WO2015181884A1 - Battery charging device - Google Patents

Battery charging device Download PDF

Info

Publication number
WO2015181884A1
WO2015181884A1 PCT/JP2014/063957 JP2014063957W WO2015181884A1 WO 2015181884 A1 WO2015181884 A1 WO 2015181884A1 JP 2014063957 W JP2014063957 W JP 2014063957W WO 2015181884 A1 WO2015181884 A1 WO 2015181884A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
output current
unit
phase angle
Prior art date
Application number
PCT/JP2014/063957
Other languages
French (fr)
Japanese (ja)
Inventor
武明 杉本
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2014/063957 priority Critical patent/WO2015181884A1/en
Publication of WO2015181884A1 publication Critical patent/WO2015181884A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle

Definitions

  • the present invention relates to a battery charging device.
  • FIG. 7 is a diagram for explaining a battery voltage detection method according to the prior art, and shows a method of detecting the battery voltage VBAT of the battery 200 using the detection line SL.
  • the output terminal B of the battery charging device 100 is connected to the positive electrode of the battery 200 via the harness H.
  • the positive electrode of the battery 200 is connected to the voltage detection terminal S of the battery charger 100 via the detection line SL.
  • the battery voltage VBAT is detected by the battery charging device 100 via the detection line SL.
  • the battery voltage VBAT can be accurately detected without being affected by the voltage drop in the harness H.
  • This invention is made
  • the objective is to provide the battery charging device which can obtain
  • One aspect of the present invention is a converter that converts AC power output from an AC generator into DC power by a switching element and supplies the DC power to a battery via a connection line, and a battery voltage of the battery and a target value thereof.
  • a comparison unit for comparing, and a control unit that determines a phase angle that defines an energization timing of the switching element of the conversion unit based on a comparison result of the comparison unit, and that controls energization of the switching element based on the phase angle;
  • the output current estimation unit for estimating the current flowing through the connection line from the phase angle determined by the control unit and the rotational speed of the AC generator, and the current estimated by the output current estimation unit,
  • a voltage drop estimator that calculates a voltage drop due to the connecting line and estimates a voltage drop; and a battery voltage estimator that estimates the battery voltage using the voltage drop.
  • a voltage estimation unit was example, a battery charger, characterized in that it comprises a.
  • one aspect of the present invention is a battery charging device, wherein the output current estimation unit is determined by the number of rotations of the AC generator and the control unit for each control cycle for controlling energization of the switching element. Estimating the current flowing through the connection line from the phase angle defining the energization timing, the rotational speed of the AC generator acquired in the previous control cycle, and the phase angle defining the energization timing.
  • One embodiment of the present invention is a battery charging device, wherein the output current estimating unit includes a rotation angle of the AC generator and a phase angle that defines an energization timing of a switching element of the conversion unit, and the battery charging device.
  • the current flowing through the connection line is obtained by referring to the table based on the rotational speed of the AC generator and the phase angle determined by the control unit. It is characterized by estimating.
  • one aspect of the present invention is a battery charging device, wherein the battery voltage estimation unit includes a value obtained by multiplying a current estimated by the output current estimation unit by a resistance value of the connection line. The battery voltage is estimated by subtracting from the output voltage.
  • One embodiment of the present invention is a battery charging device, further comprising a temperature correction unit that corrects the estimation result of the voltage drop estimation unit based on temperature information that affects the estimation result of the voltage drop estimation unit.
  • the battery charger according to claim 4 further comprising:
  • the battery voltage can be obtained without using a sensor for detecting the battery voltage.
  • FIG. 1 It is a figure which shows the structural example of the battery charging device in embodiment of this invention. It is a figure which shows the structural example of the battery charging device in embodiment of this invention, and is the figure which expressed the structure of the battery charging device shown in FIG. 1 paying attention to the flow of a signal. It is a figure for demonstrating the operation example of the battery charging device in embodiment of this invention, and is a figure for demonstrating an example of the control method which controls output current. It is a figure for catching and explaining the example of operation of the battery charging device in the embodiment of the present invention, and is the figure for explaining the control range of the phase of the gate signal of a switching element.
  • FIG. 1 is a diagram illustrating a configuration example of a battery charging device 1 according to an embodiment of the present invention.
  • 2 is a diagram illustrating a configuration example of the battery charging device 1 according to the embodiment of the present invention, and is a diagram expressing the configuration of the battery charging device 1 illustrated in FIG. 1 while paying attention to a signal flow.
  • the battery charger 1 charges the battery 2 by converting the AC power output from the three-phase AC generator 3 into DC power by the switching elements Q1 to Q6 and supplying the DC power to the battery 2.
  • the battery charging device 1 performs delay angle control for delaying the timing (energization timing) of the switching operation of the switching elements Q1 to Q6 with respect to the AC output of the three-phase AC generator 3, or advance angle control for advancing. By doing so, the charging state (or discharging state) of the battery 2 is controlled. Details thereof will be described later.
  • each phase of the three-phase AC generator 3 is connected to the input terminals TIN1 to TIN3 of the battery charger 1.
  • the three-phase AC generator 3 generates AC power by rotating in conjunction with an engine such as a vehicle.
  • the three-phase AC generator 3 outputs the generated AC power to the battery charger 1.
  • a pulsar coil 4 is attached to the stator side of the three-phase AC generator 3.
  • the pulsar coil 4 is a coil wound around an iron core (not shown) having a magnetic pole part.
  • a plurality of reluctators 4 a are attached to the rotor side of the three-phase AC generator 3. In the example of FIG. 1, three reluctors 4a are attached to the outer periphery of the rotor every 120 °.
  • the pulsar coil 4 outputs a pulse signal when the reluctator 4a passes in the vicinity of the magnetic pole portion of the iron core of the pulsar coil 4 with the rotation of the crankshaft of the engine, for example. Thereby, the pulsar coil 4 outputs a pulsar signal indicating the rotational speed (rpm) of the rotor generated by the rotation of the rotor of the three-phase AC generator 3. The pulsar coil 4 outputs the generated pulsar signal to the pulse input terminal TPIN of the battery charger 1.
  • the positive electrode of the battery 2 is connected to the output terminal TOUT of the battery charger 1.
  • the negative electrode of the battery 2 is grounded to the vehicle body of the vehicle on which the battery charger 1 is mounted, for example.
  • the output terminal TOUT of the battery charging device 1 and the battery 2 are electrically connected via a connection line L such as a harness or a cable.
  • FIG. 1 is a diagram illustrating a configuration example of a battery charging device 1 according to an embodiment of the present invention.
  • the battery charging device 1 includes a pulsar signal detection unit 5, a rotation speed calculation unit 6, an output voltage detection unit 7, a voltage estimation unit 8, a resistance value storage unit 9, a temperature correction unit 10, and a comparison unit 11. , Target voltage storage unit 12, control unit 13, conversion unit 14, and output current estimation unit 15.
  • the voltage estimation unit 8 includes a voltage drop estimation unit 81 and a battery voltage estimation unit 82.
  • the control unit 13 includes a phase angle determination unit 131 and a gate signal generation unit 132.
  • the resistance value storage unit 9 stores a resistance value RL of the connection line L (hereinafter referred to as “connection line resistance value RL”) in advance.
  • the converter 14 converts the AC power output from the three-phase AC generator 3 into DC power by the switching elements Q1 to Q6 and supplies it to the battery 2 via the connection line L.
  • the switching elements Q1 to Q6 It is comprised from the three-phase bridge rectifier circuit provided with.
  • the switching elements Q1 to Q6 are, for example, FETs (Field Effect Transistors).
  • the switching element Q1 is connected between the positive side of the battery 2 and the U-phase output of the three-phase alternating current generator 3
  • the switching element Q2 is connected to the positive side of the battery 2 and the V of the three-phase alternating current generator 3.
  • the switching element Q3 is connected between the positive side of the battery 2 and the W-phase output of the three-phase AC generator 3.
  • the switching element Q4 is connected between the U-phase output of the three-phase AC generator 3 and the ground power supply (ground electrode) of the battery.
  • the switching element Q5 is connected to the V-phase output of the three-phase AC generator 3 and the battery.
  • the switching element Q6 is connected between the W-phase output of the three-phase AC generator 3 and the ground power supply of the battery 2.
  • the comparison unit 11 compares the voltage VBAT of the battery 2 (hereinafter referred to as “battery voltage VBAT”) and its target value.
  • the control unit 13 determines the phase angle ⁇ that defines the energization timing of the switching elements Q1 to Q6 of the conversion unit 14 for each phase of the output of the three-phase AC generator 3 based on the comparison result of the comparison unit 11, and the phase angle The energization of the switching elements Q1 to Q6 is controlled based on ⁇ .
  • the output current estimation unit 15 estimates the current flowing through the connection line L given by the output current IB of the battery charger 1 from the phase angle ⁇ determined by the control unit 13 and the rotational speed RPM of the three-phase AC generator 3. To do.
  • the voltage estimation unit 8 calculates a voltage drop due to the connection line L using the current estimated by the output current estimation unit 15 and estimates the battery voltage VBAT of the battery 2 using this voltage drop.
  • the pulsar signal detector 5 detects a pulsar signal SP induced in the pulsar coil 4 as the three-phase AC generator 3 rotates, and generates a pulsar signal SPD synchronized with the rotation of the three-phase AC generator 3.
  • the pulsar signal detection unit 5 outputs the pulsar signal SPD to the rotation speed calculation unit 6 and the control unit 13.
  • the rotation speed calculation unit 6 calculates the rotation speed RPM (rpm) of the three-phase AC generator 3 by, for example, counting the pulsar signal SPD per unit time generated by the pulsar signal detection unit 5.
  • the rotation speed calculation unit 6 outputs the calculated rotation speed RPM to the output current estimation unit 15.
  • the output voltage detector 7 detects the voltage value VB of the output terminal TOUT of the battery charging device 1 (hereinafter referred to as “output terminal voltage value VB”).
  • the output terminal voltage value VB is a voltage value that the battery charger 1 outputs to the battery 2.
  • the output voltage detector 7 outputs, for example, a voltage obtained by stepping down the output terminal voltage value VB by resistance division as a detected value of the output terminal voltage value VB.
  • the output voltage detection unit 7 outputs the detected output terminal voltage value VB to the battery voltage estimation unit 82 of the voltage estimation unit 8.
  • the temperature correction unit 10 corrects the calculation result of Expression (1) based on temperature information that affects the calculation result of Expression (1).
  • amendment part 10 here is not an essential component of the battery charging device 1, and can be abbreviate
  • the voltage drop estimation unit 81 provided in the voltage estimation unit 8 uses the output current of the battery charging device 1 estimated by the output current estimation unit 15 (to be described later) (hereinafter referred to as “output current IB”) as a connection line L.
  • the voltage drop VDROP at is estimated.
  • the output current IB is a current that is output to the battery 2 through the connection line L so that the battery charging device 1 charges the battery 2, and is a current that flows through the connection line L.
  • the output current IB is estimated by the output current estimator 15. A method for estimating the output current IB by the output current estimator 15 will be described later.
  • the voltage drop estimation unit 81 acquires the output current IB estimated by the output current estimation unit 15, and reads and acquires the connection line resistance value RL stored in advance in the resistance value storage unit 9.
  • the voltage drop estimation unit 81 calculates a voltage drop VDROP in the connection line L from the following equation (1) from the acquired output current IB and the connection line resistance value RL.
  • the voltage drop VDROP is a potential difference generated at both ends of the connection line L when the battery charging device 1 passes the output current IB through the connection line L.
  • VDROP IB ⁇ RL (1)
  • the voltage drop estimation unit 81 outputs the voltage drop VDROP calculated from the equation (1) to the battery voltage estimation unit 82.
  • the battery voltage estimation unit 82 acquires the output terminal voltage value VB detected by the output voltage detection unit 7 and the voltage drop VDROP calculated by the voltage drop estimation unit 81.
  • the battery voltage estimation unit 82 outputs the calculated battery voltage VBAT to the comparison unit 11.
  • the battery charger 1 does not charge the battery 2.
  • the battery 2 is charged so that the difference value Vd converges to zero.
  • the comparison unit 11 outputs the calculated difference value Vd to the control unit 13.
  • the phase angle determination unit 131 of the control unit 13 acquires the difference value Vd from the comparison unit 11. After obtaining the difference value Vd, the phase angle determination unit 131 refers to a phase angle table stored in advance in a storage unit (not shown) in the battery charger 1 to determine the phase angle ⁇ with respect to the difference value Vd. get.
  • the phase angle table is a table in which the difference value Vd is associated with the phase angle ⁇ . Such a correspondence relationship between the difference value Vd and the phase angle ⁇ is appropriately set so that charging required for setting the battery voltage VBAT to the target voltage Vref is performed.
  • the phase angle determination unit 131 determines the phase angle ⁇ from the acquired difference value Vd.
  • the phase angle determination unit 131 outputs the determined phase angle ⁇ to the gate signal generation unit 132.
  • the gate signal generation unit 132 acquires the phase angle ⁇ from the phase angle determination unit 131. Further, the gate signal generation unit 132 acquires the pulsar signal SPD from the pulsar signal detection unit 5. The gate signal generation unit 132 generates a gate signal for controlling energization of the switching elements Q1 to Q6 from the acquired phase angle ⁇ and the pulsar signal SPD. The gate signal generation unit 132 outputs the generated gate signal to each gate of the switching elements Q1 to Q6 of the conversion unit 14.
  • FIG. 3 is a diagram for explaining an operation example of the battery charger 1 in the embodiment of the present invention, and is a diagram for explaining an example of a control method for controlling the output current IB.
  • This example shows an example of a method for controlling the energization timing of the switching elements Q1 to Q6 when the output current IG of the three-phase AC generator 3 is rectified.
  • the example of FIG. 3 shows a case where the switching element Q1 is controlled to be energized in a period corresponding to a phase angle of 180 ° and the on-duty of the gate signal is fixed to 50%. Yes.
  • the pulsar signal SP has a waveform that falls at time t0 when the phase of the AC output current IG of the three-phase AC generator 3 becomes 0 °.
  • the gate signal SG1 applied to the gate of the switching element Q1 has a pulse width corresponding to a half cycle (180 ° phase angle) of the AC output current IG.
  • the phase angle ⁇ 1 indicates the rising position of the pulse of the gate signal SG1 with reference to the falling edge of the pulsar signal SP.
  • the present invention is not limited to this example, and the definition of the phase angle ⁇ is arbitrary.
  • the battery charging device 1 has the phase angle of the gate signals SG1 to SG6 that defines the timing (energization timing) of the switching operation of the switching elements Q1 to Q6 with respect to the AC output currents IG1, 2, and 3 of the three-phase AC generator 3.
  • the current value of the output current IB is controlled by performing retard angle control for delaying ⁇ or advance angle control for advancing the phase angle ⁇ .
  • the advance angle control is performed by making the rising edge of the gate signal SG1 of the switching element Q1 before the falling edge of the pulsar signal SP (phase angle reference).
  • the retard angle control is performed by setting the rise of the gate signal SG1 of the switching element Q1 after the fall of the pulsar signal SP (phase angle reference).
  • the gate signal SG1 represents a signal when the advance control is performed by advancing the rising edge of the gate signal SG1 to a position corresponding to the phase angle ⁇ 1.
  • the phase angle ⁇ is referred to as an advance angle amount.
  • the phase angle ⁇ is referred to as a retard amount.
  • the output current IB is the sum of the AC output currents IG1, 2, and 3 that are output during the ON time period of the gate signal SG.
  • the output current IB is formed by a current component indicated by the hatched portion of the waveform of the AC output currents IG1, 2 and 3.
  • the phase angle determination unit 131 determines a phase angle with respect to the new difference value Vd (hereinafter referred to as “new phase angle”).
  • the battery charger 1 performs advance angle control or retard angle control so that the battery voltage VBAT becomes the target voltage Vref based on the new phase angle ⁇ .
  • the new difference value Vd is greater than 0 (when the new phase angle is an advance angle)
  • the battery 2 is in an overcharged state, and the battery charger 1 needs to reduce the output current IB. is there.
  • the battery charger 1 performs advance angle control.
  • the battery charger 1 needs to increase the output current IB. In this case, the battery charging device 1 performs retardation control.
  • the delay control is performed with a delay amount larger than the phase angle ⁇ 0 corresponding to the timing at time t0 when the phase of the AC output current IG becomes 0 °
  • the output output during the ON time of the gate signal SG The current IB decreases.
  • the output current IB decreases without increasing despite the retardation control.
  • the advance angle control is performed with an advance amount larger than the phase angle ⁇ 2 corresponding to the timing at time t2 when the phase of the AC output current IG becomes ⁇ 180 °
  • the output output during the ON time of the gate signal SG1 increases. In this case, the output current IB increases without decreasing despite the advance angle control.
  • the phase angle ⁇ of the gate signal SG1 and the output current IB do not correspond to each other one-on-one, and the advance angle control and the retard angle control are hindered. Therefore, in the present embodiment, the advance amount limit value ⁇ MA and the retard amount limit value ⁇ MB are set.
  • limit value (theta) MA has shown the case where it exceeds 0 degree on the characteristics of 3 phase alternating current generator 3 grade
  • FIG. 4 is a diagram for capturing and explaining an operation example of the battery charging device 1 according to the embodiment of the present invention, and for explaining the phase angle calculation and control range of the gate signal SG of the switching element.
  • the vertical axis represents the phase angle ⁇
  • the horizontal axis represents the difference value Vd.
  • the battery charger 1 calculates the phase angle ⁇ from the difference value Vd between the battery voltage VBAT estimated by the battery voltage estimation unit 82 and the target value Vref so that the difference value Vd converges to zero. .
  • the battery charging device 1 performs advance angle or retard angle control based on the calculated phase angle ⁇ , and repeats a series of control cycles in which the battery 2 is charged at regular intervals.
  • the output current IB is controlled by controlling (shifting the timing) the phase angle ⁇ that gives the rising timing of the gate signal SG1 of the switching element Q1 based on the phase angle ⁇ .
  • the method for controlling the output current IB is not limited to this.
  • the output current IB can be controlled by controlling the pulse width of the gate signal SG (PWM control) based on the phase angle ⁇ .
  • FIG. 5 is a diagram for explaining another example of the operation of the battery charger 1 in the embodiment of the present invention, and is a diagram for explaining an example of another control method for controlling the output current IB.
  • PWM control for controlling the pulse width of the gate signal SG is used.
  • the rising timing of the gate signal SG is fixed to 0 ° in accordance with the phase of the output of the three-phase AC generator 3, and the falling timing of the gate signal SG is controlled based on the phase angle ⁇ .
  • the difference value Vd is larger than 0, the PWM control is performed so that the falling timing of the gate signal SG becomes longer (ON time becomes longer).
  • the PWM control is performed so that the falling timing of the date signal SG is shortened (ON time is shortened).
  • the area of the shaded portion of the AC output current waveform can be controlled, so that the output current IB can be controlled.
  • the output current IB may be controlled by controlling the pulse width of the gate signals SG1 to SG6 of the switching elements Q1 to Q6 based on the phase angle ⁇ .
  • the output current estimator 15 determines that the battery charging device 1 determines the current control cycle from the rotational speed RPM of the three-phase AC generator 3 acquired in the previous control cycle and the phase angle ⁇ acquired by the phase angle determiner 131. To estimate the output current IB output.
  • the AC output current IG2 has a phase difference of 120 ° and the AC output current IG3 has a phase difference of 240 ° with respect to the AC output current IG1.
  • the gate signal SG2 has a phase difference of 120 ° and the gate signal SG3 has a phase difference of 240 ° with respect to the gate signal SG1.
  • the conversion unit 14 turns off the switching element Q4 if, for example, the switching element Q1 is turned on so that both the upper and lower switching elements are not turned on. That is, the gate signals SG4, 5, and 6 have waveforms with inverted signs with respect to the gate signals SG1, SG2, and SG3.
  • the rotational speed RPM of the three-phase AC generator 3 that determines the AC output current IG, the phase angle ⁇ that controls the timing of the ON time of the gate signal SG, and the output current IB have a certain correspondence. Therefore, the output current IB can be estimated from the rotational speed RPM of the three-phase AC generator 3 that determines the AC output current IG and the phase angle ⁇ that controls the timing of the ON time of the gate signal SG.
  • an output current table that defines such a correspondence relationship is stored in advance in a storage unit (not shown) of the output current estimation unit 15.
  • the output current estimation unit 15 acquires the rotation speed RPM of the three-phase AC generator 3 from the rotation speed calculation unit 6. Further, the output current estimation unit 15 acquires the phase angle ⁇ from the phase angle determination unit 131.
  • the output current estimation unit 15 refers to the above-described output current table after obtaining the phase angle ⁇ and the rotational speed RPM of the three-phase AC generator 3. Then, the output current estimation unit 15 acquires the output current IB corresponding to the phase angle ⁇ and the rotation speed RPM of the three-phase AC generator 3 from the output current table. Thereby, the output current IBP is estimated.
  • the output current IB is a current flowing through the connection line L. Therefore, the voltage drop VDROP in the connection line L can be calculated using the output current IB.
  • FIG. 6 is a diagram for explaining a method of calculating IBP that is an estimated value of the output current IB by the battery charging device 1 according to the embodiment of the present invention.
  • the vertical axis represents the output current IB
  • the horizontal axis represents the rotational speed RPM of the three-phase AC generator 3.
  • the characteristic line in the example of FIG. 6 shows the relationship between the output current IB and the rotation speed RPM at the phase angles ⁇ 1 and ⁇ 2 shown in FIG. As shown in FIG.
  • the output current estimation unit 15 uses the estimated value of the output current IB according to the phase angles ⁇ 1 and ⁇ 2. A certain IBP can be calculated.
  • the characteristic line shown in FIG. 6 is obtained in advance by experiments, for example, and is stored in a storage unit (not shown) in the battery charger 1 as the output current table described above. Since the output current IB varies depending on the temperature of the generator, temperature characteristics may be added to the output current table.
  • the output current estimation unit 15 outputs the output current IBP estimated as the current flowing through the connection line L to the voltage drop estimation unit 81 described above.
  • the output current IB is estimated using the rotational speed RPM of the three-phase AC generator 3 and the phase angle ⁇ obtained by the phase angle determination unit 131 without directly detecting the output current IB.
  • the battery voltage VBAT can be obtained using the estimated output current IBP.
  • the rotational speed RPM and the phase angle ⁇ used for the estimation of the output current IB by the output current estimating unit 15 the control amount used in the advance angle control and the retard angle control of the battery charging device 1. Is being diverted. Accordingly, the output current IB is estimated without using a dedicated sensor including a detection line for detecting the battery voltage VBAT and a shunt resistor for detecting the output current, and the battery voltage is estimated using the output current IBP.
  • VBAT can be acquired. Therefore, it is possible to provide a battery charging device with a low device cost.
  • the present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention.
  • a Hall IC may be installed in a three-phase AC generator, and the rotation speed calculation unit 6 may calculate the rotation speed RPM from a signal from the installed Hall IC.
  • a signal indicating the rotation speed RPM may be supplied from the host ECU (Engine Control Unit) to the rotation speed calculation unit 6.

