WO2015178265A1 - Novel glutamic acid derivative and use thereof - Google Patents

Novel glutamic acid derivative and use thereof Download PDF

Info

Publication number
WO2015178265A1
WO2015178265A1 PCT/JP2015/063736 JP2015063736W WO2015178265A1 WO 2015178265 A1 WO2015178265 A1 WO 2015178265A1 JP 2015063736 W JP2015063736 W JP 2015063736W WO 2015178265 A1 WO2015178265 A1 WO 2015178265A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
active substance
physiologically active
amino
glutamic acid
Prior art date
Application number
PCT/JP2015/063736
Other languages
French (fr)
Japanese (ja)
Inventor
米田 靖
啓子 関根
節子 新妻
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2015178265A1 publication Critical patent/WO2015178265A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • C07H15/252Naphthacene radicals, e.g. daunomycins, adriamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical

Definitions

  • the present invention relates to a novel glutamic acid derivative that is enzyme-selectively activated at a target site and its use. More specifically, the present invention relates to a novel glutamic acid derivative which is a prodrug activated by ⁇ -glutamyltranspeptidase (GGT, EC 2.3.2.2) and use thereof.
  • GTT ⁇ -glutamyltranspeptidase
  • Prodrugs are those that change to active drugs after being metabolized in vivo.
  • the purpose of making a drug into a prodrug includes improvement of stability, improvement of solubility, improvement of absorption, reduction of side effects, improvement of action time (sustained action), expression of action at a specific site, etc. .
  • several drugs have been developed as prodrugs and clinically used as therapeutic drugs for various diseases.
  • an anticancer agent can be made to selectively act on cancer cells, an anticancer agent with reduced side effects can be provided. Therefore, if an anticancer drug can be converted into a prodrug and selectively activated at a target site such as a tumor tissue, side effects can be reduced and a therapeutic effect can be greatly improved.
  • Non-patent Document 1 a method in which a self-cleavable linker is interposed between the enzyme recognition site and the drug is known (Non-patent Document 1). This allows an enzyme recognition site to be cleaved by an enzyme-specific reaction, and in the resulting linker-drug complex, a drug can be released by self-cleaving the linker part.
  • ⁇ -Glutamyltranspeptidase is an enzyme that controls the initial stage of metabolic degradation of glutathione ( ⁇ -Glu-Cys-Gly) and glutathione conjugates, and is universally present in almost every organism from higher animals and plants to microorganisms Are known (Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4).
  • GGT is an enzyme that hydrolyzes the ⁇ -glutamyl bond of glutathione, and produces Glu and Cys-Gly.
  • GGT gives a ⁇ -glutamyl transfer product with various amino acids, dipeptides, and amines as receptors.
  • Patent Document 1 discloses a compound obtained by ⁇ -glutamylizing an anticancer agent.
  • a prodrug using a self-cleaving linker a prodrug that can be cleaved by trypsin is mentioned (Non-patent Document 1).
  • Non-Patent Document 6 includes a compound obtained by glutamylating an anticancer agent, and shows cytotoxicity depending on the enzyme.
  • Non-Patent Document 7 includes a prodrug-type compound through an appropriate linker as a compound in which a drug is bonded to the glutamic acid ⁇ position.
  • a prodrug recognized by GGT can selectively release an active compound in a GGT-expressing tissue, so that it can be expected to be a pharmaceutical with reduced side effects and improved therapeutic effects.
  • no GDT-recognized prodrug that can be used as a pharmaceutical product is desired because a product that sufficiently exhibits stability and effects required as a pharmaceutical product has not been obtained.
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group.
  • R 3 represents a hydrogen atom or an alkyl group which may have a substituent
  • a 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom
  • R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group.
  • R 7 represents the following general formula (2) [Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond.
  • X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
  • the L is an oxycarbonyl group,
  • Xi when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
  • Xii When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or oxycarbonyl.
  • one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or a nitrogen atom
  • B 1 , B 2 and B 3 are each independently C—R 6 or a nitrogen atom.
  • the pharmacologically acceptable salt thereof were found to be useful as GGT-recognizing prodrugs, and the present invention was completed.
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group.
  • R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom
  • R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group.
  • R 7 represents the following general formula (2) [Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond.
  • X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
  • the L is an oxycarbonyl group,
  • Xi when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
  • Xii When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group.
  • R 7 represents the following general formula (3) [Wherein, R 4 and R 5 are as defined above, and X is a binding of a physiologically active substance having at least one functional group selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. Residue. ] The glutamic acid derivative or its pharmacologically acceptable salt as described in [1] above.
  • the physiologically active substance in the binding residue of the physiologically active substance represented by X is gemcitabine, ethynylcytidine, cytarabine and CNDAC (2′-cyano-2′-deoxy-1- ⁇ -D-arabinofurano
  • R 7 represents the following general formula (4) [Wherein, R 4 and R 5 are as defined above, and X is a binding residue of a physiologically active substance having an aromatic hydroxyl group. ]
  • the glutamic acid derivative or its pharmacologically acceptable salt as described in [1] above.
  • the glutamic acid derivative of the present invention or a pharmacologically acceptable salt thereof is recognized by GGT and has a property of rapidly releasing a physiologically active substance having an aromatic hydroxyl group. It is known that GGT is highly expressed in many malignant tumors. Therefore, by applying the glutamic acid derivative of the present invention to a compound having an antitumor effect, it is possible to liberate a compound that exhibits antitumor activity selectively in a target tissue, reducing side effects and improving the therapeutic effect.
  • a neoplastic agent can be provided.
  • FIG. 3 shows the results of the cell growth inhibition test of Example 1 for SK-OV-3 cells.
  • FIG. 4 shows the results of the cell growth inhibition test of Example 1 for OS-RC-2 cells in the presence of a GGT inhibitor.
  • FIG. It is the result of the cell growth inhibitory test of the compound of Example 6 on OS-RC-2 cells.
  • FIG. 6 shows the results of a cell growth inhibition test of the compound of Example 6 on OS-RC-2 cells in the presence of a GGT inhibitor.
  • the present invention relates to a glutamic acid derivative obtained by binding ⁇ -glutamyl aromatic amide to a physiologically active substance having an aromatic hydroxyl group, or a pharmacologically acceptable salt thereof.
  • the present invention also relates to the use of the compound as a medicine. Details of the present invention will be described below.
  • the glutamic acid derivative of the present invention or a pharmacologically acceptable salt thereof is represented by the following general formula (1) [Wherein, R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group.
  • R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom
  • R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group.
  • R 7 represents the following general formula (2) [Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond.
  • X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
  • the L is an oxycarbonyl group,
  • Xi when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
  • Xii When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group.
  • either one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or nitrogen atom
  • B 1 , B 2 and B 3 Each independently represents the aforementioned C—R 6 or a nitrogen atom.
  • a pharmacologically acceptable salt thereof
  • R 1 and R 2 in the general formula (1) are each independently a hydrogen atom, an alkyl group which may have a substituent, or an alkoxycarbonyl group which may have a substituent.
  • the alkyl group represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like.
  • the alkoxycarbonyl group which may have a substituent
  • the alkoxycarbonyl group means an alkoxycarbonyl group having 1 to 10 carbon atoms.
  • a primary alkoxycarbonyl group having an appropriate aromatic substituent such as a benzyloxycarbonyl group, a 9-fluorenylmethoxycarbonyl group, an isopropoxycarbonyl group, sec- A secondary alkoxycarbonyl group such as a butoxycarbonyl group or a tertiary alkoxycarbonyl group such as a t-butoxycarbonyl group may be mentioned.
  • Examples of the substituent which the alkyl group and alkoxycarbonyl group may have include, for example, a mercapto group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an alkenyl group having 2 to 10 carbon atoms, and an alkyl group having 2 to 10 carbon atoms.
  • the substitution position on the aromatic ring may be ortho, meta, or para.
  • the alkyl group which may have a substituent in R 1 and R 2 in the general formula (1) or the alkoxycarbonyl group which may have a substituent is preferably an amino-protecting group. That is, any protecting group for an amino group in an organic synthesis reaction can be used without particular limitation.
  • the alkoxycarbonyl group is particularly preferably the benzyloxycarbonyl group (Cbz group), t-butoxycarbonyl group (Boc group), 9-fluorenylmethoxycarbonyl group (Fmoc group), allyloxycarbonyl group (Aloc group). And the like.
  • R 1 and R 2 are preferably a hydrogen atom and / or an alkoxycarbonyl group which may have a substituent. A case where both R 1 and R 2 are hydrogen atoms, or a combination of a hydrogen atom and an alkoxycarbonyl group which may have a substituent is preferable.
  • R 3 in the general formula (1) examples include a hydrogen atom or an alkyl group which may have a substituent.
  • the alkyl group represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like. Further, examples thereof include a benzyl group and a 9-fluorenylmethyl group having an appropriate aromatic substituent.
  • the substituent in the alkyl group of R 3 has the same meaning as described above.
  • a carboxylic acid protecting group is preferably used as the alkyl group which may have a substituent for R 3 .
  • Any protecting group for a carboxylic acid in an organic synthesis reaction can be used without particular limitation. Particularly preferred are methyl group, ethyl group, t-butyl group, allyl group, benzyl group and 9-fluorenylmethyl group.
  • a 1 and A 2 are from the group consisting of C-R 7 and the nitrogen atom is a carbon atom substituted with C-R 6, R 7 is a carbon atom substituted by R 6 The group to be selected. Further, B 1, B 2 and B 3 are C-R 6 or a nitrogen atom is a carbon atom substituted by R 6 independently.
  • R 6 is one or more selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, an optionally substituted alkyl group, and an optionally substituted alkoxy group. Is a substituent.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the alkyl group in the alkyl group which may have a substituent represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • linear alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group.
  • branched alkyl group examples include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • cyclic alkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like.
  • the alkoxy group in the alkoxy group which may have a substituent represents an alkoxy group having 1 to 10 carbon atoms.
  • Examples thereof include primary alkoxy groups such as methoxy group, ethoxy group, and benzyloxy group, secondary alkoxy groups such as isopropoxy group and sec-butoxy group, and tertiary alkoxy groups such as t-butoxy group.
  • alkyl group and alkoxy group may have include, for example, a mercapto group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an alkenyl group having 2 to 10 carbon atoms, and an alkynyl group having 2 to 10 carbon atoms.
  • a 1 , A 2 , B 1 , B 2 and B 3 may be nitrogen atoms. That is, the 6-membered aromatic group composed of A 1 to B 3 may be a nitrogen-containing heterocyclic ring.
  • the nitrogen-containing heterocycle includes a heterocyclic group containing 1 to 3 nitrogen atoms in A 1 to B 3 .
  • the nitrogen-containing heterocycle may have a substituent.
  • the substituent is a substituent defined by R 6 .
  • R 4 and R 5 independently include a hydrogen atom or an alkyl group which may have a substituent.
  • the alkyl group in the alkyl group which may have a substituent represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like.
  • the substituent which may have is the same as the substituent in R 1 and R 2 described above.
  • R 7 is a group represented by the general formula (2).
  • L represents a linking group selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond
  • X represents an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group and a carboxy group.
  • X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
  • Ii when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
  • Iii When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond.
  • the X group is a binding residue of a physiologically active substance having an aliphatic hydroxyl group or an aromatic hydroxyl group
  • the hydroxyl group is a binding residue in the form of a carbonate bond with an oxycarbonyl group.
  • the amino group is a binding residue in the form of a urethane bond with an oxycarbonyl group.
  • the X group is a binding residue in a physiologically active substance having a carboxy group, a residual bond in the form of an ester bond with a carbonyl group derived from the physiologically active substance via an oxygen atom as the binding group L.
  • the X group is a binding residue of a physiologically active substance having an aromatic hydroxyl group
  • the X group is a binding residue ether-bonded via an oxygen atom of the aromatic hydroxyl group of the physiologically active substance.
  • R 7 is represented by the following general formula (3): [Wherein, R 4 and R 5 are as defined above, and X is a binding of a physiologically active substance having at least one functional group selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. Residue. ].
  • R 7 is represented by the following general formula (4): [Wherein, R 4 and R 5 are as defined above, and X is a binding residue of a physiologically active substance having an aromatic hydroxyl group. ].
  • the physiologically active substance in X is a chemical substance that exhibits a pharmacological function when administered in vivo, and is selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group Any compound having the above functional group can be used without any particular limitation.
  • the L uses an oxycarbonyl group as a linking group, and is a carbonate bond and / or a urethane bond.
  • the resulting compound is
  • L becomes an oxygen atom and becomes a compound ester-bonded with a carbonyl group derived from the physiologically active substance.
  • L is a bond or an oxycarbonyl group, and becomes a compound having an ether bond or a carbonate bond.
  • the aliphatic hydroxyl group may be any substituent of primary hydroxyl group, secondary hydroxyl group or tertiary hydroxyl group.
  • the amino group may be any substituent of a primary amino group, a secondary amino group, or a tertiary amino group.
  • the physiologically active substance in X may be a physiologically active substance in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and an amino group coexist.
  • the X group is generally considered to be a binding residue due to an amino group.
  • it may be a residue bonded by any active functional group of the aliphatic hydroxyl group and / or aromatic hydroxyl group and the amino group, and may depend on the aliphatic hydroxyl group and / or aromatic hydroxyl group. It may be a mixture of a binding residue and a binding residue due to the amino group.
  • the physiologically active substance in X may be a physiologically active substance in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group and a carboxy group coexist.
  • the binding mode can be appropriately selected depending on the reaction conditions.
  • the physiological activity of the physiologically active substance is not particularly limited, but is preferably a pharmacological activity related to disease treatment, and a pharmacologically active compound for disease treatment is preferably used. Since GGT is highly expressed in malignant tumors, the physiologically active substance is preferably an antitumor active substance, and an anticancer agent is preferably applied. That is, the physiologically active substance represented by X in the general formula (2) is an anticancer having one or more functional groups selected from the group consisting of aliphatic hydroxyl groups, aromatic hydroxyl groups, amino groups, and carboxy groups. It is preferable that it is an agent.
  • an anticancer agent suitable as a physiologically active substance represented by X in the general formula (2) a sirolimus anticancer agent, an anthracycline anticancer agent, a cytidine anticancer agent, a tyrosine kinase inhibitor, examples thereof include DNA topoisomerase inhibitors, hormone therapy agents, photodynamic therapy agents, microtubule polymerization inhibitors, Hsp90 inhibitors, and other anticancer agents having cell division inhibitory activity.
  • sirolimus anticancer agent examples include everolimus, temsirolimus, tacrolimus, rapamycin and the like.
  • cytidine anticancer agent examples include ethynyl cytidine, CNDAC (2'-cyano-2'-deoxy-1- ⁇ -D-arabinofuranosylcytosine), gemcitabine, cytarabine and the like.
  • the tyrosine kinase inhibitor is a tyrosine kinase inhibitor having a hydroxyl group and / or an amino group, and examples thereof include crizotinib and dasatinib.
  • DNA topoisomerase inhibitor examples include camptothecin-type anticancer agents which are DNA topoisomerase type I inhibitors such as camptothecin, 7-ethyl-10-hydroxycamptothecin, irinotecan, nogithecan, 9-aminocamptothecin, 9-nitrocamptothecin Is mentioned.
  • DNA topoisomerase type II inhibitors examples include etoposide and teniposide.
  • anthracycline anticancer agents such as doxorubicin, daunorubicin, epirubicin, pirarubicin, idarubicin, mitoxantrone and amrubicin can be exemplified.
  • hormone therapeutic agent examples include raloxifene, goserelin, leuprorelin and the like.
  • photochemotherapy agent examples include 2-butylamino-2-demethoxyhypocreline.
  • microtubule polymerization inhibitor examples include taxane anticancer agents such as paclitaxel and docetaxel, combretastatin and derivatives thereof, podophyllotoxin, eribulin, and auristatin.
  • Hsp90 inhibitor examples include ganetespib, macbecin, radicicol and the like.
  • suitable anticancer agents as physiologically active substances having a carboxy group include, for example, methotrexate, pemetrexed, DMXAA (5,6-dimethylxanthenone-4-acetic acid), bexarotene , Tamibarotene and the like.
  • the physiologically active substance having an amino group or a carboxy group may be physiologically active peptides.
  • the physiologically active peptides having the amino group or carboxy group can be bonded using a terminal amino group or carboxy group.
  • the physiologically active peptides include ester derivatives such as bestatin and bestatin methyl ester, glutanide, ghrelin, ghrelin, tertomotide, PR1, octreotide, lanreotide, and lanreotide. Examples include pasireotide.
  • X in the general formula (2) is preferably a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group.
  • an oxycarbonyl group is used as the bonding group L in the general formula (2). That is, in this case, R 7 is a substituent represented by the general formula (3).
  • physiologically active substance having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group examples include camptothecin, 7-ethyl-10-hydroxycamptothecin, irinotecan, nogitecan, 9 -A camptothecin derivative such as aminocamptothecin or 9-nitrocamptothecin is preferred. These have a lactone ring tertiary hydroxyl group, an aromatic hydroxyl group, and an amino group, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group that is the linking group.
  • doxorubicin As a physiologically active substance having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group, doxorubicin, daunorubicin, epirubicin, pirarubicin, idarubicin, mitoxantrone, amrubicin Anthracycline anticancer agents such as these are also preferable. More preferred are doxorubicin, daunorubicin, epirubicin, pirarubicin, and amrubicin. These have a hydroxyl group and / or an amino group, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group, which is the linking group.
  • gemcitabine ethynylcytidine, cytarabine, CNDAC (2′-cyano-2) are physiologically active substances having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group.
  • a cytidine anticancer agent such as' -deoxy-1- ⁇ -D-arabinofuranosylcytosine) is preferred. These have a hydroxyl group and / or an amino group of a cytidine base, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group which is the above-mentioned bonding group.
  • X in the general formula (2) is preferably a binding residue of a physiologically active substance having an aromatic hydroxyl group.
  • a bond is used as the bonding group L in the general formula (2). That is, in this case, R 7 is a substituent represented by the general formula (4).
  • the physiologically active substance having an aromatic hydroxyl group 7-ethyl-10-hydroxycamptothecin or nogitecan is preferably used, and the X is a bond ether-bonded with the 10-position hydroxyl group of 7-ethyl-10-hydroxycamptothecin or nogitecan It is preferably a residue.
  • the present invention is characterized in that one of A 1 and A 2 is CR 7 . That is, one aspect of the present invention is a glutamic acid derivative represented by the following general formula (5) in which A 1 is C—R 7 or a pharmacologically acceptable salt thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 , A 2 , B 1 , B 2 , B 3 , L and X are as defined above.
  • Another aspect of the present invention is a glutamic acid derivative represented by the following general formula (6) wherein A 2 is C—R 7 or a pharmacologically acceptable salt thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 , A 1 , B 1 , B 2 , B 3 , L and X are as defined above.
  • the ⁇ -glutamic acid binding partial structure needs to be a free amino acid structure. is there. That is, in order for the glutamic acid derivative to function as a prodrug that is recognized and activated by GGT, it is necessary that R 1 , R 2, and R 3 are all hydrogen atoms. Therefore, when the glutamic acid derivative is used as a medicament for exerting pharmacological activity, it is preferable that all of R 1 , R 2 and R 3 are hydrogen atoms.
  • any one of R 1 , R 2 and R 3 is an amino group or carboxy protecting group, and the protecting group is dissociated after administration into a living body, and the R 1 , R 2 and R 3 are released.
  • the case where all of these have a hydrogen atom structure is also included as an aspect of the glutamic acid derivative for pharmaceutical use.
  • the compound in which R 1 , R 2 and R 3 are an alkyl group or an alkoxycarbonyl group which may have a substituent is a compound useful as an intermediate in the production of a compound for pharmaceutical use, and It is included in the content of the invention.
  • the glutamic acid derivative represented by the general formula (1) may exist as a pharmacologically acceptable salt.
  • the salt include base addition salts, acid addition salts, amino acid salts and the like.
  • the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt and magnesium salt, and organic amine salts such as ammonium salt, triethylamine salt, piperidine salt and morpholine salt.
  • the acid addition salt include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate.
  • amino acid salts include glycine salts. However, the salt of the compound of the present invention is not limited to these.
  • the glutamic acid derivative represented by the general formula (1) and a salt thereof may have one or two or more asymmetric carbons depending on the type of the substituent, and may be a stereo such as an optical isomer or a diastereoisomer. Isomers may exist. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
  • the glutamic acid derivative represented by the general formula (1) and a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be mentioned.
  • the number of bonds in the hydrate or solvate is not particularly limited as long as it is a stable hydrate or solvate that can be isolated.
  • the glutamic acid derivative represented by the general formula (1) of the present invention is a physiologically active substance in which A 2 is C—R 7 and X has an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group
  • L is an oxycarbonyl group
  • R 1 to R 3 , X, A 1 and B 1 to B 3 have the same meanings as described above.
  • R 1 and / or R 2 is an amino-protecting group
  • R 3 is a carboxylic acid-protecting group.
  • LG represents a leaving group such as a halogen atom, a p-nitrophenoxy group or a hydroxysuccinimide group.
  • Step A A step of synthesizing a ⁇ -glutamic acid amide derivative (A-1) by amidating a glutamic acid derivative with an amino group and an ⁇ -carboxy group protected with an aromatic amine.
  • This step is an amidation condensation reaction and can be carried out using a general condensing agent.
  • a general condensing agent For example, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is used as a condensing agent, and the reaction is performed at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C., in a solvent such as dichloromethane. Can be implemented.
  • the condensing agent examples include a carbodiimide condensing agent, an imidazole dehydrating condensing agent, a triazine condensing agent, a phosphonium dehydrating condensing agent, a uronium condensing agent, diphenylphosphoric acid azide (DPPA), BOP reagent, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and the like can be used. If necessary, an activator such as 1-hydroxybenzotriazole can coexist.
  • DPPA diphenylphosphoric acid azide
  • BOP reagent 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and the like can be used. If necessary, an activator such as 1-hydroxybenzotriazole can coexist.
  • Step B A step of synthesizing the carbonyl derivative represented by the general formula (A-2) from the ⁇ -glutamic acid amide derivative represented by the general formula (A-1). This step can be performed, for example, by reacting p-nitrophenyl chloroformate in the presence of pyridine in a solvent such as tetrahydrofuran at a temperature of ⁇ 30 ° C. to 150 ° C., preferably ⁇ 10 ° C. to 30 ° C.
  • Step C A step of synthesizing the physiologically active substance-binding derivative represented by the general formula (A-3) from the carbonyl derivative represented by the general formula (A-2).
  • a physiologically active substance having an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group is treated in the presence of diisopropylethylamine in a solvent such as N, N-dimethylformamide at 0 ° C. to 150 ° C. It can be carried out by reacting at a temperature of preferably 0 ° C. to 30 ° C.
  • Step D Process route for synthesizing the physiologically active substance-binding derivative represented by the general formula (A-3) in one step from the ⁇ -glutamic acid amide derivative represented by the general formula (A-1) It is.
  • a carbonylated physiologically active substance derivative represented by the general formula (I-1) is treated in the presence of N, N-dimethylaminopyridine in a solvent such as dichloromethane at 0 ° C. to 150 ° C., preferably 0 It can carry out by making it react at the temperature of 30 to 30 degreeC.
  • the carbonylated physiologically active substance derivative represented by the general formula (I-1) is a physiologically active substance X having an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group, for example, N, N-dimethyl It can be produced by reacting with triphosgene in the presence of aminopyridine in a solvent such as dichloromethane at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. Alternatively, for example, it can be produced by reacting p-nitrophenyl chloroformate in the presence of pyridine in a solvent such as dichloromethane at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C.
  • Step E A step of deprotecting the amino group and carboxyl group of the ⁇ -glutamic acid binding moiety in the physiologically active substance-binding derivative represented by the general formula (A-3).
  • R 1 or R 2 is a t-butoxycarbonyl group (Boc group)
  • the other is a hydrogen atom
  • R 3 is a t-butyl group
  • the deprotection of Step E is performed under acidic conditions can do.
  • the acid inorganic acids such as hydrochloric acid and sulfuric acid, carboxylic acids such as acetic acid and trifluoroacetic acid, and the like can be used.
  • any catalyst that is known to be capable of deprotecting a t-butoxycarbonyl group or t-butyl ester and that does not affect the portion other than the protecting group can be used without particular limitation.
  • R 1 and R 2 is a 9-fluorenylmethoxycarbonyl group (Fmoc group)
  • the other is a hydrogen atom
  • R 3 is a fluorenylmethyl group
  • the step E can be performed.
  • the base ammonia or an organic base such as piperidine or morpholine can be used.
  • any catalyst that is known to be capable of deprotecting a fluorenylmethoxycarbonyl group or a fluorenylmethyl ester and that does not affect parts other than the protecting group can be used under any deprotection reaction conditions. It can be used even if it exists.
  • R 1 and R 2 is an allyloxycarbonyl group (Aloc group)
  • the other is a hydrogen atom
  • R 3 is an allyl group
  • the step E is performed in the presence of a palladium catalyst.
  • Tetrakis (triphenylphosphine) palladium (0) or the like can be used as the palladium catalyst.
  • any catalyst that is known to be capable of deprotecting an allyloxycarbonyl group or allyl ester and that does not affect the portion other than the protecting group can be used under any deprotection reaction conditions. be able to.
  • a derivative represented by the general formula (A-3) can be produced, for example, as follows.
  • Scheme (II) In the scheme (II), R 1 to R 3 , X, A 1 , B 1 to B 3 are as defined above, R 1 and / or R 2 is a protecting group for an amino group, and R 3 is a carboxyl group. Acid protecting group. Each step will be described below.
  • Step F A step of synthesizing a physiologically active substance-binding derivative represented by the general formula (A-3) from the ⁇ -glutamic acid amide derivative represented by the general formula (A-1).
  • an isocyanate derivative of a physiologically active substance X having an amino group is heated to 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. in a solvent such as dichloromethane in the presence of N, N-dimethylaminopyridine. It can implement by making it react.
  • the isocyanate derivative of the physiologically active substance X having an amino group is, for example, the physiologically active substance X having an amino group in a mixed solvent such as an aqueous potassium hydrogen carbonate solution and dichloromethane, preferably 0 ° C to 150 ° C, preferably 0 ° C to 30 ° C. It can manufacture by making it react with triphosgene at the temperature of.
  • a mixed solvent such as an aqueous potassium hydrogen carbonate solution and dichloromethane
  • the physiologically active substance-bound derivative represented by the general formula (A-3) can be produced, for example, as follows.
  • Scheme (III) In the scheme (III), R 1 to R 3 , X, A 1 , B 1 to B 3 are as defined above, R 1 and / or R 2 are amino-protecting groups, and R 3 is a carboxylic acid. Acid protecting group. Each step will be described below.
  • Step G A step of esterifying the ⁇ -glutamic acid amide derivative represented by the general formula (A-1) and a physiologically active substance having a carboxyl group by a condensation reaction.
  • a general condensing agent can be used.
  • 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride is used as the condensing agent, and in a solvent such as N, N-dimethylformamide,
  • the reaction can be carried out at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C.
  • condensing agents include carbodiimide condensing agents, imidazole dehydrating condensing agents, triazine condensing agents, phosphonium dehydrating condensing agents, uronium condensing agents, diphenyl phosphate azide (DPPA), BOP reagents, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and the like can be used. If necessary, an activator such as 1-hydroxybenzotriazole, N, N-dimethyl-4-aminopyridine can be coexisted.
  • an activator such as 1-hydroxybenzotriazole, N, N-dimethyl-4-aminopyridine can be coexisted.
  • the glutamic acid derivative represented by the general formula (1) of the present invention in which A 2 is C—R 7 and X is an aromatic hydroxyl group and L is a bond is, for example, as follows: Can be manufactured.
  • Scheme (IV) R 1 to R 3 , X, A 1 , and B 1 to B 3 have the same meanings as described above.
  • R 1 and / or R 2 is an amino-protecting group
  • R 3 is a carboxylic acid-protecting group.
  • LG represents a leaving group such as a halogen atom or a methanesulfonyloxy group.
  • Step A A step of synthesizing the derivative represented by the general formula (A-5) from the ⁇ -glutamic acid amide derivative represented by the general formula (A-1).
  • LG in the general formula (A-5) is a leaving group, and examples thereof include a methanesulfonyloxy group and a p-toluenesulfonyloxy group.
  • methanesulfonyl chloride is -30 ° C to 150 ° C in a solvent such as dichloromethane in the presence of N, N-diisopropylethylamine, preferably -10 ° C. To 30 ° C. for the reaction.
  • Step B A step of synthesizing the physiologically active substance-binding derivative represented by the general formula (A-6) from the derivative represented by the general formula (A-5).
  • a physiologically active substance having an aromatic hydroxyl group is reacted in a solvent such as N, N-dimethylformamide in the presence of cesium carbonate at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. Can be implemented.
  • Step C Process route for synthesizing the physiologically active substance-binding derivative represented by the general formula (A-6) in one step from the ⁇ -glutamic acid amide derivative represented by the general formula (A-1) It is.
  • a compound having an aromatic hydroxyl group is converted to 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. in a solvent such as N, N-dimethylformamide in the presence of triphenylphosphine and diisopropyl azodicarboxylate. It can implement by making it react at the temperature of.
  • Step D A step of deprotecting the amino group and carboxy group of the ⁇ -glutamic acid binding moiety in the physiologically active substance-binding derivative represented by the general formula (A-6).
  • R 1 or R 2 is a t-butoxycarbonyl group (Boc group)
  • the other is a hydrogen atom
  • R 3 is a t-butyl group
  • the deprotection of Step E is performed under acidic conditions can do.
  • the acid inorganic acids such as hydrochloric acid and sulfuric acid, carboxylic acids such as acetic acid and trifluoroacetic acid, and the like can be used.
  • any catalyst that is known to be capable of deprotecting a t-butoxycarbonyl group or t-butyl ester and that does not affect the portion other than the protecting group can be used without particular limitation.
  • R 1 and R 2 is a 9-fluorenylmethoxycarbonyl group (Fmoc group)
  • the other is a hydrogen atom
  • R 3 is a fluorenylmethyl group
  • the step E can be performed.
  • the base ammonia or an organic base such as piperidine or morpholine can be used.
  • any catalyst that is known to be capable of deprotecting a fluorenylmethoxycarbonyl group or a fluorenylmethyl ester and that does not affect parts other than the protecting group can be used under any deprotection reaction conditions. It can be used even if it exists.
  • R 1 and R 2 is an allyloxycarbonyl group (Aloc group)
  • the other is a hydrogen atom
  • R 3 is an allyl group
  • the step E is performed in the presence of a palladium catalyst.
  • Tetrakis (triphenylphosphine) palladium (0) or the like can be used as the palladium catalyst.
  • any catalyst that is known to be capable of deprotecting an allyloxycarbonyl group or allyl ester and that does not affect the portion other than the protecting group can be used under any deprotection reaction conditions. be able to.
  • the glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof can release a physiologically active substance and functions as a prodrug of the physiologically active substance. Therefore, it can be used as a medicament containing the glutamic acid derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the pharmaceutical containing the glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient may use the glutamic acid or a salt thereof alone, but usually in combination with a pharmaceutically acceptable additive. It is preferable to prepare a pharmaceutical composition and use it as a pharmaceutical preparation.
  • the additives include excipients, disintegrants, binders, lubricants, fluidizing agents, coating agents, suspending agents, emulsifiers, stabilizers, preservatives, flavoring agents, flavoring agents, diluents.
  • pharmaceutically acceptable additives such as a solubilizing agent, and a pharmaceutical preparation is prepared by mixing with these.
  • Such preparations can be safely administered orally or parenterally (systemic administration, topical administration, etc.) in the form of powders, granules, tablets, tablets, capsules, injections, suppositories, ointments and the like.
  • the content of the glutamic acid derivative of the present invention or pharmaceutically acceptable salt in the preparation varies depending on the preparation, but it is usually preferably 0.1 to 100% by weight.
  • the dosage When used as a pharmaceutical containing the glutamic acid derivative or a pharmaceutically acceptable salt thereof as an active ingredient, the dosage varies depending on the administration route, the age of the patient and the actual symptoms to be prevented or treated, and is not particularly limited. Absent.
  • the glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof is preferably used as an anticancer agent because it is recognized by GGT highly expressed in malignant tumors and has a physical property of releasing a physiologically active substance.
  • the active ingredient when used as an anticancer agent, for example, when orally administered to adults, the active ingredient can be 0.01 mg to 2000 mg, preferably 0.1 mg to 1000 mg per day, once or several times a day. Can be administered separately. In the case of parenteral administration such as intravenous administration, the active ingredient per body surface area can be 0.01 mg to 2000 mg / m 2 , preferably 0.1 mg to 1000 mg / m 2. It is preferable to administer once or several times.
  • Example 1-2 (S)-(9H-fluoren-9-yl) methyl 2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-((4-((((4-nitrophenoxy) Synthesis of carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) methoxy) carbonyl ) Amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.145 g) and pyridine (0.0448 mL) in dry tetrahydrofuran (100 mL) at 0 ° C.
  • Example 1-3 (((((4-((S) -5-((9H-fluoren-9-yl) methoxy) -4-(((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopenta Synthesis of namid) benzyl) oxy) carbonyl) doxorubicin Crude (S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5 -((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.05 g) was dissolved in N, N-dimethylformamide (3 mL), After adding doxorubicin hydrochloride (0.03 g), diisopropylethylamine (0.13 mL) was added.
  • Example 1-4 Synthesis of ((((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) doxorubicin Crude ((((((4-((S) -5-((9H-fluorene- 9-yl) methoxy) -4-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) doxorubicin (0.085 g) N, N -Dissolved in dimethylformamide (1.1725 mL), a solution of piperidine in N, N-dimethylformamide (10%, 0.275 mL) was added dropwise with ice cooling, and the mixture was stirred for 30 minutes.
  • Example 2-3 (((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) -10-oxy-7- Synthesis of ethylcamptothecin t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5 -Oxopentanoate (0.125 g) was dissolved in N, N-dimethylformamide (8 mL), 7-ethyl-10-hydroxycamptothecin (0.0855 g) was added, and diisopropylethylamine (0.37 mL) was added.
  • Example 2-4 Synthesis of ((((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin Crude (((((4-((S)- 4- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin (0.02 g) The mixture was dissolved in dioxane hydrochloride solution (2.0 mL) and stirred for 30 minutes, the solvent was distilled off, water (4 mL) was added, and the mixed solution was purified by preparative HPLC, (((4-((S)- 4-Amino-4-carboxybutanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin (Example 2, 0.00
  • Example 3-1 Synthesis of (((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) benzyl) oxy) carbonyl) camptothecin (0.
  • a solution of dimethylaminopyridine (0.0561 g) in dichloromethane (2 mL) was slowly added dropwise to a suspension of 050 g) and triphosgene (0.0158 g) in dry dichloromethane (6 mL).
  • Example 3-2 Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) camptothecin Crude ((((4-((S) -5- (t-butoxy) -4 -((T-Butoxycarbonyl) amino) -5-oxopentanamide) benzyl) oxy) carbonyl) camptothecin (0.028 g) was dissolved in 4N hydrochloric acid ethyl acetate solution (3.0 mL) at 0 ° C. Stir for hours.
  • Example 4-1 Synthesis of allyl (S) -2- (allyloxycarbonylamino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate S) -2-((allyloxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.400 g) and pyridine (0.214 mL) in dry tetrahydrofuran A solution of 4-nitrophenyl chloroformate (0.428 g) in dry tetrahydrofuran (1 mL) was added dropwise to the (20 mL) solution at 0 ° C., and the mixture was stirred at room temperature for 18 hours.
  • Example 4-2 Synthesis of (((4-((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamido) benzyl) oxy) carbonyl) epirubicin allyl (S) -2- (allyloxycarbonyl Amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.130 g) and epirubicin hydrochloride (0.127 g). Dissolved in N, N-dimethylformamide (10 mL), diisopropylethylamine (0.0928 mL) was added.
  • Example 4-3 Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) epirubicin ((((4-((S) -5-allyl-4- (allyloxycarbonylamino ) -5-oxopentanamide) benzyl) oxy) carbonyl) epirubicin (0.200 g) was dissolved in dichloromethane (4.5 mL) and N, N-dimethylformamide (1.0 mL), and tetrakistriphenylphosphine palladium ( 0.012 g) and phenylsilane (0.026 mL) were added, and the mixture was stirred for 30 minutes under an argon atmosphere.
  • Example 5-1 Synthesis of (((4-((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamide) benzyl) oxy) carbonyl) cytarabine Allyl (S) -2- (allyloxycarbonyl Amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.030 g) was dissolved in tetrahydrofuran (1.85 mL). After adding cytarabine (0.014 g), 1N aqueous sodium hydroxide solution (0.15 mL) was added.
  • Example 5-2 Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) cytarabine ((((4-((S) -5-allyl-4- (allyloxycarbonylamino ) -5-oxopentanamide) benzyl) oxy) carbonyl) cytarabine (0.016 g) was dissolved in dichloromethane (2.0 mL) and N, N-dimethylformamide (0.40 mL), and tetrakistri under argon atmosphere.
  • Example 6-1 Synthesis of 5-((4-hydroxymethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate 1-t-butyl N- (t- N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in a solution of butoxycarbonyl) -L-glutamate (1.00 g) and 4-aminobenzyl alcohol (0.487 g) in dry dichloromethane (15 mL). ) (1.019 g) was added and stirred at room temperature for 18 hours. 1N Hydrochloric acid was added, and the mixture was extracted with dichloromethane.
  • EEDQ t- N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline
  • Example 6-2 Synthesis of 5-((4-chloromethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate In an argon atmosphere, with ice-cooling and stirring, 5 In a dry dichloromethane (4.3 mL) solution of-((4-hydroxymethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate (88 mg, 0.22 mmol), Diisopropylethylamine (0.073 mL, 0.43 mmol) and methanesulfonyl chloride (0.025 mL, 0.32 mmol) were added in this order, and the mixture was stirred for 2 hours and 5 minutes under ice cooling.
  • the reaction mixture is diluted with ethyl acetate (40 mL), washed with 0.3 molar aqueous sodium hydrogen carbonate solution (3 mL) -water (10 mL), water (10 mL), and brine (10 mL), and then anhydrous sodium sulfate. And dried. Sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure, and 5-((4-chloromethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate (83. 7 mg) was obtained. This was used for the next condensation reaction without purification. *
  • Example 6-3 10-(((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) benzyloxy) -7 -Synthesis of ethylcamptothecin
  • EHC 29 mg, 0.074 mmol 7-ethyl-10-hydroxy-camptothecin
  • cesium carbonate 24 mg, 0.074 mmol
  • the resulting pale yellow suspension was stirred at room temperature for 9 minutes to give an orange homogeneous solution, and then crude 5-((4-chloromethyl) benzylamino) was stirred at room temperature.
  • Example 6-4 Synthesis of 10- (4-((S) -4-amino-4-carboxybutanamido) benzyloxy) -7-ethylcamptothecin 2trifluoroacetate salt 10-(((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyloxy) -7-ethylcamptothecin (33.
  • Test Example 1 ⁇ -Glutamyltranspeptidase (GGT) enzyme recognition test
  • the doxorubicin prodrug (0.49 mg) of Example 1 was dissolved in phosphate buffered saline (PBS) (0.298 mL), and 2 mM doxorubicin pro A drug PBS solution was prepared.
  • the reaction was carried out at ° C.
  • the reaction solution was subjected to HPLC analysis to determine the prodrug residual rate and doxorubicin production rate. The results are summarized in Table 1.
  • Comparative Test Example 1 GGT enzyme recognition test
  • the doxorubicin prodrug (0.17 mg) obtained in Comparative Example 1 was dissolved in PBS (0.1265 mL) to prepare a 2 mM doxorubicin prodrug PBS solution.
  • PBS 0.1265 mL
  • To 0.100 mL of the doxorubicin prodrug PBS solution 0.100 mL of 2 U / mL GGT solution in which GGT (0.38 mg, 8 U / mg) (Sigma-Aldrich) was dissolved in PBS (1.520 mL) was added, and 37 The reaction was carried out at ° C. Six hours later, the reaction solution was analyzed by HPLC. As a result, 93% of the prodrug remained. From this, it was shown that the doxorubicin prodrug which concerns on the comparative example 1 is not recognized by GGT, and cannot release doxorubicin which is a bioactive substance.
  • Test Example 2 Phosphate buffered saline (PBS) solution stability test
  • the doxorubicin prodrug (0.49 mg) of Example 1 was dissolved in phosphate buffered saline (PBS) (0.298 mL) to prepare doxorubicin.
  • a prodrug PBS solution was prepared.
  • 0.148 mL of the doxorubicin prodrug PBS solution was dissolved in 0.148 mL of PBS solution and reacted at 37 ° C. After 6.5 hours, the reaction solution was analyzed by HPLC. As a result, no decrease in prodrug was confirmed. Therefore, it was shown that the doxorubicin prodrug of Example 1 according to the present invention does not release doxorubicin in the PBS solution and is chemically stable.
  • Test Example 3 Cell growth inhibitory activity test Using OS-RC-2 cells (RIKEN BioResource Center) with high GGT activity and SK-OV-3 cells (American Type Culture Collection) with low GGT activity, according to Example 1 The cell growth inhibitory activity of doxorubicin prodrug was evaluated.
  • OS-RC-2 cells with high GGT activity and SK-OV-3 cells with low GGT activity are seeded in a 96-well plate at 4,000 cells / well, respectively, and cultured at 37 ° C. under 5% CO 2 for 1 day. Thereafter, the doxorubicin prodrug according to Example 1 was added at a final concentration of 0.039 to 10 ⁇ M. After culturing for 6 hours, the inside of the well was washed.
  • Test Example 4 Confirmation Test of Prodrug GGT Dependence Using OS-RC-2 cells having high GGT activity, the GGT activity dependence of the cell growth inhibitory activity of doxorubicin prodrug according to Example 1 was evaluated. After seeding OS-RC-2 cells in the same manner as in Test Example 3 and culturing for 1 day, GGsTop (Wako Pure Chemical Industries, Ltd.), a GGT inhibitor, was added at a final concentration of 10 ⁇ M, followed by incubation for 1 hour. The doxorubicin prodrug according to Example 1 was added at a final concentration of 0.039-10 ⁇ M.
  • the doxorubicin prodrug of Example 1 according to the present invention releases doxorubicin by GGT and exhibits cell growth inhibitory activity.
  • the doxorubicin prodrug which concerns on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
  • the GGT inhibitor did not affect the cell growth inhibitory activity of doxorubicin, but completely inhibited the activity of doxorubicin prodrug. From this, it was shown that the doxorubicin prodrug which concerns on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
  • Test Example 5 GGT enzyme recognition test
  • the epirubicin prodrug of Example 4 in 2 mM PBS solution and 2 U / mL GGT solution were reacted at 37 ° C.
  • HPLC analysis of the reaction solution over time confirmed that the prodrug was decomposed by the enzymatic reaction, and the prodrug residual rate after 6 hours was 5%. From this, it was shown that the epirubicin prodrug which concerns on Example 4 can release the epirubicin which has pharmacological activity rapidly in presence of GGT.
  • Test Example 6 GGT Enzyme Recognition Test
  • the reaction was carried out at 37 ° C. using 1 mM PBS solution of cytarabine prodrug obtained in Example 5 and 2 U / mL GGT solution.
  • HPLC analysis of the reaction solution over time confirmed that the prodrug was decomposed by the enzymatic reaction, and the prodrug residual rate after 6.5 hours was 34%. From this, it was shown that the cytarabine prodrug according to Example 5 can release cytarabine having pharmacological activity quickly in the presence of GGT.
  • Comparative Test Example 2 GGT enzyme recognition test
  • a 2 mM PBS solution of the 9-aminocamptothecin prodrug obtained in Comparative Example 2 was prepared, and a 2 U / mL GGT solution was used.
  • the reaction was carried out at 37 ° C. Six hours later, HPLC analysis of the reaction solution showed that 99% of the prodrug remained. This indicates that the 9-aminocamptothecin prodrug according to Comparative Example 2 is not recognized by GGT and cannot release 9-aminocamptothecin, which is a physiologically active substance.
  • the 9-aminocamptothecin prodrug of Comparative Example 2 had a result that almost no dissociation reaction of 9-aminocamptothecin by GGT occurred.
  • it was necessary to interpose an appropriate linker segment and it became clear that the aromatic amide type linker segment of the present invention can exert a superior GGT recognition ability.
  • Test Example 7 Stability test in PBS PBS (0.220 mL) was added to a 60 mg / mL DMSO solution (0.005 mL) of the EHC prodrug of Example 2 to prepare an EHC prodrug solution.
  • PBS (0.100 mL) was added to the EHC prodrug solution (0.100 mL) and reacted at 37 ° C.
  • the residual ratio of the prodrug was determined by HPLC analysis of the reaction solution, the residual ratio of the prodrug was 52% after 3.5 hours.
  • a camptothecin prodrug solution was prepared by adding PBS (0.294 mL) to a 6.3 mg / mL DMSO solution (0.073 mL) of the camptothecin prodrug of Example 3.
  • PBS (0.117 mL) was added to the camptothecin prodrug solution (0.117 mL) and reacted at 37 ° C.
  • the prodrug remaining rate was determined by HPLC analysis of the reaction solution, and after 3 hours, the prodrug remaining rate was 74%.
  • PBS (0.450 mL) was added to the 0.864 mg / mL DMSO solution (0.050 mL) of the EHC prodrug of Example 6 and reacted at 37 ° C. When the residual ratio of the prodrug was determined by HPLC analysis of the reaction solution, 90% of the prodrug remained after 24 hours.
  • Test Example 8 Stability test in mouse plasma
  • Mouse plasma (0.180 mL) was added to the EHC prodrug 0.856 mg / mL DMSO solution (0.020 mL) of Example 6 and reacted at 37 ° C.
  • 94% of the prodrug remained after 24 hours. Therefore, it was shown that the EHC prodrug of Example 6 according to the present invention is chemically stable even in mouse plasma.
  • Test Example 9 GGT enzyme recognition test
  • the EHC prodrug of Example 6 was dissolved in DMSO to prepare a 0.34 mg / mL solution.
  • PBS (0.300 mL) was added to the EHC prodrug solution (0.300 mL) to prepare an EHC prodrug solution (2).
  • ⁇ -Glutamyltranspeptidase (GGT Sigma-Aldrich) was dissolved in PBS to prepare a 0.227 mg / mL solution.
  • a GGT solution (0.250 mL) was added to the EHC prodrug solution (2) (0.250 mL) and reacted at 37 ° C.
  • the reaction solution was subjected to HPLC analysis to determine the prodrug residual rate and EHC production rate.
  • Example 9 the EHC prodrug of Example 6 produced a stoichiometric amount of EHC in 1 hour of reaction. This result shows that the compound of Example 6 is recognized by GGT and can quickly cleave the ⁇ -glutamyl aromatic amide linker via an ether bond to produce EHC as a physiologically active substance.
  • Test Example 10 Cell growth inhibitory activity test OS-RC-2 cells (RIKEN BioResource Center) known to have high GGT activity and SK-OV-3 cells (American Type) known to have low GGT activity
  • the cell growth inhibitory activity of the EHC prodrug according to Example 6 was evaluated using Culture Collection. A 96-well plate was seeded with 4,000 cells / well of OS-RC-2 cells with high GGT activity and SK-OV-3 cells with low GGT activity, respectively, and cultured at 37 ° C. under 5% CO 2 for 1 day. Thereafter, the EHC prodrug according to Example 6 was added at a final concentration of 0.0001 to 1 ⁇ M. After culturing for 6 hours, the well was washed and further cultured for 3 days.
  • Test Example 11 Confirmation test of GGT dependence of prodrug GGT activity dependence on cell growth inhibitory activity of EHC prodrug according to Example 6 using OS-RC-2 cells known to have high GGT activity Sex was evaluated.
  • OS-RC-2 cells were seeded in the same manner as in Test Example 10 and cultured for 1 day, and then GGT inhibitor GGsTop (Wako Pure Chemical Industries, Ltd.) was added at a final concentration of 10 ⁇ M and cultured for 1 hour. Thereafter, the EHC prodrug of Example 6 was added at a final concentration of 0.0001-1 ⁇ M. After culturing for 6 hours, the inside of the well was washed, and further cultured for 3 days, and then cell growth inhibitory activity was evaluated in the same manner as in Test Example 10. In the same manner, EHC which is an active ingredient of Example 6 was used as it was, and the cell growth inhibitory activity was evaluated from the absorbance. The results are shown in FIG.
  • the EHC prodrug of Example 6 according to the present invention releases EHC by GGT and exhibits cell growth inhibitory activity.
  • the cell growth inhibitory activity was low and the cell-killing property was hardly exhibited. From this, it was shown that the EHC prodrug according to the present invention can exhibit the cell growth inhibitory activity depending on the GGT activity.
  • the GGT inhibitor did not affect the cell growth inhibitory activity of EHC, but inhibited the activity of EHC prodrug. From this, it was shown that the EHC prodrug based on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
  • Test Example 12 Measurement of tissue drug concentration
  • Mouse renal cell carcinoma OS-RC-2 tumor subcultured subcutaneously in mice was made into blocks of about 2 mm square, and transplanted subcutaneously into mice using a trocar.
  • irinotecan hydrochloride (CPT-11) which is a prodrug of EHC, was dissolved in a 5% glucose aqueous solution and administered into the tail vein at 20 mg / kg in terms of EHC.
  • the prodrug according to Example 6 and the CPT-11 concentration, AUC 0-6hr of each component until 6 hours after the start of administration was calculated.
  • the AUC 0-6hr ratio (AUC EHC / AUC Example 6 and AUC EHC / AUC CPT-11 ) of the active substance to the unchanged form was determined. (Table 2).
  • Test Example 13 Anti-tumor effect test
  • mice transplanted with mouse renal cell carcinoma OS-RC-2 were treated with EHC prodrug 20 of Example 6 according to the present invention on the 17th day after tumor transplantation.
  • 40 and 80 mg / kg were administered into the tail vein three times every 4 days.
  • the major axis (Lmm) and minor axis (Wmm) of the tumor were measured at intervals of 2 to 3 days using a caliber, and the tumor volume was calculated by (L ⁇ W 2 ) / 2.
  • Tumor volume change rate / volume change rate of the untreated group was determined and shown in Table 3.
  • the activation rate of the EHC prodrug of Example 6 was comparable to 9.4 times that of CPT-11 in plasma, liver and bone marrow with low GGT expression.
  • the AUC EHC / AUC Example 6 ratio of Example 6 was 61.8 times as high as that of the CPT-11 administration group. From this, it was shown that the EHC prodrug of Example 6 according to the present invention is activated in a GGT-dependent manner in a tissue and has a physical property capable of selectively releasing EHC in a tissue expressing GGT.
  • the EHC prodrug of Example 6 showed a dose-dependent antitumor effect, showed a remarkable tumor shrinking effect in the 80 mg / kg administration group, and exhibited an excellent antitumor effect. It was shown that this is a physical property.

