WO2015178153A1 - Electricity storage module and manufacturing method for electricity storage module - Google Patents

Electricity storage module and manufacturing method for electricity storage module Download PDF

Info

Publication number
WO2015178153A1
WO2015178153A1 PCT/JP2015/062294 JP2015062294W WO2015178153A1 WO 2015178153 A1 WO2015178153 A1 WO 2015178153A1 JP 2015062294 W JP2015062294 W JP 2015062294W WO 2015178153 A1 WO2015178153 A1 WO 2015178153A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
power storage
negative electrode
positive electrode
storage module
Prior art date
Application number
PCT/JP2015/062294
Other languages
French (fr)
Japanese (ja)
Inventor
一晃 松田
正人 齋藤
Original Assignee
旭化成Fdkエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成Fdkエナジーデバイス株式会社 filed Critical 旭化成Fdkエナジーデバイス株式会社
Priority to JP2016521008A priority Critical patent/JP6534656B2/en
Publication of WO2015178153A1 publication Critical patent/WO2015178153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage module and a method for manufacturing the power storage module.
  • Such a power storage module has, for example, a power storage unit in which storage batteries are connected in series or in parallel, and can be charged / discharged in a high voltage or large capacity state. Yes.
  • a method of connecting a plurality of storage battery terminals there are a method of directly connecting terminals, a method of connecting terminals via a bus bar, and the like. Furthermore, when directly connecting the terminals of two cells, there is a method of overlapping the terminals and connecting them by welding, one of which is a laser welding method. When performing such laser welding, there is a possibility that the cell or other member may be damaged if the laser beam penetrating all the overlapped terminals is irradiated to the other member of the cell or the module. Therefore, for example, a welding method has been proposed so that laser light does not penetrate through the terminal on the opposite side to the laser irradiation among the stacked terminals.
  • the contact area between the terminals formed by the weld metal increases, and the connection of the terminal is formed with higher strength and lower resistance.
  • the risk of laser light penetrating through the terminal opposite to the laser irradiation increases.
  • a jig that absorbs laser light between the surface opposite to the laser irradiation and the cell or other member in the terminal that is stacked so that the laser light is not irradiated to the cell or other member (hereinafter referred to as “underlaying jig”). ”)) Is conceivable.
  • underlaying jig a jig that absorbs laser light between the surface opposite to the laser irradiation and the cell or other member in the terminal that is stacked so that the laser light is not irradiated to the cell or other member.
  • the disclosed technology has been made in view of the above, and an object of the present invention is to provide a small-sized power storage module and a method for manufacturing the power storage module, in which the welded portion of the terminal has high strength and low resistance.
  • the power storage module and the method for manufacturing a power storage module disclosed in the present application include, in one aspect, a power storage member that stores electricity, and a plurality of power storage cells that have a positive electrode terminal and a negative electrode terminal protruding from the power storage member. And the positive electrode terminal and the negative electrode terminal of the different power storage cells are stacked, a fixing member fixed to the power storage member is disposed at one end in the stacking direction, the fixing member, the positive electrode terminal and the negative electrode terminal, The storage cells are connected in series or in parallel by welding the positive terminals or the negative terminals of the adjacent storage cells.
  • the welded portion of the terminal can be made high strength and low resistance while keeping the size small.
  • FIG. 1 is a perspective view of the power storage module according to the first embodiment.
  • FIG. 2 is a side view of the power storage module according to the first embodiment.
  • FIG. 3 is a front view of a storage cell having a one-sided terminal shape.
  • FIG. 4 is a schematic diagram for explaining the connection of the storage cells according to the first embodiment.
  • FIG. 5 is a diagram for explaining an irradiation state of laser light.
  • FIG. 6 is a flowchart of the manufacturing process of the power storage module according to the first embodiment.
  • FIG. 7 is a diagram of volume comparison of the power storage modules.
  • FIG. 8 is a front view of a double-sided terminal type storage cell.
  • FIG. 9 is a schematic diagram for explaining connection of power storage cells according to the second embodiment.
  • FIG. 10 is a schematic diagram for explaining connection of the storage cells according to the third embodiment.
  • FIG. 1 is a perspective view of a power storage module according to the first embodiment.
  • FIG. 2 is a side view of the power storage module according to the first embodiment.
  • the power storage module 1 shown in FIG. 1 includes a plurality of power storage cells 2, an end plate 31, an end plate 32, and a bracket 4.
  • the power storage module 1 is, for example, a lithium ion capacitor module.
  • the power storage module 1 includes a cell terminal fixing member 100 between the cells.
  • a lithium ion battery module or an electric double layer capacitor module may be used.
  • the cell terminal fixing member 100 includes a metal plate 101, an insulating member 102, and a cell fixing member 103.
  • the metal plate 101 is, for example, a single metal or an alloy mainly composed of aluminum, iron, or copper.
  • the metal plate 101 has a thickness that can be easily controlled so that the laser beam stays therein during laser welding, and has a thickness that prevents the power storage module 1 from becoming heavy.
  • the thickness of the metal plate 101 is preferably in the range of 0.3 mm to 5 mm, more preferably in the range of 0.3 mm to 3 mm.
  • the insulating member 102 is, for example, a synthetic resin.
  • the cell fixing member 103 is a metal simple substance or alloy mainly composed of aluminum, iron, or copper, or a synthetic resin.
  • Synthetic resins here are urea resin, phenol resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, melamine resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, methacrylic resin, polycarbonate, polyamide, polyacetal, fluorine resin, It may be a modified species. Further, these may be single or complex polymer alloys.
  • a synthetic resin called engineering plastic having excellent strength and heat resistance for example, an alloy of a modified polyphenylene ether resin and a styrene resin or polypropylene may be used.
  • polyurethane is used for the insulating member 102 and aluminum alloy A5052 is used for the cell fixing member 103.
  • the cell terminal fixing member 100 is configured as a member in which the metal plate 101 and the cell fixing member 103 are fixed to the insulating member 102 by insert molding or the like.
  • the cell terminal fixing member 100 is an example of a “fixing member”.
  • each part may be made individually and fixed by fitting, bonding, screw fastening, or the like.
  • the electrical storage module 1 has the some electrical storage cell 2 which sealed the electrode laminated body which laminated
  • the flat surfaces are overlapped with the cell fixing member 103 in a state where a double-sided tape is attached to the flat surface of each power storage cell 2, and the power storage cell 2 is fixed to the cell fixing member 103.
  • another method may be used, for example, an adhesive agent etc. may be used. Thereby, the electrical storage cell 2 does not move with respect to the cell fixing member 103.
  • the electrical storage module 1 of this embodiment showed the electrical storage module which mounted 12 electrical storage cells 2 as an example, for example, it is not limited to 12 sheets and what number may be sufficient.
  • FIG. 3 is a front view of a one-sided terminal type storage cell.
  • the storage cell 2 is, for example, a lithium ion capacitor cell.
  • the electricity storage cell 2 includes a container 23 that accommodates an electrode stack (not shown), a positive electrode terminal 21, and a negative electrode terminal 22.
  • the electrode laminate is configured by laminating a positive electrode, a negative electrode, and a separator (not shown).
  • the power generation element is one unit, and a plurality of units of power generation elements are stacked.
  • a lithium ion battery or an electric double layer capacitor may be used.
  • the positive electrode has, for example, a structure in which a positive electrode made of a material capable of reversibly supporting lithium ions is formed on a positive electrode current collector.
  • the positive electrode current collector is a member for collecting current while supporting the positive electrode, and is formed using, for example, a conductive metal plate such as aluminum.
  • the positive electrode current collector is formed in a rectangular shape in plan view and has a structure in which a tab protrudes from one of the four sides. The tab of the positive electrode current collector is connected to the positive electrode terminal 21.
  • the negative electrode has, for example, a structure in which a negative electrode made of a material capable of reversibly supporting lithium ions is formed on a negative electrode current collector.
  • the negative electrode current collector is a member for collecting current while supporting the negative electrode, and is formed using a conductive metal plate such as copper, for example.
  • the negative electrode current collector is formed in a rectangular shape in plan view, and has a structure in which a tab protrudes from one of the four sides. The tab of the negative electrode current collector is connected to the negative electrode terminal 22, for example.
  • the container 23 is, for example, a rectangular soft container made of an aluminum laminated film material obtained by laminating an aluminum foil with a resin film. Furthermore, the container 23 has a structure in which the electrode laminate is sealed together with an organic electrolyte containing lithium ions, for example. Since the container 23 seals the electrode laminate and the organic electrolyte, the surface portion of the container 23 has a shape in which the shape of the electrode laminate is raised near the center. The raised surface portion of the container 23 may be referred to as a cell main surface.
  • PP Polypropylene
  • PPa polyphthalamide
  • AL aluminum
  • nylon layer PET
  • PET from the inner layer to the outer layer of the storage cell 2 PolyEthyleneTerephthalate
  • the layer structure of the aluminum laminate film material may be, for example, a PPa (polyphthalamide) layer, an AL (aluminum) layer, a nylon layer, and a PET (PolyEthylene Terephthalate) layer.
  • the container 23 that houses the electrode stack is an example of the “power storage member”.
  • the storage cell 2 has a structure in which the positive electrode terminal 21 and the negative electrode terminal 22 protrude from one side of the four sides of the rectangular shape when the electrode stack is accommodated in the container 23.
  • the storage cell 2 having such a shape is referred to as a one-sided terminal shape.
  • the positive terminal 21 is made of, for example, an aluminum material.
  • the negative electrode terminal 22 is made of, for example, a copper material.
  • the stacked power storage cells 2 are connected in series by connecting the positive electrode terminal 21 and the negative electrode terminal 22.
  • the positive electrode terminal 21 and the negative electrode terminal 22 have a thickness of about 0.3 mm and a width of about 68 mm, for example.
  • FIG. 4 is a schematic diagram for explaining the connection of the storage cells according to the first embodiment. As shown in FIG. 4, the positive electrode terminal 21 and the negative electrode terminal 22 are bent at substantially right angles toward the connected storage cell 2.
  • the positive electrode terminal 21 and the negative electrode terminal 22 bent so that the positive electrode terminal 21 is closer to the container 23 are overlapped.
  • the direction which goes to the container 23 from the positive electrode terminal 21 and the negative electrode terminal 22 is made into the bottom, and conversely, the direction which goes to the positive electrode terminal 21 and the negative electrode terminal 22 from the container 23 is made into the upper side. That is, the positive electrode terminal 21 and the negative electrode terminal 22 are overlapped so that the positive electrode terminal 21 faces down and the negative electrode terminal 22 faces up. Further, the positive electrode terminal 21 is bent so that the lower surface is in contact with the metal plate 101.
  • the insulating member 102 is in contact with the container 23 of the storage cell 2, but the insulating member 102 may be insulated between the metal plate 101 and the cell fixing member 103.
  • the container 23 and other members may not be in contact with each other.
  • the positive electrode terminal 21, the negative electrode terminal 22, and the metal plate 101 are pressed together with, for example, a jig (hereinafter referred to as an “upper pressing jig”) from above, and each is crimped. Pressed.
  • the pressing value may be a value that allows the positive electrode terminal 21 and the negative electrode terminal 22 to be in close contact with each other. If each part can be processed with high accuracy, the pressing force may be lightly suppressed, for example, a force of about several hundred gf. You can suppress it. Further, since a processing tolerance is always generated according to a general processing method, the positive electrode terminal 21 and the negative electrode terminal 22 can be brought into close contact with each other by pressing with a force of about 1 kgf to 10 kgf, for example.