Abstract

A battery charging device has: a conversion unit for converting AC power output from an AC power generator to DC power using a switching element and supplying the converted DC power to a battery via a connection line; a comparison unit for comparing a battery voltage of said battery with a target value thereof; a control unit for determining a phase angle for specifying the activation timing of the switching element of said conversion unit on the basis of the comparison result of said comparison unit and controlling the activation of said switching element according to said phase angle; an output current estimation unit for estimating a current flowing through the connection line from the phase angle determined by said control unit and a rotational speed of said power generator; and a voltage estimation unit equipped with a voltage drop estimation unit and a battery voltage estimation unit, said voltage drop estimation unit calculating a voltage drop portion caused by said connection line using the output current estimated by said output current estimation unit to estimate a voltage drop, said battery voltage estimation unit estimating said battery voltage using said voltage drop portion.

Description

バッテリ充電装置Battery charger
 本発明は、バッテリ充電装置に関する。 The present invention relates to a battery charging device.
 車両などにおいて、エンジンに連動して回転する発電機により発電された交流電圧を所定の直流電圧に変換してバッテリに印加することによりバッテリを充電するバッテリ充電装置がある。この種のバッテリ充電装置は、バッテリとハーネスで接続され、ハーネスを介してバッテリの充電を行う。この充電の際、バッテリ充電装置は、ハーネスを介してバッテリ電圧を検出し、検出したバッテリ電圧が所望値となるようにバッテリ充電装置の出力電圧を調整している。 2. Description of the Related Art There are battery chargers that charge a battery by converting an AC voltage generated by a generator that rotates in conjunction with an engine into a predetermined DC voltage in a vehicle or the like and applying it to the battery. This type of battery charging device is connected to a battery through a harness and charges the battery via the harness. During this charging, the battery charging device detects the battery voltage via the harness and adjusts the output voltage of the battery charging device so that the detected battery voltage becomes a desired value.
 しかし、ハーネスには抵抗成分が存在するため、バッテリ充電装置からハーネスを介してバッテリに流れ込む電流により、ハーネスで電圧降下が発生する。そのため、充電電流が小さい時は電圧降下が小さいのでバッテリ電圧にあまり影響はないが、充電電流が大きい時ほど電圧降下が大きくなるのでハーネスを介して検出されるバッテリ電圧と実際のバッテリ電圧とが一致しなくなり、バッテリ電圧を精度よく検出することができないという問題がある。 However, since there is a resistance component in the harness, a voltage drop occurs in the harness due to the current flowing from the battery charger to the battery via the harness. Therefore, when the charging current is small, the voltage drop is small, so the battery voltage is not significantly affected.However, as the charging current is large, the voltage drop increases, so the battery voltage detected via the harness and the actual battery voltage are different. There is a problem that the battery voltages cannot be accurately detected because they do not match.
 この問題の解決を図った従来技術として、検出線を使用してバッテリ電圧を検出する技術がある。図7は、従来技術によるバッテリ電圧の検出手法を説明するための図であり、検出線SLを使用してバッテリ200のバッテリ電圧VBATを検出する手法を示す。バッテリ充電装置100の出力端子BはハーネスHを介してバッテリ200の正電極に接続されている。また、ハーネスHとは別に、バッテリ充電装置100の電圧検出端子Sには、検出線SLを介してバッテリ200の正電極が接続されている。この従来技術によれば、バッテリ電圧VBATは、検出線SLを介してバッテリ充電装置100に検出される。電圧を検出する目的では検出線SLに電流を流す必要がないので、原理的に検出線SLで電圧降下は発生しない。従って、ハーネスHでの電圧降下の影響を受けることなく、バッテリ電圧VBATを精度よく検出することができる。 As a conventional technique for solving this problem, there is a technique for detecting a battery voltage using a detection line. FIG. 7 is a diagram for explaining a battery voltage detection method according to the prior art, and shows a method of detecting the battery voltage VBAT of the battery 200 using the detection line SL. The output terminal B of the battery charging device 100 is connected to the positive electrode of the battery 200 via the harness H. In addition to the harness H, the positive electrode of the battery 200 is connected to the voltage detection terminal S of the battery charger 100 via the detection line SL. According to this prior art, the battery voltage VBAT is detected by the battery charging device 100 via the detection line SL. Since it is not necessary to pass a current through the detection line SL for the purpose of detecting the voltage, a voltage drop does not occur in the detection line SL in principle. Therefore, the battery voltage VBAT can be accurately detected without being affected by the voltage drop in the harness H.
 上述の問題の解決を図った他の従来技術として、電流検出用のセンサやシャント抵抗などを使用してハーネスでの電圧降下を検出する技術がある(例えば、特許文献1参照)。この従来技術によれば、ハーネスと直列に接続されたシャント抵抗の端子間電圧からバッテリ充電装置100の出力電流IBを検出し、その出力電流IBと出力電圧VBとハーネス抵抗Rとから、バッテリ電圧VBATを、VBAT=VB-R×IBにより求める。 As another conventional technique for solving the above problem, there is a technique for detecting a voltage drop in a harness using a current detection sensor, a shunt resistor, or the like (see, for example, Patent Document 1). According to this prior art, the output current IB of the battery charger 100 is detected from the voltage across the terminals of the shunt resistor connected in series with the harness, and the battery voltage is determined from the output current IB, the output voltage VB, and the harness resistance R. VBAT is obtained by VBAT = VB−R × IB.
特開2013-68639号公報JP 2013-68639 A
 しかしながら、上述の従来技術によれば、検出線やセンサ、シャント抵抗など、バッテリ電圧を検出するための専用の部品を備える必要があるため、装置コスト(部品単価、実装面積UPによる装置サイズ)が上昇する。 However, according to the above-described conventional technology, it is necessary to provide dedicated parts for detecting the battery voltage, such as a detection line, a sensor, and a shunt resistor, so that the device cost (device unit price, device size due to increased mounting area) is reduced. To rise.
 本発明は、このような事情に鑑みてなされたもので、その目的は、バッテリ電圧を検出するための専用センサを用いることなく、バッテリ電圧を求めることができるバッテリ充電装置を提供することである。 This invention is made | formed in view of such a situation, The objective is to provide the battery charging device which can obtain | require a battery voltage, without using the exclusive sensor for detecting a battery voltage. .
 本発明の一態様は、交流発電機から出力された交流電力をスイッチング素子により直流電力に変換して接続線を介してバッテリに供給する変換部と、前記バッテリのバッテリ電圧とその目標値とを比較する比較部と、前記比較部の比較結果に基づいて前記変換部のスイッチング素子の通電タイミングを規定する位相角を決定し、前記位相角に基づいて前記スイッチング素子の通電を制御する制御部と、前記制御部により決定された位相角と前記交流発電機の回転数とから、前記接続線を流れる電流を推定する出力電流推定部と、前記出力電流推定部により推定された電流を用いて前記接続線による電圧降下分を算出して電圧降下を推定する電圧降下推定部、及び、前記電圧降下分を用いて前記バッテリ電圧を推定するバッテリ電圧推定部を備えた電圧推定部と、を有することを特徴とするバッテリ充電装置である。 One aspect of the present invention is a converter that converts AC power output from an AC generator into DC power by a switching element and supplies the DC power to a battery via a connection line, and a battery voltage of the battery and a target value thereof. A comparison unit for comparing, and a control unit that determines a phase angle that defines an energization timing of the switching element of the conversion unit based on a comparison result of the comparison unit, and that controls energization of the switching element based on the phase angle; The output current estimation unit for estimating the current flowing through the connection line from the phase angle determined by the control unit and the rotational speed of the AC generator, and the current estimated by the output current estimation unit, A voltage drop estimator that calculates a voltage drop due to the connecting line and estimates a voltage drop; and a battery voltage estimator that estimates the battery voltage using the voltage drop. A voltage estimation unit was example, a battery charger, characterized in that it comprises a.
 また、本発明の一態様は、バッテリ充電装置であって、前記出力電流推定部は、前記スイッチング素子の通電を制御する制御サイクルごとに、前記交流発電機の回転数と、前記制御部により決定された前記通電タイミングを規定する位相角と、前回の制御サイクルにおいて取得された前記交流発電機の回転数と、前記通電タイミングを規定する位相角から、前記接続線を流れる電流を推定することを特徴とする。 Further, one aspect of the present invention is a battery charging device, wherein the output current estimation unit is determined by the number of rotations of the AC generator and the control unit for each control cycle for controlling energization of the switching element. Estimating the current flowing through the connection line from the phase angle defining the energization timing, the rotational speed of the AC generator acquired in the previous control cycle, and the phase angle defining the energization timing. Features.
 また、本発明の一態様は、バッテリ充電装置であって、前記出力電流推定部は、前記交流発電機の回転数と前記変換部のスイッチング素子の通電タイミングを規定する位相角と当該バッテリ充電装置の出力電流との関係を規定したテーブルを有し、前記交流発電機の回転数と前記制御部により決定された位相角とに基づいて前記テーブルを参照することにより、前記接続線を流れる電流を推定することを特徴とする。 One embodiment of the present invention is a battery charging device, wherein the output current estimating unit includes a rotation angle of the AC generator and a phase angle that defines an energization timing of a switching element of the conversion unit, and the battery charging device. The current flowing through the connection line is obtained by referring to the table based on the rotational speed of the AC generator and the phase angle determined by the control unit. It is characterized by estimating.
 また、本発明の一態様は、バッテリ充電装置であって、前記バッテリ電圧推定部は、前記出力電流推定部によって推定された電流に前記接続線の抵抗値を乗じた値を当該バッテリ充電装置の出力電圧から差し引くことにより前記バッテリ電圧を推定することを特徴とする。 Further, one aspect of the present invention is a battery charging device, wherein the battery voltage estimation unit includes a value obtained by multiplying a current estimated by the output current estimation unit by a resistance value of the connection line. The battery voltage is estimated by subtracting from the output voltage.
 また、本発明の一態様は、バッテリ充電装置であって、前記電圧降下推定部の推定結果に影響を与える温度情報に基づいて、前記電圧降下推定部の推定結果を補正する温度補正部をさらに備えることを特徴とする請求項4に記載のバッテリ充電装置。 One embodiment of the present invention is a battery charging device, further comprising a temperature correction unit that corrects the estimation result of the voltage drop estimation unit based on temperature information that affects the estimation result of the voltage drop estimation unit. The battery charger according to claim 4, further comprising:
 本発明の一態様によれば、バッテリ電圧を検出するためのセンサを用いることなくバッテリ電圧を求めることができる。 According to one aspect of the present invention, the battery voltage can be obtained without using a sensor for detecting the battery voltage.
