WO2015182070A1 - Optical network management device and optical network management method - Google Patents

Optical network management device and optical network management method Download PDF

Info

Publication number
WO2015182070A1
WO2015182070A1 PCT/JP2015/002531 JP2015002531W WO2015182070A1 WO 2015182070 A1 WO2015182070 A1 WO 2015182070A1 JP 2015002531 W JP2015002531 W JP 2015002531W WO 2015182070 A1 WO2015182070 A1 WO 2015182070A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
wavelength path
path
optical
network management
Prior art date
Application number
PCT/JP2015/002531
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 藤澤
竹下 仁士
智之 樋野
田島 章雄
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016523120A priority Critical patent/JP6528770B2/en
Publication of WO2015182070A1 publication Critical patent/WO2015182070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical network management apparatus and an optical network management method, and more particularly to an optical network management apparatus and an optical network management method used for an optical network using a wavelength division multiplexing method.
  • the backbone optical network provides a function of communicating the traffic of the client device via the optical fiber communication path connecting the bases according to the contract service quality (service class).
  • the backbone optical network receives a client signal via an interface between the node device and the client device.
  • communication is performed via a larger capacity trunk transmission channel.
  • the multiplexing scheme includes wavelength division multiplexing (WDM) scheme, time division multiplexing (TDM) scheme, and orthogonal frequency division multiplexing (OFDM scheme such as Orthogonal Division Division Multiplexing scheme).
  • a maximum capacity of several Tbps per optical fiber is realized by wavelength multiplexing using a large capacity optical link of 100 Gbps (Giga bit per second) class per channel using several tens of wavelengths. ing.
  • Gbps giga bit per second
  • the communication path of wavelength path and the wavelength slot used are determined based on the allocation policy.
  • route allocation policies include shortest route design and minimum hop count route design.
  • a wavelength allocation policy for example, a first-fit allocation method that allocates an optical path from an empty wavelength slot on the long wavelength side, a most used (Most used) that selects an empty wavelength slot with the highest usage rate in other paths. -Used) There is an allocation method.
  • Patent Document 1 An example of an optical network management apparatus that allocates such an optical path is described in Patent Document 1.
  • the related optical path design apparatus described in Patent Document 1 uses a path and a wavelength as a reserved wavelength based on a demand plan for each ground, which is a combination of a node serving as a start point and a node serving as an end point, to which wavelengths are assigned in advance. make a reservation.
  • a reserved wavelength having the same ground as the optical path establishment request is searched and a wavelength is assigned.
  • the related optical path design apparatus has a resource management information database, database search means, empty wavelength search means, and database rewrite means.
  • the resource management information database stores reserved wavelengths between nodes and “used” and “unused” status information.
  • the database search means acquires the input optical path establishment request, and searches the resource management information database for a reserved wavelength having the same ground as the optical path establishment request.
  • the free wavelength search means determines whether the reserved wavelength obtained by the database search means is suitable for the optical path establishment request, and if not, the empty wavelength search path on the route of the optical path establishment request is found from the resource management information database. Search for wavelength.
  • the database rewriting means updates information corresponding to the path of the optical path establishment request in the resource management information database based on the empty wavelength obtained by the empty wavelength searching means.
  • the Dense Wavelength Division Multiplexing Multiplexing Multiplexing Division method is in accordance with the International Telecommunications Union (ITU) Telecommunications Standardization Division (Telecommunication Standardization Sector: ITU-T).
  • ITU International Telecommunications Union
  • Telecommunication Standardization Sector Telecommunication Standardization Sector: ITU-T
  • the optical frequency band is used.
  • the entire available optical frequency band is subdivided by a fixed-width grid called a wavelength grid, and an optical signal of one wavelength channel is allocated within the grid width (ITU-T recommendation G.694.1). ).
  • the flexible frequency grid standardized by 694.1 has a configuration in which the minimum channel interval can be changed from 50 GHz to 12.5 GHz and the frequency slot width can be changed in units of 12.5 GHz.
  • frequency slots having different widths can be assigned to each optical path, so that the optical frequency band assigned to the optical path can be minimized.
  • the related trunk optical network system 500 includes optical node devices 711 to 718 related to the related optical network management device 600.
  • the related optical network management device 600 and the related optical node devices 711 to 718 are connected to each other, and communicate information about the usage status of the optical network with each other.
  • FIG. 20 shows a flowchart for explaining the operation of the related optical network management apparatus 600.
  • the related optical network management apparatus 600 searches for the shortest path connecting the start node and the end node in the order of arrival (step S702), and determines the required number of wavelength slots. (Step S703). If there are empty spaces for the number of wavelength slots necessary for traffic accommodation (step S704 / YES), wavelength paths are allocated based on the above-mentioned First-Fit allocation method (step S706). If there is no available wavelength slot that can be assigned (step S704 / NO), a fiber is added to the required link (step S705). When wavelength path assignment is completed for all communication traffic requests (step S707 / NO), wavelength path setting information is notified to each optical node device (step S708), and wavelength path assignment is terminated.
  • the backbone optical network has a problem that it is difficult to maximize the traffic accommodation efficiency of the entire optical network.
  • An object of the present invention is an optical network management apparatus and an optical network management that solve the above-described problem that in a backbone optical network, it is difficult to maximize the traffic accommodation efficiency of the entire optical network. It is to provide a method.
  • the optical network management apparatus of the present invention receives at least a plurality of traffic requests, and determines at least modulation of a path search unit that determines an optimum path between optical node apparatuses for each traffic request, and a wavelength path that accommodates the traffic requests in the optimum path, respectively.
  • a wavelength path attribute determining unit that determines a wavelength path attribute including a method for each traffic request and a wavelength path that allocates a wavelength path on the optical frequency axis so that the modulation methods of the adjacent wavelength paths on the optical frequency axis are equal.
  • an allocation unit is an allocation unit.
  • the optical network management method of the present invention receives a plurality of traffic requests, determines an optimum path between optical node devices for each traffic request, and includes a wavelength including at least a modulation method in each wavelength path that accommodates the traffic request in the optimum path.
  • a path attribute is determined for each traffic request, and wavelength paths are allocated on the optical frequency axis so that the modulation schemes of adjacent wavelength paths on the optical frequency axis are equal.
  • FIG. 1 is a block diagram showing a schematic configuration of a related backbone optical network system.
  • FIG. It is a flowchart for demonstrating operation
  • FIG. It is a figure which shows the example which allocated the wavelength path
  • FIG. 1 is a block diagram showing a configuration of an optical network management apparatus 100 according to the first embodiment of the present invention.
  • the optical network management apparatus 100 includes a route search unit 110, a wavelength path attribute determination unit 120, and a wavelength path allocation unit 130.
  • the route search unit 110 receives a plurality of traffic requests and determines an optimum route between the optical node devices for each traffic request.
  • the wavelength path attribute determining unit 120 determines, for each traffic request, a wavelength path attribute including at least a modulation scheme of the wavelength paths that respectively accommodate the traffic requests in the optimum route. Then, the wavelength path assigning unit 130 assigns the wavelength paths on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  • the modulation schemes of the wavelength paths adjacent on the optical frequency axis are equal, so that the number of places where guard bands are inserted is minimized. can do. As a result, traffic can be efficiently accommodated in the backbone optical network.
  • the optical network management method according to this embodiment will be described.
  • a plurality of traffic requests are accepted, and an optimum path between optical node devices is determined for each traffic request.
  • the wavelength path attributes including at least the modulation method of the wavelength paths respectively accommodating the traffic requests in the optimum route are determined for each traffic request.
  • the wavelength paths are allocated on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  • the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal, and therefore the number of places where guard bands are inserted can be minimized.
  • FIG. 2 shows the configuration of the optical network management apparatus 200 according to this embodiment.
  • the optical network management apparatus 200 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
  • the database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, and a pre-allocation wavelength path DB 214.
  • the traffic accommodation design unit 220 includes a route search unit 221, a required wavelength slot number determination unit 222, a wavelength slot / fiber allocation determination unit 223, and a traffic allocation order determination unit 224.
  • the path allocation control unit 230 is connected to each optical node device.
  • the route search unit 221 corresponds to the route search unit 110 included in the optical network management device 100 according to the first embodiment
  • the required wavelength slot number determination unit 222 corresponds to the wavelength path attribute determination unit 120, respectively.
  • the wavelength slot / fiber allocation determining unit 223 and the traffic allocation order determining unit 224 as an allocation order determining unit are an example of the wavelength path allocation unit 130.
  • the traffic DB 211 stores traffic requests.
  • the physical layer topology DB 212 records the physical arrangement of the optical communication network and the fiber connection relationship.
  • the wavelength path management DB 213 records operating wavelength path setting information.
  • the pre-assignment wavelength path DB 214 stores the wavelength path modulation method determined by the required wavelength slot number determination unit 222.
  • FIG. 3 shows a configuration of the optical node device 300 according to the present embodiment.
  • the optical node device 300 includes a large granularity switching unit 310, a control unit 320, and optical transponder (TPND) devices 331 and 332.
  • TPND optical transponder
  • the large granularity switching unit 310 connects an optical transmission line and optical transponder (TPND) devices 331 and 332, and switches a plurality of optical transmission lines in units of wavelength paths.
  • the control unit 320 receives wavelength path assignment information that is a result of assigning wavelength paths from the path assignment control unit 230 provided in the optical network management apparatus 200. Based on the wavelength path allocation information, the operations of the large granularity switching unit 310 and the optical transponder (TPND) devices 331 and 332 are controlled.
  • the optical transponder (TPND) devices 331 and 332 transmit and receive client signals via the optical transmission path.
  • FIG. 4 is a flowchart for explaining the operation of the optical network management apparatus 200 according to the present embodiment.
  • the optical network management apparatus 200 extracts one communication traffic request from the traffic DB 211 in the order of arrival (step S201).
  • the route search unit 221 refers to the physical layer topology DB 212 and searches for the shortest route connecting the start point node and the end point node of the traffic request (step S202).
  • the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path as a search result (step S203), and stores the modulation method in the pre-assignment wavelength path DB 214.
  • the required wavelength slot number determined by the required wavelength slot number determining unit 222 may be recorded in the pre-assignment wavelength path DB 214. This operation is performed for all traffic requests (step S205).
  • the traffic allocation order determination unit 224 determines the order of the optical frequency utilization efficiency of the wavelength path determined by the modulation method. Specifically, one piece of communication traffic is extracted from the pre-allocation wavelength path DB 214 in accordance with the order of the magnitudes related to the optical frequency utilization efficiency of the wavelength paths (step S206).
  • the optical frequency utilization efficiency of the wavelength path is a modulation scheme such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), a modulation method per wavelength, such as a modulation scheme per wavelength path. Capacity.
  • the traffic allocation order determination unit 224 may extract traffic by ordering the number of wavelength path hops, the communication distance, and the communication quality of the wavelength path.
  • the wavelength slot / fiber allocation determining unit 223 checks whether there is a free wavelength slot necessary for establishing communication between the two base nodes (step S207). If there are not enough free wavelength slots (NO in step S207), the number of fibers is increased (step S208), and the wavelength path at this time is assigned to the empty wavelength slot (step S209).
  • the above-described procedure (steps S206 to S209) is performed for all wavelength paths held in the pre-allocation wavelength path DB 214. That is, the wavelength slot / fiber assignment determining unit 223 assigns the wavelength paths to the wavelength slots adjacent on the optical frequency axis in the order described above. After the above procedure is completed for all the wavelength paths (step S210 / NO), the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information.
  • the path assignment control unit 230 notifies the database unit 210 and the optical node device 300 of the wavelength path setting result (step S211).
  • the control unit 320 included in the optical node device 300 changes the settings of the large granularity switching unit 310 and the optical transponder (TPND) devices 331 and 332 based on the received notification of the wavelength path setting result.
  • the route search unit 221 may search for a route with the minimum number of hops connecting the start point node and the end point node related to the traffic request, or a route with the best link quality.
  • the traffic allocation order determination unit 224 performs ordering with respect to the optical frequency utilization efficiency of the wavelength paths, and performs ordering with respect to the number of wavelength slots for the wavelength paths having the same optical frequency utilization efficiency. Thereafter, traffic requests are extracted in that order. Then, the wavelength slot / fiber assignment determining unit 223 assigns the wavelength path by, for example, the First-Fit method. By adopting such a configuration, it becomes possible to set the wavelength path so that the wavelength paths of the same modulation method and the number of wavelength slots are adjacent to each other.
  • the adjacent wavelength path has the same modulation method and the same This is the number of wavelength slots.
  • the number of wavelength bands occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
  • wavelength path setting results by the optical network management apparatus 200 according to the present embodiment will be described with reference to FIGS. 5A to 5D.
  • FIG. 5A an optical communication system in which six optical node devices 301 to 306 are connected by optical fiber transmission lines will be described as an example.
  • the wavelength usage situation in the optical link between the optical node device 303 and the optical node device 304 will be described.
  • the modulation method is used as an example depending on the number of hops of the communication path, but is not necessarily limited thereto.
  • the related optical network management apparatus 600 assigns wavelength paths
  • the wavelength paths are assigned in the order of arrival of traffic requests, so that signal lights of different modulation schemes are adjacent to each other as shown in FIG. Placed in.
  • the optical network management apparatus 200 when the optical network management apparatus 200 according to the present embodiment allocates a wavelength path, the modulation system and the required number of wavelength slots are determined after searching for a route having the minimum number of hops for each traffic request. Then, by assigning wavelength paths in order from the modulation scheme with the smallest multilevel, signal light of the same modulation scheme is allocated so as to be adjacent as shown in FIG. 5D. As a result, the number of guard bands to be inserted can be reduced. As described above, according to the optical network management apparatus 200 according to the present embodiment, the traffic accommodation efficiency of the entire optical communication system can be improved.
  • FIG. 6 shows a configuration of the optical network management apparatus 201 according to the present embodiment.
  • the optical network management apparatus 201 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
  • the database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, and an adjacent wavelength path metric DB 215.
  • the adjacent wavelength path metric DB 215 manages the weighting amount according to the modulation method of the adjacent wavelength path.
  • the traffic accommodation design unit 220 includes a route search unit 221, a required wavelength slot number determination unit 222, a wavelength slot / fiber allocation determination unit 223, and a wavelength path allocation metric calculation unit 225.
  • the wavelength path allocation metric calculation unit 225 calculates an adjacent wavelength path metric for each wavelength slot using a weighting amount determined by a modulation method of adjacent wavelength paths on the optical frequency axis. Specifically, the value of the adjacent wavelength path metric is calculated by adding the weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for each link.
  • the wavelength path allocation metric calculation unit 225 may add a weighting amount related to the optical frequency utilization efficiency of the adjacent wavelength path and the required number of wavelength slots to the adjacent wavelength path metric.
  • FIG. 7 is a flowchart for explaining the operation of the optical network management apparatus 201 according to this embodiment.
  • the optical network management apparatus 201 extracts one communication traffic request from the traffic DB 211 (step S201).
  • the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202).
  • the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the path of the search result (step S203).
  • the wavelength slot / fiber allocation determination unit 223 checks whether there is an empty wavelength slot necessary for establishing communication between the two base nodes (step S207). If there are not enough empty wavelength slots (step S207 / NO), the number of fibers is increased (step S208).
  • the wavelength path allocation metric calculation unit 225 refers to the adjacent wavelength path metric DB 215 and adds a weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for each link of the shortest path. Thereby, the value of the adjacent wavelength path metric when assigning the wavelength path to the empty wavelength slot is calculated.
  • the wavelength slot / fiber assignment determining unit 223 assigns the wavelength path to the wavelength slot in which the adjacent wavelength path metric is optimal. For example, a wavelength path is assigned to an empty wavelength slot having a minimum adjacent wavelength path metric (step S212).
  • the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information.
  • the path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
  • the weighting amount managed by the adjacent wavelength path metric DB 215 can be obtained from a transmission simulation result or a transmission experiment result. Also, a metric may be defined for the number of wavelength slots of adjacent wavelength paths.
  • wavelength path setting results by the optical network management apparatus 201 according to the present embodiment will be described with reference to FIGS. 8A to 8C.
  • FIG. 8A an optical communication system in which four optical node devices 301 to 304 are connected by optical fiber transmission lines will be described as an example.
  • the metric value (weighting amount) is minimized when signal lights of the same modulation method are adjacent to each other.
  • adjacent empty wavelength slots exist for wavelength paths whose modulation schemes are QPSK, 8QAM, and 16QAM, respectively. Therefore, when an empty wavelength slot that minimizes the value of the adjacent wavelength path metric is selected, signal light of the same modulation scheme is assigned so as to be adjacent. As a result, in this case, the guard band to be inserted becomes unnecessary.
  • the optical network management apparatus 201 it is possible to set the wavelength path so that the wavelength paths according to the same modulation method are adjacent to each other by accommodating the traffic request in the empty wavelength slot in which the value of the adjacent wavelength path metric is the smallest. . Therefore, according to the optical network management apparatus 201 according to the present embodiment, the number of wavelength bands occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
  • FIG. 9 shows the configuration of the optical network management apparatus 202 according to this embodiment.
  • the optical network management apparatus 202 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
  • the database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, an adjacent wavelength path metric DB 215, and a wavelength path allocation candidate DB 216.
  • the wavelength path allocation candidate DB 216 holds the allocation of wavelength slots that realize the minimum value and the minimum value of the adjacent wavelength path metric for the path obtained by the path search unit 221.
  • FIG. 10 is a flowchart for explaining the operation of the optical network management apparatus 202 according to this embodiment.
  • the optical network management apparatus 202 extracts one communication traffic request from the traffic DB 211 (step S201).
  • the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202).
  • the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203).
  • the wavelength path allocation metric calculation unit 225 refers to the adjacent wavelength path metric DB 215 to determine the weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for establishing communication in the shortest path. Add for each link. Thereby, the value of the adjacent wavelength path metric when assigning the wavelength path to the empty wavelength slot is calculated. Then, the minimum value of the adjacent wavelength path metric and the wavelength slot allocation when the minimum value is reached are stored in the wavelength path allocation candidate DB 216 (step S213).
  • step S214 it is determined whether the modulation method or the number of wavelength slots of the wavelength paths accommodated in the adjacent wavelength slots is the same in the empty wavelength slot in which the adjacent wavelength path metric is minimum.
  • step S214 / NO the same operation is performed on the next shortest path (step S215 / YES).
  • step S215 / YES the next shortest path
  • wavelength paths are assigned to the wavelength slot in which the adjacent wavelength path metric value for each route is minimum (step S218). If there is no empty wavelength slot (step S216 / NO), fiber addition is performed on the link with no empty wavelength slot among the shortest path links (step S217).
  • the wavelength slot / fiber allocation determination unit 223 transmits the wavelength path allocation information to the path allocation control unit. 230 is notified. The path allocation control unit 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300.
  • an upper limit value for the number of route re-searches may be set in advance in order to shorten the wavelength path design time.
  • an upper limit value may be provided for the path length.
  • FIG. 11A an optical communication system in which four optical node devices 301 to 304 are connected by optical fiber transmission lines will be described as an example.
  • the QPSK method is adopted as the modulation method.
  • the path R401 is the shortest path, but the modulation method of the wavelength path adjacent to the empty wavelength slot SL401 in the optical link between the optical node apparatus 301 and the optical node apparatus 302 is 16QAM as shown in FIG. 11B. Therefore, when the modulation method of the wavelength path to be allocated is QPSK, it is necessary to insert a guard band (Guard Band). As a result, the traffic accommodation efficiency is reduced.
  • a guard band Guard Band
  • each metric value (weighting amount) can be defined as shown in FIG. 11C.
  • the value of the adjacent wavelength path metric is 1100 in the empty wavelength slot SL401 and 100 in the empty wavelength slot SL402. Therefore, according to the optical network management apparatus 202 of this embodiment, a traffic request is accommodated in the empty wavelength slot SL402.
  • the route search unit 221 determines a plurality of optimum routes.
  • a wavelength path allocation metric calculation unit 225 as a wavelength path metric calculation unit calculates adjacent wavelength path metrics for the plurality of optimum paths.
  • the wavelength slot / fiber allocation determination unit 223 as the wavelength path allocation unit sets the wavelength path to the wavelength slot for which the adjacent wavelength path metric is optimal so that the modulation methods of the adjacent wavelength paths on the optical frequency axis are equal. Is assigned. Therefore, according to the optical network management apparatus 202 according to the present embodiment, the number of wavelength bands occupied by the guard band (Guard Band) can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
  • the guard band Guard Band
  • FIG. 12 shows the configuration of the optical network management apparatus 203 according to this embodiment.
  • the optical network management apparatus 203 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
  • the database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, a pre-allocation wavelength path DB 214, and a wavelength path allocation region DB 217.
  • the wavelength path allocation area DB 217 records the distinction of empty slot areas to which wavelength paths are allocated according to the wavelength path modulation scheme and the required number of slots.
  • the traffic accommodation design unit 220 further includes a region slot number determination unit 226 as a wavelength path allocation region setting unit.
  • the area slot number determination unit 226 determines a slot area (wavelength path allocation area) to which a wavelength path is allocated according to the type of traffic request.
  • FIG. 13 is a flowchart for explaining the operation of the optical network management apparatus 203 according to the present embodiment.
  • the optical network management apparatus 203 extracts one communication traffic request from the traffic DB 211 (step S201).
  • the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202).
  • the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203), and holds it in the pre-assignment wavelength path DB 214 (step S204). This operation is performed for all traffic requests (step S205).
  • the region slot number determination unit 226 as the wavelength path allocation region setting unit determines the distinction of the empty slot region of the wavelength path allocation destination according to the wavelength path attributes such as the number of wavelength slots and the modulation method (step S219). ) And recorded in the wavelength path allocation region DB 217.
  • the wavelength slot / fiber allocation determination unit 223 checks whether there is an empty wavelength slot necessary for establishing communication in response to the extracted traffic request (step S207). If there are not enough free wavelength slots (step S207 / NO), after adding fibers (step S208), wavelength paths are assigned to the free wavelength slots in the wavelength path assignment region at this time (step S209).
  • the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information.
  • the path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
  • the area slot number determination unit 226 determines the slot area.
  • the present invention is not limited to this, and a slot area determined in advance by the operator may be used.
  • the related optical network management apparatus 600 assigns wavelength paths
  • the wavelength paths are assigned in the order of arrival of traffic requests, so that signal lights of different modulation schemes are adjacent to each other as shown in FIG. Placed in. Therefore, in order to prevent deterioration in communication quality, it is necessary to arrange a guard band (Guard Band) between adjacent signal lights.
  • a guard band Guard Band
  • the optical network management apparatus 203 includes a wavelength path having a wavelength path attribute equal to the wavelength path attribute related to the wavelength path allocation area in an empty slot area (wavelength path allocation area) to which the wavelength path is allocated.
  • a wavelength path attribute is a modulation method
  • a wavelength path allocation area is set for each type of modulation method.
  • the guard band may be arranged only at the boundary of the wavelength path allocation region.
  • the wavelength path attribute is a modulation method
  • the number of wavelength slots is used as the wavelength path attribute
  • the wavelength path allocation area is set for each number of wavelength slots accommodating traffic. Also good.
  • the division of the wavelength path allocation area may be changed again in response to a change in traffic request.
  • the optical network management apparatus 203 According to the optical network management apparatus 203 according to the present embodiment, the number of wavelength slots occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
  • FIG. 15 shows the configuration of the optical network management apparatus 204 according to this embodiment.
  • the optical network management apparatus 204 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
  • the database unit 210 further includes a divided wavelength path management DB 218.
  • the divided wavelength path management DB 218 manages route information and wavelength slot information of a plurality of wavelength paths that accommodate traffic requests.
  • the traffic accommodation design unit 220 includes a divided slot determination unit 227.
  • the division slot determination unit 227 manages division of the number of wavelength slots when dividing the traffic request into a plurality of wavelength slots according to the state of the empty wavelength slots.
  • FIG. 16 is a flowchart for explaining the operation of the optical network management apparatus 204 according to this embodiment.
  • the optical network management device 204 extracts one communication traffic request from the traffic DB 211 (step S201).
  • the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202).
  • the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203).
  • step S220 when accommodating the wavelength path, it is determined whether or not there is an empty wavelength slot that does not require insertion of a guard band (Guard Band) (step S220). When such an empty wavelength slot exists (step S220 / YES), a wavelength path is assigned to this empty wavelength slot (step S209).
  • a guard band Guard Band
  • the division slot determination unit 227 as the wavelength path division unit divides the wavelength path accommodating the traffic request into a plurality of division wavelength paths. That is, the division slot determination unit 227 searches for an empty wavelength slot that can accommodate the traffic request by dividing it into a plurality of wavelength paths (step S221). If such an empty wavelength slot exists (step S221 / YES), wavelength path allocation is performed (step S222). If it cannot be accommodated even if it is divided into a plurality of wavelength paths (step S221 / NO), a fiber is added to the link having no empty wavelength slot among the shortest path links (step S208).
  • the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information.
  • the path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
  • step S221 the above-described processing (step S221) of searching for an empty wavelength slot that is divided and accommodated into a plurality of wavelength paths will be further described based on the flowchart shown in FIG.
  • the division slot determining unit 227 divides the wavelength path so as to match the maximum number of empty wavelength slots, and then assigns the empty wavelength slots (step S226). If there is an unaccommodated portion in the wavelength path for accommodating the traffic request, the above-described processing is performed again (step S227 / YES). When there is no unaccommodated portion (step S227 / NO), the division slot determination unit 227 notifies the path allocation control unit 230 of the wavelength path allocation information by wavelength path division (step S228).
  • step S224 the next shortest route is searched for (step S224).
  • step S224 / YES the required number of wavelength slots and the modulation method are determined (step S225), and then wavelength path allocation is performed. If there is an unassigned wavelength path at the stage where all routes have been searched, a fiber is added to the necessary link on the shortest route.
  • an upper limit value of the number of route re-searches may be set in advance. In order to prevent the modulation scheme from being changed due to a difference in communication quality for each path, an upper limit value may be provided for the path length. In addition, a restriction may be added to the number of divisions when the wavelength path is divided by the wavelength path division described above, and an upper limit value may be provided for the path length difference of the divided wavelength paths.
  • FIGS. 18A to 18C an optical communication system in which three optical node devices 301 to 303 are connected by optical fiber transmission lines will be described as an example.
  • the 16QAM method is adopted as the modulation method.
  • the QPSK method is used as the modulation method.
  • the wavelength path P401 (optical link 301: 302) does not have a sufficient number of free slots to accommodate the traffic request. (See FIG. 18B). In this case, it has been necessary to add a new optical fiber until now.
  • the optical network management apparatus 204 of this embodiment divides the wavelength path accommodating the traffic request into a plurality of divided wavelength paths, and sets the divided wavelength paths so that the modulation methods of the adjacent wavelength paths are equal.
  • the configuration is assigned.
  • the wavelength path P401 that accommodates part of the traffic request is assigned to the optical link that directly connects the optical node device 301 and the optical node device 302, and the rest is assigned to the wavelength path P402 of the optical link that passes through the optical node device 303. It becomes possible.
  • signal light adopting the 16QAM modulation method is assigned to the empty slot SL401 of the wavelength path P401
  • signal light adopting the QPSK modulation method is assigned to the empty slot SL402 of the wavelength path P402.
  • the optical network management apparatus 204 of the present embodiment it is possible to effectively utilize strips of empty wavelength slots and arrange the wavelength paths that are the same modulation method so as to be adjacent to each other. Therefore, it is possible to reduce the number of occupied wavelength slots of the guard band (Guard Band), and to maximize the traffic accommodation efficiency of the entire optical network.
  • the guard band Guard Band
  • Optical network management device 110 221 Route search unit 120 Wavelength path attribute determination unit 130 Wavelength path allocation unit 210 Database unit 211 Traffic DB 212 Physical layer topology DB 213 Wavelength path management DB 214 Pre-allocation wavelength path DB 215 Adjacent wavelength path metric DB 216 Wavelength path allocation candidate DB 217 Wavelength path allocation region DB 218 Divided wavelength path management DB 220 traffic accommodation design unit 222 required wavelength slot number determination unit 223 wavelength slot / fiber allocation determination unit 224 traffic allocation order determination unit 225 wavelength path allocation metric calculation unit 226 area slot number determination unit 227 division slot determination unit 230 path allocation control unit 300 , 301 to 306 Optical node device 310 Large granularity switching unit 320 Control unit 331, 332 Optical transponder (TPND) device 500 Related backbone optical network system 600 Related optical network management device 711 to 718 Related optical node device

