WO2015178659A1 - Ultra low temperature freezer - Google Patents

Ultra low temperature freezer Download PDF

Info

Publication number
WO2015178659A1
WO2015178659A1 PCT/KR2015/004994 KR2015004994W WO2015178659A1 WO 2015178659 A1 WO2015178659 A1 WO 2015178659A1 KR 2015004994 W KR2015004994 W KR 2015004994W WO 2015178659 A1 WO2015178659 A1 WO 2015178659A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
tube
volume
pipe
refrigerant pipe
Prior art date
Application number
PCT/KR2015/004994
Other languages
French (fr)
Korean (ko)
Inventor
윤근진
Original Assignee
주식회사 지엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엠에스 filed Critical 주식회사 지엠에스
Priority to CN201580025533.8A priority Critical patent/CN106461286A/en
Publication of WO2015178659A1 publication Critical patent/WO2015178659A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to an ultra-low temperature freezer, and more particularly, does not use a separate refrigerant such as a cryogenic refrigerant, and rapidly freezes to a temperature below minus 80 degrees even in a refrigerator having a conventional structure by adjusting the volume of a double tube.
  • a separate refrigerant such as a cryogenic refrigerant
  • the refrigerator has a compressor, a condenser, an expander and an evaporator, and is configured to cool the freezer using a cooling cycle of compression-condensation-expansion-evaporation.
  • the cooling cycle includes a compression cycle for compressing a gaseous refrigerant at high temperature and high pressure through operation of a compressor, a condensation cycle for condensing and liquefying gas compressed at high temperature and pressure, an expansion cycle for lowering the pressure of the condensed gas, and a pressure. It consists of an evaporation cycle that lowers the temperature of the freezer compartment by vaporizing the lowered refrigerant.
  • the double tube may include a first refrigerant tube and a first refrigerant tube directed from the condenser to the expander, and may be configured as a second refrigerant tube connected between the evaporator and the compressor.
  • Patent No. 10-0836824 uses dry ice (carbon dioxide) as a refrigerant, and in order to minimize volume increase by the accumulator, a first flow passage connected to the outlet side of the gas cooler and a second passage connected to the outlet side of the evaporator are provided. Let the flow paths exchange with each other. At this time, the patent 10-0836824 is to implement the refrigerator main body compactly without mounting an accumulator by allowing the first passage to flow downward of the main body.
  • Patent No. 10 Patent No. 10
  • 10-0836824 constitutes a double tube in a stacked coil shape, and thus the volume of the double tube itself has a limitation in implementing a refrigerator in a compact manner. It should be used as a refrigerant, and the accumulator was removed by lowering the refrigerant flow in the double tube rather than increasing the cooling efficiency by using the double tube, and technical considerations for rapid freezing were excluded.
  • the cryogenic freezer may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated.
  • the double tube is provided between the condenser and the expansion tube, the first refrigerant pipe connected between the condenser and the expansion tube and the first refrigerant pipe is stored therein to form a double tube, the first connection between the evaporator and the compressor
  • the main point of the present invention is to include a second refrigerant pipe, and the difference between the volume of the second refrigerant pipe and the volume of the first refrigerant pipe as the volume of the evaporation pipe is 70% to 130%.
  • the cryogenic freezer may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated.
  • the double tube is provided between the condenser and the expansion tube, the first refrigerant pipe connected between the condenser and the expansion tube and the first refrigerant pipe is stored therein to form a double tube, the first connection between the evaporator and the compressor It includes two refrigerant tubes, the main point is that the length of the second refrigerant tube or the first refrigerant tube relative to the length of the evaporation tube is 70% to 130%.
  • the cryogenic freezer may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated.
  • the double pipe is formed inside the first refrigerant pipe to form a double pipe, and includes a second refrigerant pipe connected between the evaporator and the compressor, the refrigerant movement time in the evaporation tube is the first travel time,
  • the refrigerant movement time in the second refrigerant pipe is the second movement time
  • the main point of the length of the second refrigerant tube is set so that the second movement time is 70% to 130% of the first movement time.
  • the cooling cycle of the refrigerant is repeated.
  • the temperature can be rapidly lowered to cryogenic temperatures.
  • FIG. 1 is a perspective view of a cryogenic freezer according to an embodiment of the present invention.
  • Figure 2 shows a reference view for explaining the refrigeration cycle of the cryogenic freezer according to an embodiment of the present invention.
  • FIG. 3 and 4 show reference views for an example of the double tube shown in FIG. 2.
  • 5 and 6 show reference drawings for a double tube disposed between the body and the body and a structure in which the double tube is molded.
  • FIG. 7 shows a reference drawing for a method for obtaining the volume of a double tube according to an embodiment.
  • FIG. 8 is a reference view for explaining a refrigeration cycle of the cryogenic freezer according to another embodiment of the present invention.
  • the evaporator referred to herein is composed of an evaporator tube, and the evaporator and the evaporator tube may be used interchangeably in the present specification.
  • FIG. 1 is a perspective view of a cryogenic freezer 100 according to an embodiment of the present invention
  • Figure 2 shows a reference diagram for explaining the refrigeration cycle of the cryogenic freezer 100 according to an embodiment of the present invention. do.
  • the cryogenic freezer 100 includes a body 103 and a freezer compartment 101, the freezer compartment 101 can accommodate living tissue, blood, cell tissue have.
  • the freezer compartment 101 may be provided with a transparent window so that it can be seen from the outside.
  • the transparent window may be composed of a double glass having a vacuum layer in view of the freezer compartment 101 temperature of ⁇ 80 degrees.
  • the condenser 120 and the compressor 110 may be stored at the lower end of the cryogenic freezer 100, and the double tube 140 may be stored at the rear surface thereof.
  • the double tube 140 may be configured such that the second refrigerant tube 142 accommodates the first refrigerant tube 141.
  • the first refrigerant tube 141 may be connected to the expansion tube 150 from the filter drier 130, and the second refrigerant tube 142 may be connected between the evaporator 160 and the compressor 110. That is, the first refrigerant pipe 141 is used to cool the refrigerant from the filter drier 130 toward the expansion pipe 150, and the second refrigerant pipe 142 pre-cools the refrigerant of the first refrigerant pipe 141. After cooling, the cooled refrigerant may be discharged to the expansion tube 130.
  • the filter drier 130 may filter the moisture or the foreign matter from the refrigerant discharged from the condenser 120, and then provide the refrigerant to the first refrigerant pipe 141 of the double pipe 140.
  • the first refrigerant tube 141 directs the refrigerant to the expansion tube 150 in the filter drier 130
  • the second refrigerant tube 142 is the refrigerant in the evaporator 160
  • the compressor Face (110) That is, the refrigerant flowing in the first refrigerant pipe 141 and the refrigerant flowing in the second refrigerant pipe 142 are moved in opposite directions to each other, and the first refrigerant pipe 141 and the second refrigerant pipe ( Heat exchange of 142 can be effected effectively.
  • This double tube 140 may be disposed on the back side of the housing 103 and then molded by foamed urethane.
  • Foam urethane is a resin having a myriad of air layers therein, and is applied between the freezing chamber 101 and the main body 103 to insulate the cryogenic freezer 100 according to the embodiment, wherein the main body 103 and the freezing chamber (
  • the double tube 140 having a planar coil shape may be molded between the 101 parts.
  • the double tube 140 may be formed in a planar coil type in order to minimize the volume and to make it compact.
  • Double tube 140 may have a coil shape toward the center in the circumferential surface. Accordingly, when the double tube 140 is disposed on the rear surface of the main body 103 and then molded by the foamed urethane, the molding is performed by the urethane foam on the rear side of the main body 103 without significantly increasing the thickness of the main body 103. Can be. This will be described later.
  • the refrigerant discharged from the filter drier 130 is further cooled by the second refrigerant pipe 142 in the first refrigerant pipe 141 of the double pipe 140 and then provided to the expander 150, wherein the expander ( The refrigerant applied to 150 may be sufficiently overcooled.
  • the supercooled coolant is expanded in the expansion tube 150 to become a low-temperature / low-pressure gaseous coolant, and may be lowered to a sufficiently low temperature when it flows into the freezing compartment 101.
  • the evaporator 160 absorbs the latent heat of the freezer compartment 101 to allow the refrigerant to be phase-changed into a gas-> liquid state.
  • the evaporator 160 has a form of an evaporation tube provided in the evaporation chamber 101, the volume of the double tube 140 may have a range of 1: 1 or 70% to 130% of the volume of the evaporation tube. have.
  • the volume of the evaporation tube means the volume calculated based on the inner diameter of the evaporation tube
  • the volume of the double tube 140 may mean [the volume of the second refrigerant tube 142-the volume of the first refrigerant tube 141].
  • [the volume of the second refrigerant pipe 142-the volume of the first refrigerant pipe 141] is defined as "difference volume”.
  • the volume of the second refrigerant pipe 142 corresponds to the volume based on the inner diameter of the second refrigerant pipe 142
  • the volume of the first refrigerant pipe 141 may correspond to a volume based on the outer diameter of the first refrigerant pipe 141.
  • the volume of the second refrigerant pipe 142 refers to an internal volume through which the refrigerant can flow purely inside the second refrigerant pipe 142.
  • the refrigerant discharged from the evaporator tube toward the compressor 110 cools the liquid refrigerant from the filter drier 130 toward the expansion tube 150 and the first refrigerant tube 141.
  • the refrigerant from the filter drier 130 to the expansion tube 150 may be cooled in the condenser 120 and then cooled again to be provided to the expansion tube 150.
  • the refrigerant vaporized in the expansion tube (150) is in a low temperature / low pressure state, and absorbs the latent heat of the freezer compartment (101) in the evaporator (160) and is provided to the second refrigerant tube (142).
  • the refrigerant may exchange heat with the first refrigerant pipe 141 to absorb the heat of the refrigerant flowing through the first refrigerant pipe 141 and return it to the compressor 110.
  • the compressor 110 may receive the refrigerant heated by the first refrigerant pipe 141 and rapidly compress the refrigerant in a high temperature / high pressure state to provide the refrigerant to the condenser 120.
  • the efficiency of converting the refrigerant into a high temperature / high pressure state by compressing the refrigerant in the compressor 110 may be improved.
  • the improvement in efficiency means that the cooling cycle can be completed more quickly and the temperature of the freezer compartment 101 can be lowered.
  • the volume of the second refrigerant pipe 142 may be formed to be equal to 1: 1 with the volume of the evaporator tube constituting the evaporator 160, or the volume may be increased or decreased according to the target temperature.