本発明の実施形態におけるバッテリ充電装置の構成例を示す図である。It is a figure which shows the structural example of the battery charging device in embodiment of this invention. 本発明の実施形態におけるバッテリ充電装置の構成例を示す図であり、図1に示すバッテリ充電装置の構成を信号の流れに着目して表現した図である。It is a figure which shows the structural example of the battery charging device in embodiment of this invention, and is the figure which expressed the structure of the battery charging device shown in FIG. 1 paying attention to the flow of a signal. 本発明の実施形態におけるバッテリ充電装置の動作例を説明するための図であり、出力電流を制御する制御方法の一例を説明するための図である。It is a figure for demonstrating the operation example of the battery charging device in embodiment of this invention, and is a figure for demonstrating an example of the control method which controls output current. 本発明の実施形態におけるバッテリ充電装置の動作例を捕捉説明するための図であり、スイッチング素子のゲート信号の位相の制御範囲を説明するための図である。It is a figure for catching and explaining the example of operation of the battery charging device in the embodiment of the present invention, and is the figure for explaining the control range of the phase of the gate signal of a switching element. 本発明の実施形態におけるバッテリ充電装置の他の動作例を説明するための図であり、出力電流を制御する他の制御方法の一例を説明するための図である。It is a figure for demonstrating the other operation example of the battery charging device in embodiment of this invention, and is a figure for demonstrating an example of the other control method which controls an output current. 本発明の実施形態におけるバッテリ充電装置による出力電流の推定手法を説明するための図である。It is a figure for demonstrating the estimation method of the output current by the battery charging device in embodiment of this invention. 従来技術によるバッテリ電圧の検出手法を説明するための図である。It is a figure for demonstrating the detection method of the battery voltage by a prior art.
 以下、本実施の一実施形態を、図面を参照して説明する。
 図1は、本発明の実施形態におけるバッテリ充電装置1の構成例を示す図である。
 また、図2は、本発明の実施形態におけるバッテリ充電装置1の構成例を示す図であり、図1に示すバッテリ充電装置1の構成を信号の流れに着目して表現した図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration example of a battery charging device 1 according to an embodiment of the present invention.
2 is a diagram illustrating a configuration example of the battery charging device 1 according to the embodiment of the present invention, and is a diagram expressing the configuration of the battery charging device 1 illustrated in FIG. 1 while paying attention to a signal flow.
 バッテリ充電装置1は、3相交流発電機3から出力された交流電力をスイッチング素子Q1~Q6により直流電力に変換してバッテリ2に供給することにより、バッテリ2を充電するものである。本実施形態では、バッテリ充電装置1は、スイッチング素子Q1~Q6のスイッチング動作のタイミング(通電タイミング)を3相交流発電機3の交流出力に対して遅らせる遅角制御、または進ませる進角制御を行うことにより、バッテリ2の充電状態(または放電状態)を制御している。その詳細については後述する。 The battery charger 1 charges the battery 2 by converting the AC power output from the three-phase AC generator 3 into DC power by the switching elements Q1 to Q6 and supplying the DC power to the battery 2. In the present embodiment, the battery charging device 1 performs delay angle control for delaying the timing (energization timing) of the switching operation of the switching elements Q1 to Q6 with respect to the AC output of the three-phase AC generator 3, or advance angle control for advancing. By doing so, the charging state (or discharging state) of the battery 2 is controlled. Details thereof will be described later.
 バッテリ充電装置1の入力端子TIN1~TIN3には、3相交流発電機3の各相の出力部が接続されている。3相交流発電機3は、車両等のエンジンに連動して回転することにより、交流電力を発電する。3相交流発電機3は、発電した交流電力をバッテリ充電装置1に出力する。3相交流発電機3のステータ側には、パルサコイル4が取り付けられている。パルサコイル4は、磁極部を備えた鉄心(不図示)に巻かれたコイルである。また、3相交流発電機3のロータ側には複数の複数のリラクタ4aが取り付けられている。図1の例では、3個のリラクタ4aが、120°ごとにロータの外周に取り付けられている。 The output part of each phase of the three-phase AC generator 3 is connected to the input terminals TIN1 to TIN3 of the battery charger 1. The three-phase AC generator 3 generates AC power by rotating in conjunction with an engine such as a vehicle. The three-phase AC generator 3 outputs the generated AC power to the battery charger 1. A pulsar coil 4 is attached to the stator side of the three-phase AC generator 3. The pulsar coil 4 is a coil wound around an iron core (not shown) having a magnetic pole part. A plurality of reluctators 4 a are attached to the rotor side of the three-phase AC generator 3. In the example of FIG. 1, three reluctors 4a are attached to the outer periphery of the rotor every 120 °.
 パルサコイル4は、例えばエンジンのクランク軸の回転に伴って、リラクタ4aがパルサコイル4の鉄心の磁極部の近傍を通過する際にパルス信号を出力する。これにより、パルサコイル4は、3相交流発電機3のロータの回転により発生するロータの回転数(rpm)を示すパルサ信号を出力する。パルサコイル4は、発生したパルサ信号をバッテリ充電装置1のパルス入力端子TPINに出力する。 The pulsar coil 4 outputs a pulse signal when the reluctator 4a passes in the vicinity of the magnetic pole portion of the iron core of the pulsar coil 4 with the rotation of the crankshaft of the engine, for example. Thereby, the pulsar coil 4 outputs a pulsar signal indicating the rotational speed (rpm) of the rotor generated by the rotation of the rotor of the three-phase AC generator 3. The pulsar coil 4 outputs the generated pulsar signal to the pulse input terminal TPIN of the battery charger 1.
 バッテリ充電装置1の出力端子TOUTには、バッテリ2の正電極が接続されている。バッテリ2の負電極は、例えばバッテリ充電装置1が搭載された車両の車体に接地されている。本実施形態では、バッテリ充電装置1の出力端子TOUTとバッテリ2は、ハーネスやケーブルなどの接続線Lを介して電気的に接続されている。 The positive electrode of the battery 2 is connected to the output terminal TOUT of the battery charger 1. The negative electrode of the battery 2 is grounded to the vehicle body of the vehicle on which the battery charger 1 is mounted, for example. In the present embodiment, the output terminal TOUT of the battery charging device 1 and the battery 2 are electrically connected via a connection line L such as a harness or a cable.
 次に、バッテリ充電装置1について詳細に説明する。
(構成の説明)
 図1は、本発明の実施形態におけるバッテリ充電装置1の構成例を示す図である。
 図1に示すように、バッテリ充電装置1は、パルサ信号検出部5、回転数演算部6、出力電圧検出部7、電圧推定部8、抵抗値記憶部9、温度補正部10、比較部11、目標電圧記憶部12、制御部13、変換部14、出力電流推定部15、を有している。このうち、電圧推定部8は、電圧降下推定部81とバッテリ電圧推定部82とを備えている。制御部13は、位相角決定部131とゲート信号生成部132とを備えている。抵抗値記憶部9には、接続線Lの抵抗値RL(以下、「接続線抵抗値RL」という。)が予め記憶されている。
Next, the battery charger 1 will be described in detail.
(Description of configuration)
FIG. 1 is a diagram illustrating a configuration example of a battery charging device 1 according to an embodiment of the present invention.
As shown in FIG. 1, the battery charging device 1 includes a pulsar signal detection unit 5, a rotation speed calculation unit 6, an output voltage detection unit 7, a voltage estimation unit 8, a resistance value storage unit 9, a temperature correction unit 10, and a comparison unit 11. , Target voltage storage unit 12, control unit 13, conversion unit 14, and output current estimation unit 15. Among these, the voltage estimation unit 8 includes a voltage drop estimation unit 81 and a battery voltage estimation unit 82. The control unit 13 includes a phase angle determination unit 131 and a gate signal generation unit 132. The resistance value storage unit 9 stores a resistance value RL of the connection line L (hereinafter referred to as “connection line resistance value RL”) in advance.
 変換部14は、3相交流発電機3から出力された交流電力をスイッチング素子Q1~Q6により直流電力に変換して接続線Lを介してバッテリ2に供給するものであり、スイッチング素子Q1~Q6を備えた3相ブリッジ整流回路から構成されている。スイッチング素子Q1~Q6は、例えばFET(Field Effect Transistor)である。ここで、スイッチング素子Q1は、バッテリ2のプラス側と3相交流発電機3のU相出力との間に接続され、スイッチング素子Q2は、バッテリ2のプラス側と3相交流発電機3のV相出力との間に接続され、スイッチング素子Q3は、バッテリ2のプラス側と3相交流発電機3のW相出力との間に接続されている。また、スイッチング素子Q4は、3相交流発電機3のU相出力とバッテリの接地電源(接地極)との間に接続され、スイッチング素子Q5は、3相交流発電機3のV相出力とバッテリ2の接地電源との間に接続され、スイッチング素子Q6は、3相交流発電機3のW相出力とバッテリ2の接地電源との間に接続されている。これらのスイッチング素子Q1~Q6は、ゲート信号生成部132から出力されるゲート信号SGによりスイッチング駆動される。 The converter 14 converts the AC power output from the three-phase AC generator 3 into DC power by the switching elements Q1 to Q6 and supplies it to the battery 2 via the connection line L. The switching elements Q1 to Q6 It is comprised from the three-phase bridge rectifier circuit provided with. The switching elements Q1 to Q6 are, for example, FETs (Field Effect Transistors). Here, the switching element Q1 is connected between the positive side of the battery 2 and the U-phase output of the three-phase alternating current generator 3, and the switching element Q2 is connected to the positive side of the battery 2 and the V of the three-phase alternating current generator 3. The switching element Q3 is connected between the positive side of the battery 2 and the W-phase output of the three-phase AC generator 3. The switching element Q4 is connected between the U-phase output of the three-phase AC generator 3 and the ground power supply (ground electrode) of the battery. The switching element Q5 is connected to the V-phase output of the three-phase AC generator 3 and the battery. The switching element Q6 is connected between the W-phase output of the three-phase AC generator 3 and the ground power supply of the battery 2. These switching elements Q1 to Q6 are switched and driven by a gate signal SG output from the gate signal generation unit 132.
 比較部11は、バッテリ2の電圧VBAT(以下、「バッテリ電圧VBAT」と称す。)とその目標値とを比較するものである。制御部13は、比較部11の比較結果に基づいて3相交流発電機3の出力の各相に対する変換部14のスイッチング素子Q1~Q6の通電タイミングを規定する位相角θを決定し、位相角θに基づいてスイッチング素子Q1~Q6の通電を制御するものである。出力電流推定部15は、制御部13により決定された位相角θと3相交流発電機3の回転数RPMとから、バッテリ充電装置1の出力電流IBによって与えられる接続線Lを流れる電流を推定するものである。電圧推定部8は、出力電流推定部15により推定された電流を用いて接続線Lによる電圧降下分を算出し、この電圧降下分を用いてバッテリ2のバッテリ電圧VBATを推定するものである。 The comparison unit 11 compares the voltage VBAT of the battery 2 (hereinafter referred to as “battery voltage VBAT”) and its target value. The control unit 13 determines the phase angle θ that defines the energization timing of the switching elements Q1 to Q6 of the conversion unit 14 for each phase of the output of the three-phase AC generator 3 based on the comparison result of the comparison unit 11, and the phase angle The energization of the switching elements Q1 to Q6 is controlled based on θ. The output current estimation unit 15 estimates the current flowing through the connection line L given by the output current IB of the battery charger 1 from the phase angle θ determined by the control unit 13 and the rotational speed RPM of the three-phase AC generator 3. To do. The voltage estimation unit 8 calculates a voltage drop due to the connection line L using the current estimated by the output current estimation unit 15 and estimates the battery voltage VBAT of the battery 2 using this voltage drop.
(動作の説明)
 次に、本実施形態におけるバッテリ充電装置1の動作を説明する。
 パルサ信号検出部5は、3相交流発電機3の回転に伴ってパルサコイル4に誘起されるパルサ信号SPを検出し、3相交流発電機3の回転に同期したパルサ信号SPDを生成する。パルサ信号検出部5は、パルサ信号SPDを回転数演算部6及び制御部13に出力する。
 回転数演算部6は、例えば、パルサ信号検出部5が生成した単位時間当たりのパルサ信号SPDをカウントすることにより、3相交流発電機3の回転数RPM(rpm)を算出する。回転数演算部6は、出力電流推定部15に、算出した回転数RPMを出力する。
(Description of operation)
Next, operation | movement of the battery charging device 1 in this embodiment is demonstrated.
