WO2015178469A1 - Manufacturing method for sealed body - Google Patents

Manufacturing method for sealed body Download PDF

Info

Publication number
WO2015178469A1
WO2015178469A1 PCT/JP2015/064671 JP2015064671W WO2015178469A1 WO 2015178469 A1 WO2015178469 A1 WO 2015178469A1 JP 2015064671 W JP2015064671 W JP 2015064671W WO 2015178469 A1 WO2015178469 A1 WO 2015178469A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
organic
sealing
production method
Prior art date
Application number
PCT/JP2015/064671
Other languages
French (fr)
Japanese (ja)
Inventor
有希 山本
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201580026778.2A priority Critical patent/CN106465505B/en
Priority to KR1020167036044A priority patent/KR20170009974A/en
Priority to JP2016521156A priority patent/JP6572887B2/en
Publication of WO2015178469A1 publication Critical patent/WO2015178469A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a method for producing a sealed body (in particular, an organic EL device) in which an organic EL (electroluminescence) element on a substrate is sealed with a sealing layer.
  • the present invention also relates to a method for sealing an organic EL element on a substrate.
  • An organic EL element is a light emitting element using an organic substance as a light emitting material, and has recently attracted attention because it can emit light with high luminance at a low voltage.
  • organic EL elements are extremely vulnerable to moisture, and the light emitting material (light emitting layer) is altered by moisture, resulting in a decrease in luminance, no light emission, or peeling of the interface between the electrode and the light emitting layer due to moisture.
  • the metal is oxidized to increase the resistance. For this reason, in order to block the inside of the device from moisture in the outside air, for example, a sealing layer made of a resin composition is formed so as to cover the entire surface of the light emitting layer formed on the substrate to seal the organic EL device. Is done.
  • Examples of the organic EL element sealing method include a method of laminating a sealing sheet in which a resin composition layer is formed on a moisture-proof support on an organic EL element substrate.
  • a resin composition layer for example, a thermoplastic resin composition or a thermosetting resin composition is used.
  • a sealing layer is formed by thermosetting after lamination.
  • a means for laminating the sealing sheet on the organic EL element for example, a method of laminating in a vacuum state using a vacuum laminator or a vacuum press machine is known (Patent Documents 1 to 3, etc.).
  • the generation of voids can be prevented by laminating the sealing sheet and the organic EL element substrate in a vacuum state.
  • this requires a vacuum facility such as a vacuum laminator, which is expensive.
  • the sealing layer excellent in adhesiveness can be formed in the laminate under normal pressure without generating voids, the manufacturing cost of the organic EL device can be reduced.
  • the surface of the sealing layer is smoothed by unevenness on the surface of the substrate (that is, the difference in height between the convex portion where the organic EL element exists and the concave portion where the element does not exist). It tends to get worse.
  • a sealing layer with poor smoothness may cause uneven brightness or uneven color.
  • the present invention has been made paying attention to the above situation, and even when a sealing sheet is laminated to an organic EL element substrate under normal pressure and a sealing layer is formed, voids are generated. It is another object of the present invention to provide a method for manufacturing a sealed body that can form a sealing layer excellent in smoothness and adhesion.
  • a method for producing a sealed body in which an organic EL element on a substrate is sealed with a sealing layer A laminating step of laminating a sealing sheet having a thermosetting resin composition layer formed on a support on a substrate using a roll laminator so that the thermosetting resin composition layer is in contact with the organic EL element, A production method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting a thermosetting resin composition layer to form a sealing layer.
  • a method for sealing an organic EL element on a substrate Laminating a sealing sheet having a thermosetting resin composition layer formed on a support using a roll laminator on a substrate so that the thermosetting resin composition layer is in contact with the organic EL element, A method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting the thermosetting resin composition layer to form a sealing layer.
  • the method of the present invention it is possible to produce a sealed body (particularly, an organic EL device) in which an organic EL element is sealed with a sealing layer having high smoothness and adhesion without generating voids.
  • a vacuum laminator which is advantageous in terms of cost.
  • laminating can be carried out under an inert gas with little damage to the organic EL element.
  • the production method of the present invention is characterized in that smoothing by hot pressing is performed after laminating by a roll laminator (hereinafter sometimes abbreviated as “roll laminating”).
  • roll laminating a roll laminator
  • the production method of the present invention is excellent in smoothness and adhesion without generating voids by laminating a sealing sheet and an organic EL element substrate by roll lamination and then smoothing by hot pressing.
  • An encapsulating layer can be formed.
  • the ambient pressure at the time of laminating is not particularly limited, but it can be reduced to normal pressure from the viewpoint of cost-effective production without using a vacuum laminator.
  • the normal pressure means that it is not in a state in which a vacuum (decompression) state is artificially made using a vacuum device such as a vacuum laminator.
  • the lamination is performed in an inert gas atmosphere.
  • lamination since it is not necessary to perform lamination under vacuum (reduced pressure) using a vacuum laminator, lamination can be performed in a nitrogen atmosphere with little damage to the organic EL during lamination.
  • the inert gas include nitrogen, argon, helium, neon, and the like. Of these, nitrogen is preferred.
  • Lamination under an inert gas atmosphere can be performed under normal pressure.
  • the ambient pressure (inert gas pressure) when laminating in an inert gas atmosphere is preferably 911.925 to 1215.9 hPa, more preferably 101.25 to 1114.575 hPa.
  • the roll speed of the roll laminator is preferably 0.01 to 1.5 m / min, more preferably, in order to achieve good adhesion of the sealing layer (cured product of the thermosetting resin composition layer) to the support. Is 0.1 to 0.5 m / min.
  • the roll pressure of the roll laminator is preferably 0 to 0.5 MPa, more preferably 0 to 0.3 MPa in order to avoid damage to the organic EL element.
  • the roll pressure means an applied pressure by an air syringe and is displayed as a gauge pressure (original pressure).
  • the roll pressure being 0 means that the applied pressure is 0.
  • the laminating temperature by the roll laminator is preferably 60 to 120 ° C., more preferably 80 to 100 ° C. in order to soften the thermosetting resin and improve the followability to the substrate.
  • the lamination temperature means the temperature of the roll surface digitally controlled by incorporating a heater in the roll, and can be measured by a surface contact type K thermocouple.
  • a commercially available roll laminator can be used for roll lamination.
  • Examples of commercially available roll laminators include “Roll Laminator VA770H”, “Roll Laminator VA700”, “Roll Laminator VAII-700” manufactured by Taisei Laminator, and “Mach630up” manufactured by Hakuto Co., Ltd.
  • Examples of the material of the roll of the roll laminator include stainless steel and silicone rubber. Silicone rubber is preferable.
  • the smoothing step by hot pressing is performed after the laminating step by roll lamination.
  • the surface of the sealing sheet laminated in the laminating process has undulations following the unevenness of the organic EL element surface of the substrate.
  • This is smoothed by hot pressing.
  • the hot pressing is preferably performed using a flat plate such as a metal plate (for example, using a flat plate press).
  • the hot pressing may be performed in an air atmosphere or an inert gas atmosphere.
  • the ambient pressure is preferably atmospheric pressure.
  • the inert gas include nitrogen, argon, neon, helium and the like. Hot pressing under an inert gas atmosphere can be performed under normal pressure.
  • the ambient pressure (that is, the pressure of the inert gas) is preferably 911.925 to 1215.9 hPa, more preferably 101.25 to 1114.575 hPa, and still more preferably 1013.75 to 1017.75 hPa.
  • the press pressure is preferably 0.01 to 0.5 MPa, more preferably 0.01 to 0.3 MPa in order to prevent cracking of the EL element due to the pressure.
  • the press pressure means a pressure applied to the pressed body controlled by a vacuum hydraulic cylinder or a load (that is, a pressure applied to the surface of the sealing sheet) and can be adjusted by a hot press apparatus.
  • the press temperature is preferably 60 to 120 ° C., more preferably 80 to 100 ° C. in order to ensure smoothness.
  • the press temperature means the temperature of the press part surface that is digitally controlled by incorporating a cartridge heater on the surface of the press part (for example, a flat plate such as a metal plate) of the hot press device, and measured by a surface contact type K thermocouple. can do.
  • the pressing time is not particularly limited as long as smoothing is achieved, but when hot pressing is performed using a flat plate such as a metal plate, it is preferably 20 to 450 seconds, more preferably 60 to 300 seconds.
  • a commercially available hot press apparatus can be used for the hot press.
  • Examples of commercially available heat press apparatuses include flat plate presses such as “Batch type vacuum pressure laminator CVP-300” manufactured by Morton, and Kitakawa Seiki Co., Ltd., vacuum pressure press “VHI-2051”.
  • Examples of the material for the flat plate for pressing include alloys such as stainless steel and iron, and stainless steel is preferable.
  • thermosetting of the thermosetting resin composition layer may be performed after the support of the sealing sheet is peeled off, or may be performed with the support attached.
  • the thermosetting can be performed, for example, with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, or the like. Thermosetting may be performed after hot pressing, or may be performed simultaneously with hot pressing by heating by hot pressing.
  • the curing temperature varies depending on the thermosetting resin composition layer to be used and the support, but is usually 80 to 120 ° C., preferably 80 to 110 ° C., and the curing time is usually 10 to 120 minutes, preferably 10 to 30. Minutes.
  • the thickness of the sealing layer to be formed is preferably 3 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and still more preferably 5 to 20 ⁇ m.
  • sealing sheet used in the present invention
  • the sealing sheet is not particularly limited, and for example, those described in Patent Documents 1 to 3 can be used.
  • a preferable sealing sheet will be described.
  • the thermosetting resin composition preferably contains an epoxy resin and a curing agent. There is no limitation in particular in an epoxy resin and a hardening
  • the thermosetting resin composition may further contain a hygroscopic metal oxide, a thermoplastic resin, an inorganic filler (excluding the hygroscopic metal oxide), and the like.
  • Epoxy resin The epoxy resin can be used without limitation as long as it has two or more epoxy groups per molecule on average.
  • bisphenol A type epoxy resin for example, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine Type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac Type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin having butadiene structure, diglycidyl etherified product of bisphenol, naphthalenediol Diglycid
  • the epoxy resin preferably has a transmittance of 80% or more, more preferably has a transmittance of 85% or more, and particularly preferably has a transmittance of 90% or more.
  • suitable epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, biphenyl aralkyl type epoxy resins, alicyclic epoxy resins, and aliphatic chain epoxy resins.
  • the transmittance refers to the total light transmittance, and is a light transmittance considering reflection and scattering measured for the purpose of examining how much brightness is transmitted through the material. The incident light is measured by using visible light or ultraviolet light and collecting the transmitted light with an integrating sphere.
  • the epoxy resin may be liquid or solid, and both liquid epoxy resin and solid epoxy resin may be used.
  • liquid and solid are states of the epoxy resin at normal temperature (25 ° C.). From the viewpoint of coatability, workability, and adhesiveness, it is preferable that at least 10% by mass or more of the entire epoxy resin to be used is liquid.
  • the epoxy equivalent of the epoxy resin is preferably 100 to 1000 g / eq, more preferably 120 to 1000 g / eq, and further preferably 150 to 1000 g / eq.
  • the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K 7236.
  • the weight average molecular weight of the epoxy resin is preferably 5,000 or less.
  • the content of the epoxy resin in the thermosetting resin composition is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the entire thermosetting resin composition (nonvolatile content). Even more preferably, it is 50 to 65% by weight.
  • the resin composition of the present invention can further contain a hygroscopic metal oxide in order to further improve the moisture permeability resistance.
  • the “hygroscopic metal oxide” means a metal oxide that has a capability of absorbing moisture and chemically reacts with moisture that has been absorbed to become a hydroxide. Specifically, it is one kind selected from calcium oxide, magnesium oxide, strontium oxide, aluminum oxide, barium oxide or the like, or a mixture or solid solution of two or more kinds. Specific examples of the mixture or solid solution of two or more types include calcined dolomite (a mixture containing calcium oxide and magnesium oxide), calcined hydrotalcite (a solid solution of calcium oxide and aluminum oxide), and the like. It is done.
  • hydrotalcite is more preferable from the viewpoint of high hygroscopicity, cost, and stability of raw materials.
  • Hydrotalcite is not particularly limited as long as it has water absorption. Examples of hydrotalcite include natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and / or synthetic hydrotalcite (hydrotalcite-like compound),
  • hydrotalcite is preferably used in which hydrotalcite is calcined to reduce the amount of OH in the chemical structure or disappear in order to improve water absorption.
  • hydrotalcites include, for example, a sintered body of a synthetic hydrotalcite (hydrotalcite-like compound) represented by the following general formula (I), and a synthetic hydrotalcite (hydrotalc) represented by the following general formula (II) Site-like compound) and the like.
  • M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, M 3+ represents a trivalent metal ion such as Al 3+, Fe 3+, A n- is CO 3 2-, Cl Represents an n-valent anion such as ⁇ and NO 3 — , 0 ⁇ x ⁇ 1, 0 ⁇ m ⁇ 1, and n is a positive number.
  • M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, A n- is CO 3 2-, Cl -, NO 3 - shows a n-valent anion, such as, x is 2 or more Z is a positive number of 2 or less, m is a positive number, and n is a positive number.
  • the calcined hydrotalcite is preferably obtained by calcining natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and / or synthetic hydrotalcite (hydrotalcite-like compound), A composite oxide obtained by vaporizing an anion and a water molecule, preferably at 400 to 900 ° C., more preferably at 500 to 700 ° C., for 30 minutes to 5 hours, more preferably for 30 minutes to 3 hours. More preferred is a composite oxide obtained by firing for 45 minutes to 2 hours.
  • natural hydrotalcite Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O
  • synthetic hydrotalcite hydrotalcite-like compound
  • a preferred calcined hydrotalcite is a Mg—Al based composite oxide obtained by firing a Mg—Al based hydrotalcite-like compound such as a double hydroxide of the above formula (II), and the Mg—Al based composite oxide.
  • a composite oxide having a certain composition ratio is more preferable, and a composite oxide having a composition ratio in which x is 4 ⁇ x ⁇ 6 is particularly preferable.
  • the hygroscopic metal oxide is known as a hygroscopic material in various technical fields, and a commercially available product can be used. Specifically, calcium oxide (“Moystop # 10” manufactured by Sankyo Flour Milling Co., Ltd.), magnesium oxide (“Kyowa Mag MF-150”, “Kyowa Mag MF-30” manufactured by Kyowa Chemical Industry Co., Ltd., “Pure Mag” manufactured by Tateho Chemical Industry Co., Ltd.
  • Tatehomag # 500 “ Tatehomag # 1000 ”,“ Tatehomag # 5000 ”, etc., manufactured by Tateho Chemical Industries, Ltd.
  • calcined dolomite (“ Ysawa ”,“ KT ”etc.)
  • calcined hydro Examples include talcite (“KW2200”, “DHT-4A”, “DHT-4A-2”, “DHT-4C”, etc., manufactured by Kyowa Chemical Industry Co., Ltd.).
  • a surface treated with a surface treatment agent can be used.
  • the surface treatment agent used for the surface treatment for example, higher fatty acids, alkylsilanes, silane coupling agents and the like can be used, and among these, higher fatty acids and alkylsilanes are preferable.
  • One or more surface treatment agents can be used.
  • higher fatty acid examples include higher fatty acids having 18 or more carbon atoms such as stearic acid, montanic acid, myristic acid, and palmitic acid, among which stearic acid is preferable. You may use these 1 type or in combination of 2 or more types.
  • Alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltriethoxysilane, n-octadecyldimethyl ( And 3- (trimethoxysilyl) propyl) ammonium chloride. You may use these 1 type or in combination of 2 or more types.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane ; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrime Amino silane cups such as xylsilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Ringing agents; Ureido silane coupling agents
  • the surface treatment of the hygroscopic metal oxide is performed, for example, by adding and spraying the surface treatment agent and stirring for 5 to 60 minutes while stirring and dispersing the untreated hygroscopic metal oxide at room temperature with a mixer.
  • a mixer a well-known mixer can be used, for example, blenders, such as V blender, a ribbon blender, and a bubble cone blender, mixers, such as a Henschel mixer and a concrete mixer, a ball mill, a cutter mill, etc. are mentioned.
  • a method of surface treatment by mixing the higher fatty acid, alkylsilanes or silane coupling agent is also possible.
  • the treatment amount of the surface treatment agent varies depending on the type of the hygroscopic metal oxide or the type of the surface treatment agent, but is preferably 1 to 10% by mass relative to the hygroscopic metal oxide.
  • the content of the hygroscopic metal oxide in the thermosetting resin composition is preferably 3 to 38 parts by mass with respect to 80 parts by mass of the epoxy resin, and more preferably 5% from the viewpoint of moisture resistance and permeability. Is 35 parts by mass, more preferably 10-35 parts by mass.
  • the content of the hygroscopic metal oxide is preferably 2 to 24% by mass, more preferably 5 to 23% by mass, based on the entire thermosetting resin composition (nonvolatile content).
  • thermosetting resin composition of the present invention includes the moisture-absorbing metal described above from the viewpoint of the moisture barrier property of the resin composition, the coating property (prevention of repelling) of the resin composition varnish when preparing a sealing sheet, and the like.
  • An inorganic filler other than the compound can be further contained.
  • examples of inorganic fillers include talc, silica, alumina, barium sulfate, clay, mica, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride, aluminum borate, barium titanate, and titanic acid.
  • the primary particle size of the inorganic filler is preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • primary particles having a particle size of 1 to 100 nm, more preferably 1 to 50 nm, even more preferably 10 to 20 nm, and particularly preferably 10 to 15 nm can be used.
  • the nano inorganic filler has a BET specific surface area of 2720 to 27 m 2 / g, preferably 2720 to 54 m 2 / g, more preferably 272 to 136 m 2 / g, more preferably 272. Those having a density of ⁇ 181 m 2 / g can be used.
  • the particle form of the inorganic filler is not particularly limited, and may be a substantially spherical shape, a rectangular parallelepiped shape, a plate shape, a linear shape such as a fiber, or a branched shape.
  • the inorganic filler is preferably talc, silica, zeolite, titanium oxide, alumina, zirconium oxide, silicate, mica, mica, magnesium hydroxide, aluminum hydroxide, and more preferably silica.
  • silica wet silica, dry silica, colloidal silica (water dispersion type, organic solvent dispersion type, gas phase silica, etc.) is preferable, and it is difficult to precipitate and settle, and it is easy to form a composite with a resin.
  • Dispersed colloidal silica organosilica sol is particularly preferred.
  • the inorganic filler commercially available products can be used.
  • “FG-15F” talc powder
  • MEK-EC-2130Y manufactured by Nissan Chemical Industries, Ltd.
  • PGM-AC-2140Y manufactured by Nissan Chemical Industries, Ltd.
  • Sica particle size 10-15 nm, nonvolatile content 40% by mass, PGM (propylene glycol monomethyl ether) solvent manufactured by Nissan Chemical Industries, Ltd.
  • MIBK-ST (silica particle size 10 to 15 nm, nonvolatile content 30% by mass, MIBK (methyl isobutyl ketone) solvent), colloidal silica sol“ PL-2L-MEK ”manufactured by Fuso Chemical Industries (silica particle size 15 to 20 nm, Nonvolatile content 20% by mass, MEK (methyl ethyl ketone) solvent) and the like.
  • one or more inorganic fillers can be used.
  • the content of the inorganic filler is preferably 10% by mass or less, more preferably 9% by mass or less, based on the entire resin composition (nonvolatile content). .
  • thermoplastic resin In the thermosetting resin composition, the provision of flexibility to the sealing layer obtained by curing the thermosetting resin composition layer, the thermosetting resin composition varnish when preparing the sealing sheet From the viewpoint of coatability (prevention of repelling) and the like, a thermoplastic resin can be contained.
  • the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polysulfone resin. Any one of these thermoplastic resins may be used, or two or more thereof may be mixed and used.
  • the content of the thermoplastic resin in the thermosetting resin composition is preferably 1 to 40% by mass and more preferably 5 to 30% by mass with respect to the entire thermosetting resin composition (nonvolatile content).
  • the thermoplastic resin has a weight average molecular weight of 15 from the viewpoint of imparting flexibility to the sealing layer and coating properties (preventing repelling) of the thermosetting resin composition varnish when preparing a sealing sheet. Is preferably 20,000 or more, and more preferably 20,000 or more. However, if the weight average molecular weight is too large, the compatibility with the epoxy resin tends to be reduced. Therefore, the weight average molecular weight is preferably 1,000,000 or less, more preferably 800,000 or less. . In addition, "the weight average molecular weight of a thermoplastic resin” here is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, Shodex K-800P / K-804L / K-804L manufactured by Showa Denko KK as a column, and mobile phase. It can be calculated by using a calibration curve of standard polystyrene by measuring at a column temperature of 40 ° C. using chloroform or the like.
  • the thermoplastic resin preferably has a transmittance of 80% or more, and more preferably has a transmittance of 90% or more.
  • the thermoplastic resin is particularly preferably a phenoxy resin.
  • the phenoxy resin has good compatibility with the epoxy resin, and acts advantageously on the permeability and moisture resistance of the thermosetting resin composition.
  • the phenoxy resin has one or more skeletons selected from bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, etc. Is mentioned.
  • One or more phenoxy resins can be used.
  • YX7200B35, 1256, YX6954BH35 manufactured by Mitsubishi Chemical Corporation can be suitably used.
  • the thermosetting resin composition can contain a coupling agent from the viewpoint of improving the adhesive strength of the thermosetting resin composition.
  • a coupling agent examples include titanium coupling agents, aluminum coupling agents, silane coupling agents, and the like. Among these, a silane coupling agent is preferable.
  • a coupling agent can be used 1 type or in combination of 2 or more types.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropylto Amino silanes such as methoxysilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Coupling agents; Ureido silane coupling agents such as 3-
  • the content of the coupling agent in the thermosetting resin composition is preferably 0.5 to 10% by mass with respect to the entire thermosetting resin composition (nonvolatile content). More preferable is 5% by mass. When the content of the coupling agent is outside this range, it is not possible to obtain an effect of improving the adhesion due to the addition of the coupling agent.
  • thermosetting resin composition containing an epoxy resin usually contains an epoxy resin curing agent.
  • curing agent has a function which hardens
  • 140 degrees C or less Those capable of curing the epoxy resin at a temperature (preferably 120 ° C. or lower) are preferable.
  • the curing agent examples include primary amine, secondary amine, tertiary amine-based curing agent, polyaminoamide-based curing agent, dicyandiamide, and organic acid dihydrazide.
  • amine adduct compounds (Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure from the viewpoint of fast curing properties.
  • organic acid dihydrazide (Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co., Ltd.)) and the like are particularly preferable.
  • the ionic liquid is desirably used in a state where it is uniformly dissolved in the epoxy resin.
  • the ionic liquid has an advantageous effect on improving the moisture permeation resistance of the cured product of the thermoplastic resin composition.
  • Examples of the cation constituting the ionic liquid include imidazolium ions, piperidinium ions, pyrrolidinium ions, pyrazonium ions, guanidinium ions, pyridinium ions, and other ammonium-based cations; tetraalkylphosphonium cations (for example, tetrabutylphosphonium ions, Phosphonium cations such as tributylhexyl phosphonium ion; and sulfonium cations such as triethylsulfonium ion.
  • anion constituting the ionic liquid examples include halide anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkyl sulfate anions such as methanesulfonate ion; trifluoromethanesulfonate ion, Fluorine-containing compound anions such as hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, 2-methoxy Phenolic anions such as phenol ion and 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; glycine ion, alan
  • R is a linear or branched hydrocarbon group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenyl group, and X represents a side chain of an amino acid.
  • amino acids include asparagine. Acid, glutamic acid, glycine, alanine, phenylalanine, etc.
  • the cation is preferably an ammonium cation or a phosphonium cation, and more preferably an imidazolium ion or a phosphonium ion. More specifically, the imidazolium ion is 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion or the like.
  • the anion is preferably a phenolic anion, an N-acyl amino acid ion or a carboxylic acid anion represented by the formula (1), and more preferably an N-acyl amino acid ion or a carboxylic acid anion.
  • phenolic anion examples include 2,6-di-tert-butylphenol ion.
  • carboxylate anion examples include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, ⁇ -lipoic acid ion, lactate ion, tartrate ion, hippurate ion, N- Methyl hippurate ion and the like, among which acetate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, lactate ion, tartrate ion, hippurate ion and N-methylhippurate ion are preferable, acetate ion, N -Methyl hippurate ion and formate ion are particularly preferred.
  • N-acylamino acid ion represented by the formula (1) examples include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion and the like. N-benzoylalanine ion, N-acetylphenylalanine ion and N-acetylglycine ion are preferable, and N-acetylglycine ion is particularly preferable.
  • Specific ionic liquids include, for example, 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium tri Fluoroacetate, tetrabutylphosphonium ⁇ -lipoate, tetrabutylphosphonium formate, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium hippurate, tetrabutylphosphonium N-methylhippurate, benzoyl-DL -Alanine tetrabutylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenoltetrabutylphospho Um salt,
  • a precursor composed of a cation moiety such as an alkylimidazolium, alkylpyridinium, alkylammonium and alkylsulfonium ions and an anion moiety containing a halogen is added to NaBF 4 , NaPF 6 , CF 3 SO 3
  • the content of the curing agent in the thermosetting resin composition is preferably 0.1 to 50% by mass with respect to the total amount (nonvolatile content) of the epoxy resin contained in the thermosetting resin composition. If the content is less than 0.1% by mass, sufficient curability may not be obtained. If the content is more than 50% by mass, the storage stability of the thermosetting resin composition may be impaired.
  • the amount thereof is preferably 0.1 to 10% by mass with respect to the total amount (nonvolatile content) of the epoxy resin from the viewpoint of moisture resistance of the cured product of the thermosetting resin composition. .
  • a polythiol compound having two or more thiol groups in the molecule together with the ionic liquid may be contained in the thermosetting resin composition. Inclusion of a polythiol compound having two or more thiol groups in the molecule can increase the curing speed.
  • polythiol compound having two or more thiol groups in the molecule include, for example, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris ( Examples include thiol compounds obtained by esterification reaction of polyols such as ⁇ -thiopropionate), pentaerythritol tetrakis ( ⁇ -thiopropionate), dipentaerythritol poly ( ⁇ -thiopropionate) and mercapto organic acid. It is done.
  • a thiol compound is a thiol compound having two or more thiol groups in the molecule, which does not require the use of a basic substance for production.
  • polythiol compound having two or more thiol groups in the molecule examples include alkyl polythiol compounds such as 1,4-butanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol; terminal thiol group-containing polyether; Examples include a terminal thiol group-containing polythioether; a thiol compound obtained by a reaction between an epoxy compound and hydrogen sulfide; a thiol compound having a terminal thiol group obtained by a reaction between a polythiol compound and an epoxy compound.
  • thiol compounds obtained by reaction of epoxy compounds and hydrogen sulfide, thiol compounds having terminal thiol groups obtained by reaction of polythiol compounds and epoxy compounds, etc. using basic substances as reaction catalysts in the production process
  • dealkalization treatment for example, the polythiol compound to be treated is dissolved in an organic solvent such as acetone or methanol, neutralized by adding an acid such as dilute hydrochloric acid or dilute sulfuric acid, and then desalted by extraction or washing.
  • a method of adsorbing using an ion exchange resin, a method of purification by distillation, and the like are not limited thereto.
  • the ratio of the blend amount of the polythiol compound / SH equivalent to the blend amount of the epoxy resin / epoxy equivalent is 0.2 to 1.2. If this ratio is less than 0.2, sufficient fast curability may not be obtained, while if it is more than 1.2, physical properties of the cured product such as heat resistance may be impaired. From the viewpoint of stabilizing the adhesiveness, this ratio is more preferably 0.5 to 1.0.
  • “SH equivalent” means “molecular weight of polythiol compound / number of SH groups”
  • epoxy equivalent” means “molecular weight of epoxy resin / number of epoxy groups”.
  • the thermosetting resin composition containing an epoxy resin may contain a curing accelerator for the purpose of adjusting the curing time.
  • the curing accelerator include organic phosphine compounds, imidazole compounds, amine adduct compounds (for example, epoxy adduct compounds in which a tertiary amine is added to an epoxy resin to stop the reaction, etc.), tertiary amine compounds, and the like. Can be mentioned.
  • Specific examples of the organic phosphine compound include TPP, TPP-K, TPP-S, and TPTP-S (trade name of Hokuko Chemical Co., Ltd.).
  • imidazole compound examples include Curazole 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZOK, 2MA-OK, and 2PHZ (trade names of Shikoku Kasei Kogyo Co., Ltd.).
  • Specific examples of amine adduct compounds include Fuji Cure (trade name of Fuji Kasei Kogyo Co., Ltd.).
  • tertiary amine compounds include DBU (1,8-diazabicyelo [5.4.0] undec-7-ene), DBU 2-ethylhexanoate, octylate and other DBU-organic acid salts, U And aromatic dimethylurea such as U-3503T (manufactured by San Apro), and the like.
  • urea compounds are preferable from the viewpoint of moisture resistance, and aromatic dimethylurea is particularly preferably used.
  • the content of the curing accelerator in the thermosetting resin composition is usually 0.05 to 5% by mass when the total amount of the epoxy resin in the thermosetting resin composition is 100% by mass (nonvolatile content). . If it is less than 0.05% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 5% by mass, the storage stability of the thermosetting resin composition tends to decrease.
  • the thermosetting resin composition may optionally contain various additives other than the components described above.
  • additives include organic fillers such as silicone powder, nylon powder, and fluororesin powder, thickeners such as olben and benton, silicone-based, fluorine-based, and polymer-based antifoaming agents or leveling agents.
  • Adhesion imparting agents such as triazole compounds, thiazole compounds, triazine compounds, and porphyrin compounds.
  • thermosetting resin composition is prepared by further adding components with an organic solvent, if necessary, and mixing them using a kneading roller or a rotating mixer.
  • the sealing sheet is prepared by a method known to those skilled in the art, for example, by preparing a varnish in which a thermosetting resin composition is dissolved in an organic solvent, applying the varnish on a support, and further heating or blowing hot air. It can manufacture by drying a solvent and forming a thermosetting resin composition layer.
  • the thickness of the thermosetting resin composition layer after drying is preferably 3 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 20 ⁇ m.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolves such as cellosolve, Examples thereof include carbitols such as butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone
  • MEK methyl ethyl ketone
  • cellosolve acetate propylene glycol monomethyl ether acetate
  • acetate esters such as carbitol acetate
  • cellosolves such as cellosolve
  • the support for the sealing sheet examples include polyolefins such as polyethylene and polypropylene (PP), polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polyimide (PI), Examples thereof include plastic films such as cycloolefin polymer (COP) and polyvinyl chloride.
  • PP polyethylene and polypropylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PI polyimide
  • plastic films such as cycloolefin polymer (COP) and polyvinyl chloride.
  • COP cycloolefin polymer
  • polyvinyl chloride examples of the plastic film, polyethylene terephthalate, polyethylene naphthalate, and cycloolefin polymer are preferable.
  • a plastic film having a barrier layer may be used as a support.
  • the barrier layer include nitrides such as silicon nitride, oxides such as aluminum oxide, metals such as stainless steel and aluminum, and the like.
  • the plastic film is preferably at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate and cycloolefin polymer, and the plastic film is polyethylene terephthalate, More preferred is at least one selected from the group consisting of polyethylene naphthalate and cycloolefin polymer, and more preferred is that the plastic film is polyethylene terephthalate.
  • a commercial product may be used as the plastic film having the barrier layer.
  • Examples of commercially available polyethylene terephthalate films with aluminum foil include “Alpet 1N30” manufactured by Tokai Toyo Aluminum Sales Co., “Alpet 3025” manufactured by Fukuda Metals Co., Ltd.
  • the support may be subjected to a release treatment using a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, a mat treatment, a corona treatment, or the like.
  • the thickness of the support is not particularly limited, but is preferably 20 to 200 ⁇ m, more preferably 20 to 125 ⁇ m, from the viewpoint of the handleability of the sealing sheet.
  • the thermosetting resin composition layer may be protected with a cover film in order to prevent dust from adhering to the surface and scratches.
  • the cover film is peeled off before laminating the sealing sheet and the organic EL element substrate.
  • the cover film is preferably a plastic film similar to the support.
  • the cover film may be subjected to a release treatment with a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, a mat treatment, a corona treatment, or the like.
  • the thickness of the cover film is not particularly limited, but is, for example, 15 to 75 ⁇ m, preferably 15 to 50 ⁇ m.
  • the substrate of the organic EL element substrate (hereinafter sometimes abbreviated as “substrate”) is not particularly limited, and a known substrate can be used.
  • the substrate is preferably at least one selected from the group consisting of glass, polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and cycloolefin polymer (COP).
  • the thickness of the substrate is preferably 0.1 to 1.0 mm, more preferably 0.1 to 0.7 mm.
  • the thickness of the organic EL element is usually 0.01 to 1 ⁇ m, preferably 0.05 to 0.5 ⁇ m.
  • the substrate of the organic EL element substrate or the support for the sealing sheet is transparent.
  • an opaque support for example, a plastic film having an opaque barrier layer
  • a curing accelerator (“U-3512T” manufactured by San Apro Co., Ltd.) and 81 parts by mass of a methyl ethyl ketone (MEK) solution of phenoxy resin (“YX7200B35” manufactured by Mitsubishi Chemical Co., Ltd., concentration 35% by mass) (phenoxy resin 28.
  • MEK solution solid bisphenol A type epoxy resin (“jER1001” manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent of about 475 g / eq) prepared by dispersing the mixture in a mixture dissolved in 4 parts by mass with a three-roll mill.
  • the obtained resin composition varnish is dried on a polyethylene terephthalate film (hereinafter abbreviated as “support PET film”) (thickness 38 ⁇ m) treated with an alkyd mold release agent.
  • the film was uniformly coated with a die coater so as to have a thickness of 20 ⁇ m and dried at 80 to 100 ° C. (average 90 ° C.) for 5 minutes (the amount of residual solvent in the resin composition layer was about 2% by mass).
  • cover PET film a 38 ⁇ m-thick polyethylene terephthalate film (hereinafter abbreviated as “cover PET film”) treated with an alkyd release agent as a cover film was wound into a roll while being bonded to the surface of the resin composition layer.
  • the roll-shaped sealing sheet was slit to a width of 507 mm to obtain a sealing sheet 1 having a size of 507 ⁇ 336 mm.
  • sealing sheets 2 to 4 were produced.
  • Support 2 “Alpet 1N30” manufactured by Tokai Toyo Aluminum Sales Co., Ltd. (plastic film: PET with a thickness of 25 ⁇ m, barrier layer: aluminum foil with a thickness of 30 ⁇ m)
  • Support 3 a plastic film (PET having a thickness of 125 ⁇ m) in which an adhesive layer and a barrier layer (inorganic vapor deposition layer) are sequentially provided.
  • Support 4 “Lumirror T60” manufactured by Toray Industries, Inc. (PET with a thickness of 100 ⁇ m)
  • a sealing sheet 1 (width 20 mm, length 50 mm) from which a cover PET film has been peeled off is applied to a support cut to a width of 25 mm and a length of 100 mm, and the thermosetting resin composition layer is one of the supports 2 to 4 Overlaid so that it touches.
  • the superposed ones are laminated using a roll laminator VA770H (manufactured by Taisei Laminator Co., Ltd., laminating temperature 80 ° C., roll speed 0.5 mL / min, roll pressure 0.1 MPa) to support each thermosetting resin composition layer.
  • the sealing sheets 2 to 4 on the bodies 2 to 4 were obtained.
  • Example 1 (1) Preparation of samples for evaluation of smoothness and voids Polyimide tape with copper foil etched to form a striped pattern with a linear copper foil and a portion without copper foil (product name “AJ-”, manufactured by Mitsui Kinzoku Co., Ltd.) C0002-30 / 40 ”, copper foil thickness 5 ⁇ m, polyimide thickness 40 ⁇ m, (linear copper foil (line) width 15 ⁇ m, copper foil-free portion (space) width 15 ⁇ m) as a pattern substrate, Samples for smoothness and void evaluation were produced as follows.
  • the pattern substrate was temporarily fixed on a stainless steel (SUS) plate having a thickness of 0.8 mm.
  • the cover PET film is peeled off from the sealing sheet 1, and the thermosetting resin composition layer is overlapped with the pattern substrate so as to be in contact with the pattern substrate, and roll laminator VA770H (manufactured by Taisei Laminator Co., Ltd., roll material: silicone rubber) is used.
  • roll laminator VA770H manufactured by Taisei Laminator Co., Ltd., roll material: silicone rubber
  • These were laminated using a lamination temperature of 80 ° C., a roll speed of 0.1 m / min, a roll pressure of 0 MPa, and atmospheric pressure in the atmosphere.
  • a batch-type vacuum press laminator CVP-300 manufactured by Morton, flat plate material: SUS 603H as a hot press apparatus (flat plate press machine) was applied at a press temperature of 90 ° C., a press pressure of 0.15 MPa, and a press time of 300.
  • the pattern substrate on which the sealing sheet was laminated was hot-pressed for 2 seconds under the condition of atmospheric pressure under atmospheric pressure.
  • the support PET film was peeled from the pressed sealing sheet.
  • the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and samples for smoothness and void evaluation were produced.
  • a batch type vacuum pressure laminator CVP-300 manufactured by Morton was used as a hot press apparatus (flat plate press machine) at a press temperature of 90 ° C., a press pressure of 0.15 MPa, a press time of 300 seconds, and a large amount in the atmosphere.
  • the glass plate on which the sealing sheet was laminated was hot-pressed under the conditions under atmospheric pressure.
  • the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and a sample for evaluation of adhesion and void was prepared.
  • Example 2 A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that the roll speed was changed from 0.1 m / min to 1.0 m / min.
  • Example 3 Samples for smoothness and void evaluation and adhesion and voids were the same as in Example 2 except that the roll laminating step was performed in an inert gas (nitrogen) atmosphere (pressure: 1013.25 hPa) in a glove box. An evaluation sample was produced.
  • inert gas nitrogen
  • pressure: 1013.25 hPa pressure: 1013.25 hPa
  • Example 1 A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that heat pressing was not performed after lamination by a roll laminator.
  • Example 4 A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that only the heat press was performed without performing the lamination with the roll laminator.
  • Example 6 (1) Preparation of sample for evaluation of smoothness and voids As in Example 1, a polyimide tape with copper foil was used as a pattern substrate, and samples for evaluation of smoothness and voids were prepared as follows.
  • the pattern substrate was temporarily fixed on a 0.8 mm thick SUS plate.
  • the cover PET film is peeled off from the sealing sheet 1 and the sealing sheet and the pattern substrate are overlapped so that the thermosetting resin composition layer is in contact with the pattern substrate, and a diaphragm vacuum pressurizing laminator V-160 ( (Morton Co., Ltd.) was held for 20 seconds under the conditions of a set temperature of 80 ° C. and a vacuum degree of 1.2 hPa, then the vacuum state was returned to the atmospheric atmosphere, and the atmospheric pressure in the atmospheric atmosphere, laminating pressure 0.1 MPa, laminating time These were laminated under the condition of 20 seconds.
  • the support PET film was peeled from the pressed sealing sheet. Thereafter, the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and samples for smoothness and void evaluation were produced.
  • thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and a sample for evaluation of adhesion and void was prepared.
  • ⁇ Evaluation of void> Observe whether a void exists between the sealing layer and the pattern substrate or the glass plate in the sample for smoothness and void evaluation and the sample for adhesion and void evaluation by visual observation and optical microscope (magnification 150 times) did. The case where a void was not observed with an optical microscope was evaluated as good ( ⁇ ), and the case where a void was observed visually or with an optical microscope was evaluated as poor ( ⁇ ).
  • Table 1 shows the sealing methods and conditions of Examples and Comparative Examples, and Table 2 shows the evaluation results.
  • Comparative Examples 1 to 3 in which only roll lamination is performed, the smoothness of the obtained sealing layer is low. Moreover, in Comparative Examples 4 and 5 in which only hot pressing is performed, voids are generated in the obtained sealing layer, and the smoothness and adhesion are low. Further, in Comparative Example 6 in which high-cost vacuum lamination was performed, a sealing layer having high adhesion was obtained without generating voids, but the sealing layer was smoother than in Examples 1 and 2. The sex was inferior.
  • the manufacturing method of the sealing body (especially organic EL device) of this invention can seal an organic EL element with the sealing layer with smoothness and high adhesiveness, without generating a void, and is also a vacuum laminator. This is advantageous in terms of cost. Moreover, according to the manufacturing method of this invention, a lamination can be implemented under inert gas with little damage to an organic EL element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 Provided is a method for producing a sealed body obtained by sealing an organic EL element on a substrate with a sealing layer, said method comprising: a laminating step in which a roll laminator is used to laminate a sealing sheet having a thermosetting resin composition layer formed on a support, onto a substrate in such a manner that the thermosetting resin composition layer comes into contact with the organic EL element; a smoothing step in which the laminated sealing sheet surface is smoothed by thermal pressing; and a curing step in which the thermosetting resin composition layer is thermoset to form a sealing layer.