  • the volume of the evaporator tube is proportional to the cooling capacity of lowering the temperature of the freezer compartment 101, and forms the volume of the second refrigerant tube 142 in accordance with the cooling capacity of the evaporator tube, and the velocity of the refrigerant from node A to node D. Assuming that is constant, it can be seen that the refrigerant flowing through the evaporation tube is heated in the second refrigerant tube 142 of the same volume. Accordingly, the refrigerant from the evaporator tube toward the compressor 110 is sufficiently preheated in the second refrigerant tube 142 and applied to the compressor 110, and the compressor 110 compresses the preheated refrigerant and provides the condenser 120. can do.
  • This preheating cycle is performed by the preheating of the refrigerant every time the cooling cycle for the compressor 110-condenser 120-filter drier 130, double pipe 140-expander 150-evaporator 160 is repeated. It can accumulate and improve the efficiency of a cooling cycle.
  • the freezing compartment 101 can be cooled to ultra low temperature quickly within a short time.
  • the diameter of the evaporator tube constituting the evaporator 160 is 7mm
  • the first refrigerant tube 141 constituting the double tube 140 has an outer diameter of 4mm
  • the inner diameter of the second refrigerant tube 142 is 8mm.
  • the volume of the evaporation tube can be calculated as (radius) 2 x ⁇ xh (length), and can be calculated as "12.25 ⁇ xh".
  • the volume of the first refrigerant pipe 141 is "4 ⁇ xh”
  • the volume of the second refrigerant pipe 142 is calculated as “16 ⁇ xh”
  • the temperature of the refrigerant flowing into the expansion tube 150 is increased by the first refrigerant tube 141 and the temperature of the refrigerant from the evaporation tube to the compressor 110 decreases through the second refrigerant tube 142, thereby expanding.
  • the expansion temperature difference ⁇ T defined by the temperature difference between the temperature of the refrigerant expanded in the pipe 150 and the external air temperature of the refrigerating chamber 101 decreases.
  • Reduction of the expansion temperature difference ⁇ T may be such that the temperature of the refrigerant flowing through the evaporation tube is not lowered below -100 ° C., and the temperature of the refrigerant is ⁇ 70 ° C. to ⁇ 80 ° C. That is, the cryogenic freezer according to the embodiment can quickly reach a certain temperature range (-70 °C to -80 °C), and does not simply lower or raise the temperature continuously, but a predetermined temperature range (-70 °C to -80 Can be reached quickly).
  • the medical freezer according to the embodiment allows cells, DNA, blood and other materials to be stored in a rapid and constant temperature range to be tested or preserved.
  • 3 and 4 illustrate a reference diagram of an example of the double tube 140 shown in FIG. 2. 3 and 4 will be referred to together with FIG. 1.
  • the double pipe 140 according to the embodiment has one surface of the second refrigerant pipe 142 having the shape of inserting the first refrigerant pipe 141 toward the center from the circumferential surface thereof. It can be seen that it has a flat coil shape.
  • This structure is such that when the double tube 140 according to the embodiment is disposed on the rear surface of the main body 103, it is attached to the rear surface of the main body 103 in a planar coil shape, so as not to increase the thickness of the main body 103.
  • One side of the double tube 140 illustrated in FIG. 3 may be connected to the filter drier 130, and the other side thereof may protrude in the direction D4 from the center thereof and may be connected to the expansion tube 150.
  • the double tube 140 may be in close contact with the rear surface of the body 103-1 to expose the planar concentric circle structure externally.
  • the main body 103 is covered with the body 103-1 and a foamed urethane resin is applied between the main body 103 and the body 103-1, it may be molded. This will be described with reference to FIGS. 5 and 6 together.
  • FIG. 5 illustrates an example in which the double tube 140 is disposed on the body 103-1, and the double tube 140 is disposed in parallel with the exposed surface of the body 103-1 so that the body 103 is disposed. -1) can be arranged without increasing the thickness.
  • FIG. 6 is a reference diagram illustrating an arrangement relationship between a body 103-1 and a body 103 on which the double tube 140 is disposed, and as shown in FIG. 6, the double tube 140 has a body 103. After the arrangement is made in -1), the region S1 between the body 103-1 and the body 103 may be filled with a heat insulating material such as urethane foam.
  • the foamed urethane is referred to as a heat insulating material filling the area (S1), but in addition to the heat insulating material of styrofoam, foam rubber and various other materials may be filled in the area (S1).
  • the double tube 140 disposed on the body 103-1 may be molded together with the body 103 by the foamed urethane. Accordingly, the double tube 140 may be heat exchanged between the first refrigerant tube 141 and the second refrigerant tube 142 without being affected by the external temperature.
  • FIG. 7 shows a reference view for a method of obtaining the volume of a double tube 140 according to an embodiment.
  • the double tube 140 calculates the volume of the first refrigerant tube 141 based on the outer diameter D2 of the first refrigerant tube 141, and the second refrigerant tube 142. ), The volume of the second refrigerant pipe 142 is calculated based on the inner diameter D2, and the volume difference, which is the difference between the volume of the first refrigerant pipe 141 and the volume of the second refrigerant pipe 142, is calculated by the second. It is possible to calculate the volume of the refrigerant flowing through the refrigerant pipe 142.
  • the volume of the circular pipe shape may be calculated as shown in Equation 1 below, and based on this, the volume of the first refrigerant pipe 141 and the volume and volume difference of the second refrigerant pipe 142 are calculated.
  • v is the volume of the cylinder
  • represents the circumference
  • r is the radius of the cylinder
  • h represents the length of the cylinder.
  • the volume of the first refrigerant pipe 141 is calculated with reference to Equation 1 as shown in Equation 2 below.
  • v1 is the volume of the first refrigerant pipe 141
  • represents the circumference
  • D1 is the radius of the first refrigerant pipe 141
  • H represents the length of the first refrigerant pipe 141.
  • Equation 3 the volume of the second refrigerant pipe 142 is calculated as shown in Equation 3 below.
  • v2 is the volume of the second refrigerant tube 142
  • represents the circumference
  • D2 represents the radius of the second refrigerant tube
  • H represents the length of the second refrigerant tube 142.
  • D2 may mean the inner diameter radius of the second refrigerant pipe 142, which is calculated by calculating the volume difference between the internal volume of the second refrigerant pipe 142 and the external volume of the first refrigerant pipe 141, 2 is used to calculate the pure volume of the refrigerant pipe 142.
  • the difference volume can be calculated as V2-V1.
  • the length may be adjusted so that the vehicle volume calculated according to Equation 1 to Equation 3 is 70% to 130% of the volume of the evaporation tube.
  • vehicle volume evaporation tube volume
  • the refrigerant flowing through the evaporation tube can be sufficiently preheated, and if the vehicle volume is more than 100% of the volume of the evaporation tube, it can be further preheated.
  • the refrigeration temperature of the cryogenic freezer according to the embodiment does not need to be lowered to -80 degrees or less, the vehicle volume may be 70% to 100% relative to the evaporation tube volume, and on the contrary, the cryogenic freezer according to the embodiment When cooling to a temperature of 80 degrees or less may be 101% to 130%. That is, the ratio of the volume of the car to the volume of the evaporation tube may be determined according to how much the cryogenic freezer according to the embodiment lowers the temperature of the freezing compartment 101.
  • the length of the evaporation tube and the length of the second refrigerant tube 142 may mean that the volume of the evaporation tube and the difference volume of the second refrigerant tube 142 and the first refrigerant tube 141 are the same. Can be.
  • the length of the second refrigerant tube 142 may be 130% compared to 70% of the length of the evaporation tube.
  • FIG. 8 is a reference view for explaining a refrigeration cycle of the cryogenic freezer according to another embodiment of the present invention.
  • the refrigerating cycle of the cryogenic freezer has a refrigerating cycle of compression-condensation-expansion-evaporation as described with reference to FIG. 2, and is partially omitted in the drawing, but similarly to FIG. 2.
  • the cryogenic freezer having a compressor 110, a condenser 120, a filter drier 130, a double tube 140, an expansion tube 150, and an evaporator 160.
  • the characteristic of the present embodiment is that the second refrigerant tube by using the ratio of the movement time of the refrigerant to move the evaporation tube, and the time to move the second refrigerant tube 142, not the volume of the evaporation tube constituting the evaporator 160.
  • the refrigerant to move sufficiently absorbs heat it is characterized in that it is provided to the compressor (100).
  • the refrigerant is heated to be returned to the compressor 100 so that when the refrigerant is compressed in the compressor 100, the refrigerant is switched to a high temperature / high pressure state in a short time to be provided to the condenser 120, and the refrigerant is condenser.
  • the cryogenic freezer may drop the temperature of the freezing compartment 101 to -80 degrees or less within a short time.
  • the matters regarding the heating and overcooling of the refrigerant are not limited to FIG. 8 and may be applied to the whole embodiment.
  • the second movement time t2 of the refrigerant moving through the second refrigerant tube 142 may be 70% to 130% compared to the first movement time t1 of the refrigerant moving through the evaporation tube, and the performance of the condenser 120 may be reduced. Accordingly, the second movement time t2 relative to the first movement time t1 may be increased in the range of 70% to 130% or more.
  • the present invention can contribute to the vitalization of the industry for storing, researching and manipulating blood and cell tissues, and for the genetic engineering industry, and, if applied to long-term storage of non-biological tissues such as articles or materials, to activate the freezing and storage business. Can also contribute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Disclosed is an ultra low temperature freezer in which a double pipe is formed so that the volume of the double pipe for performing heat exchange between a refrigerant discharged from a condenser and a refrigerant discharged from an evaporator is 70% to 130% relative to the volume of an evaporation pipe, thereby rapidly lowering the temperature of the refrigerants to the ultra low temperature as the cooling cycle of the refrigerants is repeated. To this end, the present invention provides an ultra low temperature freezer comprising an evaporator having an evaporation pipe, a compressor, an expansion pipe, and a condenser, the freezer further comprising a first refrigerant pipe which is provided between the condenser and the expansion pipe and which is connected between the condenser and the expansion pipe, and a second refrigerant pipe which receives the first refrigerant pipe therein to form a double pipe and which is connected between the evaporator and the compressor, wherein the volume difference between the volume of the second refrigerant pipe and the volume of the first refrigerant pipe may be 70% to 130% relative to the volume of the evaporation pipe.