The pulsar signal detector 5 detects a pulsar signal SP induced in the pulsar coil 4 as the three-phase AC generator 3 rotates, and generates a pulsar signal SPD synchronized with the rotation of the three-phase AC generator 3. The pulsar signal detection unit 5 outputs the pulsar signal SPD to the rotation speed calculation unit 6 and the control unit 13.
The rotation speed calculation unit 6 calculates the rotation speed RPM (rpm) of the three-phase AC generator 3 by, for example, counting the pulsar signal SPD per unit time generated by the pulsar signal detection unit 5. The rotation speed calculation unit 6 outputs the calculated rotation speed RPM to the output current estimation unit 15.
 出力電圧検出部7は、バッテリ充電装置1の出力端子TOUTの電圧値VB(以下、「出力端子電圧値VB」という。)を検出する。出力端子電圧値VBは、バッテリ充電装置1がバッテリ2に出力する電圧値である。出力電圧検出部7は、例えば抵抗分割により出力端子電圧値VBを降圧して得られる電圧を、出力端子電圧値VBの検出値として出力する。出力電圧検出部7は、検出した出力端子電圧値VBを電圧推定部8のバッテリ電圧推定部82に出力する。 The output voltage detector 7 detects the voltage value VB of the output terminal TOUT of the battery charging device 1 (hereinafter referred to as “output terminal voltage value VB”). The output terminal voltage value VB is a voltage value that the battery charger 1 outputs to the battery 2. The output voltage detector 7 outputs, for example, a voltage obtained by stepping down the output terminal voltage value VB by resistance division as a detected value of the output terminal voltage value VB. The output voltage detection unit 7 outputs the detected output terminal voltage value VB to the battery voltage estimation unit 82 of the voltage estimation unit 8.
 温度補正部10は、式(1)の演算結果に影響を与える温度情報に基づいて、式(1)の演算結果を補正する。ただし、ここの温度補正部10は、バッテリ充電装置1の必須構成要素ではなく、省略可能である。 The temperature correction unit 10 corrects the calculation result of Expression (1) based on temperature information that affects the calculation result of Expression (1). However, the temperature correction | amendment part 10 here is not an essential component of the battery charging device 1, and can be abbreviate | omitted.
 次に、後述する出力電流推定部15と共に本実施形態の主要な特徴部の一つである電圧推定部8の動作を説明する。
 電圧推定部8に備えられた電圧降下推定部81は、後述する出力電流推定部15によって推定されたバッテリ充電装置1の出力電流(以下、「出力電流IB」という。)を用いて接続線Lでの電圧降下分VDROPを推定する。ここで、出力電流IBは、バッテリ充電装置1がバッテリ2を充電するために、接続線Lを通じてバッテリ2に出力する電流であり、接続線Lに流れる電流である。出力電流IBは、出力電流推定部15によって推定されるが、この出力電流推定部15による出力電流IBの推定方法は後述する。
Next, the operation of the voltage estimator 8 which is one of the main features of this embodiment will be described together with the output current estimator 15 described later.
The voltage drop estimation unit 81 provided in the voltage estimation unit 8 uses the output current of the battery charging device 1 estimated by the output current estimation unit 15 (to be described later) (hereinafter referred to as “output current IB”) as a connection line L. The voltage drop VDROP at is estimated. Here, the output current IB is a current that is output to the battery 2 through the connection line L so that the battery charging device 1 charges the battery 2, and is a current that flows through the connection line L. The output current IB is estimated by the output current estimator 15. A method for estimating the output current IB by the output current estimator 15 will be described later.
 電圧降下推定部81は、出力電流推定部15によって推定された出力電流IBを取得するとともに、抵抗値記憶部9に予め記憶された接続線抵抗値RLを読み出して取得する。電圧降下推定部81は、取得した出力電流IBと接続線抵抗値RLとから、接続線Lでの電圧降下分VDROPを以下に示す式(1)から算出する。
電圧降下分VDROPは、バッテリ充電装置1が接続線Lに出力電流IBを流したときに、接続線Lの両端に発生する電位差である。
 VDROP=IB×RL ・・・(1)
 電圧降下推定部81は、式(1)から算出した電圧降下分VDROPを、バッテリ電圧推定部82に出力する。
The voltage drop estimation unit 81 acquires the output current IB estimated by the output current estimation unit 15, and reads and acquires the connection line resistance value RL stored in advance in the resistance value storage unit 9. The voltage drop estimation unit 81 calculates a voltage drop VDROP in the connection line L from the following equation (1) from the acquired output current IB and the connection line resistance value RL.
The voltage drop VDROP is a potential difference generated at both ends of the connection line L when the battery charging device 1 passes the output current IB through the connection line L.
VDROP = IB × RL (1)
The voltage drop estimation unit 81 outputs the voltage drop VDROP calculated from the equation (1) to the battery voltage estimation unit 82.
 バッテリ電圧推定部82は、出力電圧検出部7が検出した出力端子電圧値VBと電圧降下推定部81が算出した電圧降下分VDROPとを取得する。バッテリ電圧推定部82は、出力端子電圧値VBと電圧降下分VDROPとから、バッテリ2のバッテリ電圧VBATを以下に示す式(2)から算出する。すなわち、電圧推定部8は、出力電流推定部15によって推定された電流に接続線Lの抵抗値を乗じた値をバッテリ充電装置1の出力端子電圧値VBから差し引くことによりバッテリ電圧VBATを算出する。
 VBAT=VB-VDROP ・・・(2)
 バッテリ電圧推定部82は、算出したバッテリ電圧VBATを比較部11に出力する。
The battery voltage estimation unit 82 acquires the output terminal voltage value VB detected by the output voltage detection unit 7 and the voltage drop VDROP calculated by the voltage drop estimation unit 81. The battery voltage estimation unit 82 calculates the battery voltage VBAT of the battery 2 from the following equation (2) from the output terminal voltage value VB and the voltage drop VDROP. That is, the voltage estimation unit 8 calculates the battery voltage VBAT by subtracting a value obtained by multiplying the current estimated by the output current estimation unit 15 by the resistance value of the connection line L from the output terminal voltage value VB of the battery charger 1. .
VBAT = VB−VDROP (2)
The battery voltage estimation unit 82 outputs the calculated battery voltage VBAT to the comparison unit 11.
 比較部11は、バッテリ電圧推定部82が算出したバッテリ電圧VBATを取得する。また、比較部11は、目標電圧記憶部12に予め記憶されたバッテリの目標電圧Vref(所望値)を読み出して取得する。比較部11は、取得したバッテリ電圧VBATと目標電圧Vrefとを比較し、この比較結果としてバッテリ電圧VBATと目標電圧Vrefの差分値Vd(以下、「差分値Vd」という。)を算出する。差分値Vdは、Vd=Vref-VBATから算出される。ここで、差分値Vd>0の場合、バッテリ電圧VBATは、目標電圧Vrefに達していない。この場合、バッテリ充電装置1はバッテリ2を充電する。一方、Vd≦0の場合、バッテリ電圧VBATは、目標電圧Vrefに達している。この場合、バッテリ充電装置1はバッテリ2を充電しない。このように、差分値Vdがゼロに収束するようにバッテリ2の充電が行われる。比較部11は、算出した差分値Vdを制御部13に出力する。 The comparison unit 11 acquires the battery voltage VBAT calculated by the battery voltage estimation unit 82. Further, the comparison unit 11 reads and acquires the target voltage Vref (desired value) of the battery stored in advance in the target voltage storage unit 12. The comparison unit 11 compares the acquired battery voltage VBAT with the target voltage Vref, and calculates a difference value Vd (hereinafter referred to as “difference value Vd”) between the battery voltage VBAT and the target voltage Vref as a comparison result. The difference value Vd is calculated from Vd = Vref−VBAT. Here, when the difference value Vd> 0, the battery voltage VBAT has not reached the target voltage Vref. In this case, the battery charging device 1 charges the battery 2. On the other hand, when Vd ≦ 0, the battery voltage VBAT has reached the target voltage Vref. In this case, the battery charger 1 does not charge the battery 2. Thus, the battery 2 is charged so that the difference value Vd converges to zero. The comparison unit 11 outputs the calculated difference value Vd to the control unit 13.
 制御部13の位相角決定部131は、比較部11から差分値Vdを取得する。位相角決定部131は、差分値Vdを取得した後、バッテリ充電装置1内にある不図示の記憶部に予め記憶してある位相角テーブルを参照することにより、差分値Vdに対する位相角θを取得する。ここで、位相角テーブルは、差分値Vdと位相角θとを対応させたテーブルである。このような差分値Vdと位相角θとの対応関係は、バッテリ電圧VBATを目標電圧Vrefとするために必要とされる充電が実施されるように適切に設定される。この位相角テーブルを参照することにより、位相角決定部131は、取得した差分値Vdから位相角θを決定する。位相角決定部131は、決定した位相角θをゲート信号生成部132に出力する。 The phase angle determination unit 131 of the control unit 13 acquires the difference value Vd from the comparison unit 11. After obtaining the difference value Vd, the phase angle determination unit 131 refers to a phase angle table stored in advance in a storage unit (not shown) in the battery charger 1 to determine the phase angle θ with respect to the difference value Vd. get. Here, the phase angle table is a table in which the difference value Vd is associated with the phase angle θ. Such a correspondence relationship between the difference value Vd and the phase angle θ is appropriately set so that charging required for setting the battery voltage VBAT to the target voltage Vref is performed. By referring to this phase angle table, the phase angle determination unit 131 determines the phase angle θ from the acquired difference value Vd. The phase angle determination unit 131 outputs the determined phase angle θ to the gate signal generation unit 132.
 ゲート信号生成部132は、位相角決定部131から位相角θを取得する。また、ゲート信号生成部132は、パルサ信号検出部5からパルサ信号SPDを取得する。ゲート信号生成部132は、取得した位相角θとパルサ信号SPDとから、スイッチング素子Q1~Q6の通電を制御するためのゲート信号を生成する。ゲート信号生成部132は、生成したゲート信号を変換部14のスイッチン素子Q1~Q6の各ゲートに出力する。 The gate signal generation unit 132 acquires the phase angle θ from the phase angle determination unit 131. Further, the gate signal generation unit 132 acquires the pulsar signal SPD from the pulsar signal detection unit 5. The gate signal generation unit 132 generates a gate signal for controlling energization of the switching elements Q1 to Q6 from the acquired phase angle θ and the pulsar signal SPD. The gate signal generation unit 132 outputs the generated gate signal to each gate of the switching elements Q1 to Q6 of the conversion unit 14.
 次に、スイッチング素子Q1~Q6のスイッチング動作のタイミング(位相角θ)について図を用いて説明する。図3は、本発明の実施形態におけるバッテリ充電装置1の動作例を説明するための図であり、出力電流IBを制御する制御方法の一例を説明するための図である。この例は、3相交流発電機3の出力電流IGを整流する場合のスイッチング素子Q1~Q6の通電タイミングの制御方法の一例を示している。なお、本実施形態では、図3の例は、スイッチング素子Q1を180°の位相角に相当する期間において通電状態とする制御を行い、ゲート信号のオンデューティを50%に固定した場合を示している。 Next, the switching operation timing (phase angle θ) of the switching elements Q1 to Q6 will be described with reference to the drawings. FIG. 3 is a diagram for explaining an operation example of the battery charger 1 in the embodiment of the present invention, and is a diagram for explaining an example of a control method for controlling the output current IB. This example shows an example of a method for controlling the energization timing of the switching elements Q1 to Q6 when the output current IG of the three-phase AC generator 3 is rectified. In the present embodiment, the example of FIG. 3 shows a case where the switching element Q1 is controlled to be energized in a period corresponding to a phase angle of 180 ° and the on-duty of the gate signal is fixed to 50%. Yes.