Abstract

 Because, in a trunk optical network, it is difficult to maximize the efficiency of traffic accommodation as the whole of the optical network, this optical network management device has: a route search unit for accepting a plurality of traffic requests and determining, for each of the traffic requests, an optimum route between optical node devices; a wavelength path attribute determination unit for determining, for each of the traffic requests, the wavelength path attribute, including at least a modulation method, of a wavelength path for accommodating each of the traffic requests in the optimum route; and a wavelength path allocation unit for allocating the wavelength path to an optical frequency axis so that modulation methods of each of wavelength paths adjacent on the optical frequency axis are equal.

Description

光ネットワーク管理装置および光ネットワーク管理方法Optical network management apparatus and optical network management method
 本発明は、光ネットワーク管理装置および光ネットワーク管理方法に関し、特に、波長分割多重方式による光ネットワークに使用する光ネットワーク管理装置および光ネットワーク管理方法に関する。 The present invention relates to an optical network management apparatus and an optical network management method, and more particularly to an optical network management apparatus and an optical network management method used for an optical network using a wavelength division multiplexing method.
 基幹系光ネットワークは、クライアント装置のトラヒックを契約サービス品質(サービスクラス)に従って、拠点間を接続する光ファイバ通信路を介して通信する機能を提供する。ここで基幹系光ネットワークは、ノード装置とクライアント装置との間のインターフェースを介してクライアント信号を受信する。そして、種々の多重方式を用いて複数のクライアント信号を多重した後に、より大容量な基幹伝送通信路を介して通信する。多重方式には、波長分割多重(Wavelength Division Multiplexing:WDM)方式、時分割多重(Time Division Multiplexing:TDM)方式、および直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)方式などが用いられる。 The backbone optical network provides a function of communicating the traffic of the client device via the optical fiber communication path connecting the bases according to the contract service quality (service class). Here, the backbone optical network receives a client signal via an interface between the node device and the client device. Then, after a plurality of client signals are multiplexed using various multiplexing methods, communication is performed via a larger capacity trunk transmission channel. The multiplexing scheme includes wavelength division multiplexing (WDM) scheme, time division multiplexing (TDM) scheme, and orthogonal frequency division multiplexing (OFDM scheme such as Orthogonal Division Division Multiplexing scheme).
 基幹系光ネットワークでは、例えば1チャネル当たり100Gbps(Giga bit per second)級の大容量光リンクを数十波長用いて波長多重することにより、光ファイバ1本当たり最大で数Tbpsの通信容量を実現している。このとき、光ファイバの利用可能な全波長スロットに光パスを収容し、光ネットワーク全体のトラヒック収容効率を最大化するために、各光パスの通信経路および使用波長スロットを適切に割り当てる必要がある。 In a backbone optical network, for example, a maximum capacity of several Tbps per optical fiber is realized by wavelength multiplexing using a large capacity optical link of 100 Gbps (Giga bit per second) class per channel using several tens of wavelengths. ing. At this time, in order to accommodate the optical path in all the available wavelength slots of the optical fiber and maximize the traffic accommodation efficiency of the entire optical network, it is necessary to appropriately assign the communication path and the used wavelength slot of each optical path. .
 波長パスの通信経路および使用波長スロットは割当ポリシーに基づいて決定される。経路割当ポリシーの例としては、最短経路設計および最小ホップ数経路設計などがある。また、波長割当ポリシーとしては例えば、長波長側の空き波長スロットから光パスを割り当てるファーストフィット(First-Fit)割当方式、他の経路で最も使用率が高い空き波長スロットを選択するモストユーズド(Most-Used)割当方式がある。 The communication path of wavelength path and the wavelength slot used are determined based on the allocation policy. Examples of route allocation policies include shortest route design and minimum hop count route design. Further, as a wavelength allocation policy, for example, a first-fit allocation method that allocates an optical path from an empty wavelength slot on the long wavelength side, a most used (Most used) that selects an empty wavelength slot with the highest usage rate in other paths. -Used) There is an allocation method.
 このような光パスを割り当てる光ネットワーク管理装置の一例が、特許文献1に記載されている。特許文献1に記載された関連する光パス設計装置は、予め波長を割り当てる始点となるノードと終点となるノードの組み合わせである各対地に対し、需要計画に基づいて、経路及び波長を予約波長として予約する。そして、光パス設定要求を取得すると、この光パス開通要求と同じ対地を持つ予約波長を検索し、波長を割り当てる。 An example of an optical network management apparatus that allocates such an optical path is described in Patent Document 1. The related optical path design apparatus described in Patent Document 1 uses a path and a wavelength as a reserved wavelength based on a demand plan for each ground, which is a combination of a node serving as a start point and a node serving as an end point, to which wavelengths are assigned in advance. make a reservation. When an optical path setting request is acquired, a reserved wavelength having the same ground as the optical path establishment request is searched and a wavelength is assigned.
 関連する光パス設計装置は、リソース管理情報データベース、データベース検索手段、空き波長探索手段、およびデータベース書き換え手段を有する。リソース管理情報データベースは、ノード間の予約波長と「使用」、「未使用」の状態情報を格納する。データベース検索手段は、入力された光パス開通要求を取得し、この光パス開通要求と同じ対地を持つ予約波長をリソース管理情報データベースから検索する。空き波長探索手段は、データベース検索手段で得られた予約波長が、光パス開通要求に適合するかを判定し、適合しない場合は、リソース管理情報データベースから、この光パス開通要求の経路上における空き波長を検索する。そしてデータベース書き換え手段は、空き波長探索手段で得られた空き波長に基づいて、リソース管理情報データベースの光パス開通要求の経路に対応する情報を更新する。 The related optical path design apparatus has a resource management information database, database search means, empty wavelength search means, and database rewrite means. The resource management information database stores reserved wavelengths between nodes and “used” and “unused” status information. The database search means acquires the input optical path establishment request, and searches the resource management information database for a reserved wavelength having the same ground as the optical path establishment request. The free wavelength search means determines whether the reserved wavelength obtained by the database search means is suitable for the optical path establishment request, and if not, the empty wavelength search path on the route of the optical path establishment request is found from the resource management information database. Search for wavelength. The database rewriting means updates information corresponding to the path of the optical path establishment request in the resource management information database based on the empty wavelength obtained by the empty wavelength searching means.
 このような構成としたことにより、関連する光パス設計装置によれば、経路及び波長を事前に設計した場合においても設備増設を抑えることができる、としている。 By adopting such a configuration, according to the related optical path design apparatus, it is possible to suppress an increase in equipment even when a route and a wavelength are designed in advance.
 また、関連技術としては、特許文献2に記載された技術がある。 Further, as a related technique, there is a technique described in Patent Document 2.
特開2011-023981号公報JP 2011-023981 A 特開2012-195787号公報JP 2012-195787 A
 基幹系光ネットワークでは、国際電気通信連合(International Telecommunication Union:ITU)電気通信標準化部門(Telecommunication Standardization Sector:ITU-T)で標準化されている高密度波長分割多重(Dense Wavelength Division Multiplexing:DWDM)方式に従って光周波数帯域が利用されている。DWDM方式においては、利用可能な光周波数帯域全体を波長グリッドと呼ばれる一定幅のグリッドで細分化し、そのグリッド幅内に一波長チャネルの光信号を割り当てている(ITU-T勧告G.694.1)。 In the backbone optical network, the Dense Wavelength Division Multiplexing Multiplexing Multiplexing Division method is in accordance with the International Telecommunications Union (ITU) Telecommunications Standardization Division (Telecommunication Standardization Sector: ITU-T). The optical frequency band is used. In the DWDM system, the entire available optical frequency band is subdivided by a fixed-width grid called a wavelength grid, and an optical signal of one wavelength channel is allocated within the grid width (ITU-T recommendation G.694.1). ).
 ITU-T勧告G.694.1で標準化されたフレキシブル周波数グリッドにおいては、最小チャネル間隔をこれまでの50GHzから12.5GHzとし、周波数スロットの幅を12.5GHz単位で可変にすることができる構成としている。これにより、光パス毎に異なる幅の周波数スロットを割り当てることができるので、光パスに割り当てる光周波数帯域を必要最小限とすることが可能となった。 ITU-T Recommendation G. The flexible frequency grid standardized by 694.1 has a configuration in which the minimum channel interval can be changed from 50 GHz to 12.5 GHz and the frequency slot width can be changed in units of 12.5 GHz. As a result, frequency slots having different widths can be assigned to each optical path, so that the optical frequency band assigned to the optical path can be minimized.
 このようなフレキシブル周波数グリッドを用いた関連する基幹系光ネットワークシステムの一例を図19に示す。関連する基幹系光ネットワークシステム500は、関連する光ネットワーク管理装置600と関連する光ノード装置711~718を備える。関連する光ネットワーク管理装置600と各関連する光ノード装置711~718は互いに接続され、光ネットワークの利用状況などに関する情報を互いに通信する。 An example of a related backbone optical network system using such a flexible frequency grid is shown in FIG. The related trunk optical network system 500 includes optical node devices 711 to 718 related to the related optical network management device 600. The related optical network management device 600 and the related optical node devices 711 to 718 are connected to each other, and communicate information about the usage status of the optical network with each other.
 図20に、関連する光ネットワーク管理装置600の動作を説明するためのフローチャートを示す。関連する光ネットワーク管理装置600は、一個 の通信トラヒック要求に対して(ステップS701)、着信順に始点ノードと終点ノードとを結ぶ最短経路を検索し(ステップS702)、所要の波長スロット数を決定する(ステップS703)。トラヒック収容に必要な波長スロット数分の空きが有る場合には(ステップS704/YES)、上述したFirst-Fit割当方式に基づいて波長パスを割り当てる(ステップS706)。割り当て可能な空き波長スロットが存在しない場合には(ステップS704/NO)、必要なリンクに対してファイバを増設する(ステップS705)。すべての通信トラヒック要求に対して波長パスの割り当てが完了した時点で(ステップS707/NO)、各光ノード装置に波長パス設定情報を通知し(ステップS708)、波長パス割当を終了する。 FIG. 20 shows a flowchart for explaining the operation of the related optical network management apparatus 600. In response to one communication traffic request (step S701), the related optical network management apparatus 600 searches for the shortest path connecting the start node and the end node in the order of arrival (step S702), and determines the required number of wavelength slots. (Step S703). If there are empty spaces for the number of wavelength slots necessary for traffic accommodation (step S704 / YES), wavelength paths are allocated based on the above-mentioned First-Fit allocation method (step S706). If there is no available wavelength slot that can be assigned (step S704 / NO), a fiber is added to the required link (step S705). When wavelength path assignment is completed for all communication traffic requests (step S707 / NO), wavelength path setting information is notified to each optical node device (step S708), and wavelength path assignment is terminated.
 しかし、このようなフレキシブル周波数グリッドを用いたWDM方式光ネットワークシステムにおいて、上述した関連する光ネットワーク管理装置600のようにFirst-Fit割当方式に基づいて波長パスを割り当てることとすると、以下の問題があった。すなわち、波長スロット数または変調方式が異なる波長パスが隣り合うように割り当てられる場合が生じる。この場合、光ファイバの非線形光学効果に起因して、隣接する波長パスにおいて通信品質劣化が生じる。 However, in such a WDM optical network system using a flexible frequency grid, if the wavelength path is assigned based on the First-Fit assignment method as in the related optical network management apparatus 600 described above, the following problems occur. there were. That is, there are cases where wavelength paths having different number of wavelength slots or different modulation schemes are allocated so as to be adjacent to each other. In this case, communication quality degradation occurs in adjacent wavelength paths due to the nonlinear optical effect of the optical fiber.
 ここで、図21に示すように、隣接する波長パスの間にガードバンドと呼ばれる少数の空き波長スロットを挿入することにより、通信品質劣化を防止することが可能である。しかし、この場合、隣接する波長パスの占有波長スロット数または変調方式が異なる場所ごとにガードバンドを挿入する必要がある。そのため、光ファイバ1本当たりの実効的な利用可能波長スロット数が減少してしまうという問題があった。 Here, as shown in FIG. 21, it is possible to prevent deterioration in communication quality by inserting a small number of empty wavelength slots called guard bands between adjacent wavelength paths. However, in this case, it is necessary to insert a guard band for each location where the number of occupied wavelength slots or modulation schemes of adjacent wavelength paths are different. Therefore, there is a problem that the effective number of usable wavelength slots per optical fiber is reduced.
 このように、基幹系光ネットワークにおいては、光ネットワーク全体としてのトラヒック収容効率を最大化することが困難である、という問題点があった。 As described above, the backbone optical network has a problem that it is difficult to maximize the traffic accommodation efficiency of the entire optical network.
 本発明の目的は、上述した課題である、基幹系光ネットワークにおいては、光ネットワーク全体としてのトラヒック収容効率を最大化することが困難である、という課題を解決する光ネットワーク管理装置および光ネットワーク管理方法を提供することにある。 An object of the present invention is an optical network management apparatus and an optical network management that solve the above-described problem that in a backbone optical network, it is difficult to maximize the traffic accommodation efficiency of the entire optical network. It is to provide a method.
 本発明の光ネットワーク管理装置は、複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定する経路探索部と、最適経路においてトラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性をトラヒック要求ごとに決定する波長パス属性決定部と、光周波数軸上で隣接した波長パスそれぞれの変調方式が等しくなるように、波長パスを光周波数軸上に割り当てる波長パス割当部、とを有する。 The optical network management apparatus of the present invention receives at least a plurality of traffic requests, and determines at least modulation of a path search unit that determines an optimum path between optical node apparatuses for each traffic request, and a wavelength path that accommodates the traffic requests in the optimum path, respectively. A wavelength path attribute determining unit that determines a wavelength path attribute including a method for each traffic request and a wavelength path that allocates a wavelength path on the optical frequency axis so that the modulation methods of the adjacent wavelength paths on the optical frequency axis are equal. And an allocation unit.
 本発明の光ネットワーク管理方法は、複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定し、最適経路においてトラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性をトラヒック要求ごとに決定し、光周波数軸上で隣接した波長パスそれぞれの変調方式が等しくなるように、波長パスを光周波数軸上に割り当てる。 The optical network management method of the present invention receives a plurality of traffic requests, determines an optimum path between optical node devices for each traffic request, and includes a wavelength including at least a modulation method in each wavelength path that accommodates the traffic request in the optimum path. A path attribute is determined for each traffic request, and wavelength paths are allocated on the optical frequency axis so that the modulation schemes of adjacent wavelength paths on the optical frequency axis are equal.
 本発明の光ネットワーク管理装置および光ネットワーク管理方法によれば、基幹系光ネットワークにおいて、トラヒックを効率よく収容することが可能となる。 According to the optical network management apparatus and the optical network management method of the present invention, traffic can be efficiently accommodated in the backbone optical network.
