WO2015176332A1 - 一种led 3d显示装置 - Google Patents

一种led 3d显示装置 Download PDF

Info

Publication number
WO2015176332A1
WO2015176332A1 PCT/CN2014/078884 CN2014078884W WO2015176332A1 WO 2015176332 A1 WO2015176332 A1 WO 2015176332A1 CN 2014078884 W CN2014078884 W CN 2014078884W WO 2015176332 A1 WO2015176332 A1 WO 2015176332A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
sub
prisms
led
display device
Prior art date
Application number
PCT/CN2014/078884
Other languages
English (en)
French (fr)
Inventor
刘明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2015176332A1 publication Critical patent/WO2015176332A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers

Definitions

  • the present invention relates to a display device, and more particularly to an LED 3D display device.
  • 3D technology can make the picture stereoscopic, and the image is no longer limited to the screen plane, as if it can get out of the screen and let the audience be immersive. feel.
  • the classification of 3D display technology is numerous, the most basic principle is similar, that is, the different images are received by the human eye, and then the brain is superimposed on the image information to form a front, a back, a left, and a right. An image that is closer to the stereoscopic effect.
  • 3D stereoscopic displays are generally classified into a naked eye type, a lens type, a grating type, and the like.
  • the naked-eye 3D display needs to have a better effect within a specific viewing range, that is, when the user views the naked-eye 3D stereoscopic display at a position outside the viewing range, in addition to the possibility of seeing the wrong stereoscopic image or The stereoscopic effect of the image is not felt at all, and therefore, the current 3D display is still dominated by a lenticular or raster stereoscopic display.
  • the lenticular 3D display includes a lens panel and a liquid crystal panel, wherein the lens panel is disposed on the liquid crystal panel. When the lenticular 3D display displays an image, the lens panel receives the image of the liquid crystal panel and generates a splitting effect for the left and right eyes, giving the user a three-dimensional feeling.
  • LCD TVs have been developed to have the ability to display stereoscopic images, but with the current manufacturing technology of LCD panels. In other words, it is still difficult to manufacture a large-area LCD panel that conforms to a large outdoor TV wall, and the LCD panel that is currently capable of being manufactured is often too expensive to be used on a large TV wall. , unacceptable.
  • a 3D stereoscopic display device using a single quaternary light emitting diode as a pixel display element has been improved.
  • an object of the present invention is to provide a large-sized LED 3D display device which is constructed by using four primary illuminators as pixel display elements and using different arrangement and combination.
  • the present invention provides an LED 3D display device comprising:
  • a plurality of light emitting diodes each of which is provided with sub-pixels composed of four single primary color illuminators; a plurality of sets of prisms respectively symmetrically arranged on both sides of any two sub-pixels;
  • Two sets of images are formed by each of the sub-pixels through their adjacent prisms, and are respectively projected into the left and right eyes of the viewer.
  • the plurality of sets of prisms are symmetrically arranged on the left and right sides or the upper and lower sides of any two sub-pixels, respectively.
  • the sub-pixels are arranged in a strip shape to form a group of pixels, or are arranged in a matrix shape to form a group of pixels.
  • the prisms are respectively disposed horizontally on the left side and the right side of the two sub-pixels, or are respectively disposed symmetrically and vertically on the upper side and the lower side of the pixel area.
  • the four pixels are arranged side by side to form a square structure pixel region, and the prisms are symmetrically erected on the upper side and the lower side of the pixel region, respectively.
  • the four rows of pixels are arranged in parallel to form a pixel region, and in different rows of pixels, the sub-pixels are arranged in a wrong manner, so that the color of the imaged image is softer, and the local color contrast is prevented from being excessively large. .
  • the width of the prism is less than or equal to the width of two sub-pixels, or less than or equal to the width of one sub-pixel.
  • the sub-pixels are white, red, green and blue illuminants, respectively.
  • Sub-pixels are respectively formed by monochromatic illuminants to form WRGB pixels.
  • the LED 3D display device of the present invention four single primary color illuminants are used as sub-pixels, and pixels are arranged and combined in different ways, and the structure of the pixels may be strip or square, and the prisms are different. Arrangement, the prism and the pixel can be parallel or perpendicular to each other to obtain different imaging effects.
  • the sub-pixels of different columns are arranged in an interlaced manner, so that different pixels pass through the prism, the color is more uniform and soft, and the light penetration effect is good, and the colors are solved. The contrast is large, and the local color is too deep.