 図3に示す例では、パルサ信号SPは、3相交流発電機3の交流出力電流IGの位相が0°となる時刻t0のタイミングで立ち下がる波形を有している。また、スイッチング素子Q1のゲートに印加されるゲート信号SG1は、交流出力電流IGの半周期(180°の位相角)に相当するパルス幅を有している。この例では、位相角θ1は、パルサ信号SPの立下がりを基準としたゲート信号SG1のパルスの立ち上がり位置を示している。ただし、この例に限定されず、位相角θの定義は任意である。 In the example shown in FIG. 3, the pulsar signal SP has a waveform that falls at time t0 when the phase of the AC output current IG of the three-phase AC generator 3 becomes 0 °. The gate signal SG1 applied to the gate of the switching element Q1 has a pulse width corresponding to a half cycle (180 ° phase angle) of the AC output current IG. In this example, the phase angle θ1 indicates the rising position of the pulse of the gate signal SG1 with reference to the falling edge of the pulsar signal SP. However, the present invention is not limited to this example, and the definition of the phase angle θ is arbitrary.
 バッテリ充電装置1は、3相交流発電機3の交流出力電流IG1、2、3に対して、スイッチング素子Q1~Q6のスイッチング動作のタイミング(通電タイミング)を規定するゲート信号SG1~6の位相角θを遅らせる遅角制御、または位相角θを進ませる進角制御を行うことにより、出力電流IBの電流値を制御する。例えば、進角制御は、スイッチング素子Q1のゲート信号SG1の立ち上がりをパルサ信号SPの立下り(位相角基準)より前にすることにより実施される。また、遅角制御は、スイッチング素子Q1のゲート信号SG1の立ち上がりをパルサ信号SPの立下り(位相角基準)より後にすることにより実施される。図3に示す例では、ゲート信号SG1は、ゲート信号SG1の立ち上がりを位相角θ1に相当する位置まで進めて進角制御を行う場合の信号を表している。ここで、進角制御する場合、位相角θを進角量という。一方、遅角制御する場合、位相角θを遅角量という。
 出力電流IBは、ゲート信号SGのオン時間の期間で出力される交流出力電流IG1、2、3の総和となる。図3に示す例では、出力電流IBは、交流出力電流IG1、2、3の波形の斜線部分により示される電流成分によって形成される。
The battery charging device 1 has the phase angle of the gate signals SG1 to SG6 that defines the timing (energization timing) of the switching operation of the switching elements Q1 to Q6 with respect to the AC output currents IG1, 2, and 3 of the three-phase AC generator 3. The current value of the output current IB is controlled by performing retard angle control for delaying θ or advance angle control for advancing the phase angle θ. For example, the advance angle control is performed by making the rising edge of the gate signal SG1 of the switching element Q1 before the falling edge of the pulsar signal SP (phase angle reference). In addition, the retard angle control is performed by setting the rise of the gate signal SG1 of the switching element Q1 after the fall of the pulsar signal SP (phase angle reference). In the example illustrated in FIG. 3, the gate signal SG1 represents a signal when the advance control is performed by advancing the rising edge of the gate signal SG1 to a position corresponding to the phase angle θ1. Here, when the advance angle control is performed, the phase angle θ is referred to as an advance angle amount. On the other hand, when the retard control is performed, the phase angle θ is referred to as a retard amount.
The output current IB is the sum of the AC output currents IG1, 2, and 3 that are output during the ON time period of the gate signal SG. In the example shown in FIG. 3, the output current IB is formed by a current component indicated by the hatched portion of the waveform of the AC output currents IG1, 2 and 3.
 位相角決定部131は、各制御サイクルにおいて新たな差分値Vdを取得した場合、新たな差分値Vdに対する位相角(以下、「新たな位相角」という。)を決定する。バッテリ充電装置1は、各制御サイクルにおいて、新たな位相角θに基づいて、バッテリ電圧VBATが目標電圧Vrefになるように進角制御もしくは遅角制御を行う。
 具体的には、新たな差分値Vdが0より大きい場合(新たな位相角が進角の場合)、バッテリ2が過充電状態にあり、バッテリ充電装置1は、出力電流IBを減少させる必要がある。この場合、バッテリ充電装置1は進角制御を行う。一方、新たに取得した差分値Vdが0より小さい場合、バッテリ充電装置1は、出力電流IBを増加させる必要がある。この場合、バッテリ充電装置1は遅角制御を行う。
When a new difference value Vd is acquired in each control cycle, the phase angle determination unit 131 determines a phase angle with respect to the new difference value Vd (hereinafter referred to as “new phase angle”). In each control cycle, the battery charger 1 performs advance angle control or retard angle control so that the battery voltage VBAT becomes the target voltage Vref based on the new phase angle θ.
Specifically, when the new difference value Vd is greater than 0 (when the new phase angle is an advance angle), the battery 2 is in an overcharged state, and the battery charger 1 needs to reduce the output current IB. is there. In this case, the battery charger 1 performs advance angle control. On the other hand, when the newly acquired difference value Vd is smaller than 0, the battery charger 1 needs to increase the output current IB. In this case, the battery charging device 1 performs retardation control.
 ただし、例えば、交流出力電流IGの位相が0°となる時刻t0のタイミングに相当する位相角θ0より大きい遅角量で遅角制御を行った場合、ゲート信号SGのオン時間に出力される出力電流IBは減少する。この場合、遅角制御にもかかわらず、出力電流IBは、増加せずに減少してしまう。逆に、交流出力電流IGの位相が-180°となる時刻t2のタイミングに相当する位相角θ2より大きい進角量で進角制御を行った場合、ゲート信号SG1のオン時間に出力される出力電流IBは増加する。この場合、進角制御にもかかわらず、出力電流IBは、減少せずに、増加してしまう。このような場合、ゲート信号SG1の位相角θと出力電流IBとが1対1に対応しなくなり、進角制御および遅角制御に支障が生じる。このため、本実施形態では、進角量のリミット値θMAと遅角量のリミット値θMBとを設定する。なお、リミット値θMAは、3相交流発電機3等の特性上、0°を超える場合を示している。 However, for example, when the delay control is performed with a delay amount larger than the phase angle θ0 corresponding to the timing at time t0 when the phase of the AC output current IG becomes 0 °, the output output during the ON time of the gate signal SG The current IB decreases. In this case, the output current IB decreases without increasing despite the retardation control. Conversely, when the advance angle control is performed with an advance amount larger than the phase angle θ2 corresponding to the timing at time t2 when the phase of the AC output current IG becomes −180 °, the output output during the ON time of the gate signal SG1 The current IB increases. In this case, the output current IB increases without decreasing despite the advance angle control. In such a case, the phase angle θ of the gate signal SG1 and the output current IB do not correspond to each other one-on-one, and the advance angle control and the retard angle control are hindered. Therefore, in the present embodiment, the advance amount limit value θMA and the retard amount limit value θMB are set. In addition, limit value (theta) MA has shown the case where it exceeds 0 degree on the characteristics of 3 phase alternating current generator 3 grade | etc.,.
 図4は、本発明の実施形態におけるバッテリ充電装置1の動作例を捕捉説明するための図であり、スイッチング素子のゲート信号SGの位相角算出及び制御範囲を説明するための図である。図4において、縦軸は位相角θを表し、横軸は差分値Vdを表している。図4において、値Vdaは、遅角量のリミット値θMA(=θ0)に対応する差分値Vdである。また、値Vdbは、進角量のリミット値θMB(=θ2)に対応する差分値Vdである。遅角量のリミット値θMAおよび進角量のリミット値θMBを設けたことにより、図4に示すように、差分値Vdが値Vdbより大きい場合、進角値は進角量のリミット値θ2に固定される。よって、進角制御を行う場合、出力電流IBは増加しなくなる。また、差分値Vdが値Vdaより小さい場合、遅角値は遅角量のリミット値θ0に固定される。よって、遅角制御を行う場合、出力電流IBは減少しなくなる。これにより、ゲート信号SGの位相角θと出力電流IBとが1対1に対応し、進角制御および遅角制御が正常に機能するようになる。 FIG. 4 is a diagram for capturing and explaining an operation example of the battery charging device 1 according to the embodiment of the present invention, and for explaining the phase angle calculation and control range of the gate signal SG of the switching element. In FIG. 4, the vertical axis represents the phase angle θ, and the horizontal axis represents the difference value Vd. In FIG. 4, the value Vda is a difference value Vd corresponding to the retardation amount limit value θMA (= θ0). The value Vdb is a difference value Vd corresponding to the advance amount limit value θMB (= θ2). By providing the retard amount limit value θMA and the advance amount limit value θMB, as shown in FIG. 4, when the difference value Vd is larger than the value Vdb, the advance value is set to the advance amount limit value θ2. Fixed. Therefore, when the advance angle control is performed, the output current IB does not increase. When the difference value Vd is smaller than the value Vda, the retardation value is fixed to the retardation amount limit value θ0. Therefore, when the retard control is performed, the output current IB does not decrease. As a result, the phase angle θ of the gate signal SG and the output current IB have a one-to-one correspondence, and the advance angle control and the retard angle control function normally.
 上述したように、バッテリ充電装置1は、バッテリ電圧推定部82が推定したバッテリ電圧VBATと目標値Vrefとの差分値Vdから、この差分値Vdがゼロに収束するように位相角θを算出する。バッテリ充電装置1は、算出した位相角θに基づいて進角又は遅角制御を行い、バッテリ2を充電するという一連の制御サイクルを一定時間毎に繰り返す。 As described above, the battery charger 1 calculates the phase angle θ from the difference value Vd between the battery voltage VBAT estimated by the battery voltage estimation unit 82 and the target value Vref so that the difference value Vd converges to zero. . The battery charging device 1 performs advance angle or retard angle control based on the calculated phase angle θ, and repeats a series of control cycles in which the battery 2 is charged at regular intervals.
 上述の例では、位相角θに基づいてスイッチング素子Q1のゲート信号SG1の立ち上がりのタイミングを与える位相角θを制御する(タイミングをシフトする)ことで、出力電流IBを制御している。しかし、出力電流IBを制御する方法は、これに限らない。例えば、位相角θに基づいて、ゲート信号SGのパルス幅を制御(PWM制御)することで出力電流IBを制御することができる。 In the above example, the output current IB is controlled by controlling (shifting the timing) the phase angle θ that gives the rising timing of the gate signal SG1 of the switching element Q1 based on the phase angle θ. However, the method for controlling the output current IB is not limited to this. For example, the output current IB can be controlled by controlling the pulse width of the gate signal SG (PWM control) based on the phase angle θ.
 図5は、本発明の実施形態におけるバッテリ充電装置1の他の動作例を説明するための図であり、出力電流IBを制御する他の制御方法の一例を説明するための図である。この例では、ゲート信号SGのパルス幅を制御するPWM制御を用いている。例えば、ゲート信号SGの立ち上がりのタイミングを、3相交流発電機3の出力の位相に合わせて0°に固定し、ゲート信号SGの立下りのタイミングを位相角θに基づいて制御する。差分値Vdが0よりも大きい場合、ゲート信号SGの立下りのタイミングが長くなる(オン時間が長くなる)ようにPWM制御を行う。一方、差分値Vdが0よりも小さい場合、デート信号SGの立下りのタイミングが短くなる(ON時間が短くなる)ようにPWM制御を行う。これより、交流出力電流波形の斜線部分の面積を制御できるため、出力電流IBを制御することができる。このように、位相角θに基づいてスイッチング素子Q1~Q6のゲート信号SG1~6のパルス幅を制御することで、出力電流IBを制御してもよい。 FIG. 5 is a diagram for explaining another example of the operation of the battery charger 1 in the embodiment of the present invention, and is a diagram for explaining an example of another control method for controlling the output current IB. In this example, PWM control for controlling the pulse width of the gate signal SG is used. For example, the rising timing of the gate signal SG is fixed to 0 ° in accordance with the phase of the output of the three-phase AC generator 3, and the falling timing of the gate signal SG is controlled based on the phase angle θ. When the difference value Vd is larger than 0, the PWM control is performed so that the falling timing of the gate signal SG becomes longer (ON time becomes longer). On the other hand, when the difference value Vd is smaller than 0, the PWM control is performed so that the falling timing of the date signal SG is shortened (ON time is shortened). Thus, the area of the shaded portion of the AC output current waveform can be controlled, so that the output current IB can be controlled. Thus, the output current IB may be controlled by controlling the pulse width of the gate signals SG1 to SG6 of the switching elements Q1 to Q6 based on the phase angle θ.