  • FIG. 5 is a diagram for explaining an irradiation state of laser light.
  • the metal plate 101 is thicker than the positive electrode terminal 21 and the negative electrode terminal 22, and it is easy to control the laser beam 200 so that it stops inside and does not penetrate. Therefore, during laser welding, the laser beam 200 is controlled so that the depth of arrival is within the thickness of the metal plate 101.
  • the irradiated laser beam 200 is absorbed inside the metal plate 101 and stops inside without penetrating the metal plate.
  • the depth of arrival can be determined by observing the cross section of each part after welding and evaluating the depth to which the metal has substantially melted. Cross-sectional observation can be observed with an optical microscope, SEM (scanning electron microscope), or the like.
  • the laser beam 200 does not penetrate the metal plate 101, so that the metal does not melt. Therefore, it is not necessary to provide a space for inserting a receiving jig for receiving molten metal between the positive electrode terminal 21 and the container 23.
  • the overall size of the power storage module 1 can be kept small, and further processing such as cleaning of the lower receiving jig can be omitted, and the manufacturing process can be simplified. .
  • the underfill is improved, and the connection strength between the positive electrode terminal 21 and the negative electrode terminal 22 is improved.
  • the welded portion in laser welding has a three-layer structure of the positive electrode terminal 21, the negative electrode terminal 22 and the metal plate 101, so that the positive electrode terminal 21 and the negative electrode terminal 22 are penetrated even when irradiated with the high-energy laser beam 200.
  • the laser beam 200 stopped in the metal plate 101.
  • the welded positive electrode terminal 21 and negative electrode terminal 22 are fixed to the container 23 via the metal plate 101, the insulating member 102, and the cell fixing member 103.
  • the phases of the positive electrode terminal 21 and the negative electrode terminal 22 and the container 23 coincide with each other.
  • the phase shift between the positive electrode terminal 21 and the negative electrode terminal 22 and the container 23 is suppressed, and the repeated stress on the positive electrode terminal 21, the negative electrode terminal 22 or the container 23 due to the phase shift is reduced, so that the vibration resistance is improved. be able to.
  • the stacked power storage cells 2 are connected in series by the laser welding described above.
  • Two brackets 4 are arranged so as to hold down two sides orthogonal to the side where the positive electrode terminal 21 and the negative electrode terminal 22 of the container 23 in the stacked storage cell 2 are arranged. Further, the end plates 31 and 32 are fixed to the bracket 4 and hold the storage cell 2 while sandwiching the storage cell 2 from the stacking direction and applying pressure.
  • FIG. 6 is a flowchart of the manufacturing process of the power storage module according to the first embodiment.
  • the worker fixes the metal plate 101, the insulating member 102, and the cell fixing member 103 by insert molding or the like, and generates the cell terminal fixing member 100 (step S1).
  • step S2 the operator fixes the cell fixing member 103 to the container 23 (step S2). Thereby, the cell terminal fixing member 100 is fixed to the electricity storage cell 2.
  • the operator stacks the storage cells 2, and further overlaps the positive electrode terminal 21 and the negative electrode terminal 22 from the container 23 side, and the positive electrode terminal 21 and the negative electrode so that the positive electrode terminal 21 is in contact with the metal plate 101.
  • the terminal 22 is bent (step S3).
  • step S4 the worker attaches the end plates 31 and 32 and the bracket 4 to the stacked power storage cells 2, and holds the power storage cells 2 by the end plates 31 and 32 and the bracket 4 (step S4).
  • step S5 the operator presses the negative electrode terminal 22 from the opposite direction to the insulating member 102 with the upper pressing jig (step S5).
  • the bent negative electrode terminal 22, positive electrode terminal 21, and metal plate 101 are pressed toward the insulating member 102.
  • the operator controls the laser beam to stop within the metal plate 101, irradiates the laser beam toward the negative electrode terminal 22, and welds the negative electrode terminal 22 and the positive electrode terminal 21 (step S6).
  • the container and the terminal of the power storage cell are fixed by the cell terminal fixing member.
  • the phases of the terminal and the container coincide with each other, and the repetitive stress to the terminal or the cell is reduced. That is, vibration resistance can be improved.
  • the power storage module 1 according to the present embodiment can greatly contribute to the improvement of vibration resistance.
  • the welded portion can be made into a three-layer structure with two terminals and a metal plate provided on the cell terminal fixing member, and the laser beam can be stopped within the metal plate even when irradiated with a high-energy laser beam. . Therefore, welding with high energy can be performed, the contact area between the terminals can be increased, and a high strength and low resistance weld can be formed.
  • the storage module can be reduced in size by not providing a space for the support jig.
  • FIG. 7 is a diagram of volume comparison of power storage modules.
  • the row described as the comparative example of FIG. 7 represents the volume of the electrical storage module manufactured using the receiving jig.
  • the line described as an Example represents the volume of the electrical storage module 1 manufactured using the manufacturing method which concerns on a present Example.
  • the line described as the rate of change represents how much the volume of the example has changed relative to the volume of the comparative example.
  • the case of the one-sided angel-shaped storage cell 2 will be described, and the case of the two-sided terminal-shaped storage cell will be described later.
  • FIG. 7 shows a case where measurement is performed using the following conditions. That is, it is assumed that the storage cell 2 has a cell thickness of 10 mm, a cell width of 100 mm, and a cell height of 100 mm in both the example and the comparative example. Furthermore, in the case of the comparative example, the terminal height is 15 mm. Moreover, in the case of an Example, terminal height is 5 mm and the thickness of the cell fixing member 103 is 0.3 mm.
  • the volume of the power storage module 1 is 1185 cc.
  • the volume of the power storage module 1 is 1082 cc.
  • the rate of change in volume is -8.7%.
  • FIG. 8 is a front view of a double-sided terminal type storage cell.
  • the power storage module 1 of this modification uses a power storage cell 2 in which a positive electrode terminal 21 is provided on one side of a rectangular container 23 as shown in FIG. 8 and a negative electrode terminal 22 is provided on a side opposite to the side.
  • a storage cell 2 is referred to as a double-sided terminal shape.
  • the container 23 is fixed to the cell fixing member 103 and the positive electrode terminal 21 and the negative electrode terminal 22 are welded and fixed together with the metal plate 101 as in the first embodiment.
  • the container 23, the positive electrode terminal 21, and the negative electrode terminal 22 are fixed.
  • the cell terminal fixing member 100 may have the insulating member 102 and the metal plate 101 at both ends of the cell fixing member 103. Moreover, you may use the cell terminal fixing member 100 which has the insulating member 102 and the metal plate 101 in the end of the cell fixing member 103 one by one on the side of each side which faces.
  • the volume of the power storage module 1 is 1339 cc.
  • the electrical storage module 1 using the electrical storage cell 2 having the both-side terminal shape is manufactured using the manufacturing method according to this embodiment, the volume of the electrical storage module 1 is 1133 cc.
  • the volume change rate is -15.4%.
  • FIG. 9 is a schematic diagram for explaining connection of power storage cells according to the second embodiment.
  • the cell fixing member 103 is disposed so as to be sandwiched between the containers 23 of the storage cells 2, but the present invention is not limited thereto, and the cell fixing member 103 is fixed to the container 23, and the metal plate 101 is a positive electrode terminal. What is necessary is just to be welded and fixed to 21 and the negative electrode terminal 22.
  • the surfaces of the containers 23 of the power storage cells 2 are fixed with an adhesive tape, an adhesive, or the like.
  • the cell fixing member 103 is fixed to the opposite surface of the one container 23 of the two storage cells 2 that are fixed.
  • the insulating member 102 is disposed on the surface of the cell fixing member 103 to which the container 23 is bonded, and is fixed to the cell fixing member 103.
  • the metal plate 101 is disposed on the surface of the insulating member 102 opposite to the cell fixing member 103 and is fixed to the insulating member 102.
  • the positive electrode terminal 21 extends from the container 23 bonded to the cell fixing member 103 to the surface of the metal plate 101 opposite to the insulating member 102. Further, the negative electrode terminal 22 extends from the container 23 not bonded to the cell fixing member 103 to the position of the metal plate 101 so as to overlap the surface of the positive electrode terminal 21 opposite to the metal plate 101.
  • the superposed positive electrode terminal 21, negative electrode terminal 22 and metal plate 101 are irradiated with laser light controlled to stop within the metal plate 101 from the negative electrode terminal 22 side and welded. Thereby, the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the metal plate 101.
  • the positive electrode terminal 21 and the negative electrode terminal 22 are bonded to the cell fixing member 103 through the metal plate 101, the insulating member 102, and the cell fixing member 103. And are fixed. Further, the positive electrode terminal 21 and the negative electrode terminal 22 are also fixed to the other container 23 via the container 23 fixed to the cell fixing member 103.
  • laser welding is the same as in Example 1, and a high-strength and low-resistance weld can be generated, and the power storage module can be downsized.
  • FIG. 10 is a schematic diagram for explaining connection of power storage cells according to the third embodiment.
  • the arrangement of the cell terminal fixing member 100 with respect to the storage cell 2 is a configuration other than the first embodiment and the second embodiment.
  • the containers 23 of the two power storage cells 2 are mounted and fixed on one surface of the cell fixing member 103 so that the positive electrode terminal 21 and the negative electrode terminal 22 face each other.
  • the insulating member 102 is fixed between the two containers 23 on the surface on which the container 23 of the cell fixing member 103 is mounted.
  • the metal plate 101 is disposed on the surface of the insulating member 102 opposite to the cell fixing member 103 and is fixed to the insulating member 102.
  • the positive terminal 21 extends from one of the opposing containers 23 to the surface of the metal plate 101 opposite to the insulating member 102. Further, the negative electrode terminal 22 extends from the other container 23 to the position of the metal plate 101 so as to overlap the surface of the positive electrode terminal 21 opposite to the metal plate 101.
  • the superposed positive electrode terminal 21, negative electrode terminal 22 and metal plate 101 are irradiated with laser light controlled to stop within the metal plate 101 from the negative electrode terminal 22 side and welded. Thereby, the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the metal plate 101.
  • the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the container 23 via the metal plate 101, the insulating member 102, and the cell fixing member 103.
  • laser welding is the same as in Example 1, and a high-strength and low-resistance weld can be generated, and the power storage module can be downsized.
  • each component can also be obtained by a method such as resistance welding. May be welded.
  • the positive electrode terminal 21 and the negative electrode terminal 22 are made of different materials.
  • the positive electrode terminal and the negative electrode terminal may be made of the same material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An electricity storage module provided with a plurality of electricity storage cells each comprising a container (23) which stores electricity, and a positive electrode terminal (21) and a negative electrode terminal (22) which protrude from the container (23), wherein a securing member (100) secured to the container (23) is disposed at one end in a lamination direction, the positive electrode terminal (21) and the negative electrode terminal (22) of the different electricity storage cells are laminated, the securing member (100) secured to the container (23) is disposed at one end in the lamination direction, and the electricity storage cells are connected in series or in parallel by welding the securing member (100) and the positive electrode terminal (21) and the negative electrode terminal (22) or the positive electrode terminals (21) or the negative electrode terminals (22) of the electricity storage cells adjacent to each other.

