WO2015180590A1 - 一种ue、基站中利用非授权频带通信的方法和设备 - Google Patents

一种ue、基站中利用非授权频带通信的方法和设备 Download PDF

Info

Publication number
WO2015180590A1
WO2015180590A1 PCT/CN2015/079587 CN2015079587W WO2015180590A1 WO 2015180590 A1 WO2015180590 A1 WO 2015180590A1 CN 2015079587 W CN2015079587 W CN 2015079587W WO 2015180590 A1 WO2015180590 A1 WO 2015180590A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
layer data
subframe
harq
carrier
Prior art date
Application number
PCT/CN2015/079587
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to US15/314,348 priority Critical patent/US20170215080A1/en
Publication of WO2015180590A1 publication Critical patent/WO2015180590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a scheme for utilizing unlicensed spectrum communication in a wireless communication system, and more particularly to a communication method and apparatus for unlicensed spectrum based on LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • the UE User Equipment
  • DFS Dynamicical Frequency Selection
  • a part of the candidate carriers is selected for transmission of physical layer data.
  • the use of DFS may result in frequent discontinuous transmission on the same physical carrier, which in turn increases the interval of HARQ (Hybrid Automatic Repeat Request) retransmission and increases the transmission delay.
  • HARQ Hybrid Automatic Repeat Request
  • the transmission of physical layer data of one HARQ process may be configured on multiple carriers.
  • the traditional LTE defines 10 downlink TMs (Transmission Modes) and two types of uplink TMs.
  • the UE For each serving cell (Serving Cell) system device, the UE is configured with a downlink TM (possibly configured with an uplink TM). For the downlink TM ⁇ 1, 2, 5, 6, 7 ⁇ and the uplink TM1, the physical layer data of one scheduling can only be mapped to one TB; for the downlink TM ⁇ 3, 4, 8, 9, 10 ⁇ and the uplink TM2, once Scheduled physical layer data may be mapped to one or two TBs (Transport) Block, transport block). HARQ merging can only be applied to multiple physical layer data transfers for one TB.
  • TM possibly configured with an uplink TM.
  • the physical layer data of one scheduling can only be mapped to one TB; for the downlink TM ⁇ 3, 4, 8, 9, 10 ⁇ and the uplink TM2, once Scheduled physical layer data may be mapped to one or two TBs (Transport) Block, transport block).
  • HARQ merging can only be applied to multiple physical layer data transfers for one TB.
  • the information (downlink control information) format is scheduled and the number of TBs included is different.
  • the information bits in the existing DCI cannot indicate how the TBs included in the multiple physical layer data transmissions correspond.
  • the present invention discloses a method and apparatus for utilizing unlicensed band communication.
  • the invention discloses a method for utilizing unlicensed frequency band communication in a UE, which comprises the following steps:
  • Step A operating the first physical layer data in the first subframe on the first carrier
  • Step B Processing the first HARQ_ACK for the first physical layer data
  • Step C operating the second physical layer data in the second subframe on the second carrier
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the operation is reception.
  • the operation is a transmission.
  • the operation of the UE on the first carrier and the operation on the second carrier are respectively configured as a first TM and a second TM, and the first TM supports a transmission of at most 2 TB.
  • the second TM supports up to 1 TB of transmission.
  • the first TM is one of the downlink TM ⁇ 3, 4, 8, 9, 10 ⁇
  • the second TM is one of the downlink TM ⁇ 1, 2, 5, 6, 7 ⁇
  • the first TM is the uplink TM2 and the second TM is the uplink TM1.
  • At least one of the first carrier and the second carrier is deployed in an unlicensed spectrum.
  • the first carrier is deployed in the unlicensed spectrum and the second carrier is deployed in the licensed spectrum.
  • the step C includes the following steps:
  • Step C0 Receive second signaling, the second signaling scheduling second physical layer data.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is indicated by the second signaling.
  • the format of the second signaling is DCI format 0.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed to the first TB.
  • the essence of the above aspect is that the TB corresponding to the second physical layer data is fixed to one of the two TBs corresponding to the first physical layer data to ensure that the receiver performs the first physical layer data and the second without explicit indication. Merging of physical layer data.
  • the RV (Redundancy Version) of the first TB in the scheduling DCI of the first physical layer data is the same as the RV of the second TB, that is, the receiver cannot be based on the second physical layer data.
  • the RV in the scheduling signaling determines the TB corresponding to the second physical layer data.
  • the step C further includes the following steps:
  • Step C1 Processing the second HARQ_ACK for the second physical layer data
  • Step C2 The third physical layer data is operated in a third subframe on the second carrier.
  • the third physical layer data corresponds to the first TB; if the second HARQ_ACK indicates that the first TB is correctly received, the third physical layer data corresponds to the second TB.
  • the first TB is retransmitted until the reception is correct or the maximum number of retransmissions is reached. If the maximum number of retransmissions has not been reached after the first TB is correctly received, the second TB is retransmitted.
  • the operation and the processing are respectively receiving and transmitting, and the UE blindly determines a TB corresponding to the second physical layer data.
  • the blind determination is: combining the second physical layer data with the bits in the first TB corresponding buffer and the bits in the second TB corresponding buffer, and the TB that can be correctly decoded is the second. If the TB corresponding to the physical layer data cannot be decoded correctly, wait for the next data retransmission.