Description

封止体の製造方法Manufacturing method of sealing body
 本発明は、基板上の有機EL(エレクトロルミネッセンス)素子が封止層で封止されている封止体(特に、有機ELデバイス)の製造方法に関する。また、本発明は、基板上の有機EL素子を封止する方法に関する。 The present invention relates to a method for producing a sealed body (in particular, an organic EL device) in which an organic EL (electroluminescence) element on a substrate is sealed with a sealing layer. The present invention also relates to a method for sealing an organic EL element on a substrate.
 有機EL素子は発光材料に有機物質を使用した発光素子であり、低電圧で高輝度の発光を得ることができるため近年脚光を浴びている。しかしながら、有機EL素子は水分に極めて弱く、発光材料(発光層)が水分によって変質して、輝度が低下したり、発光しなくなったり、電極と発光層との界面が水分の影響で剥離したり、金属が酸化して高抵抗化してしまったりする問題がある。このため、素子内部を外気中の水分から遮断するために、例えば、基板上に形成された発光層の全面を覆うように樹脂組成物による封止層を形成して有機EL素子を封止することが行われる。 An organic EL element is a light emitting element using an organic substance as a light emitting material, and has recently attracted attention because it can emit light with high luminance at a low voltage. However, organic EL elements are extremely vulnerable to moisture, and the light emitting material (light emitting layer) is altered by moisture, resulting in a decrease in luminance, no light emission, or peeling of the interface between the electrode and the light emitting layer due to moisture. There is a problem that the metal is oxidized to increase the resistance. For this reason, in order to block the inside of the device from moisture in the outside air, for example, a sealing layer made of a resin composition is formed so as to cover the entire surface of the light emitting layer formed on the substrate to seal the organic EL device. Is done.
 有機EL素子の封止方法としては、例えば、防湿性を有する支持体上に樹脂組成物層を形成した封止用シートを有機EL素子基板にラミネートする方法が挙げられる。樹脂組成物層には、例えば、熱可塑性樹脂組成物や熱硬化性樹脂組成物が用いられ、熱硬化性樹脂組成物を用いた場合には、ラミネート後、熱硬化により封止層が形成される。封止用シートを有機EL素子にラミネートする手段としては、例えば、真空ラミネーターや真空プレス機を使用して真空状態でラミネートする方法が知られている(特許文献1~3等)。 Examples of the organic EL element sealing method include a method of laminating a sealing sheet in which a resin composition layer is formed on a moisture-proof support on an organic EL element substrate. For the resin composition layer, for example, a thermoplastic resin composition or a thermosetting resin composition is used. When a thermosetting resin composition is used, a sealing layer is formed by thermosetting after lamination. The As a means for laminating the sealing sheet on the organic EL element, for example, a method of laminating in a vacuum state using a vacuum laminator or a vacuum press machine is known (Patent Documents 1 to 3, etc.).
国際公開第2010/084938号International Publication No. 2010/084938 国際公開第2010/084939号International Publication No. 2010/084939 国際公開第2011/016408号International Publication No. 2011/016408
 真空状態で封止用シートと有機EL素子基板とをラミネートすることで、ボイドの発生を防ぐことができる。しかし、そのためには真空ラミネーター等の真空設備が必要であり、コストがかかる。そこで、常圧下のラミネートで、ボイドを発生させずに、密着性に優れた封止層を形成できれば、有機ELデバイスの製造コストを低減させることができる。また有機EL素子を封止する前においては、有機EL素子を劣化させないため、不活性ガス雰囲気とするのが望ましい。この点、真空ラミネーター等の真空設備を使用すると、不活性ガス雰囲気の状態が解かれてしまい、有機EL素子の種類によっては真空状態でも水分の影響を受けて劣化するという問題が生じ得る。 The generation of voids can be prevented by laminating the sealing sheet and the organic EL element substrate in a vacuum state. However, this requires a vacuum facility such as a vacuum laminator, which is expensive. Then, if the sealing layer excellent in adhesiveness can be formed in the laminate under normal pressure without generating voids, the manufacturing cost of the organic EL device can be reduced. In addition, before sealing the organic EL element, it is desirable to use an inert gas atmosphere in order not to deteriorate the organic EL element. In this regard, when vacuum equipment such as a vacuum laminator is used, the state of the inert gas atmosphere is released, and depending on the type of the organic EL element, there may be a problem that it deteriorates due to the influence of moisture even in a vacuum state.
 しかし上述のように、常圧下でのラミネート方法を採用した場合、ボイドの発生、支持体に対する封止層の密着性の低下といった問題が生じる場合がある。また、ディスプレイ用の有機EL素子基板では、該基板表面の凹凸(即ち、有機EL素子が存在する凸部分と該素子が存在しない凹部分との高さの差)により、封止層表面の平滑性が悪くなる傾向にある。平滑性が悪い封止層は、輝度ムラや色ムラの要因となるおそれがある。 However, as described above, when the laminating method under normal pressure is adopted, problems such as generation of voids and deterioration of the adhesion of the sealing layer to the support may occur. Further, in the organic EL element substrate for display, the surface of the sealing layer is smoothed by unevenness on the surface of the substrate (that is, the difference in height between the convex portion where the organic EL element exists and the concave portion where the element does not exist). It tends to get worse. A sealing layer with poor smoothness may cause uneven brightness or uneven color.
 本発明は、上記のような事情に着目してなされたものであって、常圧下で封止用シートを有機EL素子基板にラミネートし、封止層を形成した場合でも、ボイドを発生させることなく、平滑性および密着性に優れた封止層を形成することができる封止体の製造方法を提供することを課題とする。 The present invention has been made paying attention to the above situation, and even when a sealing sheet is laminated to an organic EL element substrate under normal pressure and a sealing layer is formed, voids are generated. It is another object of the present invention to provide a method for manufacturing a sealed body that can form a sealing layer excellent in smoothness and adhesion.
 本発明者らが鋭意検討した結果、ロールラミネーターにより封止用シートを基板の有機EL素子面にラミネートし、次いでラミネートされた封止用シート表面を熱プレスすることにより、上記課題を解決し得ることを見出し、以下の本発明を完成させた。 As a result of intensive studies by the present inventors, the above problem can be solved by laminating the sealing sheet on the surface of the organic EL element of the substrate with a roll laminator, and then hot pressing the laminated sealing sheet surface. As a result, the following present invention has been completed.
 [1] 基板上の有機EL素子が封止層で封止されている封止体の製造方法であって、
 ロールラミネーターを用いて、支持体上に熱硬化性樹脂組成物層が形成された封止用シートを、熱硬化性樹脂組成物層が有機EL素子と接するように基板にラミネートするラミネート工程、
 ラミネートされた封止用シート表面を熱プレスして平滑化する平滑化工程、および
 熱硬化性樹脂組成物層を熱硬化させて封止層を形成する硬化工程
を含む製造方法。
[1] A method for producing a sealed body in which an organic EL element on a substrate is sealed with a sealing layer,
A laminating step of laminating a sealing sheet having a thermosetting resin composition layer formed on a support on a substrate using a roll laminator so that the thermosetting resin composition layer is in contact with the organic EL element,
A production method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting a thermosetting resin composition layer to form a sealing layer.
 [2] ラミネートが、不活性ガス雰囲気下で行われる前記[1]に記載の製造方法。
 [3] ラミネートが、常圧下で行われる前記[1]または[2]に記載の製造方法。
[2] The production method according to [1], wherein the laminating is performed in an inert gas atmosphere.
[3] The production method according to [1] or [2], wherein the laminating is performed under normal pressure.
 [4] ロールラミネーターのロール速度が、0.01~1.5m/分である前記[1]~[3]のいずれか一つに記載の製造方法。
 [5] ロールラミネーターのロール速度が、0.1~0.5m/分である前記[1]~[3]のいずれか一つに記載の製造方法。
[4] The production method according to any one of [1] to [3], wherein the roll speed of the roll laminator is 0.01 to 1.5 m / min.
[5] The production method according to any one of [1] to [3], wherein a roll speed of the roll laminator is 0.1 to 0.5 m / min.
 [6] ロールラミネーターのロール圧が、0~0.5MPaである前記[1]~[5]のいずれか一つに記載の製造方法。
 [7] ロールラミネーターのロール圧が、0~0.3MPaである前記[1]~[5]のいずれか一つに記載の製造方法。
[6] The production method according to any one of [1] to [5], wherein the roll laminator has a roll pressure of 0 to 0.5 MPa.
[7] The production method according to any one of [1] to [5], wherein the roll pressure of the roll laminator is 0 to 0.3 MPa.
 [8] ラミネート温度が、60~120℃である前記[1]~[7]のいずれか一つに記載の製造方法。
 [9] ラミネート温度が、80~100℃である前記[1]~[7]のいずれか一つに記載の製造方法。
[8] The production method according to any one of [1] to [7], wherein the laminating temperature is 60 to 120 ° C.
[9] The production method according to any one of [1] to [7], wherein the laminating temperature is 80 to 100 ° C.
 [10] 平滑化工程のプレス圧が、0.01~0.5MPaである前記[1]~[9]のいずれか一つに記載の製造方法。
 [11] 平滑化工程のプレス圧が、0.01~0.3MPaである前記[1]~[9]のいずれか一つに記載の製造方法。
[10] The production method according to any one of [1] to [9], wherein the pressing pressure in the smoothing step is 0.01 to 0.5 MPa.
[11] The production method according to any one of [1] to [9], wherein the pressing pressure in the smoothing step is 0.01 to 0.3 MPa.
 [12] 平滑化工程のプレス温度が、60~120℃である前記[1]~[11]のいずれか一つに記載の製造方法。
 [13] 平滑化工程のプレス温度が、80~100℃である前記[1]~[11]のいずれか一つに記載の製造方法。
[12] The production method according to any one of [1] to [11], wherein a press temperature in the smoothing step is 60 to 120 ° C.
[13] The production method according to any one of [1] to [11], wherein a press temperature in the smoothing step is 80 to 100 ° C.
 [14] 平滑化工程のプレス時間が、20~450秒である前記[1]~[13]のいずれか一つに記載の製造方法。
 [15] 平滑化工程のプレス時間が、60~300秒である前記[1]~[13]のいずれか一つに記載の製造方法。
[14] The production method according to any one of [1] to [13], wherein the pressing time in the smoothing step is 20 to 450 seconds.
[15] The production method according to any one of [1] to [13], wherein the smoothing step has a pressing time of 60 to 300 seconds.
 [16] 支持体が、バリア層を有していてもよいプラスチックフィルムである前記[1]~[15]のいずれか一つに記載の製造方法。
 [17] 支持体の厚さが、30~200μmである前記[1]~[16]のいずれか一つに記載の製造方法。
 [18] 基板が、ガラス、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネートおよびシクロオレフィンポリマーからなる群から選ばれる少なくとも一つである前記[1]~[17]のいずれか一つに記載の製造方法。
 [19] 基板の厚さが、0.1~1.0mmである前記[1]~[18]のいずれか一つに記載の製造方法。
 [20] 硬化工程が、平滑化工程と同時に行われる前記[1]~[19]のいずれか一つに記載の製造方法。
 [21] 封止体が有機ELデバイスである、前記[1]~[20]のいずれか一つに記載の製造方法。
[16] The production method according to any one of [1] to [15], wherein the support is a plastic film which may have a barrier layer.
[17] The production method according to any one of [1] to [16], wherein the support has a thickness of 30 to 200 μm.
[18] The production according to any one of [1] to [17], wherein the substrate is at least one selected from the group consisting of glass, polyimide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and cycloolefin polymer. Method.
[19] The manufacturing method according to any one of [1] to [18], wherein the substrate has a thickness of 0.1 to 1.0 mm.
[20] The production method according to any one of [1] to [19], wherein the curing step is performed simultaneously with the smoothing step.
[21] The production method according to any one of [1] to [20], wherein the sealing body is an organic EL device.
 [22] 基板上の有機EL素子を封止する方法であって、
 ロールラミネーターを用いて、支持体上に熱硬化性樹脂組成物層が形成された封止用シートを、熱硬化性樹脂組成物層が有機EL素子と接するように基板にラミネートする工程、
 ラミネートされた封止用シート表面を熱プレスして平滑化する平滑化工程、および
 熱硬化性樹脂組成物層を熱硬化させて封止層を形成する硬化工程
を含む方法。
[22] A method for sealing an organic EL element on a substrate,
Laminating a sealing sheet having a thermosetting resin composition layer formed on a support using a roll laminator on a substrate so that the thermosetting resin composition layer is in contact with the organic EL element,
A method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting the thermosetting resin composition layer to form a sealing layer.
 [23] ラミネートが、不活性ガス雰囲気下で行われる前記[22]に記載の方法。
 [24] ラミネートが、常圧下で行われる前記[22]または[23]に記載の方法。
[23] The method according to [22], wherein the laminating is performed in an inert gas atmosphere.
[24] The method according to [22] or [23], wherein the laminating is performed under normal pressure.
 [25] ロールラミネーターのロール速度が、0.01~1.5m/分である前記[22]~[24]のいずれか一つに記載の方法。
 [26] ロールラミネーターのロール速度が、0.1~0.5m/分である前記[22]~[24]のいずれか一つに記載の方法。
[25] The method according to any one of [22] to [24] above, wherein the roll speed of the roll laminator is 0.01 to 1.5 m / min.
[26] The method according to any one of [22] to [24] above, wherein the roll speed of the roll laminator is 0.1 to 0.5 m / min.
 [27] ロールラミネーターのロール圧が、0~0.5MPaである前記[22]~[26]のいずれか一つに記載の方法。
 [28] ロールラミネーターのロール圧が、0~0.3MPaである前記[22]~[26]のいずれか一つに記載の方法。
[27] The method according to any one of [22] to [26], wherein the roll pressure of the roll laminator is 0 to 0.5 MPa.
[28] The method according to any one of [22] to [26], wherein the roll pressure of the roll laminator is 0 to 0.3 MPa.
 [29] ラミネート温度が、60~120℃である前記[22]~[28]のいずれか一つに記載の方法。
 [30] ラミネート温度が、80~100℃である前記[22]~[28]のいずれか一つに記載の方法。
[29] The method according to any one of [22] to [28], wherein the laminating temperature is 60 to 120 ° C.
[30] The method according to any one of [22] to [28], wherein the laminating temperature is 80 to 100 ° C.
 [31] 平滑化工程のプレス圧が、0.01~0.5MPaである前記[22]~[30]のいずれか一つに記載の方法。
 [32] 平滑化工程のプレス圧が、0.01~0.3MPaである前記[22]~[30]のいずれか一つに記載の方法。
[31] The method according to any one of [22] to [30], wherein the pressing pressure in the smoothing step is 0.01 to 0.5 MPa.
[32] The method according to any one of [22] to [30], wherein the pressing pressure in the smoothing step is 0.01 to 0.3 MPa.
 [33] 平滑化工程のプレス温度が、60~120℃である前記[22]~[32]のいずれか一つに記載の方法。
 [34] 平滑化工程のプレス温度が、80~100℃である前記[22]~[32]のいずれか一つに記載の方法。
[33] The method according to any one of [22] to [32] above, wherein the pressing temperature in the smoothing step is 60 to 120 ° C.
[34] The method according to any one of [22] to [32] above, wherein the pressing temperature in the smoothing step is 80 to 100 ° C.
 [35] 平滑化工程のプレス時間が、20~450秒である前記[22]~[34]のいずれか一つに記載の方法。
 [36] 平滑化工程のプレス時間が、60~300秒である前記[22]~[34]のいずれか一つに記載の方法。
[35] The method according to any one of [22] to [34], wherein the pressing time of the smoothing step is 20 to 450 seconds.
[36] The method according to any one of [22] to [34] above, wherein the smoothing step has a pressing time of 60 to 300 seconds.
 [37] 支持体が、バリア層を有していてもよいプラスチックフィルムである前記[22]~[36]のいずれか一つに記載の方法。
 [38] 支持体の厚さが、30~200μmである前記[22]~[37]のいずれか一つに記載の方法。
 [39] 基板が、ガラス、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネートおよびシクロオレフィンポリマーからなる群から選ばれる少なくとも一つである前記[22]~[38]のいずれか一つに記載の方法。
 [40] 基板の厚さが、0.1~1.0mmである前記[22]~[39]のいずれか一つに記載の方法。
 [41] 硬化工程が、平滑化工程と同時に行われる前記[22]~[40]のいずれか一つに記載の方法。
[37] The method according to any one of [22] to [36], wherein the support is a plastic film which may have a barrier layer.
[38] The method according to any one of [22] to [37], wherein the support has a thickness of 30 to 200 μm.
[39] The method according to any one of [22] to [38], wherein the substrate is at least one selected from the group consisting of glass, polyimide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and cycloolefin polymer. .
[40] The method according to any one of [22] to [39], wherein the substrate has a thickness of 0.1 to 1.0 mm.
[41] The method according to any one of [22] to [40], wherein the curing step is performed simultaneously with the smoothing step.
 本発明の方法によれば、ボイドを発生させることなく、平滑性および密着性の高い封止層で有機EL素子が封止された封止体(特に、有機ELデバイス)を製造することができ、また真空ラミネーターを使用する必要がないためコスト的にも有利である。また本発明の方法によれば、有機EL素子へのダメージが少ない不活性ガス下でラミネートを実施できる。 According to the method of the present invention, it is possible to produce a sealed body (particularly, an organic EL device) in which an organic EL element is sealed with a sealing layer having high smoothness and adhesion without generating voids. In addition, there is no need to use a vacuum laminator, which is advantageous in terms of cost. Moreover, according to the method of the present invention, laminating can be carried out under an inert gas with little damage to the organic EL element.
 本発明の製造方法は、ロールラミネーターによるラミネート(以下「ロールラミネート」と略称することがある)の後に、熱プレスによる平滑化を行うことを特徴とする。
 まず、本発明の製造方法における、ロールラミネートによるラミネート工程、熱プレスによる平滑化工程について順に説明する。
The production method of the present invention is characterized in that smoothing by hot pressing is performed after laminating by a roll laminator (hereinafter sometimes abbreviated as “roll laminating”).
First, the laminating process by roll lamination and the smoothing process by hot pressing in the production method of the present invention will be described in order.
[ロールラミネート]
 本発明の製造方法は、封止用シートと有機EL素子基板のラミネートをロールラミネートで行い、その後に熱プレスで平滑化を行うことによって、ボイドを発生させることなく、平滑性および密着性に優れた封止層を形成することができる。ラミネート時の周囲圧力は特に限定されないが、真空ラミネーターを使用せずにコスト的有利に製造する観点などから常圧下とすることができる。ここで、常圧とは、真空ラミネータ―等の真空装置を用いて人為的に真空(減圧)状態とした状態ではないことを意味する。
[Roll laminate]
The production method of the present invention is excellent in smoothness and adhesion without generating voids by laminating a sealing sheet and an organic EL element substrate by roll lamination and then smoothing by hot pressing. An encapsulating layer can be formed. The ambient pressure at the time of laminating is not particularly limited, but it can be reduced to normal pressure from the viewpoint of cost-effective production without using a vacuum laminator. Here, the normal pressure means that it is not in a state in which a vacuum (decompression) state is artificially made using a vacuum device such as a vacuum laminator.
 またラミネートは、不活性ガス雰囲気下で行うのが好ましい。本発明においては、真空ラミネーターを使用して真空(減圧)下でラミネートを行う必要がないため、ラミネート時に有機ELへのダメージの少ない窒素雰囲気下でラミネートすることができる。不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム、ネオン等が挙げられる。これらの中で窒素が好ましい。不活性ガス雰囲気下でのラミネートは、常圧下で行うことができる。不活性ガス雰囲気下でラミネートを行う場合の周囲圧力(不活性ガスの圧力)は、好ましくは911.925~1215.9hPa、より好ましくは1013.25~1114.575hPaである。 Further, it is preferable that the lamination is performed in an inert gas atmosphere. In the present invention, since it is not necessary to perform lamination under vacuum (reduced pressure) using a vacuum laminator, lamination can be performed in a nitrogen atmosphere with little damage to the organic EL during lamination. Examples of the inert gas include nitrogen, argon, helium, neon, and the like. Of these, nitrogen is preferred. Lamination under an inert gas atmosphere can be performed under normal pressure. The ambient pressure (inert gas pressure) when laminating in an inert gas atmosphere is preferably 911.925 to 1215.9 hPa, more preferably 101.25 to 1114.575 hPa.
 ロールラミネーターのロール速度は、支持体に対する封止層(熱硬化性樹脂組成物層の硬化物)の良好な密着性を達成するために、好ましくは0.01~1.5m/分、より好ましくは0.1~0.5m/分である。 The roll speed of the roll laminator is preferably 0.01 to 1.5 m / min, more preferably, in order to achieve good adhesion of the sealing layer (cured product of the thermosetting resin composition layer) to the support. Is 0.1 to 0.5 m / min.
 ロールラミネーターのロール圧は、有機EL素子へのダメージを避けるために、好ましくは0~0.5MPa、より好ましくは0~0.3MPaである。ここでロール圧とは、エアシリンジによる加圧力を意味し、ゲージ圧(元圧)として表示される。また、ロール圧が0であるとは、加圧力が0を意味する。 The roll pressure of the roll laminator is preferably 0 to 0.5 MPa, more preferably 0 to 0.3 MPa in order to avoid damage to the organic EL element. Here, the roll pressure means an applied pressure by an air syringe and is displayed as a gauge pressure (original pressure). Moreover, the roll pressure being 0 means that the applied pressure is 0.