Abstract

It was discovered that interposing a suitable aromatic amidation linker in making a prodrug to serve as a γ-glutamylation drug provides stability even in a close to physiological environment, recognition by GGT, and very rapid release of the pharmacologically active drug, and the invention was achieved. Specifically, a drug represented by general formula (1) to which a γ-glutamyl aromatic amide has been bonded releases the pharmacologically active drug rapidly in tissues expressing a high level of GGT and can become a drug having a high therapeutic effect.

Description

新規なグルタミン酸誘導体およびその用途Novel glutamic acid derivatives and uses thereof
 本発明は、新規なグルタミン酸誘導体であって、標的部位で酵素選択的に活性化される新規化合物、その用途に関するものである。より詳細には、γ-グルタミルトランスペプチダーゼ(GGT, E.C. 2.3.2.2)によって活性化されるプロドラッグである新規グルタミン酸誘導体及びその用途に関する。 The present invention relates to a novel glutamic acid derivative that is enzyme-selectively activated at a target site and its use. More specifically, the present invention relates to a novel glutamic acid derivative which is a prodrug activated by γ-glutamyltranspeptidase (GGT, EC 2.3.2.2) and use thereof.
 プロドラッグは、生体内で代謝された後に活性型の薬剤に変化するものである。薬剤をプロドラッグ化する目的としては、安定性の改善、溶解性の改善、吸収性の改善、副作用の軽減、作用時間の改善(作用の持続化)、特定部位での作用発現などが挙げられる。これまで、幾つかの薬剤がプロドラッグとして開発されてきており、様々な疾病に対する治療用医薬品として臨床使用されている。 Prodrugs are those that change to active drugs after being metabolized in vivo. The purpose of making a drug into a prodrug includes improvement of stability, improvement of solubility, improvement of absorption, reduction of side effects, improvement of action time (sustained action), expression of action at a specific site, etc. . Until now, several drugs have been developed as prodrugs and clinically used as therapeutic drugs for various diseases.
 がんの化学療法に用いられる抗がん剤の多くは、がん細胞のみならず正常細胞にも細胞増殖阻害作用を示すため、このことに起因する副作用が問題となっている。このため、抗がん剤をがん細胞に対して選択的に作用させることができれば、副作用が軽減した抗がん剤を提供することができる。そこで、抗がん剤をプロドラッグ化して、腫瘍組織などの標的部位で選択的に活性化することができれば、副作用が軽減されると同時に治療効果を大きく向上させることが期待できる。 Many of the anticancer agents used for cancer chemotherapy show a cell growth inhibitory effect not only on cancer cells but also on normal cells, and thus side effects resulting from this are problematic. For this reason, if an anticancer agent can be made to selectively act on cancer cells, an anticancer agent with reduced side effects can be provided. Therefore, if an anticancer drug can be converted into a prodrug and selectively activated at a target site such as a tumor tissue, side effects can be reduced and a therapeutic effect can be greatly improved.
 標的部位で選択的に活性化合物に変換させる方法として、標的組織に高発現している酵素を利用する方法が考えられている。標的部位の酵素特異的反応を利用した薬剤のプロドラッグ化の手法として、酵素認識部位と薬剤間に自己開裂型リンカーを介在させる手法が知られている(非特許文献1)。これは酵素特異的反応により酵素認識部位が開裂し、それにより生じたリンカー-薬剤複合体において、リンカー部が自己開裂することにより薬剤を放出することを可能としている。 As a method for selectively converting into an active compound at a target site, a method using an enzyme highly expressed in a target tissue is considered. As a method for producing a prodrug of a drug using an enzyme-specific reaction at a target site, a method in which a self-cleavable linker is interposed between the enzyme recognition site and the drug is known (Non-patent Document 1). This allows an enzyme recognition site to be cleaved by an enzyme-specific reaction, and in the resulting linker-drug complex, a drug can be released by self-cleaving the linker part.
 γ-グルタミルトランスペプチダーゼ(GGT)は、グルタチオン(γ-Glu-Cys-Gly)およびグルタチオン抱合体の代謝分解の初発段階をつかさどる酵素で、高等動植物から微生物までほとんどあらゆる生物に普遍的に存在することが知られている(非特許文献2、非特許文献3、および非特許文献4)。GGTは、グルタチオンのγ-グルタミル結合を加水分解する酵素であり、GluとCys-Glyを生成する一方、各種アミノ酸やジペプチド、アミン類を受容体として、γ-グルタミル転移生成物を与える。 γ-Glutamyltranspeptidase (GGT) is an enzyme that controls the initial stage of metabolic degradation of glutathione (γ-Glu-Cys-Gly) and glutathione conjugates, and is universally present in almost every organism from higher animals and plants to microorganisms Are known (Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4). GGT is an enzyme that hydrolyzes the γ-glutamyl bond of glutathione, and produces Glu and Cys-Gly. On the other hand, GGT gives a γ-glutamyl transfer product with various amino acids, dipeptides, and amines as receptors.
 GGTは、多種多様ながん細胞で高発現していることが知られており、がん化学療法の薬物ターゲットとしてGGTを指摘する報告もある(非特許文献5)。
 特許文献1には、抗がん剤をγ-グルタミル化した化合物が開示されている。自己開裂リンカーを利用したプロドラッグとして、トリプシンにより切断することが可能であるプロドラッグが挙げられている(非特許文献1)。しかしながら、GGTに認識され、これにより切断されることが可能であるプロドラッグについては述べられていない。また、非特許文献6には、抗がん剤をグルタミル化した化合物が挙げられており、酵素に依存した細胞毒性が示されている。しかしながら、非常に高い酵素濃度において、薬理活性型化合物を解離されるものであり、生体内環境でプロドラッグとして機能できるものではない。また、非特許文献7には、グルタミン酸γ位に薬剤を結合させた化合物として、適当なリンカーを介したプロドラッグ型化合物が挙げられている。
GGT is known to be highly expressed in a wide variety of cancer cells, and there is also a report pointing out GGT as a drug target for cancer chemotherapy (Non-patent Document 5).
Patent Document 1 discloses a compound obtained by γ-glutamylizing an anticancer agent. As a prodrug using a self-cleaving linker, a prodrug that can be cleaved by trypsin is mentioned (Non-patent Document 1). However, there is no mention of prodrugs that can be recognized by GGT and thereby cleaved. Non-Patent Document 6 includes a compound obtained by glutamylating an anticancer agent, and shows cytotoxicity depending on the enzyme. However, the pharmacologically active compound is dissociated at a very high enzyme concentration and cannot function as a prodrug in the in vivo environment. Non-Patent Document 7 includes a prodrug-type compound through an appropriate linker as a compound in which a drug is bonded to the glutamic acid γ position.
US7,989,188US7,989,188
 GGTによって認識されるプロドラッグは、GGT高発現組織において、選択的に活性型化合物を遊離させることができることから、副作用が軽減され、治療効果が向上した医薬品となることが期待できる。しかしながら、医薬品として求められる安定性や効果を十分に発揮するものは得られておらず、医薬品として使用可能なGGT認識プロドラッグが望まれている。 A prodrug recognized by GGT can selectively release an active compound in a GGT-expressing tissue, so that it can be expected to be a pharmaceutical with reduced side effects and improved therapeutic effects. However, no GDT-recognized prodrug that can be used as a pharmaceutical product is desired because a product that sufficiently exhibits stability and effects required as a pharmaceutical product has not been obtained.
 上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、適当なγ―グルタミル芳香族アミドを結合させた薬剤が、極めて安定でありながら、GGTに認識されて速やかに生理活性作用を示す薬剤を遊離することを見出した。具体的には、下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、R及びRは、それぞれ独立して水素原子、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシカルボニル基からなる群から選択される基を示し、Rは、水素原子又は置換基を有していても良いアルキル基を示し、A及びAは、C-R、C-R及び窒素原子からなる群から選択される基であり、該Rは、水素原子、ハロゲン原子、ニトロ基、水酸基、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシ基からなる群から選択される1種以上の基を示し、該Rは下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
[式中、R及びRは、それぞれ独立して水素原子又は置換基を有していても良いアルキル基を示し、Lは酸素原子、オキシカルボニル基及び結合からなる群から選択される結合基を示し、Xは脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基を示し、
(i)前記Xが脂肪族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である場合、前記Lはオキシカルボニル基であり、
(ii)前記Xがカルボキシ基を有する生理活性物質の結合残基である場合、前記Lは酸素原子であり、
(iii)前記Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、前記Lは結合又はオキシカルボニルである。]で表され、
ここで、前記A及び前記Aは何れか一方が前記C-Rであって、他方が前記C-R又は窒素原子であり、B、B及びBは、それぞれ独立して前記C-R又は窒素原子である。]で表されるグルタミン酸誘導体又はその薬理学的に許容される塩が、GGT認識プロドラッグとして有用であることを見出し、本発明を完成した。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, a drug to which an appropriate γ-glutamyl aromatic amide is bound is recognized by GGT and rapidly bioactive while being extremely stable. It has been found that a drug having an action is released. Specifically, the following general formula (1)
Figure JPOXMLDOC01-appb-C000005
[Wherein, R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group. R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom And R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group. Represents one or more groups, and R 7 represents the following general formula (2)
Figure JPOXMLDOC01-appb-C000006
[Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond. X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
(I) When X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
(Ii) when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
(Iii) When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or oxycarbonyl. ],
Here, one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or a nitrogen atom, and B 1 , B 2 and B 3 are each independently C—R 6 or a nitrogen atom. And the pharmacologically acceptable salt thereof were found to be useful as GGT-recognizing prodrugs, and the present invention was completed.
 すなわち、本願は、以下の[1]乃至[10]に示す発明を、その要旨とする。
[1] 一般式(1)
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは、それぞれ独立して水素原子、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシカルボニル基からなる群から選択される基を示し、Rは、水素原子又は置換基を有していても良いアルキル基を示し、A及びAは、C-R、C-R及び窒素原子からなる群から選択される基であり、該Rは、水素原子、ハロゲン原子、ニトロ基、水酸基、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシ基からなる群から選択される1種以上の基を示し、該Rは下記一般式(2)
Figure JPOXMLDOC01-appb-C000008
[式中、R及びRは、それぞれ独立して水素原子又は置換基を有していても良いアルキル基を示し、Lは酸素原子、オキシカルボニル基及び結合からなる群から選択される結合基を示し、Xは脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基を示し、
(i)前記Xが脂肪族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である場合、前記Lはオキシカルボニル基であり、
(ii)前記Xがカルボキシ基を有する生理活性物質の結合残基である場合、前記Lは酸素原子であり、
(iii)前記Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、前記Lは結合又はオキシカルボニル基である。]で表され、
ここで、前記A及び前記Aは何れか一方が前記C-Rであって、他方が前記C-R又は窒素原子であり、B、B及びBは、それぞれ独立して前記C-R又は窒素原子である。]で表されるグルタミン酸誘導体又はその薬理学的に許容される塩。
[2] Rは下記一般式(3)
Figure JPOXMLDOC01-appb-C000009
[式中、R及びRは前記と同義であり、Xは脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である。]で表される前記[1]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[3] Xで示される前記生理活性物質の結合残基における該生理活性物質が、カンプトテシン及びその誘導体である前記[1]又は[2]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[4] Xで示される前記生理活性物質の結合残基における該生理活性物質が、ドキソルビシン、ダウノルビシン、エピルビシン、ピラルビシン及びアムルビシンからなる群から選択される生理活性物質である前記[1]又は[2]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[5] Xで示される前記生理活性物質の結合残基における該生理活性物質が、ゲムシタビン、エチニルシチジン、シタラビン及びCNDAC(2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン)からなる群から選択される生理活性物質である前記[1]又は[2]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[6] Rは下記一般式(4)
Figure JPOXMLDOC01-appb-C000010
[式中、R及びRは前記と同義であり、Xは芳香族性水酸基を有する生理活性物質の結合残基である。]で表される前記[1]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[7] Xで示される前記生理活性物質の結合残基における該生理活性物質が、7-エチル-10-ヒドロキシカンプトテシン、ノギテカン及びその誘導体からなる群から選択される1種である前記[1]又は[6]に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[8] 一般式(1)において、R、R及びRは水素原子である前記[1]~[7]の何れか1項に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
[9] 前記[1]~[8]の何れか1項に記載のグルタミン酸誘導体又はその薬理学的に許容される塩を有効成分として含有する医薬。
[10] 抗がん剤である前記[9]に記載の医薬。
That is, the gist of the present application is the invention shown in the following [1] to [10].
[1] General formula (1)
Figure JPOXMLDOC01-appb-C000007
[Wherein, R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group. R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom And R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group. Represents one or more groups, and R 7 represents the following general formula (2)
Figure JPOXMLDOC01-appb-C000008
[Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond. X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
(I) When X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
(Ii) when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
(Iii) When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group. ],
Here, one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or a nitrogen atom, and B 1 , B 2 and B 3 are each independently C—R 6 or a nitrogen atom. Or a pharmacologically acceptable salt thereof.
[2] R 7 represents the following general formula (3)
Figure JPOXMLDOC01-appb-C000009
[Wherein, R 4 and R 5 are as defined above, and X is a binding of a physiologically active substance having at least one functional group selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. Residue. ] The glutamic acid derivative or its pharmacologically acceptable salt as described in [1] above.
[3] The glutamic acid derivative or the pharmacologically acceptable derivative thereof according to [1] or [2], wherein the physiologically active substance in the binding residue of the physiologically active substance represented by X is camptothecin and its derivatives salt.
[4] The above [1] or [2], wherein the physiologically active substance in the binding residue of the physiologically active substance represented by X is a physiologically active substance selected from the group consisting of doxorubicin, daunorubicin, epirubicin, pirarubicin and amrubicin. Or a pharmacologically acceptable salt thereof.
[5] The physiologically active substance in the binding residue of the physiologically active substance represented by X is gemcitabine, ethynylcytidine, cytarabine and CNDAC (2′-cyano-2′-deoxy-1-β-D-arabinofurano The glutamic acid derivative or a pharmaceutically acceptable salt thereof according to [1] or [2], which is a physiologically active substance selected from the group consisting of silcytosine).
[6] R 7 represents the following general formula (4)
Figure JPOXMLDOC01-appb-C000010
[Wherein, R 4 and R 5 are as defined above, and X is a binding residue of a physiologically active substance having an aromatic hydroxyl group. ] The glutamic acid derivative or its pharmacologically acceptable salt as described in [1] above.
[7] The above [1], wherein the physiologically active substance in the binding residue of the physiologically active substance represented by X is one selected from the group consisting of 7-ethyl-10-hydroxycamptothecin, nogitecan and derivatives thereof Or the glutamic acid derivative or its pharmacologically acceptable salt as described in [6].
[8] In the general formula (1), R 1 , R 2 and R 3 are hydrogen atoms, the glutamic acid derivative according to any one of the above [1] to [7] or a pharmacologically acceptable salt thereof salt.
[9] A medicament comprising the glutamic acid derivative according to any one of [1] to [8] or a pharmacologically acceptable salt thereof as an active ingredient.
[10] The medicament according to [9], which is an anticancer agent.
 本発明のグルタミン酸誘導体又はその薬理学的に許容される塩は、GGTに認識され、芳香族性水酸基を有する生理活性物質を、速やかに遊離する物性を有する。GGTは多くの悪性腫瘍において高発現していることが知られている。したがって、本発明のグルタミン酸誘導体を抗腫瘍効果を有する化合物に適用することで、標的組織選択的に抗腫瘍活性を発揮する化合物を遊離させることができ、副作用が軽減され、治療効果が向上した抗腫瘍性薬剤を提供することができる。 The glutamic acid derivative of the present invention or a pharmacologically acceptable salt thereof is recognized by GGT and has a property of rapidly releasing a physiologically active substance having an aromatic hydroxyl group. It is known that GGT is highly expressed in many malignant tumors. Therefore, by applying the glutamic acid derivative of the present invention to a compound having an antitumor effect, it is possible to liberate a compound that exhibits antitumor activity selectively in a target tissue, reducing side effects and improving the therapeutic effect. A neoplastic agent can be provided.
OS-RC-2細胞に対する実施例1の細胞増殖抑制試験の結果である。It is the result of the cell growth suppression test of Example 1 with respect to OS-RC-2 cells. SK-OV-3細胞に対する実施例1の細胞増殖抑制試験の結果である。FIG. 3 shows the results of the cell growth inhibition test of Example 1 for SK-OV-3 cells. FIG. GGT阻害剤存在下、OS-RC-2細胞に対する実施例1の細胞増殖抑制試験の結果である。FIG. 4 shows the results of the cell growth inhibition test of Example 1 for OS-RC-2 cells in the presence of a GGT inhibitor. FIG. OS-RC-2細胞に対する実施例6の化合物の細胞増殖抑制試験の結果である。It is the result of the cell growth inhibitory test of the compound of Example 6 on OS-RC-2 cells. SK-OV-3細胞に対する実施例6の化合物の細胞増殖抑制試験の結果である。It is the result of the cell growth suppression test of the compound of Example 6 on SK-OV-3 cells. GGT阻害剤存在下、OS-RC-2細胞に対する実施例6の化合物の細胞増殖抑制試験の結果である。FIG. 6 shows the results of a cell growth inhibition test of the compound of Example 6 on OS-RC-2 cells in the presence of a GGT inhibitor. FIG.
 本発明は、芳香族性水酸基を有する生理活性物質に、γ―グルタミル芳香族アミドを結合させたグルタミン酸誘導体又はその薬理学的に許容される塩に関する。また、該化合物の医薬品としての用途に関する。以下に本発明の詳細を述べる。 The present invention relates to a glutamic acid derivative obtained by binding γ-glutamyl aromatic amide to a physiologically active substance having an aromatic hydroxyl group, or a pharmacologically acceptable salt thereof. The present invention also relates to the use of the compound as a medicine. Details of the present invention will be described below.
 本発明のグルタミン酸誘導体又はその薬理学的に許容される塩は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
[式中、R及びRは、それぞれ独立して水素原子、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシカルボニル基からなる群から選択される基を示し、Rは、水素原子又は置換基を有していても良いアルキル基を示し、A及びAは、C-R、C-R及び窒素原子からなる群から選択される基であり、該Rは、水素原子、ハロゲン原子、ニトロ基、水酸基、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシ基からなる群から選択される1種以上の基を示し、該Rは下記一般式(2)
Figure JPOXMLDOC01-appb-C000012
[式中、R及びRは、それぞれ独立して水素原子又は置換基を有していても良いアルキル基を示し、Lは酸素原子、オキシカルボニル基及び結合からなる群から選択される結合基を示し、Xは脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基を示し、
(i)前記Xが脂肪族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である場合、前記Lはオキシカルボニル基であり、
(ii)前記Xがカルボキシ基を有する生理活性物質の結合残基である場合、前記Lは酸素原子であり、
(iii)前記Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、前記Lは結合又はオキシカルボニル基である。]で表され、ここで、前記A及び前記Aは何れか一方が前記C-Rであって、他方が前記C-R又は窒素原子であり、B、B及びBは、それぞれ独立して前記C-R又は窒素原子である。]で表されるグルタミン酸誘導体又はその薬理学的に許容される塩である。
The glutamic acid derivative of the present invention or a pharmacologically acceptable salt thereof is represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000011
[Wherein, R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group. R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom And R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group. Represents one or more groups, and R 7 represents the following general formula (2)
Figure JPOXMLDOC01-appb-C000012
[Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond. X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
(I) When X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
(Ii) when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
(Iii) When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group. Wherein either one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or nitrogen atom, and B 1 , B 2 and B 3 Each independently represents the aforementioned C—R 6 or a nitrogen atom. ] Or a pharmacologically acceptable salt thereof.
 一般式(1)におけるR及びRは、それぞれ独立して水素原子、置換基を有していても良いアルキル基又は置換基を有していても良いアルコキシカルボニル基である。
 前記置換基を有していても良いアルキル基における、該アルキル基とは炭素数1~30の直鎖状、分岐状又は環状アルキル基を示す。直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n―ドデシル基、n-テトラデシル基、n-ヘキサデシル基等が挙げられる。分岐状アルキル基としては、例えば、イソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
R 1 and R 2 in the general formula (1) are each independently a hydrogen atom, an alkyl group which may have a substituent, or an alkoxycarbonyl group which may have a substituent.
In the alkyl group which may have a substituent, the alkyl group represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group. . Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like.
 前記置換基を有していても良いアルコキシカルボニル基における、該アルコキシカルボニル基とは、炭素数1~10のアルコキシカルボニル基を示す。例えば、メトキシカルボニル基、エトキシカルボニル基等の他、適当な芳香族置換基を有する、ベンジルオキシカルボニル基、9-フルオレニルメトキシカルボニル基等の1級アルコキシカルボニル基、イソプロポキシカルボニル基、sec-ブトキシカルボニル基等の2級アルコキシカルボニル基、若しくはt-ブトキシカルボニル基等の3級アルコキシカルボニル基が挙げられる。 In the alkoxycarbonyl group which may have a substituent, the alkoxycarbonyl group means an alkoxycarbonyl group having 1 to 10 carbon atoms. For example, in addition to a methoxycarbonyl group, an ethoxycarbonyl group, etc., a primary alkoxycarbonyl group having an appropriate aromatic substituent, such as a benzyloxycarbonyl group, a 9-fluorenylmethoxycarbonyl group, an isopropoxycarbonyl group, sec- A secondary alkoxycarbonyl group such as a butoxycarbonyl group or a tertiary alkoxycarbonyl group such as a t-butoxycarbonyl group may be mentioned.
 前記アルキル基及びアルコキシカルボニル基における有していても良い置換基としては、例えば、メルカプト基、水酸基、ハロゲン原子、ニトロ基、シアノ基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素環又は複素環アリール基、炭素数1~8のアルキルチオ基、アリールチオ基、炭素数1~8のアルキルスルフィニル基、アリールスルフィニル基、炭素数1~8のアルキルスルホニル基、アリールスルホニル基、炭素数1~8のアルコキシ基、アリールオキシ基、脂肪族又は芳香族アミノ基、脂肪族アミノ基が置換された炭素数1~8のアルキル基、ホルミル基、アシル基、カルボキシ基、若しくはシリル基等を挙げることができる。芳香環上の置換位置は、オルト位でも、メタ位でも、パラ位でもよい。 Examples of the substituent which the alkyl group and alkoxycarbonyl group may have include, for example, a mercapto group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an alkenyl group having 2 to 10 carbon atoms, and an alkyl group having 2 to 10 carbon atoms. Alkynyl group, carbocyclic or heterocyclic aryl group, alkylthio group having 1 to 8 carbon atoms, arylthio group, alkylsulfinyl group having 1 to 8 carbon atoms, arylsulfinyl group, alkylsulfonyl group having 1 to 8 carbon atoms, arylsulfonyl group An alkoxy group having 1 to 8 carbon atoms, an aryloxy group, an aliphatic or aromatic amino group, an alkyl group having 1 to 8 carbon atoms substituted with an aliphatic amino group, a formyl group, an acyl group, a carboxy group, or silyl Groups and the like. The substitution position on the aromatic ring may be ortho, meta, or para.
 前記一般式(1)におけるR及びRにおける置換基を有していても良いアルキル基又は置換基を有していても良いアルコキシカルボニル基は、アミノ基の保護基であることが好ましい。すなわち、有機合成反応におけるアミノ基の保護基であれば、特に制限なく用いることができる。特に好ましくは、前記アルコキシカルボニル基であり、ベンジルオキシカルボニル基(Cbz基)、t-ブトキシカルボニル基(Boc基)、9-フルオレニルメトキシカルボニル基(Fmoc基)、アリルオキシカルボニル基(Aloc基)等を挙げることができる。
 前記R及びRとしては、水素原子及び/又は置換基を有していても良いアルコキシカルボニル基であることが好ましい。R及びRが両方とも水素原子である場合、又は水素原子と置換基を有していても良いアルコキシカルボニル基の組み合せである場合が好ましい。
The alkyl group which may have a substituent in R 1 and R 2 in the general formula (1) or the alkoxycarbonyl group which may have a substituent is preferably an amino-protecting group. That is, any protecting group for an amino group in an organic synthesis reaction can be used without particular limitation. The alkoxycarbonyl group is particularly preferably the benzyloxycarbonyl group (Cbz group), t-butoxycarbonyl group (Boc group), 9-fluorenylmethoxycarbonyl group (Fmoc group), allyloxycarbonyl group (Aloc group). And the like.
R 1 and R 2 are preferably a hydrogen atom and / or an alkoxycarbonyl group which may have a substituent. A case where both R 1 and R 2 are hydrogen atoms, or a combination of a hydrogen atom and an alkoxycarbonyl group which may have a substituent is preferable.
 一般式(1)におけるRとしては、水素原子又は置換基を有していても良いアルキル基が挙げられる。
 前記置換基を有していても良いアルキル基における、該アルキル基とは炭素数1~30の直鎖状、分岐状又は環状アルキル基を示す。直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n―ドデシル基、n-テトラデシル基、n-ヘキサデシル基等が挙げられる。分岐状アルキル基としては、例えば、イソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。また、適当な芳香族置換基を有する、ベンジル基、9-フルオレニルメチル基等が挙げられる。該Rのアルキル基における置換基としては、前述と同義である。
 該Rの置換基を有していても良いアルキル基としては、カルボン酸の保護基が用いられることが好ましい。有機合成反応におけるカルボン酸の保護基であれば、特に制限なく用いることができる。特に好ましくは、メチル基、エチル基、t-ブチル基、アリル基、ベンジル基、9-フルオレニルメチル基である。
Examples of R 3 in the general formula (1) include a hydrogen atom or an alkyl group which may have a substituent.
In the alkyl group which may have a substituent, the alkyl group represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group. . Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like. Further, examples thereof include a benzyl group and a 9-fluorenylmethyl group having an appropriate aromatic substituent. The substituent in the alkyl group of R 3 has the same meaning as described above.
As the alkyl group which may have a substituent for R 3 , a carboxylic acid protecting group is preferably used. Any protecting group for a carboxylic acid in an organic synthesis reaction can be used without particular limitation. Particularly preferred are methyl group, ethyl group, t-butyl group, allyl group, benzyl group and 9-fluorenylmethyl group.
 一般式(1)において、A及びAは、Rで置換された炭素原子であるC-R、Rで置換された炭素原子であるC-R及び窒素原子からなる群から選択される基である。また、B、B及びBは、それぞれ独立してRで置換された炭素原子であるC-R又は窒素原子である。 In the general formula (1), A 1 and A 2 are from the group consisting of C-R 7 and the nitrogen atom is a carbon atom substituted with C-R 6, R 7 is a carbon atom substituted by R 6 The group to be selected. Further, B 1, B 2 and B 3 are C-R 6 or a nitrogen atom is a carbon atom substituted by R 6 independently.
 前記Rとしては、水素原子、ハロゲン原子、水酸基、ニトロ基、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシ基からなる群から選択される1種以上の置換基である。
 前記ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。
 前記置換基を有していても良いアルキル基における該アルキル基とは、炭素数1~30の直鎖状、分岐状又は環状アルキル基を示す。直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n―ドデシル基、n-テトラデシル基、n-ヘキサデシル基等が挙げられる。分岐状アルキル基としては、例えば、イソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
R 6 is one or more selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, an optionally substituted alkyl group, and an optionally substituted alkoxy group. Is a substituent.
The halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
The alkyl group in the alkyl group which may have a substituent represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group. . Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like.
 前記置換基を有していても良いアルコキシ基における該アルコキシ基とは、炭素数1~10のアルコキシ基を示す。例えば、メトキシ基、エトキシ基、ベンジルオキシ基等の1級アルコキシ基、イソプロポキシ基、sec-ブトキシ基等の2級アルコキシ基、若しくはt-ブトキシ基等の3級アルコキシ基が挙げられる。 The alkoxy group in the alkoxy group which may have a substituent represents an alkoxy group having 1 to 10 carbon atoms. Examples thereof include primary alkoxy groups such as methoxy group, ethoxy group, and benzyloxy group, secondary alkoxy groups such as isopropoxy group and sec-butoxy group, and tertiary alkoxy groups such as t-butoxy group.
 前記アルキル基及びアルコキシ基における有していても良い置換基としては、例えば、メルカプト基、水酸基、ハロゲン原子、ニトロ基、シアノ基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素環又は複素環アリール基、炭素数1~8のアルキルチオ基、アリールチオ基、炭素数1~8のアルキルスルフィニル基、アリールスルフィニル基、炭素数1~8のアルキルスルホニル基、アリールスルホニル基、炭素数1~8のアルコキシ基、アリールオキシ基、脂肪族又は芳香族アミノ基、脂肪族アミノ基が置換された炭素数1~8のアルキル基、ホルミル基、アシル基、カルボキシ基、若しくはシリル基、等を挙げることができる。芳香環上の置換位置は、オルト位でも、メタ位でも、パラ位でもよい。 Examples of the substituent that the alkyl group and alkoxy group may have include, for example, a mercapto group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an alkenyl group having 2 to 10 carbon atoms, and an alkynyl group having 2 to 10 carbon atoms. Group, carbocyclic or heterocyclic aryl group, alkylthio group having 1 to 8 carbon atoms, arylthio group, alkylsulfinyl group having 1 to 8 carbon atoms, arylsulfinyl group, alkylsulfonyl group having 1 to 8 carbon atoms, arylsulfonyl group, C1-C8 alkoxy group, aryloxy group, aliphatic or aromatic amino group, C1-C8 alkyl group substituted with aliphatic amino group, formyl group, acyl group, carboxy group, or silyl group , Etc. The substitution position on the aromatic ring may be ortho, meta, or para.
 前記A、A、B、B及びBは、窒素原子であっても良い。すなわち、該A~Bで構成される6員環芳香族基は含窒素複素環であっても良い。該含窒素複素環としては、該A~Bにおいて、1~3個の窒素原子を含有する複素環基を含む。例えば、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環又はトリアジン環である。前記含窒素複素環は、置換基を有していても良い。該置換基としては、前記Rで規定される置換基である。 A 1 , A 2 , B 1 , B 2 and B 3 may be nitrogen atoms. That is, the 6-membered aromatic group composed of A 1 to B 3 may be a nitrogen-containing heterocyclic ring. The nitrogen-containing heterocycle includes a heterocyclic group containing 1 to 3 nitrogen atoms in A 1 to B 3 . For example, a pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring or triazine ring. The nitrogen-containing heterocycle may have a substituent. The substituent is a substituent defined by R 6 .
 前記R及びRとしては、それぞれ独立して、水素原子又は置換基を有していても良いアルキル基が挙げられる。
 置換基を有していても良いアルキル基における該アルキル基とは、炭素数1~30の直鎖状、分岐状又は環状アルキル基を示す。直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n―ドデシル基、n-テトラデシル基、n-ヘキサデシル基等が挙げられる。分岐状アルキル基としては、例えば、イソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。有していても良い置換基としては、前述のR及びRにおける置換基と同義である。
Examples of R 4 and R 5 independently include a hydrogen atom or an alkyl group which may have a substituent.
The alkyl group in the alkyl group which may have a substituent represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-dodecyl group, an n-tetradecyl group, and an n-hexadecyl group. . Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and the like. The substituent which may have is the same as the substituent in R 1 and R 2 described above.
 前記Rは、前記一般式(2)で表される基である。該一般式(2)において、Lは、酸素原子、オキシカルボニル基及び結合からなる群から選択される結合基を示し、Xは脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基を示し、
(i)前記Xが脂肪族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である場合、前記Lはオキシカルボニル基であり、
(ii)前記Xがカルボキシ基を有する生理活性物質の結合残基である場合、前記Lは酸素原子であり、
(iii)前記Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、前記Lは結合である。
 ここで、該X基が、脂肪族性水酸基又は芳香族性水酸基を有する生理活性物質の結合残基である場合、これら水酸基がオキシカルボニル基とカーボネート結合している形式での結合残基である。一方、該X基がアミノ基を有する生理活性物質の結合残基である場合、該アミノ基がオキシカルボニル基とウレタン結合している形式での結合残基である。
 また、該X基がカルボキシ基を有する生理活性物質での結合残基である場合、結合基Lとして酸素原子を介し、該生理活性物質由来のカルボニル基とエステル結合している形式での結合残基である。
 さらに、該X基が芳香族性水酸基を有する生理活性物質の結合残基である場合、該X基は前記生理活性物質の芳香族水酸基の酸素原子を介してエーテル結合した結合残基である。
R 7 is a group represented by the general formula (2). In the general formula (2), L represents a linking group selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond, and X represents an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group and a carboxy group. A binding residue of a physiologically active substance having one or more functional groups selected from the group;
(I) When X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
(Ii) when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
(Iii) When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond.
Here, when the X group is a binding residue of a physiologically active substance having an aliphatic hydroxyl group or an aromatic hydroxyl group, the hydroxyl group is a binding residue in the form of a carbonate bond with an oxycarbonyl group. . On the other hand, when the X group is a binding residue of a physiologically active substance having an amino group, the amino group is a binding residue in the form of a urethane bond with an oxycarbonyl group.
In addition, when the X group is a binding residue in a physiologically active substance having a carboxy group, a residual bond in the form of an ester bond with a carbonyl group derived from the physiologically active substance via an oxygen atom as the binding group L. It is a group.
Further, when the X group is a binding residue of a physiologically active substance having an aromatic hydroxyl group, the X group is a binding residue ether-bonded via an oxygen atom of the aromatic hydroxyl group of the physiologically active substance.
 また、本発明の1つの態様として、前記Rは、下記一般式(3)
Figure JPOXMLDOC01-appb-C000013
[式中、R及びRは前記と同義であり、Xは脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である。]で表される。
In one embodiment of the present invention, R 7 is represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000013
[Wherein, R 4 and R 5 are as defined above, and X is a binding of a physiologically active substance having at least one functional group selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. Residue. ].
 本発明のもう一つの態様として、前記Rは、下記一般式(4)
Figure JPOXMLDOC01-appb-C000014
[式中、R及びRは前記と同義であり、Xは芳香族性水酸基を有する生理活性物質の結合残基である。]で表される。
In another embodiment of the present invention, R 7 is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000014
[Wherein, R 4 and R 5 are as defined above, and X is a binding residue of a physiologically active substance having an aromatic hydroxyl group. ].
 前記Xにおける生理活性物質としては、生体内に投与することにより薬理機能を示す化学物質であって、脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する化合物であれば特に制限なく使用することができる。
 一般式(2)において、該Xが脂肪属性水酸基及び/又はアミノ基を有する生理活性物質の結合残基である場合、該Lはオキシカルボニル基を結合基として用い、カーボネート結合及び/又はウレタン結合した化合物となる。該Xがカルボキシ基を有する生理活性物質の結合残基である場合、該Lは酸素原子となり、生理活性物質由来のカルボニル基とエステル結合した化合物となる。該Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、該Lは結合又はオキシカルボニル基が用いられ、エーテル結合又はカーボネート結合した化合物となる。
The physiologically active substance in X is a chemical substance that exhibits a pharmacological function when administered in vivo, and is selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group Any compound having the above functional group can be used without any particular limitation.
In the general formula (2), when X is a binding residue of a physiologically active substance having a fatty attribute hydroxyl group and / or amino group, the L uses an oxycarbonyl group as a linking group, and is a carbonate bond and / or a urethane bond. The resulting compound is When X is a binding residue of a physiologically active substance having a carboxy group, L becomes an oxygen atom and becomes a compound ester-bonded with a carbonyl group derived from the physiologically active substance. When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group, and becomes a compound having an ether bond or a carbonate bond.