  • the first TB corresponds to a codeword of 0.
  • the invention discloses a method for utilizing unlicensed frequency band communication in a base station, which comprises the following steps:
  • Step A operating the first physical layer data in the first subframe on the first carrier
  • Step B Processing the first HARQ_ACK for the first physical layer data
  • Step C operating the second physical layer data in the second subframe on the second carrier
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the operation of the target UE of the HARQ process on the first carrier and the operation on the second carrier are respectively configured as a first TM and a second TM, and the first TM supports at most two For TB transmission, the second TM supports up to 1 TB of transmission.
  • At least one of the first carrier and the second carrier is deployed in an unlicensed spectrum.
  • both the first carrier and the second carrier are deployed in an unlicensed spectrum.
  • the step C includes the following steps:
  • Step C0 Sending second signaling, the second signaling scheduling second physical layer data.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is indicated by the second signaling.
  • the format of the second signaling is one of DCI formats ⁇ 1, 1A, 1B, 1C, 1D ⁇ .
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed to the first TB.
  • the step C further includes the following steps:
  • Step C1 Processing the second HARQ_ACK for the second physical layer data
  • Step C2 The third physical layer data is operated in a third subframe on the second carrier.
  • the third physical layer data corresponds to the first TB; if the second HARQ_ACK indicates that the first TB is correctly received, the third physical layer data corresponds to the second TB.
  • the first TB corresponds to codeword 0.
  • the invention discloses a user equipment, and the user equipment comprises:
  • a first module operating the first physical layer data in the first subframe on the first carrier
  • a second module for processing a first HARQ_ACK for the first physical layer data
  • a third module operating the second physical layer data in the second subframe on the second carrier
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the second module is further configured to process the second HARQ_ACK for the second physical layer data; the third module is further configured to operate the third physical layer data in the third subframe on the second carrier.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed to the first TB. If the second HARQ_ACK indicates that the first TB receives the error, the third physical layer data corresponds to the first TB; The second HARQ_ACK indicates that the first TB is correctly received, and the third physical layer data corresponds to the second TB.
  • the invention discloses a base station device, and the base station device comprises:
  • a first module operating the first physical layer data in the first subframe on the first carrier
  • a second module for processing a first HARQ_ACK for the first physical layer data
  • a third module operating the second physical layer data in the second subframe on the second carrier
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the second module is further configured to process the second HARQ_ACK for the second physical layer data; the third module is further configured to operate the third physical layer data in the third subframe on the second carrier.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed as the first TB, and if the second HARQ_ACK indicates the first TB receiving error, the third physical layer is Corresponding to the first TB; if the second HARQ_ACK indicates that the first TB is correctly received, the third physical layer data corresponds to the second TB.
  • the present invention proposes a method and apparatus for utilizing unlicensed band communication for the problem of HARQ merging caused by different TB numbers included in multiple physical layer data transmissions for HARQ combining.
  • the receiver passes The HARQ merge is performed on the plurality of physical layer data in a predetermined manner.
  • the solution of the present invention is especially applicable to an unlicensed spectrum communication DFS scenario.
  • the present invention is compatible with existing LTE standards as much as possible, and has good compatibility.
  • FIG. 1 shows a flow chart for transmitting downlink physical layer data according to an embodiment of the present invention
  • FIG. 2 shows a flow diagram of retransmitting downlink physical layer data in accordance with one embodiment of the present invention
  • FIG. 3 illustrates a flow chart for transmitting uplink physical layer data according to an embodiment of the present invention
  • FIG. 4 shows a timing diagram of a transmission subframe of physical layer data in accordance with one embodiment of the present invention
  • FIG. 5 is a block diagram showing the structure of a receiving apparatus of physical layer data according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a transmitting apparatus of physical layer data according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart for transmitting downlink physical layer data, as shown in FIG.
  • base station N1 is a serving base station of UE U2.
  • step S11 the first physical layer data is transmitted in the first subframe on the first carrier; in step S12, the first HARQ_ACK for the first physical layer data is received; in step S13, in step S13 The second subframe on the two carriers transmits the second physical layer data.
  • step S21 the first physical layer data is received in the first subframe on the first carrier; in step S22, the first HARQ_ACK for the first physical layer data is transmitted; in step S23, in step S23 The second subframe on the two carriers receives the second physical layer data.
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the base station N1 configures the PDSCH (Physical Downlink Shared Channel) reception on the first carrier and the PDSCH reception on the second carrier as the first TM and The second TM, the first TM supports up to 2 TB of transmission, and the second TM supports up to 1 TB of transmission.
  • the first carrier is deployed in the unlicensed spectrum, and the second carrier is deployed in the licensed spectrum.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed to the first TB.
  • the first TB corresponds to the code word 0.
  • the UE blindly determines the TB corresponding to the second physical layer data.
  • Embodiment 2 illustrates a flow chart for retransmitting downlink physical layer data, as shown in FIG.
  • base station N3 is the serving base station of UE U4.
  • step S31 For the base station N3, in step S31, a second HARQ_ACK for the second physical layer data is received; in step S32, the third physical layer data is transmitted in the third subframe on the second carrier.