 ロールラミネーターによるラミネート温度は、熱硬化樹脂を軟化し、基板への追従性を向上させるために、好ましくは60~120℃、より好ましくは80~100℃である。ここでラミネート温度とは、ロールにヒーターを内蔵し、デジタル制御したロール表面の温度を意味し、表面接触型K熱電対によって測定することができる。 The laminating temperature by the roll laminator is preferably 60 to 120 ° C., more preferably 80 to 100 ° C. in order to soften the thermosetting resin and improve the followability to the substrate. Here, the lamination temperature means the temperature of the roll surface digitally controlled by incorporating a heater in the roll, and can be measured by a surface contact type K thermocouple.
 ロールラミネートには市販のロールラミネーターを使用することができる。市販のロールラミネーターとしては、例えば、大成ラミネーター社製「ロールラミネーターVA770H」、「ロールラミネーターVA700」、「ロールラミネーターVAII-700」、伯東社製「Mach630up」などが挙げられる。ロールラミネーターのロールの材質としては、例えば、ステンレス鋼、シリコーンゴムなどが挙げられ、シリコーンゴムが好ましい。 A commercially available roll laminator can be used for roll lamination. Examples of commercially available roll laminators include “Roll Laminator VA770H”, “Roll Laminator VA700”, “Roll Laminator VAII-700” manufactured by Taisei Laminator, and “Mach630up” manufactured by Hakuto Co., Ltd. Examples of the material of the roll of the roll laminator include stainless steel and silicone rubber. Silicone rubber is preferable.
[熱プレス]
 本発明の製造方法では、ロールラミネートによるラミネート工程の後に熱プレスによる平滑化工程を行う。ラミネート工程でラミネートされた封止用シート表面は、基板の有機EL素子面の凹凸に追従して起伏が生じている。これを熱プレスにより平滑化する。熱プレスは金属板等の平板を用いて(例えば、平板プレス機等を用いて)行うのが好ましい。
 熱プレスは、大気雰囲気中で行ってもよく、不活性ガス雰囲気中で行ってもよい。大気雰囲気中で熱プレスを行う場合、その周囲圧力は、好ましくは大気圧である。不活性ガスとしては、例えば、窒素、アルゴン、ネオン、ヘリウム等が挙げられる。不活性ガス雰囲気下での熱プレスは、常圧下で行うことができる。不活性ガス雰囲気中で熱プレスを行う場合、その周囲圧力(即ち、不活性ガスの圧力)は、好ましくは911.925~1215.9hPa、より好ましくは1013.25~1114.575hPa、さらに好ましくは1013.75~1017.75hPaである。
[Hot press]
In the production method of the present invention, the smoothing step by hot pressing is performed after the laminating step by roll lamination. The surface of the sealing sheet laminated in the laminating process has undulations following the unevenness of the organic EL element surface of the substrate. This is smoothed by hot pressing. The hot pressing is preferably performed using a flat plate such as a metal plate (for example, using a flat plate press).
The hot pressing may be performed in an air atmosphere or an inert gas atmosphere. When hot pressing is performed in an air atmosphere, the ambient pressure is preferably atmospheric pressure. Examples of the inert gas include nitrogen, argon, neon, helium and the like. Hot pressing under an inert gas atmosphere can be performed under normal pressure. When hot pressing is performed in an inert gas atmosphere, the ambient pressure (that is, the pressure of the inert gas) is preferably 911.925 to 1215.9 hPa, more preferably 101.25 to 1114.575 hPa, and still more preferably 1013.75 to 1017.75 hPa.
 プレス圧は、圧力によるEL素子へのクラックを防ぐために、好ましくは0.01~0.5MPa、より好ましくは0.01~0.3MPaである。ここでプレス圧とは、真空油圧シリンダーや荷重によって制御された被プレス体にかかる圧力(即ち、封止用シート表面にかかる圧力)を意味し、熱プレス装置によって調整することができる。 The press pressure is preferably 0.01 to 0.5 MPa, more preferably 0.01 to 0.3 MPa in order to prevent cracking of the EL element due to the pressure. Here, the press pressure means a pressure applied to the pressed body controlled by a vacuum hydraulic cylinder or a load (that is, a pressure applied to the surface of the sealing sheet) and can be adjusted by a hot press apparatus.
 プレス温度は、平滑性を確保するために、好ましくは60~120℃、より好ましくは80~100℃である。ここでプレス温度とは、熱プレス装置のプレス部分(例えば、金属板等の平板)表面にカートリッジヒーターを内蔵し、デジタル制御したプレス部分表面の温度を意味し、表面接触型K熱電対によって測定することができる。 The press temperature is preferably 60 to 120 ° C., more preferably 80 to 100 ° C. in order to ensure smoothness. Here, the press temperature means the temperature of the press part surface that is digitally controlled by incorporating a cartridge heater on the surface of the press part (for example, a flat plate such as a metal plate) of the hot press device, and measured by a surface contact type K thermocouple. can do.
 プレス時間は、平滑化が達成されれば特に限定されないが、例えば金属板等の平板を用いて熱プレスした場合、好ましくは20~450秒、より好ましくは60~300秒である。 The pressing time is not particularly limited as long as smoothing is achieved, but when hot pressing is performed using a flat plate such as a metal plate, it is preferably 20 to 450 seconds, more preferably 60 to 300 seconds.
 熱プレスには市販の熱プレス装置を使用することができる。市販の熱プレス装置としては、例えば、モートン社製「バッチ式真空加圧ラミネーターCVP-300」、北川精機社製、真空加圧プレス機「VHI-2051」などの平板プレス機が挙げられる。プレス用の平板の材質としては、例えば、ステンレス鋼、鉄等の合金などが挙げられ、ステンレス鋼が好ましい。 A commercially available hot press apparatus can be used for the hot press. Examples of commercially available heat press apparatuses include flat plate presses such as “Batch type vacuum pressure laminator CVP-300” manufactured by Morton, and Kitakawa Seiki Co., Ltd., vacuum pressure press “VHI-2051”. Examples of the material for the flat plate for pressing include alloys such as stainless steel and iron, and stainless steel is preferable.
[封止層の形成]
 封止層の形成(即ち、熱硬化性樹脂組成物層の熱硬化)は、封止用シートの支持体を剥離してから行ってもよく、支持体を付けたまま行ってもよい。熱硬化は、例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置などで行うことができる。熱硬化は、熱プレスの後に行ってもよく、熱プレスによる加熱によって、熱プレスと同時に行ってもよい。硬化温度は、使用する熱硬化性樹脂組成物層および支持体により異なるが、通常80~120℃、好ましくは80~110℃であり、硬化時間は、通常10~120分、好ましくは10~30分である。形成される封止層の厚さは、好ましくは3~100μm、より好ましくは5~50μm、さらに好ましくは5~20μmである。
[Formation of sealing layer]
Formation of the sealing layer (that is, thermosetting of the thermosetting resin composition layer) may be performed after the support of the sealing sheet is peeled off, or may be performed with the support attached. The thermosetting can be performed, for example, with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, or the like. Thermosetting may be performed after hot pressing, or may be performed simultaneously with hot pressing by heating by hot pressing. The curing temperature varies depending on the thermosetting resin composition layer to be used and the support, but is usually 80 to 120 ° C., preferably 80 to 110 ° C., and the curing time is usually 10 to 120 minutes, preferably 10 to 30. Minutes. The thickness of the sealing layer to be formed is preferably 3 to 100 μm, more preferably 5 to 50 μm, and still more preferably 5 to 20 μm.
[封止用シート]
 次に、本発明で使用する封止用シートについて説明する。本発明において封止用シートに特に制限は無く、例えば、特許文献1~3に記載されているものを使用することができる。以下、好ましい封止用シートについて説明する。
[Sealing sheet]
Next, the sealing sheet used in the present invention will be described. In the present invention, the sealing sheet is not particularly limited, and for example, those described in Patent Documents 1 to 3 can be used. Hereinafter, a preferable sealing sheet will be described.
 熱硬化性樹脂組成物は、好ましくは、エポキシ樹脂および硬化剤を含有する。エポキシ樹脂および硬化剤に特に限定は無く、従来公知のものを使用することができる。熱硬化性樹脂組成物は、さらに吸湿性金属酸化物、熱可塑性樹脂、無機充填材(吸湿性金属酸化物を除く)等を含有していてもよい。 The thermosetting resin composition preferably contains an epoxy resin and a curing agent. There is no limitation in particular in an epoxy resin and a hardening | curing agent, A conventionally well-known thing can be used. The thermosetting resin composition may further contain a hygroscopic metal oxide, a thermoplastic resin, an inorganic filler (excluding the hygroscopic metal oxide), and the like.
[エポキシ樹脂]
 エポキシ樹脂は、平均して1分子あたり2個以上のエポキシ基を有するものであれば制限なく使用できる。例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、およびアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物および水素添加物等が挙げられる。かかるエポキシ樹脂はいずれか1種を使用するか2種以上を混合して用いることができる。
[Epoxy resin]
The epoxy resin can be used without limitation as long as it has two or more epoxy groups per molecule on average. For example, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine Type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac Type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin having butadiene structure, diglycidyl etherified product of bisphenol, naphthalenediol Diglycidyl ethers of Le, glycidyl ethers of phenols, and diglycidyl ethers of alcohols, and alkyl substituted derivatives of these epoxy resins, halides and hydrogenated products or the like. Any one of these epoxy resins can be used or a mixture of two or more can be used.
 エポキシ樹脂は、中でも、透過率が80%以上のものが好ましく、透過率が85%以上のものがより好ましく、透過率が90%以上のものが特に好ましい。かかる好適なエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂等を挙げることができる。ここで透過率とは、全光線透過率を指し、材料を通して明るさがどの程度伝わるかを調べる目的で測定される反射や散乱を考慮した光線透過率である。入射光には可視光線や紫外線を利用し、透過した光を積分球で集める方法で測定される。 Among them, the epoxy resin preferably has a transmittance of 80% or more, more preferably has a transmittance of 85% or more, and particularly preferably has a transmittance of 90% or more. Examples of such suitable epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, biphenyl aralkyl type epoxy resins, alicyclic epoxy resins, and aliphatic chain epoxy resins. . Here, the transmittance refers to the total light transmittance, and is a light transmittance considering reflection and scattering measured for the purpose of examining how much brightness is transmitted through the material. The incident light is measured by using visible light or ultraviolet light and collecting the transmitted light with an integrating sphere.
 エポキシ樹脂は、液状であっても、固形状であってもよく、液状エポキシ樹脂および固形状エポキシ樹脂の両方を用いてもよい。ここで、「液状」および「固形状」とは、常温(25℃)でのエポキシ樹脂の状態である。塗工性、加工性、接着性の観点から、使用するエポキシ樹脂全体の少なくとも10質量%以上が液状であるのが好ましい。 The epoxy resin may be liquid or solid, and both liquid epoxy resin and solid epoxy resin may be used. Here, “liquid” and “solid” are states of the epoxy resin at normal temperature (25 ° C.). From the viewpoint of coatability, workability, and adhesiveness, it is preferable that at least 10% by mass or more of the entire epoxy resin to be used is liquid.
 また、反応性の観点から、エポキシ樹脂のエポキシ当量は100~1000g/eqが好ましく、120~1000g/eqがより好ましく、150~1000g/eqがさらに好ましい。ここでエポキシ当量とは、1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。また、エポキシ樹脂の重量平均分子量は、好ましくは5,000以下である。 From the viewpoint of reactivity, the epoxy equivalent of the epoxy resin is preferably 100 to 1000 g / eq, more preferably 120 to 1000 g / eq, and further preferably 150 to 1000 g / eq. Here, the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K 7236. The weight average molecular weight of the epoxy resin is preferably 5,000 or less.
 熱硬化性樹脂組成物におけるエポキシ樹脂の含有量は、熱硬化性樹脂組成物(不揮発分)全体あたり、20~80質量%であるのが好ましく、30~70質量%であるのがより好ましく、50~65質量%であるのがさらにより好ましい。 The content of the epoxy resin in the thermosetting resin composition is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the entire thermosetting resin composition (nonvolatile content). Even more preferably, it is 50 to 65% by weight.
[吸湿性金属化合物]
 本発明の樹脂組成物は、耐透湿性をより向上させるために、さらに吸湿性金属酸化物を含有させることができる。ここで、「吸湿性金属酸化物」とは、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物を意味する。具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化バリウム等から選ばれる1種か、または2種以上の混合物若しくは固溶物である。2種以上の混合物若しくは固溶物の例としては、具体的には、焼成ドロマイト(酸化カルシウム及び酸化マグネシウムを含む混合物)、焼成ハイドロタルサイト(酸化カルシウムと酸化アルミニウムの固溶物)等が挙げられる。中でも、吸湿性が高い点、コスト、原料の安定性の点から、酸化カルシウム、酸化マグネシウム、ハイドロタルサイトが好ましく、より好ましくはハイドロタルサイトである。ハイドロタルサイトは吸水性を有するものであれば特に限定されない。ハイドロタルサイトとしては、例えば天然のハイドロタルサイト(MgAl(OH)16CO・4HO)および/または合成のハイドロタルサイト(ハイドロタルサイト様化合物)を挙げることができるが、吸湿剤として使用する場合、一般には、吸水性を向上させるためにハイドロタルサイトを焼成処理して化学構造中のOH量を減少させるか、または消失させた焼成ハイドロタルサイトが好ましく用いられる。好ましいハイドロタルサイトは、例えば、下記一般式(I)で表される合成ハイドロタルサイト(ハイドロタルサイト様化合物)の焼成体、下記一般式(II)で表される合成ハイドロタルサイト(ハイドロタルサイト様化合物)の焼成体等が挙げられる。
[Hygroscopic metal compound]
The resin composition of the present invention can further contain a hygroscopic metal oxide in order to further improve the moisture permeability resistance. Here, the “hygroscopic metal oxide” means a metal oxide that has a capability of absorbing moisture and chemically reacts with moisture that has been absorbed to become a hydroxide. Specifically, it is one kind selected from calcium oxide, magnesium oxide, strontium oxide, aluminum oxide, barium oxide or the like, or a mixture or solid solution of two or more kinds. Specific examples of the mixture or solid solution of two or more types include calcined dolomite (a mixture containing calcium oxide and magnesium oxide), calcined hydrotalcite (a solid solution of calcium oxide and aluminum oxide), and the like. It is done. Among these, calcium oxide, magnesium oxide, and hydrotalcite are preferable, and hydrotalcite is more preferable from the viewpoint of high hygroscopicity, cost, and stability of raw materials. Hydrotalcite is not particularly limited as long as it has water absorption. Examples of hydrotalcite include natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and / or synthetic hydrotalcite (hydrotalcite-like compound), When used as a hygroscopic agent, in general, calcined hydrotalcite is preferably used in which hydrotalcite is calcined to reduce the amount of OH in the chemical structure or disappear in order to improve water absorption. Preferred hydrotalcites include, for example, a sintered body of a synthetic hydrotalcite (hydrotalcite-like compound) represented by the following general formula (I), and a synthetic hydrotalcite (hydrotalc) represented by the following general formula (II) Site-like compound) and the like.
 [M2+ 1-x3+ (OH)x+・[(An-x/n・mHO]x- (I)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、M3+はAl3+、Fe3+などの3価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、0<x<1であり、0≦m<1であり、nは正の数である。)
[M 2+ 1-x M 3+ x (OH) 2 ] x + · [(A n− ) x / n · mH 2 O] x− (I)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, M 3+ represents a trivalent metal ion such as Al 3+, Fe 3+, A n- is CO 3 2-, Cl Represents an n-valent anion such as and NO 3 , 0 <x <1, 0 ≦ m <1, and n is a positive number.)
 M2+ Al(OH)2x+6-nz(An-・mHO (II)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを示し、xは2以上の正の数であり、zは2以下の正の数であり、mは正の数であり、nは正の数である。)
M 2+ x Al 2 (OH) 2x + 6-nz (A n− ) z · mH 2 O (II)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, A n- is CO 3 2-, Cl -, NO 3 - shows a n-valent anion, such as, x is 2 or more Z is a positive number of 2 or less, m is a positive number, and n is a positive number.)
 焼成ハイドロタルサイトは、好ましくは天然ハイドロタルサイト(MgAl(OH)16CO・4HO)および/または合成のハイドロタルサイト(ハイドロタルサイト様化合物)を焼成して、層間のアニオンと水分子を気化させて得られる、複合酸化物であり、好適には、400~900℃、より好ましくは、500~700℃で、30分~5時間、より好ましくは30分~3時間、さらに好ましくは45分~2時間焼成して得られる複合酸化物が挙げられる。 The calcined hydrotalcite is preferably obtained by calcining natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and / or synthetic hydrotalcite (hydrotalcite-like compound), A composite oxide obtained by vaporizing an anion and a water molecule, preferably at 400 to 900 ° C., more preferably at 500 to 700 ° C., for 30 minutes to 5 hours, more preferably for 30 minutes to 3 hours. More preferred is a composite oxide obtained by firing for 45 minutes to 2 hours.
 好ましい焼成ハイドロタルサイトは、上記式(II)の複水酸化物等のMg-Al系ハイドロタルサイト様化合物を焼成して得られるMg-Al系複合酸化物であり、該Mg-Al系複合酸化物は、MgとAlの組成比をMg:Al=x:2とした場合のxが2≦x≦6である組成比の複合酸化物がより好ましく、該xが3≦x≦6である組成比の複合酸化物がさらに好ましく、該xが4≦x≦6である組成比の複合酸化物が特に好ましい。 A preferred calcined hydrotalcite is a Mg—Al based composite oxide obtained by firing a Mg—Al based hydrotalcite-like compound such as a double hydroxide of the above formula (II), and the Mg—Al based composite oxide. The oxide is more preferably a composite oxide having a composition ratio where x is 2 ≦ x ≦ 6 when the composition ratio of Mg and Al is Mg: Al = x: 2, where x is 3 ≦ x ≦ 6. A composite oxide having a certain composition ratio is more preferable, and a composite oxide having a composition ratio in which x is 4 ≦ x ≦ 6 is particularly preferable.
 吸湿性金属酸化物は、種々の技術分野において吸湿材として公知であり、市販品を使用することができる。具体的には、酸化カルシウム(三共製粉社製「モイストップ#10」等)、酸化マグネシウム(協和化学工業社製「キョーワマグMF-150」、「キョーワマグMF-30」、タテホ化学工業社製「ピュアマグFNMG」等)、軽焼酸化マグネシウム(タテホ化学工業社製の「TATEHOMAG#500」、「TATEHOMAG#1000」、TATEHOMAG#5000」等)、焼成ドロマイト(吉澤石灰社製「KT」等)、焼成ハイドロタルサイト(協和化学工業社製「KW2200」、「DHT-4A」、「DHT-4A-2」、「DHT-4C」等)等が挙げられる。 The hygroscopic metal oxide is known as a hygroscopic material in various technical fields, and a commercially available product can be used. Specifically, calcium oxide (“Moystop # 10” manufactured by Sankyo Flour Milling Co., Ltd.), magnesium oxide (“Kyowa Mag MF-150”, “Kyowa Mag MF-30” manufactured by Kyowa Chemical Industry Co., Ltd., “Pure Mag” manufactured by Tateho Chemical Industry Co., Ltd. FNMG ”, etc.), lightly burned magnesium oxide (“ Tatehomag # 500 ”,“ Tatehomag # 1000 ”,“ Tatehomag # 5000 ”, etc., manufactured by Tateho Chemical Industries, Ltd.), calcined dolomite (“ Ysawa ”,“ KT ”etc.), calcined hydro Examples include talcite (“KW2200”, “DHT-4A”, “DHT-4A-2”, “DHT-4C”, etc., manufactured by Kyowa Chemical Industry Co., Ltd.).
 吸湿性金属酸化物は、表面処理剤で表面処理したものを用いることができる。表面処理に使用する表面処理剤としては、例えば、高級脂肪酸、アルキルシラン類、シランカップリング剤等を使用することができ、なかでも、高級脂肪酸、アルキルシラン類が好適である。表面処理剤は、1種または2種以上を使用できる。 As the hygroscopic metal oxide, a surface treated with a surface treatment agent can be used. As the surface treatment agent used for the surface treatment, for example, higher fatty acids, alkylsilanes, silane coupling agents and the like can be used, and among these, higher fatty acids and alkylsilanes are preferable. One or more surface treatment agents can be used.
 高級脂肪酸としては、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの炭素数18以上の高級脂肪酸が挙げられ、中でも、ステアリン酸が好ましい。これらは1種または2種以上組み合わせて使用してもよい。アルキルシラン類としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n-オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン及び11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらは1種または2種以上組み合わせて使用してもよい。 Examples of the higher fatty acid include higher fatty acids having 18 or more carbon atoms such as stearic acid, montanic acid, myristic acid, and palmitic acid, among which stearic acid is preferable. You may use these 1 type or in combination of 2 or more types. Alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltriethoxysilane, n-octadecyldimethyl ( And 3- (trimethoxysilyl) propyl) ammonium chloride. You may use these 1 type or in combination of 2 or more types. Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane ; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrime Amino silane cups such as xylsilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Ringing agents; Ureido silane coupling agents such as 3-ureidopropyltriethoxysilane, vinyl silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; p-styryltrimethoxysilane Styryl-based silane coupling agents; acrylate-based silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; 3-isocyanatopropyltrimethoxy Isocyanate-based silane coupling agents such as silane, sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) disulfide and bis (triethoxysilylpropyl) tetrasulfide; phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazole Examples thereof include silane and triazine silane. You may use these 1 type or in combination of 2 or more types.