 該脂肪族性水酸基は、1級水酸基、2級水酸基又は3級水酸基の何れの置換基であっても良い。また該アミノ基は、1級アミノ基、2級アミノ基又は3級アミノ基の何れの置換基であっても良い。 The aliphatic hydroxyl group may be any substituent of primary hydroxyl group, secondary hydroxyl group or tertiary hydroxyl group. The amino group may be any substituent of a primary amino group, a secondary amino group, or a tertiary amino group.
 前記Xにおける生理活性物質としては、脂肪族性水酸基及び/又は芳香族性水酸基とアミノ基が共存する生理活性物質であっても良い。脂肪族性水酸基及び/又は芳香族性水酸基とアミノ基が共存した化合物の場合は、該X基は一般的にはアミノ基による結合残基であることが考えられるが、反応条件や立体的要素を考慮して該脂肪族性水酸基及び/又は芳香族性水酸基と該アミノ基の何れかの活性官能基による結合残基であっても良く、該脂肪族性水酸基及び/又は芳香族性水酸基による結合残基と該アミノ基による結合残基の混合物であっても良い。 The physiologically active substance in X may be a physiologically active substance in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and an amino group coexist. In the case of a compound in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and an amino group coexist, the X group is generally considered to be a binding residue due to an amino group. In consideration of the above, it may be a residue bonded by any active functional group of the aliphatic hydroxyl group and / or aromatic hydroxyl group and the amino group, and may depend on the aliphatic hydroxyl group and / or aromatic hydroxyl group. It may be a mixture of a binding residue and a binding residue due to the amino group.
 また、前記Xにおける生理活性物質として脂肪族性水酸基及び/又は芳香族性水酸基及び/又はアミノ基と、カルボキシ基が共存する生理活性物質であっても良い。脂肪族性水酸基及び/又は芳香族性水酸基及び/又はアミノ基と、カルボキシ基が共存した生理活性物質を用いる場合は、反応条件により、結合様式を適宜選択することができる。 Further, the physiologically active substance in X may be a physiologically active substance in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group and a carboxy group coexist. When using a physiologically active substance in which an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group and a carboxy group coexist, the binding mode can be appropriately selected depending on the reaction conditions.
 当該生理活性物質における生理活性は、特に限定されるものではないが疾病治療に係る薬理活性であることが好ましく、疾病治療用薬理活性化合物を用いることが好ましい。GGTは悪性腫瘍で高発現していることから、当該生理活性物質としては、抗腫瘍活性物質であることが好ましく、抗がん剤を適用することが好ましい。すなわち、一般式(2)のXで示される生理活性物質は、脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する抗がん剤であることが好ましい。 The physiological activity of the physiologically active substance is not particularly limited, but is preferably a pharmacological activity related to disease treatment, and a pharmacologically active compound for disease treatment is preferably used. Since GGT is highly expressed in malignant tumors, the physiologically active substance is preferably an antitumor active substance, and an anticancer agent is preferably applied. That is, the physiologically active substance represented by X in the general formula (2) is an anticancer having one or more functional groups selected from the group consisting of aliphatic hydroxyl groups, aromatic hydroxyl groups, amino groups, and carboxy groups. It is preferable that it is an agent.
 一般式(2)のXで示される生理活性物質として好適な抗がん剤としては、シロリムス系抗がん剤、アンスラサイクリン系抗がん剤、シチジン系抗がん剤、チロシンキナーゼ阻害剤、DNAトポイソメラーゼ阻害剤、ホルモン療法剤、光線力学療法剤、微小管重合阻害剤、Hsp90阻害剤及びその他の細胞分裂阻害作用を有する抗がん剤を挙げることができる。 As an anticancer agent suitable as a physiologically active substance represented by X in the general formula (2), a sirolimus anticancer agent, an anthracycline anticancer agent, a cytidine anticancer agent, a tyrosine kinase inhibitor, Examples thereof include DNA topoisomerase inhibitors, hormone therapy agents, photodynamic therapy agents, microtubule polymerization inhibitors, Hsp90 inhibitors, and other anticancer agents having cell division inhibitory activity.
 前記シロリムス系抗がん剤としては、例えば、エベロリムス、テムシロリムス、タクロリムス、ラパマイシン等を挙げることができる。 Examples of the sirolimus anticancer agent include everolimus, temsirolimus, tacrolimus, rapamycin and the like.
 前記シチジン系抗がん剤としては、例えば、エチニルシチジン、CNDAC(2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン)、ゲムシタビン、シタラビン等を挙げることができる。 Examples of the cytidine anticancer agent include ethynyl cytidine, CNDAC (2'-cyano-2'-deoxy-1-β-D-arabinofuranosylcytosine), gemcitabine, cytarabine and the like.
 前記チロシンキナーゼ阻害剤としては、水酸基及び/又はアミノ基を有するチロシンキナーゼ阻害剤であり、例えば、クリゾチニブ、ダサチニブ等が挙げられる。 The tyrosine kinase inhibitor is a tyrosine kinase inhibitor having a hydroxyl group and / or an amino group, and examples thereof include crizotinib and dasatinib.
 前記DNAトポイソメラーゼ阻害剤としては、例えば、カンプトテシン、7-エチル-10-ヒドロキシカンプトテシン、イリノテカン、ノギテカン、9-アミノカンプトテシン、9-ニトロカンプトテシン等のDNAトポイソメラーゼI型阻害剤であるカンプトテシン系抗がん剤が挙げられる。また、DNAトポイソメラーゼII型阻害剤として、エトポシド、テニポシド等を挙げることができる。また、ドキソルビシン、ダウノルビシン、エピルビシン、ピラルビシン、イダルビシン、ミトキサントロン、アムルビシン等のアンスラサイクリン系抗がん剤等を挙げることができる。 Examples of the DNA topoisomerase inhibitor include camptothecin-type anticancer agents which are DNA topoisomerase type I inhibitors such as camptothecin, 7-ethyl-10-hydroxycamptothecin, irinotecan, nogithecan, 9-aminocamptothecin, 9-nitrocamptothecin Is mentioned. Examples of DNA topoisomerase type II inhibitors include etoposide and teniposide. Moreover, anthracycline anticancer agents such as doxorubicin, daunorubicin, epirubicin, pirarubicin, idarubicin, mitoxantrone and amrubicin can be exemplified.
 前記ホルモン療法剤としては、ラロキシフェン、ゴセレリン、リュープロレリン等を挙げることができる。 Examples of the hormone therapeutic agent include raloxifene, goserelin, leuprorelin and the like.
 前記光線化学療法剤としては、2-ブチルアミノ-2-デメトキシヒポクレリン等を挙げることができる。 Examples of the photochemotherapy agent include 2-butylamino-2-demethoxyhypocreline.
 前記微小管重合阻害剤としては、例えば、パクリタキセル、ドセタキセル等のタキサン系抗がん剤、コンブレタスタチン及びその誘導体、ポドフィロトキシン、エリブリン、オーリスタチンを挙げることができる。 Examples of the microtubule polymerization inhibitor include taxane anticancer agents such as paclitaxel and docetaxel, combretastatin and derivatives thereof, podophyllotoxin, eribulin, and auristatin.
 前記Hsp90阻害剤としては、ガネテスピブ、マクベシン、ラディシコル等を挙げることができる。 Examples of the Hsp90 inhibitor include ganetespib, macbecin, radicicol and the like.
 また、一般式(2)のXにおいて、カルボキシ基を有する生理活性物質として好適な抗がん剤とは、例えば、メトトレキサート、ペメトレキセド、DMXAA(5,6-ジメチルキサンテノン-4-酢酸)、ベキサロテン、タミバロテン等が挙げられる。 In addition, in X of the general formula (2), suitable anticancer agents as physiologically active substances having a carboxy group include, for example, methotrexate, pemetrexed, DMXAA (5,6-dimethylxanthenone-4-acetic acid), bexarotene , Tamibarotene and the like.
 また、一般式(2)のXにおいて、アミノ基又はカルボキシ基を有する生理活性物質として、生理活性ペプチド類であってもよい。該アミノ基又はカルボキシ基を有する生理活性ペプチド類は、末端アミノ基又はカルボキシ基を用いて結合する様式とすることができる。
 該生理活性ペプチド類として、例えば、ベスタチン(Bestatin)及びベスタチンメチルエステル等のエステル誘導体、グルファニド(Glufanide)、グレリン(Ghrelin)、テルトモチド(Tertomotide)、PR1、オクトレオチド(Octreotide)、ランレオチド(Lanreotide)、パシレオチド(Pasireotide)等が挙げられる。
Further, in X of the general formula (2), the physiologically active substance having an amino group or a carboxy group may be physiologically active peptides. The physiologically active peptides having the amino group or carboxy group can be bonded using a terminal amino group or carboxy group.
Examples of the physiologically active peptides include ester derivatives such as bestatin and bestatin methyl ester, glutanide, ghrelin, ghrelin, tertomotide, PR1, octreotide, lanreotide, and lanreotide. Examples include pasireotide.
 一般式(2)のXは、脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基であることが好ましい。この場合、一般式(2)における結合基Lはオキシカルボニル基が用いられる。すなわち、この場合、該Rは前記一般式(3)で表される置換基である。
 該脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質としては、カンプトテシン、7-エチル-10-ヒドロキシカンプトテシン、イリノテカン、ノギテカン、9-アミノカンプトテシン、9-ニトロカンプトテシン等のカンプトテシン誘導体であることが好ましい。これらは、ラクトン環の3級水酸基や、芳香族性水酸基、アミノ基を具備し、これらの置換基により前記結合基であるオキシカルボニル基とカーボネート結合及び/又はウレタン結合を形成している。
 また、該脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質として、ドキソルビシン、ダウノルビシン、エピルビシン、ピラルビシン、イダルビシン、ミトキサントロン、アムルビシン等のアンスラサイクリン系抗がん剤も好ましい。より好ましくは、ドキソルビシン、ダウノルビシン、エピルビシン、ピラルビシン、アムルビシンである。これらは、水酸基及び/又はアミノ基を具備し、これらの置換基により前記結合基であるオキシカルボニル基とカーボネート結合及び/又はウレタン結合を形成している。
 更に、該脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質として、ゲムシタビン、エチニルシチジン、シタラビン、CNDAC(2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン)等のシチジン系抗がん剤であることが好ましい。これらは水酸基及び/又はシチジン塩基のアミノ基を有し、これらの置換基により前記結合基であるオキシカルボニル基とカーボネート結合及び/又はウレタン結合を形成している。
X in the general formula (2) is preferably a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. In this case, an oxycarbonyl group is used as the bonding group L in the general formula (2). That is, in this case, R 7 is a substituent represented by the general formula (3).
Examples of the physiologically active substance having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group include camptothecin, 7-ethyl-10-hydroxycamptothecin, irinotecan, nogitecan, 9 -A camptothecin derivative such as aminocamptothecin or 9-nitrocamptothecin is preferred. These have a lactone ring tertiary hydroxyl group, an aromatic hydroxyl group, and an amino group, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group that is the linking group.
Further, as a physiologically active substance having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group, doxorubicin, daunorubicin, epirubicin, pirarubicin, idarubicin, mitoxantrone, amrubicin Anthracycline anticancer agents such as these are also preferable. More preferred are doxorubicin, daunorubicin, epirubicin, pirarubicin, and amrubicin. These have a hydroxyl group and / or an amino group, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group, which is the linking group.
Furthermore, gemcitabine, ethynylcytidine, cytarabine, CNDAC (2′-cyano-2) are physiologically active substances having one or more functional groups selected from the group consisting of the aliphatic hydroxyl group, aromatic hydroxyl group and amino group. A cytidine anticancer agent such as' -deoxy-1-β-D-arabinofuranosylcytosine) is preferred. These have a hydroxyl group and / or an amino group of a cytidine base, and these substituents form a carbonate bond and / or a urethane bond with the oxycarbonyl group which is the above-mentioned bonding group.
 また、別の態様として、一般式(2)のXは芳香族性水酸基を有する生理活性物質の結合残基であることが好ましい。この場合、一般式(2)における結合基Lは結合が用いられる。すなわち、この場合、該Rは前記一般式(4)で表される置換基である。
 芳香族性水酸基を有する生理活性物質として、7-エチル-10-ヒドロキシカンプトテシンまたはノギテカンを用いることが好ましく、該Xは、7-エチル-10-ヒドロキシカンプトテシンまたはノギテカンの10位水酸基によりエーテル結合した結合残基であることが好ましい。
As another embodiment, X in the general formula (2) is preferably a binding residue of a physiologically active substance having an aromatic hydroxyl group. In this case, a bond is used as the bonding group L in the general formula (2). That is, in this case, R 7 is a substituent represented by the general formula (4).
As the physiologically active substance having an aromatic hydroxyl group, 7-ethyl-10-hydroxycamptothecin or nogitecan is preferably used, and the X is a bond ether-bonded with the 10-position hydroxyl group of 7-ethyl-10-hydroxycamptothecin or nogitecan It is preferably a residue.
 本発明は、前記A及びAの何れか1つが、C-Rであることを特徴とする。すなわち、本発明の1つの態様としては、AがC-Rである下記一般式(5)で表されるグルタミン酸誘導体又はその薬理学的に許容される塩である。
Figure JPOXMLDOC01-appb-C000015
 一般式(3)において、R、R、R、R、R、A、B、B、B、L及びXは、前述と同義である。
The present invention is characterized in that one of A 1 and A 2 is CR 7 . That is, one aspect of the present invention is a glutamic acid derivative represented by the following general formula (5) in which A 1 is C—R 7 or a pharmacologically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000015
In the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , A 2 , B 1 , B 2 , B 3 , L and X are as defined above.
 また、本発明のもう1つの態様としては、AがC-Rである下記一般式(6)で表されるグルタミン酸誘導体又はその薬理学的に許容される塩である。
Figure JPOXMLDOC01-appb-C000016
 一般式(4)において、R、R、R、R、R、A、B、B、B、L及びXは、前述と同義である。
Another aspect of the present invention is a glutamic acid derivative represented by the following general formula (6) wherein A 2 is C—R 7 or a pharmacologically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000016
In the general formula (4), R 1 , R 2 , R 3 , R 4 , R 5 , A 1 , B 1 , B 2 , B 3 , L and X are as defined above.
 本発明の一般式(1)で表されるグルタミン酸誘導体又はその薬理学的に許容される塩において、GGT認識されるためには、γ-グルタミン酸結合部分構造が遊離アミノ酸構造であることが必要である。すなわち、当該グルタミン酸誘導体が、GGTに認識され活性化されるプロドラッグとして機能するためには、前記R、R及びRがいずれも水素原子であることが必要である。したがって、当該グルタミン酸誘導体が薬理活性を発揮させるための医薬として使用する場合は、前記R、R及びRがいずれも水素原子であることが好ましい。しかしながら、前記R、R及びRの何れかが、アミノ基又はカルボキシ基の保護基であり、生体内へ投与した後に該保護基が解離して、該R、R及びRの全てが水素原子の構造となる場合も、医薬用途の当該グルタミン酸誘導体の態様として含まれる。
 なお、前記R、R及びRが置換基を有していても良いアルキル基やアルコキシカルボニル基である化合物は、当該医薬用途化合物の製造上の中間体として有用な化合物であり、本発明の内容に含まれる。
In the glutamic acid derivative represented by the general formula (1) of the present invention or a pharmacologically acceptable salt thereof, in order to be recognized by GGT, the γ-glutamic acid binding partial structure needs to be a free amino acid structure. is there. That is, in order for the glutamic acid derivative to function as a prodrug that is recognized and activated by GGT, it is necessary that R 1 , R 2, and R 3 are all hydrogen atoms. Therefore, when the glutamic acid derivative is used as a medicament for exerting pharmacological activity, it is preferable that all of R 1 , R 2 and R 3 are hydrogen atoms. However, any one of R 1 , R 2 and R 3 is an amino group or carboxy protecting group, and the protecting group is dissociated after administration into a living body, and the R 1 , R 2 and R 3 are released. The case where all of these have a hydrogen atom structure is also included as an aspect of the glutamic acid derivative for pharmaceutical use.
The compound in which R 1 , R 2 and R 3 are an alkyl group or an alkoxycarbonyl group which may have a substituent is a compound useful as an intermediate in the production of a compound for pharmaceutical use, and It is included in the content of the invention.
 一般式(1)で表されるグルタミン酸誘導体は、薬理学的に許容される塩として存在して良い。当該塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、トリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができる。酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを挙げることができる。もっとも、本発明の化合物の塩は、これらに限定されるものではない。 The glutamic acid derivative represented by the general formula (1) may exist as a pharmacologically acceptable salt. Examples of the salt include base addition salts, acid addition salts, amino acid salts and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt and magnesium salt, and organic amine salts such as ammonium salt, triethylamine salt, piperidine salt and morpholine salt. Examples of the acid addition salt include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate. Examples of amino acid salts include glycine salts. However, the salt of the compound of the present invention is not limited to these.
 一般式(1)で表されるグルタミン酸誘導体及びその塩は、置換基の種類に応じて1個又は2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 The glutamic acid derivative represented by the general formula (1) and a salt thereof may have one or two or more asymmetric carbons depending on the type of the substituent, and may be a stereo such as an optical isomer or a diastereoisomer. Isomers may exist. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
 一般式(1)で表されるグルタミン酸誘導体及びその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を挙げることができる。水和物又は溶媒和物の結合数は特に限定されるものではなく、単離可能な安定型の水和物又は溶媒和物であれば良い。 The glutamic acid derivative represented by the general formula (1) and a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be mentioned. The number of bonds in the hydrate or solvate is not particularly limited as long as it is a stable hydrate or solvate that can be isolated.
 本明細書の実施例には、一般式(1)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、および必要に応じて出発原料や試薬、反応条件などを適宜選択することにより、一般式(1)に包含される任意の化合物を容易に製造することができる。 In the examples of the present specification, production methods for typical compounds included in the compounds of the present invention represented by the general formula (1) are specifically shown. Any compound included in the general formula (1) can be easily produced by referring to the disclosure and appropriately selecting starting materials, reagents, reaction conditions and the like as necessary.
 本発明の一般式(1)で表されるグルタミン酸誘導体は、AがC-Rであって、Xが脂肪族性水酸基及び/又は芳香族性水酸基及び/又はアミノ基を有する生理活性物質の結合残基であり、Lがオキシカルボニル基である場合、例えば以下のように製造することができる。
[スキーム(I)]
Figure JPOXMLDOC01-appb-C000017
 スキーム(I)中、R~R、X、A、B~Bは、前述と同義である。ここでR及び/又はRはアミノ基の保護基であり、Rはカルボン酸の保護基である。LGはハロゲン原子、p-ニトロフェノキシ基あるいはヒドロキシスクシンイミド基等の脱離基を表す。以下に各工程を説明する。
The glutamic acid derivative represented by the general formula (1) of the present invention is a physiologically active substance in which A 2 is C—R 7 and X has an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group When L is an oxycarbonyl group, for example, it can be produced as follows.
[Scheme (I)]
Figure JPOXMLDOC01-appb-C000017
In the scheme (I), R 1 to R 3 , X, A 1 and B 1 to B 3 have the same meanings as described above. Here, R 1 and / or R 2 is an amino-protecting group, and R 3 is a carboxylic acid-protecting group. LG represents a leaving group such as a halogen atom, a p-nitrophenoxy group or a hydroxysuccinimide group. Each step will be described below.
[工程A]:アミノ基及びα-カルボキシ基を保護したグルタミン酸誘導体を、芳香族アミンでアミド化して、γ-グルタミン酸アミド誘導体(A-1)を合成する工程である。本工程は、アミド化縮合反応であり、一般的な縮合剤を用いて反応させることができる。縮合剤として、例えば、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン(EEDQ)を用い、ジクロロメタン等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。縮合剤としては、例えば、カルボジイミド系縮合剤、イミダゾール系脱水縮合剤、トリアジン系縮合剤、ホスホニウム系脱水縮合剤、ウロニウム系縮合剤、ジフェニルリン酸アジド(DPPA)、BOP試薬、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)等を用いることができる。必要に応じ1-ヒドロキシベンゾトリアゾール等の活性化剤の共存させることができる。 [Step A]: A step of synthesizing a γ-glutamic acid amide derivative (A-1) by amidating a glutamic acid derivative with an amino group and an α-carboxy group protected with an aromatic amine. This step is an amidation condensation reaction and can be carried out using a general condensing agent. For example, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is used as a condensing agent, and the reaction is performed at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C., in a solvent such as dichloromethane. Can be implemented. Examples of the condensing agent include a carbodiimide condensing agent, an imidazole dehydrating condensing agent, a triazine condensing agent, a phosphonium dehydrating condensing agent, a uronium condensing agent, diphenylphosphoric acid azide (DPPA), BOP reagent, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and the like can be used. If necessary, an activator such as 1-hydroxybenzotriazole can coexist.
[工程B]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体から、一般式(A-2)で表されるカルボニル誘導体を合成する工程である。本工程は、例えば、クロロギ酸p-ニトロフェニルをピリジン存在下、テトラヒドロフラン等の溶媒中、-30℃から150℃、好ましくは-10℃から30℃の温度で反応させることにより実施できる。 [Step B]: A step of synthesizing the carbonyl derivative represented by the general formula (A-2) from the γ-glutamic acid amide derivative represented by the general formula (A-1). This step can be performed, for example, by reacting p-nitrophenyl chloroformate in the presence of pyridine in a solvent such as tetrahydrofuran at a temperature of −30 ° C. to 150 ° C., preferably −10 ° C. to 30 ° C.
[工程C]:一般式(A-2)で表されるカルボニル誘導体から、一般式(A-3)で表される生理活性物質結合誘導体を合成する工程である。本工程は、例えば、脂肪族性水酸基及び/又は芳香族性水酸基及び/又はアミノ基を有する生理活性物質を、ジイソプロピルエチルアミン存在下、N,N-ジメチルホルムアミド等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。 [Step C]: A step of synthesizing the physiologically active substance-binding derivative represented by the general formula (A-3) from the carbonyl derivative represented by the general formula (A-2). In this step, for example, a physiologically active substance having an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group is treated in the presence of diisopropylethylamine in a solvent such as N, N-dimethylformamide at 0 ° C. to 150 ° C. It can be carried out by reacting at a temperature of preferably 0 ° C. to 30 ° C.
[工程D]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体から、一般式(A-3)で表される生理活性物質結合誘導体を、一段階で合成するための工程経路である。本工程は、例えば、一般式(I-1)で表されるカルボニル化生理活性物質誘導体を、N,N-ジメチルアミノピリジン存在下、ジクロロメタン等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。
 一般式(I-1)で表されるカルボニル化生理活性物質誘導体は、脂肪族性水酸基及び/又は芳香族性水酸基及び/又はアミノ基を有する生理活性物質Xを、例えば、N,N-ジメチルアミノピリジン存在下、ジクロロメタン等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で、トリホスゲンと反応させることにより製造できる。または、例えば、クロロギ酸p-ニトロフェニルをピリジン存在下、ジクロロメタン等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより製造できる。
[Step D]: Process route for synthesizing the physiologically active substance-binding derivative represented by the general formula (A-3) in one step from the γ-glutamic acid amide derivative represented by the general formula (A-1) It is. In this step, for example, a carbonylated physiologically active substance derivative represented by the general formula (I-1) is treated in the presence of N, N-dimethylaminopyridine in a solvent such as dichloromethane at 0 ° C. to 150 ° C., preferably 0 It can carry out by making it react at the temperature of 30 to 30 degreeC.
The carbonylated physiologically active substance derivative represented by the general formula (I-1) is a physiologically active substance X having an aliphatic hydroxyl group and / or an aromatic hydroxyl group and / or an amino group, for example, N, N-dimethyl It can be produced by reacting with triphosgene in the presence of aminopyridine in a solvent such as dichloromethane at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. Alternatively, for example, it can be produced by reacting p-nitrophenyl chloroformate in the presence of pyridine in a solvent such as dichloromethane at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C.
[工程E]:一般式(A-3)で表される生理活性物質結合誘導体における、γ-グルタミン酸結合部分のアミノ基及びカルボキシル基の脱保護反応を行う工程である。
 R及びRの何れか一方がt-ブトキシカルボニル基(Boc基)で、他方が水素原子であり、Rがt-ブチル基の場合、酸性条件下で該工程Eの脱保護を実施することができる。酸としては、塩酸、硫酸等の無機酸、酢酸、トリフロロ酢酸等のカルボン酸等が使用できる。その他、t-ブトキシカルボニル基あるいはt-ブチルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、特に制限なく使用することができる。
 また、該R及びRの何れか一方が9-フルオレニルメトキシカルボニル基(Fmoc基)で、他方が水素原子であり、該Rがフルオレニルメチル基の場合、塩基性条件下で該工程Eを実施することができる。塩基としては、アンモニア、あるいはピペリジン、モルホリンなどの有機塩基等を使用できる。その他、フルオレニルメトキシカルボニル基あるいはフルオレニルメチルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、何れの脱保護反応条件であっても使用することができる。
 また、該R及びRの何れか一方がアリルオキシカルボニル基(Aloc基)で、他方が水素原子であり、該Rがアリル基の場合、パラジウム触媒存在下で該工程Eを実施することができる。パラジウム触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0)等を使用できる。その他、アリルオキシカルボニル基あるいはアリルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、何れの脱保護反応条件であっても使用することができる。
[Step E]: A step of deprotecting the amino group and carboxyl group of the γ-glutamic acid binding moiety in the physiologically active substance-binding derivative represented by the general formula (A-3).
When either R 1 or R 2 is a t-butoxycarbonyl group (Boc group), the other is a hydrogen atom, and R 3 is a t-butyl group, the deprotection of Step E is performed under acidic conditions can do. As the acid, inorganic acids such as hydrochloric acid and sulfuric acid, carboxylic acids such as acetic acid and trifluoroacetic acid, and the like can be used. In addition, any catalyst that is known to be capable of deprotecting a t-butoxycarbonyl group or t-butyl ester and that does not affect the portion other than the protecting group can be used without particular limitation.
When either one of R 1 and R 2 is a 9-fluorenylmethoxycarbonyl group (Fmoc group), the other is a hydrogen atom, and R 3 is a fluorenylmethyl group, The step E can be performed. As the base, ammonia or an organic base such as piperidine or morpholine can be used. In addition, any catalyst that is known to be capable of deprotecting a fluorenylmethoxycarbonyl group or a fluorenylmethyl ester and that does not affect parts other than the protecting group can be used under any deprotection reaction conditions. It can be used even if it exists.
In addition, when either one of R 1 and R 2 is an allyloxycarbonyl group (Aloc group), the other is a hydrogen atom, and R 3 is an allyl group, the step E is performed in the presence of a palladium catalyst. be able to. Tetrakis (triphenylphosphine) palladium (0) or the like can be used as the palladium catalyst. In addition, any catalyst that is known to be capable of deprotecting an allyloxycarbonyl group or allyl ester and that does not affect the portion other than the protecting group can be used under any deprotection reaction conditions. be able to.
 Xがアミノ基を有する生理活性物質の結合残基である場合、一般式(A-3)で表される誘導体は、例えば以下のように製造することができる。
[スキーム(II)]
Figure JPOXMLDOC01-appb-C000018
 スキーム(II)中、R~R、X、A、B~Bは、前述と同義であり、R及び/又はRはアミノ基の保護基であり、Rはカルボン酸の保護基である。以下に各工程を説明する。
When X is a binding residue of a physiologically active substance having an amino group, a derivative represented by the general formula (A-3) can be produced, for example, as follows.
[Scheme (II)]
Figure JPOXMLDOC01-appb-C000018
In the scheme (II), R 1 to R 3 , X, A 1 , B 1 to B 3 are as defined above, R 1 and / or R 2 is a protecting group for an amino group, and R 3 is a carboxyl group. Acid protecting group. Each step will be described below.
[工程F]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体から、一般式(A-3)で表される生理活性物質結合誘導体を合成する工程である。本工程は、例えば、アミノ基を有する生理活性物質Xのイソシアネート誘導体を、N,N-ジメチルアミノピリジン存在下、ジクロロメタン等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。
 アミノ基を有する生理活性物質Xのイソシアネート誘導体は、例えば、アミノ基を有する生理活性物質Xを、炭酸水素カリウム水溶液およびジクロロメタン等の混合溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で、トリホスゲンと反応させることにより製造できる。
[Step F]: A step of synthesizing a physiologically active substance-binding derivative represented by the general formula (A-3) from the γ-glutamic acid amide derivative represented by the general formula (A-1). In this step, for example, an isocyanate derivative of a physiologically active substance X having an amino group is heated to 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. in a solvent such as dichloromethane in the presence of N, N-dimethylaminopyridine. It can implement by making it react.
The isocyanate derivative of the physiologically active substance X having an amino group is, for example, the physiologically active substance X having an amino group in a mixed solvent such as an aqueous potassium hydrogen carbonate solution and dichloromethane, preferably 0 ° C to 150 ° C, preferably 0 ° C to 30 ° C. It can manufacture by making it react with triphosgene at the temperature of.
 Xがカルボキシル基を有する生理活性物質であり、Lが酸素原子である場合、一般式(A-3)で表される生理活性物質結合誘導体は、例えば以下のように製造することができる。
[スキーム(III)]
 スキーム(III)中、R~R、X、A、B~Bは、前述と同義であり、R及び/又はRはアミノ基の保護基であり、Rはカルボン酸の保護基である。以下に各工程を説明する。
When X is a physiologically active substance having a carboxyl group and L is an oxygen atom, the physiologically active substance-bound derivative represented by the general formula (A-3) can be produced, for example, as follows.
[Scheme (III)]
In the scheme (III), R 1 to R 3 , X, A 1 , B 1 to B 3 are as defined above, R 1 and / or R 2 are amino-protecting groups, and R 3 is a carboxylic acid. Acid protecting group. Each step will be described below.
[工程G]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体と、カルボキシル基を有する生理活性物質を縮合反応により、エステル化する工程である。本工程は、一般的な縮合剤を用いることができ、例えば、縮合剤として1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩を用い、N,N-ジメチルホルムアミド等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。縮合剤としては、他にカルボジイミド系縮合剤、イミダゾール系脱水縮合剤、トリアジン系縮合剤、ホスホニウム系脱水縮合剤、ウロニウム系縮合剤、ジフェニルリン酸アジド(DPPA)、BOP試薬、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)等を用いることができる。必要に応じ1-ヒドロキシベンゾトリアゾール、N,N-ジメチル-4-アミノピリジン等の活性化剤を共存させることができる。 [Step G]: A step of esterifying the γ-glutamic acid amide derivative represented by the general formula (A-1) and a physiologically active substance having a carboxyl group by a condensation reaction. In this step, a general condensing agent can be used. For example, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride is used as the condensing agent, and in a solvent such as N, N-dimethylformamide, The reaction can be carried out at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. Other condensing agents include carbodiimide condensing agents, imidazole dehydrating condensing agents, triazine condensing agents, phosphonium dehydrating condensing agents, uronium condensing agents, diphenyl phosphate azide (DPPA), BOP reagents, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and the like can be used. If necessary, an activator such as 1-hydroxybenzotriazole, N, N-dimethyl-4-aminopyridine can be coexisted.
 また、AがC-RでXが芳香族性水酸基を有する生理活性物質であり、Lが結合である本発明の一般式(1)で表されるグルタミン酸誘導体は、例えば以下のように製造することができる。
[スキーム(IV)]
Figure JPOXMLDOC01-appb-C000020
 スキーム(IV)中、R~R、X、A、B~Bは、前述と同義である。ここで、R及び/又はRはアミノ基の保護基であり、Rはカルボン酸の保護基である。LGはハロゲン原子、メタンスルホニルオキシ基等の脱離基を表す。以下に各工程を説明する。
The glutamic acid derivative represented by the general formula (1) of the present invention in which A 2 is C—R 7 and X is an aromatic hydroxyl group and L is a bond is, for example, as follows: Can be manufactured.
[Scheme (IV)]
Figure JPOXMLDOC01-appb-C000020
In scheme (IV), R 1 to R 3 , X, A 1 , and B 1 to B 3 have the same meanings as described above. Here, R 1 and / or R 2 is an amino-protecting group, and R 3 is a carboxylic acid-protecting group. LG represents a leaving group such as a halogen atom or a methanesulfonyloxy group. Each step will be described below.
[工程A]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体から、一般式(A-5)で表される誘導体を合成する工程である。一般式(A-5)におけるLGは脱離基であり、例えばメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等を挙げることができる。本工程は、例えば、該脱離基がメタンスルホニルオキシ基である場合、メタンスルホニルクロリドをN,N-ジイソプロピルエチルアミン存在下、ジクロロメタン等の溶媒中、-30℃から150℃、好ましくは-10℃から30℃の温度で反応させることにより実施できる。 [Step A]: A step of synthesizing the derivative represented by the general formula (A-5) from the γ-glutamic acid amide derivative represented by the general formula (A-1). LG in the general formula (A-5) is a leaving group, and examples thereof include a methanesulfonyloxy group and a p-toluenesulfonyloxy group. In this step, for example, when the leaving group is a methanesulfonyloxy group, methanesulfonyl chloride is -30 ° C to 150 ° C in a solvent such as dichloromethane in the presence of N, N-diisopropylethylamine, preferably -10 ° C. To 30 ° C. for the reaction.
[工程B]:一般式(A-5)で表される誘導体から、一般式(A-6)で表される生理活性物質結合誘導体を合成する工程である。本工程は、例えば、芳香族性水酸基を有する生理活性物質を、炭酸セシウム存在下、N,N-ジメチルホルムアミド等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。 [Step B]: A step of synthesizing the physiologically active substance-binding derivative represented by the general formula (A-6) from the derivative represented by the general formula (A-5). In this step, for example, a physiologically active substance having an aromatic hydroxyl group is reacted in a solvent such as N, N-dimethylformamide in the presence of cesium carbonate at a temperature of 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. Can be implemented.
[工程C]:一般式(A-1)で表されるγ-グルタミン酸アミド誘導体から、一般式(A-6)で表される生理活性物質結合誘導体を、一段階で合成するための工程経路である。本工程は、例えば、芳香族性水酸基を有する化合物を、トリフェニルホスフィン、アゾジカルボン酸ジイソプロピル存在下、N,N-ジメチルホルムアミド等の溶媒中、0℃から150℃、好ましくは0℃から30℃の温度で反応させることにより実施できる。 [Step C]: Process route for synthesizing the physiologically active substance-binding derivative represented by the general formula (A-6) in one step from the γ-glutamic acid amide derivative represented by the general formula (A-1) It is. In this step, for example, a compound having an aromatic hydroxyl group is converted to 0 ° C. to 150 ° C., preferably 0 ° C. to 30 ° C. in a solvent such as N, N-dimethylformamide in the presence of triphenylphosphine and diisopropyl azodicarboxylate. It can implement by making it react at the temperature of.
[工程D]:一般式(A-6)で表される生理活性物質結合誘導体における、γ-グルタミン酸結合部分のアミノ基及びカルボキシ基の脱保護反応を行う工程である。
 R及びRの何れか一方がt-ブトキシカルボニル基(Boc基)で、他方が水素原子であり、Rがt-ブチル基の場合、酸性条件下で該工程Eの脱保護を実施することができる。酸としては、塩酸、硫酸等の無機酸、酢酸、トリフロロ酢酸等のカルボン酸等が使用できる。その他、t-ブトキシカルボニル基あるいはt-ブチルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、特に制限なく使用することができる。
 また、該R及びRの何れか一方が9-フルオレニルメトキシカルボニル基(Fmoc基)で、他方が水素原子であり、該Rがフルオレニルメチル基の場合、塩基性条件下で該工程Eを実施することができる。塩基としては、アンモニア、あるいはピペリジン、モルホリンなどの有機塩基等を使用できる。その他、フルオレニルメトキシカルボニル基あるいはフルオレニルメチルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、何れの脱保護反応条件であっても使用することができる。
 また、該R及びRの何れか一方がアリルオキシカルボニル基(Aloc基)で、他方が水素原子であり、該Rがアリル基の場合、パラジウム触媒存在下で該工程Eを実施することができる。パラジウム触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0)等を使用できる。その他、アリルオキシカルボニル基あるいはアリルエステルを脱保護できることが知られている触媒であって、保護基以外の部分に影響を与えない触媒であれば、何れの脱保護反応条件であっても使用することができる。
[Step D]: A step of deprotecting the amino group and carboxy group of the γ-glutamic acid binding moiety in the physiologically active substance-binding derivative represented by the general formula (A-6).
When either R 1 or R 2 is a t-butoxycarbonyl group (Boc group), the other is a hydrogen atom, and R 3 is a t-butyl group, the deprotection of Step E is performed under acidic conditions can do. As the acid, inorganic acids such as hydrochloric acid and sulfuric acid, carboxylic acids such as acetic acid and trifluoroacetic acid, and the like can be used. In addition, any catalyst that is known to be capable of deprotecting a t-butoxycarbonyl group or t-butyl ester and that does not affect the portion other than the protecting group can be used without particular limitation.