 次に、上述の電圧推定部8と共に本実施形態の主要な特徴部の一つである出力電流推定部15の動作を説明する。
 出力電流推定部15は、前回の制御サイクルにおいて取得された3相交流発電機3の回転数RPMと位相角決定部131により取得された位相角θとから、バッテリ充電装置1が今回の制御サイクルで出力する出力電流IBを推定する。
 一定回転で3相交流発電機3が回転している場合、交流出力電流IG1(=IG2=IG3)の電流値は一定である。交流出力電流IG1に対し、スイッチング素子Q1をどのタイミングでON(Q4はOFF)させて充電させるか、逆にスイッチング素子Q4をONさせて(スイッチング素子Q1はOFF)充電させずに3相交流発電機3へ回生させるかは、位相角によって決定している。また、交流出力電流IG1に対し、交流出力電流IG2は120°の位相差、交流出力電流IG3は240°の位相差がある。同様にゲート信号SG1に対し、ゲート信号SG2は120°の位相差、ゲート信号SG3は240°の位相差がある。また、スイッチング素子Q1とスイッチング素子Q4、スイッチング素子Q2とスイッチング素子Q5、スイッチング素子Q3とスイッチング素子Q6が同時にONすると上下短絡となる。その結果、変換部14は、バッテリショートと同じ状態となり大電流がFETに流れ、FETの定格電流を超えるとFETを破壊する。よって、変換部14は、上下のスイッチング素子が両方ともONしないように例えばスイッチング素子Q1がONであればスイッチング素子Q4はOFFにしている。すなわち、ゲート信号SG1、2、3に対しゲート信号SG4、5、6は符号が反転した波形となる。
Next, the operation of the output current estimation unit 15 which is one of the main characteristic parts of the present embodiment together with the voltage estimation unit 8 will be described.
The output current estimator 15 determines that the battery charging device 1 determines the current control cycle from the rotational speed RPM of the three-phase AC generator 3 acquired in the previous control cycle and the phase angle θ acquired by the phase angle determiner 131. To estimate the output current IB output.
When the three-phase AC generator 3 is rotating at a constant rotation, the current value of the AC output current IG1 (= IG2 = IG3) is constant. Three-phase AC power generation without charging the switching element Q1 with respect to the AC output current IG1 at which timing the switching element Q1 is turned ON (Q4 is OFF) or charging is performed by switching the switching element Q4 ON (switching element Q1 is OFF). Whether to regenerate to the machine 3 is determined by the phase angle. Further, the AC output current IG2 has a phase difference of 120 ° and the AC output current IG3 has a phase difference of 240 ° with respect to the AC output current IG1. Similarly, the gate signal SG2 has a phase difference of 120 ° and the gate signal SG3 has a phase difference of 240 ° with respect to the gate signal SG1. Further, when the switching element Q1 and the switching element Q4, the switching element Q2 and the switching element Q5, and the switching element Q3 and the switching element Q6 are simultaneously turned ON, a vertical short circuit occurs. As a result, the conversion unit 14 is in the same state as a battery short circuit, and a large current flows through the FET. When the rated current of the FET is exceeded, the FET is destroyed. Therefore, the conversion unit 14 turns off the switching element Q4 if, for example, the switching element Q1 is turned on so that both the upper and lower switching elements are not turned on. That is, the gate signals SG4, 5, and 6 have waveforms with inverted signs with respect to the gate signals SG1, SG2, and SG3.
 交流出力電流IGを定める3相交流発電機3の回転数RPMと、ゲート信号SGのオン時間のタイミングを制御する位相角θと、出力電流IBとは、一定の対応関係を有する。よって、交流出力電流IGを定める3相交流発電機3の回転数RPMと、ゲート信号SGのオン時間のタイミングを制御する位相角θとから、出力電流IBを推定することができる。本実施形態では、このような対応関係を規定した出力電流テーブルが出力電流推定部15の不図示の記憶部に予め記憶されている。 The rotational speed RPM of the three-phase AC generator 3 that determines the AC output current IG, the phase angle θ that controls the timing of the ON time of the gate signal SG, and the output current IB have a certain correspondence. Therefore, the output current IB can be estimated from the rotational speed RPM of the three-phase AC generator 3 that determines the AC output current IG and the phase angle θ that controls the timing of the ON time of the gate signal SG. In the present embodiment, an output current table that defines such a correspondence relationship is stored in advance in a storage unit (not shown) of the output current estimation unit 15.
 出力電流推定部15は、回転数演算部6から3相交流発電機3の回転数RPMを取得する。また、出力電流推定部15は、位相角決定部131から位相角θを取得する。
出力電流推定部15は、位相角θと3相交流発電機3の回転数RPMとを取得した後、上述の出力電流テーブルを参照する。そして、出力電流推定部15は、出力電流テーブルから、位相角θと3相交流発電機3の回転数RPMとに対応する出力電流IBを取得する。これにより出力電流IBPが推定される。ここで、本実施形態では、出力電流IBは接続線Lを流れる電流である。従って、接続線Lでの電圧降下分VDROPは出力電流IBを用いて算出することができる。
The output current estimation unit 15 acquires the rotation speed RPM of the three-phase AC generator 3 from the rotation speed calculation unit 6. Further, the output current estimation unit 15 acquires the phase angle θ from the phase angle determination unit 131.
The output current estimation unit 15 refers to the above-described output current table after obtaining the phase angle θ and the rotational speed RPM of the three-phase AC generator 3. Then, the output current estimation unit 15 acquires the output current IB corresponding to the phase angle θ and the rotation speed RPM of the three-phase AC generator 3 from the output current table. Thereby, the output current IBP is estimated. Here, in the present embodiment, the output current IB is a current flowing through the connection line L. Therefore, the voltage drop VDROP in the connection line L can be calculated using the output current IB.
 図6を用いて、上述の出力電流テーブルの詳細を説明する。図6は、本発明の実施形態におけるバッテリ充電装置1による出力電流IBの推定値であるIBPの算出手法を説明するための図である。図6では、縦軸は出力電流IBを示し、横軸は3相交流発電機3の回転数RPMを示している。図6の例における特性線は、図3で示した位相角θ1,θ2での出力電流IBと回転数RPMとの関係を示している。図6に示すように、例えば、出力電流推定部15が取得した回転数RPMが値NBである場合、出力電流推定部15は、位相角θ1,θ2に応じて、出力電流IBの推定値であるIBPの算出することができる。図6に示す特性線は、例えば実験で予め求められ、上述の出力電流テーブルとしてバッテリ充電装置1内にある不図示の記憶部に記憶されている。出力電流IBは発電機の温度によっても変化するので、出力電流テーブルに温度特性を加えても良い。
 出力電流推定部15は、接続線Lを流れる電流として推定した出力電流IBPを、上述した電圧降下推定部81に出力する。
Details of the output current table described above will be described with reference to FIG. FIG. 6 is a diagram for explaining a method of calculating IBP that is an estimated value of the output current IB by the battery charging device 1 according to the embodiment of the present invention. In FIG. 6, the vertical axis represents the output current IB, and the horizontal axis represents the rotational speed RPM of the three-phase AC generator 3. The characteristic line in the example of FIG. 6 shows the relationship between the output current IB and the rotation speed RPM at the phase angles θ1 and θ2 shown in FIG. As shown in FIG. 6, for example, when the rotation speed RPM acquired by the output current estimation unit 15 is the value NB, the output current estimation unit 15 uses the estimated value of the output current IB according to the phase angles θ1 and θ2. A certain IBP can be calculated. The characteristic line shown in FIG. 6 is obtained in advance by experiments, for example, and is stored in a storage unit (not shown) in the battery charger 1 as the output current table described above. Since the output current IB varies depending on the temperature of the generator, temperature characteristics may be added to the output current table.
The output current estimation unit 15 outputs the output current IBP estimated as the current flowing through the connection line L to the voltage drop estimation unit 81 described above.
 上述したように、出力電流IBを直接的に検出することなく、3相交流発電機3の回転数RPMと位相角決定部131により得られる位相角θとを用いて出力電流IBを推定し、この推定された出力電流IBPを用いてバッテリ電圧VBATを求めることができる。ここで、本実施形態では、出力電流推定部15による出力電流IBの推定のために用いられる回転数RPMおよび位相角θとして、バッテリ充電装置1の進角制御及び遅角制御において用いられる制御量が流用されている。これより、バッテリ電圧VBATを検出するための検出線や出力電流を検出するためのシャント抵抗などを含む専用のセンサを用いることなく、出力電流IBを推定し、この出力電流IBPを用いてバッテリ電圧VBATを取得することができる。従って、装置コストが低いバッテリ充電装置を提供することができる。 As described above, the output current IB is estimated using the rotational speed RPM of the three-phase AC generator 3 and the phase angle θ obtained by the phase angle determination unit 131 without directly detecting the output current IB. The battery voltage VBAT can be obtained using the estimated output current IBP. Here, in the present embodiment, as the rotational speed RPM and the phase angle θ used for the estimation of the output current IB by the output current estimating unit 15, the control amount used in the advance angle control and the retard angle control of the battery charging device 1. Is being diverted. Accordingly, the output current IB is estimated without using a dedicated sensor including a detection line for detecting the battery voltage VBAT and a shunt resistor for detecting the output current, and the battery voltage is estimated using the output current IBP. VBAT can be acquired. Therefore, it is possible to provide a battery charging device with a low device cost.
 以上、本発明の詳細について説明したが、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述した実施形態では、回転数演算部6は、パルサコイル4の出力するパルサ信号により回転数RPMを算出する例を記載したが、少なくとも回転数RPMを取得する構成であれれば良い。例えば、3相交流発電機にホールICを設置し、設置されたホールICからの信号から回転数演算部6は回転数RPMを算出しても良い。また上位ECU(Engine Control Unit)から回転数演算部6に回転数RPMを示す信号が供給されても良い。
The details of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention.
For example, in the above-described embodiment, the example in which the rotation speed calculation unit 6 calculates the rotation speed RPM based on the pulsar signal output from the pulsar coil 4 has been described. For example, a Hall IC may be installed in a three-phase AC generator, and the rotation speed calculation unit 6 may calculate the rotation speed RPM from a signal from the installed Hall IC. Further, a signal indicating the rotation speed RPM may be supplied from the host ECU (Engine Control Unit) to the rotation speed calculation unit 6.
1 バッテリ充電装置
2 バッテリ
3 3相交流発電機
4 パルサコイル
4a リラクタ
5 パルサ信号検出部
6 回転数演算部
7 出力電圧検出部
8 電圧推定部
9 抵抗値記憶部
10 温度補正部
11 比較部
12 目標電圧記憶部
13 制御部
14 変換部
15 出力電流推定部
81 電圧降下推定部
82 バッテリ電圧推定部
131 位相角決定部
132 ゲート信号生成部
DESCRIPTION OF SYMBOLS 1 Battery charging device 2 Battery 3 Three-phase alternating current generator 4 Pulsar coil 4a Relaxer 5 Pulsar signal detection part 6 Rotation speed calculation part 7 Output voltage detection part 8 Voltage estimation part 9 Resistance value memory | storage part 10 Temperature correction part 11 Comparison part 12 Target voltage Storage unit 13 Control unit 14 Conversion unit 15 Output current estimation unit 81 Voltage drop estimation unit 82 Battery voltage estimation unit 131 Phase angle determination unit 132 Gate signal generation unit