 吸湿性金属酸化物の表面処理は、例えば、未処理の吸湿性金属酸化物を混合機で常温にて攪拌分散させながら、表面処理剤を添加噴霧して5~60分間攪拌することによって行なうことができる。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー、ヘンシェルミキサー及びコンクリートミキサー等のミキサー、ボールミル、カッターミル等が挙げられる。また、ボールミルなどで吸湿性金属酸化物を粉砕する際に、前記の高級脂肪酸、アルキルシラン類またはシランカップリング剤を混合し、表面処理する方法も可能である。表面処理剤の処理量は吸湿性金属酸化物の種類または表面処理剤の種類等によっても異なるが、吸湿性金属酸化物に対して1~10質量%が好ましい。 The surface treatment of the hygroscopic metal oxide is performed, for example, by adding and spraying the surface treatment agent and stirring for 5 to 60 minutes while stirring and dispersing the untreated hygroscopic metal oxide at room temperature with a mixer. Can do. As a mixer, a well-known mixer can be used, For example, blenders, such as V blender, a ribbon blender, and a bubble cone blender, mixers, such as a Henschel mixer and a concrete mixer, a ball mill, a cutter mill, etc. are mentioned. In addition, when the hygroscopic metal oxide is pulverized with a ball mill or the like, a method of surface treatment by mixing the higher fatty acid, alkylsilanes or silane coupling agent is also possible. The treatment amount of the surface treatment agent varies depending on the type of the hygroscopic metal oxide or the type of the surface treatment agent, but is preferably 1 to 10% by mass relative to the hygroscopic metal oxide.
 熱硬化性樹脂組成物中の吸湿性金属酸化物の含有量は、エポキシ樹脂80質量部に対して、好ましくは3~38質量部であり、耐透湿性、透過性の観点から、より好ましく5~35質量部であり、さらに好ましくは10~35質量部である。なお、吸湿性金属酸化物の含有量は熱硬化性樹脂組成物(不揮発分)全体あたり、2~24質量%であるのが好ましく、5~23質量%であるのがより好ましい。 The content of the hygroscopic metal oxide in the thermosetting resin composition is preferably 3 to 38 parts by mass with respect to 80 parts by mass of the epoxy resin, and more preferably 5% from the viewpoint of moisture resistance and permeability. Is 35 parts by mass, more preferably 10-35 parts by mass. The content of the hygroscopic metal oxide is preferably 2 to 24% by mass, more preferably 5 to 23% by mass, based on the entire thermosetting resin composition (nonvolatile content).
[無機充填材]
 本発明の熱硬化性樹脂組成物には、樹脂組成物の水分遮断性、封止シートを調製する際の樹脂組成物ワニスの塗工性(はじき防止)等の観点から、上述の吸湿性金属化合物以外の無機充填材をさらに含有させることができる。無機充填材としては、例えば、タルク、シリカ、アルミナ、硫酸バリウム、クレー、マイカ、雲母、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、ジルコン酸バリウム、ジルコン酸カルシウム、ケイ酸塩などが挙げられる。なお、高い透過率を維持する等の観点から、無機充填材の一次粒子の粒経は5μm以下が好ましく、更には1μm以下が好ましい。例えば、一次粒子の粒経が1~100nmのもの、より好ましくは1~50nmのもの、さらに好ましくは10~20nmのもの、とりわけ好ましくは10~15nmのものを用いることができる。1μm以下となるような無機充填材の1次粒子径の測定は比較的困難な場合があることから、比表面積測定値(JIS Z8830に準拠)からの換算値が用いられることがある。例えば、ナノ無機充填材は、BET比表面積が2720~27m/gのもの、好ましくは2720~54m/gであるもの、より好ましくは272~136m/gであるもの、より好ましくは272~181m/gであるものを用いることができる。
[Inorganic filler]
The thermosetting resin composition of the present invention includes the moisture-absorbing metal described above from the viewpoint of the moisture barrier property of the resin composition, the coating property (prevention of repelling) of the resin composition varnish when preparing a sealing sheet, and the like. An inorganic filler other than the compound can be further contained. Examples of inorganic fillers include talc, silica, alumina, barium sulfate, clay, mica, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride, aluminum borate, barium titanate, and titanic acid. Examples include strontium, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium zirconate, calcium zirconate, and silicate. From the standpoint of maintaining a high transmittance, the primary particle size of the inorganic filler is preferably 5 μm or less, and more preferably 1 μm or less. For example, primary particles having a particle size of 1 to 100 nm, more preferably 1 to 50 nm, even more preferably 10 to 20 nm, and particularly preferably 10 to 15 nm can be used. Since measurement of the primary particle diameter of an inorganic filler that is 1 μm or less may be relatively difficult, a converted value from a specific surface area measurement value (based on JIS Z8830) may be used. For example, the nano inorganic filler has a BET specific surface area of 2720 to 27 m 2 / g, preferably 2720 to 54 m 2 / g, more preferably 272 to 136 m 2 / g, more preferably 272. Those having a density of ˜181 m 2 / g can be used.
 無機充填材の粒子形態は特に限定されず、略球状、直方体状、板状、繊維のような直線形状、枝分かれした分岐形状を用いることができる。無機充填材は、タルク、シリカ、ゼオライト、酸化チタン、アルミナ、酸化ジルコニウム、ケイ酸塩、雲母、マイカ、水酸化マグネシウム、水酸化アルミニウム等が好ましく、より好ましくはシリカである。シリカとしては、湿式シリカ、乾式シリカ、コロイダルシリカ(水分散型、有機溶剤分散型、気相シリカ等)が好ましく、沈殿、沈降しにくく、樹脂との複合化がしやすいという観点から、有機溶剤分散型コロイダルシリカ(オルガノシリカゾル)が特に好ましい。 The particle form of the inorganic filler is not particularly limited, and may be a substantially spherical shape, a rectangular parallelepiped shape, a plate shape, a linear shape such as a fiber, or a branched shape. The inorganic filler is preferably talc, silica, zeolite, titanium oxide, alumina, zirconium oxide, silicate, mica, mica, magnesium hydroxide, aluminum hydroxide, and more preferably silica. As the silica, wet silica, dry silica, colloidal silica (water dispersion type, organic solvent dispersion type, gas phase silica, etc.) is preferable, and it is difficult to precipitate and settle, and it is easy to form a composite with a resin. Dispersed colloidal silica (organosilica sol) is particularly preferred.
 無機充填材は、市販品を使用でき、例えば、日本タルク社製「FG-15F」(タルク粉末)、日産化学工業社製「MEK-EC-2130Y」(アモルファスシリカ粒径10~15nm、不揮発分30質量%、MEK溶剤)、日産化学工業社製「PGM-AC-2140Y」(シリカ粒径10~15nm、不揮発分40質量%、PGM(プロピレングリコールモノメチルエーテル)溶剤)、日産化学工業社製「MIBK-ST」(シリカ粒径10~15nm、不揮発分30質量%、MIBK(メチルイソブチルケトン)溶剤)、扶桑化学工業社製コロイド状シリカゾル「PL-2L-MEK」(シリカ粒径15~20nm、不揮発分20質量%、MEK(メチルエチルケトン)溶剤)などが挙げられる。 As the inorganic filler, commercially available products can be used. For example, “FG-15F” (talc powder) manufactured by Nippon Talc, “MEK-EC-2130Y” manufactured by Nissan Chemical Industries, Ltd. (amorphous silica particle size of 10 to 15 nm, nonvolatile content) 30% by mass, MEK solvent), “PGM-AC-2140Y” manufactured by Nissan Chemical Industries, Ltd. (silica particle size 10-15 nm, nonvolatile content 40% by mass, PGM (propylene glycol monomethyl ether) solvent), manufactured by Nissan Chemical Industries, Ltd. MIBK-ST ”(silica particle size 10 to 15 nm, nonvolatile content 30% by mass, MIBK (methyl isobutyl ketone) solvent), colloidal silica sol“ PL-2L-MEK ”manufactured by Fuso Chemical Industries (silica particle size 15 to 20 nm, Nonvolatile content 20% by mass, MEK (methyl ethyl ketone) solvent) and the like.
 本発明において、無機充填材は1種または2種以上を使用できる。本発明の樹脂組成物が無機充填材を含有する場合、無機充填材の含有量は、樹脂組成物(不揮発分)全体あたり、10質量%以下であるのが好ましく、9質量%以下がより好ましい。 In the present invention, one or more inorganic fillers can be used. When the resin composition of the present invention contains an inorganic filler, the content of the inorganic filler is preferably 10% by mass or less, more preferably 9% by mass or less, based on the entire resin composition (nonvolatile content). .
[熱可塑性樹脂]
 熱硬化性樹脂組成物には、熱硬化性樹脂組成物層を硬化して得られる封止層への可撓性の付与、封止用シートを調製する際の熱硬化性樹脂組成物ワニスの塗工性(はじき防止)等の観点から、熱可塑性樹脂を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等を挙げることができる。これらの熱可塑性樹脂はいずれか1種を使用しても2種以上を混合して用いてもよい。熱硬化性樹脂組成物中の熱可塑性樹脂の含有量は、熱硬化性樹脂組成物(不揮発分)全体あたり1~40質量%が好ましく、5~30質量%がより好ましい。
[Thermoplastic resin]
In the thermosetting resin composition, the provision of flexibility to the sealing layer obtained by curing the thermosetting resin composition layer, the thermosetting resin composition varnish when preparing the sealing sheet From the viewpoint of coatability (prevention of repelling) and the like, a thermoplastic resin can be contained. Examples of the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polysulfone resin. Any one of these thermoplastic resins may be used, or two or more thereof may be mixed and used. The content of the thermoplastic resin in the thermosetting resin composition is preferably 1 to 40% by mass and more preferably 5 to 30% by mass with respect to the entire thermosetting resin composition (nonvolatile content).
 熱可塑性樹脂は、封止層への可撓性の付与、封止用シートを調製する際の熱硬化性樹脂組成物ワニスの塗工性(はじき防止)等の観点から、重量平均分子量が15,000以上であるのが好ましく、20,000以上がより好ましい。しかし、重量平均分子量が大きすぎると、エポキシ樹脂との相溶性が低下する等の傾向があることから、重量平均分子量は1,000,000以下であるのが好ましく、800,000以下がより好ましい。なお、ここでいう「熱可塑性樹脂の重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The thermoplastic resin has a weight average molecular weight of 15 from the viewpoint of imparting flexibility to the sealing layer and coating properties (preventing repelling) of the thermosetting resin composition varnish when preparing a sealing sheet. Is preferably 20,000 or more, and more preferably 20,000 or more. However, if the weight average molecular weight is too large, the compatibility with the epoxy resin tends to be reduced. Therefore, the weight average molecular weight is preferably 1,000,000 or less, more preferably 800,000 or less. . In addition, "the weight average molecular weight of a thermoplastic resin" here is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, Shodex K-800P / K-804L / K-804L manufactured by Showa Denko KK as a column, and mobile phase. It can be calculated by using a calibration curve of standard polystyrene by measuring at a column temperature of 40 ° C. using chloroform or the like.
 熱可塑性樹脂は、透過率が80%以上のものが好ましく、透過率が90%以上のものがより好ましい。熱可塑性樹脂は、上述した例示物の中でも、フェノキシ樹脂が特に好ましい。フェノキシ樹脂はエポキシ樹脂との相溶性が良く、熱硬化性樹脂組成物の透過性、耐透湿性に有利に作用する。 The thermoplastic resin preferably has a transmittance of 80% or more, and more preferably has a transmittance of 90% or more. Of the above-described examples, the thermoplastic resin is particularly preferably a phenoxy resin. The phenoxy resin has good compatibility with the epoxy resin, and acts advantageously on the permeability and moisture resistance of the thermosetting resin composition.
 フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格等から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂は1種または2種以上を使用できる。フェノキシ樹脂の市販品としては、例えば、三菱化学社製YX7200B35、1256、YX6954BH35等を好適に使用することができる。 The phenoxy resin has one or more skeletons selected from bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, etc. Is mentioned. One or more phenoxy resins can be used. As commercially available products of phenoxy resin, for example, YX7200B35, 1256, YX6954BH35 manufactured by Mitsubishi Chemical Corporation can be suitably used.
[カップリング剤]
 熱硬化性樹脂組成物には、熱硬化性樹脂組成物の接着強度向上の観点から、カップリング剤を含有させることができる。かかるカップリング剤としては、例えば、チタン系カップリング剤、アルミニウム系カップリング剤、シランカップリング剤等を挙げることができる。中でも、シランカップリング剤が好ましい。カップリング剤は1種または2種以上を組み合わせて使用することができる。
[Coupling agent]
The thermosetting resin composition can contain a coupling agent from the viewpoint of improving the adhesive strength of the thermosetting resin composition. Examples of such coupling agents include titanium coupling agents, aluminum coupling agents, silane coupling agents, and the like. Among these, a silane coupling agent is preferable. A coupling agent can be used 1 type or in combination of 2 or more types.
 シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらの中でも、エポキシ系シランカップリング剤が特に好適である。 Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropylto Amino silanes such as methoxysilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Coupling agents; Ureido silane coupling agents such as 3-ureidopropyltriethoxysilane, vinyl silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; p-styryltrimethoxysilane Styryl silane coupling agents such as; acrylate silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; Isocyanate-based silane coupling agents such as xysilane, sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) disulfide and bis (triethoxysilylpropyl) tetrasulfide; phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazole Examples thereof include silane and triazine silane. Among these, an epoxy-based silane coupling agent is particularly suitable.
 カップリング剤を使用する場合、熱硬化性樹脂組成物中のカップリング剤の含有量は、熱硬化性樹脂組成物(不揮発分)全体あたり、0.5~10質量%が好ましく、0.5~5質量%がより好ましい。カップリング剤の含有量がこの範囲外である場合、カップリング剤添加による密着性の改善効果を得ることができない。 When a coupling agent is used, the content of the coupling agent in the thermosetting resin composition is preferably 0.5 to 10% by mass with respect to the entire thermosetting resin composition (nonvolatile content). More preferable is 5% by mass. When the content of the coupling agent is outside this range, it is not possible to obtain an effect of improving the adhesion due to the addition of the coupling agent.
[硬化剤]
 エポキシ樹脂を含有する熱硬化性樹脂組成物は、通常、エポキシ樹脂の硬化剤を含有する。硬化剤はエポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、熱硬化性樹脂組成物の硬化処理時における有機EL素子等の発光素子の熱劣化を抑制する観点から、140℃以下(好ましくは120℃以下)の温度下でエポキシ樹脂を硬化し得るものが好ましい。
[Curing agent]
The thermosetting resin composition containing an epoxy resin usually contains an epoxy resin curing agent. Although it will not specifically limit if a hardening | curing agent has a function which hardens | cures an epoxy resin, From a viewpoint of suppressing the thermal deterioration of light emitting elements, such as an organic EL element at the time of the hardening process of a thermosetting resin composition, 140 degrees C or less Those capable of curing the epoxy resin at a temperature (preferably 120 ° C. or lower) are preferable.
 硬化剤として、例えば、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられる。中でも、速硬化性の点から、アミンアダクト系化合物(アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH-J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が特に好ましい。 Examples of the curing agent include primary amine, secondary amine, tertiary amine-based curing agent, polyaminoamide-based curing agent, dicyandiamide, and organic acid dihydrazide. Among these, amine adduct compounds (Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure from the viewpoint of fast curing properties. PN-40, Amicure PN-40J, etc. (all manufactured by Ajinomoto Fine Techno Co., Ltd.), organic acid dihydrazide (Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co., Ltd.)) and the like are particularly preferable.
 また、140℃以下(好ましくは120℃以下)の温度下でエポキシ樹脂を硬化し得るイオン液体、即ち、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩であって、エポキシ樹脂の硬化作用を有する塩も、硬化剤として特に好適に使用することができる。該イオン液体は、エポキシ樹脂に均一に溶解している状態で使用されるのが望ましい。また、イオン液体は、熱可塑性樹脂組成物の硬化物の耐透湿性向上に有利に作用する。 An ionic liquid capable of curing the epoxy resin at a temperature of 140 ° C. or lower (preferably 120 ° C. or lower), that is, a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower), A salt having a curing action of the resin can also be used particularly suitably as a curing agent. The ionic liquid is desirably used in a state where it is uniformly dissolved in the epoxy resin. In addition, the ionic liquid has an advantageous effect on improving the moisture permeation resistance of the cured product of the thermoplastic resin composition.
 かかるイオン液体を構成するカチオンとしては、イミダゾリウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン、ピリジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。 Examples of the cation constituting the ionic liquid include imidazolium ions, piperidinium ions, pyrrolidinium ions, pyrazonium ions, guanidinium ions, pyridinium ions, and other ammonium-based cations; tetraalkylphosphonium cations (for example, tetrabutylphosphonium ions, Phosphonium cations such as tributylhexyl phosphonium ion; and sulfonium cations such as triethylsulfonium ion.
 また、かかるイオン液体を構成するアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2-メトキシフェノールイオン、2,6-ジ-tert-ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン等の下記式(1)で示されるN-アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。 Examples of the anion constituting the ionic liquid include halide anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkyl sulfate anions such as methanesulfonate ion; trifluoromethanesulfonate ion, Fluorine-containing compound anions such as hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, 2-methoxy Phenolic anions such as phenol ion and 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; glycine ion, alanine ion, pheny Neutral amino acid ions such as alanine ion; N-acyl amino acid ions represented by the following formula (1) such as N-benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion; formate ion, acetate ion, decanoic acid Examples thereof include carboxylic acid anions such as ions, 2-pyrrolidone-5-carboxylate ions, α-lipoic acid ions, lactate ions, tartrate ions, hippurate ions, N-methylhippurate ions, and benzoate ions.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Rは炭素数1~5の直鎖または分岐鎖の炭化水素基、或いは、置換または無置換のフェニル基であり、Xはアミノ酸の側鎖を表す。アミノ酸としては、例えば、アスパラギン酸、グルタミン酸、グリシン、アラニン、フェニルアラニンなどが挙げられる。) (In the formula, R is a linear or branched hydrocarbon group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenyl group, and X represents a side chain of an amino acid. Examples of amino acids include asparagine. Acid, glutamic acid, glycine, alanine, phenylalanine, etc.)
 上述の中でも、カチオンは、アンモニウム系カチオン、ホスホニウム系カチオンが好ましく、イミダゾリウムイオン、ホスホニウムイオンがより好ましい。イミダゾリウムイオンは、より詳細には、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-プロピル-3-メチルイミダゾリウムイオン等である。 Among the above, the cation is preferably an ammonium cation or a phosphonium cation, and more preferably an imidazolium ion or a phosphonium ion. More specifically, the imidazolium ion is 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion or the like.
 また、アニオンは、フェノール系アニオン、式(1)で示されるN-アシルアミノ酸イオンまたはカルボン酸系アニオンが好ましく、N-アシルアミノ酸イオンまたはカルボン酸系アニオンがより好ましい。 The anion is preferably a phenolic anion, an N-acyl amino acid ion or a carboxylic acid anion represented by the formula (1), and more preferably an N-acyl amino acid ion or a carboxylic acid anion.
 フェノール系アニオンの具体例としては、2,6-ジ-tert-ブチルフェノールイオンが挙げられる。また、カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオンが好ましく、酢酸イオン、N-メチル馬尿酸イオン、ギ酸イオンが殊更好ましい。また、式(1)で示されるN-アシルアミノ酸イオンの具体例としては、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N-アセチルグリシンイオン等が挙げられ、中でも、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオンが好ましく、N-アセチルグリシンイオンが殊更好ましい。 Specific examples of the phenolic anion include 2,6-di-tert-butylphenol ion. Specific examples of the carboxylate anion include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, α-lipoic acid ion, lactate ion, tartrate ion, hippurate ion, N- Methyl hippurate ion and the like, among which acetate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, lactate ion, tartrate ion, hippurate ion and N-methylhippurate ion are preferable, acetate ion, N -Methyl hippurate ion and formate ion are particularly preferred. Specific examples of the N-acylamino acid ion represented by the formula (1) include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion and the like. N-benzoylalanine ion, N-acetylphenylalanine ion and N-acetylglycine ion are preferable, and N-acetylglycine ion is particularly preferable.