When either one of R 1 and R 2 is a 9-fluorenylmethoxycarbonyl group (Fmoc group), the other is a hydrogen atom, and R 3 is a fluorenylmethyl group, The step E can be performed. As the base, ammonia or an organic base such as piperidine or morpholine can be used. In addition, any catalyst that is known to be capable of deprotecting a fluorenylmethoxycarbonyl group or a fluorenylmethyl ester and that does not affect parts other than the protecting group can be used under any deprotection reaction conditions. It can be used even if it exists.
In addition, when either one of R 1 and R 2 is an allyloxycarbonyl group (Aloc group), the other is a hydrogen atom, and R 3 is an allyl group, the step E is performed in the presence of a palladium catalyst. be able to. Tetrakis (triphenylphosphine) palladium (0) or the like can be used as the palladium catalyst. In addition, any catalyst that is known to be capable of deprotecting an allyloxycarbonyl group or allyl ester and that does not affect the portion other than the protecting group can be used under any deprotection reaction conditions. be able to.
 本発明のグルタミン酸誘導体又はその製薬上許容される塩は、生理活性物質を遊離させることがきるものであり、該生理活性物質のプロドラッグとして機能する。したがって、当該グルタミン酸誘導体又はその製薬上許容される塩を有効成分として含有する医薬として用いることができる。
 本発明の該グルタミン酸誘導体又はその製薬上許容される塩を有効成分として含有する医薬は、該グルタミン酸又はその塩を単独で用いても良いが、通常は、医薬品として許容される添加剤と併せて医薬組成物を調製し、医薬品製剤として用いることが好ましい。該添加剤としては、賦形剤、崩壊剤、結合剤、滑沢剤、流動化剤、コーティング剤、懸濁化剤、乳化剤、安定化剤、保存剤、矯味剤、着香剤、希釈剤、溶解補助剤等の製薬上許容し得る添加剤が挙げられ、これらと混合して医薬品製剤を調製する。該製剤としては、粉剤、顆粒剤、錠剤、タブレット剤、カプセル剤、注射剤、座剤、軟膏剤等の製剤形態で、経口又は非経口的(全身投与、局所投与等)に安全に投与される。製剤中の本発明のグルタミン酸誘導体、又は製薬上許容される塩の含量は、製剤により種々異なるが、通常0.1~100重量%であることが好ましい。
The glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof can release a physiologically active substance and functions as a prodrug of the physiologically active substance. Therefore, it can be used as a medicament containing the glutamic acid derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
The pharmaceutical containing the glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient may use the glutamic acid or a salt thereof alone, but usually in combination with a pharmaceutically acceptable additive. It is preferable to prepare a pharmaceutical composition and use it as a pharmaceutical preparation. The additives include excipients, disintegrants, binders, lubricants, fluidizing agents, coating agents, suspending agents, emulsifiers, stabilizers, preservatives, flavoring agents, flavoring agents, diluents. And pharmaceutically acceptable additives such as a solubilizing agent, and a pharmaceutical preparation is prepared by mixing with these. Such preparations can be safely administered orally or parenterally (systemic administration, topical administration, etc.) in the form of powders, granules, tablets, tablets, capsules, injections, suppositories, ointments and the like. The The content of the glutamic acid derivative of the present invention or pharmaceutically acceptable salt in the preparation varies depending on the preparation, but it is usually preferably 0.1 to 100% by weight.
 当該グルタミン酸誘導体又はその製薬上許容される塩を有効成分として含有する医薬として用いる場合、投与量は投与経路、患者の年齢並びに予防又は治療すべき実際の症状等により異なり、特に限定されるものではない。本発明のグルタミン酸誘導体又はその製薬上許容される塩は、悪性腫瘍に高発現されるGGTに認識され、生理活性物質を遊離する物性であることから、抗がん剤として用いることが好ましい。抗がん剤として用いる場合には、例えば成人に経口投与する場合、有効成分として1日0.01mg~2000mg、好ましくは0.1mg~1000mgとすることができ、1日1回又は数回に分けて投与できる。また、経静脈投与等の非経口的に投与する場合は、体表面積当りの有効成分として0.01mg~2000mg/m、好ましくは0.1mg~1000mg/mとすることができ、1日1回又は数回に分けて投与することが好ましい。 When used as a pharmaceutical containing the glutamic acid derivative or a pharmaceutically acceptable salt thereof as an active ingredient, the dosage varies depending on the administration route, the age of the patient and the actual symptoms to be prevented or treated, and is not particularly limited. Absent. The glutamic acid derivative of the present invention or a pharmaceutically acceptable salt thereof is preferably used as an anticancer agent because it is recognized by GGT highly expressed in malignant tumors and has a physical property of releasing a physiologically active substance. When used as an anticancer agent, for example, when orally administered to adults, the active ingredient can be 0.01 mg to 2000 mg, preferably 0.1 mg to 1000 mg per day, once or several times a day. Can be administered separately. In the case of parenteral administration such as intravenous administration, the active ingredient per body surface area can be 0.01 mg to 2000 mg / m 2 , preferably 0.1 mg to 1000 mg / m 2. It is preferable to administer once or several times.
 次に本発明を実施例により更に具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。 Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 実施例1~3、比較例1、2の化合物の検出及び同定、並びに純度測定のためのLC/MS測定条件は次のとおりである。
機種:島津 LCMS-2010A
カラム:Inertsil ODS-3、2.1mm×100mm、
移動相A:アセトニトリル/ギ酸 (99.9/0.1)
移動相B:水/ギ酸 (99.9/0.1)
グラジェント:時間(分)0.0 5.5 6.5 6.51 10.0
       A濃度(%)5  90  90    5    5
流速:0.3mL/分
LC / MS measurement conditions for the detection and identification of the compounds of Examples 1 to 3 and Comparative Examples 1 and 2 and purity measurement are as follows.
Model: Shimadzu LCMS-2010A
Column: Inertsil ODS-3, 2.1 mm × 100 mm,
Mobile phase A: acetonitrile / formic acid (99.9 / 0.1)
Mobile phase B: water / formic acid (99.9 / 0.1)
Gradient: Time (min) 0.0 5.5 6.5 6.51 10.0
A concentration (%) 5 90 90 5 5
Flow rate: 0.3 mL / min
 実施例4~6の化合物の検出及び同定、並びに純度測定のためのLC/MS測定条件は次のとおりである。
機種:島津 LCMS-2020
カラム:Inertsil ODS-3、2.1mm×100mm、
移動相A:アセトニトリル/ギ酸 (99.9/0.1)
移動相B:水/ギ酸 (99.9/0.1)
 グラジェント:時間(分)0.0 5.5 6.5 6.51 10.0        A濃度(%)20  90  90  20   20
流速:0.3mL/分
LC / MS measurement conditions for the detection and identification of the compounds of Examples 4 to 6 and purity measurement are as follows.
Model: Shimadzu LCMS-2020
Column: Inertsil ODS-3, 2.1 mm × 100 mm,
Mobile phase A: acetonitrile / formic acid (99.9 / 0.1)
Mobile phase B: water / formic acid (99.9 / 0.1)
Gradient: Time (min) 0.0 5.5 6.5 6.51 10.0 A concentration (%) 20 90 90 20 20
Flow rate: 0.3 mL / min
実施例1
 (((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)ドキソルビシンの合成
[スキーム1]
Figure JPOXMLDOC01-appb-C000021
Example 1
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) doxorubicin [Scheme 1]
Figure JPOXMLDOC01-appb-C000021
実施例1-1
(S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエートの合成
 (S)-5-((9H-フルオレン-9-イル)メトキシ)-4-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタン酸(0.182g)と4-アミノベンジルアルコール(0.049g)の乾燥ジクロロメタン(5mL)溶液中に、N-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン (EEDQ)(0.103g)を加え、室温で18時間撹拌した。1規定塩酸を加え、生じた結晶をろ過し、粗生成物として(S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.173g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:1.81-1.90(1H,m),2.01-2.12(1H,m),2.40-2.46(2H,m),4.17-4.43(9H,m),7.22-7.33(6H,m),7.37-7.44(4H,m),7.55(2H,d),7.68-7.76(4H,m),7.86-7.96(5H,m),9.89(1H,brs).
LC/MS 保持時間:7.3分;m/z(ESI,POS):653[M+H]
Example 1-1
(S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino)- Synthesis of 5-oxopentanoate (S) -5-((9H-fluoren-9-yl) methoxy) -4-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5 In a solution of oxopentanoic acid (0.182 g) and 4-aminobenzyl alcohol (0.049 g) in dry dichloromethane (5 mL), N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) (0. 103 g) was added and stirred at room temperature for 18 hours. 1N Hydrochloric acid was added, and the resulting crystals were filtered, and (S)-(9H-fluoren-9-yl) methyl 2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino was obtained as a crude product. ) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.173 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 1.81-1.90 (1H, m), 2.01-2.12 (1H, m), 2.40-2.46 (2H, m ), 4.17-4.43 (9H, m), 7.22-7.33 (6H, m), 7.37-7.44 (4H, m), 7.55 (2H, d), 7.68-7.76 (4H, m), 7.86-7.96 (5H, m), 9.89 (1H, brs).
LC / MS retention time: 7.3 minutes; m / z (ESI, POS): 653 [M + H] +
実施例1-2
(S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエートの合成
 (S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.145g)とピリジン(0.0448mL)の乾燥テトラヒドロフラン(100mL)溶液中に、0℃で4-ニトロフェニルクロロホルメート(0.089g)の乾燥テトラヒドロフラン(10mL)溶液を滴下して加え、室温で18時間撹拌した。水を加えた後、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去し、粗生成物として(S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.130g)を得た。
LC/MS 保持時間:8.1分;m/z(ESI,POS):840[M+Na]
Example 1-2
(S)-(9H-fluoren-9-yl) methyl 2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-((4-((((4-nitrophenoxy) Synthesis of carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) methoxy) carbonyl ) Amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.145 g) and pyridine (0.0448 mL) in dry tetrahydrofuran (100 mL) at 0 ° C. A solution of 4-nitrophenyl chloroformate (0.089 g) in dry tetrahydrofuran (10 mL) was added dropwise, and the mixture was stirred at room temperature for 18 hours. Water was added and extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and (S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) was obtained as a crude product. ) Methoxy) carbonyl) amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.130 g) was obtained.
LC / MS retention time: 8.1 minutes; m / z (ESI, POS): 840 [M + Na] +
実施例1-3
((((4-((S)-5-((9H-フルオレン-9-イル)メトキシ)-4-(((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)ドキソルビシンの合成
 粗製の(S)-(9H-フルオレン-9-イル)メチル 2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.05g)をN,N-ジメチルホルムアミド(3mL)に溶解し、塩酸ドキソルビシン(0.03g)を加えた後、ジイソプロピルエチルアミン(0.13mL)を加えた。室温で15時間撹拌後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し、粗生成物として((((4-((S)-5-((9H-フルオレン-9-イル)メトキシ)-4-(((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)ドキソルビシン(0.09g)を得た。
LC/MS 保持時間:7.8分;m/z(ESI,POS):1245[M+Na]
Example 1-3
(((((4-((S) -5-((9H-fluoren-9-yl) methoxy) -4-(((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopenta Synthesis of namid) benzyl) oxy) carbonyl) doxorubicin Crude (S)-(9H-fluoren-9-yl) methyl 2-(((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5 -((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.05 g) was dissolved in N, N-dimethylformamide (3 mL), After adding doxorubicin hydrochloride (0.03 g), diisopropylethylamine (0.13 mL) was added. After stirring at room temperature for 15 hours, water was added and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to give ((((4-((S) -5-((9H-fluoren-9-yl) methoxy) -4 as a crude product). -(((9H-Fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) doxorubicin (0.09 g) was obtained.
LC / MS retention time: 7.8 minutes; m / z (ESI, POS): 1245 [M + Na] +
実施例1-4
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)ドキソルビシンの合成
 粗製の((((4-((S)-5-((9H-フルオレン-9-イル)メトキシ)-4-(((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)ドキソルビシン(0.085g)をN,N-ジメチルホルムアミド(1.1725mL)に溶解し、氷冷下ピペリジンのN,N-ジメチルホルムアミド溶液(10%、0.275mL)を滴下し、30分撹拌した。水(4mL)を加え、混合溶液を分取HPLCで精製し、(((4-(4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)ドキソルビシン(実施例1、0.025g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:1.11(3H,d),1.37-1.51(2H,m),1.76-1.92(4H,m),2.07-2.22(2H,m),2.62-2.69(1H,m),2.98-3.12(3H,m),3.19-3.28(1H,m),3.67-3.76(1H,m),3.98(3H,s),4.10-4.17(1H,m),4.56(2H,s),4.69-4.73(1H,m),4.87-4.98(5H,m),5.22(1H,s),5.46(1H,s),6.84(1H,d),7.23(2H,d),7.53(2H,d),7.63(1H,d),7.88-7.95(2H,m),10.42(1H,brs).
LC/MS 保持時間:4.0分;m/z(ESI,POS):822[M+H]
Example 1-4
Synthesis of ((((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) doxorubicin Crude (((((((4-((S) -5-((9H-fluorene- 9-yl) methoxy) -4-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) doxorubicin (0.085 g) N, N -Dissolved in dimethylformamide (1.1725 mL), a solution of piperidine in N, N-dimethylformamide (10%, 0.275 mL) was added dropwise with ice cooling, and the mixture was stirred for 30 minutes. Water (4 mL) was added and the mixed solution was purified by preparative HPLC to obtain (((4- (4-amino-4-carboxybutanamido) benzyl) oxy) carbonyl) doxorubicin (Example 1, 0.025 g). Obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 1.11 (3H, d), 1.37-1.51 (2H, m), 1.76-1.92 (4H, m), 2. 07-2.22 (2H, m), 2.62-2.69 (1H, m), 2.98-3.12 (3H, m), 3.19-3.28 (1H, m), 3.67-3.76 (1H, m), 3.98 (3H, s), 4.10-4.17 (1H, m), 4.56 (2H, s), 4.69-4. 73 (1H, m), 4.87-4.98 (5H, m), 5.22 (1H, s), 5.46 (1H, s), 6.84 (1H, d), 7.23 (2H, d), 7.53 (2H, d), 7.63 (1H, d), 7.88-7.95 (2H, m), 10.42 (1H, brs).
LC / MS retention time: 4.0 minutes; m / z (ESI, POS): 822 [M + H] +
実施例2
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシンの合成
[スキーム2]
Figure JPOXMLDOC01-appb-C000022
Example 2
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin [Scheme 2]
Figure JPOXMLDOC01-appb-C000022
実施例2-1
t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエートの合成
 (S)-5-(t-ブトキシ)-4-((t-ブトキシ)カルボニル)アミノ)-5-オキソペンタン酸(1.00g)と4-アミノベンジルアルコール(0.487g)の乾燥ジクロロメタン(15mL)溶液中に、N-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン (EEDQ)(1.019g)を加え、室温で18時間撹拌した。1規定塩酸を加え、ジクロロメタンで抽出した。有機層を水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残渣をジエチルエーテルで洗浄し、t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.890g)を得た。
NMR[400MHz,CDCl,TMS]ppm:1.46(9H,s),1.47(9H,s),1.82-1.89(1H,m),2.27-2.30(2H,m),2.44(2H,t),4.21-4.24(1H,m),4.66(2H,s),5.35-5.37(1H,m),7.33(2H,d),7.62(2H,d),8.87(1H,brs).
LC/MS 保持時間:5.5分;m/z(ESI,POS):431[M+Na]
Example 2-1
Synthesis of t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (S) -5- (t In a solution of -butoxy) -4-((t-butoxy) carbonyl) amino) -5-oxopentanoic acid (1.00 g) and 4-aminobenzyl alcohol (0.487 g) in dry dichloromethane (15 mL), N- Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) (1.019 g) was added, and the mixture was stirred at room temperature for 18 hours. 1N Hydrochloric acid was added, and the mixture was extracted with dichloromethane. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, the residue was washed with diethyl ether, and tert-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.890 g) was obtained.
NMR [400 MHz, CDCl 3 , TMS] ppm: 1.46 (9H, s), 1.47 (9H, s), 1.82-1.89 (1H, m), 2.27-2.30 ( 2H, m), 2.44 (2H, t), 4.21-4.24 (1H, m), 4.66 (2H, s), 5.35-5.37 (1H, m), 7 .33 (2H, d), 7.62 (2H, d), 8.87 (1H, brs).
LC / MS retention time: 5.5 minutes; m / z (ESI, POS): 431 [M + Na] +
実施例2-2
t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエートの合成
 t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.10g)とピリジン(0.0494mL)の乾燥テトラヒドロフラン(10mL)溶液中に、0℃で4-ニトロフェニルクロロホルメート(0.0987g)の乾燥テトラヒドロフラン(10mL)溶液を滴下して加え、室温で2時間撹拌した。クエン酸水溶液を加えた後、酢酸エチルで抽出した。有機層を水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧下で留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.038g)を得た。
NMR[400MHz,CDCl,TMS]ppm:1.46(9H,s),1.48(9H,s),1.79-1.90(1H,m),2.26-2.28(1H,m),2.45(2H,t),4.20-4.28(1H,m),5.26(2H,s),5.38-5.40(1H,m),7.37(2H,d),7.41(2H,d),7.69(2H,d),8.27(2H,d),9.15(1H,brs).
LC/MS 保持時間:7.1分;m/z(ESI,POS):596[M+Na]
Example 2-2
t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentano Synthesis of ate t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.10 g) and pyridine To a solution of (0.0494 mL) in dry tetrahydrofuran (10 mL) was added dropwise a solution of 4-nitrophenyl chloroformate (0.0987 g) in dry tetrahydrofuran (10 mL) at 0 ° C., and the mixture was stirred at room temperature for 2 hours. Aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography, and t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4-((((4- Nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.038 g) was obtained.
NMR [400 MHz, CDCl 3 , TMS] ppm: 1.46 (9H, s), 1.48 (9H, s), 1.79-1.90 (1H, m), 2.26-2.28 ( 1H, m), 2.45 (2H, t), 4.20-4.28 (1H, m), 5.26 (2H, s), 5.38-5.40 (1H, m), 7 .37 (2H, d), 7.41 (2H, d), 7.69 (2H, d), 8.27 (2H, d), 9.15 (1H, brs).
LC / MS retention time: 7.1 minutes; m / z (ESI, POS): 596 [M + Na] +
実施例2-3
(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシンの合成
 t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.125g)をN,N-ジメチルホルムアミド(8mL)に溶解し、7-エチル-10-ヒドロキシカンプトテシン(0.0855g)を加えた後、ジイソプロピルエチルアミン(0.37mL)を加えた。室温で18時間撹拌後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下で留去し、粗生成物として(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシン(0.227g)を得た。
LC/MS 保持時間:6.6分;m/z(ESI,POS):827[M+H]
Example 2-3
(((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) -10-oxy-7- Synthesis of ethylcamptothecin t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5 -Oxopentanoate (0.125 g) was dissolved in N, N-dimethylformamide (8 mL), 7-ethyl-10-hydroxycamptothecin (0.0855 g) was added, and diisopropylethylamine (0.37 mL) was added. added. After stirring at room temperature for 18 hours, water was added and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give a crude product (((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) Amino) -5-oxopentanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin (0.227 g) was obtained.
LC / MS retention time: 6.6 min; m / z (ESI, POS): 827 [M + H] +
実施例2-4
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシンの合成
 粗製の((((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシン(0.02g)に4規定塩酸ジオキサン溶液(2.0mL)に溶解し、30分撹拌した。溶媒を留去し、水(4mL)を加え、混合溶液を分取HPLCで精製し、(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)-10-オキシ-7-エチルカンプトテシン(実施例2、0.0015g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:0.88(3H,t),1.29(3H,t),1.84-2.11(6H,m),3.16-3.29(3H,m),5.28(2H,s),5.36(2H,s),5.45(2H,s),6.55(1H,s),7.34(1H,s),7.44(2H,d),7.65(2H,d),7.78-7.80(1H,m),8.18-8.25(2H,m),10.21(1H,brs).
LC/MS 保持時間:3.9分;m/z(ESI,POS):671[M+H]
Example 2-4
Synthesis of ((((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin Crude ((((((4-((S)- 4- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin (0.02 g) The mixture was dissolved in dioxane hydrochloride solution (2.0 mL) and stirred for 30 minutes, the solvent was distilled off, water (4 mL) was added, and the mixed solution was purified by preparative HPLC, (((4-((S)- 4-Amino-4-carboxybutanamide) benzyl) oxy) carbonyl) -10-oxy-7-ethylcamptothecin (Example 2, 0.0015 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 0.88 (3H, t), 1.29 (3H, t), 1.84-2.11 (6H, m), 3.16-3. 29 (3H, m), 5.28 (2H, s), 5.36 (2H, s), 5.45 (2H, s), 6.55 (1H, s), 7.34 (1H, s) ), 7.44 (2H, d), 7.65 (2H, d), 7.78-7.80 (1H, m), 8.18-8.25 (2H, m), 10.21 ( 1H, brs).
LC / MS retention time: 3.9 min; m / z (ESI, POS): 671 [M + H] +
実施例3
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)カンプトテシンの合成
[スキーム3]
Figure JPOXMLDOC01-appb-C000023
Example 3
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) camptothecin [Scheme 3]
Figure JPOXMLDOC01-appb-C000023
実施例3-1
(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)カンプトテシンの合成
 カンプトテシン(0.050g)とトリホスゲン(0.0158g)の乾燥ジクロロメタン(6mL)懸濁液に、ジメチルアミノピリジン(0.0561g)のジクロロメタン(2mL)溶液をゆっくり滴下した。30分撹拌後、t-ブチル (S)-2-((t-ブトキシカルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.059g)を加え、室温で18時間撹拌した。1規定塩酸(50mL)を加え、ジクロロメタンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去し、粗生成物として(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)カンプトテシン(0.108g)を得た。
LC/MS 保持時間:6.8分;m/z(ESI,POS):805[M+Na]
Example 3-1
Synthesis of (((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) benzyl) oxy) carbonyl) camptothecin (0. A solution of dimethylaminopyridine (0.0561 g) in dichloromethane (2 mL) was slowly added dropwise to a suspension of 050 g) and triphosgene (0.0158 g) in dry dichloromethane (6 mL). After stirring for 30 minutes, t-butyl (S) -2-((t-butoxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.059 g) And stirred at room temperature for 18 hours. 1N Hydrochloric acid (50 mL) was added, and the mixture was extracted twice with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product (((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) Benzyl) oxy) carbonyl) camptothecin (0.108 g) was obtained.
LC / MS retention time: 6.8 min; m / z (ESI, POS): 805 [M + Na] +
実施例3-2
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)カンプトテシンの合成
 粗製の(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)カンプトテシン(0.028g)に4規定塩酸酢酸エチル溶液(3.0mL)に0℃で溶解し、3時間撹拌した。溶媒を留去し、得られた残渣を分取HPLCで精製し、(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)カンプトテシン(実施例3、0.0017g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:0.90(3H,t),1.90-1.97(3H,m),2.13-2.21(3H,m),3.16-3.28(1H,m),5.09(2H,q),5.33(2H,s),5.52(2H,s),7.02(1H,s),7.27(2H,d),7.53(2H,d),7.74(1H,t),7.89(1H,t),8.15-8.21(2H,m),8.73(1H,s),10.29(1H,brs).
LC/MS 保持時間:3.9分;m/z(ESI,POS):627[M+H]
Example 3-2
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) camptothecin Crude (((((4-((S) -5- (t-butoxy) -4 -((T-Butoxycarbonyl) amino) -5-oxopentanamide) benzyl) oxy) carbonyl) camptothecin (0.028 g) was dissolved in 4N hydrochloric acid ethyl acetate solution (3.0 mL) at 0 ° C. Stir for hours. The solvent was distilled off and the resulting residue was purified by preparative HPLC to give (((4-((S) -4-amino-4-carboxybutanamido) benzyl) oxy) carbonyl) camptothecin (Example 3, 0.0017 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 0.90 (3H, t), 1.90-1.97 (3H, m), 2.13-2.21 (3H, m), 3. 16-3.28 (1H, m), 5.09 (2H, q), 5.33 (2H, s), 5.52 (2H, s), 7.02 (1H, s), 7.27 (2H, d), 7.53 (2H, d), 7.74 (1H, t), 7.89 (1H, t), 8.15-8.21 (2H, m), 8.73 ( 1H, s), 10.29 (1H, brs).
LC / MS retention time: 3.9 min; m / z (ESI, POS): 627 [M + H] +
実施例4
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)エピルビシンの合成
[スキーム4]
Figure JPOXMLDOC01-appb-C000024
Example 4
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) epirubicin [Scheme 4]
Figure JPOXMLDOC01-appb-C000024
実施例4-1
アリル (S)-2-(アリルオキシカルボニルアミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエートの合成
 アリル (S)-2-((アリルオキシカルボニル)アミノ)-5-((4-(ヒドロキシメチル)フェニル)アミノ)-5-オキソペンタノエート(0.400g)とピリジン(0.214mL)の乾燥テトラヒドロフラン(20mL)溶液中に、0℃で4-ニトロフェニルクロロホルメート(0.428g)の乾燥テトラヒドロフラン(1mL)溶液を滴下して加え、室温で18時間撹拌した。1規定塩酸(10mL)を加えた後、酢酸エチルで抽出し、有機層を水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧下で留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、アリル (S)-2-((アリルオキシカルボニル)アミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.633g)を得た。
NMR[400MHz,CDCl,TMS]ppm:1.96-2.08(1H,m),2.34-2.44(1H,m),2.48-2.53(2H,m),4.42-4.50(1H,m),4.62(2H,d),4.70(2H,d),5.24-5.39(6H,m),5.63(1H,brd),5.86-5.97(2H,m),7.39(2H,d),7.43(2H,d),7.65(2H,d),8.30(2H,d),8.41(1H,brs).
LC/MS 保持時間:6.6分;m/z(ESI,POS):564[M+Na]
Example 4-1
Synthesis of allyl (S) -2- (allyloxycarbonylamino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate S) -2-((allyloxycarbonyl) amino) -5-((4- (hydroxymethyl) phenyl) amino) -5-oxopentanoate (0.400 g) and pyridine (0.214 mL) in dry tetrahydrofuran A solution of 4-nitrophenyl chloroformate (0.428 g) in dry tetrahydrofuran (1 mL) was added dropwise to the (20 mL) solution at 0 ° C., and the mixture was stirred at room temperature for 18 hours. 1N Hydrochloric acid (10 mL) was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography. Allyl (S) -2-((allyloxycarbonyl) amino) -5-((4-(((((4-nitrophenoxy)) Carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.633 g) was obtained.
NMR [400 MHz, CDCl 3 , TMS] ppm: 1.96-2.08 (1H, m), 2.34-2.44 (1H, m), 2.48-2.53 (2H, m), 4.42-4.50 (1H, m), 4.62 (2H, d), 4.70 (2H, d), 5.24-5.39 (6H, m), 5.63 (1H, brd), 5.86-5.97 (2H, m), 7.39 (2H, d), 7.43 (2H, d), 7.65 (2H, d), 8.30 (2H, d) ), 8.41 (1H, brs).
LC / MS retention time: 6.6 min; m / z (ESI, POS): 564 [M + Na] +
実施例4-2
(((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)エピルビシンの合成
 アリル (S)-2-(アリルオキシカルボニルアミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.130g)およびエピルビシン塩酸塩(0.127g)をN,N-ジメチルホルムアミド(10mL)に溶解し、ジイソプロピルエチルアミン(0.0928mL)を加えた。室温で6時間撹拌後、反応液をジイソプロピルエーテル(200mL)に滴下して加えた。生じた固体をクロロホルムに溶解し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、(((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)エピルビシン(0.222g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:1.18(3H,d),1.53-1.64(1H,m),1.79-1.91(2H,m),2.02-2.24(3H,m),2.38-2.46(2H,m),2.90-3.02(3H,m),3.49-3.59(1H,m),3.84-3.93(1H,m),3.98(3H,s),4.06-4.13(1H,m),4.45―4.49(2H,m),4.53-4.61(4H,m),4.83-4.88(3H,m),4.93-4.98(2H,m),5.16-5.23(3H,m),5.26-5.34(2H,m),5.49(1H,s),5.83-5.96(2H,m),7.02(1H,d),7.23(2H,d),7.53(2H,d),7.65(1H,t),7.75(1H,d),7.91(2H,d),9.93(1H,s),13.27(1H,brs),14.03(1H,brs).
LC/MS 保持時間:6.2分;m/z(ESI,POS):968[M+Na]
Example 4-2
Synthesis of (((4-((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamido) benzyl) oxy) carbonyl) epirubicin allyl (S) -2- (allyloxycarbonyl Amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.130 g) and epirubicin hydrochloride (0.127 g). Dissolved in N, N-dimethylformamide (10 mL), diisopropylethylamine (0.0928 mL) was added. After stirring at room temperature for 6 hours, the reaction solution was added dropwise to diisopropyl ether (200 mL). The resulting solid was dissolved in chloroform, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (chloroform / methanol = 20/1) and (((4-((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamide) benzyl). ) Oxy) carbonyl) epirubicin (0.222 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 1.18 (3H, d), 1.53-1.64 (1H, m), 1.79-1.91 (2H, m), 2. 02-2.24 (3H, m), 2.38-2.46 (2H, m), 2.90-3.02 (3H, m), 3.49-3.59 (1H, m), 3.84-3.93 (1H, m), 3.98 (3H, s), 4.06-4.13 (1H, m), 4.45-4.49 (2H, m), 4. 53-4.61 (4H, m), 4.83-4.88 (3H, m), 4.93-4.98 (2H, m), 5.16-5.23 (3H, m), 5.26-5.34 (2H, m), 5.49 (1H, s), 5.83-5.96 (2H, m), 7.02 (1H, d), 7.23 (2H, d), 7.53 (2H, d) 7.65 (1H, t), 7.75 (1H, d), 7.91 (2H, d), 9.93 (1H, s), 13.27 (1H, brs), 14.03 (1H , Brs).
LC / MS retention time: 6.2 minutes; m / z (ESI, POS): 968 [M + Na] +
実施例4-3
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)エピルビシンの合成
 (((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)エピルビシン(0.200g)をジクロロメタン(4.5mL)およびN,N-ジメチルホルムアミド(1.0mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(0.012g)およびフェニルシラン(0.026mL)を加え、アルゴン雰囲気下、30分撹拌した。反応液を10%メタノール含有ジイソプロピルエーテル(450mL)に滴下して加えた。生じた固体をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール/水=13/6/1)で精製し、(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)エピルビシン(実施例4、0.080g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:
1.18(3H,d),1.52-1.67(1H,m),1.80-1.97(3H,m),2.13-2.23(2H,m),2.90-3.05(3H,m),3.15-3.23(2H,m),3.49-3.61(1H,m),3.84-3.93(1H,m),3.99(3H,s),4.56(2H,s),4.87(2H,s),4.92-5.01(2H,m),5.21(1H,s),5.51(1H,s),7.03(1H,d),7.23(2H,d),7.54(2H,d),7.66(1H,t),7.91(2H,d),10.36(1H,s),14.04(1H,brs).
LC/MS 保持時間:4.4分;m/z(ESI,POS):822[M+H]
Example 4-3
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) epirubicin ((((4-((S) -5-allyl-4- (allyloxycarbonylamino ) -5-oxopentanamide) benzyl) oxy) carbonyl) epirubicin (0.200 g) was dissolved in dichloromethane (4.5 mL) and N, N-dimethylformamide (1.0 mL), and tetrakistriphenylphosphine palladium ( 0.012 g) and phenylsilane (0.026 mL) were added, and the mixture was stirred for 30 minutes under an argon atmosphere. The reaction solution was added dropwise to 10% methanol-containing diisopropyl ether (450 mL). The resulting solid was purified by silica gel column chromatography (chloroform / methanol / water = 13/6/1) and (((4-((S) -4-amino-4-carboxybutanamido) benzyl) oxy) carbonyl ) Epirubicin (Example 4, 0.080 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm:
1.18 (3H, d), 1.52-1.67 (1H, m), 1.80-1.97 (3H, m), 2.13-2.23 (2H, m), 2. 90-3.05 (3H, m), 3.15-3.23 (2H, m), 3.49-3.61 (1H, m), 3.84-3.93 (1H, m), 3.99 (3H, s), 4.56 (2H, s), 4.87 (2H, s), 4.92-5. 01 (2H, m), 5.21 (1H, s), 5 .51 (1H, s), 7.03 (1H, d), 7.23 (2H, d), 7.54 (2H, d), 7.66 (1H, t), 7.91 (2H, d), 10.36 (1H, s), 14.04 (1H, brs).
LC / MS retention time: 4.4 minutes; m / z (ESI, POS): 822 [M + H] +
実施例5
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)シタラビンの合成
[スキーム3]
Figure JPOXMLDOC01-appb-C000025
Example 5
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) cytarabine [Scheme 3]
Figure JPOXMLDOC01-appb-C000025
実施例5-1
(((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)シタラビンの合成
 アリル (S)-2-(アリルオキシカルボニルアミノ)-5-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-5-オキソペンタノエート(0.030g)をテトラヒドロフラン(1.85mL)に溶解し、シタラビン(0.014g)を加えた後、1規定水酸化ナトリウム水溶液(0.15mL)を加えた。室温で3時間撹拌後、酢酸エチルを加え有機層を得た。得られた有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下で留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1から5/1)で精製し,(((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)シタラビン(0.016g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:1.79-1.93(1H,m),2.02-2.34(1H,m),3.49-3.63(2H,m),4.05-4.16(1H,m),4.47(2H,d),4.60(2H,d),4.92-5.09(3H,m),5.16-5.34(4H,m),5.68(1H,d),5.83(1H,d),5.84-5.97(2H,m),6.17(1H,d),7.24(2H,d),7.56(2H,d),7.63(1H,d),7.76(1H,d),10.00(1H,brs).
LC/MS 保持時間:3.6分;m/z(ESI,POS):646[M+H]
Example 5-1
Synthesis of (((4-((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamide) benzyl) oxy) carbonyl) cytarabine Allyl (S) -2- (allyloxycarbonyl Amino) -5-((4-((((4-nitrophenoxy) carbonyl) oxy) methyl) phenyl) amino) -5-oxopentanoate (0.030 g) was dissolved in tetrahydrofuran (1.85 mL). After adding cytarabine (0.014 g), 1N aqueous sodium hydroxide solution (0.15 mL) was added. After stirring at room temperature for 3 hours, ethyl acetate was added to obtain an organic layer. The obtained organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol = 20/1 to 5/1) and (((4- ((S) -5-allyl-4- (allyloxycarbonylamino) -5-oxopentanamide) benzyl) oxy) carbonyl) cytarabine (0.016 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 1.79-1.93 (1H, m), 2.02-2.34 (1H, m), 3.49-3.63 (2H, m ), 4.05-4.16 (1H, m), 4.47 (2H, d), 4.60 (2H, d), 4.92-5.09 (3H, m), 5.16- 5.34 (4H, m), 5.68 (1H, d), 5.83 (1H, d), 5.84-5.97 (2H, m), 6.17 (1H, d), 7 .24 (2H, d), 7.56 (2H, d), 7.63 (1H, d), 7.76 (1H, d), 10.00 (1H, brs).
LC / MS retention time: 3.6 minutes; m / z (ESI, POS): 646 [M + H] +
実施例5-2
(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)シタラビンの合成
 (((4-((S)-5-アリル-4-(アリルオキシカルボニルアミノ)-5-オキソペンタナミド)ベンジル)オキシ)カルボニル)シタラビン(0.016g)をジクロロメタン(2.0mL)およびN,N-ジメチルホルムアミド(0.40mL)に溶解し、アルゴン雰囲気下,テトラキストリフェニルホスフィンパラジウム(0)(0.0028g)およびフェニルシラン(0.0030mL)を加え,室温で45分撹拌した後、そのまま18時間静置した。溶媒を留去し、残渣を分取HPLCで精製し、(((4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジル)オキシ)カルボニル)シタラビン(実施例5、0.0015g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:2.02-2.14(2H,m),3.53-3.65(2H,m),3.73-3.81(1H,m),3.90-3.99(1H,m),4.06-4.12(1H,m),4.94-5.11(4H,m),5.71-5.5.75(1H,m),5.82-5.85(1H,m),6.16(1H,d),7.25(2H,d),7.57(2H,d),7.95(1H,s),8.05-8.30(2H,m),10.08(1H,brs).
LC/MS 保持時間:0.8分;m/z(ESI,POS):522[M+H]
Example 5-2
Synthesis of (((4-((S) -4-amino-4-carboxybutanamide) benzyl) oxy) carbonyl) cytarabine ((((4-((S) -5-allyl-4- (allyloxycarbonylamino ) -5-oxopentanamide) benzyl) oxy) carbonyl) cytarabine (0.016 g) was dissolved in dichloromethane (2.0 mL) and N, N-dimethylformamide (0.40 mL), and tetrakistri under argon atmosphere. Phenylphosphine palladium (0) (0.0028 g) and phenylsilane (0.0030 mL) were added, and the mixture was stirred at room temperature for 45 minutes and then allowed to stand for 18 hours. The solvent was removed and the residue was purified by preparative HPLC to give (((4-((S) -4-amino-4-carboxybutanamido) benzyl) oxy) carbonyl) cytarabine (Example 5, 0.0015 g )
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 2.02-2.14 (2H, m), 3.53-3.65 (2H, m), 3.73-3.81 (1H, m ), 3.90-3.99 (1H, m), 4.06-4.12 (1H, m), 4.94-5.11 (4H, m), 5.71-5.75. (1H, m), 5.82-5.85 (1H, m), 6.16 (1H, d), 7.25 (2H, d), 7.57 (2H, d), 7.95 ( 1H, s), 8.05-8.30 (2H, m), 10.08 (1H, brs).
LC / MS retention time: 0.8 min; m / z (ESI, POS): 522 [M + H] +
実施例6:10-(4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジルオキシ)-7-エチルカンプトテシン 2トリフルオロ酢酸塩の合成[スキーム6]
Figure JPOXMLDOC01-appb-C000026
Example 6: Synthesis of 10- (4-((S) -4-amino-4-carboxybutanamide) benzyloxy) -7-ethylcamptothecin 2 trifluoroacetate [Scheme 6]
Figure JPOXMLDOC01-appb-C000026
実施例6-1:5-((4-ヒドロキシメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメートの合成
 1-t-ブチル N-(t-ブトキシカルボニル)-L-グルタメート(1.00g)と4-アミノベンジルアルコール(0.487g)の乾燥ジクロロメタン(15mL)溶液中に、N-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン (EEDQ)(1.019g)を加え、室温で18時間撹拌した。1規定塩酸を加え、ジクロロメタンで抽出した。有機層を水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残渣をジエチルエーテルで洗浄し、5-((4-ヒドロキシメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメート(0.890g)を得た。
 