  • the width of the prism is increased, and the arrangement of the arrangement is reduced in resolution, but the color is uniform, which is more suitable for the application of a large 3D display device, and the manufacturing precision is low, and the mass production is improved.
  • the pass rate of finished products is suitable for large LED TV walls.
  • FIG. 1 is a schematic structural view of a first embodiment of an LED 3D display device according to the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of an LED 3D display device according to the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of an LED 3D display device according to the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of an LED 3D display device according to the present invention.
  • the present invention provides an LED 3D display device, which includes: a plurality of light emitting diodes, each of which is composed of four single primary color illuminants. Sub-pixel 1; multiple sets of prisms 2, which are respectively symmetrically arranged on both sides of any two sub-pixels 1; two sets of images are respectively formed through the prisms 2 through each of the light-emitting diodes, and are respectively projected into the left and right eyes of the viewer.
  • the LEDs are available in four different colors, white (W), red (R), green (G), and blue (B).
  • the illuminants of different colors are respectively sub-pixels, and the four sub-pixels 1 constitute one WRGB pixel 10.
  • the prisms 2 are symmetrically arranged on both sides of the sub-pixel 1, respectively, and the prisms 2 and the sub-pixels 1 are aligned with each other, which may be horizontally arranged on the left and right sides of the sub-pixel 1, or may be vertically arranged on the sub-pixel 1.
  • the WRGB pixels 10 form two sets of images through adjacent prisms 2, respectively projecting into the left and right eyes of the viewer to form a 3D image in the human brain.
  • the sub-pixels 1 are arranged in a strip shape to form a group of WRGB pixels 10, and the prisms 2 are horizontally disposed on the left and right sides of the two sub-pixels 1, respectively.
  • Each column of WRGB pixels 10 is parallel to each other, and the four rows of WRGB pixels 10 are arranged in parallel to form a pixel region X.
  • the sub-pixels 1 are arranged in a wrong manner, as in the first row of WRGB pixels 10, From left to right, the sub-pixels 1 are red (R), green (G), blue (B), and white (W) in sequence; in the second row of WRGB pixels 10, from left to right, the sub-pixels 1 are sequentially green ( G), blue (B), white (W), and red (R); in the third row of WRGB pixels 10, from left to right, sub-pixels 1 are blue (B), white (W), red ( R) and green (G); in the fourth row of WRGB pixels 10, from left to right, sub-pixels 1 are white (W), red (R), green (G), and blue (B), respectively. This is limited to this.
  • each row of WRGB pixels 10 will form two images through adjacent lenses.
  • the first row of WRGB pixels 10 will form a group of images upward through the prisms 2 aligned with them.
  • the first upper image also forms a set of images downward through the prisms 2 of the second row, and is set as the first lower image; likewise, the WRGB pixels 10 in the second row pass through the prisms aligned with the same 2 A set of images is formed upward, and is set as the second upper image. At the same time, a set of images is also formed downward through the prisms 2 of the third row, and is set as the second lower image. At this time, the first upper image formed by the WRGB pixels 10 of the first row and the second upper image formed by the WRGB pixels 10 of the second row overlap, and the generated image is projected into the right eye (or the left eye) of the viewer.
  • the second upper image formed by the WRGB pixels 10 of the second row and the third upper image formed by the WRGB pixels 10 of the third row overlap, and the generated image is projected into the left eye (or right eye) of the viewer.
  • make the human brain form a 3D visual image effect.
  • a 3D visual imaging effect is formed.
  • the sub-pixels 1 are arranged in the same manner as in the first embodiment.
  • the prisms are respectively symmetrically erected on the upper side and the lower side of the pixel region X, that is, the columns of prisms 2 are respectively stood on the upper side of the first column of sub-pixels 1 in the pixel region X and the lower side of the fourth column of sub-pixels 1
  • the width of each column of prisms 2 is less than or equal to the width of the sub-pixel 1, and preferably, the width of the prism 2 is the same as the width of the sub-pixel 1.
  • the sub-pixels 1 of each column respectively pass through the corresponding prisms 2, form a group of images directly through the upper prism, project into the right eye of the observer, form another group of images through the lower prism, and project into In the left eye, a 3D visual effect is formed by the misplacement of the injected image.
  • the 3RGB visual imaging effect is formed by arranging the WRGB four monochrome pixels in a strip shape and the prisms 2 are vertically arranged.
  • the sub-pixels 1 are arranged in a row shape to form a group of WRGB pixels. 10.