Description

蓄電モジュール及び蓄電モジュールの製造方法Power storage module and method for manufacturing power storage module
 本発明は、蓄電モジュール及び蓄電モジュールの製造方法に関する。 The present invention relates to a power storage module and a method for manufacturing the power storage module.
 近年、リチウムイオン二次電池、ニッケル水素電池、電気二重層キャパシタ又はリチウムイオンキャパシタなどの蓄電池を用いた蓄電モジュールが開発されている。このような蓄電モジュールは、例えば、蓄電池が直列又は並列に接続された蓄電体を有し、高電圧や大容量の状態で充放電することができるため、電源装置として様々な用途に用いられている。 In recent years, power storage modules using storage batteries such as lithium ion secondary batteries, nickel metal hydride batteries, electric double layer capacitors, or lithium ion capacitors have been developed. Such a power storage module has, for example, a power storage unit in which storage batteries are connected in series or in parallel, and can be charged / discharged in a high voltage or large capacity state. Yes.
 従来、複数の蓄電池の端子を接続する方法として、端子を直接接続する方法や、バスバーなどを介して端子を接続する方法などがある。さらに、2つのセルの端子を直接接続する場合には、端子を重ねて溶接により接続する方法があり、その一つにレーザー溶接法がある。このようなレーザー溶接を行う場合、重ねた端子全てを貫通したレーザー光がセル又はモジュールの他の部材に照射されると、セルもしくは他の部材が破損するおそれがある。そこで、例えば、重ねた端子の内のレーザー照射とは反対側の端子をレーザー光が貫通しないように溶接方法が提案されている。 Conventionally, as a method of connecting a plurality of storage battery terminals, there are a method of directly connecting terminals, a method of connecting terminals via a bus bar, and the like. Furthermore, when directly connecting the terminals of two cells, there is a method of overlapping the terminals and connecting them by welding, one of which is a laser welding method. When performing such laser welding, there is a possibility that the cell or other member may be damaged if the laser beam penetrating all the overlapped terminals is irradiated to the other member of the cell or the module. Therefore, for example, a welding method has been proposed so that laser light does not penetrate through the terminal on the opposite side to the laser irradiation among the stacked terminals.
特開2003-338275号公報JP 2003-338275 A 国際公開第2006/016441号International Publication No. 2006/016441
 しかしながら、端子同士の直接接続及びバスバーを介した接続のいずれにおいても、蓄電モジュールに、例えば車載時のような振動が長時間与えられると、振動によっては端子とセルの位相がずれ、端子もしくはセル内部が疲労破損するおそれがある。特に、バスバーなどの重量物が端子に固定されている場合、端子もしくはセル内部への応力が大きくなり、疲労破損の可能性が高まる。 However, in both the direct connection between terminals and the connection via the bus bar, if vibration is applied to the power storage module for a long time, for example, when mounted on a vehicle, the phase of the terminal and the cell is shifted depending on the vibration, and the terminal or cell There is a risk of internal fatigue damage. In particular, when a heavy object such as a bus bar is fixed to the terminal, the stress inside the terminal or the cell increases, and the possibility of fatigue failure increases.
 また、レーザー光を照射する場合、蓄電池の端子のよう薄板において、キーホールを形成するような高エネルギー密度のレーザー光の到達深度を端子の厚み内で制御することは困難である。そして、近年の蓄電モジュールにおいて端子は薄くなる傾向にあり、端子が薄くなるに従いレーザー照射の制御は困難さが増してしまう。 Also, when irradiating laser light, it is difficult to control the arrival depth of high energy density laser light that forms a keyhole in the thin plate like the terminal of the storage battery within the thickness of the terminal. And in the recent electrical storage module, a terminal tends to become thin, and control of laser irradiation increases as the terminal becomes thin.
 加えて、端子に照射されるレーザー光のエネルギーが大きくなるほど溶接金属により形成される端子間の接触面積が大きくなり、端子の接続はより高強度かつ低抵抗に形成される。しかし、端子の接続を振動に耐えうる強度及び蓄電池の性能に影響しない溶接抵抗を得ようとすると、レーザー光がレーザー照射とは反対側の端子を貫通してしまう危険性が増大してしまう。 In addition, as the energy of the laser beam applied to the terminal increases, the contact area between the terminals formed by the weld metal increases, and the connection of the terminal is formed with higher strength and lower resistance. However, if it is intended to obtain a welding resistance that does not affect the strength of the connection of the terminals and the performance of the storage battery, the risk of laser light penetrating through the terminal opposite to the laser irradiation increases.
 また、レーザー光がセルまたは他の部材に照射されないように重ねた端子におけるレーザー照射と反対側の面とセルや他の部材との間にレーザー光を吸収する治具(以下「下受け治具」と呼称する。)を挿入する方法が考えられる。しかし、この場合、下受け治具を挿入するスペースを確保するため、モジュールのサイズが大きくなってしまう。 Also, a jig that absorbs laser light between the surface opposite to the laser irradiation and the cell or other member in the terminal that is stacked so that the laser light is not irradiated to the cell or other member (hereinafter referred to as “underlaying jig”). ")") Is conceivable. However, in this case, the size of the module is increased in order to secure a space for inserting the receiving jig.
 開示の技術は、上記に鑑みてなされたものであって、端子の溶接部が高強度且つ低抵抗で且つ小型の蓄電モジュール及び蓄電モジュールの製造方法を提供することを目的とする。 The disclosed technology has been made in view of the above, and an object of the present invention is to provide a small-sized power storage module and a method for manufacturing the power storage module, in which the welded portion of the terminal has high strength and low resistance.
 本願の開示する蓄電モジュール及び蓄電モジュールの製造方法は、一つの態様において、電気を蓄える蓄電部材、及び、前記蓄電部材から突出する正極端子及び負極端子を有する複数の蓄電セルを備える。そして、異なる前記蓄電セルの前記正極端子と前記負極端子とが積層され、積層方向の一端に前記蓄電部材に固定された固定部材が配置され、前記固定部材と、前記正極端子及び前記負極端子、隣り合う前記蓄電セルの前記正極端子同士もしくは前記負極端子同士とが溶接されることで前記蓄電セル同士が直列又は並列に接続されている。 The power storage module and the method for manufacturing a power storage module disclosed in the present application include, in one aspect, a power storage member that stores electricity, and a plurality of power storage cells that have a positive electrode terminal and a negative electrode terminal protruding from the power storage member. And the positive electrode terminal and the negative electrode terminal of the different power storage cells are stacked, a fixing member fixed to the power storage member is disposed at one end in the stacking direction, the fixing member, the positive electrode terminal and the negative electrode terminal, The storage cells are connected in series or in parallel by welding the positive terminals or the negative terminals of the adjacent storage cells.
 本願の開示する蓄電モジュール及び蓄電モジュールの製造方法の一つの態様によれば、サイズを小さく抑えつつ、端子の溶接部を高強度且つ低抵抗にすることができるという効果を奏する。 According to one aspect of the power storage module and the method for manufacturing the power storage module disclosed in the present application, there is an effect that the welded portion of the terminal can be made high strength and low resistance while keeping the size small.
図1は、実施例1に係る蓄電モジュールの斜視図である。FIG. 1 is a perspective view of the power storage module according to the first embodiment. 図2は、実施例1に係る蓄電モジュールの側面図である。FIG. 2 is a side view of the power storage module according to the first embodiment. 図3は、片側端子形状の蓄電セルの正面図である。FIG. 3 is a front view of a storage cell having a one-sided terminal shape. 図4は、実施例1に係る蓄電セルの接続を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the connection of the storage cells according to the first embodiment. 図5は、レーザー光の照射状態を説明するための図である。FIG. 5 is a diagram for explaining an irradiation state of laser light. 図6は、実施例1に係る蓄電モジュールの製造工程のフローチャートである。FIG. 6 is a flowchart of the manufacturing process of the power storage module according to the first embodiment. 図7は、蓄電モジュールの体積比較の図である。FIG. 7 is a diagram of volume comparison of the power storage modules. 図8は、両側端子形状の蓄電セルの正面図である。FIG. 8 is a front view of a double-sided terminal type storage cell. 図9は、実施例2に係る蓄電セルの接続を説明するための模式図である。FIG. 9 is a schematic diagram for explaining connection of power storage cells according to the second embodiment. 図10は、実施例3に係る蓄電セルの接続を説明するための模式図である。FIG. 10 is a schematic diagram for explaining connection of the storage cells according to the third embodiment.
 以下に、本願の開示する蓄電モジュール及び蓄電モジュールの製造方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する蓄電モジュール及び蓄電モジュールの製造方法が限定されるものではない。 Hereinafter, embodiments of a power storage module and a method for manufacturing a power storage module disclosed in the present application will be described in detail with reference to the drawings. Note that the power storage module and the method for manufacturing the power storage module disclosed in the present application are not limited by the following embodiments.
 図1は、実施例1に係る蓄電モジュールの斜視図である。図2は、実施例1に係る蓄電モジュールの側面図である。図1に示す蓄電モジュール1は、複数枚の蓄電セル2と、エンドプレート31と、エンドプレート32と、ブラケット4とを有する。蓄電モジュール1は、例えば、リチウムイオンキャパシタモジュールである。さらに、蓄電モジュール1は、セル同士の間にセル端子固定部材100を有する。また、リチウムイオンキャパシタモジュールの他にも、リチウムイオン電池モジュールや電気二重層キャパシタモジュールなどであってもよい。 FIG. 1 is a perspective view of a power storage module according to the first embodiment. FIG. 2 is a side view of the power storage module according to the first embodiment. The power storage module 1 shown in FIG. 1 includes a plurality of power storage cells 2, an end plate 31, an end plate 32, and a bracket 4. The power storage module 1 is, for example, a lithium ion capacitor module. Furthermore, the power storage module 1 includes a cell terminal fixing member 100 between the cells. In addition to the lithium ion capacitor module, a lithium ion battery module or an electric double layer capacitor module may be used.
 セル端子固定部材100は、金属板101、絶縁部材102及びセル固定部材103を有する。金属板101は、例えば、アルミニウム、鉄又は銅を主成分とする金属単体又は合金である。 The cell terminal fixing member 100 includes a metal plate 101, an insulating member 102, and a cell fixing member 103. The metal plate 101 is, for example, a single metal or an alloy mainly composed of aluminum, iron, or copper.
 金属板101は、後述するようにレーザー溶接時にレーザー光がその内部でとどまるように制御し易い厚みを有し、且つ、蓄電モジュール1が重くならないような厚みを有する。例えば、金属板101の厚みは、0.3mm以上5mm以下の範囲が好ましく、より好ましくは0.3mm以上3mm以下の範囲である。 As will be described later, the metal plate 101 has a thickness that can be easily controlled so that the laser beam stays therein during laser welding, and has a thickness that prevents the power storage module 1 from becoming heavy. For example, the thickness of the metal plate 101 is preferably in the range of 0.3 mm to 5 mm, more preferably in the range of 0.3 mm to 3 mm.
 また、絶縁部材102は、例えば、合成樹脂である。また、セル固定部材103は、アルミニウム、鉄又は銅を主成分とする金属単体又は合金、もしくは、合成樹脂である。ここで合成樹脂は、尿素樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン、アルキド樹脂、エポキシ樹脂、メラミン樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、メタクリル樹脂、ポリカーボネート、ポリアミド、ポリアセタール、フッ素樹脂、などであり変性種であっても良い。また、これら単種または複合したポリマーアロイであっても良い。また、用途によっては、エンジニアリングプラスチックと呼ばれる強度や耐熱性に優れた合成樹脂、例えば変性ポリフェニレンエーテル樹脂とスチレン樹脂もしくはポリプロピレンとのアロイを用いても良い。本発明では一例として、絶縁部材102にポリウレタンを用い、セル固定部材103にアルミニウム合金A5052を用いた。 Further, the insulating member 102 is, for example, a synthetic resin. In addition, the cell fixing member 103 is a metal simple substance or alloy mainly composed of aluminum, iron, or copper, or a synthetic resin. Synthetic resins here are urea resin, phenol resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, melamine resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, methacrylic resin, polycarbonate, polyamide, polyacetal, fluorine resin, It may be a modified species. Further, these may be single or complex polymer alloys. Depending on the application, a synthetic resin called engineering plastic having excellent strength and heat resistance, for example, an alloy of a modified polyphenylene ether resin and a styrene resin or polypropylene may be used. In the present invention, as an example, polyurethane is used for the insulating member 102 and aluminum alloy A5052 is used for the cell fixing member 103.
 セル端子固定部材100は、インサート成形などにより、金属板101及びセル固定部材103が絶縁部材102に固着した部材として構成される。このセル端子固定部材100が、「固定部材」の一例である。インサート成形の他にも、各部品を個別に作り、はめ合わせや接着、ねじ締結などにより固定してもよい。 The cell terminal fixing member 100 is configured as a member in which the metal plate 101 and the cell fixing member 103 are fixed to the insulating member 102 by insert molding or the like. The cell terminal fixing member 100 is an example of a “fixing member”. In addition to insert molding, each part may be made individually and fixed by fitting, bonding, screw fastening, or the like.