NMR[400MHz,CDCl,TMS]ppm:1.46(9H,s),1.47(9H,s),1.82-1.89(1H,m),2.27-2.30(2H,m),2.44(2H,t),4.21-4.24(1H,m),4.66(2H,s),5.35-5.37(1H,m),7.33(2H,d),7.62(2H,d),8.87(1H,brs).
LC/MS 保持時間:5.6分;m/z(ESI,POS):431[M+Na] 
Example 6-1: Synthesis of 5-((4-hydroxymethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate 1-t-butyl N- (t- N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in a solution of butoxycarbonyl) -L-glutamate (1.00 g) and 4-aminobenzyl alcohol (0.487 g) in dry dichloromethane (15 mL). ) (1.019 g) was added and stirred at room temperature for 18 hours. 1N Hydrochloric acid was added, and the mixture was extracted with dichloromethane. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, the residue was washed with diethyl ether, and 5-((4-hydroxymethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate ( 0.890 g) was obtained.

NMR [400 MHz, CDCl 3 , TMS] ppm: 1.46 (9H, s), 1.47 (9H, s), 1.82-1.89 (1H, m), 2.27-2.30 ( 2H, m), 2.44 (2H, t), 4.21-4.24 (1H, m), 4.66 (2H, s), 5.35-5.37 (1H, m), 7 .33 (2H, d), 7.62 (2H, d), 8.87 (1H, brs).
LC / MS retention time: 5.6 min; m / z (ESI, POS): 431 [M + Na] +
実施例6-2:5-((4-クロロメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメートの合成 アルゴン雰囲気中、氷冷撹拌下、5-((4-ヒドロキシメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメート(88mg,0.22mmol)の乾燥ジクロロメタン(4.3mL)溶液中に、ジイソプロピルエチルアミン(0.073mL、0.43mmol)、および、メタンスルホニルクロリド(0.025mL、0.32mmol)をこの順で加え、氷冷下2時間5分撹拌した。反応液に酢酸エチル(40mL)を加えて希釈し、0.3モル炭酸水素ナトリウム水溶液(3mL)-水(10mL)、水(10mL)、および、食塩水(10mL)で洗浄後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾去、減圧下溶媒を留去して、5-((4-クロロメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメート(83.7mg)を得た。このものを、精製することなく次の縮合反応に用いた。  Example 6-2: Synthesis of 5-((4-chloromethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate In an argon atmosphere, with ice-cooling and stirring, 5 In a dry dichloromethane (4.3 mL) solution of-((4-hydroxymethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate (88 mg, 0.22 mmol), Diisopropylethylamine (0.073 mL, 0.43 mmol) and methanesulfonyl chloride (0.025 mL, 0.32 mmol) were added in this order, and the mixture was stirred for 2 hours and 5 minutes under ice cooling. The reaction mixture is diluted with ethyl acetate (40 mL), washed with 0.3 molar aqueous sodium hydrogen carbonate solution (3 mL) -water (10 mL), water (10 mL), and brine (10 mL), and then anhydrous sodium sulfate. And dried. Sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure, and 5-((4-chloromethyl) benzylamino) -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate (83. 7 mg) was obtained. This was used for the next condensation reaction without purification. *
実施例6-3:10-(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジルオキシ)-7-エチルカンプトテシンの合成 アルゴン雰囲気中、室温撹拌下、7-エチル-10-ヒドロキシ-カンプトテシン(EHC 29mg、0.074mmol)の乾燥ジメチルホルムアミド(1.5mL)懸濁液中に、炭酸セシウム(24mg、0.074mmol)を加え、得られた淡黄色懸濁液を室温で9分撹拌して、橙色均一溶液とした。次いで、室温撹拌下、粗製の5-((4-クロロメチル)ベンジルアミノ)-1-(t-ブチル) N-(t-ブトキシカルボニル)-L-グルタメート(36mg,0.084mmol)の乾燥ジメチルホルムアミド(1.5mL)溶液を加え、得られた橙色溶液を室温で2時間40分、次いで、氷冷下1.5時間撹拌した。氷冷撹拌下、反応液に酢酸エチル(20mL)を加えて希釈し、塩化アンモニウム水溶液(6mL)を加えて反応を停止した。有機層を分取し,水(8mL、2回)、および、食塩水(6mL)で洗浄後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾去、減圧下溶媒を留去して、淡黄色固体(61mg)を得た。このものを,分取薄層クロマトグラフィー(シリカゲル,酢酸エチル)により精製し、10-(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジルオキシ)-7-エチルカンプトテシン(19mg)を得た。 NMR[400MHz,CDCl3,TMS]ppm:1.033(3H,t,J=7.3Hz),1.353(3H,t,J=7.7Hz),1.459(9H,s),1.473(9H,s),1.80-1.95(3H,m),2.289(1H、m),2.453(2H、t、J=6.5Hz),3.108 (2H,q,J=7.7Hz),3.828(1H,s),4.229(1H,m),5.205(2H,s),5.220(2H,s),5.298(1H,d,J=16.2Hz),5.389(1H,d,J=8.1Hz),5.745(1H,d,J=16.2Hz,7.368(1H,d,J=2.6Hz),7.463(2H,d,J=8.6Hz),7.510(1H,dd,J=9.2Hz,2.6Hz),7.600(1H,s),7.693(2H,d,J=8.2Hz),8.125(1H,d,J=9.2Hz),9.062(1H,s).LC/MS 保持時間:6.9分;m/z(ESI、NEG):781[M-H]  Example 6-3: 10-(((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) benzyloxy) -7 -Synthesis of ethylcamptothecin In a suspension of 7-ethyl-10-hydroxy-camptothecin (EHC 29 mg, 0.074 mmol) in dry dimethylformamide (1.5 mL) under argon atmosphere and stirring at room temperature, cesium carbonate (24 mg, 0.074 mmol) was added, and the resulting pale yellow suspension was stirred at room temperature for 9 minutes to give an orange homogeneous solution, and then crude 5-((4-chloromethyl) benzylamino) was stirred at room temperature. -1- (t-butyl) N- (t-butoxycarbonyl) -L-glutamate (36 mg, 0.084 mmol) in dry dimethylformamide (1.5 mL) The resulting orange solution was stirred at room temperature for 2 hours and 40 minutes, then under ice-cooling for 1.5 hours, and diluted with ethyl acetate (20 mL) while stirring with ice-cooling. The organic layer was separated, washed with water (8 mL, 2 times) and brine (6 mL), and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a pale yellow solid (61 mg), which was purified by preparative thin layer chromatography (silica gel, ethyl acetate) and purified by 10-(((4-((S)) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamide) benzyloxy) -7-ethylcamptothecin (19 mg) was obtained NMR [400 MHz, CDCl3, TMS ] P m: 1.033 (3H, t, J = 7.3 Hz), 1.353 (3H, t, J = 7.7 Hz), 1.259 (9H, s), 1.473 (9H, s), 1.80-1.95 (3H, m), 2.289 (1H, m), 2.453 (2H, t, J = 6.5 Hz), 3.108 (2H, q, J = 7.7 Hz) ), 3.828 (1H, s), 4.229 (1H, m), 5.205 (2H, s), 5.220 (2H, s), 5.298 (1H, d, J = 16. 2Hz), 5.389 (1H, d, J = 8.1 Hz), 5.745 (1H, d, J = 16.2 Hz, 7.368 (1H, d, J = 2.6 Hz), 7.463 (2H, d, J = 8.6 Hz), 7.510 (1H, dd, J = 9.2 Hz, 2.6 Hz), 7.600 (1H, s), 7.693 (2H, d J = 8.2Hz), 8.125 (1H, d, J = 9.2Hz), 9.062 (1H, s). LC / MS retention time: 6.9 minutes; m / z (ESI, NEG): 781 [M−H]
実施例6-4:10-(4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジルオキシ)-7-エチルカンプトテシン 2トリフルオロ酢酸塩の合成 アルゴン雰囲気中、氷冷撹拌下、10-(((4-((S)-5-(t-ブトキシ)-4-((t-ブトキシカルボニル)アミノ)-5-オキソペンタナミド)ベンジルオキシ)-7-エチルカンプトテシン(33.7mg、0.043mmol)の1,2-ジクロロエタン(3mL)溶液中に、トリフロロ酢酸(1mL)を加え、得られた黄色溶液を、氷冷下5分、次いで室温(21°C)で2時間撹拌した。反応液を減圧乾固し、残査に1,2-ジクロロエタン(8mL)を加えて再度減圧乾固して、黄色固体(41mg)を得た。このものに、ジメチルホルムアミド(1mL)、アセトニトリル(MeCN、7mL)、及び、水(4mL)を加えて溶解し、得られた溶液(12mL)を分取液体クロマトグラフィーにより分離精製した(4mL、3回)。不純物を含まない画分を合して減圧下溶媒を留去し、10-(4-((S)-4-アミノ-4-カルボキシブタンアミド)ベンジルオキシ)-7-エチルカンプトテシン 2トリフルオロ酢酸塩(実施例6、21.8mg)を得た。 NMR[400MHz,DMSO-d6,TMS]ppm:0.874(3H,t,J=7.3Hz),1.272(3H,t,J=7.6Hz),1.864(2H,m),2.082(2H,m),2.566(overlapped),3.185(2H,q,J=7.3Hz),3.980(overlapped),5.299,5.309,5.429(each 2H,s),6.50(1H,b),7.269(1H,s),7.47-7.65(6H,m),8.09(1H,d,J=9.0Hz),8.262(2H,d,J=4.1Hz),10.105(1H,s),13.9(1H,b).LC/MS 保持時間:4.1分;m/z(ESI,POS):628[M+2H] Example 6-4: Synthesis of 10- (4-((S) -4-amino-4-carboxybutanamido) benzyloxy) -7-ethylcamptothecin 2trifluoroacetate salt 10-(((4-((S) -5- (t-butoxy) -4-((t-butoxycarbonyl) amino) -5-oxopentanamido) benzyloxy) -7-ethylcamptothecin (33. 7 mg, 0.043 mmol) in 1,2-dichloroethane (3 mL) was added trifluoroacetic acid (1 mL) and the resulting yellow solution was allowed to cool for 5 minutes under ice-cooling and then at room temperature (21 ° C.) for 2 hours. The reaction mixture was evaporated to dryness, 1,2-dichloroethane (8 mL) was added to the residue, and the mixture was again evaporated to dryness to give a yellow solid (41 mg), which was dimethylformamide (1 mL). , Acetonitrile (MeCN, 7 mL) and water (4 mL) were added and dissolved, and the resulting solution (12 mL) was separated and purified by preparative liquid chromatography (4 mL, 3 times). The solvents were distilled off under reduced pressure, and 10- (4-((S) -4-amino-4-carboxybutanamido) benzyloxy) -7-ethylcamptothecin 2 trifluoroacetate (Examples 6 and 21). NMR [400 MHz, DMSO-d6, TMS] ppm: 0.874 (3H, t, J = 7.3 Hz), 1.272 (3H, t, J = 7.6 Hz), 1 .864 (2H, m), 2.082 (2H, m), 2.566 (overlapped), 3.185 (2H, q, J = 7.3 Hz), 3.980 (overlapped), 5.299, 5. 09, 5.429 (each 2H, s), 6.50 (1H, b), 7.269 (1H, s), 7.47-7.65 (6H, m), 8.09 (1H, d , J = 9.0 Hz), 8.262 (2H, d, J = 4.1 Hz), 10.105 (1H, s), 13.9 (1H, b) LC / MS Retention time: 4.1 Min; m / z (ESI, POS): 628 [M + 2H] +
比較例1
(S)-(4-アミノ-4-カルボキシブタンアミド)ドキソルビシンの合成
Comparative Example 1
Synthesis of (S)-(4-amino-4-carboxybutanamide) doxorubicin
比較例1-1
 (S)-5-((9H-フルオレン-9-イル)メトキシ)-4-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタン酸(0.100g)、ドキソルビシン塩酸塩(0.095g)、ヒドロキシベンゾトリアゾール(3mg)およびトリエチルアミン(0.024mL)をN,N-ジメチルホルムアミド(2mL)に溶解し、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(0.100g)を加え、室温で22時間撹拌した。水(40mL)を加え、生じた析出物をろ過した。析出物をシリカゲルカラムクロマトグラフィーで精製し、(4-((S)-5-((9H-フルオレン-9-イル)メトキシ)-4-(((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタナミド)ドキソルビシン(0.090g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:1.13(3H,d),1.42-1.54(1H,m),1.64-1.94(3H,m),2.06-2.25(4H,m),2.90-3.04(2H,m),3.90-4.38(10H,m),4.59(2H,d),4.77(1H,d),4.88-4.99(2H,m),5.20-5.26(1H,m),5.50(1H,s),7.20-7.89(19H,m),13.28(1H,s),14.07(1H,s).
LC/MS 保持時間:7.6分;m/z(ESI,POS):1096[M+Na]
Comparative Example 1-1
(S) -5-((9H-Fluoren-9-yl) methoxy) -4-((((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopentanoic acid (0.100 g) , Doxorubicin hydrochloride (0.095 g), hydroxybenzotriazole (3 mg) and triethylamine (0.024 mL) were dissolved in N, N-dimethylformamide (2 mL) and 1-ethyl-3- (3-dimethylaminopropyl hydrochloride) was dissolved. ) Carbodiimide (0.100 g) was added and stirred at room temperature for 22 hours. Water (40 mL) was added and the resulting precipitate was filtered. The precipitate was purified by silica gel column chromatography to obtain (4-((S) -5-((9H-fluoren-9-yl) methoxy) -4-(((9H-fluoren-9-yl) methoxy) carbonyl). ) Amino) -5-oxopentanamide) doxorubicin (0.090 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 1.13 (3H, d), 1.42-1.54 (1 H, m), 1.64-1.94 (3H, m), 2. 06-2.25 (4H, m), 2.90-3.04 (2H, m), 3.90-4.38 (10H, m), 4.59 (2H, d), 4.77 ( 1H, d), 4.88-4.99 (2H, m), 5.20-5.26 (1H, m), 5.50 (1H, s), 7.20-7.89 (19H, m), 13.28 (1H, s), 14.07 (1H, s).
LC / MS retention time: 7.6 minutes; m / z (ESI, POS): 1096 [M + Na] +
比較例1-2
 (4-((S)-5-((9H-フルオレン-9-イル)メトキシ)-4-(((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-5-オキソペンタナミド)ドキソルビシン(0.020g)をジクロロメタン(0.1365mL)に溶解し、ピペリジンのジクロロメタン溶液(10%v/v,0.635mL)を0℃で加え、3.5時間撹拌した。ジクロロメタン(1mL)を加えた後、ピペリジンのジクロロメタン溶液(10%v/v,0.0158mL)を0℃で加え、2時間撹拌を続けた。析出物をろ過し、酢酸エチルで洗浄した。得られた析出物を分取HPLCで精製し、(S)-(4-アミノ-4-カルボキシブタンアミド)ドキソルビシン(比較例1、0.0021g)を得た。
NMR[400MHz,DO,TMS]ppm:1.17(3H,d),1.61-1.74(1H,m),1.76-1.93(2H,m),1.94-2.04(2H,m),2.11-2.20(1H,m),2.24-2.50(3H,m),2.66-2.78(1H,m)3.59(2H,m),3.75(3H,s),3.99-4.16(2H,m),5.25(1H,m),7.02-7.15(2H,m),7.35-7.42(1H,m).
LC/MS 保持時間:3.8分;m/z(ESI,POS):673[M+H]
Comparative Example 1-2
(4-((S) -5-((9H-fluoren-9-yl) methoxy) -4-(((9H-fluoren-9-yl) methoxy) carbonyl) amino) -5-oxopentanamide) Doxorubicin (0.020 g) was dissolved in dichloromethane (0.1365 mL), piperidine in dichloromethane (10% v / v, 0.635 mL) was added at 0 ° C., and the mixture was stirred for 3.5 hours. After dichloromethane (1 mL) was added, piperidine in dichloromethane (10% v / v, 0.0158 mL) was added at 0 ° C. and stirring was continued for 2 hours. The precipitate was filtered and washed with ethyl acetate. The obtained precipitate was purified by preparative HPLC to obtain (S)-(4-amino-4-carboxybutanamide) doxorubicin (Comparative Example 1, 0.0021 g).
NMR [400 MHz, D 2 O, TMS] ppm: 1.17 (3H, d), 1.61-1.74 (1H, m), 1.76-1.93 (2H, m), 1.94 -2.04 (2H, m), 2.11-2.20 (1H, m), 2.24-2.50 (3H, m), 2.66-2.78 (1H, m) 59 (2H, m), 3.75 (3H, s), 3.99-4.16 (2H, m), 5.25 (1H, m), 7.02-7.15 (2H, m) 7.35-7.42 (1H, m).
LC / MS retention time: 3.8 min; m / z (ESI, POS): 673 [M + H] +
比較例2
9-((S)-4-アミノ-4-カルボキシブタンアミド)カンプトテシンの合成
Figure JPOXMLDOC01-appb-C000027
Comparative Example 2
Synthesis of 9-((S) -4-amino-4-carboxybutanamide) camptothecin
Figure JPOXMLDOC01-appb-C000027
比較例2-1
 (S)-5-(ベンジルオキシ)-4-(ベンジルオキシカルボニル)アミノ-5-オキソペンタン酸(0.173g)を9-アミノカンプトテシン(0.090g)のN,N-ジメチルホルムアミド(5mL)溶液に加えた後、ヒドロキシベンゾトリアゾール(0.005g)および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド(0.297g)を加え、室温で2時間撹拌後、2日間静置した。水(10mL)を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/5から0/1)で精製し、9-((4-((S)-5-(ベンジルオキシ)-4-(ベンジルオキシカルボニル)アミノ-5-オキソ)ペンタナミド)カンプトテシン(0.024g)を得た。
NMR[400MHz,DMSO-d,TMS]ppm:0.89(3H,t),1.81-2.02(4H,m),2.13-2.29(1H,m),2.58-2.70(2H,m),4.22-4.30(1H,m),5.08(2H,d),5.17(2H,s),5.28(2H,s),5.44(2H,s),6.56(1H,s),7.23-7.40(11H,m),7.76-7.87(2H,m),7.92(1H,d),8.03(1H,d),8.75(1H,s),10.20(1H,s).
LC/MS 保持時間:5.8分;m/z(ESI,POS):717[M+H]
Comparative Example 2-1
(S) -5- (Benzyloxy) -4- (benzyloxycarbonyl) amino-5-oxopentanoic acid (0.173 g) was converted to 9-aminocamptothecin (0.090 g) in N, N-dimethylformamide (5 mL). After adding to the solution, hydroxybenzotriazole (0.005 g) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide (0.297 g) were added, and the mixture was stirred at room temperature for 2 hours and allowed to stand for 2 days. Water (10 mL) was added and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/5 to 0/1) to give 9-((4-((S) -5- (benzyloxy) -4- (benzyloxycarbonyl) amino. -5-Oxo) pentanamide) camptothecin (0.024 g) was obtained.
NMR [400 MHz, DMSO-d 6 , TMS] ppm: 0.89 (3H, t), 1.81-2.02 (4H, m), 2.13-2.29 (1H, m), 2. 58-2.70 (2H, m), 4.22-4.30 (1H, m), 5.08 (2H, d), 5.17 (2H, s), 5.28 (2H, s) , 5.44 (2H, s), 6.56 (1H, s), 7.23-7.40 (11H, m), 7.76-7.87 (2H, m), 7.92 (1H) , D), 8.03 (1H, d), 8.75 (1H, s), 10.20 (1H, s).
LC / MS retention time: 5.8 minutes; m / z (ESI, POS): 717 [M + H] +
比較例2-2
 9-((4-((S)-5-(ベンジルオキシ)-4-(ベンジルオキシカルボニル)アミノ-5-オキソ)ペンタナミド)カンプトテシン(0.020g)をN,N-ジメチルホルムアミド(1mL)に溶解し、10%パラジウム炭素(0.005g)を加え、水素雰囲気下、室温で2時間撹拌した。反応液をセライトろ過し、N,N-ジメチルホルムアミド(1mL)と水(8mL)の混合溶液で洗浄した。濾液を分取HPLCで精製し、9-((S)-4-アミノ-4-カルボキシブタンアミド)カンプトテシン(0.012g)を得た。
NMR[400MHz,DO,TMS]ppm:0.86(3H,t),1.85(2H,q),2.26(2H,q),2.71-2.82(2H,m),3.97(1H,m),5.24-5.35(2H,m),7.21(1H,s),7.39-7.44(1H,m),7.49(2H,d),8.30(1H,s).
LC/MS 保持時間:1.2分;m/z(ESI,POS):493[M+H]
Comparative Example 2-2
9-((4-((S) -5- (benzyloxy) -4- (benzyloxycarbonyl) amino-5-oxo) pentanamide) camptothecin (0.020 g) in N, N-dimethylformamide (1 mL) Dissolved, 10% palladium carbon (0.005 g) was added, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. The filtrate was purified by preparative HPLC to give 9-((S) -4-amino-4-carboxybutanamide) camptothecin (0.012 g).
NMR [400 MHz, D 2 O, TMS] ppm: 0.86 (3H, t), 1.85 (2H, q), 2.26 (2H, q), 2.71-2.82 (2H, m ), 3.97 (1H, m), 5.24-5.35 (2H, m), 7.21 (1H, s), 7.39-7.44 (1H, m), 7.49 ( 2H, d), 8.30 (1H, s).
LC / MS retention time: 1.2 minutes; m / z (ESI, POS): 493 [M + H] +
試験例1;γ‐グルタミルトランスペプチダーゼ(GGT)酵素認識試験
 実施例1のドキソルビシンプロドラッグ(0.49mg)を、リン酸緩衝生理食塩水(PBS)(0.298mL)に溶解し、2mMドキソルビシンプロドラッグPBS溶液を調製した。
 該ドキソルビシンプロドラッグPBS溶液0.150mLに、GGT(0.22mg、8U/mg)(Sigma-Aldrich社)をPBS(0.880mL)に溶解した2U/mLのGGT溶液を0.150mL加え、37℃で反応させた。
 反応液をHPLC分析することにより、プロドラッグの残存率およびドキソルビシンの生成率を求めた。結果を表1にまとめた。
Test Example 1: γ-Glutamyltranspeptidase (GGT) enzyme recognition test The doxorubicin prodrug (0.49 mg) of Example 1 was dissolved in phosphate buffered saline (PBS) (0.298 mL), and 2 mM doxorubicin pro A drug PBS solution was prepared.
0.150 mL of 2 U / mL GGT solution in which GGT (0.22 mg, 8 U / mg) (Sigma-Aldrich) was dissolved in PBS (0.880 mL) was added to 0.150 mL of the doxorubicin prodrug PBS solution. The reaction was carried out at ° C.
The reaction solution was subjected to HPLC analysis to determine the prodrug residual rate and doxorubicin production rate. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
比較試験例1;GGT酵素認識試験
 比較例1で得られたドキソルビシンプロドラッグ(0.17mg)を、PBS(0.1265mL)に溶解し、2mMドキソルビシンプロドラッグPBS溶液を調製した。
 該ドキソルビシンプロドラッグPBS溶液0.100mLに、GGT(0.38mg、8U/mg)(Sigma-Aldrich社)をPBS(1.520mL)に溶解した2U/mLのGGT溶液を0.100mL加え、37℃で反応させた。
 6時間後、反応液をHPLC分析したところ、プロドラッグは93%残存していた。このことから、比較例1に係るドキソルビシンプロドラッグは、GGTに認識されず、生理活性物質であるドキソルビシンを遊離することができないことが示された。
Comparative Test Example 1; GGT enzyme recognition test The doxorubicin prodrug (0.17 mg) obtained in Comparative Example 1 was dissolved in PBS (0.1265 mL) to prepare a 2 mM doxorubicin prodrug PBS solution.
To 0.100 mL of the doxorubicin prodrug PBS solution, 0.100 mL of 2 U / mL GGT solution in which GGT (0.38 mg, 8 U / mg) (Sigma-Aldrich) was dissolved in PBS (1.520 mL) was added, and 37 The reaction was carried out at ° C.
Six hours later, the reaction solution was analyzed by HPLC. As a result, 93% of the prodrug remained. From this, it was shown that the doxorubicin prodrug which concerns on the comparative example 1 is not recognized by GGT, and cannot release doxorubicin which is a bioactive substance.
 試験例1の結果から、実施例1に係るドキソルビシンプロドラッグは、GGT存在下で速やかに、薬理活性を有するドキソルビシンを遊離できることが示された。一方、比較試験例1は、ドキソルビシンに直接γ-グルタミン酸を結合させた比較例1のドキソルビシンプロドラッグは、GGTによるドキソルビシンの解離反応がほとんど起こらない結果であった。したがって、GGTの認識による速やかな解離反応には、γ-グルタミン酸結合部位と薬剤との間に、適当なリンカーセグメントを介在させることが必要であり、本発明の芳香族アミド型リンカーセグメントが、優位なGGT認識能を発揮させることができることが明らかとなった。 From the results of Test Example 1, it was shown that the doxorubicin prodrug according to Example 1 can rapidly release doxorubicin having pharmacological activity in the presence of GGT. On the other hand, Comparative Test Example 1 showed that the doxorubicin prodrug of Comparative Example 1 in which γ-glutamic acid was directly bonded to doxorubicin hardly caused the dissociation reaction of doxorubicin by GGT. Therefore, a rapid dissociation reaction by GGT recognition requires an appropriate linker segment to be interposed between the γ-glutamic acid binding site and the drug, and the aromatic amide type linker segment of the present invention is advantageous. It was revealed that the GGT recognition ability can be exhibited.
試験例2;リン酸緩衝生理食塩水(PBS)溶液安定性試験
 実施例1のドキソルビシンプロドラッグ(0.49mg)を、リン酸緩衝生理食塩水(PBS)(0.298mL)に溶解し、ドキソルビシンプロドラッグPBS溶液を調製した。
 該ドキソルビシンプロドラッグPBS溶液0.148mLを、PBS溶液0.148mLに溶解し、37℃で反応させた。6.5時間後、反応液をHPLC分析したところ、プロドラッグの減少は確認されなかった。
 したがって、本発明に係る実施例1のドキソルビシンプロドラッグは、PBS溶液中においてドキソルビシンを遊離せず、化学的に安定であることが示された。
Test Example 2: Phosphate buffered saline (PBS) solution stability test The doxorubicin prodrug (0.49 mg) of Example 1 was dissolved in phosphate buffered saline (PBS) (0.298 mL) to prepare doxorubicin. A prodrug PBS solution was prepared.
0.148 mL of the doxorubicin prodrug PBS solution was dissolved in 0.148 mL of PBS solution and reacted at 37 ° C. After 6.5 hours, the reaction solution was analyzed by HPLC. As a result, no decrease in prodrug was confirmed.
Therefore, it was shown that the doxorubicin prodrug of Example 1 according to the present invention does not release doxorubicin in the PBS solution and is chemically stable.
試験例3;細胞増殖阻害活性試験
 GGT活性の高いOS-RC-2細胞(理研バイオリソースセンター)及びGGT活性の低いSK-OV-3細胞(American Type Culture Collection)を用いて、実施例1に係るドキソルビシンプロドラッグの細胞増殖阻害活性を評価した。
 96穴プレートに、GGT活性の高いOS-RC-2細胞及びGGT活性の低いSK-OV-3細胞を、それぞれ4,000 cells/well播種し、37℃、5%CO下で1日間培養後、実施例1に係るドキソルビシンプロドラッグを終濃度0.039~10μM添加した。6時間培養後にウェル内を洗浄し、さらに3日間培養後、細胞をメタノールで固定し、メチレンブルー色素を用いて染色した。染色後色素を0.3%塩酸水で抽出し、660nmの吸光度を測定した。得られた吸光度について、化合物を添加しない細胞から測定された吸光度に対する減少率により細胞増殖抑制活性を評価した。
 同様の操作により、プロドラッグ化していないドキソルビシンを用いて、その吸光度から細胞増殖抑制活性を評価した。結果を図1(GGT活性の高いOS-RC-2細胞)及び図2(GGT活性の低いSK-OV-3細胞)に示した。
Test Example 3: Cell growth inhibitory activity test Using OS-RC-2 cells (RIKEN BioResource Center) with high GGT activity and SK-OV-3 cells (American Type Culture Collection) with low GGT activity, according to Example 1 The cell growth inhibitory activity of doxorubicin prodrug was evaluated.
OS-RC-2 cells with high GGT activity and SK-OV-3 cells with low GGT activity are seeded in a 96-well plate at 4,000 cells / well, respectively, and cultured at 37 ° C. under 5% CO 2 for 1 day. Thereafter, the doxorubicin prodrug according to Example 1 was added at a final concentration of 0.039 to 10 μM. After culturing for 6 hours, the inside of the well was washed. After further culturing for 3 days, the cells were fixed with methanol and stained with methylene blue dye. After dyeing, the dye was extracted with 0.3% hydrochloric acid and the absorbance at 660 nm was measured. About the obtained light absorbency, cell growth inhibitory activity was evaluated by the decreasing rate with respect to the light absorbency measured from the cell which does not add a compound.
By the same operation, cell growth inhibitory activity was evaluated from the absorbance using doxorubicin which was not converted into a prodrug. The results are shown in FIG. 1 (OS-RC-2 cells with high GGT activity) and FIG. 2 (SK-OV-3 cells with low GGT activity).
