WO2015178315A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2015178315A1
WO2015178315A1 PCT/JP2015/064075 JP2015064075W WO2015178315A1 WO 2015178315 A1 WO2015178315 A1 WO 2015178315A1 JP 2015064075 W JP2015064075 W JP 2015064075W WO 2015178315 A1 WO2015178315 A1 WO 2015178315A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
encoding
transmission
error correction
relay
Prior art date
Application number
PCT/JP2015/064075
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 竹本
小西 良明
和夫 久保
杉原 隆嗣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015557271A priority Critical patent/JP5933862B2/en
Publication of WO2015178315A1 publication Critical patent/WO2015178315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication system having a relay device.
  • Regenerative relay requires a function called 3R.
  • 3R is Reshaping, Retiming, and Regenerating.
  • the relay apparatus performs error correction decoding of the received signal, corrects an error in the transmission section, performs error correction coding again, and transmits the signal, thereby realizing long-distance transmission of a low error rate signal.
  • a relay apparatus that performs regenerative relay performs error correction decoding of a received signal, corrects an error in a transmission section, performs error correction coding again, and transmits the signal, thereby reducing a low error rate.
  • a technique for realizing long-distance transmission of a signal is disclosed.
  • the power consumption in the relay device is large. Therefore, there is a problem that it is difficult to install a relay device in a place where power to be supplied cannot be secured.
  • the present invention has been made in view of the above, and an object thereof is to obtain a communication system in which power consumption in a relay device is suppressed.
  • the present invention provides a transmission apparatus that encodes transmission data with an error correction code and transmits the encoded data, and the data from the transmission apparatus.
  • a relay apparatus that performs encoding by error correction code and performs transfer without decoding, and a reception apparatus that receives the transferred data and decodes the data subjected to concatenated encoding It is characterized by that.
  • the communication system according to the present invention has an effect of reducing power consumption in the relay device.
  • FIG. 1 is a diagram illustrating an example of a configuration of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the communication system according to the first embodiment.
  • FIG. 4 is a diagram of an example of a configuration of the communication system according to the first embodiment.
  • FIG. 5 is a diagram of an example of a configuration of the communication system according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a configuration of a communication system according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a structure of a payload portion of data subjected
  • FIG. 7 is a diagram of an example of a configuration of the communication system according to the third embodiment.
  • FIG. 8 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment.
  • FIG. 9 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment.
  • FIG. 10 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment.
  • FIG. 11 is a diagram illustrating an example of a configuration of a communication system according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration that implements a transmission device, a relay device, and a reception device that configure the communication system according to the first to fourth embodiments.
  • FIG. 1 is a diagram illustrating an example of a configuration of a communication system according to a first embodiment of the present invention.
  • the communication system shown in FIG. 1 includes a transmission device 1, relay devices 2 and 3, and a reception device 4.
  • the transmission apparatus 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay apparatus 2.
  • the relay device 2 does not decode the encoded data received from the transmission device 1, further encodes the received data by the encoding unit 21 and transfers the encoded data to the relay device 3.
  • the relay apparatus 3 does not decode the encoded data received from the relay apparatus 2, further encodes the transferred data by the encoding unit 31 and transfers the encoded data to the receiving apparatus 4.
  • the receiving device 4 receives the data subjected to the concatenated encoding as described above, decodes each encoding by the decoding unit 41, restores the data, and sets it as reception data.
  • the concatenated encoded data refers to data that has been encoded two or more times.
  • the data encoded by the encoding unit 11 is further encoded by the encoding unit 21.
  • the data encoded in step (b) is concatenated encoded data.
  • the data encoded in the encoding unit 11 is further encoded in the encoding unit 21, and then further encoded in the encoding unit 31.
  • the converted data is also concatenated encoded data.
  • FIGS. 2 and 3 illustrate these two methods.
  • the data structures in the sections 1, 2 and 3 are shown.
  • any of the systems shown in FIGS. 2 and 3 may be used, as long as they are properly used.
  • FIG. 2 is a diagram showing an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the first embodiment of the communication system according to the present invention.
  • the parity part is accumulated in a free area existing in the payload part every time encoding is performed.
  • the encoding rate and the encoding rate are the same between encodings, and the position of the FEC (Forward Error Correction) part can be made the same.
  • FEC Forward Error Correction
  • a free area exists.
  • the empty area is expressed as empty
  • the parity part is expressed as FEC1, 2, and 3.
  • RS Random-Solomon
  • LDPC Low-Density Parity-Check
  • FEC1 is an FEC unit or parity unit generated by the encoding unit 11 of the transmission apparatus 1
  • FEC2 is an FEC unit or parity unit generated by the encoding unit 21 of the relay apparatus 2
  • FEC3 is a relay unit This is an FEC unit, that is, a parity unit generated by the encoding unit 31 of the device 3.
  • FIG. 3 is a diagram showing an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the first embodiment of the communication system according to the present invention.
  • the parity part is sequentially stacked every time encoding is performed.
  • there is no empty area the encoding rate and the encoding rate vary, and the positions of the FEC units are different.
  • the relay apparatuses 2 and 3 shown in FIG. 1 do not include a decoding unit and do not correct errors. Therefore, even if an error occurs, the relay devices 2 and 3 perform error correction coding on the data in which the error has occurred, and transfer the data to the next device. Error correction decoding is performed in the receiving device 4. As described above, even if error correction coding is performed on data in which an error has occurred, if the correction capability of the error correction code satisfies a requirement, finally, the receiving device 4 finally determines each section. Since error correction is performed, received data without error can be obtained.
  • the error correction decoding in the receiving device 4 is performed from the side close to the receiving device 4, that is, in the reverse order to the encoding, the error correction encoding performed by the transmission device 1 and the relay devices 2 and 3 is It suffices to have a correction capability that satisfies the required error rate up to the next device to which data arrives. If the required error rate can be satisfied up to the next device, the transmission device 1 to the receiving device 4 It is possible to guarantee the error rate of all sections.
  • the user of the reception device 4 can clarify the responsibility of the relay devices 2 and 3 when an error occurs in the reception data of the reception device 4. . Also in the present invention, since the error correction coding performed by the encoding units 21 and 31 satisfies the error rate up to the next device, the receiving device 4 is similar to the case where the relay devices 2 and 3 perform decoding one by one. Even if an error occurs in the received data, the responsibility of the relay devices 2 and 3 can be clarified.
  • the power required for encoding is lower than the power required for decoding. Therefore, the relay apparatuses 2 and 3 perform only the encoding as described above, and add parity for error correction to each of the relay apparatuses 2 and 3 to reduce power consumption while maintaining transmission quality. be able to.
  • two relay devices are illustrated as devices that relay data. However, the present invention is not limited to this, and there may be one relay device that relays data. There may be three or more.
  • FIG. 4 is a diagram showing another example of the configuration of the first embodiment of the communication system according to the present invention.
  • the communication system shown in FIG. 4 includes a transmission device 1, a relay device 2a, and a reception device 4a.
  • the communication system shown in FIG. 4 is an example in which one relay device is used.
  • the transmission device 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay device 2a.
  • the relay device 2a does not decode the encoded data received from the transmission device 1, but further encodes the received data by the encoding unit 21a and transfers the data to the receiving device 4a.
  • the receiving device 4a including the decoding unit 41a receives the data subjected to the concatenated encoding as described above, decodes each encoding, restores the data, and sets the data as received data. As shown in FIG. 4, there may be one relay device for relaying.
  • FIG. 5 is a diagram showing an example of the configuration of the first embodiment of the communication system according to the present invention.
  • the communication system shown in FIG. 5 includes a transmission device 1, relay devices 2b, 3a, and 5 and a reception device 4b. Although only one relay device 5 is provided in FIG. 5, a plurality of intermediate relay devices 5 may be provided.
  • the transmission apparatus 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay apparatus 2b.
  • the relay device 2 b does not decode the encoded data received from the transmission device 1, further encodes the received data by the encoding unit 21 b and transfers the data to the relay device 5.
  • the relay device 5 does not decode the encoded data received from the relay device 2b, further encodes the received data by the encoding unit 51, and transfers the encoded data to the relay device 3a.
  • the relay device 3a does not decode the encoded data received from the relay device 5, but further encodes the transferred data by the encoding unit 31a and transfers the encoded data to the reception device 4b.
  • the receiving device 4b including the decoding unit 41b receives the data subjected to the concatenated encoding as described above, decodes each encoding, restores the data, and sets the data as received data.
  • FIG. 5 shows an embodiment in which there are three relay devices, when there are four or more relay devices, a plurality of relay devices 5 may be provided, and even if there are four or more relay devices. Good.
  • encoding is performed a plurality of times before data is received by the receiving device 4b.
  • these encodings may be performed on a multiplexed signal.
  • the signals with the same transmission destination are collectively compared to the case where low-rate signals are subjected to error correction processing and transmitted separately.
  • a plurality of multiplexed signals are signals obtained by performing any one of space division multiplexing, frequency division multiplexing, time division multiplexing, and code division multiplexing a plurality of times.
  • the encoding performed a plurality of times before the data is received by the receiving device 4b is a different encoding process
  • the encoding immediately before being received by the receiving device 4b is an encoding that performs soft decision error correction. It is preferable that Since soft decision error correction shows higher error correction than hard decision error correction, it is preferable to use a soft decision error correction method within the available range. This is because digital processing is performed and soft decision information is lost.
  • the encoding immediately before being received by the receiving device 4b is the encoding performed by the encoding unit 31 of the relay device 3 in FIG. 1, and in the example shown in FIG. 4, the encoding unit of the relay device 2a. This is the encoding performed by 21a, and in the example shown in FIG. 5, is the encoding performed by the encoding unit 31a of the relay device 3a.
  • receiving device 4 includes only decoding unit 41, receiving device 4a includes only decoding unit 41a, receiving device 4b includes only decoding unit 41b, and a plurality of encoding units.
  • receiving device 4a includes only decoding unit 41a
  • receiving device 4b includes only decoding unit 41b
  • a plurality of encoding units e.g., one decoding unit performs decoding of the encoded data
  • the present invention is not limited to this, and the receiving apparatus may include a plurality of decoding units.
  • FIG. FIG. 6 is a diagram showing an example of the configuration of the second embodiment of the communication system according to the present invention.
  • the communication system shown in FIG. 6 is a PON (Passive Optical Network) system, which is a transmission device ONU (Optical Network Unit) 6, 7, 8, a repeater 9 as a relay device, and an OLT (Optical) as a reception device.