本発明の第1の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ノード装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical node apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための光通信システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical communication system for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための要求トラヒックを示す図である。It is a figure which shows the request traffic for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための信号光の到達性を示す図である。It is a figure which shows the reachability of the signal light for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置による波長パスの設定結果を示す概略図である。It is the schematic which shows the setting result of the wavelength path | pass by the optical network management apparatus concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための光通信システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical communication system for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための概略図である。It is the schematic for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するために用いたメトリック値を示す図である。It is a figure which shows the metric value used in order to demonstrate the wavelength path setting result by the optical network management apparatus concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための光通信システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical communication system for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る光ネットワーク管理装置による波長パスの設定結果を示す概略図である。It is the schematic which shows the setting result of the wavelength path by the optical network management apparatus concerning the 4th Embodiment of this invention. 本発明の第2の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するために用いたメトリック値を示す図である。It is a figure which shows the metric value used in order to demonstrate the wavelength path setting result by the optical network management apparatus concerning the 2nd Embodiment of this invention. 本発明の第4の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための信号光の到達性を示す図である。It is a figure which shows the reachability of the signal light for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る光ネットワーク管理装置による波長パスの設定結果を示す概略図である。It is the schematic which shows the setting result of the wavelength path by the optical network management apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical network management apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置の動作を説明するための別のフローチャートである。It is another flowchart for demonstrating operation | movement of the optical network management apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための光通信システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical communication system for demonstrating the wavelength path setting result by the optical network management apparatus concerning the 6th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置による波長パスの設定結果を示す概略図である。It is the schematic which shows the setting result of the wavelength path by the optical network management apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る光ネットワーク管理装置による波長パス設定結果を説明するための信号光の到達性を示す図である。It is a figure which shows the reachability of the signal light for demonstrating the wavelength path setting result by the optical network management apparatus which concerns on the 6th Embodiment of this invention. 関連する基幹系光ネットワークシステムの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a related backbone optical network system. FIG. 関連する光ネットワーク管理装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the related optical network management apparatus. 関連する光ネットワーク管理装置によって波長パスを割り当てた例を示す図である。It is a figure which shows the example which allocated the wavelength path | route by the related optical network management apparatus.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光ネットワーク管理装置100の構成を示すブロック図である。光ネットワーク管理装置100は、経路探索部110、波長パス属性決定部120、および波長パス割当部130を有する。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of an optical network management apparatus 100 according to the first embodiment of the present invention. The optical network management apparatus 100 includes a route search unit 110, a wavelength path attribute determination unit 120, and a wavelength path allocation unit 130.
 経路探索部110は、複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定する。波長パス属性決定部120は、最適経路においてトラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性をトラヒック要求ごとに決定する。そして波長パス割当部130は、光周波数軸上で隣接した波長パスそれぞれの変調方式が等しくなるように、波長パスを光周波数軸上に割り当てる。 The route search unit 110 receives a plurality of traffic requests and determines an optimum route between the optical node devices for each traffic request. The wavelength path attribute determining unit 120 determines, for each traffic request, a wavelength path attribute including at least a modulation scheme of the wavelength paths that respectively accommodate the traffic requests in the optimum route. Then, the wavelength path assigning unit 130 assigns the wavelength paths on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
 このような構成とすることにより、本実施形態の光ネットワーク管理装置100によれば、光周波数軸上で隣接した波長パスそれぞれの変調方式は等しくなるので、ガードバンドを挿入する箇所を最小限とすることができる。その結果、基幹系光ネットワークにおいて、トラヒックを効率よく収容することが可能となる。 With such a configuration, according to the optical network management device 100 of the present embodiment, the modulation schemes of the wavelength paths adjacent on the optical frequency axis are equal, so that the number of places where guard bands are inserted is minimized. can do. As a result, traffic can be efficiently accommodated in the backbone optical network.
 次に、本実施形態による光ネットワーク管理方法について説明する。本実施形態による光ネットワーク管理方法においては、まず、複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定する。続いて、この最適経路においてトラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性をトラヒック要求ごとに決定する。そして、光周波数軸上で隣接した波長パスそれぞれの変調方式が等しくなるように、波長パスを光周波数軸上に割り当てる。 Next, the optical network management method according to this embodiment will be described. In the optical network management method according to the present embodiment, first, a plurality of traffic requests are accepted, and an optimum path between optical node devices is determined for each traffic request. Subsequently, the wavelength path attributes including at least the modulation method of the wavelength paths respectively accommodating the traffic requests in the optimum route are determined for each traffic request. Then, the wavelength paths are allocated on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
 この場合においても、光周波数軸上で隣接した波長パスそれぞれの変調方式は等しくなるので、ガードバンドを挿入する箇所を最小限とすることができる。 Even in this case, the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal, and therefore the number of places where guard bands are inserted can be minimized.
 以上説明したように、本実施形態の光ネットワーク管理装置および光ネットワーク管理方法によれば、基幹系光ネットワークにおいて、トラヒックを効率よく収容することが可能となる。 As described above, according to the optical network management apparatus and the optical network management method of the present embodiment, traffic can be efficiently accommodated in the backbone optical network.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2に本実施形態に係る光ネットワーク管理装置200の構成を示す。図2に示すように、光ネットワーク管理装置200は、データベース部210、トラヒック収容設計部220、およびパス割当制御部230を有する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 shows the configuration of the optical network management apparatus 200 according to this embodiment. As shown in FIG. 2, the optical network management apparatus 200 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
 データベース部210は、トラヒックDB211、物理層トポロジーDB212、波長パス管理DB213、割当前波長パスDB214を備える。一方、トラヒック収容設計部220は、経路探索部221、所要波長スロット数決定部222、波長スロット・ファイバ割当決定部223、トラヒック割当順序決定部224を備える。パス割当制御部230は各光ノード装置と接続される。 The database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, and a pre-allocation wavelength path DB 214. On the other hand, the traffic accommodation design unit 220 includes a route search unit 221, a required wavelength slot number determination unit 222, a wavelength slot / fiber allocation determination unit 223, and a traffic allocation order determination unit 224. The path allocation control unit 230 is connected to each optical node device.
 ここで、経路探索部221は第1の実施形態に係る光ネットワーク管理装置100が備える経路探索部110に、所要波長スロット数決定部222は波長パス属性決定部120にそれぞれ対応する。また、波長スロット・ファイバ割当決定部223と、割当順序決定部としてのトラヒック割当順序決定部224とが波長パス割当部130を構成する一例である。 Here, the route search unit 221 corresponds to the route search unit 110 included in the optical network management device 100 according to the first embodiment, and the required wavelength slot number determination unit 222 corresponds to the wavelength path attribute determination unit 120, respectively. The wavelength slot / fiber allocation determining unit 223 and the traffic allocation order determining unit 224 as an allocation order determining unit are an example of the wavelength path allocation unit 130.
 トラヒックDB211はトラヒック要求を保存する。物理層トポロジーDB212は光通信網の物理配置およびファイバ接続関係を記録する。波長パス管理DB213は運用中波長パスの設定情報を記録する。そして割当前波長パスDB214は、所要波長スロット数決定部222において決定された波長パスの変調方式を保存する。 The traffic DB 211 stores traffic requests. The physical layer topology DB 212 records the physical arrangement of the optical communication network and the fiber connection relationship. The wavelength path management DB 213 records operating wavelength path setting information. The pre-assignment wavelength path DB 214 stores the wavelength path modulation method determined by the required wavelength slot number determination unit 222.
 図3に、本実施形態に係る光ノード装置300の構成を示す。同図に示すように、光ノード装置300は、大粒度切替部310、制御部320、および光トランスポンダ(TPND)装置331、332を有する。 FIG. 3 shows a configuration of the optical node device 300 according to the present embodiment. As shown in the figure, the optical node device 300 includes a large granularity switching unit 310, a control unit 320, and optical transponder (TPND) devices 331 and 332.
 大粒度切替部310は、光伝送路と光トランスポンダ(TPND)装置331、332を接続し、波長パス単位で複数の光伝送路を切替える。制御部320は、光ネットワーク管理装置200が備えるパス割当制御部230から波長パスを割り当てた結果である波長パス割当情報を受け付ける。そして、波長パス割当情報に基づいて大粒度切替部310および光トランスポンダ(TPND)装置331、332の動作を制御する。そして、光トランスポンダ(TPND)装置331、332は、光伝送路を介してクライアント信号を送受信する。 The large granularity switching unit 310 connects an optical transmission line and optical transponder (TPND) devices 331 and 332, and switches a plurality of optical transmission lines in units of wavelength paths. The control unit 320 receives wavelength path assignment information that is a result of assigning wavelength paths from the path assignment control unit 230 provided in the optical network management apparatus 200. Based on the wavelength path allocation information, the operations of the large granularity switching unit 310 and the optical transponder (TPND) devices 331 and 332 are controlled. The optical transponder (TPND) devices 331 and 332 transmit and receive client signals via the optical transmission path.
 次に、本実施形態に係る光ネットワーク管理装置200の動作について説明する。図4は、本実施形態に係る光ネットワーク管理装置200の動作を説明するためのフローチャートである。 Next, the operation of the optical network management apparatus 200 according to this embodiment will be described. FIG. 4 is a flowchart for explaining the operation of the optical network management apparatus 200 according to the present embodiment.
 光ネットワーク管理装置200はまず、トラヒックDB211から通信トラヒック要求を着信順に一個抽出する(ステップS201)。経路探索部221は、物理層トポロジーDB212を参照の上、そのトラヒック要求の始点ノードと終点ノードを接続する最短経路を検索する(ステップS202)。次に、所要波長スロット数決定部222は、検索結果である最短経路のリンク品質に基づいて、波長スロット数および変調方式を決定し(ステップS203)、割当前波長パスDB214に変調方式を保存する(ステップS204)。ここで、割当前波長パスDB214に、所要波長スロット数決定部222において決定された所要波長スロット数を記録することとしてもよい。この操作をすべてのトラヒック要求に対して実施する(ステップS205)。 First, the optical network management apparatus 200 extracts one communication traffic request from the traffic DB 211 in the order of arrival (step S201). The route search unit 221 refers to the physical layer topology DB 212 and searches for the shortest route connecting the start point node and the end point node of the traffic request (step S202). Next, the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path as a search result (step S203), and stores the modulation method in the pre-assignment wavelength path DB 214. (Step S204). Here, the required wavelength slot number determined by the required wavelength slot number determining unit 222 may be recorded in the pre-assignment wavelength path DB 214. This operation is performed for all traffic requests (step S205).
 次に、トラヒック割当順序決定部224は、変調方式によって定まる波長パスの光周波数利用効率の大きさの順番を決定する。具体的には、波長パスの光周波数利用効率に関する大きさの順番に従って割当前波長パスDB214から通信トラヒックを一個抽出する(ステップS206)。ここで、波長パスの光周波数利用効率は、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)等の変調方式や、単位波長スロット数当たりの波長パスの通信容量である。光周波数利用効率が同一の波長パスに対しては、トラヒック収容に必要な波長スロット数についてさらに順序付けを行い、その順番により抽出する。このとき、トラヒック割当順序決定部224は、波長パスのホップ数、通信距離、波長パスの通信品質について順序付けを行うことにより、トラヒックを抽出することとしてもよい。 Next, the traffic allocation order determination unit 224 determines the order of the optical frequency utilization efficiency of the wavelength path determined by the modulation method. Specifically, one piece of communication traffic is extracted from the pre-allocation wavelength path DB 214 in accordance with the order of the magnitudes related to the optical frequency utilization efficiency of the wavelength paths (step S206). Here, the optical frequency utilization efficiency of the wavelength path is a modulation scheme such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), a modulation method per wavelength, such as a modulation scheme per wavelength path. Capacity. For wavelength paths having the same optical frequency utilization efficiency, the number of wavelength slots necessary for accommodating traffic is further ordered, and extraction is performed according to the order. At this time, the traffic allocation order determination unit 224 may extract traffic by ordering the number of wavelength path hops, the communication distance, and the communication quality of the wavelength path.
 なお、光周波数帯域のフラグメンテーションの発生数を低減するために、長距離トラヒックまたはホップ数の大きいトラヒックから順番に割り当てることが一般的である。このようなトラヒックには、光の到達性を考慮すると光周波数利用効率の低い変調方式(例えば、BPSK、QPSK)を採用することが望ましい。したがってこのような場合には、光周波数利用効率が小さい順番に従ってトラヒックを抽出する構成とすることができる。 Note that in order to reduce the number of occurrences of fragmentation in the optical frequency band, it is common to assign traffic in order from long-distance traffic or traffic with a large number of hops. For such traffic, it is desirable to adopt a modulation scheme (for example, BPSK, QPSK) having low optical frequency utilization efficiency in consideration of the reachability of light. Therefore, in such a case, it is possible to adopt a configuration in which traffic is extracted in the order of decreasing optical frequency utilization efficiency.
 抽出したトラヒック要求に対して、波長スロット・ファイバ割当決定部223は、二拠点ノード間通信を確立するうえで必要となる空き波長スロットの有無を調査する(ステップS207)。空き波長スロットが不足している場合には(ステップS207/NO)、ファイバを増設したうえで(ステップS208)、空き波長スロットにこのときの波長パスを割り当てる(ステップS209)。割当前波長パスDB214が保持するすべての波長パスに対して上述の手順(ステップS206~S209)を実施する。すなわち、波長スロット・ファイバ割当決定部223は、光周波数軸上で隣接した波長スロットに、波長パスを上述した順番に従ってそれぞれ割り当てる。すべての波長パスに対して上述の手順が完了した後に(ステップS210/NO)、波長スロット・ファイバ割当決定部223は波長パス割当情報をパス割当制御部230に通知する。 In response to the extracted traffic request, the wavelength slot / fiber allocation determining unit 223 checks whether there is a free wavelength slot necessary for establishing communication between the two base nodes (step S207). If there are not enough free wavelength slots (NO in step S207), the number of fibers is increased (step S208), and the wavelength path at this time is assigned to the empty wavelength slot (step S209). The above-described procedure (steps S206 to S209) is performed for all wavelength paths held in the pre-allocation wavelength path DB 214. That is, the wavelength slot / fiber assignment determining unit 223 assigns the wavelength paths to the wavelength slots adjacent on the optical frequency axis in the order described above. After the above procedure is completed for all the wavelength paths (step S210 / NO), the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information.