試験例4;プロドラッグのGGT依存性の確認試験 GGT活性の高いOS-RC-2細胞を用いて、実施例1に係るドキソルビシンプロドラッグの細胞増殖阻害活性におけるGGT活性依存性を評価した。 試験例3と同様の方法でOS-RC-2細胞を播種して1日培養後、GGT阻害剤であるGGsTop(和光純薬工業株式会社)を終濃度10μM添加し、1時間培養後、実施例1に関わるドキソルビシンプロドラッグを終濃度0.039~10μM添加した。6時間培養後にウェル内を洗浄し、さらに3日間培養後、試験例3と同様の方法で細胞増殖抑制活性を評価した。 同様の操作により、プロドラッグ化していないドキソルビシンを用いて、その吸光度から細胞増殖抑制活性を評価した。結果を図3に示した。 Test Example 4 Confirmation Test of Prodrug GGT Dependence Using OS-RC-2 cells having high GGT activity, the GGT activity dependence of the cell growth inhibitory activity of doxorubicin prodrug according to Example 1 was evaluated. After seeding OS-RC-2 cells in the same manner as in Test Example 3 and culturing for 1 day, GGsTop (Wako Pure Chemical Industries, Ltd.), a GGT inhibitor, was added at a final concentration of 10 μM, followed by incubation for 1 hour. The doxorubicin prodrug according to Example 1 was added at a final concentration of 0.039-10 μM. After culturing for 6 hours, the inside of the well was washed, and further cultured for 3 days, and then cell growth inhibitory activity was evaluated in the same manner as in Test Example 3. The cell growth inhibitory activity was evaluated from the absorbance of doxorubicin that was not converted into a prodrug by the same operation. The results are shown in FIG.
 試験例3の結果、GGT活性の高いOS-RC-2細胞において、10μMのドキソルビシンを添加した場合、細胞増殖阻害活性は77%だった。これに対し、実施例1に係るドキソルビシンプロドラッグを10μM添加した場合、76%の細胞増殖阻害活性を示した。
 一方、GGT活性の低いSK-OV-3細胞において、10μMのドキソルビシンを添加した場合、細胞増殖阻害活性は77%だった。これに対し、実施例1に係るドキソルビシンプロドラッグを10μM添加した場合、13%の細胞増殖阻害活性を示した。
 GGT活性の高い細胞とGGT活性の低い細胞における細胞増殖阻害活性の結果を比較すると、本発明に係る実施例1のドキソルビシンプロドラッグは、GGTによりドキソルビシンを遊離し、細胞増殖阻害活性を示すと共に、GGTが存在しない場合は、細胞増殖阻害活性が低く、殺細胞性をほとんど示さないことが明らかとなった。このことから、本発明に係るドキソルビシンプロドラッグは、GGT活性に依存した細胞増殖抑制活性を発揮する物性であることが示された。
 また、試験例4の結果、GGT活性の高いOS-RC-2細胞において、GGT阻害剤はドキソルビシンの細胞増殖抑制活性に影響を与えなかったが、ドキソルビシンプロドラッグの活性を完全に阻害した。このことから、本発明に係るドキソルビシンプロドラッグは、GGT活性に依存した細胞増殖抑制活性を発揮する物性であることが示された。
As a result of Test Example 3, in the OS-RC-2 cells having high GGT activity, when 10 μM doxorubicin was added, the cell growth inhibitory activity was 77%. On the other hand, when 10 μM of doxorubicin prodrug according to Example 1 was added, the cell growth inhibitory activity was 76%.
On the other hand, when 10 μM doxorubicin was added to SK-OV-3 cells with low GGT activity, the cell growth inhibitory activity was 77%. On the other hand, when 10 μM of doxorubicin prodrug according to Example 1 was added, the cell growth inhibitory activity was 13%.
Comparing the results of cell growth inhibitory activity in cells with high GGT activity and cells with low GGT activity, the doxorubicin prodrug of Example 1 according to the present invention releases doxorubicin by GGT and exhibits cell growth inhibitory activity. In the absence of GGT, it was revealed that the cell growth inhibitory activity was low and the cell-killing property was hardly exhibited. From this, it was shown that the doxorubicin prodrug which concerns on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
As a result of Test Example 4, in OS-RC-2 cells having high GGT activity, the GGT inhibitor did not affect the cell growth inhibitory activity of doxorubicin, but completely inhibited the activity of doxorubicin prodrug. From this, it was shown that the doxorubicin prodrug which concerns on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
試験例5;GGT酵素認識試験
 試験例1と同様にして、実施例4のエピルビシンプロドラッグの2mMPBS溶液および、2U/mLのGGT溶液を用いて、37℃で反応させた。
 反応液を経時的にHPLC分析することにより、プロドラッグは酵素反応によって分解されることが確認され、6時間後のプロドラッグ残存率は5%だった。
 このことから、実施例4に係るエピルビシンプロドラッグは、GGT存在下で速やかに、薬理活性を有するエピルビシンを遊離できることが示された。
Test Example 5: GGT enzyme recognition test In the same manner as in Test Example 1, the epirubicin prodrug of Example 4 in 2 mM PBS solution and 2 U / mL GGT solution were reacted at 37 ° C.
HPLC analysis of the reaction solution over time confirmed that the prodrug was decomposed by the enzymatic reaction, and the prodrug residual rate after 6 hours was 5%.
From this, it was shown that the epirubicin prodrug which concerns on Example 4 can release the epirubicin which has pharmacological activity rapidly in presence of GGT.
試験例6;GGT酵素認識試験
 試験例1と同様にして、実施例5で得られたシタラビンプロドラッグの1mMPBS溶液および、2U/mLのGGT溶液を用いて、37℃で反応させた。
 反応液を経時的にHPLC分析することにより、プロドラッグは酵素反応によって分解されることが確認され、6.5時間後のプロドラッグ残存率は34%だった。
このことから、実施例5に係るシタラビンプロドラッグは、GGT存在下で速やかに、薬理活性を有するシタラビンを遊離できることが示された。
Test Example 6: GGT Enzyme Recognition Test In the same manner as in Test Example 1, the reaction was carried out at 37 ° C. using 1 mM PBS solution of cytarabine prodrug obtained in Example 5 and 2 U / mL GGT solution.
HPLC analysis of the reaction solution over time confirmed that the prodrug was decomposed by the enzymatic reaction, and the prodrug residual rate after 6.5 hours was 34%.
From this, it was shown that the cytarabine prodrug according to Example 5 can release cytarabine having pharmacological activity quickly in the presence of GGT.
比較試験例2;GGT酵素認識試験
 比較試験例1と同様にして,比較例2で得られた9-アミノカンプトテシンプロドラッグの2mMのPBS溶液を調製および、2U/mLのGGT溶液を用いて、37℃で反応させた。
 6時間後、反応液をHPLC分析したところ、プロドラッグは99%残存していた。このことから、比較例2に係る9-アミノカンプトテシンプロドラッグは、GGTに認識されず、生理活性物質である9-アミノカンプトテシンを遊離することができないことが示された。
 比較例2の9-アミノカンプトテシンプロドラッグは、GGTによる9-アミノカンプトテシンの解離反応がほとんど起こらない結果であったことから、GGTの認識による速やかな解離反応には、γ-グルタミン酸結合部位と薬剤との間に、適当なリンカーセグメントを介在させることが必要であり、本発明の芳香族アミド型リンカーセグメントが、優位なGGT認識能を発揮させることができることが明らかとなった。
Comparative Test Example 2; GGT enzyme recognition test In the same manner as in Comparative Test Example 1, a 2 mM PBS solution of the 9-aminocamptothecin prodrug obtained in Comparative Example 2 was prepared, and a 2 U / mL GGT solution was used. The reaction was carried out at 37 ° C.
Six hours later, HPLC analysis of the reaction solution showed that 99% of the prodrug remained. This indicates that the 9-aminocamptothecin prodrug according to Comparative Example 2 is not recognized by GGT and cannot release 9-aminocamptothecin, which is a physiologically active substance.
The 9-aminocamptothecin prodrug of Comparative Example 2 had a result that almost no dissociation reaction of 9-aminocamptothecin by GGT occurred. Thus, it was necessary to interpose an appropriate linker segment, and it became clear that the aromatic amide type linker segment of the present invention can exert a superior GGT recognition ability.
試験例7;PBS中での安定性試験
 実施例2のEHCプロドラッグの60mg/mL DMSO溶液(0.005mL)にPBS(0.220mL)を加えEHCプロドラッグ溶液を調製した。該EHCプロドラッグ溶液(0.100mL)に、PBS(0.100mL)を加え、37℃で反応させた。反応液をHPLC分析することにより、プロドラッグの残存率を求めたところ、3.5時間後プロドラッグの残存率は52%であった。
 実施例3のカンプトテシンプロドラッグ6.3mg/mL DMSO溶液(0.073mL)にPBS(0.294mL)を加えカンプトテシンプロドラッグ溶液を調製した。該カンプトテシンプロドラッグ溶液(0.117mL)に、PBS(0.117mL)を加え、37℃で反応させた。反応液をHPLC分析することにより、プロドラッグの残存率を求めたところ、3時間後プロドラッグの残存率は74%であった。
 実施例6のEHCプロドラッグ0.864mg/mL DMSO溶液(0.050mL)に、PBS(0.450mL)を加え、37℃で反応させた。反応液をHPLC分析することにより、プロドラッグの残存率を求めたところ、24時間後プロドラッグは90%残存していた。
Test Example 7: Stability test in PBS PBS (0.220 mL) was added to a 60 mg / mL DMSO solution (0.005 mL) of the EHC prodrug of Example 2 to prepare an EHC prodrug solution. PBS (0.100 mL) was added to the EHC prodrug solution (0.100 mL) and reacted at 37 ° C. When the residual ratio of the prodrug was determined by HPLC analysis of the reaction solution, the residual ratio of the prodrug was 52% after 3.5 hours.
A camptothecin prodrug solution was prepared by adding PBS (0.294 mL) to a 6.3 mg / mL DMSO solution (0.073 mL) of the camptothecin prodrug of Example 3. PBS (0.117 mL) was added to the camptothecin prodrug solution (0.117 mL) and reacted at 37 ° C. The prodrug remaining rate was determined by HPLC analysis of the reaction solution, and after 3 hours, the prodrug remaining rate was 74%.
PBS (0.450 mL) was added to the 0.864 mg / mL DMSO solution (0.050 mL) of the EHC prodrug of Example 6 and reacted at 37 ° C. When the residual ratio of the prodrug was determined by HPLC analysis of the reaction solution, 90% of the prodrug remained after 24 hours.
試験例8;マウス血漿中での安定性試験
 実施例6のEHCプロドラッグ0.856mg/mL DMSO溶液(0.020mL)に、マウス血漿(0.180mL)を加え、37℃で反応させた。
 反応液をHPLC分析することにより、プロドラッグの残存率を求めたところ、24時間後プロドラッグは94%残存していた。
 したがって、本発明に係る実施例6のEHCプロドラッグは、マウス血漿中においても、化学的に安定であることが示された。
Test Example 8: Stability test in mouse plasma Mouse plasma (0.180 mL) was added to the EHC prodrug 0.856 mg / mL DMSO solution (0.020 mL) of Example 6 and reacted at 37 ° C.
When the residual ratio of the prodrug was determined by HPLC analysis of the reaction solution, 94% of the prodrug remained after 24 hours.
Therefore, it was shown that the EHC prodrug of Example 6 according to the present invention is chemically stable even in mouse plasma.
試験例9:GGT酵素認識試験
 実施例6のEHCプロドラッグを、DMSOに溶解し、0.34mg/mL溶液を調製した。該EHCプロドラッグ溶液(0.300mL)にPBS(0.300mL)を加え、EHCプロドラッグ溶液(2)を調製した。
 γ-グルタミルトランスペプチダーゼ(GGT Sigma-Aldrich社)をPBSに溶解し0.227mg/mL溶液を調製した。
 該EHCプロドラッグ溶液(2)(0.250mL)に、GGT溶液(0.250mL)を加え、37℃で反応させた。
 反応液をHPLC分析することにより、プロドラッグの残存率およびEHCの生成率を求めた。
Test Example 9: GGT enzyme recognition test The EHC prodrug of Example 6 was dissolved in DMSO to prepare a 0.34 mg / mL solution. PBS (0.300 mL) was added to the EHC prodrug solution (0.300 mL) to prepare an EHC prodrug solution (2).
γ-Glutamyltranspeptidase (GGT Sigma-Aldrich) was dissolved in PBS to prepare a 0.227 mg / mL solution.
A GGT solution (0.250 mL) was added to the EHC prodrug solution (2) (0.250 mL) and reacted at 37 ° C.
The reaction solution was subjected to HPLC analysis to determine the prodrug residual rate and EHC production rate.
 試験例9の結果、実施例6のEHCプロドラッグは、反応1時間で化学量論量のEHCを生成した。この結果は、実施例6の化合物がGGTに認識され、速やかにエーテル結合を介したγ-グルタミル芳香族アミドリンカーを開裂させ、生理活性物質であるEHCを生成できることを示す結果である。 As a result of Test Example 9, the EHC prodrug of Example 6 produced a stoichiometric amount of EHC in 1 hour of reaction. This result shows that the compound of Example 6 is recognized by GGT and can quickly cleave the γ-glutamyl aromatic amide linker via an ether bond to produce EHC as a physiologically active substance.
 試験例7、8の結果から、実施例6に係るEHCプロドラッグは、PBS溶液及びマウス血漿存在下の溶液において、安定な物性であることが示された。さらに、実施例6に係るEHCプロドラッグは、GGT存在下で、速やかに薬理活性を有するEHCを遊離できることが示された。 From the results of Test Examples 7 and 8, it was shown that the EHC prodrug according to Example 6 has stable physical properties in a PBS solution and a solution in the presence of mouse plasma. Furthermore, it was shown that the EHC prodrug according to Example 6 can rapidly release EHC having pharmacological activity in the presence of GGT.
試験例10;細胞増殖阻害活性試験
 GGT活性が高いことが知られているOS-RC-2細胞(理研バイオリソースセンター)及びGGT活性が低いことが知られているSK-OV-3細胞(American Type Culture Collection)を用いて、実施例6に係るEHCプロドラッグの細胞増殖阻害活性を評価した。
 96穴プレートに、GGT高活性のOS-RC-2細胞及びGGT低活性のSK-OV-3細胞を、それぞれ4,000 cells/well播種し、37℃、5%CO下で1日間培養後、実施例6に係るEHCプロドラッグを、終濃度0.0001~1μMで添加した。6時間培養後にウェル内を洗浄し、さらに3日間培養した。培養後、細胞をメタノールで固定し、メチレンブルー色素を用いて染色した。染色後色素を0.3%塩酸水で抽出し、660nmの吸光度を測定した。得られた吸光度について、化合物を添加しない細胞から測定された吸光度に対する減少率により細胞増殖抑制活性を評価した。
 同様の操作により、実施例6の有効成分であるEHCをそのまま用いて、その吸光度から細胞増殖抑制活性を評価した。
 結果を図4(GGT高活性のOS-RC-2細胞)及び図5(GGT低活性のSK-OV-3細胞)に示した。
Test Example 10: Cell growth inhibitory activity test OS-RC-2 cells (RIKEN BioResource Center) known to have high GGT activity and SK-OV-3 cells (American Type) known to have low GGT activity The cell growth inhibitory activity of the EHC prodrug according to Example 6 was evaluated using Culture Collection.
A 96-well plate was seeded with 4,000 cells / well of OS-RC-2 cells with high GGT activity and SK-OV-3 cells with low GGT activity, respectively, and cultured at 37 ° C. under 5% CO 2 for 1 day. Thereafter, the EHC prodrug according to Example 6 was added at a final concentration of 0.0001 to 1 μM. After culturing for 6 hours, the well was washed and further cultured for 3 days. After culture, the cells were fixed with methanol and stained with methylene blue dye. After dyeing, the dye was extracted with 0.3% hydrochloric acid and the absorbance at 660 nm was measured. About the obtained light absorbency, cell growth inhibitory activity was evaluated by the decreasing rate with respect to the light absorbency measured from the cell which does not add a compound.
By the same operation, EHC which is an active ingredient of Example 6 was used as it was, and the cell growth inhibitory activity was evaluated from the absorbance.
The results are shown in FIG. 4 (OS-RC-2 cells with high GGT activity) and FIG. 5 (SK-OV-3 cells with low GGT activity).
試験例11;プロドラッグのGGT依存性の確認試験 GGT活性が高いことが知られているOS-RC-2細胞を用いて、実施例6に係るEHCプロドラッグの細胞増殖阻害活性におけるGGT活性依存性を評価した。 試験例10と同様の方法でOS-RC-2細胞を播種して1日培養後、GGT阻害剤であるGGsTop(和光純薬工業株式会社)を終濃度10μM添加し、1時間培養した。その後、実施例6に関わるEHCプロドラッグを終濃度0.0001~1μMで添加した。6時間培養後にウェル内を洗浄し、さらに3日間培養後、試験例10と同様の方法で細胞増殖抑制活性を評価した。 同様の操作により、実施例6の有効成分であるEHCをそのまま用いて、その吸光度から細胞増殖抑制活性を評価した。 結果を図6に示した。 Test Example 11: Confirmation test of GGT dependence of prodrug GGT activity dependence on cell growth inhibitory activity of EHC prodrug according to Example 6 using OS-RC-2 cells known to have high GGT activity Sex was evaluated. OS-RC-2 cells were seeded in the same manner as in Test Example 10 and cultured for 1 day, and then GGT inhibitor GGsTop (Wako Pure Chemical Industries, Ltd.) was added at a final concentration of 10 μM and cultured for 1 hour. Thereafter, the EHC prodrug of Example 6 was added at a final concentration of 0.0001-1 μM. After culturing for 6 hours, the inside of the well was washed, and further cultured for 3 days, and then cell growth inhibitory activity was evaluated in the same manner as in Test Example 10. In the same manner, EHC which is an active ingredient of Example 6 was used as it was, and the cell growth inhibitory activity was evaluated from the absorbance. The results are shown in FIG.
 試験例10の結果、GGT活性が高いことが知られているOS-RC-2細胞において、0.01μMのEHCを添加した場合、細胞増殖阻害活性は26%だった。また、実施例6に係るEHCプロドラッグを0.01μM添加した場合、25%の細胞増殖阻害活性を示した。
 一方、GGT活性が低いことが知られているSK-OV-3細胞において、0.01μMのEHCを添加した場合、細胞増殖阻害活性は27.7%だった。一方、実施例6に係るEHCプロドラッグを0.01μM添加した場合、1.3%の細胞増殖阻害活性を示した。
 GGT活性の高い細胞とGGT活性の低い細胞における細胞増殖阻害活性の結果を比較すると、本発明に係る実施例6のEHCプロドラッグは、GGTによりEHCを遊離し、細胞増殖阻害活性を示すと共に、GGTが存在しない場合は、細胞増殖阻害活性が低く、殺細胞性をほとんど示さないことが明らかとなった。このことから、本発明に係るEHCプロドラッグは、GGT活性に依存した細胞増殖抑制活性を発揮できることが示された。
 また、試験例11の結果、GGT活性の高いOS-RC-2細胞において、GGT阻害剤はEHCの細胞増殖抑制活性に影響を与えなかったが、EHCプロドラッグの活性を阻害した。このことから、本発明に係るEHCプロドラッグは、GGT活性に依存した細胞増殖抑制活性を発揮する物性であることが示された。
As a result of Test Example 10, in the OS-RC-2 cells known to have high GGT activity, when 0.01 μM EHC was added, the cell growth inhibitory activity was 26%. In addition, when 0.01 μM of the EHC prodrug according to Example 6 was added, the cell growth inhibitory activity was 25%.
On the other hand, in the SK-OV-3 cells known to have low GGT activity, when 0.01 μM EHC was added, the cell growth inhibitory activity was 27.7%. On the other hand, when 0.01 μM of the EHC prodrug according to Example 6 was added, the cell growth inhibitory activity was 1.3%.
Comparing the results of cell growth inhibitory activity in cells having high GGT activity and cells having low GGT activity, the EHC prodrug of Example 6 according to the present invention releases EHC by GGT and exhibits cell growth inhibitory activity. In the absence of GGT, it was revealed that the cell growth inhibitory activity was low and the cell-killing property was hardly exhibited. From this, it was shown that the EHC prodrug according to the present invention can exhibit the cell growth inhibitory activity depending on the GGT activity.
In addition, as a result of Test Example 11, in OS-RC-2 cells having high GGT activity, the GGT inhibitor did not affect the cell growth inhibitory activity of EHC, but inhibited the activity of EHC prodrug. From this, it was shown that the EHC prodrug based on this invention is a physical property which exhibits the cell growth inhibitory activity depending on GGT activity.
試験例12;組織中薬剤濃度の測定
 マウス皮下で継代培養しているマウス腎細胞がんOS-RC-2腫瘍を約2mm角のブロックにし、套管針を用いてマウス皮下に移植した。腫瘍移植後17日目に本発明に係る実施例6のEHCプロドラッグをDMSO/5%グルコース水溶液=1:9溶液に懸濁し、EHC換算として20mg/kgで尾静脈内投与した。また対照薬として、EHCのプロドラッグである塩酸イリノテカン(CPT-11)を5%グルコース水溶液に溶解し、EHC換算として20mg/kgで尾静脈内投与した。
 投与後5分、1、3、6時間に、エーテル麻酔下、血漿、肝臓、骨髄及び腫瘍の各組織を採取した。各組織中における活性体であるEHC、実施例6未変化体及びCPT-11未変化体の薬物濃度を、LC-MS/MS法により以下の測定機器及び条件で定量分析した。
機種:ABSciex API4000
島津 LC-20AD
カラム:Waters XBridge、C18、2.1mm×50mm
移動相A:ギ酸/水 (1/1000)
移動相B:ギ酸/アセトニトリル (1/1000)
イオン化法:エレクトロスプレーイオン化(正イオン)
検出法:多重反応モニタリング
Test Example 12: Measurement of tissue drug concentration Mouse renal cell carcinoma OS-RC-2 tumor subcultured subcutaneously in mice was made into blocks of about 2 mm square, and transplanted subcutaneously into mice using a trocar. On day 17 after tumor implantation, the EHC prodrug of Example 6 according to the present invention was suspended in DMSO / 5% glucose aqueous solution = 1: 9 solution and administered into the tail vein at 20 mg / kg in terms of EHC. As a control drug, irinotecan hydrochloride (CPT-11), which is a prodrug of EHC, was dissolved in a 5% glucose aqueous solution and administered into the tail vein at 20 mg / kg in terms of EHC.
At 5 minutes, 1, 3, and 6 hours after administration, plasma, liver, bone marrow, and tumor tissues were collected under ether anesthesia. The drug concentrations of EHC, the unchanged form of Example 6 and the unchanged form of CPT-11 in each tissue were quantitatively analyzed by the LC-MS / MS method using the following measuring instruments and conditions.
Model: ABSciex API4000
Shimadzu LC-20AD
Column: Waters XBridge, C 18 , 2.1 mm × 50 mm
Mobile phase A: formic acid / water (1/1000)
Mobile phase B: formic acid / acetonitrile (1/1000)
Ionization method: Electrospray ionization (positive ion)
Detection method: Multiple reaction monitoring
 各時点の組織中EHC、実施例6に係るプロドラッグ及びCPT-11濃度から、投与開始後6時間までの各成分のAUC0-6hrを算出した。各組織中における実施例6及びCPT-11のプロドラッグ活性化率として、未変化体に対する活性体のAUC0-6hr比率(AUCEHC/AUC実施例6及びAUCEHC/AUCCPT-11)を求めた(表2)。 From the EHC in the tissue at each time point, the prodrug according to Example 6 and the CPT-11 concentration, AUC 0-6hr of each component until 6 hours after the start of administration was calculated. As the prodrug activation rate of Example 6 and CPT-11 in each tissue, the AUC 0-6hr ratio (AUC EHC / AUC Example 6 and AUC EHC / AUC CPT-11 ) of the active substance to the unchanged form was determined. (Table 2).
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
試験例13;抗腫瘍効果試験
 試験例12と同様にマウス腎細胞がんOS-RC-2を移植したマウスに、腫瘍移植後17日目に本発明に係る実施例6のEHCプロドラッグ20、40及び80mg/kgを、4日おきに計3回尾静脈内投与した。投与後、腫瘍の長径(Lmm)及び短径(Wmm)を、キャリバーを用いて2~3日間隔で計測し、腫瘍体積を(L×W)/2により計算し、投与開始日からの腫瘍体積変化率/無処置群の体積変化率を求め、表3に示した。
Test Example 13: Anti-tumor effect test In the same manner as in Test Example 12, mice transplanted with mouse renal cell carcinoma OS-RC-2 were treated with EHC prodrug 20 of Example 6 according to the present invention on the 17th day after tumor transplantation. 40 and 80 mg / kg were administered into the tail vein three times every 4 days. After administration, the major axis (Lmm) and minor axis (Wmm) of the tumor were measured at intervals of 2 to 3 days using a caliber, and the tumor volume was calculated by (L × W 2 ) / 2. Tumor volume change rate / volume change rate of the untreated group was determined and shown in Table 3.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 試験例12の結果、実施例6のEHCプロドラッグは、GGT低発現の血漿や肝臓、骨髄でCPT-11と比較し、同程度~9.4倍程度の活性化率であった。一方、GGTを発現する腫瘍中では、実施例6のAUCEHC/AUC実施例6比はCPT-11投与群と比較して61.8倍と顕著に高値を示した。このことから、本発明に係る実施例6のEHCプロドラッグは、組織中でGGT依存的に活性化され、GGTを発現する組織において選択的にEHCを放出できる物性であることが示された。
 また、試験例13の結果、実施例6のEHCプロドラッグは、用量依存的な抗腫瘍効果を示し、80mg/kg投与群では顕著な腫瘍縮小効果を示しており、優れた抗腫瘍作用を発揮する物性であることが示された。
As a result of Test Example 12, the activation rate of the EHC prodrug of Example 6 was comparable to 9.4 times that of CPT-11 in plasma, liver and bone marrow with low GGT expression. On the other hand, among the tumors expressing GGT, the AUC EHC / AUC Example 6 ratio of Example 6 was 61.8 times as high as that of the CPT-11 administration group. From this, it was shown that the EHC prodrug of Example 6 according to the present invention is activated in a GGT-dependent manner in a tissue and has a physical property capable of selectively releasing EHC in a tissue expressing GGT.
In addition, as a result of Test Example 13, the EHC prodrug of Example 6 showed a dose-dependent antitumor effect, showed a remarkable tumor shrinking effect in the 80 mg / kg administration group, and exhibited an excellent antitumor effect. It was shown that this is a physical property.