  • Line Terminal 10
  • sections 1 and 2 shown in FIG. 6 correspond to sections 1 and 2 shown in FIG.
  • Each of the ONUs 6, 7, and 8 performs error correction coding on the data received as transmission data by the encoders 61, 71, and 81 included therein, and transmits the data to the repeater 9.
  • the repeater 9 does not decode the encoded data received from the ONUs 6, 7, and 8, further encodes the received data by the encoding unit 91 and transfers the data to the OLT 10.
  • the OLT 10 receives the data encoded as described above, decodes the data by the decoding unit 101, and restores the data to receive data.
  • one repeater is shown as an example of an apparatus that relays data.
  • the present invention is not limited to this, and a plurality of repeaters are provided as in the relay apparatus of the first embodiment. It may be.
  • a repeater In the PON system, a repeater is used as a relay device for extending the transmission distance of the system.
  • the repeater may be installed outdoors, and it may be difficult to supply power necessary for the operation of the repeater depending on the installation environment. Therefore, as described in the present embodiment, the repeater can be reduced in power consumption by performing only error correction coding without decoding in the repeater, and the degree of freedom of installation of the repeater can be reduced. Can be improved.
  • FIG. 7 is a diagram showing an example of the configuration of the third embodiment of the communication system according to the present invention.
  • the communication system shown in FIG. 7 is a form in which an interleaver and a deinterleaver are installed in the communication system shown in FIG. 4 of the first embodiment.
  • the communication system shown in FIG. 7 includes a transmission apparatus 1A that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1A.
  • a relay apparatus 2A that performs encoding and transfer according to the above, and a reception apparatus 4A that receives the transferred data and decodes the data subjected to the concatenated encoding.
  • the transmission apparatus 1A performs error correction encoding on the data received as transmission data by the encoding unit 11A, performs interleaving on the data subjected to error correction encoding by the interleaver 12A, and converts the data to the data subjected to interleaving.
  • the deinterleaver 13A performs deinterleaving and transmits data to the relay apparatus 2A.
  • the relay apparatus 2A does not decode the encoded data received from the transmission apparatus 1A, further encodes the received data by the encoding unit 21A, and performs the encoding on the encoded data. Interleaving is performed by the interleaver 22A to transfer data to the receiving device 4A.
  • the receiving device 4A performs deinterleaving on the data transferred from the relay device 2A by the deinterleaver 43A, decodes the deinterleaved data by the decoding units 41A and 42A, and restores the data. Received data.
  • the decoding unit 41A decodes the encoding by the encoding unit 21A
  • the decoding unit 42A decodes the encoding by the encoding unit 11A.
  • interleaving is a process of disposing data in a discontinuous manner, which is performed in a transmission-side apparatus during data transmission mainly for the purpose of improving resistance to burst errors.
  • Deinterleaving is a process for releasing the interleaving in the receiving apparatus.
  • the FEC configuration is independent on each transmission path. Can be interleaved.
  • FIG. 8 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention.
  • the communication system shown in FIG. 8 includes a transmission apparatus 1B that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1B.
  • a relay apparatus 2B that performs encoding and transfer according to the above, and a reception apparatus 4B that receives the transferred data and decodes the data subjected to the concatenated encoding.
  • the transmission device 1B performs error correction coding on the data received as transmission data by the encoding unit 11B, performs interleaving on the data subjected to error correction coding by the interleaver 12B, and sends the data to the relay device 2B.
  • the relay apparatus 2B does not decode the encoded data received from the transmission apparatus 1B, further encodes the received data by the encoding unit 21B, and performs the encoding on the encoded data.
  • the interleaver 22B further performs interleaving to transfer data to the receiving device 4B.
  • the receiving device 4B performs deinterleaving on the data transferred from the relay device 2B by the deinterleaver 43B, decodes the deinterleaved data by the decoding unit 41B, and converts the data to the decoded data.
  • deinterleaving is further performed by the deinterleaver 44B, and the data that has been deinterleaved twice is further decoded by the decoding unit 42B to restore the data to receive data.
  • the interleaving executed by the transmission apparatus 1B is not deinterleaved by the relay apparatus 2B, and the data further interleaved by the relay apparatus 2B is received by the receiving apparatus 4B.
  • the configuration shown in FIG. 8 it is not necessary to secure a memory for performing deinterleaving in the relay device 2B, and power consumption can be suppressed.
  • FIG. 9 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention.
  • the communication system shown in FIG. 9 includes a transmission apparatus 1C that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1C.
  • a relay device 2C that performs encoding and transfer according to the above, and a reception device 4C that receives the transferred data and decodes the data subjected to concatenated encoding.
  • the transmission apparatus 1C performs error correction coding on the data received as transmission data by the encoding unit 11C, performs interleaving on the data subjected to error correction coding by the interleaver 12C, and sends the data to the relay apparatus 2C.
  • the relay apparatus 2C does not decode the encoded data received from the transmission apparatus 1C, further encodes the received data by the encoding unit 21C, and transfers the data to the reception apparatus 4C.
  • the receiving device 4C decodes the data transferred from the relay device 2C by the decoding unit 41C, performs deinterleaving on the decoded data by the deinterleaver 43C, and executes deinterleaving.
  • the data is further decoded by the decoding unit 42C to restore the data to receive data.
  • the interleaving executed by the transmission device 1C is not deinterleaved by the relay device 2C, and the data to which the FEC is added is transmitted to the receiving device 4C by the relay device 2C.
  • the configuration shown in FIG. 9 it is not necessary to secure a memory for performing interleaving and deinterleaving in the relay device 2C, and power consumption can be suppressed.
  • FIG. 10 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention.
  • the communication system shown in FIG. 10 includes a transmission apparatus 1D that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1D.
  • a relay apparatus 2D that performs encoding and transfer according to the above, and a reception apparatus 4D that receives the transferred data and decodes the data subjected to the concatenated encoding.
  • the transmission apparatus 1D performs error correction coding on the data received as transmission data by the encoding unit 11D and transmits the data to the relay apparatus 2D.
  • the relay apparatus 2D does not decode the encoded data received from the transmission apparatus 1D, further encodes the received data by the encoding unit 21D, performs interleaving by the interleaver 22D, and receives the reception apparatus 4D.
  • the receiving device 4D performs deinterleaving on the data transferred from the relay device 2D by the deinterleaver 43D, and decrypts the data that has been deinterleaved by the decoding units 41D and 42D to restore the data. To receive data.
  • the communication system shown in FIGS. 8, 9, and 10 has resistance to a burst error, which is the purpose of interleaving, while reducing the functions required for the relay device, and performs deinterleaving by the receiving device.
  • the reliability can be improved while suppressing the power consumption.
  • the interleaving is performed except for the frame synchronization pattern. It is desirable that the interleaving is performed except for the frame synchronization pattern, so that the data relay of the data frame can be performed regardless of the presence or absence of the interleaver in the relay device at the subsequent stage.
  • the same merit can be obtained even when a plurality of relay devices are used or when the relay device does not have an encoding unit. It is not limited to the illustrated example.
  • the transmission apparatus and the relay apparatus need only add error correction necessary for transmitting the signal to each subsequent apparatus, and the transmission apparatus considers the error rate in the entire transmission path. There is no need to perform the error correction encoding up to the first relay device.
  • the relay device used by the transmission device may be replaced by upgrading the transmission device and the relay device or installing a new relay device.
  • a relay device is exchanged, it is possible to flexibly cope with a change in the configuration of the communication system by enabling appropriate error correction coding between the devices.
  • the communication system described above in the present embodiment is a form in which an interleaver and a deinterleaver are installed in the communication system shown in FIG. 4 of the first embodiment, and at least one of the transmission apparatus and the relay apparatus is an interleaver.
  • the interleaver executes deinterleaving for the interleaver executed by the interleaver.
  • the present invention is not limited to this, and an interleaver and a deinterleaver may be provided for the communication system shown in FIGS.
  • At least one of the transmission device, the transmission-side relay device, the intermediate relay device, and the reception-side relay device includes an interleaver, and the deinterleaving for the interleaving performed by the interleaver is performed in the communication system performed in the receiving device. It is included in the invention.
  • FIG. FIG. 11 is a figure which shows an example of a structure of Embodiment 4 of the communication system concerning this invention.
  • the communication system shown in FIG. 11 is a data relay satellite system in which a low-orbit satellite 110 typified by a weather satellite communicates with a ground station 140, and extends the communicable time between the low-orbit satellite 110 and the ground station 140.
  • data relay satellites 120 and 130 which are geostationary satellites are used.
  • the low orbit satellite 110 corresponds to a transmission device
  • the data relay satellites 120 and 130 which are geostationary satellites correspond to relay devices
  • the ground station 140 corresponds to a reception device.
  • the low orbit satellite 110 includes an encoding unit, which performs error correction encoding on transmission data and transmits the transmission data to the data relay satellite 120.
  • the data relay satellite 120 includes an encoding unit, does not decode the encoded data received from the low-orbit satellite 110, and further encodes the received data by the encoding unit to perform the data relay satellite 130.
  • the data relay satellite 130 includes an encoding unit, does not decode the encoded data received from the data relay satellite 120, and further encodes the received data by the encoding unit to the ground station 140.
  • the ground station 140 includes a decoding unit, receives the data encoded as described above, and performs decoding in the same manner as the receiving device 4 of FIG. 1 by the decoding unit to restore the data.
  • FIG. 11 two data relay satellites are shown. However, the present invention is not limited to this, and there may be one data relay satellite or three or more data relay satellites.
  • the data relay satellite system which is the communication system shown in this embodiment, is a long-distance communication, and an error correction process is desired to reduce the error rate.
  • an error correction process is desired to reduce the error rate.
  • the data relay apparatuses 120 and 130 can reduce the power consumption of the data relay apparatuses 120 and 130 by performing only error correction coding without decoding. it can.
  • the encoder which is an encoder
  • the decoder which is a decoder, an interleaver, and a deinterleaver
  • the encoding unit, the decoding unit, the interleaver, and the deinterleaver may be realized by the processor 201 executing a program stored in the memory 202.
  • the encoding unit, the decoding unit, the interleaver, and the deinterleaver are configured as shown in FIG. 12.
  • the hardware configuration for realizing the encoding unit, the decoding unit, the interleaver, and the deinterleaver of the communication system according to the first to fourth embodiments. It is a figure which shows an example.
  • Each of these devices transmits and receives signals to and from other devices using the transmitter 203 and the receiver 204.
  • the processor 201, the memory 202, the transmitter 203 and the receiver 204 are connected by a system bus 205.
  • Each of these devices may include a plurality of processors 201 and a plurality of memories 202.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • the communication system according to the present invention is useful for long-distance transmission, and is particularly suitable for a PON system or a data relay satellite system.

