WO2015176314A1 - 一种数据中心的通信系统和通信方法 - Google Patents

一种数据中心的通信系统和通信方法 Download PDF

Info

Publication number
WO2015176314A1
WO2015176314A1 PCT/CN2014/078303 CN2014078303W WO2015176314A1 WO 2015176314 A1 WO2015176314 A1 WO 2015176314A1 CN 2014078303 W CN2014078303 W CN 2014078303W WO 2015176314 A1 WO2015176314 A1 WO 2015176314A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
mirror
transceiver
machine
horizontal space
Prior art date
Application number
PCT/CN2014/078303
Other languages
English (en)
French (fr)
Inventor
董晓文
赵俊峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480036818.7A priority Critical patent/CN105359432B/zh
Priority to PCT/CN2014/078303 priority patent/WO2015176314A1/zh
Publication of WO2015176314A1 publication Critical patent/WO2015176314A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present invention relates to the field of communications, and in particular, to a data center communication system and communication method. Background technique
  • the size of the data center is constantly expanding with the explosive growth of network traffic.
  • the data center of traditional cable and fiber optic cable interconnects is increasing in cable consumables and energy consumption.
  • a medium-sized data center is on the line.
  • the cable length can reach several tens of kilometers. Cable-based fixed connections, the topology of the data center is fixed, and when the application environment of the existing data center changes, or when the topology is modified and upgraded, it has to spend a lot of manpower and Time to redesign and connect the physical topology, the construction is difficult and the cycle is long.
  • the prior art uses a wireless connection data center architecture for communication.
  • the data center architecture is as shown in FIG. 1 , which mainly includes a radio signal transmitter, a radio signal receiver, a reflector 01, and The machine refuses to 02.
  • a wireless channel is used instead of a conventional cable connection, and a 60 GHz radio signal is transmitted by a radio signal transmitter and directly received by a radio signal receiver, or is reflected by a signal reflection board 01 and received by a radio signal receiver.
  • the topology path is mainly established in the following manner: When in the line of sight range, each machine rejects 02 by direct connection, as shown in FIG.
  • each machine rejects 02 to establish an indirect direct connection through the signal reflection board 01, as shown in Figure 1; path B; when it is not in the line of sight range and exceeds the non-relay transmission distance, each machine rejects 02
  • the multi-hop connection of the relay is connected, wherein the machine refuses to directly connect the servers through the reflector of the backplane, such as the path shown in FIG.
  • the prior art uses 60 GHz radio signals for transmission, and the radiation and loss are large, which is not conducive to the construction of large cluster systems; ⁇ wireless channel direct connection with 60 GHz radio signals The occupied spectrum bandwidth is large and is likely to cause interference; in the relay process, the signal needs to be processed by the electronic circuit, which affects the data transmission efficiency.
  • Embodiments of the present invention provide a data center communication system and a communication method, which reduce power consumption and improve transmission efficiency.
  • the present invention provides a data center communication system, which may include: At least two machine rejections, the at least two machine rejections include a first machine rejection and a second machine rejection; at least two visible light transceiver units, wherein the first machine rejection and the second machine rejection are each provided with one of the visible light a transceiver unit; a first visible light transceiver unit rejected by the first machine, configured to emit a visible light signal to the second visible light transceiver unit rejected by the second machine; and the second visible light transceiver unit rejected by the second machine is configured to receive The visible light signal emitted by the first visible light transmitting and receiving unit.
  • the communication system may further include: a roof mirror and a roof mirror control unit; the first visible light transceiver unit is further configured to emit visible light to the roof mirror Signaling, such that the roof mirror reflects the emitted visible light signal to the second visible light transceiver unit; the second visible light transceiver unit is further configured to receive the visible light signal reflected by the roof mirror; the roof mirror control a unit, configured to generate, according to the received control information of the first machine rejection, a control signal for controlling a roof mirror, where the control information carries location information of the first machine rejection and the second machine rejection; The mirror is configured to reflect, according to the control signal, the visible light signal emitted by the first visible light transceiver unit that is rejected by the first machine to the second visible light transceiver unit that is rejected by the second machine.
  • the roof mirror control unit is configured to determine a deflection angle of the roof mirror according to the control information, to the roof mirror Sending a control signal indicating a deflection angle of the roof mirror; the roof mirror is configured to adjust a deflection angle of the roof mirror according to the control signal, and transmit a first visible light transceiver unit that is rejected by the first machine The visible light signal is reflected to the second visible light transmitting and receiving unit of the second machine.
  • the first visible light transceiver unit includes at least one first vertical space transceiver and at least one first level a spatial transceiver
  • the second visible light transceiver unit includes at least one second vertical space transceiver and at least one second horizontal space transceiver
  • the first horizontal space transceiver is configured to transmit and receive to the second horizontal space Transmitting a visible light signal
  • the second horizontal space transceiver is configured to receive a visible light signal emitted by the first horizontal space transceiver
  • the first vertical space transceiver is configured to emit visible light to the roof mirror Signaling such that the roof mirror reflects the emitted visible light signal to the second vertical space transceiver
  • the second vertical space transceiver is configured to receive the visible light signal reflected by the roof mirror.
  • the first vertical space transceiver and the first horizontal space transceiver are connected by an electrical signal link, at least one first level Each of the first horizontal space transceivers in the space transceiver is connected by an electrical signal link; the second vertical space transceiver and the second horizontal space transceiver are connected by an electrical signal link, Each of the second horizontal space transceivers in the at least one second horizontal space transceiver is connected by an electrical signal link.
  • the first vertical space transceiver includes a first semi-reverse half lens; the first horizontal space The transceiver includes a third half-reverse half lens; the first half-reverse half lens for directly transmitting visible light signals emitted by a transmitter in the first vertical space transceiver; the third half-reverse half lens, And transmitting a visible light signal to a transmitter in the first horizontal space transceiver.
  • the second vertical space transceiver includes a second semi-reverse half lens and a first total reflection mirror;
  • the second horizontal space transceiver includes a fourth semi-reverse half lens, a second total reflection mirror, a first variable mirror, and a first variable mirror control unit; wherein, the second horizontal space transceiver further And for transmitting the visible light signal emitted by the first horizontal space transceiver to another second horizontal space transceiver; the second semi-reverse half lens for reflecting the visible light signal reflected by the roof mirror to the first a total reflection mirror; the first total reflection mirror, configured to reflect a visible light signal reflected by the second semi-reverse lens to a receiver in the second vertical space transceiver; a lens, configured to reflect a visible light signal that is rejected by the first machine to the first variable mirror; the first variable mirror control unit, configured to control, according to the received control information of the first machine rejection First a state of the variable mirror, the control information
  • the communication system may further include: a second variable mirror; each of the first horizontal space transceiver or the second horizontal space transceiver One of the two variable mirrors is disposed at each end for directly transmitting or reflecting the visible light signal emitted by the first horizontal space transceiver to the second horizontal space transceiver, or forwarding the second horizontal space transceiver The visible light signal is passed or reflected to another second horizontal space for transmission and reception.
  • the roof mirror includes: a first movable mirror; the roof mirror control unit, configured to The control information determines a deflection angle of the first movable mirror, and transmits a control signal indicating a deflection angle of the first movable mirror to the roof mirror such that the roof mirror is according to the A control signal adjusts a deflection angle of the first movable mirror.
  • each of the machine rejects includes multiple servers, and the system may further include: an optical back The board is configured to reflect visible light signals emitted by the photoelectric converters on a server in the machine to other servers in the machine rejection, and form visible light wireless links between the servers in the machine rejection.
  • the communication system further includes: an optical backplane control unit; wherein, the optical backplane includes: a second movable mirror; a backplane control unit, configured to determine a deflection angle of the second movable mirror according to a position of the one server and other servers, and send a deflection angle indicating the second movable mirror to the optical backplane Controlling the signal, so that the optical backplane adjusts the deflection angle of the second movable mirror according to the control signal, and reflects the visible light signal emitted by the photoelectric conversion transmitter on the one server to other servers in the machine rejection .