 そして、蓄電モジュール1は、正極と負極とを積層した電極積層体をラミネート材の容器内に封止した複数の蓄電セル2を有する。蓄電モジュール1は、各蓄電セル2の平面に例えば、両面テープを張り付けた状態でセル固定部材103を挟んで平面同士が重ね合わされ蓄電セル2がセル固定部材103に固定される。ただし、ここでは両面テープを用いて固定したが、蓄電セル2をセル固定部材103に固定させられれば他の方法でもよく、例えば接着剤などを用いてもよい。これにより、蓄電セル2はセル固定部材103に対して動かなくなる。なお、本実施形態の蓄電モジュール1は、例えば、12枚の蓄電セル2を搭載した蓄電モジュールを一例として示したが、12枚に限定されるものではなく、何枚であっても良い。 And the electrical storage module 1 has the some electrical storage cell 2 which sealed the electrode laminated body which laminated | stacked the positive electrode and the negative electrode in the container of a laminate material. In the power storage module 1, for example, the flat surfaces are overlapped with the cell fixing member 103 in a state where a double-sided tape is attached to the flat surface of each power storage cell 2, and the power storage cell 2 is fixed to the cell fixing member 103. However, although it fixed using the double-sided tape here, as long as the electrical storage cell 2 can be fixed to the cell fixing member 103, another method may be used, for example, an adhesive agent etc. may be used. Thereby, the electrical storage cell 2 does not move with respect to the cell fixing member 103. In addition, although the electrical storage module 1 of this embodiment showed the electrical storage module which mounted 12 electrical storage cells 2 as an example, for example, it is not limited to 12 sheets and what number may be sufficient.
 図3は、片側端子形状の蓄電セルの正面図である。蓄電セル2は、例えば、リチウムイオンキャパシタセルである。蓄電セル2は、図示せぬ電極積層体を収容する容器23、正極端子21及び負極端子22を有する。電極積層体は、図示せぬ正極、負極およびセパレータを積層して構成し、発電要素を1単位とし、複数単位の発電要素を積層する。リチウムイオンキャパシタの他にも、リチウムイオン電池や電気二重層キャパシタなどであってもよい。 FIG. 3 is a front view of a one-sided terminal type storage cell. The storage cell 2 is, for example, a lithium ion capacitor cell. The electricity storage cell 2 includes a container 23 that accommodates an electrode stack (not shown), a positive electrode terminal 21, and a negative electrode terminal 22. The electrode laminate is configured by laminating a positive electrode, a negative electrode, and a separator (not shown). The power generation element is one unit, and a plurality of units of power generation elements are stacked. In addition to the lithium ion capacitor, a lithium ion battery or an electric double layer capacitor may be used.
 正極は、例えば、リチウムイオンを可逆的に担持可能な材料から成る正極電極を正極集電体上に形成した構造を有する。正極集電体は、正極電極を支持しながら、集電を行うための部材であって、例えば、アルミニウム等の導電性金属板を用いて形成される。正極集電体は、平面視矩形状に形成され、その四辺の内の一辺からタブを突出する構造である。正極集電体のタブは、正極端子21に接続される。 The positive electrode has, for example, a structure in which a positive electrode made of a material capable of reversibly supporting lithium ions is formed on a positive electrode current collector. The positive electrode current collector is a member for collecting current while supporting the positive electrode, and is formed using, for example, a conductive metal plate such as aluminum. The positive electrode current collector is formed in a rectangular shape in plan view and has a structure in which a tab protrudes from one of the four sides. The tab of the positive electrode current collector is connected to the positive electrode terminal 21.
 負極は、例えば、リチウムイオンを可逆的に担持可能な材料から成る負極電極を負極集電体上に形成した構造を有する。負極集電体は、負極電極を支持しながら、集電を行うための部材であって、例えば、銅等の導電性金属板を用いて形成される。負極集電体は、平面視矩形状に形成され、その四辺の内の一辺からタブを突出する構造である。負極集電体のタブは、例えば、負極端子22に接続される。 The negative electrode has, for example, a structure in which a negative electrode made of a material capable of reversibly supporting lithium ions is formed on a negative electrode current collector. The negative electrode current collector is a member for collecting current while supporting the negative electrode, and is formed using a conductive metal plate such as copper, for example. The negative electrode current collector is formed in a rectangular shape in plan view, and has a structure in which a tab protrudes from one of the four sides. The tab of the negative electrode current collector is connected to the negative electrode terminal 22, for example.
 容器23は、例えば、アルミ箔を樹脂フィルムでラミネートしたアルミラミネートフィルム材の矩形形状のソフト容器である。更に、容器23は、例えば、リチウムイオンを含む有機電解液とともに電極積層体を密封した構造である。容器23は、電極積層体および有機電解液を密封しているため、容器23の面部は中央付近に電極積層体の形状が隆起した形状となる。その容器23の隆起した面部をセル主面と称する場合がある。なお、アルミラミネートフィルム材の層構成としては、蓄電セル2の内側の層から外側の層へ、PP(Polypropylene)層、PPa(ポリフタルアミド)層、AL(アルミニウム)層、ナイロン層、PET(PolyEthyleneTerephthalate)層の順である。また、アルミラミネートフィルム材の層構成としては、例えば、PPa(ポリフタルアミド)層、AL(アルミニウム)層、ナイロン層、PET(PolyEthyleneTerephthalate)層の順にしても良い。この電極積層体を収容した容器23が、「蓄電部材」の一例である。 The container 23 is, for example, a rectangular soft container made of an aluminum laminated film material obtained by laminating an aluminum foil with a resin film. Furthermore, the container 23 has a structure in which the electrode laminate is sealed together with an organic electrolyte containing lithium ions, for example. Since the container 23 seals the electrode laminate and the organic electrolyte, the surface portion of the container 23 has a shape in which the shape of the electrode laminate is raised near the center. The raised surface portion of the container 23 may be referred to as a cell main surface. In addition, as a layer structure of the aluminum laminate film material, PP (Polypropylene) layer, PPa (polyphthalamide) layer, AL (aluminum) layer, nylon layer, PET (from the inner layer to the outer layer of the storage cell 2 PolyEthyleneTerephthalate) layer. The layer structure of the aluminum laminate film material may be, for example, a PPa (polyphthalamide) layer, an AL (aluminum) layer, a nylon layer, and a PET (PolyEthylene Terephthalate) layer. The container 23 that houses the electrode stack is an example of the “power storage member”.
 さらに、蓄電セル2は、電極積層体が容器23内に収容された場合、矩形形状の四辺の内、一辺から正極端子21よび負極端子22が突出した構造となる。このような形状の蓄電セル2は、片側端子形状と呼称する。 Further, the storage cell 2 has a structure in which the positive electrode terminal 21 and the negative electrode terminal 22 protrude from one side of the four sides of the rectangular shape when the electrode stack is accommodated in the container 23. The storage cell 2 having such a shape is referred to as a one-sided terminal shape.
 正極端子21は、例えば、アルミ材で構成される。負極端子22は、例えば、銅材で構成される。積層された蓄電セル2は、正極端子21と負極端子22が接続されることにより直列接続される。正極端子21及び負極端子22は、例えば、厚み0.3mm程度、幅68mm程度を有する。 The positive terminal 21 is made of, for example, an aluminum material. The negative electrode terminal 22 is made of, for example, a copper material. The stacked power storage cells 2 are connected in series by connecting the positive electrode terminal 21 and the negative electrode terminal 22. The positive electrode terminal 21 and the negative electrode terminal 22 have a thickness of about 0.3 mm and a width of about 68 mm, for example.
 図4は、実施例1に係る蓄電セルの接続を説明するための模式図である。図4に示すように、正極端子21及び負極端子22は、それぞれ接続する蓄電セル2に向かってほぼ直角に屈曲される。 FIG. 4 is a schematic diagram for explaining the connection of the storage cells according to the first embodiment. As shown in FIG. 4, the positive electrode terminal 21 and the negative electrode terminal 22 are bent at substantially right angles toward the connected storage cell 2.
 そして、正極端子21が容器23に近い側になるように屈曲した正極端子21及び負極端子22を重ね合わせる。以下では、正極端子21及び負極端子22から容器23に向かう方向を下とし、逆に、容器23から正極端子21及び負極端子22に向かう方向を上として説明する。すなわち、正極端子21を下にして、負極端子22が上になるように正極端子21と負極端子22とが重ねられる。さらに、正極端子21は、下の面が金属板101に接触するように屈曲される。 Then, the positive electrode terminal 21 and the negative electrode terminal 22 bent so that the positive electrode terminal 21 is closer to the container 23 are overlapped. Below, the direction which goes to the container 23 from the positive electrode terminal 21 and the negative electrode terminal 22 is made into the bottom, and conversely, the direction which goes to the positive electrode terminal 21 and the negative electrode terminal 22 from the container 23 is made into the upper side. That is, the positive electrode terminal 21 and the negative electrode terminal 22 are overlapped so that the positive electrode terminal 21 faces down and the negative electrode terminal 22 faces up. Further, the positive electrode terminal 21 is bent so that the lower surface is in contact with the metal plate 101.
 ここで、図4では、絶縁部材102は蓄電セル2の容器23に接触しているが、絶縁部材102は、金属板101とセル固定部材103との間で絶縁を行えばよく、蓄電セル2の容器23やその他の部材に接触していなくてもよい。 Here, in FIG. 4, the insulating member 102 is in contact with the container 23 of the storage cell 2, but the insulating member 102 may be insulated between the metal plate 101 and the cell fixing member 103. The container 23 and other members may not be in contact with each other.
 そして、正極端子21、負極端子22及び金属板101は、重なった状態で、例えば、上から治具(以下、「上押さえ治具」と呼称する。)で押さえられ、それぞれが圧着するように押圧される。押圧の値は、正極端子21と負極端子22が密着するための値であれば良く、厳密に精度よくそれぞれの部品を加工することができれば軽く抑える程度の力、例えば数百gf程度の力で抑えればよい。また、一般的な加工法によれば必ず加工公差が生じる為、例えば1kgf~10kgf程度の力で押圧することにより正極端子21と負極端子22を密着させることができる。 The positive electrode terminal 21, the negative electrode terminal 22, and the metal plate 101 are pressed together with, for example, a jig (hereinafter referred to as an “upper pressing jig”) from above, and each is crimped. Pressed. The pressing value may be a value that allows the positive electrode terminal 21 and the negative electrode terminal 22 to be in close contact with each other. If each part can be processed with high accuracy, the pressing force may be lightly suppressed, for example, a force of about several hundred gf. You can suppress it. Further, since a processing tolerance is always generated according to a general processing method, the positive electrode terminal 21 and the negative electrode terminal 22 can be brought into close contact with each other by pressing with a force of about 1 kgf to 10 kgf, for example.
 この状態で、図5に示すように上側から負極端子22に向けてレーザー光200が照射される。レーザー光200は、負極端子22及び正極端子21を貫通し、金属板101の内部まで達するように制御される。図5は、レーザー光の照射状態を説明するための図である。 In this state, the laser beam 200 is irradiated from the upper side toward the negative terminal 22 as shown in FIG. The laser beam 200 is controlled so as to penetrate the negative electrode terminal 22 and the positive electrode terminal 21 and reach the inside of the metal plate 101. FIG. 5 is a diagram for explaining an irradiation state of laser light.
 ここで、上述したように金属板101は、正極端子21及び負極端子22に比べて厚みがあり、その内部で止まり貫通しないようにレーザー光200を制御することは容易である。そこで、レーザー溶接時には、レーザー光200は、到達深度が金属板101の厚み内となるように制御される。照射されたレーザー光200は、金属板101の内部で吸収され、金属板を貫通せず内部で止まる。到達深度は溶接後のそれぞれの部品を断面観察することで、実質的に金属の溶融がどの深度まで生じているかを評価することで分かる。断面観察は、光学顕微鏡やSEM(走査型電子顕微鏡)などによって観察することができる。 Here, as described above, the metal plate 101 is thicker than the positive electrode terminal 21 and the negative electrode terminal 22, and it is easy to control the laser beam 200 so that it stops inside and does not penetrate. Therefore, during laser welding, the laser beam 200 is controlled so that the depth of arrival is within the thickness of the metal plate 101. The irradiated laser beam 200 is absorbed inside the metal plate 101 and stops inside without penetrating the metal plate. The depth of arrival can be determined by observing the cross section of each part after welding and evaluating the depth to which the metal has substantially melted. Cross-sectional observation can be observed with an optical microscope, SEM (scanning electron microscope), or the like.