  • step S41 a second HARQ_ACK for the second physical layer data is transmitted; in step S42, the third physical layer data is received in the third subframe on the second carrier.
  • the third physical layer data corresponds to the first TB; if the second HARQ_ACK indicates that the first TB is correctly received, the third physical layer data corresponds to the second TB.
  • the first TB and the second TB are 2 TBs corresponding to the first physical layer data, and the first physical layer data is sent by the base station N3 to the UE U2 before the second physical layer data.
  • the base station N3 retransmits the first TB until the first TB receives the correct or reaches the maximum number of retransmissions.
  • Embodiment 3 illustrates a flow chart for transmitting uplink physical layer data, as shown in FIG.
  • base station N6 is the serving base station of UE U5.
  • step S51 the first physical layer data is transmitted in the first subframe on the first carrier; in step S52, the first HARQ_ACK is received for the first physical layer data; in step S53, the first HARQ_ACK is received.
  • step S61 the first physical layer data is received in the first subframe on the first carrier; in step S62, the first HARQ_ACK for the first physical layer data is transmitted; in step S63, the first transmission is performed. Two signaling, the second signaling scheduling the second physical layer data; in step S64, the second physical layer data is received in the second subframe on the second carrier.
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the first subframe is before the second subframe, and the TB corresponding to the second physical layer data is indicated by the second signaling.
  • one bit in the second signaling explicitly indicates whether the TB scheduled by the second signaling is the first TB or the second TB.
  • the format of the second signaling is DCI format 0.
  • Embodiment 4 exemplifies a timing chart of a transmission subframe of physical layer data, as shown in FIG.
  • the square marked by the oblique line is the first subframe
  • the square identified by the back oblique line is the second subframe
  • the square identified by the vertical line is the third subframe.
  • first operating the first physical layer data on the first subframe on the first carrier then processing the first HARQ_ACK for the first physical layer data; then operating the second physical layer on the second subframe on the second carrier Data; then processing the second HARQ_ACK for the second physical layer data; and finally operating the third physical layer data in the third subframe on the second carrier.
  • the first physical layer data is first processed in a first subframe on the first carrier; then the operation is for a first HARQ_ACK of the first physical layer data; then the second subframe on the second carrier is Processing the second physical layer data; then performing the second HARQ_ACK for the second physical layer data; and finally processing the third physical layer data in the third subframe on the second carrier.
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data is fixedly corresponding to the first TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors. If the second HARQ_ACK indicates the first TB reception error, the third physical layer data corresponds to the first TB; if the second HARQ_ACK indicates that the first TB is correctly received, the third physical layer data corresponds to the second TB.
  • the second subframe is the 8th subframe after the first subframe, and the third subframe is the 8th subframe after the second subframe. At least one of the first carrier and the second carrier is deployed in an unlicensed spectrum.
  • Embodiment 5 exemplifies a structural block diagram of a physical layer data receiving apparatus, as shown in FIG.
  • the receiving device 200 is mainly composed of a first receiving module 201, a first transmitting module 202, and a second receiving module 203.
  • the receiving device 200 is equipped in a UE or a base station.
  • the first receiving module 201 is configured to receive the first physical layer data in the first subframe on the first carrier; the first sending module 202 is configured to process the first HARQ_ACK for the first physical layer data; and the second receiving module 203 is configured to: The second subframe on the second carrier operates the second physical layer data.
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the receiving apparatus 200 is equipped in the UE, and the physical layer data is transmitted on the PDSCH.
  • the receiving apparatus 200 is equipped in a base station, and the physical layer data is transmitted on a PUSCH (Physical Uplink Share Channel).
  • PUSCH Physical Uplink Share Channel
  • the first sending module 202 is further configured to send a second HARQ_ACK for the second physical layer data
  • the second receiving module 203 is further configured to receive the third subframe on the second carrier.
  • Three physical layer data The first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed to the first TB. If the second HARQ_ACK indicates that the first TB receives the error, the third physical layer data corresponds to the first TB; The second HARQ_ACK indicates that the first TB is correctly received, and the third physical layer data corresponds to the second TB.
  • Embodiment 6 exemplifies a structural block diagram of a physical layer data transmitting device, as shown in FIG.
  • the transmitting device 300 is mainly composed of a second transmitting module 301, a third receiving module 302, and a third transmitting module 303.
  • the transmitting device 300 is equipped in a UE or a base station.
  • the second sending module 301 is configured to send the first physical layer data in the first subframe on the first carrier
  • the third receiving module 302 is configured to receive the first HARQ_ACK for the first physical layer data
  • the third sending module 303 is configured to use the third sending module 303.
  • the second physical layer data is transmitted in the second subframe on the second carrier.
  • the first physical layer data and the second physical layer data belong to the same HARQ process.
  • the first physical layer data corresponds to the first TB and the second TB
  • the second physical layer data corresponds to the first TB or the second TB.
  • the operation and the processing are respectively receiving, transmitting, or the operation, and the processing is sending and receiving, respectively.
  • the first HARQ_ACK indicates that both the first TB and the second TB transmit errors.
  • the transmitting apparatus 300 is equipped in the UE, and the physical layer data is transmitted on the PUSCH.
  • the transmitting apparatus 300 is equipped in a base station, and the physical layer data is transmitted on the PDSCH.