  • the optical backplane includes: a second movable mirror; a backplane control unit, configured to determine a deflection angle of the second movable mirror according to a position of the one server and other servers, and send a deflection angle indicating the second movable mirror to the optical backplane Controlling the signal, so that the optical backplane adjusts the deflection angle of the second movable mirror
  • the present invention provides a data center communication method, which may include:
  • control information that is rejected by the first machine, where the control information carries location information of the first machine rejection and the second machine rejection;
  • the generating, by the control information, a control signal for controlling the roof mirror, and transmitting the control signal to the roof mirror includes: The control information determines a deflection angle of the roof mirror; generates a control signal, the control The signal carries a deflection angle of the roof mirror; the control signal is sent to the roof mirror.
  • the determining, by the control information, the deflection angle of the roof mirror includes: searching for a pre-stored mapping according to the control information
  • the mapping table includes a mapping relationship between the location information of the first machine rejection, the location information of the second machine rejection, and the deflection angle of the roof mirror; and determining a deflection angle of the roof mirror according to the mapping table.
  • the embodiments of the present invention have the following advantages:
  • the visible light signal is transmitted, the spectrum of the visible light signal has a wider bandwidth, the transmission efficiency is higher, and the damage of the radio radiation is further reduced, and the visible light transmitting and receiving units of the machine can be refused to form visible light.
  • the wireless link communicates, which can effectively reduce power consumption and improve transmission efficiency.
  • FIG. 1 is a schematic structural diagram of a communication system of a data center in the prior art
  • FIG. 2 is a schematic structural diagram of a communication system of a data center according to an embodiment of the present invention
  • FIG. 3 is another schematic structural diagram of a communication system of a data center according to an embodiment of the present invention. Schematic;
  • FIG. 5 is another schematic structural diagram of a communication system of a data center according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a vertical space transceiver provided by an embodiment of the present invention.
  • Figure ⁇ is a schematic structural diagram of a horizontal space transceiver provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a visible light transceiver unit according to an embodiment of the present invention
  • FIG. 9 is another schematic structural diagram of a visible light transceiver unit according to an embodiment of the present invention
  • FIG. 10 is a data center communication method according to an embodiment of the present invention. Schematic diagram of the process.
  • Embodiments of the present invention provide a communication system and a communication method for a data center, which are used to reduce power consumption and improve transmission efficiency.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by a person skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Embodiments of the present invention provide a data center communication system, which is mainly applied to a data center, which is a specific device network, which can accelerate information transmission.
  • FIG. 2 is a schematic structural diagram of a communication system of a data center provided by the implementation of the present invention.
  • the system may specifically include: at least two machines and a visible light transceiver unit located on the machine, wherein each of the machines is correspondingly provided with one of the visible light transceiver units.
  • the visible light transceiver unit rejected by each machine has the capability of receiving and transmitting visible light signals, and the visible light wireless link can be constructed by the visible light transceiver unit between the respective machines.
  • the visible light transmitting and receiving unit rejected by one machine has the capability of transmitting visible light signals
  • the visible light receiving and transmitting unit rejected by the other machine has the capability of receiving visible light signals as an example for detailed description.
  • the embodiment of the present invention refers to a machine having the capability of transmitting a visible light signal as a first machine rejection 10, and the first machine rejecting 10 is provided with a first visible light transceiver unit 11 and will have a visible light receiving signal.
  • the machine rejection of the capability is referred to as a second machine rejection 20, and the second machine rejection unit 20 is provided with a second visible light transceiver unit 21.
  • the embodiment of the present invention does not specifically limit the number of machine rejections in the communication system of the data center.
  • the communication system of the data center includes four machines as an example for detailed description, and does not constitute a limitation of the present invention.
  • the four machine rejections illustrated in FIG. 2 include two first machine rejections 10 and two second machine rejections 20, respectively.
  • the first visible light transceiver unit 11 and the second visible light transceiver unit 21 respectively Located at the top of the first machine reject 10 and the second machine reject 20.
  • the first visible light transceiver unit 11 on the first machine rejects 10 is configured to emit a visible light signal to the second visible light transceiver unit 21 on the second machine reject 20;
  • the second visible light transceiver unit 21 is configured to receive a visible light signal emitted by the first visible light transceiver unit 11.
  • the embodiment of the present invention uses a visible light signal for transmission, and the frequency of the visible light signal has a wider bandwidth, and the transmission efficiency is higher, and the damage of the radio radiation can be reduced, and the machine can be rejected by the machine.
  • the visible light transceiver unit forms a visible light wireless link for communication, which can effectively reduce power consumption and improve transmission efficiency.
  • the channel distance between the first machine rejection 10 and the second machine rejection 20 is short, for example, between adjacent machines, or between diagonal machines, communication can be achieved through the above scheme.
  • communication between the machine rejections can also be achieved by the roof mirror 30, wherein communication between any machine rejection can be achieved by the roof mirror 30.
  • FIG. 3 is another schematic structural diagram of a data center communication system according to an embodiment of the present invention.
  • the system may further include a roof mirror 30 and a roof mirror control unit 50.
  • a roof mirror 30 may be specifically as follows:
  • the first visible light transceiver unit 11 is further configured to emit a visible light signal to the roof mirror 30, so that the roof mirror 30 reflects the emitted visible light signal to the second visible light transceiver unit 21;
  • the second visible light transceiver unit 21 is further configured to receive a visible light signal reflected by the roof mirror 30;
  • the roof mirror control unit 50 is configured to generate a control signal for controlling the roof mirror 30 according to the received control information sent by the first machine 10 and send the control signal to the roof mirror, wherein the control information Carrying position information of the first machine rejecting 10 and the second machine rejecting 20;
  • the roof mirror 30 is configured to reflect the visible light signal emitted by the first visible light transceiver unit 11 on the first machine to the second visible light transceiver unit 21 on the second machine 20 according to the control signal.
  • the roof mirror control unit 50 may determine a deflection angle of the roof mirror 30 according to the control information, and send a deflection angle indicating the roof mirror 30 to the roof mirror 30. a control signal of the degree; the roof mirror 30 can adjust the deflection angle of the roof mirror 30 according to the control signal, and reflect the visible light signal emitted by the first visible light transceiver unit 11 on the first machine 10 to the first The second machine rejects the second visible light transmitting and receiving unit 21 on the second unit.
  • FIG. 4 is a schematic structural view of a roof mirror.
  • the roof mirror 30 may include: a first movable mirror 31 that controls the path of the visible light signal emitted by the first visible light transmitting and receiving unit 11 by adjusting the deflection angle of the first movable mirror 31. Since the position of each machine may be fixed, in order to enable the second visible light receiving unit 21 on the second machine 20 to receive visible light signals from various directions, the first movable mirror 31 may further include a first fixed Mirror 32. Wherein, the angle of the first fixed mirror 32 is not adjustable, the path of the reflection is unique, and the angle of the first movable mirror 31 is adjustable, which can be changed by adjusting the angle of the first movable mirror 31. Visible light wireless link between each machine.
  • FIG. 4 is a schematic structural view of a roof mirror. For convenience of description, FIG.
  • the roof mirror 30 is provided with four first movable mirrors 31 and one fixed mirror 32, and does not constitute a limitation of the present invention, wherein the four first The movable mirrors 31 correspond to the four machines A, B, C, and D, respectively, wherein the four machines A, B, C, and D can represent the first machine or the second machine, and the A machine rejects
  • the visible light signal emitted by the visible light transmitting and receiving unit reaches the first movable mirror 31 corresponding to the A machine rejection, and the first movable mirror 31 corresponding to the A machine rejects the visible light signal to the first fixed mirror 32,
  • the visible light signal is reflected by the first fixed mirror 32 to the first movable mirror 31 corresponding to the C machine rejection, and the visible light signal is reflected by the first movable mirror 31 corresponding to the C machine rejection to the C machine.
  • Rejected visible light transceiver unit The B machine refuses and the D machine refuses to do the same, and will not be described here.
  • the roof mirror control unit 50 is configured to generate a control signal for controlling the roof mirror 30, and transmit a control signal to the roof mirror 30, and the control generated by the roof mirror control unit 50 The signal is used to control the deflection angle of the first movable mirror 31 to construct different visible light links.