 パス割当制御部230は、データベース部210および光ノード装置300に波長パス設定結果を通知する(ステップS211)。光ノード装置300が備える制御部320は、受け付けた波長パス設定結果の通知に基づいて、大粒度切替部310および光トランスポンダ(TPND)装置331、332の設定を変更する。 The path assignment control unit 230 notifies the database unit 210 and the optical node device 300 of the wavelength path setting result (step S211). The control unit 320 included in the optical node device 300 changes the settings of the large granularity switching unit 310 and the optical transponder (TPND) devices 331 and 332 based on the received notification of the wavelength path setting result.
 なお、経路探索部221は、トラヒック要求に係る始点ノードと終点ノードを接続する最小ホップ数の経路、またはリンク品質が最も良好となる経路を検索することとしてもよい。 Note that the route search unit 221 may search for a route with the minimum number of hops connecting the start point node and the end point node related to the traffic request, or a route with the best link quality.
 上述したように、トラヒック割当順序決定部224は波長パスの光周波数利用効率に関して順序付けを実施し、また光周波数利用効率が同一の波長パスに対しては波長スロット数に関して順序付けを行う。その後に、その順番でトラヒック要求を抽出する。そして、波長スロット・ファイバ割当決定部223が、例えばFirst-Fit方式によって波長パスを割り当てる。このような構成としたことにより、同一変調方式、波長スロット数の波長パスが隣接し合うように波長パスを設定することが可能となる。すなわち、変調方式が同一となる波長パス、次に波長スロット数が同一となる波長パスから順番に長波長側から波長パスを割り当てる構成としているので、隣接する波長パスは同一の変調方式および同一の波長スロット数となる。その結果、ガードバンドの占有波長スロット数を低減することができ、光ネットワーク全体のトラヒック収容効率を最大化することが可能となる。 As described above, the traffic allocation order determination unit 224 performs ordering with respect to the optical frequency utilization efficiency of the wavelength paths, and performs ordering with respect to the number of wavelength slots for the wavelength paths having the same optical frequency utilization efficiency. Thereafter, traffic requests are extracted in that order. Then, the wavelength slot / fiber assignment determining unit 223 assigns the wavelength path by, for example, the First-Fit method. By adopting such a configuration, it becomes possible to set the wavelength path so that the wavelength paths of the same modulation method and the number of wavelength slots are adjacent to each other. That is, since the wavelength path is assigned from the long wavelength side in order from the wavelength path having the same modulation method and then the wavelength path having the same number of wavelength slots, the adjacent wavelength path has the same modulation method and the same This is the number of wavelength slots. As a result, the number of wavelength bands occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
 次に、図5A~5Dを用いて、本実施形態に係る光ネットワーク管理装置200による波長パスの設定結果について説明する。ここでは、図5Aに示すように、6個の光ノード装置301~306がそれぞれ光ファイバ伝送路で接続された光通信システムを例として説明する。 Next, wavelength path setting results by the optical network management apparatus 200 according to the present embodiment will be described with reference to FIGS. 5A to 5D. Here, as shown in FIG. 5A, an optical communication system in which six optical node devices 301 to 306 are connected by optical fiber transmission lines will be described as an example.
 この光通信システムに図5Bに示すような6個のトラヒック要求が到着した場合、光ノード装置303と光ノード装置304との間の光リンクにおける波長使用状況について説明する。変調方式は図5Cに示すように、通信経路のホップ数に依存する場合を例として用いるが、必ずしもこれに限られない。 When six traffic requests as shown in FIG. 5B arrive in this optical communication system, the wavelength usage situation in the optical link between the optical node device 303 and the optical node device 304 will be described. As shown in FIG. 5C, the modulation method is used as an example depending on the number of hops of the communication path, but is not necessarily limited thereto.
 上述したように、関連する光ネットワーク管理装置600が波長パスを割り当てる場合、トラヒック要求の着信順に波長パスが割り当てられるため、図21に示したように、互いに異なる変調方式の信号光が隣り合うように配置される。その結果、通信品質の劣化を防止するために、隣接し合う信号光の間にガードバンドを配置する必要があった。 As described above, when the related optical network management apparatus 600 assigns wavelength paths, the wavelength paths are assigned in the order of arrival of traffic requests, so that signal lights of different modulation schemes are adjacent to each other as shown in FIG. Placed in. As a result, it was necessary to arrange a guard band between adjacent signal lights in order to prevent deterioration in communication quality.
 それに対して、本実施形態に係る光ネットワーク管理装置200が波長パスを割り当てる場合、各トラヒック要求に対して最小ホップ数となる経路を探索したうえで、変調方式および所要波長スロット数を決定する。そして、多値度の小さい変調方式から順番に波長パスを割り当てることにより、図5Dに示すように同一の変調方式の信号光が隣接するように割り当てられる。その結果、挿入するガードバンドの個数を減らすことが可能になる。以上より、本実施形態に係る光ネットワーク管理装置200によれば、光通信システム全体のトラヒック収容効率を向上させることができる。 On the other hand, when the optical network management apparatus 200 according to the present embodiment allocates a wavelength path, the modulation system and the required number of wavelength slots are determined after searching for a route having the minimum number of hops for each traffic request. Then, by assigning wavelength paths in order from the modulation scheme with the smallest multilevel, signal light of the same modulation scheme is allocated so as to be adjacent as shown in FIG. 5D. As a result, the number of guard bands to be inserted can be reduced. As described above, according to the optical network management apparatus 200 according to the present embodiment, the traffic accommodation efficiency of the entire optical communication system can be improved.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図6に本実施形態に係る光ネットワーク管理装置201の構成を示す。図6に示すように、光ネットワーク管理装置201は、データベース部210、トラヒック収容設計部220、およびパス割当制御部230を有する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 6 shows a configuration of the optical network management apparatus 201 according to the present embodiment. As illustrated in FIG. 6, the optical network management apparatus 201 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
 データベース部210は、トラヒックDB211、物理層トポロジーDB212、波長パス管理DB213、および隣接波長パスメトリックDB215を有する。ここで、隣接波長パスメトリックDB215は隣接する波長パスの変調方式に応じた重み付け量を管理する。 The database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, and an adjacent wavelength path metric DB 215. Here, the adjacent wavelength path metric DB 215 manages the weighting amount according to the modulation method of the adjacent wavelength path.
 トラヒック収容設計部220は、経路探索部221、所要波長スロット数決定部222、波長スロット・ファイバ割当決定部223、および波長パス割当メトリック計算部225を有する。 The traffic accommodation design unit 220 includes a route search unit 221, a required wavelength slot number determination unit 222, a wavelength slot / fiber allocation determination unit 223, and a wavelength path allocation metric calculation unit 225.
 波長パス割当メトリック計算部225は波長パスメトリック算出部として、光周波数軸上で隣接する波長パスの変調方式により定まる重み付け量を用いて、波長スロットごとに隣接波長パスメトリックを算出する。具体的には、空き波長スロットに隣接する波長パスのそれぞれの変調方式と対応する重み付け量をリンク毎に加算することによって、隣接波長パスメトリックの値を算出する。なお、波長パス割当メトリック計算部225が、隣接波長パスの光周波数利用効率および所要波長スロット数に関する重み付け量を、隣接波長パスメトリックに加算する構成としてもよい。 The wavelength path allocation metric calculation unit 225, as a wavelength path metric calculation unit, calculates an adjacent wavelength path metric for each wavelength slot using a weighting amount determined by a modulation method of adjacent wavelength paths on the optical frequency axis. Specifically, the value of the adjacent wavelength path metric is calculated by adding the weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for each link. The wavelength path allocation metric calculation unit 225 may add a weighting amount related to the optical frequency utilization efficiency of the adjacent wavelength path and the required number of wavelength slots to the adjacent wavelength path metric.
 次に、本実施形態に係る光ネットワーク管理装置201の動作について説明する。図7は、本実施形態に係る光ネットワーク管理装置201の動作を説明するためのフローチャートである。 Next, the operation of the optical network management apparatus 201 according to this embodiment will be described. FIG. 7 is a flowchart for explaining the operation of the optical network management apparatus 201 according to this embodiment.
 光ネットワーク管理装置201はまず、トラヒックDB211から通信トラヒック要求を一個抽出する(ステップS201)。経路探索部221は、抽出された通信トラヒック要求に対して、始点ノードと終点ノードを接続する最短経路を検索する(ステップS202)。次に、所要波長スロット数決定部222は、検索結果の経路のリンク品質に基づいて、波長スロット数および変調方式を決定する(ステップS203)。波長スロット・ファイバ割当決定部223は、二拠点ノード間通信を確立するうえで必要となる空き波長スロットの有無を調査する(ステップS207)。空き波長スロットが不足している場合には(ステップS207/NO)、ファイバを増設する(ステップS208)。 First, the optical network management apparatus 201 extracts one communication traffic request from the traffic DB 211 (step S201). In response to the extracted communication traffic request, the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202). Next, the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the path of the search result (step S203). The wavelength slot / fiber allocation determination unit 223 checks whether there is an empty wavelength slot necessary for establishing communication between the two base nodes (step S207). If there are not enough empty wavelength slots (step S207 / NO), the number of fibers is increased (step S208).
 次に、波長パス割当メトリック計算部225は、隣接波長パスメトリックDB215を参照して、空き波長スロットに隣接する波長パスのそれぞれの変調方式に対応する重み付け量を最短経路のリンク毎に加算する。これにより、空き波長スロットに波長パスを割り当てる際の隣接波長パスメトリックの値を算出する。このとき、波長スロット・ファイバ割当決定部223は、隣接波長パスメトリックが最適となる波長スロットに波長パスを割り当てる。例えば、隣接波長パスメトリックが最小となる空き波長スロットに波長パスを割り当てる(ステップS212)。 Next, the wavelength path allocation metric calculation unit 225 refers to the adjacent wavelength path metric DB 215 and adds a weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for each link of the shortest path. Thereby, the value of the adjacent wavelength path metric when assigning the wavelength path to the empty wavelength slot is calculated. At this time, the wavelength slot / fiber assignment determining unit 223 assigns the wavelength path to the wavelength slot in which the adjacent wavelength path metric is optimal. For example, a wavelength path is assigned to an empty wavelength slot having a minimum adjacent wavelength path metric (step S212).
 トラヒックDB211が保持するすべての波長パスに対して上述の手順が完了した後に(ステップS210/NO)、波長スロット・ファイバ割当決定部223は波長パス割当情報をパス割当制御部230に通知する。パス割当制御部230は、波長パス割当情報をデータベース部210および光ノード装置300に通知する(ステップS211)。 After the above procedure is completed for all wavelength paths held in the traffic DB 211 (step S210 / NO), the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information. The path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
 なお、隣接波長パスメトリックDB215が管理する重み付け量は、伝送シミュレーション結果や伝送実験結果などから求めることが出来る。また、隣接波長パスの波長スロット数についてメトリックを定義することとしてもよい。 Note that the weighting amount managed by the adjacent wavelength path metric DB 215 can be obtained from a transmission simulation result or a transmission experiment result. Also, a metric may be defined for the number of wavelength slots of adjacent wavelength paths.
 次に、図8A~8Cを用いて、本実施形態に係る光ネットワーク管理装置201による波長パスの設定結果について説明する。ここでは、図8Aに示すように、4個の光ノード装置301~304がそれぞれ光ファイバ伝送路で接続された光通信システムを例として説明する。 Next, wavelength path setting results by the optical network management apparatus 201 according to the present embodiment will be described with reference to FIGS. 8A to 8C. Here, as shown in FIG. 8A, an optical communication system in which four optical node devices 301 to 304 are connected by optical fiber transmission lines will be described as an example.
 光ノード装置301と光ノード装置302との間の光リンクにおけるトラヒック要求に対して、図8Bに示すように空き波長スロットSL401~SL404が存在するとする。この場合における隣接波長パスメトリックの算出方法を以下に説明する。 Assume that there are empty wavelength slots SL401 to SL404 as shown in FIG. 8B in response to a traffic request on the optical link between the optical node device 301 and the optical node device 302. A method for calculating the adjacent wavelength path metric in this case will be described below.
 隣接波長パスメトリックの値は波長パスの変調方式に基づいて設定される。隣接する波長パスにおける変調方式としてQPSK、8QAM、16QAMの3種類を想定し、これと隣接する波長スロットが空きの場合の各メトリック値(重み付け量)を、図8Cに示すように定義する。例えば、割当対象となる波長パスの変調方式が16QAMである場合、空きスロットSL402の隣接波長パスメトリックの値は次のように求められる。空きスロットSL402の左側の波長スロットは16QAM変調信号の波長パスであり、右側の波長スロットは空き波長スロットであるので、空きスロットSL402の隣接波長パスメトリックの値は図8Cから100+0=100となる。図8B中に示すように、空き波長スロットSL401~SL404のうち、空きスロットSL402の隣接波長パスメトリックの値が最小となるため、本実施形態によれば、空き波長スロットSL402にトラヒック要求を収容することになる。 The value of the adjacent wavelength path metric is set based on the modulation method of the wavelength path. Assuming three types of modulation schemes of QPSK, 8QAM, and 16QAM as modulation methods in adjacent wavelength paths, each metric value (weighting amount) when the adjacent wavelength slot is empty is defined as shown in FIG. 8C. For example, when the modulation method of the wavelength path to be allocated is 16QAM, the value of the adjacent wavelength path metric of the empty slot SL402 is obtained as follows. Since the left wavelength slot of the empty slot SL402 is a wavelength path of a 16QAM modulated signal and the right wavelength slot is an empty wavelength slot, the adjacent wavelength path metric value of the empty slot SL402 is 100 + 0 = 100 from FIG. 8C. As shown in FIG. 8B, since the adjacent wavelength path metric value of the empty slot SL402 among the empty wavelength slots SL401 to SL404 is minimized, according to the present embodiment, a traffic request is accommodated in the empty wavelength slot SL402. It will be.
 ここで、本実施形態では図8Cに示したように、同一の変調方式の信号光が隣接する場合に、メトリック値(重み付け量)が最小となるように構成している。また、図8Bに示すように、変調方式がQPSK、8QAM、16QAMである波長パスに対して、隣接する空き波長スロットがそれぞれ存在している。したがって、隣接波長パスメトリックの値が最小となる空き波長スロットを選択すると、同一の変調方式の信号光が隣接するように割り当てられる。その結果、この場合は挿入するガードバンドは不要となる。 Here, in the present embodiment, as shown in FIG. 8C, the metric value (weighting amount) is minimized when signal lights of the same modulation method are adjacent to each other. Also, as shown in FIG. 8B, adjacent empty wavelength slots exist for wavelength paths whose modulation schemes are QPSK, 8QAM, and 16QAM, respectively. Therefore, when an empty wavelength slot that minimizes the value of the adjacent wavelength path metric is selected, signal light of the same modulation scheme is assigned so as to be adjacent. As a result, in this case, the guard band to be inserted becomes unnecessary.
 上述したように、隣接波長パスメトリックの値が最小となる空き波長スロットにトラヒック要求を収容することによって、同一の変調方式による波長パスが隣接し合うように波長パスを設定することが可能である。したがって、本実施形態に係る光ネットワーク管理装置201によれば、ガードバンドの占有波長スロット数を低減でき、光ネットワーク全体のトラヒック収容効率を最大化することが可能となる。 As described above, it is possible to set the wavelength path so that the wavelength paths according to the same modulation method are adjacent to each other by accommodating the traffic request in the empty wavelength slot in which the value of the adjacent wavelength path metric is the smallest. . Therefore, according to the optical network management apparatus 201 according to the present embodiment, the number of wavelength bands occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
 〔第4の実施形態〕