Description

극초저온 냉동고Cryogenic Freezer
본 발명은 극초저온 냉동고에 관한 것으로, 더욱 상세하게는 Cryogenic 냉매와 같은 별도의 냉매를 이용하지 않으며, 이중 관의 체적을 조절하여 통상의 구조를 갖는 냉장고로도 영하 80도 이하의 온도로 급속히 냉동 가능한 극초저온 냉동고에 관한 것이다.The present invention relates to an ultra-low temperature freezer, and more particularly, does not use a separate refrigerant such as a cryogenic refrigerant, and rapidly freezes to a temperature below minus 80 degrees even in a refrigerator having a conventional structure by adjusting the volume of a double tube. A possible cryogenic freezer is provided.
냉장고는 압축기, 응축기, 팽창기 및 증발기를 구비하며, 압축 - 응축 - 팽창 - 증발의 냉각 사이클을 이용하여 냉동실을 냉각하도록 구성된다.The refrigerator has a compressor, a condenser, an expander and an evaporator, and is configured to cool the freezer using a cooling cycle of compression-condensation-expansion-evaporation.
냉각 사이클은, 압축기의 가동을 통해 기체 상태의 냉매를 고온-고압으로 압축하는 압축 사이클, 고온-고압으로 압축된 기체를 응축하여 액화하는 응축 사이클, 응축된 기체의 압력을 낮추는 팽창 사이클, 압력이 낮춰진 냉매를 기화시켜 냉동실의 온도를 낮추는 증발 사이클로 구성된다.The cooling cycle includes a compression cycle for compressing a gaseous refrigerant at high temperature and high pressure through operation of a compressor, a condensation cycle for condensing and liquefying gas compressed at high temperature and pressure, an expansion cycle for lowering the pressure of the condensed gas, and a pressure. It consists of an evaporation cycle that lowers the temperature of the freezer compartment by vaporizing the lowered refrigerant.
상기한 냉각 사이클로 구성되는 냉장고에서 응축기와 팽창기 사이에 이중 관을 연결하고 증발기에서 토출되는 저온/저압의 냉매로 응축기에서 토출되는 냉매를 냉각함으로써 냉장고의 냉각효율을 향상시키고 있다. 이때, 이중 관은 응축기에서 팽창기로 향하는 제1냉매 관 및 제1냉매 관을 수납하며, 증발기와 압축기 사이에 연결되는 제2냉매 관으로 구성될 수 있다. 이중 관을 이용하여 응축기에서 토출되는 냉매를 충분히 냉각함으로써 압축기 - 응축기 - 팽창기 - 증발기로 구성되는 냉각 사이클의 냉각 효과를 향상시킬 수 있다.In the refrigerator constituted by the above-mentioned cooling cycle, a double pipe is connected between the condenser and the expander, and the cooling efficiency of the refrigerator is improved by cooling the refrigerant discharged from the condenser with a low temperature / low pressure refrigerant discharged from the evaporator. In this case, the double tube may include a first refrigerant tube and a first refrigerant tube directed from the condenser to the expander, and may be configured as a second refrigerant tube connected between the evaporator and the compressor. By using the double tube to sufficiently cool the refrigerant discharged from the condenser, it is possible to improve the cooling effect of the cooling cycle consisting of the compressor-condenser-expander-evaporator.
이중 관을 이용하는 냉장고의 일 예로서, 한국 등록특허 10-0836824가 제안된 바 있다. 등록특허 10-0836824는 드라이아이스(이산화탄소)를 냉매로 이용하며, 어큐멀레이터에 의한 체적 증가를 최소화하기 위해, 가스쿨러의 출구 측에 연결되는 제1유로와 증발기의 출구 측에 연결되는 제2유로가 상호 열교환을 하도록 한다. 이때, 등록특허 10-0836824는 제1유로가 본체의 하향으로 유동하도록 함으로써 별도의 어큐멀레이터를 장착하지 않고 냉장고 본체를 컴팩트하게 구현하고 있다. 그러나, 등록특허 10-0836824의 도 5에 도시된 바와 같이, 등록특허 10-0836824는 적층 코일 형상으로 이중 관을 구성하므로 이중 관 자체의 체적이 냉장고를 컴팩트하게 구현하는데 한계가 있고, 드라이아이스를 냉매로 이용하여야 하는데다, 이중 관이 이용하여 냉각 효율을 높이는 쪽 보다는 이중 관의 냉매 흐름을 하향하도록 하여 어큐멀레이터를 제거하였을 뿐, 급속 냉동을 위한 기술적 고려가 배제되었다.As an example of a refrigerator using a double tube, Korean Patent No. 10-0836824 has been proposed. Patent No. 10-0836824 uses dry ice (carbon dioxide) as a refrigerant, and in order to minimize volume increase by the accumulator, a first flow passage connected to the outlet side of the gas cooler and a second passage connected to the outlet side of the evaporator are provided. Let the flow paths exchange with each other. At this time, the patent 10-0836824 is to implement the refrigerator main body compactly without mounting an accumulator by allowing the first passage to flow downward of the main body. However, as shown in FIG. 5 of Patent No. 10-0836824, Patent No. 10-0836824 constitutes a double tube in a stacked coil shape, and thus the volume of the double tube itself has a limitation in implementing a refrigerator in a compact manner. It should be used as a refrigerant, and the accumulator was removed by lowering the refrigerant flow in the double tube rather than increasing the cooling efficiency by using the double tube, and technical considerations for rapid freezing were excluded.
본 발명의 목적은 응축기에서 토출되는 냉매과 증발기에서 토출되는 냉매가 열교환을 수행하는 이중 관의 체적 증발 관 대비 70% 내지 130%로 설정함으로써 냉매의 냉각 사이클이 반복될수록 냉매의 온도가 급속히 설정된 초저온으로 낮아지도록 하는 극초저온 냉동고를 제공함에 있다.It is an object of the present invention to set the refrigerant discharged from the condenser and the refrigerant discharged from the evaporator to 70% to 130% compared to the volume evaporation tube of the double tube performing heat exchange, so that the refrigerant temperature is rapidly set as the cooling cycle of the refrigerant is repeated. It is to provide a cryogenic freezer to be lowered.
위와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 극초저온 냉동고는 증발 관이 수납되는 증발기, 압축기, 팽창 관, 응축기 및 이중 관을 포함하여 구성될 수 있다. 이때, 이중 관은 응축기와 팽창 관 사이에 마련되고, 응축기와 팽창 관 사이에 연결되는 제1냉매 관 및 내부에 제1냉매 관을 수납하여 이중 관을 형성하며, 증발기와 압축기 사이에 연결되는 제2냉매 관을 포함하고, 증발 관의 체적 대비 제2냉매 관의 체적과 제1냉매 관의 체적의 차이인 차 체적이 70% 내지 130%인 것을 주요 요지로 한다. In order to achieve the above object, the cryogenic freezer according to the embodiment of the present invention may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated. At this time, the double tube is provided between the condenser and the expansion tube, the first refrigerant pipe connected between the condenser and the expansion tube and the first refrigerant pipe is stored therein to form a double tube, the first connection between the evaporator and the compressor The main point of the present invention is to include a second refrigerant pipe, and the difference between the volume of the second refrigerant pipe and the volume of the first refrigerant pipe as the volume of the evaporation pipe is 70% to 130%.
위와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 극초저온 냉동고는 증발 관이 수납되는 증발기, 압축기, 팽창 관, 응축기 및 이중 관을 포함하여 구성될 수 있다. 이때, 이중 관은 응축기와 팽창 관 사이에 마련되고, 응축기와 팽창 관 사이에 연결되는 제1냉매 관 및 내부에 제1냉매 관을 수납하여 이중 관을 형성하며, 증발기와 압축기 사이에 연결되는 제2냉매 관을 포함하고, 증발 관의 길이 대비 제2냉매 관 또는 제1냉매 관의 길이가 70% 내지 130% 인 것을 주요 요지로 한다.In order to achieve the above object, the cryogenic freezer according to the embodiment of the present invention may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated. At this time, the double tube is provided between the condenser and the expansion tube, the first refrigerant pipe connected between the condenser and the expansion tube and the first refrigerant pipe is stored therein to form a double tube, the first connection between the evaporator and the compressor It includes two refrigerant tubes, the main point is that the length of the second refrigerant tube or the first refrigerant tube relative to the length of the evaporation tube is 70% to 130%.
위와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 극초저온 냉동고는 증발 관이 수납되는 증발기, 압축기, 팽창 관, 응축기 및 이중 관을 포함하여 구성될 수 있다. 이때, 이중 관은 내부에 상기 제1냉매 관을 수납하여 이중 관을 형성하며, 증발기와 압축기 사이에 연결되는 제2냉매 관을 포함하고, 증발 관에서의 냉매 이동시간을 제1이동시간이고, 상기 제2냉매 관에서의 상기 냉매 이동시간이 제2이동시간일 때, 제2냉매 관의 길이는 제2이동시간이 제1이동시간 대비 70% 내지 130%가 되도록 설정되는 것을 주요 요지로 한다.In order to achieve the above object, the cryogenic freezer according to the embodiment of the present invention may be configured to include an evaporator, a compressor, an expansion tube, a condenser and a double tube in which the evaporation tube is accommodated. At this time, the double pipe is formed inside the first refrigerant pipe to form a double pipe, and includes a second refrigerant pipe connected between the evaporator and the compressor, the refrigerant movement time in the evaporation tube is the first travel time, When the refrigerant movement time in the second refrigerant pipe is the second movement time, the main point of the length of the second refrigerant tube is set so that the second movement time is 70% to 130% of the first movement time. .
본 발명에 따르면, 응축기에서 토출되는 냉매와 증발기에서 토출되는 냉매가 열교환을 수행하는 이중 관의 체적이 증발 관 체적 대비 70% 내지 130가 되도록 이중 관을 형성함으로써 냉매의 냉각 사이클이 반복될수록 냉매의 온도가 급속히 초저온으로 낮아지도록 할 수 있다.According to the present invention, by forming a double tube so that the volume of the double tube in which the refrigerant discharged from the condenser and the refrigerant discharged from the evaporator performs heat exchange becomes 70% to 130 relative to the volume of the evaporation tube, the cooling cycle of the refrigerant is repeated. The temperature can be rapidly lowered to cryogenic temperatures.
도 1은 본 발명의 일 실시예에 따른 극초저온 냉동고에 대한 사시도를 나타낸다.1 is a perspective view of a cryogenic freezer according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 극초저온 냉동고의 냉장 사이클을 설명하기 위한 참조도면을 도시한다.Figure 2 shows a reference view for explaining the refrigeration cycle of the cryogenic freezer according to an embodiment of the present invention.
도 3과 도 4는 도 2에 도시된 이중 관의 일 예에 대한 참고도를 도시한다. 3 and 4 show reference views for an example of the double tube shown in FIG. 2.
도 5와 도 6은 몸체와 본체 사이에 배치되는 이중 관 및 이중 관이 몰딩되는 구조에 대한 참조도면을 도시한다.5 and 6 show reference drawings for a double tube disposed between the body and the body and a structure in which the double tube is molded.
도 7은 실시예에 따른 이중 관의 체적을 구하는 방법에 대한 참조도면을 도시한다.7 shows a reference drawing for a method for obtaining the volume of a double tube according to an embodiment.
도 8은 본 발명의 다른 실시예에 따른 극초저온 냉동고의 냉장 사이클을 설명하기 위한 참조도면을 도시한다.8 is a reference view for explaining a refrigeration cycle of the cryogenic freezer according to another embodiment of the present invention.