 このように、レーザー光200が金属板101を貫通しないことによって、金属が溶け落ちない。そのため、正極端子21と容器23との間に溶融金属を受けるための下受け治具を挿入するためのスペースを特に設けなくてもよくなる。そのうえ、下受け治具を使用しないことで、蓄電モジュール1の全体のサイズを小さく抑えることができ、さらに、下受け治具の清掃などの処理も省略でき、製造工程を単純化することができる。 As described above, the laser beam 200 does not penetrate the metal plate 101, so that the metal does not melt. Therefore, it is not necessary to provide a space for inserting a receiving jig for receiving molten metal between the positive electrode terminal 21 and the container 23. In addition, by not using the lower receiving jig, the overall size of the power storage module 1 can be kept small, and further processing such as cleaning of the lower receiving jig can be omitted, and the manufacturing process can be simplified. .
 また、金属の溶け落ちがなくなるため、アンダーフィルが改善され、正極端子21と負極端子22との接続強度が向上する。 Further, since the metal does not melt, the underfill is improved, and the connection strength between the positive electrode terminal 21 and the negative electrode terminal 22 is improved.
 また、レーザー溶接における溶接部を、正極端子21、負極端子22及び金属板101の3層構造とすることで、高エネルギーのレーザー光200を照射しても、正極端子21及び負極端子22を貫通したレーザー光200が金属板101内で止まる。このように、高エネルギーでの溶接が可能なため、正極端子21と負極端子22との間の接触面積が増え、高強度且つ低抵抗な溶接部を形成できる。 Further, the welded portion in laser welding has a three-layer structure of the positive electrode terminal 21, the negative electrode terminal 22 and the metal plate 101, so that the positive electrode terminal 21 and the negative electrode terminal 22 are penetrated even when irradiated with the high-energy laser beam 200. The laser beam 200 stopped in the metal plate 101. Thus, since welding with high energy is possible, the contact area between the positive electrode terminal 21 and the negative electrode terminal 22 increases, and a high-strength and low-resistance weld can be formed.
 さらに、溶接された正極端子21及び負極端子22は、金属板101、絶縁部材102及びセル固定部材103を介して、容器23に固定される。これにより、蓄電モジュール1が振動した場合、正極端子21及び負極端子22と容器23との位相が一致する。これにより、正極端子21及び負極端子22と容器23との位相ずれが抑えられ、位相ずれによる正極端子21、負極端子22又は容器23への繰り返し応力が軽減されるので、耐振動性を向上させることができる。 Further, the welded positive electrode terminal 21 and negative electrode terminal 22 are fixed to the container 23 via the metal plate 101, the insulating member 102, and the cell fixing member 103. Thereby, when the electrical storage module 1 vibrates, the phases of the positive electrode terminal 21 and the negative electrode terminal 22 and the container 23 coincide with each other. Thereby, the phase shift between the positive electrode terminal 21 and the negative electrode terminal 22 and the container 23 is suppressed, and the repeated stress on the positive electrode terminal 21, the negative electrode terminal 22 or the container 23 due to the phase shift is reduced, so that the vibration resistance is improved. be able to.
 図1及び2に戻って説明を続ける。積層された各蓄電セル2は、以上に説明したレーザー溶接により直列接続される。 Returning to FIGS. 1 and 2, the description will be continued. The stacked power storage cells 2 are connected in series by the laser welding described above.
 ブラケット4は、積層された蓄電セル2における容器23の正極端子21及び負極端子22が配置された辺に直交する2辺それぞれを押さえるように2つ配置される。さらに、エンドプレート31及び32は、ブラケット4に固定され、蓄電セル2を積層方向から挟持し圧力を掛けつつ蓄電セル2を保持する。 Two brackets 4 are arranged so as to hold down two sides orthogonal to the side where the positive electrode terminal 21 and the negative electrode terminal 22 of the container 23 in the stacked storage cell 2 are arranged. Further, the end plates 31 and 32 are fixed to the bracket 4 and hold the storage cell 2 while sandwiching the storage cell 2 from the stacking direction and applying pressure.
 次に、図6を参照して、本実施例に係る蓄電モジュール1の製造工程を説明する。図6は、実施例1に係る蓄電モジュールの製造工程のフローチャートである。 Next, with reference to FIG. 6, the manufacturing process of the electrical storage module 1 according to the present embodiment will be described. FIG. 6 is a flowchart of the manufacturing process of the power storage module according to the first embodiment.
 作業者は、インサート成形などにより、金属板101、絶縁部材102及びセル固定部材103が固定され、セル端子固定部材100を生成させる(ステップS1)。 The worker fixes the metal plate 101, the insulating member 102, and the cell fixing member 103 by insert molding or the like, and generates the cell terminal fixing member 100 (step S1).
 次に、作業者は、セル固定部材103を容器23に固定する(ステップS2)。これにより、セル端子固定部材100が蓄電セル2に固定させる。 Next, the operator fixes the cell fixing member 103 to the container 23 (step S2). Thereby, the cell terminal fixing member 100 is fixed to the electricity storage cell 2.
 次に、作業者は、蓄電セル2を積層し、さらに、容器23側から正極端子21、負極端子22と重なり、且つ、正極端子21が金属板101と接触するように、正極端子21及び負極端子22を屈曲させる(ステップS3)。 Next, the operator stacks the storage cells 2, and further overlaps the positive electrode terminal 21 and the negative electrode terminal 22 from the container 23 side, and the positive electrode terminal 21 and the negative electrode so that the positive electrode terminal 21 is in contact with the metal plate 101. The terminal 22 is bent (step S3).
 次に、作業者は、積層した蓄電セル2にエンドプレート31及び32、並びに、ブラケット4を取り付け、エンドプレート31及び32、並びに、ブラケット4により蓄電セル2を保持させる(ステップS4)。 Next, the worker attaches the end plates 31 and 32 and the bracket 4 to the stacked power storage cells 2, and holds the power storage cells 2 by the end plates 31 and 32 and the bracket 4 (step S4).
 次に、作業者は、上押さえ治具により、絶縁部材102と反対方向から負極端子22を押圧する(ステップS5)。これにより、屈曲させた負極端子22、正極端子21及び金属板101が、絶縁部材102の方向に向かって押圧される。 Next, the operator presses the negative electrode terminal 22 from the opposite direction to the insulating member 102 with the upper pressing jig (step S5). As a result, the bent negative electrode terminal 22, positive electrode terminal 21, and metal plate 101 are pressed toward the insulating member 102.
 次に、作業者は、レーザー光が金属板101内で止まるように制御して負極端子22に向けてレーザー光を照射し、負極端子22、正極端子21を溶接する(ステップS6)。 Next, the operator controls the laser beam to stop within the metal plate 101, irradiates the laser beam toward the negative electrode terminal 22, and welds the negative electrode terminal 22 and the positive electrode terminal 21 (step S6).
 以上に説明したように、本実施例に係る蓄電モジュールは、セル端子固定部材により蓄電セルの容器と端子とが固定される。これにより、蓄電モジュールに振動が加えられても、端子と容器との位相が一致し、端子又はセル内部への繰り返し応力が軽減される。すなわち、耐振動性を向上させることができる。特に容器がラミネートの場合に、本実施例に係る蓄電モジュール1は、耐振動性の向上に対して大きく寄与することができる。 As described above, in the power storage module according to this embodiment, the container and the terminal of the power storage cell are fixed by the cell terminal fixing member. Thereby, even if a vibration is applied to the power storage module, the phases of the terminal and the container coincide with each other, and the repetitive stress to the terminal or the cell is reduced. That is, vibration resistance can be improved. In particular, when the container is a laminate, the power storage module 1 according to the present embodiment can greatly contribute to the improvement of vibration resistance.
 さらに、溶接部を端子2枚とセル端子固定部材に設けた金属板による3層構造にすることができ、高エネルギーのレーザー光を照射しても、レーザー光を金属板内で止めることができる。そのため、高エネルギーでの溶接を行うことができ、端子間の接触面積が増え、高強度且つ低抵抗な溶接部を形成することができる。 Furthermore, the welded portion can be made into a three-layer structure with two terminals and a metal plate provided on the cell terminal fixing member, and the laser beam can be stopped within the metal plate even when irradiated with a high-energy laser beam. . Therefore, welding with high energy can be performed, the contact area between the terminals can be increased, and a high strength and low resistance weld can be formed.
 さらに、金属の溶け落ちが発生しないため、容器やその他の部材に対する溶融金属の付着のおそれが無くなり、付着を防ぐための下受け治具を端子と容器との間に配置しなくてもよい。このように、下受け治具のスペースを設けないことにより、蓄電モジュールを小型化することができる。 Furthermore, since no metal melts out, there is no risk of the molten metal adhering to the container or other members, and there is no need to arrange a receiving jig between the terminal and the container to prevent adhesion. Thus, the storage module can be reduced in size by not providing a space for the support jig.
 例えば、図7は、蓄電モジュールの体積比較の図である。図7の比較例と記された行は、下受け治具を用いて製造した蓄電モジュールの体積を表している。また、実施例と記された行は、本実施例に係る製造方法を用いて製造された蓄電モジュール1の体積を表している。さらに、変化率と記された行は、比較例の体積に対して実施例の体積がどのくらい変化したかを表している。さらに、片側端子形状と両側端子形状という2つの項目があるが、ここでは、片側天使形状の蓄電セル2の場合について説明し、両側端子形状の蓄電セルの場合については、後で説明する。 For example, FIG. 7 is a diagram of volume comparison of power storage modules. The row described as the comparative example of FIG. 7 represents the volume of the electrical storage module manufactured using the receiving jig. Moreover, the line described as an Example represents the volume of the electrical storage module 1 manufactured using the manufacturing method which concerns on a present Example. Furthermore, the line described as the rate of change represents how much the volume of the example has changed relative to the volume of the comparative example. Furthermore, there are two items, the one-side terminal shape and the two-sided terminal shape. Here, the case of the one-sided angel-shaped storage cell 2 will be described, and the case of the two-sided terminal-shaped storage cell will be described later.
 図7は以下の条件を用いて計測した場合である。すなわち、蓄電セル2は、実施例及び比較例ともに、セル厚みが10mmであり、セル幅が100mmであり、セル高さが100mmであるとする。さらに、比較例の場合、端子高さが15mmである。また、実施例の場合、端子高さが5mmであり、セル固定部材103の厚みが0.3mmである。 FIG. 7 shows a case where measurement is performed using the following conditions. That is, it is assumed that the storage cell 2 has a cell thickness of 10 mm, a cell width of 100 mm, and a cell height of 100 mm in both the example and the comparative example. Furthermore, in the case of the comparative example, the terminal height is 15 mm. Moreover, in the case of an Example, terminal height is 5 mm and the thickness of the cell fixing member 103 is 0.3 mm.
 片側端子形状の蓄電セル2を用いた蓄電モジュール1を下受け治具を用いて製造した場合、蓄電モジュール1の体積は1185ccになる。これに対して、片側端子形状の蓄電セル2を用いた蓄電モジュール1を本実施例に係る製造方法を用いて製造した場合、蓄電モジュール1の体積は1082ccとなる。そして、その体積の変化率は-8.7%となる。このように、本実施例に係る製造方法を用いて蓄電モジュール1を製造する方が、下受け治具を用いて製造する場合に比べて、体積を小さくすることができ、小型化できることが分かる。 When the power storage module 1 using the one-side terminal-shaped power storage cell 2 is manufactured using a receiving jig, the volume of the power storage module 1 is 1185 cc. On the other hand, when the power storage module 1 using the one-sided terminal-shaped power storage cell 2 is manufactured using the manufacturing method according to the present embodiment, the volume of the power storage module 1 is 1082 cc. The rate of change in volume is -8.7%. Thus, it turns out that the direction which manufactures the electrical storage module 1 using the manufacturing method which concerns on a present Example can make a volume small, and can reduce in size compared with the case where it manufactures using a receiving jig. .
(変形例)
 次に、変形例について説明する。実施例1では、矩形形状をした容器23の一辺に正極端子21及び負極端子22が設けられた片側端子形状の蓄電セル2を用いて説明したが、正極端子21及び負極端子22の位置はこれに限らない。
(Modification)
Next, a modified example will be described. In the first embodiment, the one-side terminal-shaped storage cell 2 in which the positive electrode terminal 21 and the negative electrode terminal 22 are provided on one side of the rectangular container 23 has been described. However, the positions of the positive electrode terminal 21 and the negative electrode terminal 22 are the same. Not limited to.
 図8は、両側端子形状の蓄電セルの正面図である。本変形例の蓄電モジュール1は、図8のように矩形形状をした容器23の一辺に正極端子21が設けられその辺と対向する辺に負極端子22が設けられた蓄電セル2を用いる。このような蓄電セル2は、両側端子形状と呼称する。 FIG. 8 is a front view of a double-sided terminal type storage cell. The power storage module 1 of this modification uses a power storage cell 2 in which a positive electrode terminal 21 is provided on one side of a rectangular container 23 as shown in FIG. 8 and a negative electrode terminal 22 is provided on a side opposite to the side. Such a storage cell 2 is referred to as a double-sided terminal shape.