  • a mapping table may be pre-stored in the roof mirror control unit 50, where one machine rejects another machine rejection (for example, the first machine rejects 10 to the second machine rejects 20)
  • the deflection angle values of the X-axis and the Y-axis required by the first movable mirror 31 corresponding to the correspondence of the roof mirror 30 are communicated.
  • the roof mirror control unit 50 receives the control information sent by the first machine reject 10, and obtains the first machine rejection according to the control information. 10 and the second machine reject 20 position information, the roof mirror control unit 50 can search for the pre-stored mapping table according to the position information of the first machine rejection 10 and the second machine rejection 20, thereby obtaining the first movable reflection
  • the deflection angle values of the X-axis and the ⁇ -axis of the mirror 31 are sent to the roof mirror 30, wherein the control signal can instruct the roof mirror 30 to adjust the X-axis and the ⁇ -axis of the first movable mirror 31. Angle.
  • the first machine reject 10 can send control information to the roof mirror control unit 50 in the form of a data packet, and the packet header of the data packet carries the location information of the first machine reject 10 and the second machine reject 10 After the information is received, the roof mirror control unit 50 analyzes the data packet and obtains the position information of the first machine rejection 10 and the second machine rejection 20.
  • the roof mirror control unit 50 may obtain the deflection angle values of the X-axis and the ⁇ -axis of the movable mirror 31 according to the position information of the first machine 10 and the second machine 20, or It is also possible to calculate the X-axis and the x-axis deflection angles of the first movable mirror 31 based on the position information of the first machine rejection 10 and the second machine rejection 20.
  • the accuracy of controlling the deflection angle of the movable mirror 31 can be improved by increasing the frequency of the electrical signal transmitted by the first machine 10, for example, by counting the number of high levels.
  • the roof mirror 30 can adopt the above dynamic configuration mode, that is, control the construction of the visible light link by the control signal, and can also construct the visible light by static configuration.
  • the link is not specifically limited in the present invention.
  • the roof mirror 30 can perform the adjustment of the deflection angle of the corresponding movable mirror 31 by a pre-top design when the machine is rejected.
  • the movable mirror has a large size, has a higher deflection speed and control precision, and can effectively reduce the complexity of the communication system of the data center under the premise of satisfying the deflection angle and stability. Cost.
  • FIG. 5 is another schematic structural diagram of a communication system of a data center provided by the implementation of the present invention.
  • the embodiment of the present invention may further include: an optical backplane 40, which can reflect visible light signals emitted by the photoelectric conversion transmitter on a server in the machine to the machine rejection
  • an optical backplane 40 which can reflect visible light signals emitted by the photoelectric conversion transmitter on a server in the machine to the machine rejection
  • visible light wireless links between the various servers within the machine are formed. It can be understood that each machine rejects multiple servers, and these servers have an electrical interface, which can be connected to a photoelectric converter, and the photoelectric converter can convert the electrical signal of the server into a visible light signal and emit the visible light.
  • the signal is reflected by the optical backplane 40 to other servers in the machine rejection, and the visible light signal is received by the photoelectric converters in other servers, and the received visible light signal can be converted into an electrical signal to complete the data transceiving function.
  • the photoelectric conversion receiver may include a plurality of LED light sources and a plurality of receivers, and the plurality of LED light sources and the receivers are used to form multiple channels of multiple inputs and multiple outputs for parallel transmission and reception, and the channel bandwidth can be effectively improved.
  • the first machine rejection 10 is taken as an example in FIG. 5, and the visible light link can be constructed through the optical backplane 40 between the servers in the first machine rejection 10.
  • each of the first machines 10 is provided with an optical back plate 40 correspondingly.
  • the optical backplane 40 can include: a second movable mirror that can control the topology connection between the internal servers by adjusting the deflection angle of the second movable mirror. Since the internal servers may be fixed, the optical backplane 40 may further include a second fixed mirror in order to enable a server to reject the visible light signals reflected by the various different servers through the optical backplane. It should be noted that the second movable mirror and the second fixed mirror on the optical back plate 40 are similar to the specific implementation of the first movable mirror 31 and the first fixed mirror 32 in the roof mirror 30 described above. . Furthermore, the present invention also includes an optical backplane control unit, wherein the implementation of the optical backplane control unit is similar to the implementation of the roof mirror control unit.
  • An optical backplane control unit configured to determine a deflection angle of the second movable mirror according to a position of the one server and other servers, and send a deflection indicating the deflection of the second movable mirror to the optical backplane 40
  • An angle control signal such that the optical backplane 40 adjusts the deflection angle of the second movable mirror according to the control signal, and reflects the visible light signal emitted by the photoelectric conversion transmitter on the one server into the machine rejection In other servers.
  • the optical backplane 40 in this embodiment can change the topological connection between the internal servers by changing the deflection angle of the second movable mirror, and is structurally variable, and the work of the visible light link itself. The consumption is much lower than the traditional high-speed electric channel.
  • the second movable mirror has a large size, and has a higher deflection speed and control precision, and can effectively reduce the complexity and cost of the data center communication system under the premise of satisfying the deflection angle and stability.
  • the first visible light transceiver unit 11 can send the second visible light transceiver unit 21
  • the visible light signal is transmitted, so that the second visible light transmitting and receiving unit 21 receives the visible light signal, and the first visible light transmitting and receiving unit 11 can also emit a visible light signal to the roof mirror 30, and the visible light signal is reflected by the roof mirror 30 to the second visible light transmitting and receiving unit 21 .
  • at least two visible light links can be constructed between the first machine rejection 10 and the second machine rejection 20.
  • the channel constructed by the former can be described as a horizontal channel
  • the channel constructed by the latter is described as a vertical Straight channel.
  • a vertical channel or a horizontal channel may be selected according to whether the communication distance and the channel are idle. For example, when the communication distance is long, the vertical channel is preferred, and if the vertical channel is busy, Switch to horizontal channel, when the distance communication is short, it is the opposite. It should be understood that there is a completely independent channel between the vertical channel and the horizontal channel, which does not interfere with each other and can exist at the same time.
  • the specific descriptions of the first visible light transmitting and receiving unit 11 and the second visible light transmitting and receiving unit 21 are as follows. It should be noted that the visible light signal is directly referred to as a straight through the mirror or the lens, and will not be described below.
  • the first visible light transceiver unit 11 may include at least one first vertical space transceiver and at least one first horizontal space transceiver
  • the second visible light transceiver unit 21 includes at least one second vertical space transceiver and at least one second horizontal space Transceiver.
  • the first horizontal space transceiver is configured to transmit a visible optical signal to the second horizontal space transceiver;
  • the second horizontal space transceiver is configured to receive a visible light signal emitted by the first horizontal space transceiver
  • the first vertical space transceiver is configured to emit a visible light signal to the roof mirror, such that the roof mirror reflects the emitted visible light signal to the second vertical space transceiver;
  • the second vertical space transceiver is configured to receive a visible light signal reflected by the roof mirror.
  • the first vertical space transceiver comprises a first semi-reverse half lens
  • the first horizontal space transceiver comprises a third semi-reverse half lens.
  • the first semi-reverse half lens for transmitting a visible light signal emitted by a transmitter in the first vertical space transceiver; the third semi-reverse half lens for directly connecting to the first horizontal space A visible light signal emitted by a transmitter in a transceiver.
  • the second horizontal space transceiver is not only used to receive the visible light signal transmitted by the first horizontal space transceiver, but may also be used to forward the first horizontal space transceiver. See the optical signal to another second horizontal space transceiver.
  • the second vertical space transceiver includes a second semi-reverse half lens and a first total reflection mirror
  • the second horizontal space transceiver includes a fourth semi-reverse lens, a second total reflection mirror, and a first Variable mirror and first variable mirror control unit.