  • the third receiving module 302 is further configured to receive a second HARQ_ACK for the second physical layer data
  • the third sending module 303 is further configured to send the third subframe on the second carrier.
  • Three physical layer data The first subframe is before the second subframe, and the TB corresponding to the second physical layer data is fixed as the first TB. If the second HARQ_ACK indicates the first TB reception error, the third physical layer data corresponds to the first TB; The second HARQ_ACK indicates that the first TB is correctly received, and the third physical layer data corresponds to the second TB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明提出了一种UE、基站中利用非授权频带通信的方法和设备。UE在步骤一中在第一载波上的第一子帧操作第一物理层数据,在步骤二中处理针对第一物理层数据的第一HARQ_ACK,在步骤三中在第二载波上的第二子帧操作第二物理层数据。第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、处理分别是接收、发送或者分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。本发明的方案尤其适用于非授权频谱通信DFS场景,此外,本发明尽可能兼容了现有的LTE标准,具有良好的兼容性。

Description

一种UE、基站中利用非授权频带通信的方法和设备 技术领域
本发明涉及无线通信系统中利用非授权频谱通信的方案,特别是涉及基于LTE(Long Term Evolution,长期演进)的针对非授权频谱(Unlicensed Spectrum)的通信方法和装置。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。3GPP RAN的62次全会讨论了一个新的研究课题,即非授权频谱综合的研究(RP-132085),主要目的是研究利用在非授权频谱上的LTE的非独立(Non-standalone)部署,所谓非独立是指在非授权频谱上的通信要和授权频谱上的服务小区相关联。一个直观的方法是尽可能重用现有系统中的CA(Carrier Aggregation,载波聚合)的概念,即部署在授权频谱上的服务小区作为Pcell(Primary Cell,主小区),部署在非授权频谱上的服务小区作为Scell(Secondary Cell,辅小区)。
对于非授权频谱,考虑到其干扰水平的不可控制/预测,UE(User Equipment,用户设备)可能被配置更多的下行载波,同时采用DFS(Dynamical Frequency Selection,动态频谱选择)的方式从配置的候选载波中选择出部分载波用于物理层数据的传输。采用了DFS以后可能会导致在同一个物理载波上的频繁不连续传输,进而导致HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)重传的间隔增加,增加了传输延时。为了降低传输延时,一个HARQ进程(Process)的物理层数据的传输可能被配置到多个载波上。传统的LTE定义了10种下行TM(Transmission Mode,传输模式)和两种上行TM,对于每一个服务小区(Serving Cell)系统设备半静态的为UE配置下行TM(可能配置上行TM)。对于下行TM{1,2,5,6,7}和上行TM1,一次调度的物理层数据只能映射到一个TB;对于下行TM{3,4,8,9,10}和上行TM2,一次调度的物理层数据可能映射到一个或者两个TB(Transport  Block,传输块)。HARQ合并只能应用于在针对一个TB的多次物理层数据传输。
发明人通过研究发现,当UE被配置下行TM{3,4,8,9,10}中的一种或者上行TM2,如果进行HARQ合并的多次物理层数据传输是由不同的DCI(Downlink Control Information,下行控制信息)格式所调度且所包含的TB数不同,现有的DCI中的信息比特不能指示所述多次物理层数据传输包含的TB如何对应。
针对上述问题,本发明公开了一种利用非授权频带通信的方法和装置。
发明内容
本发明公开了一种UE中利用非授权频带通信的方法,其中,包括如下步骤:
-步骤A.在第一载波上的第一子帧操作第一物理层数据
-步骤B.处理针对第一物理层数据的第一HARQ_ACK
-步骤C.在第二载波上的第二子帧操作第二物理层数据
其中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为一个实施例,所述操作是接收。作为又一个实施例,所述操作是发送。
具体的,根据本发明的一个方面,所述UE在第一载波上的操作、第二载波上的操作分别被配置为第一TM、第二TM,第一TM最多支持2个TB的传输,第二TM最多支持1个TB的传输。
作为一个实施例,第一TM是下行TM{3,4,8,9,10}中的一种,第二TM是下行TM{1,2,5,6,7}中的一种。作为又一个实施例,第一TM是上行TM2,第二TM是上行TM1。
具体的,根据本发明的一个方面,第一载波和第二载波中至少有一个部署于非授权频谱。
作为一个实施例,第一载波部署于非授权频谱,第二载波部署于授权频谱。
具体的,根据本发明的一个方面,所述步骤C包括如下步骤:
-步骤C0.接收第二信令,第二信令调度第二物理层数据。
其中,第一子帧在第二子帧之前,第二物理层数据对应的TB由第二信令指示。
作为一个实施例,第二信令的格式是DCI格式0。
具体的,根据本发明的一个方面,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB。
上述方面本质是将第二物理层数据对应的TB固定为第一物理层数据对应的两个TB中的一个,以确保接收机在没有显式指示的前提下进行第一物理层数据和第二物理层数据的合并。
作为上述方面的一个实施例,第一物理层数据的调度DCI中第一TB的RV(Redundancy Version,冗余版本号)和第二TB的RV相同,即接收机无法根据第二物理层数据的调度信令中的RV确定第二物理层数据对应的TB。
具体的,根据本发明的上述方面,所述步骤C还包括如下步骤:
-步骤C1.所述处理针对第二物理层数据的第二HARQ_ACK
-步骤C2.在第二载波上的第三子帧所述操作第三物理层数据。
其中,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