 次に、本発明の第4の実施の形態について説明する。図9に本実施形態に係る光ネットワーク管理装置202の構成を示す。図9に示すように、光ネットワーク管理装置202は、データベース部210、トラヒック収容設計部220、およびパス割当制御部230を有する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 9 shows the configuration of the optical network management apparatus 202 according to this embodiment. As illustrated in FIG. 9, the optical network management apparatus 202 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
 データベース部210は、トラヒックDB211、物理層トポロジーDB212、波長パス管理DB213、隣接波長パスメトリックDB215、波長パス割当候補DB216を備える。ここで、波長パス割当候補DB216は、経路探索部221において求められた経路に対する隣接波長パスメトリックの最小値と最小値を実現する波長スロットの割当を保持する。 The database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, an adjacent wavelength path metric DB 215, and a wavelength path allocation candidate DB 216. Here, the wavelength path allocation candidate DB 216 holds the allocation of wavelength slots that realize the minimum value and the minimum value of the adjacent wavelength path metric for the path obtained by the path search unit 221.
 次に、本実施形態に係る光ネットワーク管理装置202の動作について説明する。図10は、本実施形態に係る光ネットワーク管理装置202の動作を説明するためのフローチャートである。 Next, the operation of the optical network management apparatus 202 according to this embodiment will be described. FIG. 10 is a flowchart for explaining the operation of the optical network management apparatus 202 according to this embodiment.
 光ネットワーク管理装置202はまず、トラヒックDB211から通信トラヒック要求を一個抽出する(ステップS201)。経路探索部221は、抽出された通信トラヒック要求に対して、始点ノードと終点ノードを接続する最短経路を検索する(ステップS202)。次に、所要波長スロット数決定部222は、最短経路のリンク品質に基づいて、波長スロット数および変調方式を決定する(ステップS203)。 First, the optical network management apparatus 202 extracts one communication traffic request from the traffic DB 211 (step S201). In response to the extracted communication traffic request, the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202). Next, the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203).
 次に、波長パス割当メトリック計算部225は、隣接波長パスメトリックDB215を参照して、通信を確立するための空き波長スロットに隣接する波長パスのそれぞれの変調方式に対応する重み付け量を最短経路のリンク毎に加算する。これにより、空き波長スロットに波長パスを割り当てる際の隣接波長パスメトリックの値を算出する。そして、隣接波長パスメトリックの最小値と、最小値となるときの波長スロットの割当を波長パス割当候補DB216に保存する(ステップS213)。 Next, the wavelength path allocation metric calculation unit 225 refers to the adjacent wavelength path metric DB 215 to determine the weighting amount corresponding to each modulation method of the wavelength path adjacent to the empty wavelength slot for establishing communication in the shortest path. Add for each link. Thereby, the value of the adjacent wavelength path metric when assigning the wavelength path to the empty wavelength slot is calculated. Then, the minimum value of the adjacent wavelength path metric and the wavelength slot allocation when the minimum value is reached are stored in the wavelength path allocation candidate DB 216 (step S213).
 このとき、隣接波長パスメトリックが最小となる空き波長スロットにおいて、隣接する波長スロットに収容される波長パスの変調方式または波長スロット数が同一か否かを判定する(ステップS214)。隣接する波長スロットに収容される波長パスの変調方式または波長スロット数が異なる場合(ステップS214/NO)、当該経路の次に短い経路に対して同様の操作を実施する(ステップS215/YES)。これにより、隣接する波長スロットに収容される波長パスが同一の変調方式または同一の波長スロット数となる空き波長スロットを探索する。 At this time, it is determined whether the modulation method or the number of wavelength slots of the wavelength paths accommodated in the adjacent wavelength slots is the same in the empty wavelength slot in which the adjacent wavelength path metric is minimum (step S214). When the modulation method or the number of wavelength slots of the wavelength paths accommodated in the adjacent wavelength slots are different (step S214 / NO), the same operation is performed on the next shortest path (step S215 / YES). Thereby, a search is made for an empty wavelength slot in which the wavelength paths accommodated in the adjacent wavelength slots have the same modulation scheme or the same number of wavelength slots.
 経路の再検索候補が無くなった時点で(ステップS215/NO)、経路毎の隣接波長パスメトリックの値が最小となる波長スロットに波長パスの割り当てを実施する(ステップS218)。なお、空き波長スロットが存在しない場合には(ステップS216/NO)、最短経路のリンクのうち空き波長スロットが存在しないリンクに対してファイバの増設を実施する(ステップS217)。 When there are no route re-search candidates (step S215 / NO), wavelength paths are assigned to the wavelength slot in which the adjacent wavelength path metric value for each route is minimum (step S218). If there is no empty wavelength slot (step S216 / NO), fiber addition is performed on the link with no empty wavelength slot among the shortest path links (step S217).
 トラヒックDB211が保持するすべての波長パスに対して上述の手順(ステップS201~S218)が完了した後に(ステップS210/NO)、波長スロット・ファイバ割当決定部223は波長パス割当情報をパス割当制御部230に通知する。パス割当制御部230は、波長パス割当情報をデータベース部210および光ノード装置300に通知する。 After the above procedure (steps S201 to S218) is completed for all the wavelength paths held in the traffic DB 211 (step S210 / NO), the wavelength slot / fiber allocation determination unit 223 transmits the wavelength path allocation information to the path allocation control unit. 230 is notified. The path allocation control unit 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300.
 なお、複雑なネットワークに対しては、波長パス設計時間を短縮化するため、経路の再検索回数の上限値を予め設定することとしてもよい。また、経路毎の通信品質の相違により変調方式が変更になることを防止するために、経路長に上限値を設けることとしてもよい。 For complex networks, an upper limit value for the number of route re-searches may be set in advance in order to shorten the wavelength path design time. In order to prevent the modulation scheme from being changed due to a difference in communication quality for each path, an upper limit value may be provided for the path length.
 次に、図11A~11Dを用いて、本実施形態に係る光ネットワーク管理装置202による波長パスの設定結果について説明する。ここでは、図11Aに示すように、4個の光ノード装置301~304がそれぞれ光ファイバ伝送路で接続された光通信システムを例として説明する。ここで、光ノード装置301と光ノード装置303との間の光リンクにおけるトラヒック要求に対して、波長パス割当候補としてR401とR402の2経路が存在する。 Next, the setting result of the wavelength path by the optical network management apparatus 202 according to the present embodiment will be described with reference to FIGS. 11A to 11D. Here, as shown in FIG. 11A, an optical communication system in which four optical node devices 301 to 304 are connected by optical fiber transmission lines will be described as an example. Here, in response to a traffic request on the optical link between the optical node device 301 and the optical node device 303, there are two paths R401 and R402 as wavelength path allocation candidates.
 波長パスの割当候補である2経路R401、R402はともにホップ数が2以上であるため、信号光の到達性を図11Dに示したものとすると、変調方式としてQPSK方式が採用される。経路R401は最短経路であるが、光ノード装置301と光ノード装置302との間の光リンクにおける空き波長スロットSL401に隣接する波長パスの変調方式は図11Bに示すように16QAMである。そのため、割り当てる波長パスの変調方式がQPSKである場合、ガードバンド(Guard Band)の挿入が必要となる。その結果、トラヒック収容効率が低減することになる。 Since the two paths R401 and R402, which are wavelength path allocation candidates, both have two or more hops, assuming that the reachability of the signal light is as shown in FIG. 11D, the QPSK method is adopted as the modulation method. The path R401 is the shortest path, but the modulation method of the wavelength path adjacent to the empty wavelength slot SL401 in the optical link between the optical node apparatus 301 and the optical node apparatus 302 is 16QAM as shown in FIG. 11B. Therefore, when the modulation method of the wavelength path to be allocated is QPSK, it is necessary to insert a guard band (Guard Band). As a result, the traffic accommodation efficiency is reduced.
 一方、空き波長スロットSL402においては、割り当てる波長パスと隣接する波長スロットの変調方式が共にQPSK方式であるため、ガードバンド(Guard Band)は不要である。 On the other hand, in the empty wavelength slot SL402, since the wavelength path to be allocated and the modulation system of the adjacent wavelength slot are both QPSK systems, a guard band (Guard Band) is unnecessary.
 ここで、隣接する波長パスにおける変調方式がQPSK方式または16QAM方式である場合、および隣接する波長スロットが空きの場合の各メトリック値(重み付け量)を、図11Cに示すように定義することができる。この場合、隣接波長パスメトリックの値は、空き波長スロットSL401では1100、空き波長スロットSL402では100となる。したがって、本実施形態の光ネットワーク管理装置202によれば、空き波長スロットSL402にトラヒック要求が収容されることになる。 Here, when the modulation method in the adjacent wavelength path is the QPSK method or the 16QAM method, and when the adjacent wavelength slot is empty, each metric value (weighting amount) can be defined as shown in FIG. 11C. . In this case, the value of the adjacent wavelength path metric is 1100 in the empty wavelength slot SL401 and 100 in the empty wavelength slot SL402. Therefore, according to the optical network management apparatus 202 of this embodiment, a traffic request is accommodated in the empty wavelength slot SL402.
 上述したように、本実施形態の光ネットワーク管理装置202においては、経路探索部221が複数の最適経路を決定する。この複数の最適経路について、波長パスメトリック算出部としての波長パス割当メトリック計算部225が隣接波長パスメトリックをそれぞれ算出する。そして、波長パス割当部としての波長スロット・ファイバ割当決定部223が、光周波数軸上で隣接した波長パスそれぞれの変調方式が等しくなるように、隣接波長パスメトリックが最適となる波長スロットに波長パスを割り当てる構成としている。したがって、本実施形態に係る光ネットワーク管理装置202によれば、ガードバンド(Guard Band)の占有波長スロット数を低減でき、光ネットワーク全体のトラヒック収容効率を最大化することが可能となる。 As described above, in the optical network management apparatus 202 of this embodiment, the route search unit 221 determines a plurality of optimum routes. A wavelength path allocation metric calculation unit 225 as a wavelength path metric calculation unit calculates adjacent wavelength path metrics for the plurality of optimum paths. Then, the wavelength slot / fiber allocation determination unit 223 as the wavelength path allocation unit sets the wavelength path to the wavelength slot for which the adjacent wavelength path metric is optimal so that the modulation methods of the adjacent wavelength paths on the optical frequency axis are equal. Is assigned. Therefore, according to the optical network management apparatus 202 according to the present embodiment, the number of wavelength bands occupied by the guard band (Guard Band) can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。図12に本実施形態に係る光ネットワーク管理装置203の構成を示す。図12に示すように、光ネットワーク管理装置203は、データベース部210、トラヒック収容設計部220、およびパス割当制御部230を有する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. FIG. 12 shows the configuration of the optical network management apparatus 203 according to this embodiment. As illustrated in FIG. 12, the optical network management apparatus 203 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
 データベース部210は、トラヒックDB211、物理層トポロジーDB212、波長パス管理DB213、割当前波長パスDB214、および波長パス割当領域DB217を備える。波長パス割当領域DB217は、波長パスの変調方式や所要スロット数に応じて、波長パスを割り当てる空きスロット領域の区別を記録する。 The database unit 210 includes a traffic DB 211, a physical layer topology DB 212, a wavelength path management DB 213, a pre-allocation wavelength path DB 214, and a wavelength path allocation region DB 217. The wavelength path allocation area DB 217 records the distinction of empty slot areas to which wavelength paths are allocated according to the wavelength path modulation scheme and the required number of slots.
 トラヒック収容設計部220は、波長パス割当領域設定部として領域スロット数決定部226をさらに備える。領域スロット数決定部226はトラヒック要求の種別などに応じて波長パスを割り当てるスロット領域(波長パス割当領域)を決定する。 The traffic accommodation design unit 220 further includes a region slot number determination unit 226 as a wavelength path allocation region setting unit. The area slot number determination unit 226 determines a slot area (wavelength path allocation area) to which a wavelength path is allocated according to the type of traffic request.
 次に、本実施形態に係る光ネットワーク管理装置203の動作について説明する。図13は、本実施形態に係る光ネットワーク管理装置203の動作を説明するためのフローチャートである。 Next, the operation of the optical network management apparatus 203 according to this embodiment will be described. FIG. 13 is a flowchart for explaining the operation of the optical network management apparatus 203 according to the present embodiment.
 光ネットワーク管理装置203はまず、トラヒックDB211から通信トラヒック要求を一個抽出する(ステップS201)。経路探索部221は、抽出した通信トラヒック要求に対して、始点ノードと終点ノードを接続する最短経路を検索する(ステップS202)。次に、所要波長スロット数決定部222は、最短経路のリンク品質に基づいて波長スロット数および変調方式を決定し(ステップS203)、割当前波長パスDB214に保持する(ステップS204)。この操作をすべてのトラヒック要求に対して実施する(ステップS205)。 First, the optical network management apparatus 203 extracts one communication traffic request from the traffic DB 211 (step S201). In response to the extracted communication traffic request, the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202). Next, the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203), and holds it in the pre-assignment wavelength path DB 214 (step S204). This operation is performed for all traffic requests (step S205).
 次に、波長パス割当領域設定部としての領域スロット数決定部226は、波長スロット数や変調方式などの波長パス属性に応じて、波長パス割当先の空きスロット領域の区別を決定し(ステップS219)、波長パス割当領域DB217に記録する。波長スロット・ファイバ割当決定部223は、抽出したトラヒック要求に対して通信を確立するうえで必要となる空き波長スロットの有無を調査する(ステップS207)。空き波長スロットが不足している場合には(ステップS207/NO)、ファイバを増設したうえで(ステップS208)、このときの波長パス割当領域における空き波長スロットに波長パスを割り当てる(ステップS209)。トラヒックDB211が保持するすべての波長パスに対して上述の手順が完了した後に(ステップS210/NO)、波長スロット・ファイバ割当決定部223は波長パス割当情報をパス割当制御部230に通知する。パス割当制御部230は、波長パス割当情報をデータベース部210および光ノード装置300に通知する(ステップS211)。 Next, the region slot number determination unit 226 as the wavelength path allocation region setting unit determines the distinction of the empty slot region of the wavelength path allocation destination according to the wavelength path attributes such as the number of wavelength slots and the modulation method (step S219). ) And recorded in the wavelength path allocation region DB 217. The wavelength slot / fiber allocation determination unit 223 checks whether there is an empty wavelength slot necessary for establishing communication in response to the extracted traffic request (step S207). If there are not enough free wavelength slots (step S207 / NO), after adding fibers (step S208), wavelength paths are assigned to the free wavelength slots in the wavelength path assignment region at this time (step S209). After the above-described procedure is completed for all wavelength paths held in the traffic DB 211 (NO in step S210), the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information. The path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
 上述の説明では、領域スロット数決定部226がスロット領域を決定することとしたが、これに限らず、オペレータが事前に決定したスロット領域を用いることとしてもよい。 In the above description, the area slot number determination unit 226 determines the slot area. However, the present invention is not limited to this, and a slot area determined in advance by the operator may be used.
 次に、図14を用いて、本実施形態に係る光ネットワーク管理装置203による波長パスの設定結果について説明する。 Next, the wavelength path setting result by the optical network management apparatus 203 according to the present embodiment will be described with reference to FIG.
 上述したように、関連する光ネットワーク管理装置600が波長パスを割り当てる場合、トラヒック要求の着信順に波長パスが割り当てられるため、図21に示したように、互いに異なる変調方式の信号光が隣り合うように配置される。そのため、通信品質の劣化を防止するために、隣接し合う信号光の間にガードバンド(Guard Band)を配置する必要があった。 As described above, when the related optical network management apparatus 600 assigns wavelength paths, the wavelength paths are assigned in the order of arrival of traffic requests, so that signal lights of different modulation schemes are adjacent to each other as shown in FIG. Placed in. Therefore, in order to prevent deterioration in communication quality, it is necessary to arrange a guard band (Guard Band) between adjacent signal lights.