본 명세서에서 언급되는 증발기는 증발 관으로 구성된 것으로서, 본 명세서에서 증발기와 증발 관은 그 의미가 혼용되어 기재될 수 있다.The evaporator referred to herein is composed of an evaporator tube, and the evaporator and the evaporator tube may be used interchangeably in the present specification.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this case, the same components in the accompanying drawings are to be noted with the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated.
도 1은 본 발명의 일 실시예에 따른 극초저온 냉동고(100)에 대한 사시도를 나타내고, 도 2는 본 발명의 실시예에 따른 극초저온 냉동고(100)의 냉장 사이클을 설명하기 위한 참조도면을 도시한다.1 is a perspective view of a cryogenic freezer 100 according to an embodiment of the present invention, Figure 2 shows a reference diagram for explaining the refrigeration cycle of the cryogenic freezer 100 according to an embodiment of the present invention. do.
도 1과 도 2를 함께 참조하면, 실시예에 따른 극초저온 냉동고(100)는 본체(103)와 냉동실(101)을 구비하며, 냉동실(101)은 생체조직, 혈액, 세포조직을 수납할 수 있다. 냉동실(101)은 외부에서 확인할 수 있도록 투명창이 설치될 수도 있다. 이 경우, 투명창은 - 80도의 냉동실(101) 온도를 감안하여 진공 층을 구비하는 이중 유리로 구성될 수 있다.1 and 2 together, the cryogenic freezer 100 according to the embodiment includes a body 103 and a freezer compartment 101, the freezer compartment 101 can accommodate living tissue, blood, cell tissue have. The freezer compartment 101 may be provided with a transparent window so that it can be seen from the outside. In this case, the transparent window may be composed of a double glass having a vacuum layer in view of the freezer compartment 101 temperature of −80 degrees.
극초저온 냉동고(100)의 하단에는 응축기(120) 및 압축기(110)가 수납될 수 있으며, 배면에는 이중 관(140)이 수납될 수 있다. 여기서, 이중 관(140)은 제2냉매 관(142)이 제1냉매 관(141)을 수납하는 형태로 구성될 수 있다. 제1냉매 관(141)은 필터 드라이어(130)에서 팽창 관(150)으로 연결되고, 제2냉매 관(142)은 증발기(160)와 압축기(110) 사이에 연결될 수 있다. 즉, 제1냉매 관(141)은 필터 드라이어(130)에서 팽창 관(150)을 향하는 냉매를 냉각시키는데 이용되고, 제2냉매 관(142)은 제1냉매 관(141)의 냉매를 사전에 냉각시켜 두고, 냉각된 냉매가 팽창 관(130)에 토출되도록 할 수 있다.The condenser 120 and the compressor 110 may be stored at the lower end of the cryogenic freezer 100, and the double tube 140 may be stored at the rear surface thereof. Here, the double tube 140 may be configured such that the second refrigerant tube 142 accommodates the first refrigerant tube 141. The first refrigerant tube 141 may be connected to the expansion tube 150 from the filter drier 130, and the second refrigerant tube 142 may be connected between the evaporator 160 and the compressor 110. That is, the first refrigerant pipe 141 is used to cool the refrigerant from the filter drier 130 toward the expansion pipe 150, and the second refrigerant pipe 142 pre-cools the refrigerant of the first refrigerant pipe 141. After cooling, the cooled refrigerant may be discharged to the expansion tube 130.
필터 드라이어(130)는 응축기(120)에서 토출되는 냉매에서 습기 또는 이물질을 필터링 후, 이중 관(140)의 제1냉매 관(141)으로 냉매를 제공할 수 있다.The filter drier 130 may filter the moisture or the foreign matter from the refrigerant discharged from the condenser 120, and then provide the refrigerant to the first refrigerant pipe 141 of the double pipe 140.
여기서, 이중 관(140)에서 제1냉매 관(141)은 냉매가 필터 드라이어(130)에서 팽창 관(150)을 향하도록 하고, 제2냉매 관(142)은 냉매가 증발기(160)에서 압축기(110)를 향하도록 한다. 즉, 제1냉매 관(141)을 유동하는 냉매와 제2냉매 관(142)을 유동하는 냉매는 상호 역방향으로 이동되며, 이러한 역방향 이동에 의해 제1냉매 관(141)과 제2냉매 관(142)의 열 교환이 효과적으로 이루어질 수 있다.Here, in the double tube 140, the first refrigerant tube 141 directs the refrigerant to the expansion tube 150 in the filter drier 130, the second refrigerant tube 142 is the refrigerant in the evaporator 160, the compressor Face (110). That is, the refrigerant flowing in the first refrigerant pipe 141 and the refrigerant flowing in the second refrigerant pipe 142 are moved in opposite directions to each other, and the first refrigerant pipe 141 and the second refrigerant pipe ( Heat exchange of 142 can be effected effectively.
이러한 이중 관(140)은 하우징(103)의 배면에 배치된 후, 발포 우레탄에 의해 몰딩될 수 있다. 발포 우레탄은 내부에 무수한 공기층을 구비하는 수지로서, 냉동실(101)과 본체(103) 사이에 도포되어 실시예에 따른 초저온 냉동고(100)를 단열할 수 있는데, 이때, 본체(103)와 냉동실(101) 사이에는 평면 코일 형상을 갖는 이중 관(140)을 몰딩할 수 있다.This double tube 140 may be disposed on the back side of the housing 103 and then molded by foamed urethane. Foam urethane is a resin having a myriad of air layers therein, and is applied between the freezing chamber 101 and the main body 103 to insulate the cryogenic freezer 100 according to the embodiment, wherein the main body 103 and the freezing chamber ( The double tube 140 having a planar coil shape may be molded between the 101 parts.
이중 관(140)은 체적을 최소화하고, 콤팩트하게 구현하기 위해, 평면형 코일 타입으로 형성될 수 있다. 이중 관(140)은 둘레 면에서 중심부를 향하는 코일 형태를 가질 수 있다. 이에 따라, 이중 관(140)이 본체(103)의 배면에 배치된 후, 발포 우레탄에 의해 몰딩되면, 본체(103)의 두께를 크게 증가시키지 않고도 본체(103)의 배면에서 발포 우레탄에 의해 몰딩될 수 있다. 이는 추후 상술하도록 한다.The double tube 140 may be formed in a planar coil type in order to minimize the volume and to make it compact. Double tube 140 may have a coil shape toward the center in the circumferential surface. Accordingly, when the double tube 140 is disposed on the rear surface of the main body 103 and then molded by the foamed urethane, the molding is performed by the urethane foam on the rear side of the main body 103 without significantly increasing the thickness of the main body 103. Can be. This will be described later.
필터 드라이어(130)에서 토출된 냉매는 이중 관(140)의 제1냉매 관(141)에서 제2냉매 관(142)에 의해 추가 냉각된 후, 팽창기(150)로 제공되는데, 이때, 팽창기(150)로 인가되는 냉매는 충분히 과 냉각된 상태일 수 있다. 과 냉각된 냉매는 팽창 관(150)에서 팽창되어 저온/저압인 기체 상태의 냉매가 되고, 냉동실(101)에 유입될 때는 충분히 낮은 온도로 낮춰질 수 있다.The refrigerant discharged from the filter drier 130 is further cooled by the second refrigerant pipe 142 in the first refrigerant pipe 141 of the double pipe 140 and then provided to the expander 150, wherein the expander ( The refrigerant applied to 150 may be sufficiently overcooled. The supercooled coolant is expanded in the expansion tube 150 to become a low-temperature / low-pressure gaseous coolant, and may be lowered to a sufficiently low temperature when it flows into the freezing compartment 101.
증발기(160)는 냉동실(101)의 잠열을 흡수하여 냉매가 기체 -> 액체 상태로 상 전환되도록 한다. 이때, 증발기(160)는 증발실(101) 내부에 마련되는 증발 관의 형태를 갖는데, 이중 관(140)의 체적은 증발 관의 체적 대비 1:1 또는 70% 내지 130%의 범위를 가질 수 있다.The evaporator 160 absorbs the latent heat of the freezer compartment 101 to allow the refrigerant to be phase-changed into a gas-> liquid state. At this time, the evaporator 160 has a form of an evaporation tube provided in the evaporation chamber 101, the volume of the double tube 140 may have a range of 1: 1 or 70% to 130% of the volume of the evaporation tube. have.
여기서,here,
1) 증발 관의 체적은 증발 관의 내경을 기준으로 산출되는 체적을 의미하는 것이고, 1) The volume of the evaporation tube means the volume calculated based on the inner diameter of the evaporation tube,
2) 이중 관(140)의 체적은 [제2냉매 관(142)의 체적 - 제1냉매 관(141)의 체적]을 의미할 수 있다. 이하, [제2냉매 관(142)의 체적 - 제1냉매 관(141)의 체적]을 "차 체적"이라 정의한다.2) The volume of the double tube 140 may mean [the volume of the second refrigerant tube 142-the volume of the first refrigerant tube 141]. Hereinafter, [the volume of the second refrigerant pipe 142-the volume of the first refrigerant pipe 141] is defined as "difference volume".
이때, 제2냉매 관(142)의 체적은 제2냉매 관(142)의 내경을 기준으로 하는 체적에 대응하고,At this time, the volume of the second refrigerant pipe 142 corresponds to the volume based on the inner diameter of the second refrigerant pipe 142,
제1냉매 관(141)의 체적은 제1냉매 관(141)의 외경을 기준으로 하는 체적에 대응할 수 있다.The volume of the first refrigerant pipe 141 may correspond to a volume based on the outer diameter of the first refrigerant pipe 141.
여기서, 제2냉매 관(142)의 체적은 순수하게 제2냉매 관(142)의 내부를 냉매가 유동할 수 있는 내부 체적을 의미한다.Here, the volume of the second refrigerant pipe 142 refers to an internal volume through which the refrigerant can flow purely inside the second refrigerant pipe 142.
차 체적 = 증발 관 체적일 때, 증발 관에서 압축기(110)를 향해 토출되는 냉매는 필터 드라이어(130)에서 팽창 관(150)을 향하는 액상의 냉매를 냉각시키게 되며, 제1냉매 관(141)을 통해 필터 드라이어(130)에서 팽창 관(150)으로 향하는 냉매는 응축기(120)에서 냉각된 후, 재차 냉각되어 팽창 관(150)으로 제공될 수 있다. 팽창 관(150)에서 기화된 냉매는 저온/저압 상태이며, 증발기(160)에서 냉동실(101)의 잠열을 흡수하여 제2냉매 관(142)로 제공된다. 제2냉매 관(142)에서 냉매는 제1냉매 관(141)과 열 교환하여 제1냉매 관(141)을 흐르는 냉매의 열을 흡수하여 압축기(110)로 리턴할 수 있다. 이에 따라, 압축기(110)에서는 제1냉매 관(141)에 의해 가열된 냉매를 제공받아 신속히 고온/고압 상태로 냉매를 압축하여 응축기(120)로 제공할 수 있다. 이처럼, 제2냉매 관(142)에서 압축기(110)로 회송되는 냉매가 충분히 가열되는 바, 압축기(110)에서 냉매를 압축하여 고온/고압 상태로 전환하는 효율을 향상시킬 수 있다. 효율의 향상은 더 빨리 냉각 사이클을 완성하고 냉동실(101)의 온도를 더 낮출 수 있다는 것을 의미한다.When the vehicle volume = the evaporation tube volume, the refrigerant discharged from the evaporator tube toward the compressor 110 cools the liquid refrigerant from the filter drier 130 toward the expansion tube 150 and the first refrigerant tube 141. The refrigerant from the filter drier 130 to the expansion tube 150 may be cooled in the condenser 120 and then cooled again to be provided to the expansion tube 150. The refrigerant vaporized in the expansion tube (150) is in a low temperature / low pressure state, and absorbs the latent heat of the freezer compartment (101) in the evaporator (160) and is provided to the second refrigerant tube (142). In the second refrigerant pipe 142, the refrigerant may exchange heat with the first refrigerant pipe 141 to absorb the heat of the refrigerant flowing through the first refrigerant pipe 141 and return it to the compressor 110. Accordingly, the compressor 110 may receive the refrigerant heated by the first refrigerant pipe 141 and rapidly compress the refrigerant in a high temperature / high pressure state to provide the refrigerant to the condenser 120. As such, since the refrigerant returned from the second refrigerant pipe 142 to the compressor 110 is sufficiently heated, the efficiency of converting the refrigerant into a high temperature / high pressure state by compressing the refrigerant in the compressor 110 may be improved. The improvement in efficiency means that the cooling cycle can be completed more quickly and the temperature of the freezer compartment 101 can be lowered.