  • the upper sub-pixels are red (R) and green (G), and the following sub-pixels are blue (B) and white (W), four monochromatic sub-pixels.
  • the composition is square.
  • four WRGB pixels 10 are included, which are formed into a square structure.
  • two WRGB pixels 10 are respectively disposed, wherein in each WRGB pixel, the sub-pixel 1 is The order of arrangement can be the same or different.
  • the prisms 2 are respectively symmetrically erected on the upper side and the lower side of the pixel area Y, and one prism 2 is opposite to the two sub-pixels 1, that is, two sub-pixels can be imaged through a prism whose width is less than or equal to two sub-pixels
  • the width preferably, the width of the prism is equal to the width of the two sub-pixels.
  • each WRGB pixel 10 can be imaged through an adjacent prism 2, a set of images formed by the upper prism, projected into the observer's right eye, and another set of images formed by the lower prism, projected into the left In the eye, a 3D visual effect is formed by the misplacement of the injected image.
  • the prisms are vertically erected, so that the prisms are widened, and although the resolution of the image is reduced, the colors are softer and can be widely applied to a large-sized LED 3D display device. The preparation accuracy and difficulty of the display device are reduced.
  • the sub-pixels 1 are arranged in the same manner as in the first embodiment.
  • the difference is that the prisms are placed symmetrically horizontally on the left and right sides of the pixel area Y, respectively.
  • a prism 2 is opposite to the two sub-pixels 1, so that the two sub-pixels can be imaged through a prism.
  • the imaging principle is the same as that of the first embodiment, and therefore will not be described again.
  • the prism and the pixel can be arranged horizontally or vertically.
  • the prisms are vertically arranged, that is, the arrangement of the prisms in the naked-eye 3D liquid crystal display.
  • the arrangement divides the pixel image into two left and right by the vertical prism, that is, corresponding to the human eye.
  • the left and right eyes, each of the vertically arranged prisms are divided into left and right eye images, so the left and right eyes of the person respectively receive different images, thereby forming a 3D stereoscopic effect image in the brain.
  • the horizontal arrangement of the prisms is different.
  • the horizontally arranged prisms generate the upper and lower images through the prism.
  • the upper and lower images generated by the prism 1 as the first upper image and the first lower image, so that the horizontally arranged prisms 2 are also vertical.
  • the pixels closely connected in the direction generate the second upper image and the second lower image through the horizontal prism 2, and the horizontal prism 3 generates the third upper image and the third lower image, so that the distance between the prism and the display screen can be controlled to make the first lower
  • the image is on the same horizontal line as the second upper image, the second lower image, and the third upper image, and the like, so that the human eye can simultaneously receive the first lower image and the second upper image, the second lower image, and the third at the same horizontal line.
  • the upper image and the like so that the left and right eyes of the person can respectively obtain different images, thereby forming a 3D effect.
  • the prisms are arranged vertically in a common way, and the mass production is experienced and easy to control.
  • the prisms are horizontally arranged, the upper and lower images are generated by adjacent prisms to distinguish the left and right eyes of the human eye to produce a 3D effect.
  • the 3D effect needs to accurately control the distance between the prism and the display screen to achieve the upper and lower images generated by the adjacent prisms. At the same level, a more realistic 3D effect image can be achieved.
  • the LED 3D display device of the present invention four single primary color illuminants are used as sub-pixels, and pixels are arranged and combined in different ways, and the structure of the pixels can be strip or square, and the prisms and pixels are arranged in different ways.
  • the images can be parallel or perpendicular to each other to achieve different imaging effects.
  • the invention is arranged in the same manner.
  • the sub-pixels of different columns are arranged in an interlaced manner, so that the different pixels pass through the prism, the color is more uniform and soft, and the light penetration effect is good, which solves the phenomenon that the contrast of each color is large and the local color is too deep.
  • the width of the prism is increased, and the arrangement is reduced in resolution, but the color is uniform, which is more suitable for the application of a large 3D display device, and the manufacturing precision is low, and the mass production is improved. Finished product pass rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种LED 3D显示装置包括:多颗发光二极管,各组发光二极管中设有由四颗单原色的发光体构成的子像素;多组棱镜,分别对称排列于任意两子像素的两侧;通过每个子像素分别透过其相邻的棱镜形成两组图像,分别投射入观看者的左右眼。多组棱镜分别对称地排列于任意两子像素的左右两侧或上下两侧,子像素呈条形分布或田字型分布。采用不同列的子像素采用交错的方式排列,使得不同像素透过棱镜后,颜色更为均匀柔和,光线穿透效果良好,解决了各颜色对比度较大,局部颜色过深等现象。另外,像素采用田字形排列成方形时,棱镜的宽度加大,这种排列方式显示分辨率降低,但色彩均匀,更适用于大型3D显示装置的应用,且制造要求精度低,适用于大型LED电视墙。