  • the second half-reverse half lens is configured to reflect the visible light signal reflected by the roof mirror to the first total reflection mirror;
  • the first total reflection mirror is configured to reflect a visible light signal reflected by the second semi-reverse lens to a receiver in the second vertical space transceiver;
  • the fourth half-reverse half lens is configured to reflect the visible light signal rejected by the first machine to the first variable mirror;
  • the first variable mirror control unit is configured to control a state of the first variable mirror according to the received control information of the first machine rejection, where the control information carries the first machine rejection and the second machine Position information of the reject, the state of the first variable mirror includes: a full projection state and a total reflection state;
  • the first variable mirror is configured to reflect the visible light signal reflected by the fourth half-half lens to the receiving in the second horizontal space transceiver when the first variable mirror is in a total reflection state When the first variable mirror is in a full projection state, the visible light signal reflected by the fourth half mirror is directly transmitted to the second total reflection mirror;
  • the second total reflection mirror is configured to reflect a visible light signal that is directly through the first variable mirror to another second horizontal space transceiver.
  • the visible light transceiver unit 100 includes a vertical space transceiver 101 and a horizontal space transceiver 102. Please refer to FIG. 6, FIG. 6 is a schematic structural diagram of a vertical space transceiver, and FIG. 7 is a schematic structural diagram of a horizontal space transceiver.
  • FIG. 6 is a schematic structural diagram of a vertical space transceiver.
  • the vertical space transceiver 101 includes a vertical space receiver (RX, Receiver), a vertical space transmitter (TX, transmitter), a half mirror half 1011, and a total reflection mirror 1012.
  • RX vertical space receiver
  • TX vertical space transmitter
  • the visible light signal incident on the channel here, the visible light signal reflected by the roof mirror 30
  • the reverse half lens 1011 passes through the total reflection mirror 1012 to enter the RX
  • the visible light signal emitted by the TX can be directly Passed
  • the pass-through half-reflex lens 1011 directly enters the channel, wherein the visible light signal entering the channel can be transmitted to the roof mirror 30.
  • the half mirror half lens 1011 is the first half mirror half mirror
  • the half mirror half lens 1011 is the second half mirror
  • the half mirror, the total reflection mirror 1012 is a first total reflection mirror.
  • FIG. 7 is a schematic structural diagram of a horizontal space transceiver.
  • the horizontal space transceiver 102 includes a horizontal space receiver RX, a horizontal space transmitter TX, a variable mirror 1021, a half mirror 1022, and a total reflection mirror 1023.
  • the half mirror half mirror is the third half mirror half mirror
  • the variable mirror 1021 is the first variable reflection
  • the mirror, the half-reflex lens 1022 is the fourth half-reverse half lens
  • the total reflection mirror 1023 is the second total reflection mirror.
  • the horizontal space transceiver 102 can include: two variable mirrors 1021, two semi-reverse half lenses 1022, and two total reflection mirrors 1023. Accordingly, the horizontal space transceiver 10 includes two transmitters. Two receivers RX. As shown in FIG.
  • the visible light signal emitted by the TX can directly enter the channel through the left and right half-reflex lenses 1022, and the visible light signal incident on the channel (here, the visible light receiving unit that is rejected by other machines)
  • the visible light signal for example, the visible light signal emitted by the first visible light transceiver unit 11 on the first machine 10 is reflected by the half mirror half 1022, wherein the first visible light transceiver unit is used when the horizontal space transceiver is configured to receive the visible light signal.
  • the visible light signal emitted by the 11 needs to be received by the RX, and the variable mirror 1021 is in a state of total reflection, and reflects the visible light signal emitted by the first visible light transceiver unit 11 to the RX.
  • the variable mirror 1021 is in a transparent state (ie, a full projection state), and the visible light signal emitted by the first visible light transceiver unit 11 is directly connected to the total reflection mirror 1023, and the total reflection mirror 1023 is used.
  • a visible light signal emitted by a visible light transmitting and receiving unit 11 is reflected to the letter Channel, which implements the transfer of visible light signals to another horizontal space transceiver.
  • Figure 7 shows four visible light links, which are represented by four lines with arrows.
  • the four visible light links are as follows:
  • the first visible light link is: TX-left half-reflex lens 1022 - channel;
  • the visible light signal emitted by the horizontal space transmitter TX passes through the left half-reflex lens 1022, and passes through the left half-reflex lens 1022 to enter the channel.
  • the visible light signal entering the channel can be transmitted to other machines, and the following visible light links are the same, and will not be described again.
  • the second visible light link is: TX-right half-reflex lens 1022 - channel;
  • the visible light signal emitted by the horizontal space transmitter TX passes through the right half-reflex lens 1022, and passes through the right half-reflex lens 1022 to enter the channel.
  • the third visible light link is: the right half-reflex lens 1022 - the right variable mirror 1021 ⁇ RX;
  • the visible light signal emitted by the visible light transmitting and receiving unit rejected by the other device passes through the right half mirror half lens 1022 and is reflected to the right variable mirror 1021. At this time, the right variable mirror 1021 is in a total reflection state. The transmitted visible light signal is reflected to RX.
  • the third visible light link can also communicate in reverse, that is, the communication sequence of the link is: the left half-reflex lens - the first variable mirror on the left side ⁇ RX, the path is not in Figure 7.
  • the specific implementation is the same as above, and will not be repeated here.
  • the fourth visible light link is: the left half-reflex lens 1022 - the left variable mirror 1021 - the left total reflection mirror 1023 - the right total reflection mirror 1023 - the right variable mirror 1021 - the right half-reverse Half lens 1022 ⁇ channel.
  • the visible light signal emitted by the visible light transmitting and receiving unit rejected by the other device passes through the left half-reflex lens 1022 and is reflected to the left variable mirror 1021. If the left variable mirror 1021 is in the full projection state, The emitted visible light signal passes through the variable mirror 1021 on the left to the left total reflection mirror 1023, and the visible light signal is reflected from the left total reflection mirror 1023 to the right total reflection mirror 1023, and the right total reflection mirror 1023 reflects the visible light signal.
  • the visible light signal passes through the variable mirror 1021 on the right to the right half-reverse lens 1022, and the right half-reverse lens 1022 reflects the visible light signal into the channel. That is, when the variable mirror 1021 of the present invention is in a fully transmissive state, the horizontal space transceiver can directly forward the visible light signal emitted by one visible light transceiver unit to another visible light transceiver unit, that is, can forward all visible light, so that The visible light signal does not need to be photoelectrically converted when passing through the horizontal space transceiver of the visible light transceiver unit. Therefore, the present invention does not need to pass the optical to power, and then to the optical relay conversion process to achieve multi-hop connection, which not only reduces power consumption, but also improves forwarding efficiency.
  • the path is indicated by a dotted line with an arrow in FIG.
  • the fourth visible light link can also communicate in reverse, that is, the communication sequence of the link is: the right half-reflex lens 1022 ⁇ the right variable mirror 1021 ⁇ the right total reflection mirror 1023 ⁇ the left total reflection
  • the mirror 1023 ⁇ the left variable mirror 1021 ⁇ the left half-reflex lens 1022-channel, the path is not shown in FIG. 7, and its implementation is the same as above, and details are not described herein again.
  • any one of the above four visible light links may be selected to transmit the visible light signal, and may be selected according to the position information of the first machine rejection 10 and the second machine rejection 20. It should be understood that the positional relationship of each machine in the communication system of the data center may be arranged irregularly or in a regular arrangement, for example, in a matrix. When each machine rejects the regular arrangement, the visible light signal emitted by the visible light transceiver unit rejected by one machine can reach a plurality of visible light receiving and transmitting units rejected by other machines adjacent to or diagonally distributed, for example, the first, second and Four visible light links.
  • different visible light links can be constructed by adjusting the angles of the variable mirror 1021, the half mirror half 1022, and the total reflection mirror 1023. That is, the present invention can obtain the position information of the first machine rejection 10 and the second machine rejection 20 by the control information sent by the first machine rejection 10, regardless of which direction the second machine rejection 20 is located, the first machine rejects 10 can transmit the visible light signal to the second machine rejection 20.
  • FIG. 8 is a schematic structural diagram of a visible light transceiver unit.
  • the visible light transceiver unit 100 includes four vertical space transceivers 101 and four horizontal space transceivers 102 as an example for detailed description, and does not constitute a limitation of the present invention.