作为一个实施例,如果第二物理层数据对应的TB即第一TB接收错误,则一直重传第一TB直到接收正确或者达到最大重传次数。如果第一TB正确接收以后尚未达到最大重传次数,再重传第二TB。
具体的,根据本发明的一个方面,所述操作和所述处理分别是接收和发送,所述UE盲确定第二物理层数据对应的TB。
作为一个实施例,所述盲确定即:将第二物理层数据分别和第一TB对应缓存中的比特以及第二TB对应缓存中的比特合并译码,能正确译码的TB即为第二物理层数据对应的TB,如果都不能正确译码,则再等待下一次数据重传。
具体的,根据本发明的一个方面,第一TB对应码字(Codeword)0。
本发明公开了一种基站中利用非授权频带通信的方法,其中,包括如下步骤:
-步骤A.在第一载波上的第一子帧操作第一物理层数据
-步骤B.处理针对第一物理层数据的第一HARQ_ACK
-步骤C.在第二载波上的第二子帧操作第二物理层数据
其中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。
具体的,根据本发明的一个方面,所述HARQ进程的目标UE在第一载波上的操作、第二载波上的作分别被配置为第一TM、第二TM,第一TM最多支持2个TB的传输,第二TM最多支持1个TB的传输。
具体的,根据本发明的一个方面,第一载波和第二载波中至少有一个部署于非授权频谱。
作为一个实施例,第一载波和第二载波都部署于非授权频谱。
具体的,根据本发明的一个方面,所述步骤C包括如下步骤:
-步骤C0.发送第二信令,第二信令调度第二物理层数据。
其中,第一子帧在第二子帧之前,第二物理层数据对应的TB由第二信令指示。
作为一个实施例,第二信令的格式是DCI格式{1,1A,1B,1C,1D}中的一种。
具体的,根据本发明的一个方面,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB。
具体的,根据本发明的上述方面,所述步骤C还包括如下步骤:
-步骤C1.所述处理针对第二物理层数据的第二HARQ_ACK
-步骤C2.在第二载波上的第三子帧所述操作第三物理层数据。
其中,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
具体的,根据本发明的一个方面,第一TB对应码字0。
本发明公开了一种用户设备,该用户设备包括:
第一模块:用于在第一载波上的第一子帧操作第一物理层数据
第二模块:用于处理针对第一物理层数据的第一HARQ_ACK
第三模块:用于在第二载波上的第二子帧操作第二物理层数据
其中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为一个实施例,第二模块还用于处理针对第二物理层数据的第二HARQ_ACK;第三模块还用于在第二载波上的第三子帧操作第三物理层数据。
其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
本发明公开了一种基站设备,该基站设备包括:
第一模块:用于在第一载波上的第一子帧操作第一物理层数据
第二模块:用于处理针对第一物理层数据的第一HARQ_ACK
第三模块:用于在第二载波上的第二子帧操作第二物理层数据
其中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为一个实施例,第二模块还用于处理针对第二物理层数据的第二HARQ_ACK;第三模块还用于在第二载波上的第三子帧操作第三物理层数据。
其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数 据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
针对进行HARQ合并的多次物理层数据传输所包含的TB数不同而带来的HARQ合并的问题,本发明提出了一种利用非授权频带通信的方法和装置,作为一个实施例,接收机通过预确定的方式对所述多次物理层数据执行HARQ合并。本发明的方案尤其适用于非授权频谱通信DFS场景,此外,本发明尽可能兼容了现有的LTE标准,具有良好的兼容性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的传输下行物理层数据的流程图;
图2示出了根据本发明的一个实施例的重传下行物理层数据的流程图;
图3示出了根据本发明的一个实施例的传输上行物理层数据的流程图;
图4示出了根据本发明的一个实施例的物理层数据的传输子帧的时序图;
图5示出了根据本发明的一个实施例的物理层数据的接收装置的结构框图;
图6示出了根据本发明的一个实施例的物理层数据的发射装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了传输下行物理层数据的流程图,如附图1所示。附图1中,基站N1是UE U2的服务基站。
对于基站N1,在步骤S11中,在第一载波上的第一子帧发送第一物理层数据;在步骤S12中,接收针对第一物理层数据的第一HARQ_ACK;在步骤S13中,在第二载波上的第二子帧发送第二物理层数据。
对于UE U2,在步骤S21中,在第一载波上的第一子帧接收第一物理层数据;在步骤S22中,发送针对第一物理层数据的第一HARQ_ACK;在步骤S23中,在第二载波上的第二子帧接收第二物理层数据。
实施例1中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为实施例1的子实施例1,基站N1将UE U2在第一载波上的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)接收和第二载波上的PDSCH接收分别被配置为第一TM和第二TM,第一TM最多支持2个TB的传输,第二TM最多支持1个TB的传输。第一载波部署于非授权频谱,第二载波部署于授权频谱。
作为实施例1的子实施例2,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB。
作为实施例1的子实施例3,第一TB对应码字0。
作为实施例1的子实施例4,所述UE盲确定第二物理层数据对应的TB。
实施例2
实施例2示例了重传下行物理层数据的流程图,如附图2所示。附图2中,基站N3是UE U4的服务基站。
对于基站N3,在步骤S31中,接收针对第二物理层数据的第二HARQ_ACK;在步骤S32中,在第二载波上的第三子帧发送第三物理层数据。
对于UE U4,在步骤S41中,发送针对第二物理层数据的第二HARQ_ACK;在步骤S42中,在第二载波上的第三子帧接收第三物理层数据。
实施例2中,如果第二HARQ_ACK指示第一TB接收错误,第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,第三物理层数据对应第二TB。第一TB和第二TB是第一物理层数据对应的2个TB,第一物理层数据在第二物理层数据之前由基站N3发送给UE U2。
作为实施例2的子实施例1,如果第二HARQ_ACK指示第一TB接收错误,基站N3重传第一TB直到第一TB接收正确或者达到最大重传次数。
实施例3
实施例3示例了传输上行物理层数据的流程图,如附图3所示。附图3中,基站N6是UE U5的服务基站。
对于UE U5,在步骤S51中,在第一载波上的第一子帧发送第一物理层数据;在步骤S52中,接收针对第一物理层数据的第一HARQ_ACK;在步骤S53中,接收第二信令,第二信令调度第二物理层数据;在步骤S54中,在第二载波上的第二子帧发送第二物理层数据。