Description

一种 LED 3D显示装置 技术领域
本发明涉及一种显示装置, 尤其是指一种 LED 3D显示装置。
背景技术
近年来, 显示技术得到快速的发展, 与普通 2D画面显示相比, 3D技术可以使画面变得 立体逼真, 图像不再局限于屏幕平面, 仿佛能够走出屏幕外面, 让观众有身临其境的感觉。 尽管 3D显示技术分类繁多, 不过最基本的原理是相似的, 就是利用人眼左右分别接收不同 画面, 然后大脑经过对图像信息进行叠加产生, 构成一个具有前一后、 上一下、 左一右、 远 一近等立体方向效果的影像。
一般而言, 3D立体显示器一般分为裸眼式、 透镜式、 光栅式等类型。 其中, 裸眼式 3D 显示器需要在特定的观看范围以内才会有较佳的效果, 也就是说, 当使用者在观看范围以外 的位置观看裸眼 3D立体显示器时, 除了可能看到错误的立体影像或完全感觉不到影像的立 体感, 因此, 目前 3D显示器仍以透镜式或光栅式立体显示器为主流。 透镜式 3D显示器包含 透镜面板与液晶面板, 其中透镜面板设置于液晶面板上。 当透镜式 3D显示器显示影像时, 透镜面板会接收液晶面板的影像并产生左、 右眼的分光效果, 让使用者产生立体的感觉。
已知用于户外的大型 LED电视墙仅能呈现 2D显示效果, 无法显示 3D立体画面, 另一 方面, 液晶电视虽然已经发展到具备显示立体画面的能力, 但是, 以目前 LCD面板的制造技 术而言, 仍然难以制造出符合户外大型电视墙的超大面积的 LCD面板, 并且以目前能力能够 制造出来的 LCD面板而言,若拿来使用到大型电视墙上,则电视墙制造成本往往会过于高昂, 令人无法接受。
因此, 为了解决大型 LED电视墙以及 LCD电视墙的缺陷, 提高了一种利用单颗四元色 发光二极体为像素显示元件的 3D立体显示装置。
发明内容
为了解决上述技术问题, 本发明的目的在于提供了一种由四原色发光体作为像素显示元 件, 采用不同排列组合方式构成的大型 LED 3D显示装置。
本发明提供了一种 LED 3D显示装置, 其包括:
多颗发光二极管, 各组发光二极管中设有由四颗单原色的发光体构成的子像素; 多组棱镜, 其分别对称排列于任意两子像素的两侧;
通过每个子像素分别透过其相邻的棱镜形成两组图像, 分别投射入观看者的左右眼。 优选地, 所述多组棱镜分别对称地排列于任意两子像素的左右两侧或上下两侧。 其中, 所述子像素呈条形排布形成一组像素, 或呈田字形组合排布形成一组像素。 所述棱镜分别水 平地设于两侧子像素的左侧和右侧, 或是分别对称竖立地设于像素区的上侧和下侧。 所述四 块像素相互并排组成方形结构像素区, 所述棱镜分别对称竖立于像素区的上侧和下侧。 通过 设置子像素不同的排列方式, 结合棱镜的不同排列方式, 提高像素清晰度, 使得图像的穿透 效果更好。
优选地, 所述四排像素平行排列形成一像素区, 在不同排的像素中, 子像素相错排布, 以使得成像的图像中, 色彩更为柔和, 避免局部色彩对比对过大的现象。
优选地, 所述棱镜的宽度小于或等于两个子像素的宽度, 或小于或等于一个子像素的宽 度。
优选地, 所述子像素分别为白色、 红色、 绿色和蓝色的发光体。 通过单色的发光体分别 构成子像素, 组成 WRGB像素。
与现有技术相比, 本发明 LED 3D显示装置中, 采用了四颗单原色的发光体作为子像素, 经过不同方式的排列组合构成像素, 像素的结构可为条形或方形, 结合棱镜不同排列方式, 棱镜与像素之间可相互平行或垂直, 获得不同的成像效果。 相对于原有子像素相同化的排列 方式, 本发明采用不同列的子像素采用交错的方式排列, 使得不同像素透过棱镜后, 颜色更 为均匀柔和, 光线穿透效果良好, 解决了各颜色对比度较大, 局部颜色过深等现象。 另外, 像素采用田字形排列成方形时, 棱镜的宽度加大, 这种排列方式显示分辨率降低, 但色彩均 匀, 更适用于大型 3D 显示装置的应用, 且制造要求精度低, 提高量产的成品合格率, 适用 于大型 LED电视墙。