  • each horizontal space transceiver 102 is connected by an electrical signal link, wherein the electrical signal link is indicated by a double arrow in FIG.
  • visible light signals can be transmitted between the vertical space transceiver 101 and the horizontal space transceiver 102 or between the horizontal space transceivers 102 via the electrical signal link. The process of conversion and transmission from electricity to light.
  • the establishment of the electrical signal link enables the visible light signal to be transmitted through the electrical signal link to another vertical space transceiver 101 or after the optical to electrical conversion of one of the vertical spatial transceivers 101 or the horizontal spatial transceiver 102
  • the horizontal space transceiver 102 is configured to form a more flexible visible light link to reduce the occurrence of transmission channel congestion.
  • the vertical space transceiver 101 and the horizontal space transceiver 102 in the visible light transceiver unit 100 enable visible light signals to be channel-transformed in the horizontal direction, or channel-transformed in the vertical direction, and can also be horizontally and vertically. Channel conversion is performed between.
  • the transmission can be performed by: the electrical signal link in the visible light transceiver unit rejected by the current machine or the previous machine is horizontal
  • the transmission channel is spatially transformed so that the visible light signal can be transmitted through another horizontal space transceiver 102; or can be transmitted in the horizontal direction and the vertical direction through an electrical signal link in the currently rejected visible light transceiver unit.
  • the channel is changed such that, preferably, in a visible light transceiver unit 100, a second variable mirror 103 can be disposed at each end of each horizontal space transceiver 102, and further, the four verticals can be
  • the spatial transceiver 101 and the four horizontal spatial transceivers 102 are each symmetrically arranged with an axis of symmetry. Since the four vertical spatial transceivers 101 and the four horizontal spatial transceivers 102 in the visible light transceiver unit 100 are symmetrically arranged, the second variable mirror 103 can cooperate with the variable mirror 1021 in the horizontal space transceiver 102.
  • the visible light signal transmitted by the horizontal space transceiver 102 in one visible light transceiver unit 100 can be caused to reach the horizontal space transceiver 102 in the other visible light transceiver unit 100.
  • a visible light signal emitted by a horizontal space transceiver in a visible light transceiver unit can pass through the second variable mirror 103 to a horizontal space transceiver in another visible light transceiver unit, or pass the second at a 90 degree angle.
  • the variable mirror 103 is to a horizontal spatial transceiver in another visible light transceiver unit.
  • three visible light links are indicated in Figure 8, which are represented by three lines with arrows.
  • they can be as follows:
  • the first visible light link is: the second variable mirror on the left 103 - channel;
  • the 90-degree angle of the visible light signal transmitted by the horizontal space transceiver 102 in one visible light transceiver unit enters the channel through the second variable mirror 103 to reach the horizontal space transceiver in the other visible light transceiver unit.
  • the second visible light link is: a second variable mirror 103 on the left - a horizontal space transceiver 102 ⁇ a second variable mirror 103 on the right ⁇ channel;
  • the visible light signal transmitted by the horizontal space transceiver 102 in one visible light transceiver unit is directly connected to the second variable mirror 103 on the left side, and reaches the horizontal space transceiver 102. After reaching the horizontal space transceiver 102, the horizontal space transceiver can be transmitted and received by referring to the above.
  • the fourth visible light link in the machine 102 performs visible light transmission (refer to FIG. 7 together), and the visible light signal enters the channel and reaches the other side of the horizontal space transceiver 102, that is, the second variable mirror 103 on the right side.
  • the visible light signal passes through the second variable mirror 103 on the right side to enter the channel, and reaches the horizontal space transceiver in the other visible light transceiver unit, that is, the level of the second variable mirror 103 to the other visible light transceiver unit.
  • Space transceiver
  • the third visible light link is: a second variable mirror on the left 103 - a horizontal space transceiver 102
  • Second variable mirror 103 on the right - Second variable mirror 103 on the lower side - Channel Second variable mirror 103 on the right - Second variable mirror 103 on the lower side - Channel.
  • the visible light signal transmitted by the horizontal space transceiver 102 passes through the second variable mirror 103 to reach the horizontal space transceiver 102. After reaching the horizontal space transceiver 102, the fourth line in the horizontal space transceiver 102 can be referred to.
  • the visible light link transmits visible light (refer to FIG. 7 together), and the visible light signal enters the channel and reaches the other side of the horizontal space transceiver 102, that is, the second variable mirror 103 on the right side, and reflects the visible light signal to the lower side.
  • the second variable mirror 103 passing through the lower side enters the channel and reaches a horizontal space transceiver in another visible light transceiver unit, that is, a 90 degree angle through the second variable mirror 103 to a horizontal spatial transceiver in another visible light transceiver unit.
  • the implementation of the second variable mirror 103 is the same as that of the first variable mirror.
  • the implementation of the second variable mirror 103 is the same as that of the first variable mirror.
  • any one of the above three visible light links may be selected to transmit visible light signals, and may be selected according to location information of the first machine rejection 10 and the second machine rejection 20. It should be understood that the positional relationship of each machine in the communication system of the data center may be arranged irregularly or in a regular arrangement, for example, in a matrix. When each machine rejects the regular arrangement, the visible light signal emitted by the visible light transceiver unit rejected by one machine can reach a plurality of visible light receiving and transmitting units rejected by other machines adjacent to or diagonally distributed, for example, the first, second and Three visible light links.
  • the components in the second variable mirror 103 and the horizontal space transceiver 102 can be adjusted (for example, the variable mirror 1021, the half mirror half 1022, and the total reflection mirror 1023). of Angle to construct different visible light links. That is, the present invention can obtain the position information of the first machine rejection 10 and the second machine rejection 20 by the control information sent by the first machine rejection 10, regardless of which direction the second machine rejection 20 is located, the first machine rejects 10 can transmit the visible light signal to the second machine rejection 20.
  • the visible light transmitting and receiving unit 100 may be stacked in a 3D manner, and the number of specific stacked unit layers is not performed in the present invention. Specifically limited.
  • FIG. 9 is another schematic structural diagram of the visible light transceiver unit, and FIG. 9 illustrates that the visible light transceiver unit includes two layers of stacks as an example, and does not constitute a limitation of the present invention.
  • the visible light transceiver unit 100 can include a first visible light transceiver unit layer 1001 and a second visible light transceiver unit layer 1002.
  • Each visible light transceiver unit layer can include a vertical space transceiver and a horizontal space transceiver. 7 and 8, the implementation of the vertical space transceiver and the horizontal space transceiver can be referred to the above embodiment, and details are not described herein again.
  • the stacked visible light transceiver unit can realize different transmission directions on different unit layers, so that the entire visible light transceiver unit has multiple transmission directions in the horizontal space, which is more convenient for constructing horizontal interconnection between the respective machine rejections.
  • different unit layers can be connected by electrical signal links. After different unit layers are connected by electrical signal links, visible light signals can be transmitted across unit layers and in different directions, further reducing the blocking rate of the transmission channels. .
  • the embodiment of the present invention uses a visible light signal for transmission, and the frequency of the visible light signal has a wider bandwidth, and the transmission efficiency is higher, and the damage of the wireless radiation can be reduced, and the machine can be rejected by the machine.
  • the visible light transceiver unit forms a visible light wireless link for communication, or reflects the visible light signal through the roof mirror to form a visible light wireless link for communication, and the visible light transceiver unit rejected by each machine can realize the rejection between the adjacent machine or the diagonal machine.
  • the direct-connected visible light wireless link eliminates the need for photoelectric conversion, reduces power consumption, and improves transmission and forwarding efficiency.
  • the embodiment of the present invention further provides a communication method of the data center of the communication system based on the data center.
  • the meaning of the noun is the same as that in the communication system of the above data center.
  • FIG. 10 is a schematic flowchart of a data center communication method provided by the implementation of the present invention. The method may include:
  • Step S101 Receive control information that is rejected by the first device, where the control information carries location information of the first machine rejection and the second machine rejection;
  • Step S102 generating a control signal for controlling the roof mirror according to the control information
  • Step S103 transmitting the control signal to the roof mirror, so that the roof mirror rejects the first machine according to the control signal
  • the visible light signal emitted by the first visible light transmitting and receiving unit is reflected to the second visible light transmitting and receiving unit of the second machine.