Abstract

The present invention addresses the problem of obtaining a communication system in which power consumption is suppressed in a relay device. Provided is a communication system comprising: a transmission device (1) that encodes transmission data using error correction code and transmits the encoded data; a relay device (2a) that performs further encoding using error correction code and forwards the data, without decoding the data from the transmission device (1); and a receiving device (4a) that receives the forwarded data and decodes the consecutively encoded data. In a case where there are a plurality of relay devices, even longer-distance transmission becomes possible.

Description

通信システムCommunications system
 本発明は、中継装置を有する通信システムに関する。 The present invention relates to a communication system having a relay device.
 従来、OTN(Optical Transport Network)を始めとする伝送規格により信号を伝送する装置が長距離伝送を行う際には伝送距離が長くなるに従ってS/N(Signal/Noise)比の劣化が生じて信号品質が劣化し、所望の誤り率を得る事ができなくなる。そのため、適切な間隔に設置した中継装置により再生中継を行う必要がある。再生中継には3Rと呼ばれる機能が必要である。ここで、3Rは、Reshaping、Retiming及びRegeneratingである。中継装置では受信した信号の誤り訂正復号を行い、伝送区間での誤りを訂正し、再び誤り訂正符号化を行い伝送することで低誤り率の信号の長距離伝送を実現している。 Conventionally, when a device that transmits a signal according to a transmission standard such as OTN (Optical Transport Network) performs long-distance transmission, the signal / noise (S / N) ratio deteriorates as the transmission distance increases. Quality deteriorates and a desired error rate cannot be obtained. Therefore, it is necessary to perform regenerative relay by a relay device installed at an appropriate interval. Regenerative relay requires a function called 3R. Here, 3R is Reshaping, Retiming, and Regenerating. The relay apparatus performs error correction decoding of the received signal, corrects an error in the transmission section, performs error correction coding again, and transmits the signal, thereby realizing long-distance transmission of a low error rate signal.
 例えば、特許文献1には、再生中継を行う中継装置が、受信した信号の誤り訂正復号を行い、伝送区間での誤りを訂正し、再び誤り訂正符号化を行って伝送することで低誤り率の信号の長距離伝送を実現する技術が開示されている。 For example, in Patent Document 1, a relay apparatus that performs regenerative relay performs error correction decoding of a received signal, corrects an error in a transmission section, performs error correction coding again, and transmits the signal, thereby reducing a low error rate. A technique for realizing long-distance transmission of a signal is disclosed.
特開2008-258701号公報JP 2008-258701 A
 しかしながら、上記従来の技術によれば、中継装置における消費電力が大きい。そのため、供給すべき電力を確保できない場所には中継装置を設置することが困難である、という問題があった。 However, according to the conventional technology, the power consumption in the relay device is large. Therefore, there is a problem that it is difficult to install a relay device in a place where power to be supplied cannot be secured.
 本発明は、上記に鑑みてなされたものであって、中継装置における消費電力を抑えた通信システムを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a communication system in which power consumption in a relay device is suppressed.
 上述した課題を解決し、目的を達成するために、本発明は、送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置と、前記伝送装置からの前記データに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置と、転送された前記データを受信して連接符号化が行われた前記データを復号化する受信装置と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a transmission apparatus that encodes transmission data with an error correction code and transmits the encoded data, and the data from the transmission apparatus. A relay apparatus that performs encoding by error correction code and performs transfer without decoding, and a reception apparatus that receives the transferred data and decodes the data subjected to concatenated encoding It is characterized by that.
 本発明にかかる通信システムは、中継装置における消費電力を抑えることができるという効果を奏する。 The communication system according to the present invention has an effect of reducing power consumption in the relay device.
図1は、実施の形態1にかかる通信システムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a communication system according to the first embodiment. 図2は、実施の形態1にかかる通信システムの構成において誤り訂正符号化が行われたデータのペイロード部の構造の一例を示す図である。FIG. 2 is a diagram illustrating an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the communication system according to the first embodiment. 図3は、実施の形態1にかかる通信システムの構成において誤り訂正符号化が行われたデータのペイロード部の構造の一例を示す図である。FIG. 3 is a diagram illustrating an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the communication system according to the first embodiment. 図4は、実施の形態1にかかる通信システムの構成の一例を示す図である。FIG. 4 is a diagram of an example of a configuration of the communication system according to the first embodiment. 図5は、実施の形態1にかかる通信システムの構成の一例を示す図である。FIG. 5 is a diagram of an example of a configuration of the communication system according to the first embodiment. 図6は、実施の形態2にかかる通信システムの構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a configuration of a communication system according to the second embodiment. 図7は、実施の形態3にかかる通信システムの構成の一例を示す図である。FIG. 7 is a diagram of an example of a configuration of the communication system according to the third embodiment. 図8は、実施の形態3にかかる通信システムの構成の他の例を示す図である。FIG. 8 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment. 図9は、実施の形態3にかかる通信システムの構成の他の例を示す図である。FIG. 9 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment. 図10は、実施の形態3にかかる通信システムの構成の他の例を示す図である。FIG. 10 is a diagram illustrating another example of the configuration of the communication system according to the third embodiment. 図11は、実施の形態4にかかる通信システムの構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a configuration of a communication system according to the fourth embodiment. 図12は、実施の形態1から4にかかる通信システムを構成する伝送装置、中継装置及び受信装置を実現するハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a hardware configuration that implements a transmission device, a relay device, and a reception device that configure the communication system according to the first to fourth embodiments.
 以下に、本発明の実施の形態にかかる通信システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a communication system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる通信システムの構成の一例を示す図である。図1に示す通信システムは、伝送装置1と、中継装置2,3と、受信装置4とを備える。伝送装置1は、符号化部11により、送信データとして受け取ったデータに誤り訂正符号化を行って中継装置2に送信する。中継装置2は、伝送装置1から受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21により更に符号化を行って中継装置3に転送する。中継装置3は、中継装置2から受信した符号化データに復号化を行わず、転送されてきたデータに対して、符号化部31により更に符号化を行って受信装置4に転送する。受信装置4は、上記のように連接符号化されたデータを受信し、各符号化に対して復号化部41により復号化を行ってデータを復元して受信データとする。なお、連接符号化されたデータとは、2回以上の符号化が行われたデータをいい、ここでは、代表的には、符号化部11にて符号化されたデータが更に符号化部21にて符号化されたデータが連接符号化されたデータであるが、符号化部11にて符号化されたデータが更に符号化部21にて符号化されてその後更に符号化部31にて符号化されたデータも連接符号化されたデータである。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an example of a configuration of a communication system according to a first embodiment of the present invention. The communication system shown in FIG. 1 includes a transmission device 1, relay devices 2 and 3, and a reception device 4. The transmission apparatus 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay apparatus 2. The relay device 2 does not decode the encoded data received from the transmission device 1, further encodes the received data by the encoding unit 21 and transfers the encoded data to the relay device 3. The relay apparatus 3 does not decode the encoded data received from the relay apparatus 2, further encodes the transferred data by the encoding unit 31 and transfers the encoded data to the receiving apparatus 4. The receiving device 4 receives the data subjected to the concatenated encoding as described above, decodes each encoding by the decoding unit 41, restores the data, and sets it as reception data. The concatenated encoded data refers to data that has been encoded two or more times. Here, typically, the data encoded by the encoding unit 11 is further encoded by the encoding unit 21. The data encoded in step (b) is concatenated encoded data. The data encoded in the encoding unit 11 is further encoded in the encoding unit 21, and then further encoded in the encoding unit 31. The converted data is also concatenated encoded data.
 ここで、伝送装置1が行う誤り訂正符号化の方式には、2つの方式を例示することができる。図2,3にはこれら2つの方式を例示しており、図2,3において、区間1,2,3におけるデータの構造が示されている。本発明においては、図2,3のいずれの方式が用いられてもよく、適宜使い分けられればよい。 Here, two methods can be exemplified as the error correction coding method performed by the transmission apparatus 1. FIGS. 2 and 3 illustrate these two methods. In FIGS. 2 and 3, the data structures in the sections 1, 2 and 3 are shown. In the present invention, any of the systems shown in FIGS. 2 and 3 may be used, as long as they are properly used.
 図2は、本発明にかかる通信システムの実施の形態1の構成において誤り訂正符号化が行われたデータのペイロード部の構造の一例を示す図である。図2では、符号化のたびにペイロード部に存在する空き領域にパリティ部が蓄積されている。図2に示す構造では、符号化のレート及び符号化率が符号化間で等しく、FEC(Forward Error Correction)部の位置を同一とすることができる。ただし、空き領域が存在する。図2において、空き領域は空と表記し、パリティ部はFEC1,2,3と表記する。また、符号化に用いる符号には、RS(Reed-Solomon)符号又はLDPC(Low-Density Parity-Check)符号を例示することができる。FEC1は、伝送装置1の符号化部11により生成されたFEC部すなわちパリティ部であり、FEC2は、中継装置2の符号化部21により生成されたFEC部すなわちパリティ部であり、FEC3は、中継装置3の符号化部31により生成されたFEC部すなわちパリティ部である。 FIG. 2 is a diagram showing an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the first embodiment of the communication system according to the present invention. In FIG. 2, the parity part is accumulated in a free area existing in the payload part every time encoding is performed. In the structure shown in FIG. 2, the encoding rate and the encoding rate are the same between encodings, and the position of the FEC (Forward Error Correction) part can be made the same. However, a free area exists. In FIG. 2, the empty area is expressed as empty, and the parity part is expressed as FEC1, 2, and 3. Moreover, RS (Reed-Solomon) code or LDPC (Low-Density Parity-Check) code can be exemplified as a code used for encoding. FEC1 is an FEC unit or parity unit generated by the encoding unit 11 of the transmission apparatus 1, FEC2 is an FEC unit or parity unit generated by the encoding unit 21 of the relay apparatus 2, and FEC3 is a relay unit This is an FEC unit, that is, a parity unit generated by the encoding unit 31 of the device 3.
 図3は、本発明にかかる通信システムの実施の形態1の構成において誤り訂正符号化が行われたデータのペイロード部の構造の一例を示す図である。図3では、符号化のたびにパリティ部が順次スタックされている。図3に示す構造では、空き領域は存在せず、符号化のレート及び符号化率が変動し、FEC部の位置が各々異なる。 FIG. 3 is a diagram showing an example of a structure of a payload portion of data subjected to error correction coding in the configuration of the first embodiment of the communication system according to the present invention. In FIG. 3, the parity part is sequentially stacked every time encoding is performed. In the structure shown in FIG. 3, there is no empty area, the encoding rate and the encoding rate vary, and the positions of the FEC units are different.
 ところで、図1に示す中継装置2,3は復号化部を備えず、誤りの訂正は行わない。そのため、誤りが生じていても、中継装置2,3は誤りが生じたデータに対して誤り訂正符号化を行い、次の装置にデータを転送する。誤り訂正復号化は、受信装置4において行われる。このように、誤りが生じたデータに対して誤り訂正符号化を行っていても、誤り訂正符号の訂正能力が要求を満たすレベルであれば、最終的には、受信装置4において、各区間の誤り訂正が行われるため誤りのない受信データを得ることができる。 Incidentally, the relay apparatuses 2 and 3 shown in FIG. 1 do not include a decoding unit and do not correct errors. Therefore, even if an error occurs, the relay devices 2 and 3 perform error correction coding on the data in which the error has occurred, and transfer the data to the next device. Error correction decoding is performed in the receiving device 4. As described above, even if error correction coding is performed on data in which an error has occurred, if the correction capability of the error correction code satisfies a requirement, finally, the receiving device 4 finally determines each section. Since error correction is performed, received data without error can be obtained.