 両側端子形状の蓄電セル2であっても、実施例1と同様に、セル固定部材103に容器23が固定され、正極端子21及び負極端子22が、金属板101とともに溶接され、固定されることで、容器23と正極端子21及び負極端子22とが固定される。 Even in the case of the battery cell 2 having the both-side terminal shape, the container 23 is fixed to the cell fixing member 103 and the positive electrode terminal 21 and the negative electrode terminal 22 are welded and fixed together with the metal plate 101 as in the first embodiment. Thus, the container 23, the positive electrode terminal 21, and the negative electrode terminal 22 are fixed.
 ただし、両側端子形状の蓄電セル2の場合、対向する辺に正極端子21と負極端子22とが設けられているので、それぞれの辺の側で溶接が行われる。この場合、セル端子固定部材100は、セル固定部材103の両端に絶縁部材102及び金属板101を有していてもよい。また、セル固定部材103の一端に絶縁部材102及び金属板101を有するセル端子固定部材100を向かい合う各辺の側で1つずつ用いてもよい。 However, in the case of the electricity storage cell 2 having a both-side terminal shape, since the positive electrode terminal 21 and the negative electrode terminal 22 are provided on opposite sides, welding is performed on each side. In this case, the cell terminal fixing member 100 may have the insulating member 102 and the metal plate 101 at both ends of the cell fixing member 103. Moreover, you may use the cell terminal fixing member 100 which has the insulating member 102 and the metal plate 101 in the end of the cell fixing member 103 one by one on the side of each side which faces.
 そして、両側端子形状の蓄電セル2を用いた蓄電モジュール1であっても、実施例1と同様の効果を有する。 And even if it is the electrical storage module 1 using the electrical storage cell 2 of a both-sides terminal shape, it has an effect similar to Example 1. FIG.
 例えば、図7に示すように、両側端子形状の蓄電セル2を用いた蓄電モジュール1を下受け治具を用いて製造した場合、蓄電モジュール1の体積は1339ccになる。これに対して、両側端子形状の蓄電セル2を用いた蓄電モジュール1を本実施例に係る製造方法を用いて製造した場合、蓄電モジュール1の体積は1133ccとなる。そして、その体積の変化率は-15.4%となる。このように、本変形例の場合でも、下受け治具を用いて製造する場合に比べて、体積を小さくすることができ、小型化できることが分かる。 For example, as shown in FIG. 7, when the power storage module 1 using the power storage cells 2 having the both-side terminal shape is manufactured using a support jig, the volume of the power storage module 1 is 1339 cc. On the other hand, when the electrical storage module 1 using the electrical storage cell 2 having the both-side terminal shape is manufactured using the manufacturing method according to this embodiment, the volume of the electrical storage module 1 is 1133 cc. The volume change rate is -15.4%. Thus, even in the case of this modification, it can be seen that the volume can be reduced and the size can be reduced as compared with the case of manufacturing using the receiving jig.
 図9は、実施例2に係る蓄電セルの接続を説明するための模式図である。実施例1では、蓄電セル2の容器23でセル固定部材103を挟むように配置されていたが、これに限らず、セル固定部材103が容器23に固定されており、金属板101が正極端子21及び負極端子22に溶接され固定されていればよい。 FIG. 9 is a schematic diagram for explaining connection of power storage cells according to the second embodiment. In the first embodiment, the cell fixing member 103 is disposed so as to be sandwiched between the containers 23 of the storage cells 2, but the present invention is not limited thereto, and the cell fixing member 103 is fixed to the container 23, and the metal plate 101 is a positive electrode terminal. What is necessary is just to be welded and fixed to 21 and the negative electrode terminal 22.
 そこで、本実施例では、蓄電セル2に対するセル端子固定部材100の配置を実施例1と異ならせた構成について説明する。 Therefore, in the present embodiment, a configuration in which the arrangement of the cell terminal fixing member 100 with respect to the storage cell 2 is different from that in the first embodiment will be described.
 本実施例に係る蓄電モジュール1では、蓄電セル2の容器23の表面同士が粘着テープや接着剤などで固定されている。 In the power storage module 1 according to the present embodiment, the surfaces of the containers 23 of the power storage cells 2 are fixed with an adhesive tape, an adhesive, or the like.
 そして、セル固定部材103は、固定された2つの蓄電セル2の一方の容器23の反対側の面に固定される。 The cell fixing member 103 is fixed to the opposite surface of the one container 23 of the two storage cells 2 that are fixed.
 絶縁部材102は、容器23が接着されたセル固定部材103の面上に配置され、セル固定部材103に固定される。 The insulating member 102 is disposed on the surface of the cell fixing member 103 to which the container 23 is bonded, and is fixed to the cell fixing member 103.
 金属板101は、絶縁部材102のセル固定部材103と反対側の面に配置され、絶縁部材102に固定される。 The metal plate 101 is disposed on the surface of the insulating member 102 opposite to the cell fixing member 103 and is fixed to the insulating member 102.
 セル固定部材103に接着されている容器23から正極端子21が、金属板101の絶縁部材102と反対側の面まで延びる。また、セル固定部材103に接着されていない方の容器23から負極端子22が、正極端子21の金属板101と反対側の表面に重なるように、金属板101の位置まで延びる。 The positive electrode terminal 21 extends from the container 23 bonded to the cell fixing member 103 to the surface of the metal plate 101 opposite to the insulating member 102. Further, the negative electrode terminal 22 extends from the container 23 not bonded to the cell fixing member 103 to the position of the metal plate 101 so as to overlap the surface of the positive electrode terminal 21 opposite to the metal plate 101.
 重ねられた正極端子21、負極端子22及び金属板101は、金属板101内で止まるように制御されたレーザー光が負極端子22側から照射され、溶接される。これにより、正極端子21及び負極端子22は、金属板101に固定される。 The superposed positive electrode terminal 21, negative electrode terminal 22 and metal plate 101 are irradiated with laser light controlled to stop within the metal plate 101 from the negative electrode terminal 22 side and welded. Thereby, the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the metal plate 101.
 そして、図9に示すような状態であっても、正極端子21及び負極端子22は、金属板101、絶縁部材102及びセル固定部材103を介して、セル固定部材103に接着されている容器23と固定されている。さらに、正極端子21及び負極端子22は、セル固定部材103に固定されている容器23を介して、もう一方の容器23とも固定されている。 Even in the state shown in FIG. 9, the positive electrode terminal 21 and the negative electrode terminal 22 are bonded to the cell fixing member 103 through the metal plate 101, the insulating member 102, and the cell fixing member 103. And are fixed. Further, the positive electrode terminal 21 and the negative electrode terminal 22 are also fixed to the other container 23 via the container 23 fixed to the cell fixing member 103.
 以上に説明したように、本実施例に係る蓄電モジュールにおいても、蓄電モジュールに振動が与えられた場合にも、各端子と容器との位相のずれが発生せず、端子又はセル内部への繰り返し応力が軽減される。すなわち、耐振動性を向上させることができる。 As described above, even in the power storage module according to the present embodiment, even when vibration is applied to the power storage module, a phase shift between each terminal and the container does not occur, and repeated to the inside of the terminal or the cell. Stress is reduced. That is, vibration resistance can be improved.
 また、レーザー溶接に関しては、実施例1と同様であり、高強度且つ低抵抗な溶接部が生成でき、さらに蓄電モジュールの小型化を図ることができる。 Also, laser welding is the same as in Example 1, and a high-strength and low-resistance weld can be generated, and the power storage module can be downsized.
 図10は、実施例3に係る蓄電セルの接続を説明するための模式図である。本実施例は、蓄電セル2に対するセル端子固定部材100の配置が、実施例1及び実施例2以外の構成である。 FIG. 10 is a schematic diagram for explaining connection of power storage cells according to the third embodiment. In the present embodiment, the arrangement of the cell terminal fixing member 100 with respect to the storage cell 2 is a configuration other than the first embodiment and the second embodiment.
 本実施例に係る蓄電モジュール1では、2つの蓄電セル2の容器23がセル固定部材103の1つの面に、それぞれの正極端子21と負極端子22とが向き合うように搭載され、固定される。 In the power storage module 1 according to the present embodiment, the containers 23 of the two power storage cells 2 are mounted and fixed on one surface of the cell fixing member 103 so that the positive electrode terminal 21 and the negative electrode terminal 22 face each other.
 絶縁部材102は、セル固定部材103の容器23が搭載された面上の、2つの容器23の間に固定される。 The insulating member 102 is fixed between the two containers 23 on the surface on which the container 23 of the cell fixing member 103 is mounted.
 金属板101は、絶縁部材102のセル固定部材103と反対側の面に配置され、絶縁部材102に固定される。 The metal plate 101 is disposed on the surface of the insulating member 102 opposite to the cell fixing member 103 and is fixed to the insulating member 102.
 向かい合う容器23の一方から正極端子21が、金属板101の絶縁部材102と反対側の面まで延びる。また、他方の容器23から負極端子22が、正極端子21の金属板101と反対側の表面に重なるように、金属板101の位置まで延びる。 The positive terminal 21 extends from one of the opposing containers 23 to the surface of the metal plate 101 opposite to the insulating member 102. Further, the negative electrode terminal 22 extends from the other container 23 to the position of the metal plate 101 so as to overlap the surface of the positive electrode terminal 21 opposite to the metal plate 101.
 重ねられた正極端子21、負極端子22及び金属板101は、金属板101内で止まるように制御されたレーザー光が負極端子22側から照射され、溶接される。これにより、正極端子21及び負極端子22は、金属板101に固定される。 The superposed positive electrode terminal 21, negative electrode terminal 22 and metal plate 101 are irradiated with laser light controlled to stop within the metal plate 101 from the negative electrode terminal 22 side and welded. Thereby, the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the metal plate 101.
 そして、図10に示すような状態であっても、正極端子21及び負極端子22は、金属板101、絶縁部材102及びセル固定部材103を介して容器23と固定されている。 Even in the state shown in FIG. 10, the positive electrode terminal 21 and the negative electrode terminal 22 are fixed to the container 23 via the metal plate 101, the insulating member 102, and the cell fixing member 103.
 以上に説明したように、本実施例に係る蓄電モジュールにおいても、蓄電モジュールに振動が与えられた場合にも、各端子と容器との位相のずれが発生せず、端子又はセル内部への繰り返し応力が軽減される。すなわち、耐振動性を向上させることができる。 As described above, even in the power storage module according to the present embodiment, even when vibration is applied to the power storage module, a phase shift between each terminal and the container does not occur, and repeated to the inside of the terminal or the cell. Stress is reduced. That is, vibration resistance can be improved.
 また、レーザー溶接に関しては、実施例1と同様であり、高強度且つ低抵抗な溶接部が生成でき、さらに蓄電モジュールの小型化を図ることができる。 Also, laser welding is the same as in Example 1, and a high-strength and low-resistance weld can be generated, and the power storage module can be downsized.
 また、以上の説明では、主にレーザー溶接によって正極端子21と負極端子22と金属板101とが溶接される構造について記述したが、レーザー溶接の他に、抵抗溶接などの方法によってもそれぞれの部品が溶接されてもよい。 In the above description, the structure in which the positive electrode terminal 21, the negative electrode terminal 22, and the metal plate 101 are welded mainly by laser welding has been described. However, in addition to laser welding, each component can also be obtained by a method such as resistance welding. May be welded.
 また、以上の説明では、正極端子21と負極端子22とが異なる材質で構成されている場合で説明したが、正極端子と負極端子とは同じ材質で構成されていてもよい。 In the above description, the case where the positive electrode terminal 21 and the negative electrode terminal 22 are made of different materials has been described. However, the positive electrode terminal and the negative electrode terminal may be made of the same material.
 また、以上の説明では、主に正極端子21と負極端子22が溶接され直列接続される場合について説明したが、隣り合う蓄電セル2の正極端子21同士、または負極端子22同士を溶接し、並列に接続する場合でも本発明の効果は同様に発現する。 Moreover, although the above description demonstrated the case where the positive electrode terminal 21 and the negative electrode terminal 22 were mainly welded and connected in series, the positive electrode terminals 21 of the adjacent electrical storage cell 2 or the negative electrode terminals 22 were welded, and it paralleled. The effect of the present invention is also manifested in the case of connection to the same.
 1 蓄電モジュール
 2 蓄電セル
 4 ブラケット
 21 正極端子
 22 負極端子
 23 容器
 31,32 エンドプレート
 100 セル端子固定部材
 101 金属板
 102 絶縁部材
 103 セル固定部材
DESCRIPTION OF SYMBOLS 1 Power storage module 2 Power storage cell 4 Bracket 21 Positive electrode terminal 22 Negative electrode terminal 23 Container 31, 32 End plate 100 Cell terminal fixing member 101 Metal plate 102 Insulating member 103 Cell fixing member