附图说明
图 1为本发明一种 LED 3D显示装置的实施例一的结构示意图;
图 2为本发明一种 LED 3D显示装置的实施例二的结构示意图;
图 3为本发明一种 LED 3D显示装置的实施例三的结构示意图;
图 4为本发明一种 LED 3D显示装置的实施例四的结构示意图。
具体实施方式
为了解决大型 LED 3D显示的问题, 参照图 1所示, 本发明提供了一种 LED 3D显示装 置, 其包括: 多颗发光二极管, 各组发光二极管中设有由四颗单原色的发光体构成的子像素 1 ; 多组棱镜 2, 其分别对称排列于任意两子像素 1的两侧; 通过每个发光二极管分别透过棱 镜 2形成两组图像, 分别投射入观看者的左右眼。
发光二极管呈现四种不同颜色, 分别为白色 (W)、 红色 (R)、 绿色 (G) 和蓝色 (B ), 不同颜色的发光体分别为子像素, 四个子像素 1组成一个 WRGB像素 10。 棱镜 2分别对称 地排列于子像素 1的两侧, 棱镜 2与子像素 1相互对齐, 其可水平地排列于子像素 1的左侧 和右侧, 也可以垂直地排列于子像素 1的上侧或下侧, WRGB像素 10通过相邻的棱镜 2形 成两组图像, 分别投射入观看者的左右眼, 以在人的大脑中形成 3D影像。
参照图 1所示, 所述子像素 1呈条形排布形成一组 WRGB像素 10, 所述棱镜 2分别水 平地设于两侧子像素 1的左侧和右侧。每列 WRGB像素 10相互平行, 所述四排 WRGB像素 10平行排列形成一像素区 X, 在不同排的 WRGB像素 10中, 子像素 1相错排布, 如第一排 WRGB像素 10中, 由左至右, 子像素 1依次为红色(R)、绿色(G)、蓝色(B )和白色(W); 第二排 WRGB像素 10中, 由左至右, 子像素 1依次为绿色 (G)、 蓝色 (B )、 白色 (W) 和 红色 (R); 第三排 WRGB像素 10中, 由左至右, 子像素 1依次为蓝色 (B )、 白色 (W)、 红色 (R) 和绿色 (G); 第四排 WRGB像素 10中, 由左至右, 子像素 1依次为白色 (W)、 红色 (R)、 绿色 (G) 和蓝色 (B ), 排列顺序不以此为限。 不同列的子像素 1交错排列, 以 提高像素的分辨率, 成像效果更佳, 穿透效果好, 避免在整体或局部图像中, 个别颜色过深, 对比度过大, 色彩平衡度不协调等现象。 LED发光成像时, 每一排的 WRGB像素 10都会透 过相邻的透镜形成两个图像, 如第一排的 WRGB像素 10会透过与其相对齐的棱镜 2向上形 成一组图像, 设为第一上图像, 同时, 也透过第二排的棱镜 2向下形成一组图像, 设为第一 下图像; 同样地, 如第二排的 WRGB像素 10会透过与其相对齐的棱镜 2向上形成一组图像, 设为第二上图像, 同时, 也透过第三排的棱镜 2向下形成一组图像, 设为第二下图像。 这时, 由第一排的 WRGB像素 10形成的第一下图像和第二排的 WRGB像素 10形成的第二上图像 重叠, 产生的图像投射入观看者的右眼 (或左眼) 中, 同样地, 由第二排的 WRGB像素 10 形成的第二下图像和第三排的 WRGB像素 10形成的第三上图像重叠, 产生的图像投射入观 看者的左眼(或右眼)中,使得人的大脑形成 3D视觉影像效果。在本实施例中,通过将 WRGB 四单色像素呈条形排列, 结合棱镜 2呈水平排列, 形成 3D视觉成像效果。
参照图 2所示, 在实施例二中, 子像素 1的排列方式与实施例一相同。 所不同的是, 棱 镜分别对称竖立于像素区 X的上侧和下侧,即各列棱镜 2分别竖立于像素区 X中的第一列子 像素 1的上侧以及第四列子像素 1的下侧, 各列棱镜 2的宽度小于或等于子像素 1的宽度, 优选地, 棱镜 2的宽度与子像素 1的宽度相同。 LED发光成像时, 各列的子像素 1分别透过 相对应的棱镜 2, 直接通过上棱镜形成一组图像, 投射入观察者的右眼中, 通过下棱镜形成 另一组图像, 投射入左眼中, 通过射入图像的错位, 形成 3D视觉成效效果。 在本实施例中, 通过将 WRGB四单色像素呈条形排列, 结合棱镜 2呈垂直排列, 形成 3D视觉成像效果。