이때, 제2냉매 관(142)의 체적은 증발기(160)를 구성하는 증발 관의 체적과 1:1로 동일하게 형성하거나 또는 목표 온도에 따라 그 체적을 증감할 수 있다.In this case, the volume of the second refrigerant pipe 142 may be formed to be equal to 1: 1 with the volume of the evaporator tube constituting the evaporator 160, or the volume may be increased or decreased according to the target temperature.
증발 관의 체적은 냉동실(101)의 온도를 낮추는 냉각 능력에 비례하는 것으로, 증발 관의 냉각 능력에 맞추어 제2냉매 관(142)의 체적을 형성하고, 노드 A 에서 노드 D로 향하는 냉매의 속도가 일정하다고 가정할 때, 증발 관을 유동하는 냉매가 같은 체적의 제2냉매 관(142)에서 가열된다고 볼 수 있다. 이에 따라, 증발 관에서 압축기(110)를 향하는 냉매는 제2냉매 관(142)에서 충분히 예열되어 압축기(110)로 인가되며, 압축기(110)는 예열된 냉매를 압축하여 응축기(120)로 제공할 수 있다. 이러한 예열 사이클은 압축기(110) - 응축기(120) - 필터 드라이어(130), 이중 관(140) - 팽창기(150) - 증발기(160)에 대한 냉각 사이클이 반복될 때마다 냉매를 예열한 열이 누적되어 냉각 사이클의 효율을 향상시킬 수 있다.The volume of the evaporator tube is proportional to the cooling capacity of lowering the temperature of the freezer compartment 101, and forms the volume of the second refrigerant tube 142 in accordance with the cooling capacity of the evaporator tube, and the velocity of the refrigerant from node A to node D. Assuming that is constant, it can be seen that the refrigerant flowing through the evaporation tube is heated in the second refrigerant tube 142 of the same volume. Accordingly, the refrigerant from the evaporator tube toward the compressor 110 is sufficiently preheated in the second refrigerant tube 142 and applied to the compressor 110, and the compressor 110 compresses the preheated refrigerant and provides the condenser 120. can do. This preheating cycle is performed by the preheating of the refrigerant every time the cooling cycle for the compressor 110-condenser 120-filter drier 130, double pipe 140-expander 150-evaporator 160 is repeated. It can accumulate and improve the efficiency of a cooling cycle.
즉, 단시간 내에 냉동실(101)을 신속히 초저온으로 냉각시킬 수 있다. 예컨대, 증발기(160)를 구성하는 증발 관의 관경이 7mm 일 때, 이중 관(140)을 구성하는 제1냉매 관(141)은 외경이 4mm 이고, 제2냉매 관(142)의 내경이 8mm(외경은 9mm)라고 가정할 때, 증발 관의 체적은 (반지름)2 x Π x h(길이)로 산출될 수 있으며, "12.25Π x h"로 산출될 수 있다.That is, the freezing compartment 101 can be cooled to ultra low temperature quickly within a short time. For example, when the diameter of the evaporator tube constituting the evaporator 160 is 7mm, the first refrigerant tube 141 constituting the double tube 140 has an outer diameter of 4mm, the inner diameter of the second refrigerant tube 142 is 8mm. Assuming that (the outer diameter is 9 mm), the volume of the evaporation tube can be calculated as (radius) 2 x π xh (length), and can be calculated as "12.25 π xh".
이때, 제1냉매 관(141)의 체적은 "4Π x h" 이고, 제2냉매 관(142)의 체적은 "16Π x h"로 산출되는 바, 차 체적은 "16Π x h" - "4Π x h" = "12Π x h"로 산출될 수 있다. 만일 증발 관의 길이와 제2냉매 관(142)의 길이가 동일하다고 가정하면, 증발 관 체적 대비 제2냉매 관(142)(또는 제1냉매 관(141)의 체적 비는,At this time, the volume of the first refrigerant pipe 141 is "4Π xh", the volume of the second refrigerant pipe 142 is calculated as "16Π xh", the car volume is "16Π xh"-"4Π xh" = It can be calculated as "12? Xh". If it is assumed that the length of the evaporation tube and the length of the second refrigerant tube 142 is the same, the volume ratio of the second refrigerant tube 142 (or the first refrigerant tube 141) to the volume of the evaporation tube,
12 / 12.5 = 96%로 산출될 수 있다.12 / 12.5 = 96%.
한편, 상기한 체적 비에 따른 증발 관과 제2냉매 관(142)(또는 제1냉매 관(141))이 유사한 체적을 가질 때, On the other hand, when the evaporation tube and the second refrigerant tube 142 (or the first refrigerant tube 141) according to the volume ratio described above have a similar volume,
팽창 관(150)으로 유입되는 냉매의 온도가 제1냉매 관(141)에 의해 상승되고, 제2냉매 관(142)를 통해 증발 관에서 압축기(110)로 향하는 냉매의 온도가 감소하면서, 팽창 관(150)에서 팽창되는 냉매의 온도와 냉장실(101)의 외부 기온의 온도 차로 정의되는 팽창 온도차(△T)가 감소한다.The temperature of the refrigerant flowing into the expansion tube 150 is increased by the first refrigerant tube 141 and the temperature of the refrigerant from the evaporation tube to the compressor 110 decreases through the second refrigerant tube 142, thereby expanding. The expansion temperature difference ΔT defined by the temperature difference between the temperature of the refrigerant expanded in the pipe 150 and the external air temperature of the refrigerating chamber 101 decreases.
팽창 온도차(△T)의 감소는 증발 관을 흐르는 냉매의 온도가 -100 ℃ 이하로 낮아지지 않도록 하며, 냉매의 온도가 -70℃ 내지 -80℃의 온도가 되도록 할 수 있다. 즉, 실시예에 따른 극초저온 냉동고는 일정한 온도 범위(-70℃ 내지 -80℃)에 신속히 도달할 수 있도록 하며, 단순히 온도를 지속적으로 낮추거나 올리지 않고, 정해진 온도 범위(-70℃ 내지 -80℃)에 신속히 도달하도록 할 수 있다. 실시예에 따른 의료용 냉동고는 세포, DNA, 혈액 및 기타 실험이나 보존이 요구되는 재료를 신속하고 일정한 온도 범위에서 보존되도록 한다. Reduction of the expansion temperature difference ΔT may be such that the temperature of the refrigerant flowing through the evaporation tube is not lowered below -100 ° C., and the temperature of the refrigerant is −70 ° C. to −80 ° C. That is, the cryogenic freezer according to the embodiment can quickly reach a certain temperature range (-70 ℃ to -80 ℃), and does not simply lower or raise the temperature continuously, but a predetermined temperature range (-70 ℃ to -80 Can be reached quickly). The medical freezer according to the embodiment allows cells, DNA, blood and other materials to be stored in a rapid and constant temperature range to be tested or preserved.
도 3과 도 4는 도 2에 도시된 이중 관(140)의 일 예에 대한 참고도를 도시한다. 도 3과 도 4에 대한 설명은 도 1을 함께 참조하도록 한다.3 and 4 illustrate a reference diagram of an example of the double tube 140 shown in FIG. 2. 3 and 4 will be referred to together with FIG. 1.
도 3을 참조하면, 실시예에 따른 이중 관(140)은 제1냉매 관(141)을 삽입하는 형태의 제2냉매 관(142)의 일 면이 둘레 면에서 중심부를 향해 동심원의 형태를 가지는 평면의 코일 형상을 가지는 것을 볼 수 있다. 이러한 구조는 실시예에 따른 이중 관(140)이 본체(103)의 배면에 배치될 때, 본체(103)의 배면에 평면 코일 형상으로 부착되도록 함으로써, 본체(103)의 두께를 증가시키지 않도록 할 수 있다. 즉, 실시예에 따른 극초저온 냉동고를 보다 콤팩트하고 슬림하게 구현할 수 있도록 한다. 도 3에 도시된 이중 관(140)의 일 측은 필터 드라이어(130)에 연결되고, 타 측은 중심부에서 D4 방향으로 돌출되어 팽창 관(150)에 연결될 수 있다. Referring to FIG. 3, the double pipe 140 according to the embodiment has one surface of the second refrigerant pipe 142 having the shape of inserting the first refrigerant pipe 141 toward the center from the circumferential surface thereof. It can be seen that it has a flat coil shape. This structure is such that when the double tube 140 according to the embodiment is disposed on the rear surface of the main body 103, it is attached to the rear surface of the main body 103 in a planar coil shape, so as not to increase the thickness of the main body 103. Can be. That is, the ultra-low temperature freezer according to the embodiment may be more compact and slim. One side of the double tube 140 illustrated in FIG. 3 may be connected to the filter drier 130, and the other side thereof may protrude in the direction D4 from the center thereof and may be connected to the expansion tube 150.
도 4에서, 이중 관(140)은 몸체(103-1)의 배면에 밀착되어 외적으로는 평면의 동심원 구조가 노출될 수 있다. 이 상태에서 몸체(103-1)에 본체(103)가 씌워지고 본체(103)와 몸체(103-1) 사이에 발포 우레탄 수지가 도포되면 몰딩될 수 있다. 이는 도 5와 도 6을 함께 참조하여 설명하도록 한다.In FIG. 4, the double tube 140 may be in close contact with the rear surface of the body 103-1 to expose the planar concentric circle structure externally. In this state, when the main body 103 is covered with the body 103-1 and a foamed urethane resin is applied between the main body 103 and the body 103-1, it may be molded. This will be described with reference to FIGS. 5 and 6 together.
먼저, 도 5는 몸체(103-1)에 이중 관(140)이 배치된 일 예를 도시한 것으로서, 이중 관(140)은 몸체(103-1)의 노출면과 평행하게 배치되어 몸체(103-1)의 두께를 증가시키지 않고 배치될 수 있음을 보여준다. 도 6은 이중 관(140)이 배치되는 몸체(103-1)와 본체(103) 사이의 배치관계를 도시한 참조도로서, 도 6에 도시된 바와 같이, 이중 관(140)이 몸체(103-1)에 배치된 후, 몸체(103-1)와 본체(103) 사이의 영역(S1)에는 발포 우레탄과 같은 단열재가 충진될 수 있다. 본 실시예에서는 발포 우레탄이 영역(S1)을 충진하는 단열재로서 언급되고 있으나, 이 외에 스티로폼이나 발포 고무 및 기타 다양한 재질의 단열재가 영역(S1)에 충진될 수 있다.First, FIG. 5 illustrates an example in which the double tube 140 is disposed on the body 103-1, and the double tube 140 is disposed in parallel with the exposed surface of the body 103-1 so that the body 103 is disposed. -1) can be arranged without increasing the thickness. FIG. 6 is a reference diagram illustrating an arrangement relationship between a body 103-1 and a body 103 on which the double tube 140 is disposed, and as shown in FIG. 6, the double tube 140 has a body 103. After the arrangement is made in -1), the region S1 between the body 103-1 and the body 103 may be filled with a heat insulating material such as urethane foam. In this embodiment, the foamed urethane is referred to as a heat insulating material filling the area (S1), but in addition to the heat insulating material of styrofoam, foam rubber and various other materials may be filled in the area (S1).
발포 우레탄이 영역(S1)에 충진되면 몸체(103-1)에 배치되는 이중 관(140)은 발포 우레탄에 의해 본체(103)와 함께 몰딩될 수 있다. 이에 따라, 이중 관(140)은 외부의 온도에 의해 영향을 받지 않으면서 제1냉매 관(141)과 제2냉매 관(142) 사이의 열 교환이 이루어질 수 있다.When the foamed urethane is filled in the area S1, the double tube 140 disposed on the body 103-1 may be molded together with the body 103 by the foamed urethane. Accordingly, the double tube 140 may be heat exchanged between the first refrigerant tube 141 and the second refrigerant tube 142 without being affected by the external temperature.