 具体的なイオン液体としては、例えば、1-ブチル-3-メチルイミダゾリウムラクテート、テトラブチルホスホニウム-2-ピロリドン-5-カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα-リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N-メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル-DL-アラニンテトラブチルホスホニウム塩、N-アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6-ジ-tert-ブチルフェノールテトラブチルホスホニウム塩、L-アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムラクテート、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩、酒石酸ビス(1-エチル-3-メチルイミダゾリウム)塩、N-アセチルグリシン1-エチル-3-メチルイミダゾリウム塩が好ましく、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩が殊更好ましい。 Specific ionic liquids include, for example, 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium tri Fluoroacetate, tetrabutylphosphonium α-lipoate, tetrabutylphosphonium formate, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium hippurate, tetrabutylphosphonium N-methylhippurate, benzoyl-DL -Alanine tetrabutylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenoltetrabutylphospho Um salt, L-aspartate monotetrabutylphosphonium salt, glycine tetrabutylphosphonium salt, N-acetylglycine tetrabutylphosphonium salt, 1-ethyl-3-methylimidazolium lactate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium formate, 1-ethyl-3-methylimidazolium hippurate, 1-ethyl-3-methylimidazolium N-methylhippurate, bis (1-ethyl-3-tartrate) Methyl imidazolium) salt, N-acetylglycine 1-ethyl-3-methylimidazolium salt, N-acetylglycine tetrabutylphosphonium salt, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-formate Methylimidazolium salt, 1-ethyl hippurate Particularly preferred are 3-methylimidazolium salt and 1-ethyl-3-methylimidazolium salt of N-methylhippuric acid.
 上記イオン液体の合成法としては、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウムおよびアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位から構成される前駆体に、NaBF、NaPF、CFSONaやLiN(SOCF等を反応させるアニオン交換法、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法、およびアミン類を有機酸で中和して塩を得る中和法等があるが、これらに限定されない。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを等量使用し、得られた反応液中の溶媒を留去して、そのまま用いることも可能であるし、さらに有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)を差し液濃縮しても構わない。 As a method for synthesizing the ionic liquid, a precursor composed of a cation moiety such as an alkylimidazolium, alkylpyridinium, alkylammonium and alkylsulfonium ions and an anion moiety containing a halogen is added to NaBF 4 , NaPF 6 , CF 3 SO 3 Anion exchange method in which Na, LiN (SO 2 CF 3 ) 2 or the like is reacted, an acid ester in which an organic acid residue becomes a counter anion while introducing an alkyl group by reacting an amine substance with an acid ester Methods, and neutralization methods in which amines are neutralized with an organic acid to obtain a salt, but are not limited thereto. In the neutralization method using an anion, a cation, and a solvent, it is possible to use an anion and a cation in equal amounts, distill off the solvent in the obtained reaction solution, and use it as it is. Furthermore, an organic solvent (methanol, (Toluene, ethyl acetate, acetone, etc.) may be added and concentrated.
 熱硬化性樹脂組成物中の硬化剤の含有量は、熱硬化性樹脂組成物中に含まれるエポキシ樹脂の総量(不揮発分)に対し、0.1~50質量%であるのが好ましい。該含有量が0.1質量%よりも少ないと、充分な硬化性が得られないおそれがあり、50質量%より多いと、熱硬化性樹脂組成物の保存安定性が損なわれることがある。なお、イオン液体を使用する場合、その量は、熱硬化性樹脂組成物の硬化物の耐透湿性等の観点から、エポキシ樹脂の総量(不揮発分)に対し0.1~10質量%が好ましい。 The content of the curing agent in the thermosetting resin composition is preferably 0.1 to 50% by mass with respect to the total amount (nonvolatile content) of the epoxy resin contained in the thermosetting resin composition. If the content is less than 0.1% by mass, sufficient curability may not be obtained. If the content is more than 50% by mass, the storage stability of the thermosetting resin composition may be impaired. When an ionic liquid is used, the amount thereof is preferably 0.1 to 10% by mass with respect to the total amount (nonvolatile content) of the epoxy resin from the viewpoint of moisture resistance of the cured product of the thermosetting resin composition. .
 硬化剤としてイオン液体を使用する場合、イオン液体とともに分子内にチオール基を2個以上有するポリチオール化合物を熱硬化性樹脂組成物に含有させてもよい。分子内にチオール基を2個以上有するポリチオール化合物を含有させることで硬化速度を速めることができる。分子内にチオール基を2個以上有するポリチオール化合物の具体例としては、例えば、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ジペンタエリスリトールポリ(β-チオプロピオネート)等のポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物が挙げられる。かかるチオール化合物は、製造上塩基性物質の使用を必要としない、分子内にチオール基を2個以上有するチオール化合物である。 When an ionic liquid is used as the curing agent, a polythiol compound having two or more thiol groups in the molecule together with the ionic liquid may be contained in the thermosetting resin composition. Inclusion of a polythiol compound having two or more thiol groups in the molecule can increase the curing speed. Specific examples of the polythiol compound having two or more thiol groups in the molecule include, for example, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris ( Examples include thiol compounds obtained by esterification reaction of polyols such as β-thiopropionate), pentaerythritol tetrakis (β-thiopropionate), dipentaerythritol poly (β-thiopropionate) and mercapto organic acid. It is done. Such a thiol compound is a thiol compound having two or more thiol groups in the molecule, which does not require the use of a basic substance for production.
 また、分子内にチオール基を2個以上有するポリチオール化合物としては、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール等のアルキルポリチオール化合物;末端チオール基含有ポリエーテル;末端チオール基含有ポリチオエーテル;エポキシ化合物と硫化水素との反応によって得られるチオール化合物;ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等を挙げることができる。なお、エポキシ化合物と硫化水素との反応によって得られるチオール化合物や、ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等で、その製造工程上反応触媒として塩基性物質を使用するものにあっては、脱アルカリ処理を行い、アルカリ金属イオン濃度を50ppm以下としたものを使用するのが好ましい。かかる脱アルカリ処理の方法としては、例えば処理を行うポリチオール化合物をアセトン、メタノールなどの有機溶媒に溶解し、希塩酸、希硫酸等の酸を加えることにより中和した後、抽出・洗浄等により脱塩する方法やイオン交換樹脂を用いて吸着する方法、蒸留により精製する方法等が挙げられるが、これらに限定されるものではない。 Examples of the polythiol compound having two or more thiol groups in the molecule include alkyl polythiol compounds such as 1,4-butanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol; terminal thiol group-containing polyether; Examples include a terminal thiol group-containing polythioether; a thiol compound obtained by a reaction between an epoxy compound and hydrogen sulfide; a thiol compound having a terminal thiol group obtained by a reaction between a polythiol compound and an epoxy compound. In addition, thiol compounds obtained by reaction of epoxy compounds and hydrogen sulfide, thiol compounds having terminal thiol groups obtained by reaction of polythiol compounds and epoxy compounds, etc., using basic substances as reaction catalysts in the production process It is preferable to use what has been subjected to dealkalization treatment and has an alkali metal ion concentration of 50 ppm or less. As a method for such dealkalization treatment, for example, the polythiol compound to be treated is dissolved in an organic solvent such as acetone or methanol, neutralized by adding an acid such as dilute hydrochloric acid or dilute sulfuric acid, and then desalted by extraction or washing. A method of adsorbing using an ion exchange resin, a method of purification by distillation, and the like, but are not limited thereto.
 かかるポリチオール化合物を使用する場合、ポリチオール化合物の配合量/SH当量とエポキシ樹脂の配合量/エポキシ当量の比(即ち、「(ポリチオール化合物の配合量/SH当量)/(エポキシ樹脂の配合量/エポキシ当量)」)が0.2~1.2となるように、エポキシ樹脂とポリチオール化合物を混合することが好ましい。この比が0.2よりも小さいと、充分な速硬化性が得られない場合があり、他方、1.2より多いと、耐熱性などの硬化物の物性が損なわれる場合がある。接着性が安定するという観点から、この比は0.5~1.0であるのがより好ましい。ここで「SH当量」とは「ポリチオール化合物の分子量/SH基の数」を意味し、「エポキシ当量」とは「エポキシ樹脂の分子量/エポキシ基の数」を意味する。 When such a polythiol compound is used, the ratio of the blend amount of the polythiol compound / SH equivalent to the blend amount of the epoxy resin / epoxy equivalent (ie, “(blend amount of polythiol compound / SH equivalent) / (blend amount of epoxy resin / epoxy) It is preferable to mix the epoxy resin and the polythiol compound so that the equivalent)) ”) is 0.2 to 1.2. If this ratio is less than 0.2, sufficient fast curability may not be obtained, while if it is more than 1.2, physical properties of the cured product such as heat resistance may be impaired. From the viewpoint of stabilizing the adhesiveness, this ratio is more preferably 0.5 to 1.0. Here, “SH equivalent” means “molecular weight of polythiol compound / number of SH groups”, and “epoxy equivalent” means “molecular weight of epoxy resin / number of epoxy groups”.
[硬化促進剤]
 エポキシ樹脂を含有する熱硬化性樹脂組成物は、硬化時間を調整する等の目的で硬化促進剤を含有してもよい。硬化促進剤としては、例えば、有機ホスフィン化合物、イミダゾール化合物、アミンアダクト化合物(例えば、エポキシ樹脂に3級アミンを付加させて反応を途中で止めているエポキシアダクト化合物等)、3級アミン化合物などが挙げられる。有機ホスフィン化合物の具体例としては、TPP、TPP-K、TPP-S、TPTP-S(北興化学工業社の商品名)などが挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2E4MZ、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2MZOK、2MA-OK、2PHZ(四国化成工業社の商品名)などが挙げられる。アミンアダクト化合物の具体例としては、フジキュア(富士化成工業社の商品名)などが挙げられる。3級アミン化合物の具体例としては、DBU(1,8-diazabicyelo[5.4.0]undec-7-ene)、DBUの2-エチルヘキサン酸塩、オクチル酸塩などのDBU-有機酸塩、U-3512T(サンアプロ社製)等の芳香族ジメチルウレア、U-3503N(サンアプロ社製)等の脂肪族ジメチルウレアなどが挙げられる。中でも防湿性の点からウレア化合物が好ましく、芳香族ジメチルウレアが特に好ましく用いられる。熱硬化性樹脂組成物中の硬化促進剤の含有量は、熱硬化性樹脂組成物中のエポキシ樹脂の総量を100質量%(不揮発分)とした場合、通常0.05~5質量%である。0.05質量%未満であると、硬化が遅くなり熱硬化時間が長く必要となる傾向にあり、5質量%を超えると熱硬化性樹脂組成物の保存安定性が低下する傾向となる。
[Curing accelerator]
The thermosetting resin composition containing an epoxy resin may contain a curing accelerator for the purpose of adjusting the curing time. Examples of the curing accelerator include organic phosphine compounds, imidazole compounds, amine adduct compounds (for example, epoxy adduct compounds in which a tertiary amine is added to an epoxy resin to stop the reaction, etc.), tertiary amine compounds, and the like. Can be mentioned. Specific examples of the organic phosphine compound include TPP, TPP-K, TPP-S, and TPTP-S (trade name of Hokuko Chemical Co., Ltd.). Specific examples of the imidazole compound include Curazole 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZOK, 2MA-OK, and 2PHZ (trade names of Shikoku Kasei Kogyo Co., Ltd.). Specific examples of amine adduct compounds include Fuji Cure (trade name of Fuji Kasei Kogyo Co., Ltd.). Specific examples of the tertiary amine compounds include DBU (1,8-diazabicyelo [5.4.0] undec-7-ene), DBU 2-ethylhexanoate, octylate and other DBU-organic acid salts, U And aromatic dimethylurea such as U-3503T (manufactured by San Apro), and the like. Of these, urea compounds are preferable from the viewpoint of moisture resistance, and aromatic dimethylurea is particularly preferably used. The content of the curing accelerator in the thermosetting resin composition is usually 0.05 to 5% by mass when the total amount of the epoxy resin in the thermosetting resin composition is 100% by mass (nonvolatile content). . If it is less than 0.05% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 5% by mass, the storage stability of the thermosetting resin composition tends to decrease.
 熱硬化性樹脂組成物は、上述した成分以外の各種添加剤を任意で含有させても良い。このような添加剤としては、例えば、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤またはレベリング剤、トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤等を挙げることができる。 The thermosetting resin composition may optionally contain various additives other than the components described above. Examples of such additives include organic fillers such as silicone powder, nylon powder, and fluororesin powder, thickeners such as olben and benton, silicone-based, fluorine-based, and polymer-based antifoaming agents or leveling agents. , Adhesion imparting agents such as triazole compounds, thiazole compounds, triazine compounds, and porphyrin compounds.
 熱硬化性樹脂組成物は、成分を、必要により有機溶剤等をさらに加えて、混練ローラーや回転ミキサーなどを用いて混合することで調製される。 The thermosetting resin composition is prepared by further adding components with an organic solvent, if necessary, and mixing them using a kneading roller or a rotating mixer.
 封止用シートは、当業者に公知の方法、例えば、有機溶剤に熱硬化性樹脂組成物を溶解したワニスを調製し、支持体上にワニスを塗布し、さらに加熱または熱風吹きつけ等によって有機溶剤を乾燥させて熱硬化性樹脂組成物層を形成させることによって製造することができる。乾燥後の熱硬化性樹脂組成物層の厚さは、好ましくは3~100μm、より好ましくは5~50μm、さらに好ましくは5~20μmである。 The sealing sheet is prepared by a method known to those skilled in the art, for example, by preparing a varnish in which a thermosetting resin composition is dissolved in an organic solvent, applying the varnish on a support, and further heating or blowing hot air. It can manufacture by drying a solvent and forming a thermosetting resin composition layer. The thickness of the thermosetting resin composition layer after drying is preferably 3 to 100 μm, more preferably 5 to 50 μm, still more preferably 5 to 20 μm.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ等のセロソルブ類、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。かかる有機溶剤はいずれか1種を単独で使用しても2種以上を組み合わせて用いてもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolves such as cellosolve, Examples thereof include carbitols such as butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. One of these organic solvents may be used alone, or two or more thereof may be used in combination.
 封止用シートのための支持体としては、例えば、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリイミド(PI)、シクロオレフィンポリマー(COP)、ポリ塩化ビニル等のプラスチックフィルムが挙げられる。プラスチックフィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマーが好ましい。 Examples of the support for the sealing sheet include polyolefins such as polyethylene and polypropylene (PP), polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polyimide (PI), Examples thereof include plastic films such as cycloolefin polymer (COP) and polyvinyl chloride. As the plastic film, polyethylene terephthalate, polyethylene naphthalate, and cycloolefin polymer are preferable.
 封止用シートの防湿性を向上させるために、バリア層を有するプラスチックフィルムを支持体として用いてもよい。バリア層としては、例えば、窒化ケイ素等の窒化物、酸化アルミニウム等の酸化物、ステンレス鋼、アルミニウム等の金属等が挙げられる。バリア層を有するプラスチックフィルムを支持体としては、プラスチックフィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネートおよびシクロオレフィンポリマーからなる群から選ばれる少なくとも一つであるものが好ましく、プラスチックフィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレートおよびシクロオレフィンポリマーからなる群から選ばれる少なくとも一つであるものがより好ましく、プラスチックフィルムがポリエチレンテレフタレートであるものがさらに好ましい。バリア層を有するプラスチックフィルムは市販品を使用してもよい。アルミ箔付きポリエチレンテレフタレートフィルムの市販品としては、例えば、東海東洋アルミ販売社製「アルペット1N30」、福田金属社製「アルペット3025」等が挙げられる。 In order to improve the moisture resistance of the sealing sheet, a plastic film having a barrier layer may be used as a support. Examples of the barrier layer include nitrides such as silicon nitride, oxides such as aluminum oxide, metals such as stainless steel and aluminum, and the like. As a support for a plastic film having a barrier layer, the plastic film is preferably at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate and cycloolefin polymer, and the plastic film is polyethylene terephthalate, More preferred is at least one selected from the group consisting of polyethylene naphthalate and cycloolefin polymer, and more preferred is that the plastic film is polyethylene terephthalate. A commercial product may be used as the plastic film having the barrier layer. Examples of commercially available polyethylene terephthalate films with aluminum foil include “Alpet 1N30” manufactured by Tokai Toyo Aluminum Sales Co., “Alpet 3025” manufactured by Fukuda Metals Co., Ltd.
 支持体には、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理、マット処理、コロナ処理等が施されていてもよい。支持体の厚さは、特に限定されないが、封止用シートの取扱い性等の観点から、好ましくは20~200μm、より好ましくは20~125μmである。 The support may be subjected to a release treatment using a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, a mat treatment, a corona treatment, or the like. The thickness of the support is not particularly limited, but is preferably 20 to 200 μm, more preferably 20 to 125 μm, from the viewpoint of the handleability of the sealing sheet.
 熱硬化性樹脂組成物層は、その表面へのゴミ等の付着やキズを防止するため、カバーフィルムで保護されていてもよい。なお該カバーフィルムは、封止用シートと有機EL素子基板とのラミネート前に剥離される。カバーフィルムは、支持体と同様のプラスチックフィルムを用いることが好ましい。また、カバーフィルムには、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理、マット処理、コロナ処理等が施されていてもよい。カバーフィルムの厚さは特に制限されないが、例えば15~75μm、好ましくは15~50μmである。 The thermosetting resin composition layer may be protected with a cover film in order to prevent dust from adhering to the surface and scratches. The cover film is peeled off before laminating the sealing sheet and the organic EL element substrate. The cover film is preferably a plastic film similar to the support. The cover film may be subjected to a release treatment with a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, a mat treatment, a corona treatment, or the like. The thickness of the cover film is not particularly limited, but is, for example, 15 to 75 μm, preferably 15 to 50 μm.
[有機EL素子基板]
 有機EL素子基板の基板(以下「基板」と略称することがある)は特に限定されず、公知のものを使用することができる。基板は、好ましくはガラス、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)およびシクロオレフィンポリマー(COP)からなる群から選ばれる少なくとも一つである。
[Organic EL element substrate]
The substrate of the organic EL element substrate (hereinafter sometimes abbreviated as “substrate”) is not particularly limited, and a known substrate can be used. The substrate is preferably at least one selected from the group consisting of glass, polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and cycloolefin polymer (COP).
 基板の厚さは、好ましくは0.1~1.0mm、より好ましくは0.1~0.7mmである。有機EL素子の厚さは、通常0.01~1μm、好ましくは0.05~0.5μmである。 The thickness of the substrate is preferably 0.1 to 1.0 mm, more preferably 0.1 to 0.7 mm. The thickness of the organic EL element is usually 0.01 to 1 μm, preferably 0.05 to 0.5 μm.
 有機EL素子からの光を取り出すために、有機EL素子基板の基板および封止用シートの支持体のいずれか一方が透明であることが必要である。例えば、封止用シートに不透明な支持体(例えば、不透明なバリア層を有するプラスチックフィルム)を使用する場合、基板側から光を取り出すために、透明な基板を使用する必要がある。 In order to extract light from the organic EL element, it is necessary that either the substrate of the organic EL element substrate or the support for the sealing sheet is transparent. For example, when an opaque support (for example, a plastic film having an opaque barrier layer) is used for the sealing sheet, it is necessary to use a transparent substrate in order to extract light from the substrate side.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
<イオン液体硬化剤の作製>
 テトラブチルホスホニウムハイドロキサイド水溶液(北興化学工業社製、濃度41.4質量%)20.0gに対し、0℃にてN-アセチルグリシン(東京化成工業社製)3.54gを加え10分間攪拌した。エバポレーターを用いて40~50mmHgに減圧し、60~80℃にて2時間、90℃にて5時間濃縮した。室温にて酢酸エチル(純正化学社製)14.2mLに再度溶解し、エバポレーターを用いて40~50mmHgに減圧し、減圧下70~90℃にて3時間濃縮して、N-アセチルグリシンテトラブチルホスホニウム塩11.7g(純度96.9%)をオイル状化合物として得た。
<Production of ionic liquid curing agent>
To 20.0 g of tetrabutylphosphonium hydroxide aqueous solution (Hokuko Chemical Co., Ltd., concentration: 41.4% by mass), 3.54 g of N-acetylglycine (Tokyo Chemical Industry Co., Ltd.) was added at 0 ° C. and stirred for 10 minutes. did. The pressure was reduced to 40-50 mmHg using an evaporator, and the mixture was concentrated at 60-80 ° C. for 2 hours and at 90 ° C. for 5 hours. Redissolve in 14.2 mL of ethyl acetate (manufactured by Junsei Co., Ltd.) at room temperature, depressurize to 40-50 mmHg using an evaporator, concentrate at 70-90 ° C. under reduced pressure for 3 hours, and N-acetylglycinetetrabutyl 11.7 g (purity 96.9%) of the phosphonium salt was obtained as an oily compound.