 ここで、受信装置4における誤り訂正復号化は受信装置4に近い側から、すなわち符号化とは逆の順番で行われるため、伝送装置1及び中継装置2,3が行う誤り訂正符号化は、データが到達する次の装置までに必要な誤り率を満足する訂正能力を有していればよく、次の装置までに必要な誤り率を満足することができれば、伝送装置1から受信装置4までの全区間の誤り率を担保することができる。 Here, since the error correction decoding in the receiving device 4 is performed from the side close to the receiving device 4, that is, in the reverse order to the encoding, the error correction encoding performed by the transmission device 1 and the relay devices 2 and 3 is It suffices to have a correction capability that satisfies the required error rate up to the next device to which data arrives. If the required error rate can be satisfied up to the next device, the transmission device 1 to the receiving device 4 It is possible to guarantee the error rate of all sections.
 なお、中継装置2,3において逐一復号化を行う場合には、受信装置4のユーザーは、受信装置4の受信データに誤りが発生すると、中継装置2,3の責任を明確にすることができる。本発明においても、符号化部21,31が行う誤り訂正符号化が次の装置までの誤り率を満足することで、中継装置2,3において逐一復号化を行う場合と同様に、受信装置4の受信データに誤りが発生しても、中継装置2,3の責任を明確にすることができる。 When the relay devices 2 and 3 perform decoding one by one, the user of the reception device 4 can clarify the responsibility of the relay devices 2 and 3 when an error occurs in the reception data of the reception device 4. . Also in the present invention, since the error correction coding performed by the encoding units 21 and 31 satisfies the error rate up to the next device, the receiving device 4 is similar to the case where the relay devices 2 and 3 perform decoding one by one. Even if an error occurs in the received data, the responsibility of the relay devices 2 and 3 can be clarified.
 また、符号化に必要な電力は復号化に必要な電力よりも低い。そのため、中継装置2,3においては上記したように符号化のみを行い、中継装置2,3毎に誤り訂正のためのパリティを付加していくことで伝送品質を維持しつつ消費電力を低減することができる。 Also, the power required for encoding is lower than the power required for decoding. Therefore, the relay apparatuses 2 and 3 perform only the encoding as described above, and add parity for error correction to each of the relay apparatuses 2 and 3 to reduce power consumption while maintaining transmission quality. be able to.
 したがって、本発明にかかる通信システムにおいては、供給すべき電力を確保できなかった場所にも中継装置を設置することが可能となり、中継装置の設置場所の自由度を向上させることができる。 Therefore, in the communication system according to the present invention, it becomes possible to install a relay device at a place where power to be supplied could not be secured, and the degree of freedom of the installation location of the relay device can be improved.
 なお、図1においては、データを中継する装置には2つの中継装置が例示されているが、本発明はこれに限定されず、データを中継する中継装置は1つであってもよいし、3つ以上であってもよい。 In FIG. 1, two relay devices are illustrated as devices that relay data. However, the present invention is not limited to this, and there may be one relay device that relays data. There may be three or more.
 図4は、本発明にかかる通信システムの実施の形態1の構成の他の例を示す図である。図4に示す通信システムは、伝送装置1と、中継装置2aと、受信装置4aとを備える。図4に示す通信システムは、中継装置を1つとした例である。伝送装置1は、符号化部11により、送信データとして受け取ったデータに誤り訂正符号化を行って中継装置2aに送信する。中継装置2aは、伝送装置1から受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21aにより更に符号化を行って受信装置4aに転送する。復号化部41aを備える受信装置4aは、上記のように連接符号化されたデータを受信し、各符号化に対して復号化を行ってデータを復元して受信データとする。図4に示すように、中継する中継装置は1つであってもよい。 FIG. 4 is a diagram showing another example of the configuration of the first embodiment of the communication system according to the present invention. The communication system shown in FIG. 4 includes a transmission device 1, a relay device 2a, and a reception device 4a. The communication system shown in FIG. 4 is an example in which one relay device is used. The transmission device 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay device 2a. The relay device 2a does not decode the encoded data received from the transmission device 1, but further encodes the received data by the encoding unit 21a and transfers the data to the receiving device 4a. The receiving device 4a including the decoding unit 41a receives the data subjected to the concatenated encoding as described above, decodes each encoding, restores the data, and sets the data as received data. As shown in FIG. 4, there may be one relay device for relaying.
 図5は、本発明にかかる通信システムの実施の形態1の構成の一例を示す図である。図5に示す通信システムは、伝送装置1と、中継装置2b,3a,5と、受信装置4bとを備える。なお、中継装置5は、図5においては1つのみ設けられているが、中間の中継装置5が複数設けられていてもよい。伝送装置1は、符号化部11により、送信データとして受け取ったデータに誤り訂正符号化を行って中継装置2bに送信する。中継装置2bは、伝送装置1から受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21bにより更に符号化を行って中継装置5に転送する。中継装置5は、中継装置2bから受信した符号化データに復号化を行わず、受信したデータに対して、符号化部51により更に符号化を行って中継装置3aに転送する。中継装置3aは、中継装置5から受信した符号化データに復号化を行わず、転送されてきたデータに対して、符号化部31aにより更に符号化を行って受信装置4bに転送する。復号化部41bを備える受信装置4bは、上記のように連接符号化されたデータを受信し、各符号化に対して復号化を行ってデータを復元して受信データとする。図5に示すように、中継する中継装置は3つであってもよい。図5には中継装置が3つである形態を示しているが、中継装置が4つ以上であるときには、中継装置5を複数設ければよく、中継する中継装置は4つ以上であってもよい。 FIG. 5 is a diagram showing an example of the configuration of the first embodiment of the communication system according to the present invention. The communication system shown in FIG. 5 includes a transmission device 1, relay devices 2b, 3a, and 5 and a reception device 4b. Although only one relay device 5 is provided in FIG. 5, a plurality of intermediate relay devices 5 may be provided. The transmission apparatus 1 performs error correction coding on the data received as transmission data by the encoding unit 11 and transmits the data to the relay apparatus 2b. The relay device 2 b does not decode the encoded data received from the transmission device 1, further encodes the received data by the encoding unit 21 b and transfers the data to the relay device 5. The relay device 5 does not decode the encoded data received from the relay device 2b, further encodes the received data by the encoding unit 51, and transfers the encoded data to the relay device 3a. The relay device 3a does not decode the encoded data received from the relay device 5, but further encodes the transferred data by the encoding unit 31a and transfers the encoded data to the reception device 4b. The receiving device 4b including the decoding unit 41b receives the data subjected to the concatenated encoding as described above, decodes each encoding, restores the data, and sets the data as received data. As shown in FIG. 5, there may be three relay devices that relay. Although FIG. 5 shows an embodiment in which there are three relay devices, when there are four or more relay devices, a plurality of relay devices 5 may be provided, and even if there are four or more relay devices. Good.
 なお、本実施の形態において、受信装置4bにデータが受信されるまでに複数回の符号化が行われるが、これらの符号化は、複数多重化した信号に対して行われてもよい。複数多重化した信号に対して符号化が行われると、低レートの信号に対して各々に誤り訂正処理を行い別々に伝送する場合に比べて、伝送先が同一である信号に対しては一括で誤り訂正符号化を行うことで処理を低減することができる。なお、複数多重化した信号は、空間分割多重化、周波数分割多重化、時分割多重化及び符号分割多重化のうちいずれかの処理を複数回行った信号である。 In the present embodiment, encoding is performed a plurality of times before data is received by the receiving device 4b. However, these encodings may be performed on a multiplexed signal. When multiple multiplexed signals are encoded, the signals with the same transmission destination are collectively compared to the case where low-rate signals are subjected to error correction processing and transmitted separately. Thus, it is possible to reduce processing by performing error correction coding. Note that a plurality of multiplexed signals are signals obtained by performing any one of space division multiplexing, frequency division multiplexing, time division multiplexing, and code division multiplexing a plurality of times.
 また、受信装置4bにデータが受信されるまでに複数回行われる符号化は、各々異なる符号化処理であり、受信装置4bに受信される直前の符号化は、軟判定誤り訂正を行う符号化であることが好ましい。軟判定誤り訂正は硬判定誤り訂正に比べて高い誤り訂正を示すため、利用可能な範囲では軟判定誤り訂正方式を利用することが好ましいところ、一般に、中継装置にて信号を受信すると硬判定のデジタル処理が行われてしまい、軟判定の情報は欠落してしまうためである。ここで、受信装置4bに受信される直前の符号化は、図1においては中継装置3の符号化部31が行う符号化であり、図4に示される例においては中継装置2aの符号化部21aが行う符号化であり、図5に示される例においては中継装置3aの符号化部31aが行う符号化である。 Also, the encoding performed a plurality of times before the data is received by the receiving device 4b is a different encoding process, and the encoding immediately before being received by the receiving device 4b is an encoding that performs soft decision error correction. It is preferable that Since soft decision error correction shows higher error correction than hard decision error correction, it is preferable to use a soft decision error correction method within the available range. This is because digital processing is performed and soft decision information is lost. Here, the encoding immediately before being received by the receiving device 4b is the encoding performed by the encoding unit 31 of the relay device 3 in FIG. 1, and in the example shown in FIG. 4, the encoding unit of the relay device 2a. This is the encoding performed by 21a, and in the example shown in FIG. 5, is the encoding performed by the encoding unit 31a of the relay device 3a.
 なお、本実施の形態において、受信装置4は復号化部41のみを備え、受信装置4aは復号化部41aのみを備え、受信装置4bは復号化部41bのみを備え、複数の符号化部により符号化されたデータの復号化を1つの復号化部が行うものとしているが、本発明はこれに限定されず、受信装置が複数の復号化部を備えていてもよい。 In the present embodiment, receiving device 4 includes only decoding unit 41, receiving device 4a includes only decoding unit 41a, receiving device 4b includes only decoding unit 41b, and a plurality of encoding units. Although one decoding unit performs decoding of the encoded data, the present invention is not limited to this, and the receiving apparatus may include a plurality of decoding units.
実施の形態2.
 図6は、本発明にかかる通信システムの実施の形態2の構成の一例を示す図である。図6に示す通信システムはPON(Passive Optical Network)システムであって、伝送装置であるONU(Optical Network Unit)6,7,8と、中継装置であるリピータ9と、受信装置であるOLT(Optical Line Terminal)10とを備える。なお、図6に示す区間1,2は、図4に示す区間1,2に対応する。ONU6,7,8は、各々が有する符号化部61,71,81により、送信データとして受け取ったデータに誤り訂正符号化を行ってリピータ9に送信する。リピータ9は、ONU6,7,8から受信した符号化データに復号化を行わず、受信したデータに対して、符号化部91により更に符号化を行ってOLT10に転送する。OLT10は、上記のように符号化されたデータを受信し、復号化部101により復号化を行ってデータを復元して受信データとする。
Embodiment 2. FIG.
FIG. 6 is a diagram showing an example of the configuration of the second embodiment of the communication system according to the present invention. The communication system shown in FIG. 6 is a PON (Passive Optical Network) system, which is a transmission device ONU (Optical Network Unit) 6, 7, 8, a repeater 9 as a relay device, and an OLT (Optical) as a reception device. Line Terminal) 10. Note that sections 1 and 2 shown in FIG. 6 correspond to sections 1 and 2 shown in FIG. Each of the ONUs 6, 7, and 8 performs error correction coding on the data received as transmission data by the encoders 61, 71, and 81 included therein, and transmits the data to the repeater 9. The repeater 9 does not decode the encoded data received from the ONUs 6, 7, and 8, further encodes the received data by the encoding unit 91 and transfers the data to the OLT 10. The OLT 10 receives the data encoded as described above, decodes the data by the decoding unit 101, and restores the data to receive data.
 なお、図6には、データを中継する装置の例として1つのリピータが示されているが、本発明はこれに限定されず、実施の形態1の中継装置と同様に複数のリピータが設けられていてもよい。 In FIG. 6, one repeater is shown as an example of an apparatus that relays data. However, the present invention is not limited to this, and a plurality of repeaters are provided as in the relay apparatus of the first embodiment. It may be.