Claims (5)

  1.  交流発電機から出力された交流電力をスイッチング素子により直流電力に変換して接続線を介してバッテリに供給する変換部と、
     前記バッテリのバッテリ電圧とその目標値とを比較する比較部と、
     前記比較部の比較結果に基づいて前記変換部のスイッチング素子の通電タイミングを規定する位相角を決定し、前記位相角に基づいて前記スイッチング素子の通電を制御する制御部と、
     前記制御部により決定された位相角と前記交流発電機の回転数とから、前記接続線を流れる電流を推定する出力電流推定部と、
     前記出力電流推定部により推定された電流を用いて前記接続線による電圧降下分を算出して電圧降下を推定する電圧降下推定部、及び、前記電圧降下分を用いて前記バッテリの電圧を推定するバッテリ電圧推定部を備えた電圧推定部と、
     を有することを特徴とするバッテリ充電装置。
    A converter that converts AC power output from the AC generator into DC power by a switching element and supplies the battery to the battery via a connection line;
    A comparison unit for comparing the battery voltage of the battery and its target value;
    A control unit that determines a phase angle that defines an energization timing of the switching element of the conversion unit based on the comparison result of the comparison unit, and controls the energization of the switching element based on the phase angle;
    From the phase angle determined by the control unit and the rotational speed of the AC generator, an output current estimation unit that estimates a current flowing through the connection line,
    A voltage drop estimator that calculates a voltage drop by the connection line using the current estimated by the output current estimator and estimates a voltage drop; and a voltage of the battery is estimated using the voltage drop. A voltage estimator comprising a battery voltage estimator;
    A battery charger characterized by comprising:
  2.  前記出力電流推定部は、前記スイッチング素子の通電を制御する制御サイクルごとに、前記交流発電機の回転数と、前記制御部により決定された前記通電タイミングを規定する位相角と、前回の制御サイクルにおいて取得された前記交流発電機の回転数と、前記通電タイミングを規定する位相角とから、前記接続線を流れる電流を推定することを特徴とする請求項1に記載のバッテリ充電装置。 The output current estimator includes, for each control cycle for controlling energization of the switching element, the rotational speed of the AC generator, a phase angle that defines the energization timing determined by the controller, and a previous control cycle. 2. The battery charging device according to claim 1, wherein the current flowing through the connection line is estimated from the rotational speed of the AC generator acquired in step 1 and a phase angle that defines the energization timing.
  3.  前記出力電流推定部は、前記交流発電機の回転数と前記変換部のスイッチング素子の通電タイミングを規定する位相角と当該バッテリ充電装置の出力電流との関係を規定したテーブルを有し、前記交流発電機の回転数と前記制御部により決定された位相角とに基づいて前記テーブルを参照することにより、前記接続線を流れる電流を推定することを特徴とする請求項2に記載のバッテリ充電装置。 The output current estimation unit has a table that defines a relationship between a rotation angle of the AC generator, a phase angle that defines an energization timing of the switching element of the conversion unit, and an output current of the battery charger, and the AC 3. The battery charging device according to claim 2, wherein a current flowing through the connection line is estimated by referring to the table based on a rotation speed of a generator and a phase angle determined by the control unit. .
  4.  前記バッテリ電圧推定部は、前記出力電流推定部によって推定された電流に前記接続線の抵抗値を乗じた値を当該バッテリ充電装置の出力電圧から差し引くことにより前記バッテリ電圧を推定することを特徴とする請求項1に記載のバッテリ充電装置。 The battery voltage estimation unit estimates the battery voltage by subtracting a value obtained by multiplying the current estimated by the output current estimation unit by a resistance value of the connection line from an output voltage of the battery charging device. The battery charger according to claim 1.
  5.  前記電圧降下推定部の推定結果に影響を与える温度情報に基づいて、前記電圧降下推定部の推定結果を補正する温度補正部をさらに備えることを特徴とする請求項4に記載のバッテリ充電装置。 The battery charging device according to claim 4, further comprising a temperature correction unit that corrects the estimation result of the voltage drop estimation unit based on temperature information that affects the estimation result of the voltage drop estimation unit.
PCT/JP2014/063957 2014-05-27 2014-05-27 Battery charging device WO2015181884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063957 WO2015181884A1 (en) 2014-05-27 2014-05-27 Battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063957 WO2015181884A1 (en) 2014-05-27 2014-05-27 Battery charging device