 それに対して、本実施形態に係る光ネットワーク管理装置203は、波長パスを割り当てる空きスロット領域(波長パス割当領域)に、波長パス割当領域に係る波長パス属性と等しい波長パス属性を備えた波長パスをそれぞれ割り当てる構成としている。例えば、波長パス属性を変調方式とすると、変調方式の種類毎に波長パス割当領域を設定する。この場合、波長パスを割り当てる波長パス割当領域が波長パスの変調方式に応じて異なるため、隣接する波長スロットの変調方式が異なるのは波長パス割当領域の境界だけとなる。したがって、ガードバンド(Guard Band)は波長パス割当領域の境界にだけ配置すればよい。 On the other hand, the optical network management apparatus 203 according to the present embodiment includes a wavelength path having a wavelength path attribute equal to the wavelength path attribute related to the wavelength path allocation area in an empty slot area (wavelength path allocation area) to which the wavelength path is allocated. Are assigned to each. For example, if the wavelength path attribute is a modulation method, a wavelength path allocation area is set for each type of modulation method. In this case, since the wavelength path allocation region to which the wavelength path is allocated differs depending on the modulation method of the wavelength path, the modulation method of the adjacent wavelength slot is different only at the boundary of the wavelength path allocation region. Therefore, the guard band (Guard Band) may be arranged only at the boundary of the wavelength path allocation region.
 なお、上述の説明では、波長パス属性を変調方式とした場合について説明したが、波長パス属性として波長スロット数を用いて、トラヒックを収容する波長スロット数毎に波長パス割当領域を設定することとしてもよい。また、トラヒック要求の変化に応じて、波長パス割当領域の区分を再度変更することとしてもよい。 In the above description, the case where the wavelength path attribute is a modulation method has been described. However, the number of wavelength slots is used as the wavelength path attribute, and the wavelength path allocation area is set for each number of wavelength slots accommodating traffic. Also good. In addition, the division of the wavelength path allocation area may be changed again in response to a change in traffic request.
 上述したように、波長パス割当領域を設定することにより、例えば同一の変調方式である波長パスが隣接し合うように波長パスを設定することが可能となる。その結果、本実施形態に係る光ネットワーク管理装置203によれば、ガードバンドの占有波長スロット数を低減でき、光ネットワーク全体のトラヒック収容効率を最大化することが可能となる。 As described above, by setting the wavelength path allocation region, for example, it becomes possible to set the wavelength path so that the wavelength paths having the same modulation method are adjacent to each other. As a result, according to the optical network management apparatus 203 according to the present embodiment, the number of wavelength slots occupied by the guard band can be reduced, and the traffic accommodation efficiency of the entire optical network can be maximized.
 〔第6の実施形態〕
 次に、本発明の第6の実施形態について説明する。図15に本実施形態に係る光ネットワーク管理装置204の構成を示す。図15に示すように、光ネットワーク管理装置204は、データベース部210、トラヒック収容設計部220、およびパス割当制御部230を有する。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. FIG. 15 shows the configuration of the optical network management apparatus 204 according to this embodiment. As illustrated in FIG. 15, the optical network management apparatus 204 includes a database unit 210, a traffic accommodation design unit 220, and a path allocation control unit 230.
 データベース部210は分割波長パス管理DB218をさらに備える。分割波長パス管理DB218は、トラヒック要求を収容する複数の波長パスの経路情報および波長スロット情報を管理する。 The database unit 210 further includes a divided wavelength path management DB 218. The divided wavelength path management DB 218 manages route information and wavelength slot information of a plurality of wavelength paths that accommodate traffic requests.
 トラヒック収容設計部220は分割スロット決定部227を備える。分割スロット決定部227は、空き波長スロットの状況に応じて、トラヒック要求を複数の波長スロットに分割する際の波長スロット数の分割を管理する。 The traffic accommodation design unit 220 includes a divided slot determination unit 227. The division slot determination unit 227 manages division of the number of wavelength slots when dividing the traffic request into a plurality of wavelength slots according to the state of the empty wavelength slots.
 次に、本実施形態に係る光ネットワーク管理装置204の動作について説明する。図16は、本実施形態に係る光ネットワーク管理装置204の動作を説明するためのフローチャートである。 Next, the operation of the optical network management apparatus 204 according to this embodiment will be described. FIG. 16 is a flowchart for explaining the operation of the optical network management apparatus 204 according to this embodiment.
 光ネットワーク管理装置204はまず、トラヒックDB211から通信トラヒック要求を一個抽出する(ステップS201)。経路探索部221は、抽出された通信トラヒック要求に対して、始点ノードと終点ノードを接続する最短経路を検索する(ステップS202)。次に、所要波長スロット数決定部222は、最短経路のリンク品質に基づいて、波長スロット数および変調方式を決定する(ステップS203)。 First, the optical network management device 204 extracts one communication traffic request from the traffic DB 211 (step S201). In response to the extracted communication traffic request, the route search unit 221 searches for the shortest route connecting the start point node and the end point node (step S202). Next, the required wavelength slot number determination unit 222 determines the number of wavelength slots and the modulation method based on the link quality of the shortest path (step S203).
 次に、波長パスを収容する際に、ガードバンド(Guard Band)の挿入が不要である空き波長スロットが存在するか否かを判定する(ステップS220)。このような空き波長スロットが存在する場合(ステップS220/YES)、この空き波長スロットに波長パスを割り当てる(ステップS209)。 Next, when accommodating the wavelength path, it is determined whether or not there is an empty wavelength slot that does not require insertion of a guard band (Guard Band) (step S220). When such an empty wavelength slot exists (step S220 / YES), a wavelength path is assigned to this empty wavelength slot (step S209).
 一方、このような空き波長スロットが存在しない場合(ステップS220/NO)、波長パス分割部としての分割スロット決定部227は、トラヒック要求を収容する波長パスを複数の分割波長パスに分割する。すなわち、分割スロット決定部227は、トラヒック要求を複数の波長パスに分割して収容することができる空き波長スロットを検索する(ステップS221)。そして、このような空き波長スロットが存在する場合(ステップS221/YES)、波長パスの割り当てを実施する(ステップS222)。複数の波長パスに分割しても収容できない場合(ステップS221/NO)、最短経路のリンクのうち空き波長スロットが存在しないリンクに対してファイバを増設する(ステップS208)。 On the other hand, when such an empty wavelength slot does not exist (step S220 / NO), the division slot determination unit 227 as the wavelength path division unit divides the wavelength path accommodating the traffic request into a plurality of division wavelength paths. That is, the division slot determination unit 227 searches for an empty wavelength slot that can accommodate the traffic request by dividing it into a plurality of wavelength paths (step S221). If such an empty wavelength slot exists (step S221 / YES), wavelength path allocation is performed (step S222). If it cannot be accommodated even if it is divided into a plurality of wavelength paths (step S221 / NO), a fiber is added to the link having no empty wavelength slot among the shortest path links (step S208).
 トラヒックDB211が保持するすべての波長パスに対して上述の手順が完了した後に(ステップS210/NO)、波長スロット・ファイバ割当決定部223は波長パス割当情報をパス割当制御部230に通知する。パス割当制御部230は、波長パス割当情報をデータベース部210および光ノード装置300に通知する(ステップS211)。 After the above procedure is completed for all wavelength paths held in the traffic DB 211 (step S210 / NO), the wavelength slot / fiber allocation determination unit 223 notifies the path allocation control unit 230 of the wavelength path allocation information. The path allocation controller 230 notifies the wavelength path allocation information to the database unit 210 and the optical node device 300 (step S211).
 次に上述した、複数の波長パスに分割して収容する空き波長スロットを検索する処理(ステップS221)について、図17に示すフローチャートに基づいてさらに説明する。 Next, the above-described processing (step S221) of searching for an empty wavelength slot that is divided and accommodated into a plurality of wavelength paths will be further described based on the flowchart shown in FIG.
 まず、ガードバンド(Guard Band)の挿入が不要であり、かつ割り当てることが可能な空き波長スロットの細片が存在する場合(ステップS223/YES)について説明する。この場合、分割スロット決定部227は、この空き波長スロット数の最大値に適合するように波長パスを分割した後に、空き波長スロットへの割り当てを実施する(ステップS226)。トラヒック要求を収容するための波長パスの中で、未収容分が存在する場合、上述した処理を再度実施する(ステップS227/YES)。未収容分が存在しない場合(ステップS227/NO)、分割スロット決定部227は波長パス分割による波長パス割当情報をパス割当制御部230に通知する(ステップS228)。 First, the case where there is no need to insert a guard band (Guard Band) and there are strips of free wavelength slots that can be allocated (step S223 / YES) will be described. In this case, the division slot determining unit 227 divides the wavelength path so as to match the maximum number of empty wavelength slots, and then assigns the empty wavelength slots (step S226). If there is an unaccommodated portion in the wavelength path for accommodating the traffic request, the above-described processing is performed again (step S227 / YES). When there is no unaccommodated portion (step S227 / NO), the division slot determination unit 227 notifies the path allocation control unit 230 of the wavelength path allocation information by wavelength path division (step S228).
 一方、割り当て可能な空き波長スロット細片が存在しない場合(ステップS223/NO)、このときの経路の次に短い経路を検索する(ステップS224)。このような経路が存在する場合(ステップS224/YES)、所要波長スロット数および変調方式を決定し(ステップS225)、その後に波長パスの割り当てを実施する。すべての経路を検索し終えた段階で未割当の波長パスが存在する場合には、最短経路上の必要なリンクに対してファイバの増設を実施する。 On the other hand, if there is no available wavelength slot strip that can be allocated (step S223 / NO), the next shortest route is searched for (step S224). When such a route exists (step S224 / YES), the required number of wavelength slots and the modulation method are determined (step S225), and then wavelength path allocation is performed. If there is an unassigned wavelength path at the stage where all routes have been searched, a fiber is added to the necessary link on the shortest route.
 なお、経路の再検索回数の上限値を予め設定することとしてもよい。また、経路毎の通信品質の相違により変調方式が変更になることを防止するために、経路長に上限値を設けることとしてもよい。また、上述した波長パス分割により波長パスを分割する際における分割数に制限を付加してもよいし、分割された波長パスの経路長差に上限値を設けることとしてもよい。 Note that an upper limit value of the number of route re-searches may be set in advance. In order to prevent the modulation scheme from being changed due to a difference in communication quality for each path, an upper limit value may be provided for the path length. In addition, a restriction may be added to the number of divisions when the wavelength path is divided by the wavelength path division described above, and an upper limit value may be provided for the path length difference of the divided wavelength paths.
 次に、図18A~18Cを用いて、本実施形態に係る光ネットワーク管理装置204による波長パスの設定結果について説明する。ここでは、図18Aに示すように、3個の光ノード装置301~303がそれぞれ光ファイバ伝送路で接続された光通信システムを例として説明する。ここで、光ノード装置301と光ノード装置302との間の光リンクにおけるトラヒック要求に対して、2個の波長パスP401、P402が存在する。 Next, the wavelength path setting result by the optical network management apparatus 204 according to the present embodiment will be described with reference to FIGS. 18A to 18C. Here, as shown in FIG. 18A, an optical communication system in which three optical node devices 301 to 303 are connected by optical fiber transmission lines will be described as an example. Here, there are two wavelength paths P401 and P402 in response to a traffic request on the optical link between the optical node device 301 and the optical node device 302.
 波長パスP401はホップ数が1であるため、信号光の到達性を図18Cに示したものとすると、変調方式として16QAM方式が採用される。一方、波長パスP402はホップ数が2であるため、変調方式としてQPSK方式が用いられる。 Since the wavelength path P401 has one hop, assuming that the reachability of the signal light is as shown in FIG. 18C, the 16QAM method is adopted as the modulation method. On the other hand, since the wavelength path P402 has two hops, the QPSK method is used as the modulation method.
 光ノード装置301と光ノード装置302との間のトラヒック要求に対して、波長パスP401(光リンク301:302)にはトラヒック要求を収容するのに十分な空きスロット数が存在しない場合について検討する(図18B参照)。この場合、これまでは光ファイバを新たに増設する必要があった。 Considering a traffic request between the optical node device 301 and the optical node device 302, the wavelength path P401 (optical link 301: 302) does not have a sufficient number of free slots to accommodate the traffic request. (See FIG. 18B). In this case, it has been necessary to add a new optical fiber until now.
 それに対して、本実施形態の光ネットワーク管理装置204は、トラヒック要求を収容する波長パスを複数の分割波長パスに分割し、隣接した波長パスそれぞれの変調方式が等しくなるように、分割波長パスを割り当てる構成としている。これにより、光ノード装置301と光ノード装置302を直接接続する光リンクにトラヒック要求の一部を収容する波長パスP401を割り当て、残りは光ノード装置303を経由する光リンクの波長パスP402に割り当てることが可能になる。このとき、波長パスP401の空きスロットSL401には16QAM変調方式を採用する信号光が、波長パスP402の空きスロットSL402にはQPSK変調方式を採用する信号光が割り当てられることになる。 On the other hand, the optical network management apparatus 204 of this embodiment divides the wavelength path accommodating the traffic request into a plurality of divided wavelength paths, and sets the divided wavelength paths so that the modulation methods of the adjacent wavelength paths are equal. The configuration is assigned. As a result, the wavelength path P401 that accommodates part of the traffic request is assigned to the optical link that directly connects the optical node device 301 and the optical node device 302, and the rest is assigned to the wavelength path P402 of the optical link that passes through the optical node device 303. It becomes possible. At this time, signal light adopting the 16QAM modulation method is assigned to the empty slot SL401 of the wavelength path P401, and signal light adopting the QPSK modulation method is assigned to the empty slot SL402 of the wavelength path P402.
 上述したように、本実施形態の光ネットワーク管理装置204によれば、空き波長スロットの細片を有効活用できるとともに、同一の変調方式である波長パスが隣接し合うように配置することができる。したがって、ガードバンド(Guard Band)の占有波長スロット数を低減でき、光ネットワーク全体のトラヒック収容効率を最大化することが可能となる。 As described above, according to the optical network management apparatus 204 of the present embodiment, it is possible to effectively utilize strips of empty wavelength slots and arrange the wavelength paths that are the same modulation method so as to be adjacent to each other. Therefore, it is possible to reduce the number of occupied wavelength slots of the guard band (Guard Band), and to maximize the traffic accommodation efficiency of the entire optical network.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2014年5月27日に出願された日本出願特願2014-109098を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-109098 filed on May 27, 2014, the entire disclosure of which is incorporated herein.
 100、200、201、202、203、204  光ネットワーク管理装置
 110、221  経路探索部
 120  波長パス属性決定部
 130  波長パス割当部
 210  データベース部
 211  トラヒックDB
 212  物理層トポロジーDB
 213  波長パス管理DB
 214  割当前波長パスDB
 215  隣接波長パスメトリックDB
 216  波長パス割当候補DB
 217  波長パス割当領域DB
 218  分割波長パス管理DB
 220  トラヒック収容設計部
 222  所要波長スロット数決定部
 223  波長スロット・ファイバ割当決定部
 224  トラヒック割当順序決定部
 225  波長パス割当メトリック計算部
 226  領域スロット数決定部
 227  分割スロット決定部
 230  パス割当制御部
 300、301~306  光ノード装置
 310  大粒度切替部
 320  制御部
 331、332  光トランスポンダ(TPND)装置
 500  関連する基幹系光ネットワークシステム
 600  関連する光ネットワーク管理装置
 711~718  関連する光ノード装置
100, 200, 201, 202, 203, 204 Optical network management device 110, 221 Route search unit 120 Wavelength path attribute determination unit 130 Wavelength path allocation unit 210 Database unit 211 Traffic DB
212 Physical layer topology DB
213 Wavelength path management DB
214 Pre-allocation wavelength path DB
215 Adjacent wavelength path metric DB
216 Wavelength path allocation candidate DB
217 Wavelength path allocation region DB
218 Divided wavelength path management DB
220 traffic accommodation design unit 222 required wavelength slot number determination unit 223 wavelength slot / fiber allocation determination unit 224 traffic allocation order determination unit 225 wavelength path allocation metric calculation unit 226 area slot number determination unit 227 division slot determination unit 230 path allocation control unit 300 , 301 to 306 Optical node device 310 Large granularity switching unit 320 Control unit 331, 332 Optical transponder (TPND) device 500 Related backbone optical network system 600 Related optical network management device 711 to 718 Related optical node device