<封止用シート1の作製>
 液状ビスフェノールA型エポキシ樹脂(三菱化学社製「jER828EL」、エポキシ当量約185g/eq)56質量部と、シランカップリング剤(信越化学工業社製「KBM403」)1.2質量部と、タルク粉末(日本タルク社製「FG-15F」)2質量部、および焼成ハイドロタルサイト(協和化学工業社製「KW2200」)15質量部を混練後、3本ロールミルにて分散を行い、混合物を得た。
<Preparation of sealing sheet 1>
56 parts by mass of liquid bisphenol A type epoxy resin (Mitsubishi Chemical "jER828EL", epoxy equivalent of about 185 g / eq), 1.2 parts by mass of silane coupling agent (Shin-Etsu Chemical "KBM403"), talc powder 2 parts by mass (“FG-15F” manufactured by Nippon Talc Co., Ltd.) and 15 parts by mass of calcined hydrotalcite (“KW2200” manufactured by Kyowa Chemical Industry Co., Ltd.) were kneaded and then dispersed in a three-roll mill to obtain a mixture. .
 硬化促進剤(サンアプロ社製「U-3512T」)1.5質量部を、フェノキシ樹脂のメチルエチルケトン(MEK)溶液(三菱化学社製「YX7200B35」、濃度35質量%)81質量部(フェノキシ樹脂28.4質量部)に溶解させた混合物に、3本ロールミルにより分散して調製した上記混合物と、固形ビスフェノールA型エポキシ樹脂(三菱化学社製「jER1001」、エポキシ当量約475g/eq)のMEK溶液(濃度80質量%)30質量部と、有機溶剤分散型コロイダルシリカ(シリカ粒径10~15nm、不揮発分30質量%、MEK溶剤、日産化学工業社製「MEK-EC-2130Y」)20質量部と、イオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)3質量部を配合し、高速回転ミキサーで均一に分散して樹脂組成物ワニスを得た。 1.5 parts by mass of a curing accelerator (“U-3512T” manufactured by San Apro Co., Ltd.) and 81 parts by mass of a methyl ethyl ketone (MEK) solution of phenoxy resin (“YX7200B35” manufactured by Mitsubishi Chemical Co., Ltd., concentration 35% by mass) (phenoxy resin 28. MEK solution (solid bisphenol A type epoxy resin (“jER1001” manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent of about 475 g / eq)) prepared by dispersing the mixture in a mixture dissolved in 4 parts by mass with a three-roll mill. 30 parts by weight of an organic solvent-dispersed colloidal silica (silica particle size 10-15 nm, nonvolatile content 30% by weight, MEK solvent, “MEK-EC-2130Y” manufactured by Nissan Chemical Industries, Ltd.) And 3 parts by weight of an ionic liquid curing agent (N-acetylglycine tetrabutylphosphonium salt) Uniformly dispersed to obtain a resin composition varnish Sir.
 次に、得られた樹脂組成物ワニスをアルキッド系離型剤で処理されたポリエチレンテレフタレートフィルム(以下「支持体PETフィルム」と略称する)(厚さ38μm)上に、乾燥後の樹脂組成物層の厚さが20μmとなるようにダイコーターにて均一に塗布し、80~100℃(平均90℃)で5分間乾燥した(樹脂組成物層中の残留溶媒量約2質量%)。次いで、カバーフィルムとしてアルキッド系離型剤で処理された厚さ38μmのポリエチレンテレフタレートフィルム(以下「カバーPETフィルム」と略称する)を樹脂組成物層の表面に貼り合わせながらロール状に巻き取った。ロール状の封止用シートを幅507mmにスリットし、507×336mmサイズの封止用シート1を得た。 Next, the obtained resin composition varnish is dried on a polyethylene terephthalate film (hereinafter abbreviated as “support PET film”) (thickness 38 μm) treated with an alkyd mold release agent. The film was uniformly coated with a die coater so as to have a thickness of 20 μm and dried at 80 to 100 ° C. (average 90 ° C.) for 5 minutes (the amount of residual solvent in the resin composition layer was about 2% by mass). Next, a 38 μm-thick polyethylene terephthalate film (hereinafter abbreviated as “cover PET film”) treated with an alkyd release agent as a cover film was wound into a roll while being bonded to the surface of the resin composition layer. The roll-shaped sealing sheet was slit to a width of 507 mm to obtain a sealing sheet 1 having a size of 507 × 336 mm.
<封止用シート2~4の作製>
 封止用シート1および以下の支持体2~4のいずれかを用いて、封止用シート2~4を作製した。
・バリア層を有するプラスチックフィルム
 支持体2:東海東洋アルミ販売社製「アルペット1N30」(プラスチックフィルム:厚さ25μmのPET、バリア層:厚さ30μmのアルミニウム箔)
 支持体3:プラスチックフィルム(厚さ125μmのPET)上に接着層、バリア層(無機物蒸着層)が順に設けられたフィルム
・バリア層を有さないプラスチックフィルム
 支持体4:東レ社製「ルミラーT60」(厚さ100μmのPET)
<Preparation of sealing sheets 2 to 4>
Using the sealing sheet 1 and any of the following supports 2 to 4, sealing sheets 2 to 4 were produced.
-Plastic film having a barrier layer Support 2: “Alpet 1N30” manufactured by Tokai Toyo Aluminum Sales Co., Ltd. (plastic film: PET with a thickness of 25 μm, barrier layer: aluminum foil with a thickness of 30 μm)
Support 3: a plastic film (PET having a thickness of 125 μm) in which an adhesive layer and a barrier layer (inorganic vapor deposition layer) are sequentially provided. A plastic film without a barrier layer. Support 4: “Lumirror T60” manufactured by Toray Industries, Inc. (PET with a thickness of 100 μm)
 幅25mmおよび長さ100mmにカットした支持体に、カバーPETフィルムを剥離した封止用シート1(幅20mm、長さ50mm)を、熱硬化性樹脂組成物層が支持体2~4のいずれかに接触するように重ね合わせた。なお、バリア層を有する支持体2または3を使用する場合、該バリア層に熱硬化性樹脂組成物層が接触するように、カバーPETフィルムを剥離した封止用シート1と支持体2または3とを重ね合わせた。重ね合わせたものを、ロールラミネーターVA770H(大成ラミネーター社製、ラミネート温度80℃、ロール速度0.5mL/分、ロール圧0.1MPa)を用いてラミネートし、熱硬化性樹脂組成物層を各支持体2~4上に有する各封止用シート2~4を得た。 A sealing sheet 1 (width 20 mm, length 50 mm) from which a cover PET film has been peeled off is applied to a support cut to a width of 25 mm and a length of 100 mm, and the thermosetting resin composition layer is one of the supports 2 to 4 Overlaid so that it touches. In addition, when using the support body 2 or 3 which has a barrier layer, the sheet | seat 1 for sealing and support body 2 or 3 which peeled the cover PET film so that a thermosetting resin composition layer might contact this barrier layer. And superimposed. The superposed ones are laminated using a roll laminator VA770H (manufactured by Taisei Laminator Co., Ltd., laminating temperature 80 ° C., roll speed 0.5 mL / min, roll pressure 0.1 MPa) to support each thermosetting resin composition layer. The sealing sheets 2 to 4 on the bodies 2 to 4 were obtained.
<実施例1>
(1)平滑性およびボイド評価用サンプルの作製
 線状の銅箔と銅箔が無い部分とで縞模様を構成するようにエッチングされた銅箔付ポリイミドテープ(三井金属社製、品名「AJ-C0002-30/40」、銅箔厚さ5μm、ポリイミド厚さ40μm、(線状の銅箔(ライン)の幅15μm、銅箔が無い部分(スペース)の幅15μm)をパターン基板として用いて、以下のようにして平滑性およびボイド評価用サンプルを作製した。
<Example 1>
(1) Preparation of samples for evaluation of smoothness and voids Polyimide tape with copper foil etched to form a striped pattern with a linear copper foil and a portion without copper foil (product name “AJ-”, manufactured by Mitsui Kinzoku Co., Ltd.) C0002-30 / 40 ”, copper foil thickness 5 μm, polyimide thickness 40 μm, (linear copper foil (line) width 15 μm, copper foil-free portion (space) width 15 μm) as a pattern substrate, Samples for smoothness and void evaluation were produced as follows.
 厚さ0.8mmのステンレス鋼(SUS)板の上にパターン基板を仮止めした。封止用シート1からカバーPETフィルムを剥離し、熱硬化性樹脂組成物層がパターン基板と接するようにパターン基板と重ね合わせ、ロールラミネーターVA770H(大成ラミネーター社製、ロールの材質:シリコーンゴム)を、ラミネート温度80℃、ロール速度0.1m/分、ロール圧0MPa、大気雰囲気中の大気圧下の条件で用いて、これらをラミネートした。続けて、熱プレス装置(平板プレス機)としてバッチ式真空加圧ラミネーターCVP-300(モートン社製、平板の材質:SUS 603H)を、プレス温度90℃、プレス圧0.15MPaし、プレス時間300秒、大気雰囲気中の大気圧下の条件で用いて、封止用シートをラミネートしたパターン基板を熱プレスした。次いで、プレスされた封止用シートから支持体PETフィルムを剥離した。その後、110℃、30分で熱硬化性樹脂層を硬化させて封止層(熱硬化性樹脂組成物層の硬化物)を形成し、平滑性およびボイド評価用サンプルを作製した。 The pattern substrate was temporarily fixed on a stainless steel (SUS) plate having a thickness of 0.8 mm. The cover PET film is peeled off from the sealing sheet 1, and the thermosetting resin composition layer is overlapped with the pattern substrate so as to be in contact with the pattern substrate, and roll laminator VA770H (manufactured by Taisei Laminator Co., Ltd., roll material: silicone rubber) is used. These were laminated using a lamination temperature of 80 ° C., a roll speed of 0.1 m / min, a roll pressure of 0 MPa, and atmospheric pressure in the atmosphere. Subsequently, a batch-type vacuum press laminator CVP-300 (manufactured by Morton, flat plate material: SUS 603H) as a hot press apparatus (flat plate press machine) was applied at a press temperature of 90 ° C., a press pressure of 0.15 MPa, and a press time of 300. The pattern substrate on which the sealing sheet was laminated was hot-pressed for 2 seconds under the condition of atmospheric pressure under atmospheric pressure. Next, the support PET film was peeled from the pressed sealing sheet. Thereafter, the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and samples for smoothness and void evaluation were produced.
(2)密着性およびボイド評価用サンプルの作製
 厚さ0.8mmのSUS板の上にガラス板(幅26mm、長さ76mm、厚さ1mm)を仮止めした。各封止用シート2~4から支持体PETフィルムを剥離し、熱硬化性樹脂組成物層がガラス板と接するように、封止用シートとガラス板とを重ねあわせ、ロールラミネーターVA770H(大成ラミネーター社製)を、ラミネート温度80℃、ロール速度0.1m/分、ロール圧0MPa、大気雰囲気中の大気圧下の条件で用いて、これらをラミネートした。続けて、熱プレス装置(平板プレス機)としてバッチ式真空加圧ラミネーターCVP-300(モートン社製)を、プレス温度90℃、プレス圧0.15MPaとし、プレス時間300秒、大気雰囲気中の大気圧下の条件で用いて、封止用シートをラミネートしたガラス板を熱プレスした。その後、110℃、30分で熱硬化性樹脂層を硬化させて封止層(熱硬化性樹脂組成物層の硬化物)を形成し、密着性およびボイド評価用サンプルを作製した。
(2) Preparation of sample for adhesion and void evaluation A glass plate (width 26 mm, length 76 mm, thickness 1 mm) was temporarily fixed on a SUS plate having a thickness of 0.8 mm. The support PET film is peeled from each of the sealing sheets 2 to 4, and the sealing sheet and the glass plate are overlapped so that the thermosetting resin composition layer is in contact with the glass plate, and a roll laminator VA770H (Taisei Laminator) is used. Were used under the conditions of a lamination temperature of 80 ° C., a roll speed of 0.1 m / min, a roll pressure of 0 MPa, and atmospheric pressure in the atmosphere. Subsequently, a batch type vacuum pressure laminator CVP-300 (manufactured by Morton) was used as a hot press apparatus (flat plate press machine) at a press temperature of 90 ° C., a press pressure of 0.15 MPa, a press time of 300 seconds, and a large amount in the atmosphere. The glass plate on which the sealing sheet was laminated was hot-pressed under the conditions under atmospheric pressure. Thereafter, the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and a sample for evaluation of adhesion and void was prepared.
<実施例2>
 ロール速度を0.1m/分から1.0m/分に変更したこと以外は実施例1と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Example 2>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that the roll speed was changed from 0.1 m / min to 1.0 m / min.
<実施例3>
 ロールラミネートの工程を不活性ガス(窒素)雰囲気下(圧力:1013.25hPa)、グローブボックス内で実施したこと以外は実施例2と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Example 3>
Samples for smoothness and void evaluation and adhesion and voids were the same as in Example 2 except that the roll laminating step was performed in an inert gas (nitrogen) atmosphere (pressure: 1013.25 hPa) in a glove box. An evaluation sample was produced.
<比較例1>
 ロールラミネーターによるラミネート後に熱プレスを行わなかったこと以外は実施例1と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Comparative Example 1>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that heat pressing was not performed after lamination by a roll laminator.
<比較例2>
 ロール速度を0.1m/分から1.0m/分に変更したこと以外は比較例1と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Comparative example 2>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were produced in the same manner as in Comparative Example 1 except that the roll speed was changed from 0.1 m / min to 1.0 m / min.
<比較例3>
 ロール圧を0MPaから0.15MPaに変更したこと以外は比較例1と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Comparative Example 3>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were produced in the same manner as in Comparative Example 1 except that the roll pressure was changed from 0 MPa to 0.15 MPa.
<比較例4>
 ロールラミネーターによるラミネートを行わずに、熱プレスのみを行ったこと以外は実施例1と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Comparative example 4>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Example 1 except that only the heat press was performed without performing the lamination with the roll laminator.
<比較例5>
 プレス温度を90℃から110℃に変更し、プレス時間を300秒から1800秒に変更したこと以外は比較例4と同様にして、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを作製した。
<Comparative Example 5>
A sample for smoothness and void evaluation and a sample for adhesion and void evaluation were prepared in the same manner as in Comparative Example 4 except that the press temperature was changed from 90 ° C. to 110 ° C. and the press time was changed from 300 seconds to 1800 seconds. Produced.
<比較例6>
(1)平滑性およびボイド評価用サンプルの作製
 実施例1と同様に、銅箔付ポリイミドテープをパターン基板として用いて、以下のようにして平滑性およびボイド評価用サンプルを作製した。
<Comparative Example 6>
(1) Preparation of sample for evaluation of smoothness and voids As in Example 1, a polyimide tape with copper foil was used as a pattern substrate, and samples for evaluation of smoothness and voids were prepared as follows.
 厚さ0.8mmのSUS板の上にパターン基板を仮止めした。封止用シート1からカバーPETフィルムを剥離し、熱硬化性樹脂組成物層がパターン基板と接するように、封止用シートとパターン基板とを重ね合わせ、ダイヤフラム式真空加圧ラミネーターV-160(モートン社製)を、設定温度80℃、真空度1.2hPaの条件にて20秒間保持した後、真空状態を大気雰囲気に戻し、大気雰囲気中の大気圧下、ラミネート圧0.1MPa、ラミネート時間20秒の条件で、これらをラミネートした。次いで、プレスされた封止用シートから支持体PETフィルムを剥離した。その後、110℃、30分で熱硬化性樹脂層を硬化させて封止層(熱硬化性樹脂組成物層の硬化物)を形成し、平滑性およびボイド評価用サンプルを作製した。 The pattern substrate was temporarily fixed on a 0.8 mm thick SUS plate. The cover PET film is peeled off from the sealing sheet 1 and the sealing sheet and the pattern substrate are overlapped so that the thermosetting resin composition layer is in contact with the pattern substrate, and a diaphragm vacuum pressurizing laminator V-160 ( (Morton Co., Ltd.) was held for 20 seconds under the conditions of a set temperature of 80 ° C. and a vacuum degree of 1.2 hPa, then the vacuum state was returned to the atmospheric atmosphere, and the atmospheric pressure in the atmospheric atmosphere, laminating pressure 0.1 MPa, laminating time These were laminated under the condition of 20 seconds. Next, the support PET film was peeled from the pressed sealing sheet. Thereafter, the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and samples for smoothness and void evaluation were produced.
(2)密着性およびボイド評価用サンプルの作製
 厚さ0.8mmのSUS板の上にガラス板(幅26mm、長さ76mm、厚さ1mm)を仮止めした。各封止用シート2~4から支持体PETフィルムを剥離し、熱硬化性樹脂組成物層がガラス板と接するように、封止用シートとガラス板とを重ね合わせ、ダイヤフラム式真空加圧ラミネーターV-160(モートン社製)にて、設定温度80℃、真空度1.2hPaの条件にて、20秒間保持した後、真空状態を大気雰囲気に戻し、大気雰囲気中の大気圧下、ラミネート圧0.1MPa、ラミネート時間20秒の条件で、これらをラミネートした。その後、110℃、30分で熱硬化性樹脂層を硬化させて封止層(熱硬化性樹脂組成物層の硬化物)を形成し、密着性およびボイド評価用サンプルを作製した。
(2) Preparation of sample for adhesion and void evaluation A glass plate (width 26 mm, length 76 mm, thickness 1 mm) was temporarily fixed on a SUS plate having a thickness of 0.8 mm. The support PET film is peeled off from each of the sealing sheets 2 to 4, and the sealing sheet and the glass plate are overlapped so that the thermosetting resin composition layer is in contact with the glass plate. After holding for 20 seconds at V-160 (manufactured by Morton) under the conditions of a set temperature of 80 ° C. and a vacuum of 1.2 hPa, the vacuum state is returned to the atmosphere, and the laminate pressure is reduced to atmospheric pressure in the atmosphere. These were laminated under the conditions of 0.1 MPa and a lamination time of 20 seconds. Thereafter, the thermosetting resin layer was cured at 110 ° C. for 30 minutes to form a sealing layer (cured product of the thermosetting resin composition layer), and a sample for evaluation of adhesion and void was prepared.
 上述の実施例および比較例で作製した平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルを用いて、以下のようにしてボイド、平滑性および密着性を評価した。 Using the smoothness and void evaluation samples and the adhesion and void evaluation samples prepared in the above Examples and Comparative Examples, the voids, smoothness and adhesion were evaluated as follows.
<ボイドの評価>
 目視および光学顕微鏡(倍率150倍)にて、平滑性およびボイド評価用サンプル並びに密着性およびボイド評価用サンプルにおける封止層とパターン基板またはガラス板との間にボイドが存在するか否かを観察した。光学顕微鏡でボイドが観察されなかった場合を良好(○)と評価し、目視または光学顕微鏡でボイドが観察された場合を不良(×)と評価した。
<Evaluation of void>
Observe whether a void exists between the sealing layer and the pattern substrate or the glass plate in the sample for smoothness and void evaluation and the sample for adhesion and void evaluation by visual observation and optical microscope (magnification 150 times) did. The case where a void was not observed with an optical microscope was evaluated as good (◯), and the case where a void was observed visually or with an optical microscope was evaluated as poor (×).
<平滑性評価(ギャップの測定)>
 非接触型表面粗さ計(ビーコインスツルメンツ製WYKO、GT-3)を、VSIコンタクトモード、50倍レンズ、測定範囲126μm×94μmの条件で用いて、平滑性およびボイド評価用サンプルの封止層表面で、パターン基板において線状の銅箔(ライン)がある部分と、銅箔が無い部分(スペース)部分との高さの差(ギャップ)を測定した。
<Smoothness evaluation (gap measurement)>
Using a non-contact type surface roughness meter (BYCO Instruments WYKO, GT-3) under the conditions of a VSI contact mode, a 50 × lens, and a measurement range of 126 μm × 94 μm, the surface of the sealing layer of the sample for smoothness and void evaluation Thus, the height difference (gap) between the portion with the linear copper foil (line) and the portion without the copper foil (space) in the pattern substrate was measured.
<密着性評価(ピール強度の測定)>
 JIS C6481に準拠して、インストロン万能試験機を、室温、50mm/分の速度の条件で用いて、密着性およびボイド評価用サンプルから支持体を垂直方向に20mm引き剥がした時の荷重を、支持体と封止層との間のピール強度として測定した。
<Adhesion evaluation (peel strength measurement)>
In accordance with JIS C6481, using an Instron universal testing machine at room temperature and a speed of 50 mm / min, the load when the support was peeled 20 mm vertically from the sample for adhesion and void evaluation, It was measured as the peel strength between the support and the sealing layer.
 実施例および比較例の封止方式および条件を表1に、評価結果を表2に示す。 Table 1 shows the sealing methods and conditions of Examples and Comparative Examples, and Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1および2に示すように、ロールラミネートに続けて熱プレスを行う実施例1~3では、ボイドを発生させることなく、平滑性および密着性の高い封止層が得られた。 As shown in Tables 1 and 2, in Examples 1 to 3, in which hot pressing was performed following roll lamination, a sealing layer having high smoothness and adhesiveness was obtained without generating voids.
 一方、ロールラミネートしか行わない比較例1~3では、得られた封止層の平滑性が低い。また、熱プレスしか行わない比較例4および5では、得られた封止層にボイドが発生し、平滑性および密着性も低い。また、高コストである真空ラミネートを行った比較例6では、ボイドを発生させることなく、密着性の高い封止層が得られたが、実施例1および2と比べて、封止層の平滑性が劣っていた。 On the other hand, in Comparative Examples 1 to 3 in which only roll lamination is performed, the smoothness of the obtained sealing layer is low. Moreover, in Comparative Examples 4 and 5 in which only hot pressing is performed, voids are generated in the obtained sealing layer, and the smoothness and adhesion are low. Further, in Comparative Example 6 in which high-cost vacuum lamination was performed, a sealing layer having high adhesion was obtained without generating voids, but the sealing layer was smoother than in Examples 1 and 2. The sex was inferior.
 本発明の封止体(特に、有機ELデバイス)の製造方法は、ボイドを発生させることなく、平滑性および密着性の高い封止層で有機EL素子を封止することができ、また真空ラミネーターを使用する必要がないためコスト的にも有利である。また本発明の製造方法によれば、有機EL素子へのダメージが少ない不活性ガス下でラミネートを実施できる。 The manufacturing method of the sealing body (especially organic EL device) of this invention can seal an organic EL element with the sealing layer with smoothness and high adhesiveness, without generating a void, and is also a vacuum laminator. This is advantageous in terms of cost. Moreover, according to the manufacturing method of this invention, a lamination can be implemented under inert gas with little damage to an organic EL element.
 本願は、日本で出願された特願2014-107471号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2014-107471 filed in Japan, the contents of which are incorporated in full herein.