Claims (11)

  1.  電気を蓄える蓄電部材、及び、前記蓄電部材から突出する正極端子及び負極端子を有する複数の蓄電セルを備え、
     異なる前記蓄電セルの前記正極端子と前記負極端子とが積層され、積層方向の一端に前記蓄電部材に固定された固定部材が配置され、前記固定部材と、前記正極端子及び前記負極端子、隣り合う前記蓄電セルの前記正極端子同士もしくは前記負極端子同士とが溶接されることで前記蓄電セル同士が直列又は並列に接続されている
     ことを特徴とする蓄電モジュール。
    A power storage member that stores electricity, and a plurality of power storage cells having a positive electrode terminal and a negative electrode terminal protruding from the power storage member,
    The positive electrode terminal and the negative electrode terminal of the different power storage cells are stacked, a fixing member fixed to the power storage member is disposed at one end in the stacking direction, and the fixing member, the positive electrode terminal and the negative electrode terminal are adjacent to each other The power storage modules are connected in series or in parallel by welding the positive terminals or the negative terminals of the power storage cells.
  2.  前記固定部材は、金属板及び絶縁部材とセル固定部材とを有し、
     前記金属板は、積層された前記正極端子及び前記負極端子の前記積層方向の前記一端に接触しており、
     前記セル固定部材は、前記蓄電部材と固定されており、
     前記絶縁部材は、前記金属板と前記セル固定部材との間に配置されている
     ことを特徴とする請求項1に記載の蓄電モジュール。
    The fixing member includes a metal plate, an insulating member, and a cell fixing member,
    The metal plate is in contact with the one end of the stacked positive electrode terminal and the negative electrode terminal in the stacking direction,
    The cell fixing member is fixed to the power storage member,
    The power storage module according to claim 1, wherein the insulating member is disposed between the metal plate and the cell fixing member.
  3.  前記溶接は、積層された前記正極端子又は前記負極端子の側からレーザー光が照射され、前記固定部材の内部までを到達深度としてレーザー溶接されることを特徴とする請求項1又は2に記載の蓄電モジュール。 3. The welding according to claim 1, wherein the welding is performed by irradiating a laser beam from a side of the stacked positive electrode terminal or the negative electrode terminal, and performing laser welding with a depth reaching the inside of the fixing member. Power storage module.
  4.  前記金属板は、アルミニウム、鉄、又は銅を主成分とした金属単体又は合金であることを特徴とする請求項2に記載の蓄電モジュール。 3. The power storage module according to claim 2, wherein the metal plate is a single metal or an alloy mainly composed of aluminum, iron, or copper.
  5.  前記絶縁部材は、合成樹脂を主成分とする絶縁体であることを特徴とする請求項2に記載の蓄電モジュール。 3. The power storage module according to claim 2, wherein the insulating member is an insulator mainly composed of a synthetic resin.
  6.  前記セル固定部材は、アルミニウム又は鉄を主成分とした金属単体又は合金、もしくは合成樹脂であることを特徴とする請求項2に記載の蓄電モジュール。 3. The power storage module according to claim 2, wherein the cell fixing member is a metal simple substance or alloy mainly composed of aluminum or iron, or a synthetic resin.
  7.  前記正極端子及び前記負極端子は、同一の材料から成ることを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein the positive electrode terminal and the negative electrode terminal are made of the same material.
  8.  前記正極端子及び前記負極端子は、互いに異なる材料から成ることを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein the positive electrode terminal and the negative electrode terminal are made of different materials.
  9.  前記正極端子は、アルミニウムを主成分とする材料から成ることを特徴とする請求項8に記載の蓄電モジュール。 The power storage module according to claim 8, wherein the positive electrode terminal is made of a material mainly composed of aluminum.
  10.  前記負極端子は、銅を主成分とする材料から成ることを特徴とする請求項8に記載の蓄電モジュール。 The power storage module according to claim 8, wherein the negative electrode terminal is made of a material mainly composed of copper.
  11.  電気を蓄える蓄電部材、及び、前記蓄電部材から突出する正極端子及び負極端子を有する複数の蓄電セルを有する蓄電モジュールの製造方法であって、
     異なる前記蓄電セルの前記正極端子と前記負極端子とを積層し、
     積層方向の一端に前記蓄電部材に固定された固定部材を配置し、
     前記固定部材と、前記正極端子及び前記負極端子、又は、隣り合う前記蓄電セルの正極端子同士もしくは負極端子同士とを溶接して前記蓄電セル同士が直列又は並列に接続する
     ことを特徴とする蓄電モジュールの製造方法。
    A method for producing a power storage module having a plurality of power storage cells having a power storage member for storing electricity, and a positive electrode terminal and a negative electrode terminal protruding from the power storage member,
    Laminating the positive electrode terminal and the negative electrode terminal of the different storage cells,
    A fixing member fixed to the power storage member is disposed at one end in the stacking direction,
    The power storage cell is characterized in that the power storage cells are connected in series or in parallel by welding the fixing member, the positive electrode terminal and the negative electrode terminal, or the positive electrode terminals or the negative electrode terminals of the adjacent energy storage cells. Module manufacturing method.
PCT/JP2015/062294 2014-05-21 2015-04-22 Electricity storage module and manufacturing method for electricity storage module WO2015178153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016521008A JP6534656B2 (en) 2014-05-21 2015-04-22 Power storage module and method of manufacturing power storage module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105119 2014-05-21
JP2014105119 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015178153A1 true WO2015178153A1 (en) 2015-11-26