  • steps S102 and S103 may specifically include:
  • Step A determining a deflection angle of the roof mirror according to the control information that is rejected by the first machine; Step B, generating a control signal, where the control signal carries a deflection angle of the roof mirror; Step C, The roof mirror transmits the control signal, so that the roof mirror reflects the visible light signal emitted by the first visible light transceiver unit rejected by the first machine to the second visible light transceiver unit rejected by the second machine according to the control signal.
  • the control signal can carry the deflection angle of the movable mirror, and the roof mirror receives the control signal to control the deflection angle of the movable mirror.
  • Step A may specifically include:
  • mapping table includes a mapping relationship between the location information of the first machine rejection, the location information of the second machine rejection, and the deflection angle of the roof mirror;
  • the mapping table determines the deflection angle of the roof mirror.
  • the medium can be a read only memory, a magnetic disk or a compact disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种数据处理系统和数据处理方法。本发明实施例包括:至少两个机柜和位于所述机柜上的可见光收发单元,其中,每个所述机柜上均对应设有所述可见光收发单元,本发明采用可见光信号进行传输,可见光信号的频谱有更宽的带宽,传输效率更高,更可以减少无线电辐射的损害,一个机柜上的可见光收发单元可以向另一机柜发射可见光信号,另一机柜上的可见光收发单元可以接收该发射的可见光信号,可以有效降低功耗,提高传输效率。

Description

一种数据中心的通信系统和通信方法
技术领域
本发明涉及通信领域, 尤其涉及一种数据中心的通信系统和通信方法。 背景技术
数据中心的规模随着网络流量的爆炸性增长而在不断地扩大,传统的电缆 和光缆互联结构的数据中心在线缆耗材和能源消耗上都在不断地增加,一个中 等规模的数据中心, 就线缆长度可达几十公里。 基于线缆的固定连接, 数据中 心的拓朴结构是固定单一的, 当现有数据中心所处的应用环境产生改变时, 或 在进行拓朴结构改造和升级时,不得不花费大量的人力和时间进行物理拓朴的 重新设计和连接, 施工难度大, 周期长。
为了解决上述问题,现有技术中釆用了一种无线连接方式的数据中心架构 进行通信, 该数据中心架构如图 1所示, 主要包括无线电信号发射机、 无线电 信号接收机,反射板 01和机拒 02。现有技术釆用无线信道代替传统的电缆连接, 60GHz的无线电信号由无线电信号发射机编码发射后直接由无线电信号接收 机接收, 或者经过信号反射板 01反射后被无线电信号接收机接收, 由此构成数 据中心的信道连接。 其中, 主要通过以下方式建立拓朴路径: 当在视距范围内 时, 各个机拒 02之间通过直连方式连接, 如图 1所示的路径 A; 不在视距范围 内但是满足无中继传输距离要求时,各个机拒 02之间通过信号反射板 01建立间 接直连, 如图 1所示的路径 B; 不在视距范围内并超出无中继传输距离时, 各 个机拒 02之间通过中继的多跳方式连接, 其中,机拒内各个服务器之间通过机 拒背板的反射器进行无线直连, 如图 1所示的路径八和
在对现有技术的研究和实践过程中发现,发现现有技术中釆用 60GHz无线 电信号进行传输, 辐射和损耗较大, 不利于大型集群系统的构建; 釆用 60GHz 无线电信号进行无线信道直连, 占用可用频谱带宽较多且容易造成干扰; 在中 继过程中需要对信号进行电子电路的处理, 影响数据的传输效率。
发明内容
本发明实施例提供了一种数据中心的通信系统和通信方法, 降低了功耗, 提高了传输效率。
第一方面, 本发明提供了一种数据中心的通信系统, 可包括: 至少两个机拒, 该至少两个机拒中包括第一机拒和第二机拒; 至少两个可 见光收发单元, 其中, 第一机拒和第二机拒均分别设有一个所述可见光收发单 元; 第一机拒上的第一可见光收发单元, 用于向第二机拒上的第二可见光收发 单元发射可见光信号; 所述第二机拒上的第二可见光收发单元, 用于接收第一 可见光收发单元发射的可见光信号。
在第一方面的第一种可能的实现方式中, 该通信系统还可包括: 屋顶反射 镜和屋顶反射镜控制单元; 所述第一可见光收发单元,还用于向所述屋顶反射 镜发射可见光信号,使得屋顶反射镜将该发射的可见光信号反射到所述第二可 见光收发单元; 所述第二可见光收发单元,还用于接收所述屋顶反射镜反射的 可见光信号; 所述屋顶反射镜控制单元, 用于根据接收到的所述第一机拒发送 的控制信息生成用于控制屋顶反射镜的控制信号,所述控制信息携带第一机拒 和第二机拒的位置信息; 所述屋顶反射镜, 用于根据所述控制信号, 将第一机 拒上的第一可见光收发单元发射的可见光信号反射到第二机拒上的第二可见 光收发单元。
结合第一种可能的实现方式,在第二种可能的实现方式中, 所述屋顶反射 镜控制单元, 用于根据所述控制信息确定所述屋顶反射镜的偏转角度, 向所述 屋顶反射镜发送指示所述屋顶反射镜的偏转角度的控制信号; 所述屋顶反射 镜, 用于根据所述控制信号调整所述屋顶反射镜的偏转角度,将第一机拒上的 第一可见光收发单元发射的可见光信号反射到第二机拒上的第二可见光收发 单元。
结合第一种可能的实现方式或第二种可能的实现方式,在第三种可能的实 现方式中,所述第一可见光收发单元包括至少一个第一竖直空间收发机和至少 一个第一水平空间收发机,所述第二可见光收发单元包括至少一个第二竖直空 间收发机和至少一个第二水平空间收发机; 所述第一水平空间收发机, 用于向 所述第二水平空间收发机发射可见光信号; 所述第二水平空间收发机, 用于接 收所述第一水平空间收发机发射的可见光信号; 所述第一竖直空间收发机, 用 于向所述屋顶反射镜发射可见光信号,使得屋顶反射镜将该发射的可见光信号 反射到所述第二竖直空间收发机; 所述第二竖直空间收发机, 用于接收所述屋 顶反射镜反射的可见光信号。 结合第三种可能的实现方式,在第四种可能的实现方式中, 所述第一竖直 空间收发机和第一水平空间收发机之间釆用电信号链路连接,至少一个第一水 平空间收发机中的各个所述第一水平空间收发机之间釆用电信号链路连接;所 述第二竖直空间收发机和第二水平空间收发机之间釆用电信号链路连接,至少 一个第二水平空间收发机中的各个所述第二水平空间收发机之间釆用电信号 链路连接。