Claims (15)

  1.  基板上の有機EL素子が封止層で封止されている封止体の製造方法であって、
     ロールラミネーターを用いて、支持体上に熱硬化性樹脂組成物層が形成された封止用シートを、熱硬化性樹脂組成物層が有機EL素子と接するように基板にラミネートするラミネート工程、
     ラミネートされた封止用シート表面を熱プレスして平滑化する平滑化工程、および
     熱硬化性樹脂組成物層を熱硬化させて封止層を形成する硬化工程
    を含む製造方法。
    A method for producing a sealed body in which an organic EL element on a substrate is sealed with a sealing layer,
    A laminating step of laminating a sealing sheet having a thermosetting resin composition layer formed on a support on a substrate using a roll laminator so that the thermosetting resin composition layer is in contact with the organic EL element,
    A production method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting a thermosetting resin composition layer to form a sealing layer.
  2.  ラミネートが、不活性ガス雰囲気下で行われる請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the laminating is performed in an inert gas atmosphere.
  3.  ロールラミネーターのロール速度が、0.01~1.5m/分である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the roll speed of the roll laminator is 0.01 to 1.5 m / min.
  4.  ロールラミネーターのロール速度が、0.1~0.5m/分である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the roll speed of the roll laminator is 0.1 to 0.5 m / min.
  5.  ロールラミネーターのロール圧が、0~0.5MPaである請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the roll pressure of the roll laminator is 0 to 0.5 MPa.
  6.  ラミネート温度が、60~120℃である請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the laminating temperature is 60 to 120 ° C.
  7.  平滑化工程のプレス圧が、0.01~0.5MPaである請求項1~6のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a pressing pressure in the smoothing step is 0.01 to 0.5 MPa.
  8.  平滑化工程のプレス温度が、60~120℃である請求項1~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein a pressing temperature in the smoothing step is 60 to 120 ° C.
  9.  支持体が、バリア層を有していてもよいプラスチックフィルムである請求項1~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the support is a plastic film which may have a barrier layer.
  10.  支持体の厚さが、30~200μmである請求項1~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the thickness of the support is 30 to 200 µm.
  11.  基板が、ガラス、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネートおよびシクロオレフィンポリマーからなる群から選ばれる少なくとも一つである請求項1~10のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the substrate is at least one selected from the group consisting of glass, polyimide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and cycloolefin polymer.
  12.  基板の厚さが、0.1~1.0mmである請求項1~11のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein the thickness of the substrate is 0.1 to 1.0 mm.
  13.  硬化工程が、平滑化工程と同時に行われる請求項1~12のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 12, wherein the curing step is performed simultaneously with the smoothing step.
  14.  封止体が有機ELデバイスである、請求項1~13のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 13, wherein the sealing body is an organic EL device.
  15.  基板上の有機EL素子を封止する方法であって、
     ロールラミネーターを用いて、支持体上に熱硬化性樹脂組成物層が形成された封止用シートを、熱硬化性樹脂組成物層が有機EL素子と接するように基板にラミネートする工程、
     ラミネートされた封止用シート表面を熱プレスして平滑化する平滑化工程、および
     熱硬化性樹脂組成物層を熱硬化させて封止層を形成する硬化工程
    を含む方法。
    A method of sealing an organic EL element on a substrate,
    Laminating a sealing sheet having a thermosetting resin composition layer formed on a support using a roll laminator on a substrate so that the thermosetting resin composition layer is in contact with the organic EL element,
    A method comprising a smoothing step of smoothing a laminated sealing sheet surface by hot pressing, and a curing step of thermosetting the thermosetting resin composition layer to form a sealing layer.
PCT/JP2015/064671 2014-05-23 2015-05-22 Manufacturing method for sealed body WO2015178469A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580026778.2A CN106465505B (en) 2014-05-23 2015-05-22 The manufacturing method of seal
KR1020167036044A KR20170009974A (en) 2014-05-23 2015-05-22 Manufacturing method for sealed body
JP2016521156A JP6572887B2 (en) 2014-05-23 2015-05-22 Manufacturing method of sealing body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-107471 2014-05-23
JP2014107471 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178469A1 true WO2015178469A1 (en) 2015-11-26