对于基站N6,在步骤S61中,在第一载波上的第一子帧接收第一物理层数据;在步骤S62中,发送针对第一物理层数据的第一HARQ_ACK;在步骤S63中,发送第二信令,第二信令调度第二物理层数据;在步骤S64中,在第二载波上的第二子帧接收第二物理层数据。
实施例3中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。第一HARQ_ACK指示第一TB和第二TB都传输错误。第一子帧在第二子帧之前,第二物理层数据对应的TB由第二信令指示。
作为实施例3的子实施例1,第二信令中的1个比特显式指示第二信令所调度的TB是第一TB还是第二TB。
作为实施例3的子实施例2,第二信令的格式是DCI格式0。
实施例4
实施例4示例了物理层数据的传输子帧的时序图,如附图4所示。附图4中,斜线标识的方格是第一子帧,反斜线标识的方格是第二子帧,竖线标识的方格是第三子帧。
对于UE,首先在第一载波上的第一子帧操作第一物理层数据;然后处理针对第一物理层数据的第一HARQ_ACK;然后在第二载波上的第二子帧操作第二物理层数据;然后所述处理针对第二物理层数据的第二HARQ_ACK;最后在第二载波上的第三子帧所述操作第三物理层数据。
对于基站,首先在第一载波上的第一子帧所述处理第一物理层数据;然后所述操作针对第一物理层数据的第一HARQ_ACK;然后在第二载波上的第二子帧所述处理第二物理层数据;然后所述操作针对第二物理层数据的第二HARQ_ACK;最后在第二载波上的第三子帧所述处理第三物理层数据。
实施例4中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据固定对应第一TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。如果第二HARQ_ACK指示第一TB接收错误,第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,第三物理层数据对应第二TB。第二子帧是第一子帧之后的第8个子帧,第三子帧是第二子帧之后的第8个子帧。第一载波和第二载波中至少有一个部署于非授权频谱。
实施例5
实施例5示例了一个物理层数据接收装置的结构框图,如附图5所示。附图5中,接收装置200主要由第一接收模块201、第一发送模块202和第二接收模块203组成。接收装置200装备于UE或者基站中。
第一接收模块201用于在第一载波上的第一子帧接收第一物理层数据;第一发送模块202用于处理针对第一物理层数据的第一HARQ_ACK;第二接收模块203用于在第二载波上的第二子帧操作第二物理层数据。
实施例5中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为实施例5的子实施例1,接收装置200装备于UE中,所述物理层数据在PDSCH上传输。
作为实施例5的子实施例2,接收装置200装备于基站中,所述物理层数据在PUSCH(Physical Uplink Share Channel,物理上行共享信道)上传输。
作为实施例5的子实施例3,第一发送模块202还用于发送针对第二物理层数据的第二HARQ_ACK;第二接收模块203还用于在第二载波上的第三子帧接收第三物理层数据。其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
实施例6
实施例6示例了一个物理层数据发射装置的结构框图,如附图6所示。附图6中,发射装置300主要由第二发送模块301、第三接收模块302和第三发送模块303组成。发射装置300装备于UE或者基站中。
第二发送模块301用于在第一载波上的第一子帧发送第一物理层数据;第三接收模块302用于接收针对第一物理层数据的第一HARQ_ACK;第三发送模块303用于在第二载波上的第二子帧发送第二物理层数据。
实施例6中,第一物理层数据和第二物理层数据属于同一个HARQ进程。第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB。所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收。第一HARQ_ACK指示第一TB和第二TB都传输错误。
作为实施例6的子实施例1,发射装置300装备于UE中,所述物理层数据在PUSCH上传输。
作为实施例6的子实施例2,发射装置300装备于基站中,所述物理层数据在PDSCH上传输。
作为实施例6的子实施例3,第三接收模块302还用于接收针对第二物理层数据的第二HARQ_ACK;第三发送模块303还用于在第二载波上的第三子帧发送第三物理层数据。其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,第三物理层数据对应第二TB。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种UE中利用非授权频带通信的方法,其中,包括如下步骤:
    -步骤A.在第一载波上的第一子帧操作第一物理层数据
    -步骤B.处理针对第一物理层数据的第一HARQ_ACK
    -步骤C.在第二载波上的第二子帧操作第二物理层数据
    其中,第一物理层数据和第二物理层数据属于同一个HARQ进程;第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB;所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收;第一HARQ_ACK指示第一TB和第二TB都传输错误。
  2. 根据权利要求1所述的UE中利用非授权频带通信的方法,其特征在于,所述UE在第一载波上的操作、第二载波上的操作分别被配置为第一TM、第二TM,第一TM最多支持2个TB的传输,第二TM最多支持1个TB的传输。
  3. 根据权利要求1所述的UE中利用非授权频带通信的方法,其特征在于,第一载波和第二载波中至少有一个部署于非授权频谱。
  4. 根据权利要求1所述的UE中利用非授权频带通信的方法,其特征在于,所述步骤C包括如下步骤:
    -步骤C0.接收第二信令,第二信令调度第二物理层数据;
    其中,第一子帧在第二子帧之前,第二物理层数据对应的TB由第二信令指示。
  5. 根据权利要求1所述的UE中利用非授权频带通信的方法,其特征在于,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB。
  6. 根据权利要求1所述的UE中利用非授权频带通信的方法,其特征在于,所述操作、所述处理分别是接收、发送,所述UE盲确定第二物理层数据对应的TB。
  7. 根据权利要求5所述的UE中利用非授权频带通信的方法,其特征在于,所述步骤C还包括如下步骤:
    -步骤C1.所述处理针对第二物理层数据的第二HARQ_ACK
    -步骤C2.在第二载波上的第三子帧操作第三物理层数据;
    其中,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数 据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
  8. 根据权利要求1、5或7所述的UE中利用非授权频带通信的方法,其特征在于,第一TB对应码字0。