Claims (10)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立して水素原子、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシカルボニル基からなる群から選択される基を示し、Rは、水素原子又は置換基を有していても良いアルキル基を示し、A及びAは、C-R、C-R及び窒素原子からなる群から選択される基であり、該Rは、水素原子、ハロゲン原子、ニトロ基、水酸基、置換基を有していても良いアルキル基及び置換基を有していても良いアルコキシ基からなる群から選択される1種以上の基を示し、該Rは下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R及びRは、それぞれ独立して水素原子又は置換基を有していても良いアルキル基を示し、Lは酸素原子、オキシカルボニル基及び結合からなる群から選択される結合基を示し、Xは脂肪族性水酸基、芳香族性水酸基、アミノ基及びカルボキシ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基を示し、
    (i)前記Xが脂肪族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である場合、前記Lはオキシカルボニル基であり、
    (ii)前記Xがカルボキシ基を有する生理活性物質の結合残基である場合、前記Lは酸素原子であり、
    (iii)前記Xが芳香族性水酸基を有する生理活性物質の結合残基である場合、前記Lは結合又はオキシカルボニル基である。]で表され、
    ここで、前記A及び前記Aは何れか一方が前記C-Rであって、他方が前記C-R又は窒素原子であり、B、B及びBは、それぞれ独立して前記C-R又は窒素原子である。]で表されるグルタミン酸誘導体又はその薬理学的に許容される塩。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group and an optionally substituted alkoxycarbonyl group. R 3 represents a hydrogen atom or an alkyl group which may have a substituent, and A 1 and A 2 are selected from the group consisting of C—R 6 , C—R 7 and a nitrogen atom And R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an optionally substituted alkyl group and an optionally substituted alkoxy group. Represents one or more groups, and R 7 represents the following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 4 and R 5 each independently represent a hydrogen atom or an optionally substituted alkyl group, and L represents a bond selected from the group consisting of an oxygen atom, an oxycarbonyl group and a bond. X represents a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group, an amino group, and a carboxy group;
    (I) When X is a binding residue of a physiologically active substance having one or more functional groups selected from the group consisting of an aliphatic hydroxyl group and an amino group, the L is an oxycarbonyl group,
    (Ii) when X is a binding residue of a physiologically active substance having a carboxy group, L is an oxygen atom;
    (Iii) When X is a binding residue of a physiologically active substance having an aromatic hydroxyl group, L is a bond or an oxycarbonyl group. ],
    Here, one of the A 1 and the A 2 is the CR 7 and the other is the CR 6 or a nitrogen atom, and B 1 , B 2 and B 3 are each independently C—R 6 or a nitrogen atom. Or a pharmacologically acceptable salt thereof.
  2.  Rは下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは前記と同義であり、Xは脂肪族性水酸基、芳香族性水酸基及びアミノ基からなる群から選択される1種以上の官能基を有する生理活性物質の結合残基である。]で表される請求項1に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
    R 7 represents the following general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 4 and R 5 are as defined above, and X is a binding of a physiologically active substance having at least one functional group selected from the group consisting of an aliphatic hydroxyl group, an aromatic hydroxyl group and an amino group. Residue. ] The glutamic acid derivative of Claim 1 represented by these, or its salt accept | permitted pharmacologically.
  3.  Xで示される前記生理活性物質の結合残基における該生理活性物質が、カンプトテシン及びその誘導体である請求項1又は2に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。 The glutamic acid derivative or a pharmacologically acceptable salt thereof according to claim 1 or 2, wherein the physiologically active substance in the binding residue of the physiologically active substance represented by X is camptothecin and its derivative.
  4.  Xで示される前記生理活性物質の結合残基における該生理活性物質が、ドキソルビシン、ダウノルビシン、エピルビシン、ピラルビシン及びアムルビシンからなる群から選択される生理活性物質である請求項1又は2に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。 The glutamic acid derivative according to claim 1 or 2, wherein the physiologically active substance in the binding residue of the physiologically active substance represented by X is a physiologically active substance selected from the group consisting of doxorubicin, daunorubicin, epirubicin, pirarubicin and amrubicin. Or a pharmacologically acceptable salt thereof.
  5.  Xで示される前記生理活性物質の結合残基における該生理活性物質が、ゲムシタビン、エチニルシチジン、シタラビン及びCNDAC(2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン)からなる群から選択される生理活性物質である請求項1又は2に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。 The physiologically active substance in the binding residue of the physiologically active substance represented by X is gemcitabine, ethynylcytidine, cytarabine and CNDAC (2′-cyano-2′-deoxy-1-β-D-arabinofuranosylcytosine) The glutamic acid derivative or pharmacologically acceptable salt thereof according to claim 1 or 2, which is a physiologically active substance selected from the group consisting of:
  6.  Rは下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    [式中、R及びRは前記と同義であり、Xは芳香族性水酸基を有する生理活性物質の結合残基である。]で表される請求項1に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。
    R 7 represents the following general formula (4)
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, R 4 and R 5 are as defined above, and X is a binding residue of a physiologically active substance having an aromatic hydroxyl group. ] The glutamic acid derivative of Claim 1 represented by these, or its salt accept | permitted pharmacologically.
  7.  Xで示される前記生理活性物質の結合残基における該生理活性物質が、7-エチル-10-ヒドロキシカンプトテシン、ノギテカン及びその誘導体からなる群から選択される1種である請求項1又は6に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。 7. The physiologically active substance in the binding residue of the physiologically active substance represented by X is one selected from the group consisting of 7-ethyl-10-hydroxycamptothecin, nogitecan and derivatives thereof. Or a pharmacologically acceptable salt thereof.
  8.  一般式(1)において、R、R及びRは水素原子である請求項1~7の何れか1項に記載のグルタミン酸誘導体又はその薬理学的に許容される塩。 The glutamic acid derivative or a pharmacologically acceptable salt thereof according to any one of claims 1 to 7, wherein in the general formula (1), R 1 , R 2 and R 3 are hydrogen atoms.
  9.  請求項1~8の何れか1項に記載のグルタミン酸誘導体又はその薬理学的に許容される塩を有効成分として含有する医薬。 A medicament comprising the glutamic acid derivative according to any one of claims 1 to 8 or a pharmacologically acceptable salt thereof as an active ingredient.
  10.  抗がん剤である請求項9に記載の医薬。 The medicament according to claim 9, which is an anticancer agent.
PCT/JP2015/063736 2014-05-23 2015-05-13 Novel glutamic acid derivative and use thereof WO2015178265A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014106915 2014-05-23
JP2014-106915 2014-05-23
JP2014238414 2014-11-26
JP2014-238414 2014-11-26