 PONシステムにおいては、このようにシステムの伝送距離の延伸を行うための中継装置にリピータが用いられる。しかしながら、リピータは屋外に設置されることもあり、設置環境によってはリピータの動作に必要な電力を供給することが困難な場合がある。そこで、本実施の形態にて説明したように、リピータにおいては復号化を行わず、誤り訂正符号化のみを行うことでリピータの消費電力を低減することができ、リピータの設置場所の自由度を向上させることができる。 In the PON system, a repeater is used as a relay device for extending the transmission distance of the system. However, the repeater may be installed outdoors, and it may be difficult to supply power necessary for the operation of the repeater depending on the installation environment. Therefore, as described in the present embodiment, the repeater can be reduced in power consumption by performing only error correction coding without decoding in the repeater, and the degree of freedom of installation of the repeater can be reduced. Can be improved.
実施の形態3.
 本発明にかかる通信システムにおいては、インタリーブ及びデインタリーブを行ってもよい。図7は、本発明にかかる通信システムの実施の形態3の構成の一例を示す図である。図7に示す通信システムは、実施の形態1の図4に示す通信システムに対してインタリーバ及びデインタリーバが設置された形態である。図7に示す通信システムは、送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置1Aと、伝送装置1Aからのデータに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置2Aと、転送されたデータを受信して連接符号化が行われたデータを復号化する受信装置4Aと、を備える。
Embodiment 3 FIG.
In the communication system according to the present invention, interleaving and deinterleaving may be performed. FIG. 7 is a diagram showing an example of the configuration of the third embodiment of the communication system according to the present invention. The communication system shown in FIG. 7 is a form in which an interleaver and a deinterleaver are installed in the communication system shown in FIG. 4 of the first embodiment. The communication system shown in FIG. 7 includes a transmission apparatus 1A that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1A. A relay apparatus 2A that performs encoding and transfer according to the above, and a reception apparatus 4A that receives the transferred data and decodes the data subjected to the concatenated encoding.
 伝送装置1Aは、符号化部11Aにより送信データとして受け取ったデータに誤り訂正符号化を行い、誤り訂正符号化が行われたデータに対してインタリーバ12Aによりインタリーブを実行し、インタリーブを実行したデータに対してデインタリーバ13Aによりデインタリーブを実行して中継装置2Aにデータを送信する。中継装置2Aは、伝送装置1Aから受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21Aにより更に符号化を行い、この符号化が行われたデータに対してインタリーバ22Aによりインタリーブを実行して受信装置4Aにデータを転送する。受信装置4Aは、デインタリーバ43Aにより中継装置2Aから転送されたデータにデインタリーブを実行し、デインタリーブを実行したデータに対して復号化部41A,42Aにより復号化を行ってデータを復元して受信データとする。復号化部41Aは、符号化部21Aによる符号化を復号化し、復号化部42Aは、符号化部11Aによる符号化を復号化する。なお、インタリーブは、主にバースト誤りへの耐性を向上させることを目的としてデータ伝送時に送信側の装置において行う、データを不連続な形で配置する処理である。また、デインタリーブは、受信側の装置においてインタリーブを解除する処理である。 The transmission apparatus 1A performs error correction encoding on the data received as transmission data by the encoding unit 11A, performs interleaving on the data subjected to error correction encoding by the interleaver 12A, and converts the data to the data subjected to interleaving. On the other hand, the deinterleaver 13A performs deinterleaving and transmits data to the relay apparatus 2A. The relay apparatus 2A does not decode the encoded data received from the transmission apparatus 1A, further encodes the received data by the encoding unit 21A, and performs the encoding on the encoded data. Interleaving is performed by the interleaver 22A to transfer data to the receiving device 4A. The receiving device 4A performs deinterleaving on the data transferred from the relay device 2A by the deinterleaver 43A, decodes the deinterleaved data by the decoding units 41A and 42A, and restores the data. Received data. The decoding unit 41A decodes the encoding by the encoding unit 21A, and the decoding unit 42A decodes the encoding by the encoding unit 11A. Note that interleaving is a process of disposing data in a discontinuous manner, which is performed in a transmission-side apparatus during data transmission mainly for the purpose of improving resistance to burst errors. Deinterleaving is a process for releasing the interleaving in the receiving apparatus.
 図7に示す通信システムのように、伝送装置1Aと中継装置2Aとの間、又は中継装置2Aと受信装置4Aとの間で各々インタリーブを実行することで、各伝送路においてFEC構成とは独立にインタリーブを実行することができる。 As in the communication system shown in FIG. 7, by performing interleaving between the transmission apparatus 1A and the relay apparatus 2A or between the relay apparatus 2A and the reception apparatus 4A, the FEC configuration is independent on each transmission path. Can be interleaved.
 図8は、本発明にかかる通信システムの実施の形態3の構成の他の例を示す図である。図8に示す通信システムは、送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置1Bと、伝送装置1Bからのデータに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置2Bと、転送されたデータを受信して連接符号化が行われたデータを復号化する受信装置4Bと、を備える。 FIG. 8 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention. The communication system shown in FIG. 8 includes a transmission apparatus 1B that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1B. A relay apparatus 2B that performs encoding and transfer according to the above, and a reception apparatus 4B that receives the transferred data and decodes the data subjected to the concatenated encoding.
 伝送装置1Bは、符号化部11Bにより送信データとして受け取ったデータに誤り訂正符号化を行い、誤り訂正符号化が行われたデータに対してインタリーバ12Bによりインタリーブを実行して中継装置2Bにデータを送信する。中継装置2Bは、伝送装置1Bから受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21Bにより更に符号化を行い、この符号化が行われたデータに対してインタリーバ22Bにより更にインタリーブを実行して受信装置4Bにデータを転送する。受信装置4Bは、中継装置2Bから転送されたデータにデインタリーバ43Bによりデインタリーブを実行し、デインタリーブを実行したデータに対して復号化部41Bにより復号化を行い、復号化を行ったデータに対してデインタリーバ44Bにより更にデインタリーブを実行し、デインタリーブを二度実行したデータに対して復号化部42Bにより更に復号化を行ってデータを復元して受信データとする。 The transmission device 1B performs error correction coding on the data received as transmission data by the encoding unit 11B, performs interleaving on the data subjected to error correction coding by the interleaver 12B, and sends the data to the relay device 2B. Send. The relay apparatus 2B does not decode the encoded data received from the transmission apparatus 1B, further encodes the received data by the encoding unit 21B, and performs the encoding on the encoded data. The interleaver 22B further performs interleaving to transfer data to the receiving device 4B. The receiving device 4B performs deinterleaving on the data transferred from the relay device 2B by the deinterleaver 43B, decodes the deinterleaved data by the decoding unit 41B, and converts the data to the decoded data. On the other hand, deinterleaving is further performed by the deinterleaver 44B, and the data that has been deinterleaved twice is further decoded by the decoding unit 42B to restore the data to receive data.
 図8に示す通信システムでは、伝送装置1Bにて実行したインタリーブは中継装置2Bではデインタリーブされず、中継装置2Bにて更にインタリーブが実行されたデータが受信装置4Bに受信されている。図8に示す構成とすると、中継装置2Bにおいてデインタリーブを実行するためのメモリの確保が不要であり、消費電力を抑制することができる。 In the communication system shown in FIG. 8, the interleaving executed by the transmission apparatus 1B is not deinterleaved by the relay apparatus 2B, and the data further interleaved by the relay apparatus 2B is received by the receiving apparatus 4B. With the configuration shown in FIG. 8, it is not necessary to secure a memory for performing deinterleaving in the relay device 2B, and power consumption can be suppressed.
 図9は、本発明にかかる通信システムの実施の形態3の構成の他の例を示す図である。図9に示す通信システムは、送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置1Cと、伝送装置1Cからのデータに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置2Cと、転送されたデータを受信して連接符号化が行われたデータを復号化する受信装置4Cと、を備える。 FIG. 9 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention. The communication system shown in FIG. 9 includes a transmission apparatus 1C that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1C. A relay device 2C that performs encoding and transfer according to the above, and a reception device 4C that receives the transferred data and decodes the data subjected to concatenated encoding.
 伝送装置1Cは、符号化部11Cにより送信データとして受け取ったデータに誤り訂正符号化を行い、誤り訂正符号化が行われたデータに対してインタリーバ12Cによりインタリーブを実行して中継装置2Cにデータを送信する。中継装置2Cは、伝送装置1Cから受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21Cにより更に符号化を行い、受信装置4Cにデータを転送する。受信装置4Cは、中継装置2Cから転送されたデータに対して復号化部41Cにより復号化を行い、復号化を行ったデータに対してデインタリーバ43Cによりデインタリーブを実行し、デインタリーブを実行したデータに対して復号化部42Cにより更に復号化を行ってデータを復元して受信データとする。 The transmission apparatus 1C performs error correction coding on the data received as transmission data by the encoding unit 11C, performs interleaving on the data subjected to error correction coding by the interleaver 12C, and sends the data to the relay apparatus 2C. Send. The relay apparatus 2C does not decode the encoded data received from the transmission apparatus 1C, further encodes the received data by the encoding unit 21C, and transfers the data to the reception apparatus 4C. The receiving device 4C decodes the data transferred from the relay device 2C by the decoding unit 41C, performs deinterleaving on the decoded data by the deinterleaver 43C, and executes deinterleaving. The data is further decoded by the decoding unit 42C to restore the data to receive data.
 図9に示す通信システムでは、伝送装置1Cにて実行したインタリーブは中継装置2Cではデインタリーブされず、中継装置2CにてFECが付加されたデータが受信装置4Cへ送信される。図9に示す構成とすると、中継装置2Cにおいてインタリーブ及びデインタリーブを実行するためのメモリの確保が不要であり、消費電力を抑制することができる。 In the communication system shown in FIG. 9, the interleaving executed by the transmission device 1C is not deinterleaved by the relay device 2C, and the data to which the FEC is added is transmitted to the receiving device 4C by the relay device 2C. With the configuration shown in FIG. 9, it is not necessary to secure a memory for performing interleaving and deinterleaving in the relay device 2C, and power consumption can be suppressed.
 図10は、本発明にかかる通信システムの実施の形態3の構成の他の例を示す図である。図10に示す通信システムは、送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置1Dと、伝送装置1Dからのデータに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置2Dと、転送されたデータを受信して連接符号化が行われたデータを復号化する受信装置4Dと、を備える。 FIG. 10 is a diagram showing another example of the configuration of the communication system according to the third embodiment of the present invention. The communication system shown in FIG. 10 includes a transmission apparatus 1D that encodes transmission data using an error correction code and transmits the encoded data, and further performs error correction code without decoding the data from the transmission apparatus 1D. A relay apparatus 2D that performs encoding and transfer according to the above, and a reception apparatus 4D that receives the transferred data and decodes the data subjected to the concatenated encoding.
 伝送装置1Dは、符号化部11Dにより送信データとして受け取ったデータに誤り訂正符号化を行って中継装置2Dにデータを送信する。中継装置2Dは、伝送装置1Dから受信した符号化データに復号化を行わず、受信したデータに対して、符号化部21Dにより更に符号化を行い、インタリーバ22Dによりインタリーブを実行して受信装置4Dにデータを送信する。受信装置4Dは、中継装置2Dから転送されたデータに対してデインタリーバ43Dによりデインタリーブを実行し、デインタリーブを実行したデータに対して復号化部41D,42Dにより復号化を行ってデータを復元して受信データとする。 The transmission apparatus 1D performs error correction coding on the data received as transmission data by the encoding unit 11D and transmits the data to the relay apparatus 2D. The relay apparatus 2D does not decode the encoded data received from the transmission apparatus 1D, further encodes the received data by the encoding unit 21D, performs interleaving by the interleaver 22D, and receives the reception apparatus 4D. Send data to. The receiving device 4D performs deinterleaving on the data transferred from the relay device 2D by the deinterleaver 43D, and decrypts the data that has been deinterleaved by the decoding units 41D and 42D to restore the data. To receive data.