  9. 一种基站中利用非授权频带通信的方法,其中,包括如下步骤:
    -步骤A.在第一载波上的第一子帧操作第一物理层数据
    -步骤B.处理针对第一物理层数据的第一HARQ_ACK
    -步骤C.在第二载波上的第二子帧操作第二物理层数据
    其中,第一物理层数据和第二物理层数据属于同一个HARQ进程;第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB;所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收;第一HARQ_ACK指示第一TB和第二TB都传输错误。
  10. 根据权利要求9所述的基站中利用非授权频带通信的方法,其特征在于,所述HARQ进程的目标UE在第一载波上的操作、第二载波上的操作分别被配置为第一TM、第二TM,第一TM最多支持2个TB的传输,第二TM最多支持1个TB的传输。
  11. 根据权利要求9所述的基站中利用非授权频带通信的方法,其特征在于,第一载波和第二载波中至少有一个部署于非授权频谱。
  12. 根据权利要求9所述的基站中利用非授权频带通信的方法,其特征在于,所述步骤C包括如下步骤:
    -步骤C0.发送第二信令,第二信令调度第二物理层数据;
    其中,第一子帧在第二子帧之前,第二物理层数据对应的TB由第二信令指示。
  13. 根据权利要求9所述的基站中利用非授权频带通信的方法,其特征在于,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB。
  14. 根据权利要求13所述的基站中利用非授权频带通信的方法,其特征在于,所述步骤C还包括如下步骤:
    -步骤C1.所述处理针对第二物理层数据的第二HARQ_ACK
    -步骤C2.在第二载波上的第三子帧操作第三物理层数据;
    其中,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
  15. 根据权利要求9、13或14所述的基站中利用非授权频带通信的方法,其特征在于,第一TB对应码字0。
  16. 一种用户设备,其特征在于,该用户设备包括:
    第一模块:用于在第一载波上的第一子帧操作第一物理层数据
    第二模块:用于处理针对第一物理层数据的第一HARQ_ACK
    第三模块:用于在第二载波上的第二子帧操作第二物理层数据
    其中,第一物理层数据和第二物理层数据属于同一个HARQ进程;第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB;所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收;第一HARQ_ACK指示第一TB和第二TB都传输错误。
  17. 根据权利要求16所述的用户设备,其特征在于,第二模块还用于处理针对第二物理层数据的第二HARQ_ACK;第三模块还用于在第二载波上的第三子帧操作第三物理层数据;
    其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
  18. 一种基站设备,其特征在于,该基站设备包括:
    第一模块:用于在第一载波上的第一子帧操作第一物理层数据
    第二模块:用于处理针对第一物理层数据的第一HARQ_ACK
    第三模块:用于在第二载波上的第二子帧操作第二物理层数据
    其中,第一物理层数据和第二物理层数据属于同一个HARQ进程;第一物理层数据对应第一TB和第二TB,第二物理层数据对应第一TB或者第二TB;所述操作、所述处理分别是接收、发送,或者所述操作、所述处理分别是发送、接收;第一HARQ_ACK指示第一TB和第二TB都传输错误。
  19. 根据权利要求18所述的基站设备,其特征在于,第二模块还 用于处理针对第二物理层数据的第二HARQ_ACK;第三模块还用于在第二载波上的第三子帧操作第三物理层数据;
    其中,第一子帧在第二子帧之前,第二物理层数据对应的TB固定为第一TB,如果第二HARQ_ACK指示第一TB接收错误,则第三物理层数据对应第一TB;如果第二HARQ_ACK指示第一TB正确接收,则第三物理层数据对应第二TB。
PCT/CN2015/079587 2014-05-29 2015-05-22 一种ue、基站中利用非授权频带通信的方法和设备 WO2015180590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/314,348 US20170215080A1 (en) 2014-05-29 2015-05-22 Method and device for communicating in ue and base station by using unlicensed frequency band

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410235683.9 2014-05-29
CN201410235683.9A CN105323043B (zh) 2014-05-29 2014-05-29 一种利用非授权频带通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2015180590A1 true WO2015180590A1 (zh) 2015-12-03

Family

ID=54698077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079587 WO2015180590A1 (zh) 2014-05-29 2015-05-22 一种ue、基站中利用非授权频带通信的方法和设备

Country Status (3)

Country Link
US (1) US20170215080A1 (zh)
CN (1) CN105323043B (zh)
WO (1) WO2015180590A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487250B1 (en) * 2016-08-08 2024-02-14 LG Electronics Inc. Method for transmitting and receiving uplink channel in wireless communication system supporting unlicensed band, and devices supporting same
US10813136B2 (en) * 2017-08-30 2020-10-20 Qualcomm Incorporated Dual connectivity with a network that utilizes an unlicensed frequency spectrum
EP3834456A4 (en) * 2018-08-09 2022-03-16 Telefonaktiebolaget LM Ericsson (publ.) METHOD AND DEVICE FOR OPERATIONS IN DIFFERENT FREQUENCY BANDS WITHIN A RADIO DEVICE