Publications (1)

Publication Number Publication Date
WO2015178265A1 true WO2015178265A1 (en) 2015-11-26

Family

ID=54553938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063736 WO2015178265A1 (en) 2014-05-23 2015-05-13 Novel glutamic acid derivative and use thereof

Country Status (2)

Country Link
TW (1) TW201625313A (en)
WO (1) WO2015178265A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086392A1 (en) * 2015-11-18 2017-05-26 日本化薬株式会社 Composition comprising novel glutamic acid derivative and block copolymer, and use thereof
WO2017094011A1 (en) * 2015-12-03 2017-06-08 Biosight Ltd. Salts of conjugates for cancer therapy
CN108431017A (en) * 2015-12-03 2018-08-21 拜欧赛特有限公司 The salt of conjugate for cancer therapy
WO2019172210A1 (en) * 2018-03-03 2019-09-12 国立大学法人 東京大学 Prodrug-type anticancer agent using cancer-specific enzymatic activity
WO2021005583A1 (en) 2019-07-11 2021-01-14 Sun Pharma Advanced Research Company Ltd. Camptothecin derivatives with a disulfide moiety and a piperazine moiety
US11058701B2 (en) 2015-12-03 2021-07-13 Biosight Ltd. Cytarabine conjugates for cancer therapy
CN114539353A (en) * 2020-11-26 2022-05-27 南京碳硅人工智能生物医药技术研究院有限公司 Pemetrexed polyglutamate metabolite and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514359A (en) * 2001-11-23 2005-05-19 中外製薬株式会社 Identification of tumor-targeting enzymes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514359A (en) * 2001-11-23 2005-05-19 中外製薬株式会社 Identification of tumor-targeting enzymes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R KEREN ET AL.: "y-Glutamyl transpeptidase- dependent mutagenicity and cytotoxicity of y- glutamyl derivatives: A model for biochemical targeting of chemotherapeutic agents", ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, vol. 32, no. 4, 1998, pages 377 - 386, XP055237992 *
ZHANG,Q. ET AL.: "A new class of NO -donor pro- drugs triggered by y-glutamyl transpeptidase with potential for reno-selective vasodilatation", CHEMICAL COMMUNICATIONS, vol. 49, no. 14, 2013, Cambridge, United Kingdom, pages 1389 - 1391 *
ZHANG,Q. ET AL.: "Development and Characterization of Glutamyl-Protected N- Hydroxyguanidines as Reno-Active Nitric Oxide Donor Drugs with Therapeutic Potential in Acute Renal Failure", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, no. 13, 2013, pages 5321 - 5334, XP055237991, ISSN: 0022-2623 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017086392A1 (en) * 2015-11-18 2018-09-06 日本化薬株式会社 Composition containing novel glutamic acid derivative and block copolymer and use thereof
WO2017086392A1 (en) * 2015-11-18 2017-05-26 日本化薬株式会社 Composition comprising novel glutamic acid derivative and block copolymer, and use thereof
EP3378495A4 (en) * 2015-11-18 2019-09-04 Nippon Kayaku Kabushiki Kaisha Composition comprising novel glutamic acid derivative and block copolymer, and use thereof
CN108431017B (en) * 2015-12-03 2021-12-21 拜欧赛特有限公司 Salts of conjugates for cancer therapy
JP2022000463A (en) * 2015-12-03 2022-01-04 バイオサイト リミテッド Salts of conjugates for cancer therapy
CN108431017A (en) * 2015-12-03 2018-08-21 拜欧赛特有限公司 The salt of conjugate for cancer therapy
IL259569B2 (en) * 2015-12-03 2024-03-01 Biosight Ltd Salts of cytarabine-amino acids conjugates
IL259569B1 (en) * 2015-12-03 2023-11-01 Biosight Ltd Salts of cytarabine-amino acids conjugates
JP2018535987A (en) * 2015-12-03 2018-12-06 バイオサイト リミテッド Conjugate salts for cancer therapy
WO2017094011A1 (en) * 2015-12-03 2017-06-08 Biosight Ltd. Salts of conjugates for cancer therapy
US11058701B2 (en) 2015-12-03 2021-07-13 Biosight Ltd. Cytarabine conjugates for cancer therapy
US11104698B2 (en) 2015-12-03 2021-08-31 Biosight Ltd. Salts of conjugates for cancer therapy
JPWO2019172210A1 (en) * 2018-03-03 2021-02-25 国立大学法人 東京大学 Prodrug-type anticancer drug utilizing cancer-specific enzyme activity
US11655269B2 (en) 2018-03-03 2023-05-23 The University Of Tokyo Prodrug-type anticancer agent using cancer-specific enzymatic activity
CN111801315A (en) * 2018-03-03 2020-10-20 国立大学法人东京大学 Prodrug-type anticancer agent utilizing cancer-specific enzyme activity
WO2019172210A1 (en) * 2018-03-03 2019-09-12 国立大学法人 東京大学 Prodrug-type anticancer agent using cancer-specific enzymatic activity
JP7442192B2 (en) 2018-03-03 2024-03-04 国立大学法人 東京大学 Prodrug-type anticancer drugs that utilize cancer-specific enzyme activity
WO2021005583A1 (en) 2019-07-11 2021-01-14 Sun Pharma Advanced Research Company Ltd. Camptothecin derivatives with a disulfide moiety and a piperazine moiety
CN114539353A (en) * 2020-11-26 2022-05-27 南京碳硅人工智能生物医药技术研究院有限公司 Pemetrexed polyglutamate metabolite and preparation method thereof

Also Published As

Publication number Publication date
TW201625313A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
WO2015178265A1 (en) Novel glutamic acid derivative and use thereof
AU2007267535B2 (en) Aziridinyl-epothilone compounds
CA3177261A1 (en) Benzothiazolyl biaryl compound, and preparation method and use
TW202309042A (en) Exatecan derivatives and antibody-drug conjugates thereof
KR20070011457A (en) Novel water-soluble prodrug
WO2016014522A1 (en) Inhibitors of deubiquitinating proteases
Antoszczak et al. Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters
US9034894B2 (en) Derivate, preparation method and use of 10-methoxycamptothecin
CA3128435A1 (en) Indolo heptamyl oxime analogue as parp inhibitor
US9556192B2 (en) Functionalized 9-bromo-camptothecin derivatives
JP6817956B2 (en) Compositions containing novel glutamic acid derivatives and block copolymers and their uses
JP6453706B2 (en) Novel glutamic acid derivatives and uses thereof
JP6570034B2 (en) Novel glutamic acid derivatives and uses thereof
JP3776799B2 (en) Pentacyclic taxane compound
KR20080066039A (en) Agent for preventing or treating pancreas cancer, ovary cancer or liver cancer containing novel water-soluble prodrug
AU2018379438A1 (en) Imidazopyridine derivatives and the use thereof as medicament
US9499552B2 (en) Pyrazolo[1,5-A]pyrimidine derivative and use of anti-tumor thereof
WO2012007619A1 (en) Method for producing water-soluble derivatives of 20(s)-camptothecin as antitumor agents
JP2023535692A (en) Entero-degradable co-drugs, preparation and use thereof
RU2299212C2 (en) Hexacyclic compounds, pharmaceutical composition containing thereof and their using as antitumor agents, method for preparing hexacyclic compounds
KR102388412B1 (en) Phenothiazine derivatives and methods of use thereof
JP4499383B2 (en) Water-soluble prodrug
WO2013081118A1 (en) Compound having read-through activity
CN108948003B (en) Preparation and application of pyrazino [2,3-c ] quinoline-2 (1H) -ketone compound as mTOR inhibitor
KR101672975B1 (en) Cyclic phosphopeptide compounds as allosteric plk1-pbd inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795975

Country of ref document: EP

Kind code of ref document: A1