参照图 3所示, 在实施例三中, 所述子像素 1呈田字形组合排布形成一组 WRGB像素 10。 在本实施例中, 一组方形的 WRGB像素 10中, 上列子像素为红色 (R) 和绿色 (G), 下列子像素为蓝色 (B )和白色 (W), 四个单色子像素组成呈方形。 在一个像素区 Y中, 包 括四个 WRGB像素 10,其组成成方形结构,在像素区 Y的上列和下列,分别设置两个 WRGB 像素 10, 其中, 在每个 WRGB像素中, 子像素 1的排列顺序可以相同或不同。 棱镜 2分别 对称地竖立于像素区 Y的上侧和下侧, 一个棱镜 2与两个子像素 1相对, 即使得两个子像素 可透过一个棱镜成像, 所述棱镜的宽度小于或等于两个子像素的宽度, 优选地, 棱镜的宽度 等于两个子像素的宽度。 LED发光成像时, 各个 WRGB像素 10可分别透过相邻的棱镜 2成 像, 通过上棱镜形成一组图像, 投射入观察者的右眼中, 通过下棱镜形成另一组图像, 投射 入左眼中, 通过射入图像的错位, 形成 3D视觉成效效果。 在本实施例中, 通过将子像素排 列呈田字形, 棱镜垂直竖立, 使得棱镜加宽, 虽降低了图像的分辨率, 但色彩更为柔和, 可 广泛适用于大型的 LED 3D显示装置中, 降低了显示装置的制备精度和难度。
参照图 4所示, 在实施例四中, 子像素 1的排列方式与实施例一相同。 所不同的是, 棱 镜分别对称水平放置于像素区 Y的左侧和右侧。 一个棱镜 2与两个子像素 1相对, 即使得两 个子像素可透过一个棱镜成像。 成像原理与实施例一相同, 故不再赘述。
棱镜与像素之间可采用棱镜水平排列或垂直排列两种,棱镜垂直排列即我们通常裸眼 3D 液晶显示器中棱镜的排列, 该排列通过垂直的棱镜把像素图像分为左右两幅, 即对应人眼的 左右眼, 每一个垂直排列的棱镜都分为左右眼图像, 所以人的左右眼分别接收到不同的图像, 从而在大脑中形成 3D立体效果图像。 而棱镜水平排列则不同, 水平排列的棱镜会通过棱镜 产生上下两幅图像, 我们可以把棱镜 1产生的上下图像叫做第一上图像、 第一下图像, 这样 水平排列的棱镜 2同样在竖直方向紧相连的像素通过水平棱镜 2产生第二上图像、 第二下图 像, 同理水平棱镜 3产生第三上图像、 第三下图像, 这样可以通过控制棱镜与显示屏的距离 使得第一下图像与第二上图像、 第二下图像与第三上图像等等在同一水平线上, 这样人眼在 同一水平线可以同时接收到第一下图像与第二上图像、 第二下图像与第三上图像等等, 这样 人的左右眼就可以分别获得不同图像, 从而形成 3D效果。
这两种排列方式中, 棱镜垂直排列为常见方式, 量产经验丰富, 易于控制。 棱镜水平排 列时, 通过相邻棱镜产生上下图像而分别给人眼左右眼进行区分产生 3D效果, 属于新式方 式, 3D 效果需要精确控制棱镜与显示屏的距离来达到相邻棱镜产生的上下画面在同一水平 线, 可以达到真实性更佳的 3D效果图像。
本发明 LED 3D显示装置中, 采用了四颗单原色的发光体作为子像素, 经过不同方式的 排列组合构成像素, 像素的结构可为条形或方形, 结合棱镜不同排列方式, 棱镜与像素之间 可相互平行或垂直, 获得不同的成像效果。 相对于原有子像素相同化的排列方式, 本发明采 用不同列的子像素采用交错的方式排列, 使得不同像素透过棱镜后, 颜色更为均匀柔和, 光 线穿透效果良好, 解决了各颜色对比度较大, 局部颜色过深等现象。 另外, 像素采用田字形 排列成方形时, 棱镜的宽度加大, 这种排列方式显示分辨率降低, 但色彩均匀, 更适用于大 型 3D显示装置的应用, 且制造要求精度低, 提高量产的成品合格率。