도 7은 실시예에 따른 이중 관(140)의 체적을 구하는 방법에 대한 참조도면을 도시한다.7 shows a reference view for a method of obtaining the volume of a double tube 140 according to an embodiment.
도 7을 참조하면, 실시예에 따른 이중 관(140)은 제1냉매 관(141)의 외경(D2)을 기준으로 제1냉매 관(141)의 체적을 산출하고, 제2냉매 관(142)의 경우, 내경(D2)을 기준으로 제2냉매 관(142)의 체적을 산출하며, 제1냉매 관(141)의 체적과 제2냉매 관(142)의 체적의 차인 체적 차를 제2냉매 관(142)을 유동하는 냉매의 체적으로 산출할 수 있다. Referring to FIG. 7, the double tube 140 according to the embodiment calculates the volume of the first refrigerant tube 141 based on the outer diameter D2 of the first refrigerant tube 141, and the second refrigerant tube 142. ), The volume of the second refrigerant pipe 142 is calculated based on the inner diameter D2, and the volume difference, which is the difference between the volume of the first refrigerant pipe 141 and the volume of the second refrigerant pipe 142, is calculated by the second. It is possible to calculate the volume of the refrigerant flowing through the refrigerant pipe 142.
원형 파이프 형상의 체적은 아래의 수학식 1과 같이 산출될 수 있는 바, 이를 토대로 제1냉매 관(141)의 체적, 제2냉매 관(142)의 체적 및 체적 차를 산출해 보도록 한다.The volume of the circular pipe shape may be calculated as shown in Equation 1 below, and based on this, the volume of the first refrigerant pipe 141 and the volume and volume difference of the second refrigerant pipe 142 are calculated.
Figure PCTKR2015004994-appb-M000001
Figure PCTKR2015004994-appb-M000001
여기서, v는 원통의 체적이고, Π는 원주율을 나타내고, r은 원통의 반지름이며, h는 원통의 길이를 나타낸다.Where v is the volume of the cylinder, π represents the circumference, r is the radius of the cylinder, and h represents the length of the cylinder.
수학식 1을 참조하여 제1냉매 관(141)의 체적을 산출하면 아래의 수학식 2와 같다.The volume of the first refrigerant pipe 141 is calculated with reference to Equation 1 as shown in Equation 2 below.
Figure PCTKR2015004994-appb-M000002
Figure PCTKR2015004994-appb-M000002
여기서, v1은 제1냉매 관(141)의 체적이고, Π는 원주율을 나타내고, D1은 제1냉매 관(141)의 반지름이며, H는 제1냉매 관(141)의 길이를 나타낸다.Here, v1 is the volume of the first refrigerant pipe 141, π represents the circumference, D1 is the radius of the first refrigerant pipe 141, H represents the length of the first refrigerant pipe 141.
다음으로, 수학식 1을 참조하여 제2냉매 관(142)의 체적을 산출하면 아래의 수학식 3과 같다. Next, referring to Equation 1, the volume of the second refrigerant pipe 142 is calculated as shown in Equation 3 below.
Figure PCTKR2015004994-appb-M000003
Figure PCTKR2015004994-appb-M000003
여기서, v2는 제2냉매 관(142)의 체적이고, Π는 원주율을 나타내고, D2는 제2냉매 관의 반지름을 나타내며, H는 제2냉매 관(142)의 길이를 나타낸다. 이때, D2는 제2냉매 관(142)의 내경 반지름을 의미할 수 있으며, 이는 제2냉매 관(142)의 내부 체적과 제1냉매 관(141)의 외부 체적의 체적 차를 산출하여, 제2냉매 관(142)의 순수 체적을 산출하는데 이용되는데 따른다.Here, v2 is the volume of the second refrigerant tube 142, π represents the circumference, D2 represents the radius of the second refrigerant tube, H represents the length of the second refrigerant tube 142. At this time, D2 may mean the inner diameter radius of the second refrigerant pipe 142, which is calculated by calculating the volume difference between the internal volume of the second refrigerant pipe 142 and the external volume of the first refrigerant pipe 141, 2 is used to calculate the pure volume of the refrigerant pipe 142.
차 체적은 V2 - V1으로 산출될 수 있다. 상기한 수학식 1 내지 수학식 3에 따라 산출된 차 체적이 증발 관의 체적 대비 70% 내지 130%가 되도록 길이를 조정할 수 있다. 차 체적 = 증발 관 체적일 때, 증발 관을 유동하는 냉매를 충분히 예열할 수 있으며, 차 체적이 증발 관 체적 대비 100% 이상인 경우, 한층 더 예열할 수도 있다. 만일, 실시예에 따른 극초저온 냉동고의 냉장 온도가 - 80 도 이하로 낮추지 않아도 되는 경우, 증발 관 체적 대비 차 체적은 70% 내지 100%일 수 있고, 반대로, 실시예에 따른 극초저온 냉동고가 - 80도 이하의 온도로 냉각해야 하는 경우에는 101% 내지 130%일 수 있다. 즉, 증발 관의 체적 대비 차 체적의 비율은 실시예에 따른 극초저온 냉동고가 냉동실(101)의 온도를 어느 정도까지 낮추느냐에 따라 결정될 수 있다.The difference volume can be calculated as V2-V1. The length may be adjusted so that the vehicle volume calculated according to Equation 1 to Equation 3 is 70% to 130% of the volume of the evaporation tube. When vehicle volume = evaporation tube volume, the refrigerant flowing through the evaporation tube can be sufficiently preheated, and if the vehicle volume is more than 100% of the volume of the evaporation tube, it can be further preheated. If the refrigeration temperature of the cryogenic freezer according to the embodiment does not need to be lowered to -80 degrees or less, the vehicle volume may be 70% to 100% relative to the evaporation tube volume, and on the contrary, the cryogenic freezer according to the embodiment When cooling to a temperature of 80 degrees or less may be 101% to 130%. That is, the ratio of the volume of the car to the volume of the evaporation tube may be determined according to how much the cryogenic freezer according to the embodiment lowers the temperature of the freezing compartment 101.
만일, 증발 관의 길이와 제2냉매 관(142)의 길이가 동일하다면, 이는 증발 관의 체적과 제2냉매 관(142)과 제1냉매 관(141)의 차 체적이 동일함을 의미할 수 있다. 이 경우, 실시예에 따른 극초저온 냉동고(100)는 제2냉매 관(142)의 길이가 증발 관의 길이 대비 70% 대비 130%라고 할 수 있다. If the length of the evaporation tube and the length of the second refrigerant tube 142 are the same, this may mean that the volume of the evaporation tube and the difference volume of the second refrigerant tube 142 and the first refrigerant tube 141 are the same. Can be. In this case, in the cryogenic freezer 100 according to the embodiment, the length of the second refrigerant tube 142 may be 130% compared to 70% of the length of the evaporation tube.
도 8은 본 발명의 다른 실시예에 따른 극초저온 냉동고의 냉장 사이클을 설명하기 위한 참조도면을 도시한다.8 is a reference view for explaining a refrigeration cycle of the cryogenic freezer according to another embodiment of the present invention.
도 8을 참조하면, 실시예에 따른 극초저온 냉동고의 냉장 사이클은, 도 2를 통해 설명된 것과 마찬가지로, 압축 - 응축 - 팽창 - 증발의 냉장 사이클을 가지며, 도면에서는 일부 생략되었으나, 도 2와 마찬가지로, 압축기(110), 응축기(120), 필터 드라이어(130), 이중 관(140), 팽창 관(150) 및 증발기(160)를 구비하는 극초저온 냉동고에 대응한다. Referring to FIG. 8, the refrigerating cycle of the cryogenic freezer according to the embodiment has a refrigerating cycle of compression-condensation-expansion-evaporation as described with reference to FIG. 2, and is partially omitted in the drawing, but similarly to FIG. 2. Corresponding to the cryogenic freezer having a compressor 110, a condenser 120, a filter drier 130, a double tube 140, an expansion tube 150, and an evaporator 160.
이에 따라, 도 2와 중복되는 압축기(110), 응축기(120), 필터 드라이어(130) 및 팽창 관(150)에 대한 설명과 도시는 생략하며, 이들 구성요소에 대한 설명은 도 2에 기재된 바를 준용하도록 한다.Accordingly, descriptions and illustrations of the compressor 110, the condenser 120, the filter drier 130, and the expansion tube 150, which are duplicated with those of FIG. 2, will be omitted. Make sure to apply mutatis mutandis
본 실시예의 특징은 증발기(160)를 구성하는 증발 관의 체적이 아닌, 냉매가 증발 관을 이동하는 이동 시간과, 제2냉매 관(142)을 이동하는 시간의 비를 이용하여 제2냉매 관을 이동하는 냉매가 충분히 열을 흡수한 후, 압축기(100)로 제공되도록 하는데 그 특징이 있다. 이처럼 냉매가 가열되어 압축기(100)로 회송되도록 함으로써 압축기(100)에서 냉매를 압축 시, 단시간에 고온/고압 상태로 냉매의 상태를 전환하여 응축기(120)로 제공할 수 있도록 하고, 냉매가 응축기(120)를 지나 팽창 관(150)으로 이동할 때, 제1냉매 관(141)에서 냉각되도록 함으로써, 냉매가 제2냉매 관(142)에서는 가열되고, 제1냉매 관(141)에서는 과 냉각을 하도록 할 수 있다. 냉매의 가열과 과 냉각이 반복되면, 실시예에 따른 극초저온 냉동고는 냉동실(101)의 온도를 단시간 내에 -80도 또는 그 이하로 떨어뜨릴 수 있다. 여기서, 냉매의 가열 및 과 냉각에 대한 사항은 도 8에만 해당되는 것은 아니며, 본 실시예 전체에 적용될 수 있다. The characteristic of the present embodiment is that the second refrigerant tube by using the ratio of the movement time of the refrigerant to move the evaporation tube, and the time to move the second refrigerant tube 142, not the volume of the evaporation tube constituting the evaporator 160. After the refrigerant to move sufficiently absorbs heat, it is characterized in that it is provided to the compressor (100). As such, the refrigerant is heated to be returned to the compressor 100 so that when the refrigerant is compressed in the compressor 100, the refrigerant is switched to a high temperature / high pressure state in a short time to be provided to the condenser 120, and the refrigerant is condenser. As it moves through the expansion pipe 150 through the 120, the refrigerant is cooled in the first refrigerant pipe 141 so that the refrigerant is heated in the second refrigerant pipe 142, and overcooling is performed in the first refrigerant pipe 141. You can do that. When the heating and overcooling of the refrigerant is repeated, the cryogenic freezer according to the embodiment may drop the temperature of the freezing compartment 101 to -80 degrees or less within a short time. Here, the matters regarding the heating and overcooling of the refrigerant are not limited to FIG. 8 and may be applied to the whole embodiment.
증발 관을 이동하는 냉매의 제1 이동시간(t1) 대비 제2냉매 관(142)을 이동하는 냉매의 제2이동시간(t2)은 70% 내지 130%일 수 있으며, 응축기(120)의 성능에 따라 제1 이동시간(t1) 대비 제2 이동시간(t2)은 70% 내지 130%의 범위 이상으로 증가할 수도 있다. The second movement time t2 of the refrigerant moving through the second refrigerant tube 142 may be 70% to 130% compared to the first movement time t1 of the refrigerant moving through the evaporation tube, and the performance of the condenser 120 may be reduced. Accordingly, the second movement time t2 relative to the first movement time t1 may be increased in the range of 70% to 130% or more.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명이 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
본 발명은 의료업, 혈액이나 세포조직을 보관, 연구 및 조작하는 업종과, 유전자 조작 산업의 활성화에 기여할 수 있으며, 비 생체조직, 예컨대 물품이나 물질의 장기 보관에도 적용될 경우, 냉동 및 보관 사업의 활성화에도 기여할 수 있다.The present invention can contribute to the vitalization of the industry for storing, researching and manipulating blood and cell tissues, and for the genetic engineering industry, and, if applied to long-term storage of non-biological tissues such as articles or materials, to activate the freezing and storage business. Can also contribute.