Family

ID=54553829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062294 WO2015178153A1 (en) 2014-05-21 2015-04-22 Electricity storage module and manufacturing method for electricity storage module

Country Status (2)

Country Link
JP (1) JP6534656B2 (en)
WO (1) WO2015178153A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078374A (en) * 2015-12-29 2017-07-07 에이치엘그린파워 주식회사 Welding lead-sensing bar welding assembly with simplification and Battery module having the same
JP2018533820A (en) * 2016-05-18 2018-11-15 エルジー・ケム・リミテッド Lead welding apparatus, battery module manufactured by the lead welding apparatus, and battery pack including the battery module
CN110770958A (en) * 2017-06-19 2020-02-07 罗伯特·博世有限公司 Battery pack device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178860A (en) * 2002-11-25 2004-06-24 Nissan Motor Co Ltd Electrode connecting method for secondary sheet battery
JP2006344572A (en) * 2005-05-10 2006-12-21 Nec Lamilion Energy Ltd Manufacturing method for electric device module and electric device module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197837U (en) * 1986-06-06 1987-12-16
JPH073629Y2 (en) * 1989-07-24 1995-01-30 株式会社指月電機製作所 Capacitor element block
JP2006278263A (en) * 2005-03-30 2006-10-12 Fuji Heavy Ind Ltd Power storage device and its packaging structure
JP5451211B2 (en) * 2009-06-26 2014-03-26 パナソニック株式会社 Power storage unit
EP2522043B1 (en) * 2009-10-14 2019-05-15 Greatbatch Ltd. Temporary insulator for battery packs and associated systems and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178860A (en) * 2002-11-25 2004-06-24 Nissan Motor Co Ltd Electrode connecting method for secondary sheet battery
JP2006344572A (en) * 2005-05-10 2006-12-21 Nec Lamilion Energy Ltd Manufacturing method for electric device module and electric device module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078374A (en) * 2015-12-29 2017-07-07 에이치엘그린파워 주식회사 Welding lead-sensing bar welding assembly with simplification and Battery module having the same
KR102461786B1 (en) * 2015-12-29 2022-11-01 에이치그린파워 주식회사 Welding lead-sensing bar welding assembly with simplification and Battery module having the same
JP2018533820A (en) * 2016-05-18 2018-11-15 エルジー・ケム・リミテッド Lead welding apparatus, battery module manufactured by the lead welding apparatus, and battery pack including the battery module
CN110770958A (en) * 2017-06-19 2020-02-07 罗伯特·博世有限公司 Battery pack device
JP2020523768A (en) * 2017-06-19 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Battery pack device, battery pack and laser welding process
JP7178371B2 (en) 2017-06-19 2022-11-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing battery pack for hand-held machine tool
US11618100B2 (en) 2017-06-19 2023-04-04 Robert Bosch Gmbh Rechargeable battery pack unit
CN110770958B (en) * 2017-06-19 2023-10-20 罗伯特·博世有限公司 Battery pack device, battery pack of hand-held power tool, and laser welding method

Also Published As

Publication number Publication date
JPWO2015178153A1 (en) 2017-04-20
JP6534656B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP4829587B2 (en) Electrical device assembly and manufacturing method thereof
JP6247766B2 (en) Pouch type secondary battery and manufacturing method thereof
EP3159953B1 (en) Battery pack tab welding method
JP2017022124A (en) Electrode assembly with porous structure and secondary battery including the same
CN105990559B (en) Electric storage element
WO2014002950A1 (en) Cell pack
KR101139016B1 (en) Lithium secondary battery having multi-directional lead-tab structure
JP2020513661A (en) Battery module
JP2010016043A (en) Electric storage device
JP6195819B2 (en) Power storage module and manufacturing method thereof
JP6534656B2 (en) Power storage module and method of manufacturing power storage module
JP2019117740A (en) Power storage element and power storage device
KR101486623B1 (en) Pouch type secondary battery and method for manufacturing the same
JP6950406B2 (en) Power storage element
KR101441645B1 (en) Pouch film for secondary battery and method for manufacturing secondary battery using the same
WO2018123502A1 (en) Power storage module and manufacturing method for power storage module
JPWO2016031501A1 (en) Power storage device and method for manufacturing power storage device
JP6155724B2 (en) Power storage device and method for manufacturing power storage device
JP2019061881A (en) Power storage element
JP2016046023A (en) Battery pack
JP2018073508A (en) Power storage device and manufacturing method of power storage device
JP2018142459A (en) Power storage device
JP6926509B2 (en) Power storage device
JP6631214B2 (en) Electrode assembly
JP2019061893A (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795802

Country of ref document: EP

Kind code of ref document: A1