结合第三种可能的实现方式或第四种可能的实现方式,在第五种可能的实 现方式中, 所述第一竖直空间收发机包括第一半反半透镜; 所述第一水平空间 收发机包括第三半反半透镜; 所述第一半反半透镜, 用于直通所述第一竖直空 间收发机中的发射机发射的可见光信号; 所述第三半反半透镜, 用于直通所述 第一水平空间收发机中的发射机发射的可见光信号。
结合第三种可能的实现方式或第四种可能的实现方式,在第六种可能的实 现方式中, 所述第二竖直空间收发机包括第二半反半透镜和第一全反射镜; 所 述第二水平空间收发机包括第四半反半透镜、第二全反射镜、第一可变反射镜 和第一可变反射镜控制单元; 其中, 所述第二水平空间收发机, 还用于转发所 述第一水平空间收发机发射的可见光信号到另一第二水平空间收发机;所述第 二半反半透镜, 用于将所述屋顶反射镜反射的可见光信号反射到第一全反射 镜; 所述第一全反射镜, 用于将所述第二半反半透镜反射的可见光信号反射到 所述第二竖直空间收发机中的接收机; 所述第四半反半透镜, 用于将第一机拒 发射的可见光信号反射到第一可变反射镜; 所述第一可变反射镜控制单元, 用 于根据接收到的第一机拒发送的控制信息控制所述第一可变反射镜的状态,所 述控制信息携带第一机拒和第二机拒的位置信息,所述第一可变反射镜的状态 包括: 全投射状态和全反射状态; 所述第一可变反射镜, 用于当所述第一可变 反射镜处于全投射状态时,直通所述第四半反半透镜反射的可见光信号到第二 全反射镜, 当所述第一可变反射镜处于全反射状态时,将所述第四半反半透镜 反射的可见光信号反射到第二水平空间收发机; 所述第二全反射镜, 用于将 所述第一可变反射镜直通的可见光信号反射到另一第二水平空间收发机。
结合第六种可能的实现方式,在第七种可能的实现方式中, 该通信系统还 可包括: 第二可变反射镜; 每个第一水平空间收发机或第二水平空间收发机的 两端各设有一个所述第二可变反射镜,用于将第一水平空间收发机发射的可见 光信号直通或反射到第二水平空间收发机,或者将所述第二水平空间收发机转 发的可见光信号直通或反射到另一第二水平空间收发。
结合第一至第七中任一种可能的实现方式, 在第八种可能的实现方式中, 所述屋顶反射镜包括: 第一可移动反射镜; 所述屋顶反射镜控制单元, 用于根 据所述控制信息确定所述第一可移动反射镜的偏转角度,向所述屋顶反射镜发 送指示所述第一可移动反射镜的偏转角度的控制信号,以使得所述屋顶反射镜 根据所述控制信号调整所述第一可移动反射镜的偏转角度。
结合第一方面或第一至第八中任一种可能的实现方式,在第九种可能的实 现方式中,每个所述机拒均包括多个服务器,并且该系统还可包括:光学背板, 用于将机拒内的一个服务器上的光电转换器发射的可见光信号反射到机拒内 的其他服务器中, 形成所述机拒内的各个服务器之间的可见光无线链路。
结合第九种可能的实现方式,在第十种可能的实现方式中, 该通信系统还 包括: 光学背板控制单元; 其中, 所述光学背板包括: 第二可移动反射镜; 所 述光学背板控制单元,用于根据所述一个服务器和其他服务器的位置确定所述 第二可移动反射镜的偏转角度,向所述光学背板发送指示所述第二可移动反射 镜的偏转角度的控制信号 , 以使得光学背板根据所述控制信号调整所述第二 可移动反射镜的偏转角度,将所述一个服务器上的光电转换发射器发射的可见 光信号反射到机拒内的其他服务器中。
第二方面, 本发明提供了一种数据中心的通信方法, 可包括:
接收第一机拒发送的控制信息,所述控制信息携带第一机拒和第二机拒的 位置信息;
根据所述控制信息生成用于控制屋顶反射镜的控制信号,并将所述控制信 号发送给所述屋顶反射镜,使得屋顶反射镜根据所述控制信号,将第一机拒上 的第一可见光收发单元发射的可见光信号反射到第二机拒上的第二可见光收 发单元。
在第二方面的第一种可能的实现方式中,所述根据所述控制信息生成用于 控制所述屋顶反射镜的控制信号,并将所述控制信号发送给屋顶反射镜,包括: 根据所述控制信息确定所述屋顶反射镜的偏转角度; 生成控制信号, 所述控制 信号携带所述屋顶反射镜的偏转角度; 向所述屋顶反射镜发送所述控制信号。 结合第一种可能的实现方式,在第二种可能的实现方式中, 所述根据所述 控制信息确定所述屋顶反射镜的偏转角度, 包括: 根据所述控制信息, 查找预 先存有的映射表, 所述映射表包括第一机拒的位置信息、第二机拒的位置信息 和所述屋顶反射镜的偏转角度的映射关系;根据所述映射表确定所述屋顶反射 镜的偏转角度。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例釆用可见光信号进行传输, 可见光信号的频谱有更宽的带 宽, 传输效率更高, 更可以减少无线电辐射的损害, 各个机拒之间可通过机拒 上的可见光收发单元形成可见光无线链路进行通信, 可以有效降低功耗,提高 传输效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域技术人员来讲, 在不付出创造性劳动的前提下, 还可 以根据这些附图获得其他的附图。
图 1是现有技术中数据中心的通信系统的结构示意图;
图 2是本发明实施例提供的数据中心的通信系统的一个结构示意图; 图 3是本发明实施例提供的数据中心的通信系统的另一个结构示意图; 图 4是本发明实施例屋顶反射镜的结构示意图;
图 5是本发明实施例提供的数据中心的通信系统的另一个结构示意图; 图 6是本发明实施例提供的竖直空间收发机的结构示意图;
图 Ί是本发明实施例提供的水平空间收发机的结构示意图;
图 8是本发明实施例提供的可见光收发单元的一个结构示意图; 图 9是本发明实施例提供的可见光收发单元的另一个结构示意图; 图 10是本发明实施例提供的数据中心的通信方法的流程示意图。
具体实施方式
本发明实施例提供了一种数据中心的通信系统和通信方法, 用于降低功 耗, 提高传输效率。 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语 "第一"、 "第二"、 "第 三" "第四" 等(如果存在)是用于区别类似的对象, 而不必用于描述特定的 顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换, 以便这里 描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序 实施。 此外, 术语 "包括" 和 "具有" 以及他们的任何变形, 意图在于覆盖不 排他的包含, 例如, 包含了一系列步骤或单元的过程、 方法、 系统、 产品或设 备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对 于这些过程、 方法、 产品或设备固有的其它步骤或单元。
本发明实施例提供了一种数据中心的通信系统, 主要应用于数据中心, 该 数据中心是一种特定设备网络, 可以加速信息的传递。
请参阅图 2,图 2是本发明实施提供的数据中心的通信系统的一个结构示意 图。该系统具体可以包括:至少两个机拒和位于这些机拒上的可见光收发单元, 其中, 每个所述机拒上均对应设有一个所述可见光收发单元。 在实际应用中, 每个机拒上的可见光收发单元均具有接收和发射可见光信号的能力,各个机拒 之间可通过可见光收发单元构建可见光无线链路。为了更好的描述本发明实施 例的技术方案, 将以一个机拒上的可见光收发单元具有发射可见光信号的能 力,另一个机拒上的可见光收发单元具有接收可见光信号的能力为例进行详细 说明, 其中, 为了描述方便, 本发明实施例将具有发射可见光信号的能力的机 拒称为第一机拒 10, 该第一机拒上 10设有第一可见光收发单元 11, 将具有接收 可见光信号的能力的机拒称为第二机拒 20,该第二机拒 20上设有第二可见光收 发单元 21。
本发明实施例对数据中心的通信系统中的机拒数量不做具体限制, 图 2 中以数据中心的通信系统包括 4个机拒为例进行详细说明,不构成对本发明的 限定。 具体地, 图 2中所示意的这 4个机拒分别包括 2个第一机拒 10和 2个 第二机拒 20。 其中, 第一可见光收发单元 11和第二可见光收发单元 21分别 位于第一机拒 10和第二机拒 20的顶部。