Claims

权 利 要 求 书
、 一种 LED 3D显示装置, 其特征在于包括:
多颗发光二极管, 各组发光二极管中设有由四颗单原色的发光体构成的子像素;
多组棱镜, 其分别对称排列于任意两子像素的两侧;
通过每个子像素分别透过其相邻的棱镜形成两组图像, 分别投射入观看者的左右眼。
、 根据权利要求 1所述的 LED 3D显示装置, 其特征在于: 所述多组棱镜分别对称地排列于任 意两子像素的左右两侧或上下两侧。
、 根据权利要求 2所述的 LED 3D显示装置, 其特征在于 所述子像素呈条形排布形成一组像 素, 所述棱镜分别水平地设于两侧子像素的左侧和右侧
、 根据权利要求 2所述的 LED 3D显示装置, 其特征在于 所述四排像素平行排列形成一像素 区, 在不同排的像素中, 子像素相错排布。
、 根据权利要求 4所述的 LED 3D显示装置, 其特征在于 所述棱镜分别对称竖立地设于像素 区的上侧和下侧。
、 根据权利要求 2所述的 LED 3D显示装置, 其特征在于 所述子像素呈田字形组合排布形成 一组像素。
、 根据权利要求 6所述的 LED 3D显示装置, 其特征在于: 所述四块像素相互并排组成方形结 构像素区, 所述棱镜分别对称竖立于像素区的上侧和下
、 根据权利要求 7所述的 LED 3D显示装置, 其特征在于: 所述棱镜的宽度小于或等于两个子 像素的宽度。
、 根据权利要求 4所述的 LED 3D显示装置, 其特征在于 -:: 所述棱镜的宽度小于或等于一个子 像素的宽度。
、根据权利要求 1-9中任一项所述的 LED 3D显示装置,其特征在于:所述子像素分别为白色、 红色、 绿色和蓝色的发光体。
PCT/CN2014/078884 2014-05-23 2014-05-30 一种led 3d显示装置 WO2015176332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410221986.5A CN104035202B (zh) 2014-05-23 2014-05-23 一种led 3d显示装置
CN201410221986.5 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015176332A1 true WO2015176332A1 (zh) 2015-11-26