Claims (14)

  1. 複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定する経路探索手段と、
     前記最適経路において前記トラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性を前記トラヒック要求ごとに決定する波長パス属性決定手段と、
     光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記波長パスを光周波数軸上に割り当てる波長パス割当手段、とを有する
     光ネットワーク管理装置。
    Route search means for accepting a plurality of traffic requests and determining an optimum route between the optical node devices for each traffic request;
    Wavelength path attribute determining means for determining, for each traffic request, a wavelength path attribute including at least a modulation scheme of the wavelength path respectively accommodating the traffic request in the optimum route;
    An optical network management device comprising: wavelength path allocating means for allocating the wavelength path on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  2. 請求項1に記載した光ネットワーク管理装置において、
     前記波長パス割当手段は、割当順序決定手段を備え、
     前記割当順序決定手段は、前記変調方式によって定まる前記波長パスの光周波数利用効率の大きさの順番を決定し、
     前記波長パス割当手段は、光周波数軸上で隣接した波長スロットに、前記波長パスを前記順番に従ってそれぞれ割り当てる
     光ネットワーク管理装置。
    The optical network management device according to claim 1,
    The wavelength path allocating unit includes an allocation order determining unit,
    The allocation order determining means determines the order of the optical frequency utilization efficiency of the wavelength path determined by the modulation method,
    The wavelength network allocating unit allocates the wavelength paths to wavelength slots adjacent on the optical frequency axis according to the order.
  3. 請求項1に記載した光ネットワーク管理装置において、
     前記波長パス割当手段は、波長パスメトリック算出手段を備え、
     前記波長パスメトリック算出手段は、光周波数軸上で隣接する波長パスの変調方式により定まる重み付け量を用いて、波長スロットごとに隣接波長パスメトリックを算出し、
     前記波長パス割当手段は、前記隣接波長パスメトリックが最適となる波長スロットに、前記波長パスを割り当てる
     光ネットワーク管理装置。
    The optical network management device according to claim 1,
    The wavelength path allocation means includes wavelength path metric calculation means,
    The wavelength path metric calculation means calculates an adjacent wavelength path metric for each wavelength slot using a weighting amount determined by a modulation method of adjacent wavelength paths on the optical frequency axis,
    The optical network management device, wherein the wavelength path allocation unit allocates the wavelength path to a wavelength slot in which the adjacent wavelength path metric is optimal.
  4. 請求項3に記載した光ネットワーク管理装置において、
     前記経路探索手段は、複数の前記最適経路を決定し、
     前記波長パスメトリック算出手段は、前記複数の最適経路について前記隣接波長パスメトリックをそれぞれ算出し、
     前記波長パス割当手段は、光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記隣接波長パスメトリックが最適となる波長スロットに、前記波長パスを割り当てる
     光ネットワーク管理装置。
    The optical network management device according to claim 3,
    The route search means determines a plurality of the optimum routes,
    The wavelength path metric calculation means calculates the adjacent wavelength path metric for each of the plurality of optimum paths,
    The optical network management apparatus, wherein the wavelength path allocating unit allocates the wavelength path to a wavelength slot in which the adjacent wavelength path metric is optimal so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  5. 請求項1または2に記載した光ネットワーク管理装置において、
     前記波長パスを割り当てる波長パス割当領域を、前記波長パス属性ごとに光周波数軸上に設定する波長パス割当領域設定手段をさらに備え、
     前記波長パス割当手段は、前記波長パス割当領域に、前記波長パス割当領域に係る前記波長パス属性と等しい波長パス属性を備えた波長パスをそれぞれ割り当てる
     光ネットワーク管理装置。
    In the optical network management device according to claim 1 or 2,
    A wavelength path allocation area setting means for setting a wavelength path allocation area for allocating the wavelength path on an optical frequency axis for each wavelength path attribute;
    The optical network management apparatus, wherein the wavelength path allocation unit allocates a wavelength path having a wavelength path attribute equal to the wavelength path attribute related to the wavelength path allocation area to the wavelength path allocation area.
  6. 請求項1から5のいずれか一項に記載した光ネットワーク管理装置において、
     前記トラヒック要求を収容する波長パスを複数の分割波長パスに分割する波長パス分割手段をさらに備え、
     前記波長パス割当手段は、光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記分割波長パスを前記波長パスとして光周波数軸上に割り当てる
     光ネットワーク管理装置。
    In the optical network management device according to any one of claims 1 to 5,
    Wavelength path splitting means for splitting a wavelength path accommodating the traffic request into a plurality of split wavelength paths;
    The optical network management device, wherein the wavelength path allocating unit allocates the divided wavelength path as the wavelength path on the optical frequency axis so that the modulation methods of the adjacent wavelength paths on the optical frequency axis are equal.
  7. 請求項1から6のいずれか一項に記載した光ネットワーク管理装置において、
     パス割当制御手段と、データベース手段をさらに備え、
     前記パス割当制御手段は、前記波長パス割当手段が前記波長パスを割り当てた結果である波長パス割当情報を、前記光ノード装置に通知し、
     前記データベース手段は、前記波長パス割当情報を保存する
     光ネットワーク管理装置。
    In the optical network management device according to any one of claims 1 to 6,
    Path allocation control means and database means,
    The path allocation control unit notifies the optical node device of wavelength path allocation information that is a result of the wavelength path allocation unit allocating the wavelength path,
    The database means is an optical network management apparatus that stores the wavelength path allocation information.
  8. 請求項7に記載した光ネットワーク管理装置が備える前記パス割当制御手段から前記波長パス割当情報を受け付ける制御手段と、
     前記波長パス単位で複数の光伝送路を切替える大粒度切替手段と、
     前記光伝送路を介してクライアント信号を送受信する複数の光トランスポンダ装置、とを有し、
     前記制御手段は、前記波長パス割当情報に基づいて前記大粒度切替手段および前記光トランスポンダ装置を制御する
     光ノード装置。
    Control means for receiving the wavelength path assignment information from the path assignment control means provided in the optical network management device according to claim 7;
    Large-grain switching means for switching a plurality of optical transmission lines in units of the wavelength path;
    A plurality of optical transponder devices that transmit and receive client signals via the optical transmission path,
    The optical node device, wherein the control means controls the large granularity switching means and the optical transponder device based on the wavelength path allocation information.
  9. 複数のトラヒック要求を受け付け、トラヒック要求ごとに光ノード装置間の最適経路を決定し、
     前記最適経路において前記トラヒック要求をそれぞれ収容する波長パスの、少なくとも変調方式を含む波長パス属性を前記トラヒック要求ごとに決定し、
     光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記波長パスを光周波数軸上に割り当てる
     光ネットワーク管理方法。
    Accepts multiple traffic requests, determines the optimal path between optical node devices for each traffic request,
    Determining, for each traffic request, a wavelength path attribute including at least a modulation method of a wavelength path that accommodates the traffic request in the optimum route,
    An optical network management method for allocating the wavelength path on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  10. 請求項9に記載した光ネットワーク管理方法において、
     前記変調方式によって定まる前記波長パスの光周波数利用効率の大きさの順番を決定し、
     光周波数軸上で隣接した波長スロットに、前記波長パスを前記順番に従ってそれぞれ割り当てる
     光ネットワーク管理方法。
    In the optical network management method according to claim 9,
    Determining the order of the optical frequency utilization efficiency of the wavelength path determined by the modulation method;
    An optical network management method for allocating the wavelength paths to wavelength slots adjacent on the optical frequency axis according to the order.
  11. 請求項9に記載した光ネットワーク管理方法において、
     光周波数軸上で隣接する波長パスの変調方式により定まる重み付け量を用いて、波長スロットごとに隣接波長パスメトリックを算出し、
     前記隣接波長パスメトリックが最適となる波長スロットに、前記波長パスを割り当てる
     光ネットワーク管理方法。
    In the optical network management method according to claim 9,
    Calculate the adjacent wavelength path metric for each wavelength slot using the weighting amount determined by the modulation method of the adjacent wavelength path on the optical frequency axis,
    An optical network management method for assigning the wavelength path to a wavelength slot in which the adjacent wavelength path metric is optimal.
  12. 請求項11に記載した光ネットワーク管理方法において、
     複数の前記最適経路を決定し、
     前記複数の最適経路について前記隣接波長パスメトリックをそれぞれ算出し、
     光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記隣接波長パスメトリックが最適となる波長スロットに、前記波長パスを割り当てる
     光ネットワーク管理方法。
    The optical network management method according to claim 11,
    Determining a plurality of said optimal routes;
    Calculating the adjacent wavelength path metric for each of the plurality of optimum paths;
    An optical network management method for allocating the wavelength path to a wavelength slot in which the adjacent wavelength path metric is optimal so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
  13. 請求項9または10に記載した光ネットワーク管理方法において、
     前記波長パスを割り当てる波長パス割当領域を、前記波長パス属性ごとに光周波数軸上に設定し、
     前記波長パス割当領域に、前記波長パス割当領域に係る前記波長パス属性と等しい波長パス属性を備えた波長パスをそれぞれ割り当てる
     光ネットワーク管理方法。
    In the optical network management method according to claim 9 or 10,
    A wavelength path allocation region for assigning the wavelength path is set on the optical frequency axis for each wavelength path attribute,
    An optical network management method in which wavelength paths having a wavelength path attribute equal to the wavelength path attribute related to the wavelength path allocation area are respectively allocated to the wavelength path allocation area.
  14. 請求項9から13のいずれか一項に記載した光ネットワーク管理方法において、
     前記トラヒック要求を収容する波長パスを複数の分割波長パスに分割し、
     光周波数軸上で隣接した波長パスそれぞれの前記変調方式が等しくなるように、前記分割波長パスを前記波長パスとして光周波数軸上に割り当てる
     光ネットワーク管理方法。
    In the optical network management method according to any one of claims 9 to 13,
    Dividing the wavelength path accommodating the traffic request into a plurality of divided wavelength paths;
    An optical network management method for allocating the divided wavelength path as the wavelength path on the optical frequency axis so that the modulation schemes of the adjacent wavelength paths on the optical frequency axis are equal.
PCT/JP2015/002531 2014-05-27 2015-05-20 Optical network management device and optical network management method WO2015182070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523120A JP6528770B2 (en) 2014-05-27 2015-05-20 Optical network management apparatus and optical network management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109098 2014-05-27
JP2014109098 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015182070A1 true WO2015182070A1 (en) 2015-12-03