WO2020146964A1 (en) * 2019-01-14 2020-07-23 Qualcomm Incorporated Scheduling of multiple transport blocks for grant-free uplink transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016630A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated Beacons for user equipment relays
US20130121272A1 (en) * 2011-11-14 2013-05-16 Qualcomm Incorporated Method and apparatus for dynamic frequency selection in wireless communications
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
CN103368597A (zh) * 2012-04-02 2013-10-23 英特尔移动通信有限责任公司 无线电通信装置和用于操作无线电通信装置的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287206B2 (en) * 2002-02-13 2007-10-23 Interdigital Technology Corporation Transport block set transmission using hybrid automatic repeat request
CN101527623B (zh) * 2009-04-08 2014-06-11 中兴通讯股份有限公司 物理混合自动请求重传指示信道中信息的传输方法和系统
US8769365B2 (en) * 2010-10-08 2014-07-01 Blackberry Limited Message rearrangement for improved wireless code performance
WO2012106843A1 (en) * 2011-02-11 2012-08-16 Renesas Mobile Corporation Signaling method to enable controlled tx deferring in mixed licensed and unlicensed spectrum carrier aggregation in future lte-a networks
US20140219237A1 (en) * 2011-06-07 2014-08-07 Broadcom Corporation Method and Apparatus for Establishing a Time-Frequency Reference Signal Pattern Configuration in a Carrier Extension or Carrier Segment
WO2015035185A1 (en) * 2013-09-06 2015-03-12 Apple Inc. Providing transit information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
US20130016630A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated Beacons for user equipment relays
US20130121272A1 (en) * 2011-11-14 2013-05-16 Qualcomm Incorporated Method and apparatus for dynamic frequency selection in wireless communications
CN103368597A (zh) * 2012-04-02 2013-10-23 英特尔移动通信有限责任公司 无线电通信装置和用于操作无线电通信装置的方法

Also Published As

Publication number Publication date
CN105323043A (zh) 2016-02-10
US20170215080A1 (en) 2017-07-27
CN105323043B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
RU2586316C2 (ru) Выбор момента времени подтверждения в беспроводной связи
JP6579713B2 (ja) 無線通信における肯定応答タイミングの選択
RU2596151C2 (ru) Разработка временных характеристик планирования для системы tdd
WO2015135456A1 (zh) 一种ue、基站中在非授权频谱上的通信方法和设备
US10602491B2 (en) Communication method and device on unlicensed frequency band in UE and base station
WO2015135496A1 (zh) 一种ue、基站中非授权频谱上的传输方法和设备
JP6326122B2 (ja) 無線通信における肯定応答タイミングの選択
EP3026839A1 (en) Selecting between two modes of ack/nack bundling for two layers
WO2015144062A1 (zh) 一种ue、基站中非周期srs的方法和设备
WO2017219830A1 (zh) 一种物理上行共享信道的传输方法及装置
WO2015180590A1 (zh) 一种ue、基站中利用非授权频带通信的方法和设备
US20240106577A1 (en) Electronic apparatus, wireless communication method, and computer readable storage medium
US20220376829A1 (en) Sidelink data transmission method and terminal device
CN103516491A (zh) 一种发送和接收反馈信息的方法、系统及装置
CN105898870B (zh) 一种在非授权频带上的传输方法和装置
US20240171325A1 (en) Electronic device, communication method and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC ( EPO FORM 1205A DATED 12/05/2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15800017

Country of ref document: EP

Kind code of ref document: A1