Claims (11)

  1. 증발 관을 구비하는 증발기, 압축기, 팽창 관 및 응축기를 구비하는 초저온 냉동고에 있어서,In the cryogenic freezer having an evaporator, a compressor, an expansion tube and a condenser having an evaporation tube,
    상기 응축기와 상기 팽창 관 사이에 마련되고, 상기 응축기와 상기 팽창 관 사이에 연결되는 제1냉매 관; 및A first refrigerant pipe provided between the condenser and the expansion tube and connected between the condenser and the expansion tube; And
    내부에 상기 제1냉매 관을 수납하여 이중 관을 형성하며, 상기 증발기와 상기 압축기 사이에 연결되는 제2냉매 관;을 포함하고,A second refrigerant pipe connected between the evaporator and the compressor to form a double pipe by accommodating the first refrigerant pipe therein;
    상기 증발 관의 체적 대비 상기 제2냉매 관의 체적과 상기 제1냉매 관의 체적의 차이인 차 체적이 70% 내지 130%인 것을 특징으로 하는 극초저온 냉동고.Cryogenic cryogenic freezer, characterized in that the difference between the volume of the second refrigerant pipe and the volume of the first refrigerant pipe compared to the volume of the evaporation tube is 70% to 130%.
  2. 제1항에 있어서,The method of claim 1,
    상기 차 체적은,The car volume is
    상기 제1냉매 관의 외경에 따라 산출되는 제1체적과,A first volume calculated according to the outer diameter of the first refrigerant pipe,
    상기 제2냉매 관의 내경에 따라 산출되는 제2체적에 대한 체적 차인 것을 특징으로 하는 극초저온 냉동고.Ultra-low temperature freezer, characterized in that the volume difference with respect to the second volume calculated according to the inner diameter of the second refrigerant pipe.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1냉매 관과 상기 제2냉매 관은,The first refrigerant pipe and the second refrigerant pipe,
    냉매의 이동 방향이 상호 역방향인 것을 특징으로 하는 극초저온 냉동고.Ultra-low temperature freezer, characterized in that the direction of movement of the refrigerant is opposite to each other.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1냉매 관과 상기 응축기 사이에 마련되며,It is provided between the first refrigerant pipe and the condenser,
    상기 응축기에서 토출되는 냉매의 습기 및 이물질을 제거하는 필터 드라이어(Filter Dryer);를 더 포함하는 것을 특징으로 하는 극초저온 냉동고.Ultra-low temperature freezer, characterized in that it further comprises; Filter Dryer (Filter Dryer) for removing the moisture and foreign matter of the refrigerant discharged from the condenser.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2냉매 관은,The second refrigerant tube,
    둘레 면에서 중심부를 향하는 평면의 코일형태로 형성되고 상기 중심부는 돌출되어 상기 팽창 관에 연결되는 것을 특징으로 하는 극초저온 냉동고.Cryogenic freezer, characterized in that formed in the form of a coil in a planar face toward the center from the circumferential surface is protruded and connected to the expansion tube.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2냉매 관은,The second refrigerant tube,
    상기 증발 관과 동일한 길이를 가지며, 이때, 상기 차 체적이 상기 증발 관의 내경 체적과 일치하는 것을 특징으로 하는 극초저온 냉동고.The cryogenic freezer having the same length as the evaporation tube, wherein the vehicle volume coincides with the internal diameter volume of the evaporation tube.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2냉매 관은,The second refrigerant tube,
    발포 우레탄에 의해 몰딩되는 것을 특징으로 하는 극초저온 냉동고.Cryogenic freezer, characterized in that molded by foamed urethane.
  8. 증발 관을 구비하는 증발기, 압축기, 팽창 관 및 응축기를 구비하는 초저온 냉동고에 있어서,In the cryogenic freezer having an evaporator, a compressor, an expansion tube and a condenser having an evaporation tube,
    상기 응축기와 상기 팽창 관 사이에 마련되고, 상기 응축기와 상기 팽창 관 사이에 연결되는 제1냉매 관; 및A first refrigerant pipe provided between the condenser and the expansion tube and connected between the condenser and the expansion tube; And
    내부에 상기 제1냉매 관을 수납하여 이중 관을 형성하며, 상기 증발기와 상기 압축기 사이에 연결되는 제2냉매 관;을 포함하고,A second refrigerant pipe connected between the evaporator and the compressor to form a double pipe by accommodating the first refrigerant pipe therein;
    상기 증발 관에서의 냉매 이동시간을 제1이동시간이고, 상기 제2냉매 관에서의 상기 냉매 이동시간이 제2이동시간일 때, 상기 제2냉매 관의 길이는 상기 제2이동시간이 상기 제1이동시간 대비 70% 내지 130%가 되도록 설정되는 것을 특징으로 하는 극초저온 냉동고.When the refrigerant movement time in the evaporation tube is a first movement time, and when the refrigerant movement time in the second refrigerant tube is a second movement time, the length of the second refrigerant tube is the second movement time. Ultra-low temperature freezer, characterized in that it is set to 70% to 130% compared to 1 travel time.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1냉매 관과 상기 제2냉매 관은,The first refrigerant pipe and the second refrigerant pipe,
    냉매의 이동 방향이 상호 역방향인 것을 특징으로 하는 극초저온 냉동고.Ultra-low temperature freezer, characterized in that the direction of movement of the refrigerant is opposite to each other.
  10. 제8항에 있어서,The method of claim 8,
    상기 제1냉매 관과 상기 응축기 사이에 마련되며,It is provided between the first refrigerant pipe and the condenser,
    상기 응축기에서 토출되는 냉매의 습기 및 이물질을 제거하는 필터 드라이어(Filter Dryer);를 더 포함하는 것을 특징으로 하는 극초저온 냉동고.Ultra-low temperature freezer, characterized in that it further comprises; Filter Dryer (Filter Dryer) for removing the moisture and foreign matter of the refrigerant discharged from the condenser.
  11. 제8항에 있어서,The method of claim 8,
    상기 제2냉매 관은,The second refrigerant tube,
    둘레 면에서 중심부를 향하는 평면의 코일형태로 형성되고 상기 중심부는 돌출되어 상기 팽창 관에 연결되는 것을 특징으로 하는 극초저온 냉동고.Cryogenic freezer, characterized in that formed in the form of a coil in a planar face toward the center from the circumferential surface is protruded and connected to the expansion tube.
PCT/KR2015/004994 2014-05-21 2015-05-19 Ultra low temperature freezer WO2015178659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580025533.8A CN106461286A (en) 2014-05-21 2015-05-19 Ultra low temperature freezer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140060685A KR101438155B1 (en) 2014-05-21 2014-05-21 Ultra low temperature freezer
KR10-2014-0060685 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015178659A1 true WO2015178659A1 (en) 2015-11-26