Family

ID=54554128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064671 WO2015178469A1 (en) 2014-05-23 2015-05-22 Manufacturing method for sealed body

Country Status (5)

Country Link
JP (1) JP6572887B2 (en)
KR (1) KR20170009974A (en)
CN (1) CN106465505B (en)
TW (1) TW201608753A (en)
WO (1) WO2015178469A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet
WO2021065972A1 (en) * 2019-09-30 2021-04-08 味の素株式会社 Method for manufacturing sealing sheet
WO2023182493A1 (en) * 2022-03-25 2023-09-28 味の素株式会社 Resin sheet and production method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035926B2 (en) * 2016-04-22 2018-07-31 PRC—DeSoto International, Inc. Ionic liquid catalysts in sulfur-containing polymer compositions
KR102296725B1 (en) * 2017-07-14 2021-08-31 엘지디스플레이 주식회사 Organic light emitting display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032682A (en) * 2003-07-11 2005-02-03 Sony Corp Method and apparatus for sealing substrate
JP2009054420A (en) * 2007-08-27 2009-03-12 Fujifilm Corp Manufacturing method for flexible substrate for electronic device, manufacturing method for electronic device, and electronic device manufactured by the method
JP2011156752A (en) * 2010-02-01 2011-08-18 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, and organic electron device
WO2013027389A1 (en) * 2011-08-22 2013-02-28 三井化学株式会社 Sheet-shaped epoxy resin composition, and sealing sheet containing same
JP2014026853A (en) * 2012-07-27 2014-02-06 Konica Minolta Inc Organic electroluminescent element and sealing method of organic electroluminescent panel
WO2014098183A1 (en) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 Organic electroluminescent panel, and production method and production apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063987A (en) * 2000-08-18 2002-02-28 Tdk Corp Manufacturing method of complex substrate, complex substrate and el element
JP2010084939A (en) 2008-09-08 2010-04-15 Fuji Koki Corp Four-way switch valve
JP2010084938A (en) 2008-09-30 2010-04-15 Kazuo Isobe Clutch mechanism suitable for bicycle
JP4983864B2 (en) 2009-07-08 2012-07-25 マツダ株式会社 Vehicle frame structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032682A (en) * 2003-07-11 2005-02-03 Sony Corp Method and apparatus for sealing substrate
JP2009054420A (en) * 2007-08-27 2009-03-12 Fujifilm Corp Manufacturing method for flexible substrate for electronic device, manufacturing method for electronic device, and electronic device manufactured by the method
JP2011156752A (en) * 2010-02-01 2011-08-18 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, and organic electron device
WO2013027389A1 (en) * 2011-08-22 2013-02-28 三井化学株式会社 Sheet-shaped epoxy resin composition, and sealing sheet containing same
JP2014026853A (en) * 2012-07-27 2014-02-06 Konica Minolta Inc Organic electroluminescent element and sealing method of organic electroluminescent panel
WO2014098183A1 (en) * 2012-12-21 2014-06-26 コニカミノルタ株式会社 Organic electroluminescent panel, and production method and production apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet
JPWO2018181426A1 (en) * 2017-03-29 2020-02-06 味の素株式会社 Sealing sheet
JP7283381B2 (en) 2017-03-29 2023-05-30 味の素株式会社 Sealing sheet
WO2021065972A1 (en) * 2019-09-30 2021-04-08 味の素株式会社 Method for manufacturing sealing sheet
WO2023182493A1 (en) * 2022-03-25 2023-09-28 味の素株式会社 Resin sheet and production method therefor

Also Published As

Publication number Publication date
CN106465505B (en) 2019-09-20
CN106465505A (en) 2017-02-22
JP6572887B2 (en) 2019-09-11
JPWO2015178469A1 (en) 2017-04-20
KR20170009974A (en) 2017-01-25
TW201608753A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6369475B2 (en) Sealing resin composition and sealing sheet
WO2015068787A1 (en) Hydrotalcite-containing sealing resin composition and sealing sheet
JP5601202B2 (en) Resin composition
JP6572887B2 (en) Manufacturing method of sealing body
KR102465011B1 (en) Sealing resin composition and sealing sheet
KR102674701B1 (en) Thermosetting resin composition and sealing sheet for sealing
WO2010084938A1 (en) Resin composition
JP6428432B2 (en) Sealing sheet, production method and evaluation method thereof
JP2016180036A (en) Sealing resin composition and sealing sheet
WO2016175271A1 (en) Resin composition for sealing and sealing sheet
JP7268596B2 (en) Encapsulation manufacturing method
TW202344652A (en) Resin composition and thermosetting adhesive sheet wherein the resin composition includes (A) a thermosetting resin, (B) a thermoplastic resin with a glass transition temperature of 50 DEG C or above, (C) a thermoplastic resin with a glass transition temperature of 50 DEG C or less, and (D) a curing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167036044

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15796934

Country of ref document: EP

Kind code of ref document: A1