553A (en) Control method of high-pressure pump
JP6838244B2 (en) Solenoid valve and high pressure fuel supply pump
JP6146365B2 (en) Fuel supply system
JP5691583B2 (en) Solenoid valve and fuel supply pump
JP6588161B2 (en) High pressure fuel supply pump
CN110678642B (en) High-pressure fuel supply pump
JP2008232026A (en) Injector
JP2017061863A (en) High-pressure fuel supply pump
JP4600405B2 (en) Injector
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800473

Country of ref document: EP

Kind code of ref document: A1