Family

ID=51759476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004994 WO2015178659A1 (en) 2014-05-21 2015-05-19 Ultra low temperature freezer

Country Status (3)

Country Link
KR (1) KR101438155B1 (en)
CN (1) CN106461286A (en)
WO (1) WO2015178659A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101962316B1 (en) 2017-02-01 2019-03-26 주식회사 일신바이오베이스 Cryogenic freezer
KR101949090B1 (en) * 2018-07-31 2019-02-15 주식회사 지엠에스 deep freezer using induction pipe
KR102024241B1 (en) * 2018-10-25 2019-09-23 윤근진 Cryogenic Freezer
KR101977901B1 (en) * 2018-12-17 2019-08-28 윤근진 Cryogenic Freezer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990080927A (en) * 1998-04-23 1999-11-15 신영주 Automotive Cooling System
JP4062129B2 (en) * 2003-03-05 2008-03-19 株式会社デンソー Vapor compression refrigerator
KR100836824B1 (en) * 2007-04-06 2008-06-11 삼성전자주식회사 Refrigerant cycle device
KR20080063150A (en) * 2006-12-28 2008-07-03 가부시키가이샤 코벨코 마테리아루 도칸 Heat exchanger
KR20110060793A (en) * 2009-11-30 2011-06-08 산요덴키가부시키가이샤 Freezing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140170U (en) * 1989-04-19 1990-11-22
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger
KR20130050639A (en) * 2011-11-08 2013-05-16 삼성전자주식회사 Non-azeotropic mixed refrigerent cycle and refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990080927A (en) * 1998-04-23 1999-11-15 신영주 Automotive Cooling System
JP4062129B2 (en) * 2003-03-05 2008-03-19 株式会社デンソー Vapor compression refrigerator
KR20080063150A (en) * 2006-12-28 2008-07-03 가부시키가이샤 코벨코 마테리아루 도칸 Heat exchanger
KR100836824B1 (en) * 2007-04-06 2008-06-11 삼성전자주식회사 Refrigerant cycle device
KR20110060793A (en) * 2009-11-30 2011-06-08 산요덴키가부시키가이샤 Freezing device

Also Published As

Publication number Publication date
CN106461286A (en) 2017-02-22
KR101438155B1 (en) 2014-09-05

Similar Documents

Publication Publication Date Title
WO2015178659A1 (en) Ultra low temperature freezer
CN104949428B (en) Refrigerator
EP0756954A3 (en) Air conditioning apparatus
CN111426127A (en) Ultra-low temperature refrigerator based on condensation heat is to defrosting of box crossbeam
KR101949090B1 (en) deep freezer using induction pipe
JP2000310186A (en) Highly efficient steam condenser in vacuum device
CN206546057U (en) Refrigerator
KR20200084238A (en) A cooling system without an outdoor unit combining a freezer and an air conditioner
CN209801897U (en) double-layer refrigeration and heat preservation device
CN115111868A (en) Refrigerator with a door
CN207635685U (en) Refrigerator
CN110455021B (en) Heat accumulating type heat pump defrosting system
CN219572351U (en) Regenerator assembly, refrigerating system and refrigerator
CN215951905U (en) Refrigeration device
CN212673564U (en) Precooling evaporator
CN219889803U (en) Condenser and car
CN218672732U (en) Outdoor exposed refrigerating device
CN212006380U (en) Ultra-low temperature refrigerator based on condensation heat is to defrosting of box crossbeam
CN113335019B (en) Integrated heat exchanger of automobile heat management system
US5881565A (en) Refrigeration system
CN219934755U (en) Dual-system heat exchanger and dryer
CN220648759U (en) Refrigerator capable of switching cooling modes
CN217005052U (en) Refrigerating system and refrigerator adopting same
CN217274928U (en) Refrigeration device with cascade refrigeration system
CN217465053U (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796677

Country of ref document: EP

Kind code of ref document: A1