Family

ID=51466028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078884 WO2015176332A1 (zh) 2014-05-23 2014-05-30 一种led 3d显示装置

Country Status (2)

Country Link
CN (1) CN104035202B (zh)
WO (1) WO2015176332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503095A (zh) * 2014-12-30 2015-04-08 京东方科技集团股份有限公司 显示装置
CN106206657A (zh) * 2016-07-18 2016-12-07 武汉华星光电技术有限公司 像素单元及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061179A (en) * 1996-01-23 2000-05-09 Canon Kabushiki Kaisha Stereoscopic image display apparatus with two-/three-dimensional image display switching function
CN101546500A (zh) * 2008-03-24 2009-09-30 富士迈半导体精密工业(上海)有限公司 发光二极管立体显示装置
US20100027113A1 (en) * 2008-08-01 2010-02-04 Samsung Electronics Co., Ltd. Display device
CN102902068A (zh) * 2011-07-29 2013-01-30 艺创有限公司 3d立体显示装置
CN102984536A (zh) * 2011-09-06 2013-03-20 三菱电机株式会社 立体视频显示装置
CN103348687A (zh) * 2011-02-18 2013-10-09 皇家飞利浦有限公司 自动立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061179A (en) * 1996-01-23 2000-05-09 Canon Kabushiki Kaisha Stereoscopic image display apparatus with two-/three-dimensional image display switching function
CN101546500A (zh) * 2008-03-24 2009-09-30 富士迈半导体精密工业(上海)有限公司 发光二极管立体显示装置
US20100027113A1 (en) * 2008-08-01 2010-02-04 Samsung Electronics Co., Ltd. Display device
CN103348687A (zh) * 2011-02-18 2013-10-09 皇家飞利浦有限公司 自动立体显示装置
CN102902068A (zh) * 2011-07-29 2013-01-30 艺创有限公司 3d立体显示装置
CN102984536A (zh) * 2011-09-06 2013-03-20 三菱电机株式会社 立体视频显示装置

Also Published As

Publication number Publication date
CN104035202A (zh) 2014-09-10
CN104035202B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
US8964013B2 (en) Display with elastic light manipulator
RU2313191C2 (ru) Способ и система формирования стереоизображения
CN102340684B (zh) 子像素阵列的布局方法
KR101357163B1 (ko) 휘도를 향상한 오토 스테레오스코픽 디스플레이 장치
TWI357987B (en) A three-dimension image display device and a displ
US7997748B2 (en) Stereoscopic display device
CN102169236B (zh) 基于垂直柱镜光栅的奇数视点自由立体子像素排列方法
CN101196615A (zh) 偏振光栅立体显示器
KR102602248B1 (ko) 광 필드 표시 장치
WO2017117928A1 (zh) 一种显示模组、显示装置及其驱动方法
EP3023830B1 (en) Imaging system
US20140085352A1 (en) Stereoscopic display with improved vertical resolution
CN203482339U (zh) 三维显示设备
CN105551393A (zh) 一种3d显示画素结构及3d显示器
TW201323926A (zh) 立體影像顯示裝置
CN102455520A (zh) 立体显示装置和立体显示方法
WO2015176332A1 (zh) 一种led 3d显示装置
CN107580211B (zh) 自动立体3维显示器
JP2011128636A (ja) カラー立体表示装置
US9857602B2 (en) 3D display apparatus and 3D display method based on integral imaging using lens switching
CN113474716B (zh) 用于无源3d显示器的系统和方法
JP5365726B2 (ja) カラー立体表示装置
KR101349138B1 (ko) 패럴랙스 베리어 방식 입체 영상 표시 장치
US9363505B2 (en) Pixel arrangement method that reduces color shift of pattern retarder glasses based 3D display system in large view angle and display panel using same
JP2006091642A (ja) 映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892762

Country of ref document: EP

Kind code of ref document: A1