Family

ID=54698425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002531 WO2015182070A1 (en) 2014-05-27 2015-05-20 Optical network management device and optical network management method

Country Status (2)

Country Link
JP (1) JP6528770B2 (en)
WO (1) WO2015182070A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145967A1 (en) * 2016-02-23 2017-08-31 日本電気株式会社 Optical network management device and optical frequency bandwidth allocation method
JP2018174417A (en) * 2017-03-31 2018-11-08 日本電信電話株式会社 Resource allocation method and resource allocation device
WO2019107471A1 (en) * 2017-12-01 2019-06-06 日本電気株式会社 Optical path setting device, optical communication system, and optical path setting method
JP2019201341A (en) * 2018-05-17 2019-11-21 日本電信電話株式会社 Transmission system and wavelength resource management method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CRISTINA ROTTONDI ET AL.: "Routing, modulation level, and spectrum assignment in optical metro ring networks using elastic transceivers", IEEE /OSA JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, vol. 5, no. Issue.4, April 2013 (2013-04-01), pages 305 - 315, XP011499960 *
ION POPESCU ET AL.: "On the Optimal Design of a Spectrum-Switched Optical Network With Multiple Modulation Formats and Rates", IEEE /OSA JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, vol. 5, no. Issue.11, November 2013 (2013-11-01), pages 1275 - 1284, XP011532997 *
ORI GERSTEL ET AL.: "Elastic optical networking: a new dawn for the optical layer?", IEEE COMMUNICATIONS MAGAZINE, vol. 50, no. 2, February 2012 (2012-02-01), pages 12 - 20, XP055241197 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109123B2 (en) 2016-02-23 2021-08-31 Nec Corporation Optical network management apparatus and method of allocating optical frequency band
JPWO2017145967A1 (en) * 2016-02-23 2018-12-13 日本電気株式会社 Optical network management apparatus and optical frequency band allocation method
WO2017145967A1 (en) * 2016-02-23 2017-08-31 日本電気株式会社 Optical network management device and optical frequency bandwidth allocation method
US10375460B2 (en) 2016-02-23 2019-08-06 Nec Corporation Optical network management apparatus and method of allocating optical frequency band
JP7400877B2 (en) 2016-02-23 2023-12-19 日本電気株式会社 Optical network management equipment and optical band allocation method
US11736839B2 (en) 2016-02-23 2023-08-22 Nec Corporation Optical network management apparatus and method of allocating optical frequency band
US10750259B2 (en) 2016-02-23 2020-08-18 Nec Corporation Optical network management apparatus and method of allocating optical frequency band
JP7081482B2 (en) 2016-02-23 2022-06-07 日本電気株式会社 Optical network management device and optical frequency band allocation method
JP2018174417A (en) * 2017-03-31 2018-11-08 日本電信電話株式会社 Resource allocation method and resource allocation device
WO2019107471A1 (en) * 2017-12-01 2019-06-06 日本電気株式会社 Optical path setting device, optical communication system, and optical path setting method
US11212027B2 (en) 2017-12-01 2021-12-28 Nec Corporation Optical path setting device, optical communication system, and optical path setting method
JPWO2019107471A1 (en) * 2017-12-01 2020-12-10 日本電気株式会社 Optical path setting device, optical communication system, and optical path setting method
JP7127652B2 (en) 2017-12-01 2022-08-30 日本電気株式会社 Optical path setting device, optical communication system, optical path setting method, and program
WO2019220980A1 (en) * 2018-05-17 2019-11-21 日本電信電話株式会社 Transmission system and wavelength resource management method
JP2019201341A (en) * 2018-05-17 2019-11-21 日本電信電話株式会社 Transmission system and wavelength resource management method

Also Published As

Publication number Publication date
JPWO2015182070A1 (en) 2017-04-20
JP6528770B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
Patel et al. Survivable transparent flexible optical WDM (FWDM) networks
Wang et al. Distance adaptive dynamic routing and spectrum allocation in elastic optical networks with shared backup path protection
EP2860891B1 (en) Flexible virtual optical network provisioning using distance-adaptive modulation
Velasco et al. Designing, operating, and reoptimizing elastic optical networks
US8873962B2 (en) Method for traffic grooming, wavelength assignment and spectrum allocation
JP6471571B2 (en) Methods, articles of manufacture, and management systems for using transceivers in optical networks
US9531599B2 (en) Virtual optical network provisioning based on mapping choices and patterns
CN103797738A (en) Allocation of spectral capacity in a wavelength-division multiplexing optical network
Savva et al. Physical layer-aware routing, spectrum, and core allocation in spectrally-spatially flexible optical networks with multicore fibers
WO2015182070A1 (en) Optical network management device and optical network management method
Fujii et al. Dynamic resource allocation with virtual grid for space division multiplexed elastic optical network
JP7127541B2 (en) Optical network control device, optical node device, and optical path setting method
CN114039920B (en) Load balancing flow grooming method and system based on IP over Quasi-CWDM network
Lechowicz et al. Greenfield gradual migration planning toward spectrally-spatially flexible optical networks
US10348439B1 (en) Spectral slot assignment and placement of wavelength shifters in flexible grid optical networks
Gao et al. Survivable impairment-aware traffic grooming and regenerator placement with connection-level protection
US10848262B2 (en) Optical path design apparatus and optical path design method
US9537603B2 (en) Channel establishment method and device
Amjad et al. Towards regeneration in flexible optical network planning
US20150333861A1 (en) Channel establishment method and device
JP7127652B2 (en) Optical path setting device, optical communication system, optical path setting method, and program
Tang et al. Counter-propagating core assignment in multi-core fiber optical networks to reduce inter-core crosstalk and capacity wastage
Syarif Minimizing the additional costs due to Router Outage in IP-over-EON using Adaptive Routing
JP6579102B2 (en) Optical network management apparatus and optical network management method
Xiao et al. Survivable multipath provisioning in OFDM-based flexible optical networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800226

Country of ref document: EP

Kind code of ref document: A1