 図10に示す通信システムでは、中継装置2Dにてインタリーブが実行されたデータが受信装置4Dに受信されている。図10に示す構成とすると、中継装置2Dにおいてデインタリーブを実行するためのメモリの確保が不要であり、消費電力を抑制することができる。 In the communication system shown in FIG. 10, data subjected to interleaving by the relay device 2D is received by the receiving device 4D. With the configuration illustrated in FIG. 10, it is not necessary to secure a memory for performing deinterleaving in the relay device 2D, and power consumption can be suppressed.
 一般に、インタリーブ及びデインタリーブの実行には、多くのメモリを要する。そのため、宇宙空間に代表されるメモリに誤りが発生しやすい場所に中継装置が設置される場合には、インタリーバ及びデインタリーバの削減による必要メモリ量の低下は消費電力の削減のみならず、コストの低減、信頼性の向上及び長寿命化にも寄与する。 Generally, a lot of memory is required to execute interleaving and deinterleaving. Therefore, when a relay device is installed in a place where errors are likely to occur in a memory represented by outer space, the reduction in the required memory amount due to the reduction in interleaver and deinterleaver not only reduces power consumption but also reduces cost. Contributes to reduction, improved reliability and longer life.
 図8,9,10に示す通信システムは、中継装置に必要とされる機能を削減しつつ、インタリーブの目的であるバースト誤りへの耐性を有し、受信装置でデインタリーブを行うことで中継装置の消費電力を抑制しつつ信頼性を向上することができる。 The communication system shown in FIGS. 8, 9, and 10 has resistance to a burst error, which is the purpose of interleaving, while reducing the functions required for the relay device, and performs deinterleaving by the receiving device. The reliability can be improved while suppressing the power consumption.
 なお、本実施の形態において、インタリーブの実行は、フレームの同期パターンを除いて行われることが望ましい。フレームの同期パターンを除いてインタリーブの実行が行われることにより、後段となる中継装置ではインタリーバの有無にかかわらずデータフレームの同期を可能とすることが望ましい。 In this embodiment, it is desirable that the interleaving is performed except for the frame synchronization pattern. It is desirable that the interleaving is performed except for the frame synchronization pattern, so that the data relay of the data frame can be performed regardless of the presence or absence of the interleaver in the relay device at the subsequent stage.
 なお、図7,8,9,10に示す通信システムにおいては、複数の中継装置を介する場合においても、中継装置が符号化部を持たない場合においても、同様のメリットを得ることができ、上記の図示例に限定されるものではない。 In the communication systems shown in FIGS. 7, 8, 9, and 10, the same merit can be obtained even when a plurality of relay devices are used or when the relay device does not have an encoding unit. It is not limited to the illustrated example.
 なお、複数の中継装置が存在する場合には、選択した伝送路によって伝送距離及び特性が異なる。本実施の形態によれば、伝送装置及び中継装置は、各々の次の装置までの信号を伝送するために必要な誤り訂正を付加すればよく、伝送装置は伝送路全体での誤り率を考慮する必要がなく、最初の中継装置までに必要な誤り訂正符号化を行えばよい。 When there are a plurality of relay devices, the transmission distance and characteristics differ depending on the selected transmission path. According to the present embodiment, the transmission apparatus and the relay apparatus need only add error correction necessary for transmitting the signal to each subsequent apparatus, and the transmission apparatus considers the error rate in the entire transmission path. There is no need to perform the error correction encoding up to the first relay device.
 また、伝送装置及び中継装置のアップグレード又は新規中継装置の設置により、伝送装置が使用する中継装置を交換することがある。このような中継装置の交換に際して、各装置間において適切な誤り訂正符号化を可能とすることで、通信システムの構成変更に対して柔軟に対応することが可能である。 Also, the relay device used by the transmission device may be replaced by upgrading the transmission device and the relay device or installing a new relay device. When such a relay device is exchanged, it is possible to flexibly cope with a change in the configuration of the communication system by enabling appropriate error correction coding between the devices.
 また、通信システム内の伝送装置の製造者又は管理者と中継装置の製造者又は管理者とが異なる場合であっても、伝送路内の次の装置までの誤り訂正を付加すればよいため、製造者又は管理者が異なる装置によって構成された通信システムであっても適切に運用することができる。 Even if the manufacturer or manager of the transmission device in the communication system is different from the manufacturer or manager of the relay device, error correction up to the next device in the transmission path may be added. Even a communication system constituted by devices with different manufacturers or managers can be appropriately operated.
 本実施の形態にて上記説明した通信システムは、実施の形態1の図4に示す通信システムに対してインタリーバ及びデインタリーバが設置された形態であり、伝送装置及び中継装置のうち少なくとも1つがインタリーバを備え、インタリーバが実行するインタリーブに対するデインタリーブの実行は、受信装置において行われる。本発明はこれに限定されず、実施の形態1の図1,5に示す通信システムに対してインタリーバ及びデインタリーバが備えられていてもよい。すなわち、伝送装置、伝送側中継装置、中間中継装置及び受信側中継装置のうち少なくとも1つがインタリーバを備え、且つインタリーバが実行するインタリーブに対するデインタリーブの実行は、受信装置において行われる通信システムも、本発明に含まれるものである。 The communication system described above in the present embodiment is a form in which an interleaver and a deinterleaver are installed in the communication system shown in FIG. 4 of the first embodiment, and at least one of the transmission apparatus and the relay apparatus is an interleaver. The interleaver executes deinterleaving for the interleaver executed by the interleaver. The present invention is not limited to this, and an interleaver and a deinterleaver may be provided for the communication system shown in FIGS. That is, at least one of the transmission device, the transmission-side relay device, the intermediate relay device, and the reception-side relay device includes an interleaver, and the deinterleaving for the interleaving performed by the interleaver is performed in the communication system performed in the receiving device. It is included in the invention.
実施の形態4.
 図11は、本発明にかかる通信システムの実施の形態4の構成の一例を示す図である。図11に示す通信システムは、気象衛星に代表される低軌道衛星110が地上局140と通信するデータ中継衛星システムであり、低軌道衛星110と地上局140との間の通信可能時間を延ばすために、静止衛星であるデータ中継衛星120,130を利用している。図11に示す通信システムにおいては、低軌道衛星110が伝送装置に相当し、静止衛星であるデータ中継衛星120,130が中継装置に相当し、地上局140が受信装置に相当する。
Embodiment 4 FIG.
FIG. 11: is a figure which shows an example of a structure of Embodiment 4 of the communication system concerning this invention. The communication system shown in FIG. 11 is a data relay satellite system in which a low-orbit satellite 110 typified by a weather satellite communicates with a ground station 140, and extends the communicable time between the low-orbit satellite 110 and the ground station 140. In addition, data relay satellites 120 and 130 which are geostationary satellites are used. In the communication system shown in FIG. 11, the low orbit satellite 110 corresponds to a transmission device, the data relay satellites 120 and 130 which are geostationary satellites correspond to relay devices, and the ground station 140 corresponds to a reception device.
 低軌道衛星110は符号化部を備え、該符号化部により、送信データに誤り訂正符号化を行ってデータ中継衛星120に送信する。データ中継衛星120は符号化部を備え、低軌道衛星110から受信した符号化データに復号化を行わず、受信したデータに対して、該符号化部により更に符号化を行ってデータ中継衛星130に転送する。データ中継衛星130は符号化部を備え、データ中継衛星120から受信した符号化データに復号化を行わず、受信したデータに対して、該符号化部により更に符号化を行って地上局140に転送する。地上局140は復号化部を備え、上記のように符号化されたデータを受信し、該復号化部により図1の受信装置4と同様に復号化を行ってデータを復元する。 The low orbit satellite 110 includes an encoding unit, which performs error correction encoding on transmission data and transmits the transmission data to the data relay satellite 120. The data relay satellite 120 includes an encoding unit, does not decode the encoded data received from the low-orbit satellite 110, and further encodes the received data by the encoding unit to perform the data relay satellite 130. Forward to. The data relay satellite 130 includes an encoding unit, does not decode the encoded data received from the data relay satellite 120, and further encodes the received data by the encoding unit to the ground station 140. Forward. The ground station 140 includes a decoding unit, receives the data encoded as described above, and performs decoding in the same manner as the receiving device 4 of FIG. 1 by the decoding unit to restore the data.
 なお、図11には、2つのデータ中継衛星が示されているが、本発明はこれに限定されず、データ中継衛星は1つであってもよいし、3つ以上であってもよい。 In FIG. 11, two data relay satellites are shown. However, the present invention is not limited to this, and there may be one data relay satellite or three or more data relay satellites.
 本実施の形態に示す通信システムであるデータ中継衛星システムは長距離の通信であり、エラーレートの低減のためには誤り訂正処理が望まれる。しかしながら、誤り訂正処理では電力を消費してしまい、多大な電力を供給又は発電することが困難な人工衛星では、このような電力の消費は抑えることが望ましい。そこで、本実施の形態にて説明したように、データ中継装置120,130においては復号化を行わず、誤り訂正符号化のみを行うことでデータ中継装置120,130の消費電力を低減することができる。 The data relay satellite system, which is the communication system shown in this embodiment, is a long-distance communication, and an error correction process is desired to reduce the error rate. However, it is desirable to suppress such power consumption in an artificial satellite that consumes power in error correction processing and is difficult to supply or generate a large amount of power. Therefore, as described in the present embodiment, the data relay apparatuses 120 and 130 can reduce the power consumption of the data relay apparatuses 120 and 130 by performing only error correction coding without decoding. it can.
 なお、エンコーダである符号化部、デコーダである復号化部、インタリーバ及びデインタリーバは、全て専用の電子回路で実現することができる。又は、符号化部、復号化部、インタリーバ及びデインタリーバは、プロセッサ201がメモリ202に記憶されたプログラムを実行することにより実現されてもよい。この場合、符号化部、復号化部、インタリーバ及びデインタリーバは、図12は、実施の形態1から4にかかる通信システムの符号化部、復号化部、インタリーバ及びデインタリーバを実現するハードウェア構成の一例を示す図である。また、これらの装置の各々は、送信器203及び受信器204を用いて他の装置との間で信号の送受信を行う。プロセッサ201、メモリ202、送信器203及び受信器204は、システムバス205により接続されている。なお、これらの装置の各々は、プロセッサ201を複数有し、メモリ202を複数有していてもよい。 Note that the encoder, which is an encoder, the decoder, which is a decoder, an interleaver, and a deinterleaver, can all be realized by dedicated electronic circuits. Alternatively, the encoding unit, the decoding unit, the interleaver, and the deinterleaver may be realized by the processor 201 executing a program stored in the memory 202. In this case, the encoding unit, the decoding unit, the interleaver, and the deinterleaver are configured as shown in FIG. 12. The hardware configuration for realizing the encoding unit, the decoding unit, the interleaver, and the deinterleaver of the communication system according to the first to fourth embodiments. It is a figure which shows an example. Each of these devices transmits and receives signals to and from other devices using the transmitter 203 and the receiver 204. The processor 201, the memory 202, the transmitter 203 and the receiver 204 are connected by a system bus 205. Each of these devices may include a plurality of processors 201 and a plurality of memories 202.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 以上のように、本発明にかかる通信システムは、長距離伝送を行う場合に有用であり、特に、PONシステムまたはデータ中継衛星システムに適している。 As described above, the communication system according to the present invention is useful for long-distance transmission, and is particularly suitable for a PON system or a data relay satellite system.
 1,1A,1B,1C,1D 伝送装置、2,2A,2B,2C,2D,2a,2b,3,3a,5 中継装置、4,4A,4B,4C,4D,4a,4b 受信装置、6,7,8 ONU、9 リピータ、10 OLT、11,11A,11B,11C,11D,21,21A,21B,21C,21D,21a,21b,31,31a,51,61,71,81,91 符号化部、12A,12B,12C,22A,22B,22D インタリーバ、13A,43A,43B,43C,43D,44B デインタリーバ、41,41a,41b,41A,41B,41C,41D,42A,42B,42C,42D,101 復号化部、110 低軌道衛星、120,130 データ中継衛星、140 地上局、201 プロセッサ、202 メモリ、203 送信器、204 受信器、205 システムバス。 1, 1A, 1B, 1C, 1D transmission device, 2, 2A, 2B, 2C, 2D, 2a, 2b, 3, 3a, 5 relay device, 4, 4A, 4B, 4C, 4D, 4a, 4b receiving device, 6, 7, 8 ONU, 9 repeater, 10 OLT, 11, 11A, 11B, 11C, 11D, 21, 21A, 21B, 21C, 21D, 21a, 21b, 31, 31a, 51, 61, 71, 81, 91 Encoder, 12A, 12B, 12C, 22A, 22B, 22D Interleaver, 13A, 43A, 43B, 43C, 43D, 44B Deinterleaver, 41, 41a, 41b, 41A, 41B, 41C, 41D, 42A, 42B, 42C , 42D, 101 decoding unit, 110 low orbit satellite, 120, 130 data relay satellite, 140 ground station, 201 processor, 02 memory, 203 a transmitter, 204 a receiver, 205 a system bus.