Publications (1)

Publication Number Publication Date
WO2015181884A1 true WO2015181884A1 (en) 2015-12-03

Family

ID=54698269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063957 WO2015181884A1 (en) 2014-05-27 2014-05-27 Battery charging device

Country Status (1)

Country Link
WO (1) WO2015181884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109866A1 (en) * 2016-12-14 2018-06-21 三菱電機株式会社 Control device of electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216429A (en) * 1983-05-24 1984-12-06 株式会社デンソー Controller for vehicle charging generator
JPH05503203A (en) * 1990-11-27 1993-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Generator voltage controller
JP2005137163A (en) * 2003-10-31 2005-05-26 Kokusan Denki Co Ltd Generating set equipped with magnet generator
JP2009159699A (en) * 2007-12-26 2009-07-16 Yamaha Motor Electronics Co Ltd Power generation control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216429A (en) * 1983-05-24 1984-12-06 株式会社デンソー Controller for vehicle charging generator
JPH05503203A (en) * 1990-11-27 1993-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Generator voltage controller
JP2005137163A (en) * 2003-10-31 2005-05-26 Kokusan Denki Co Ltd Generating set equipped with magnet generator
JP2009159699A (en) * 2007-12-26 2009-07-16 Yamaha Motor Electronics Co Ltd Power generation control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109866A1 (en) * 2016-12-14 2018-06-21 三菱電機株式会社 Control device of electric motor
JPWO2018109866A1 (en) * 2016-12-14 2019-10-24 三菱電機株式会社 Electric motor control device
US11296535B2 (en) 2016-12-14 2022-04-05 Mitsubishi Electric Corporation Control device for electric motor

Similar Documents

Publication Publication Date Title
US8027180B2 (en) Power generating apparatus
EP2706657B1 (en) Brushless motor control apparatus and brushless motor control method
JP4990883B2 (en) Battery charger and retard angle control method in battery charger
JP5605336B2 (en) Power supply
JP5595447B2 (en) Control device and control method for vehicle alternator
US20140035501A1 (en) Brushless motor control device and brushless motor control method
JP2006136122A (en) Output controller for generator
JP6301240B2 (en) Battery charger for vehicle
JP6544141B2 (en) Motor drive
WO2015181884A1 (en) Battery charging device
JP2014204620A (en) Battery charger for vehicle
US9401618B2 (en) Control circuit, and power generation device having the same
JP5594306B2 (en) Rotating electric machine for vehicles
JP6121624B2 (en) Battery charging device and battery charging device control method
US9356462B2 (en) Battery charging apparatus
JP7352357B2 (en) Power conversion device and its control method
JP5828404B2 (en) Rotating electric machine for vehicles
JP6383884B1 (en) Power generation control device, power generation control method, and power generation device
TWI446706B (en) Brushless motor control device, and brushless motor control method
JP5614908B2 (en) Brushless motor control device and brushless motor control method
JP2006158048A (en) Motor controller
WO2016084295A1 (en) Motor drive device
JP2018085896A (en) Abnormality detection device of rotation sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14893504

Country of ref document: EP

Kind code of ref document: A1