Claims (8)

  1.  送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置と、
     前記伝送装置からの前記データに復号化を行うことなく更に誤り訂正符号による符号化を行って転送する中継装置と、
     転送された前記データを受信して連接符号化が行われた前記データを復号化する受信装置と、を備えることを特徴とする通信システム。
    A transmission device for transmitting data encoded by performing error correction encoding on transmission data; and
    A relay device that performs encoding and transfer using an error correction code without decoding the data from the transmission device; and
    A receiving apparatus that receives the transferred data and decodes the data subjected to the concatenated encoding.
  2.  送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置と、
     前記伝送装置から前記データを受信して復号化を行うことなく更に誤り訂正符号による符号化を行って転送する伝送側中継装置と、
     前記伝送側中継装置による転送を経た前記データを受信して復号化を行うことなく更に誤り訂正符号による符号化を行って転送する受信側中継装置と、
     転送された前記データを受信して連接符号化が行われた前記データを復号化する受信装置と、を備えることを特徴とする通信システム。
    A transmission device for transmitting data encoded by performing error correction encoding on transmission data; and
    A transmission-side relay device that receives the data from the transmission device and performs encoding by an error correction code without performing decoding, and transferring the data;
    A receiving-side relay device that receives the data that has undergone transfer by the transmission-side relay device and performs encoding using an error correction code without performing decoding, and transfers the data;
    A receiving apparatus that receives the transferred data and decodes the data subjected to the concatenated encoding.
  3.  送信データに誤り訂正符号による符号化を行って符号化されたデータを送信する伝送装置と、
     前記伝送装置から前記データを受信して復号化を行うことなく更に誤り訂正符号による符号化を行って転送する伝送側中継装置と、
     前記伝送側中継装置による転送を経た前記データを受信して復号化を行うことなく更に誤り訂正符号による符号化を行って転送する1つまたは複数の中間中継装置と、
     前記中間中継装置による転送を経た前記データを受信して復号化を行うことなく更に誤り訂正符号による符号化を行って転送する受信側中継装置と、
     転送された前記データを受信して連接符号化が行われた前記データを復号化する受信装置と、を備えることを特徴とする通信システム。
    A transmission device for transmitting data encoded by performing error correction encoding on transmission data; and
    A transmission-side relay device that receives the data from the transmission device and performs encoding by an error correction code without performing decoding, and transferring the data;
    One or a plurality of intermediate relay devices that receive the data that has been transferred by the transmission-side relay device and perform encoding and transfer using an error correction code without performing decoding; and
    A receiving-side relay device that receives the data that has undergone the transfer by the intermediate relay device and performs encoding by an error correction code without performing decoding, and transfers the data;
    A receiving apparatus that receives the transferred data and decodes the data subjected to the concatenated encoding.
  4.  前記符号化が、複数多重化した信号に対して行われることを特徴とする請求項1から請求項3のいずれか一項に記載の通信システム。 The communication system according to any one of claims 1 to 3, wherein the encoding is performed on a plurality of multiplexed signals.
  5.  前記符号化の各々は、異なる符号化処理であり、
     前記中継装置における符号化は、軟判定誤り訂正を行う符号化であることを特徴とする請求項1に記載の通信システム。
    Each of the encodings is a different encoding process;
    The communication system according to claim 1, wherein the encoding in the relay device is encoding that performs soft decision error correction.
  6.  前記符号化の各々は、異なる符号化処理であり、
     前記受信側中継装置における符号化は、軟判定誤り訂正を行う符号化であることを特徴とする請求項2または請求項3に記載の通信システム。
    Each of the encodings is a different encoding process;
    The communication system according to claim 2 or 3, wherein the encoding at the receiving side relay device is encoding for performing soft decision error correction.
  7.  前記伝送装置及び前記中継装置のうち少なくとも1つがインタリーバを備え、
     前記インタリーバが実行するインタリーブに対するデインタリーブの実行は、前記受信装置において行われることを特徴とする請求項1に記載の通信システム。
    At least one of the transmission device and the relay device includes an interleaver,
    The communication system according to claim 1, wherein deinterleaving for interleaving performed by the interleaver is performed in the receiving device.
  8.  前記伝送装置、前記伝送側中継装置、前記中間中継装置及び前記受信側中継装置のうち少なくとも1つがインタリーバを備え、
     前記インタリーバが実行するインタリーブに対するデインタリーブの実行は、前記受信装置において行われることを特徴とする請求項2または請求項3に記載の通信システム。
    At least one of the transmission device, the transmission-side relay device, the intermediate relay device, and the reception-side relay device includes an interleaver,
    4. The communication system according to claim 2, wherein execution of deinterleaving for interleaving performed by the interleaver is performed in the receiving apparatus.
PCT/JP2015/064075 2014-05-21 2015-05-15 Communication system WO2015178315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557271A JP5933862B2 (en) 2014-05-21 2015-05-15 Communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014105118 2014-05-21
JP2014-105118 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015178315A1 true WO2015178315A1 (en) 2015-11-26

Family

ID=54553986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064075 WO2015178315A1 (en) 2014-05-21 2015-05-15 Communication system

Country Status (2)

Country Link
JP (1) JP5933862B2 (en)
WO (1) WO2015178315A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220675A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Relay device and error correction method
JP2019134406A (en) * 2018-01-30 2019-08-08 ザ・ボーイング・カンパニーThe Boeing Company Satellite communication system architecture for enhanced partial processing
JP2022533326A (en) * 2019-05-15 2022-07-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Data transmission method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198884A (en) * 2000-10-20 2002-07-12 Trw Inc High-efficiency signal system using selective encoding and interleave processing
WO2008139882A1 (en) * 2007-05-08 2008-11-20 Nec Corporation Communication system, communication method, and program
JP2010103807A (en) * 2008-10-24 2010-05-06 Toshiba Corp Wireless relay device, wireless receiving device, and decoding method
JP2013026836A (en) * 2011-07-21 2013-02-04 Sharp Corp Relay device, relay method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067123A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Ofdm relay device
CN101133568A (en) * 2005-03-03 2008-02-27 松下电器产业株式会社 Wireless communication apparatus
JPWO2010095267A1 (en) * 2009-02-23 2012-08-16 三菱電機株式会社 Satellite communication system and data transmission method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198884A (en) * 2000-10-20 2002-07-12 Trw Inc High-efficiency signal system using selective encoding and interleave processing
WO2008139882A1 (en) * 2007-05-08 2008-11-20 Nec Corporation Communication system, communication method, and program
JP2010103807A (en) * 2008-10-24 2010-05-06 Toshiba Corp Wireless relay device, wireless receiving device, and decoding method
JP2013026836A (en) * 2011-07-21 2013-02-04 Sharp Corp Relay device, relay method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220675A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Relay device and error correction method
JPWO2018220675A1 (en) * 2017-05-29 2019-06-27 三菱電機株式会社 Relay device
JP2019134406A (en) * 2018-01-30 2019-08-08 ザ・ボーイング・カンパニーThe Boeing Company Satellite communication system architecture for enhanced partial processing
JP2022533326A (en) * 2019-05-15 2022-07-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Data transmission method and device

Also Published As

Publication number Publication date
JPWO2015178315A1 (en) 2017-04-20
JP5933862B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6674475B2 (en) Method and apparatus for spectrally efficient data transmission in a satellite system
KR102520080B1 (en) Apparatus for generating broadcasting signal frame using layered division multiplexing and method using the same
KR102476328B1 (en) Apparatus for multiplexing signals using layered division multiplexing and method using the same
CN113169793B (en) System and method for satellite communication
EP2639155B1 (en) Method and apparatus for wireless data transmission subject to periodic signal blockages
KR20230058037A (en) Apparatus for demultiplexing signals and method using the same
JP6794262B2 (en) Signal Multiplexing Device and Signal Multiplexing Method Using Layered Division Multiplexing
US10237023B2 (en) Hybrid automatic repeat request method and apparatus in relay wireless communication system using compressed-and-forward scheme
US10790931B2 (en) Regenerative payload using end-to-end FEC protection
JP5933862B2 (en) Communications system
US9088299B2 (en) Method and apparatus for convolutional coding to support multiplexing in a wideband communications system
KR20140101557A (en) Cooperative communication system, transmitter, relay and receiver based on network compress-and-forward
US9227579B1 (en) Hybrid wireless-wired architecture based on power lines for intra-vehicular communication
KR20080023872A (en) Apparatus and method for distributed spatial multiplexing and distributed spatial diversity in multi-hop relay system
US11012095B2 (en) Method for protection of signal blockages in a satellite mobile broadcast system
US9457742B2 (en) Wireless communication extension for can based electrical architectures
EP2400675B1 (en) Satellite communication system and data transmission method
US8516333B1 (en) Pre-interleaving for forward error correction codes
Friedrichs et al. Error-control coding and packet processing for broadband relay satellite networks with optical and microwave links
KR100964610B1 (en) Diversity method using error correcting code
JP5822719B2 (en) Satellite relay device and satellite communication system
US9380546B1 (en) Data communication over a frame synchronized digital transmission network
US11108898B1 (en) Packets with header replicas for contention resolution in communications systems
JP5631262B2 (en) Mobile radio communication system and mobile radio communication method
JP2019134406A (en) Satellite communication system architecture for enhanced partial processing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015557271

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796699

Country of ref document: EP

Kind code of ref document: A1