其中, 第一机拒 10上的第一可见光收发单元 11, 用于向第二机拒 20上 的第二可见光收发单元 21发射可见光信号;
所述第二可见光收发单元 21,用于接收第一可见光收发单元 11发射的可见 光信号。
由上可知, 本发明实施例釆用可见光信号进行传输, 可见光信号的频语有 更宽的带宽, 传输效率更高, 更可以减少无线电辐射的损害, 各个机拒之间可 通过机拒上的可见光收发单元形成可见光无线链路进行通信,可以有效降低功 耗, 提高传输效率。
在实际应用中,当第一机拒 10和第二机拒 20之间的信道距离较短时,例如, 相邻机拒之间, 或者对角机拒之间可通过上述方案实现通信, 当信道距离较长 时, 还可以通过屋顶反射镜 30来实现机拒之间的通信, 其中, 通过屋顶反射镜 30可以实现任意机拒之间的通信。
进一步地,请参阅图 3, 图 3是本发明实施提供的数据中心的通信系统的另 一个结构示意图, 该系统还可以包括屋顶反射镜 30和屋顶反射镜控制单元 50, 例如, 具体可以如下:
所述第一可见光收发单元 11, 还用于向所述屋顶反射镜 30发射可见光信 号,使得屋顶反射镜 30将该发射的可见光信号反射到所述第二可见光收发单元 21;
所述第二可见光收发单元 21,还用于接收所述屋顶反射镜 30反射的可见光 信号;
所述屋顶反射镜控制单元 50,用于根据接收到的所述第一机拒 10发送的控 制信息生成用于控制屋顶反射镜 30的控制信号并发送给所述屋顶反射镜, 其 中, 控制信息携带第一机拒 10和第二机拒 20的位置信息;
所述屋顶反射镜 30, 用于根据所述控制信号,将第一机拒 10上的第一可见 光收发单元 11发射的可见光信号反射到第二机拒 20上的第二可见光收发单元 21。
具体的,所述屋顶反射镜控制单元 50可根据所述控制信息确定所述屋顶反 射镜 30的偏转角度,向所述屋顶反射镜 30发送指示所述屋顶反射镜 30的偏转角 度的控制信号; 所述屋顶反射镜 30, 可根据所述控制信号调整所述屋顶反射镜 30的偏转角度,将第一机拒 10上的第一可见光收发单元 11发射的可见光信号反 射到第二机拒 20上的第二可见光收发单元 21。
在某些实施方式中, 请参阅图 4, 图 4是屋顶反射镜的结构示意图。 屋顶 反射镜 30可包括: 第一可移动反射镜 31, 通过调整第一可移动反射镜 31的 偏转角度可以控制第一可见光收发单元 11发射的可见光信号的路径。 由于各 个机拒的位置可能是固定的, 为了使得第二机拒 20上的第二可见光收发单元 21可以接收来自各个方向上的可见光信号, 该第一可移动反射镜 31还可以包 括第一固定反射镜 32。 其中, 第一固定反射镜 32的角度不可调, 其反射的路 径是唯一的, 而第一可移动反射镜 31的角度是可调的, 可通过调整第一可移 动反射镜 31的角度来改变各个机拒之间的可见光无线链路。
第一可移动反射镜 31和第一固定反射镜 32的配合,可以保证一个机拒上 的可见光单元发射的可见光信号通过屋顶反射镜 30后垂直到达另一个机拒上 的收发可见光单元。 其中, 每个机拒可对应设有一个第一可移动反射镜 31。 请参阅图 4, 图 4是屋顶反射镜的结构示意图。 为了描述方便, 图 4以该以屋 顶反射镜 30设有 4个第一可移动反射镜 31和一个固定反射镜 32为例进行详 细说明, 不构成对本发明的限定, 其中, 这 4个第一可移动反射镜 31分别对 应 A、 B、 C和 D这 4个机拒, 其中, A、 B、 C和 D这 4个机拒可以表示第 一机拒或第二机拒, A机拒上的可见光收发单元发射的可见光信号到达与 A 机拒对应的第一可移动反射镜 31 , 由该与 A机拒对应的第一可移动反射镜 31 将可见光信号反射到第一固定反射镜 32, 由第一固定反射镜 32将该可见光信 号反射到与 C机拒对应的第一可移动反射镜 31上, 由该与 C机拒对应的第一 可移动反射镜 31将可见光信号反射给 C机拒上的可见光收发单元。 B机拒和 D机拒与此同理, 此处不再赘述。
可一并参阅图 3和图 4,屋顶反射镜控制单元 50用于生成控制屋顶反射镜 30 的控制信号, 并将控制信号发送给屋顶反射镜 30, 所述屋顶反射镜控制单元 50 生成的控制信号用于控制第一可移动反射镜 31的偏转角度,从而构建不同的可 见光链路。 具体的, 可在所述屋顶反射镜控制单元 50中预先存有一个映射表, 该映射表中记录有一个机拒到另一个机拒(例如第一机拒 10到第二机拒 20 )通 过屋顶反射镜 30通信时所对应的第一可移动反射镜 31所需要的 X轴和 Y轴两个 方向的偏转角度值。在实际应用中, 当第一机拒 10需要通过屋顶反射镜 30进行 光通信时,屋顶反射镜控制单元 50会接收到第一机拒 10发送的控制信息,根据 该控制信息获得第一机拒 10和第二机拒 20的位置信息,屋顶反射镜控制单元 50 可以根据第一机拒 10和第二机拒 20的位置信息, 查找预先存有的映射表, 以此 获得第一可移动反射镜 31的 X轴和 Υ轴两个方向的偏转角度值, 并向屋顶反射 镜 30发送控制信号, 其中,控制信号可指示屋顶反射镜 30调整第一可移动反射 镜 31的 X轴和 Υ轴的角度。
在一种实现方式中,第一机拒 10可以通过数据包的形式向屋顶反射镜控制 单元 50发送控制信息,该数据包的包头携带有第一机拒 10和第二机拒 10的位置 信息等信息,屋顶反射镜控制单元 50接收到该数据包后对其进行解析, 获得第 一机拒 10和第二机拒 20的位置信息。可选的,屋顶反射镜控制单元 50可以根据 第一机拒 10和第二机拒 20的位置信息通过映射表获得可移动反射镜 31的 X轴 和 Υ轴两个方向的偏转角度值, 或者还可以根据第一机拒 10和第二机拒 20的位 置信息计算得到第一可移动反射镜 31的 X轴和 Υ轴偏转角度。
进一步地, 可以通过提高第一机拒 10发射的电信号的频率来提高控制可 移动反射镜 31的偏转角度的精度, 例如, 可以釆用计数高电平数量的方式来 控制。
可以理解的是, 各个机拒的位置是固定的, 屋顶反射镜 30可釆用上述动 态配置方式, 即通过控制信号来控制可见光链路的构建, 此外, 还可以通过静 态配置的方式来构建可见光链路, 本发明不做具体限制。 例如, 屋顶反射镜 30可在机拒摆放时, 通过预先的拓朴设计来进行相应的可移动反射镜 31的偏 转角度的调试。
需说明的是, 该可移动反射镜的尺寸较大, 本身具有更高的偏转速度和控 制精度,在其满足偏转角度和稳定度的前提下, 可以有效降低数据中心的通信 系统的复杂度和造价。
可一并参阅图 5, 图 5是本发明实施提供的数据中心的通信系统的另一个 结构示意图。 本发明实施例还可以包括: 光学背板 40, 该光学背板 40可以将 机拒内的一个服务器上的光电转换发射器发射的可见光信号反射到机拒内的 其他服务器中, 形成机拒内的各个服务器之间的可见光无线链路。可以理解的 是, 每个机拒均包括多个服务器, 这些服务器具有电接口, 该电接口可连接光 电转换器, 光电转换器可将服务器的电信号转化为可见光信号并发射, 其发射 的可见光信号通过光学背板 40反射到机拒内的其他服务器中, 由其他服务器 中的光电转换器接收该可见光信号,并可以将接收到的该可见光信号转换为电 信号, 完成数据收发功能。 进一步地, 光电转换接收器可包括多个 LED光源 和多个接收器, 可以通过利用多个 LED光源和接收器形成多入多出的多信道 来并行收发, 可以有效提高信道带宽。 为了更好的说明本发明实施例的方案, 图 5中以第一机拒 10为例进行示例,该第一机拒 10内的各个服务器之间可通 过光学背板 40构建可见光链路。优选地,每个第一机拒 10对应设有一个光学 背板 40。
其中, 光学背板 40可以包括: 第二可移动反射镜, 通过调整第二可移动 反射镜的偏转角度可以控制机拒内部各个服务器之间的拓朴连接。由于机拒内 部各个服务器可能是固定的,为了使得一个服务器可以接收机拒内各个不同服 务器通过光学背板反射过来的可见光信号, 该光学背板 40还可以包括第二固 定反射镜。 需说明的是, 光学背板 40上的第二可移动反射镜和第二固定反射 镜与上述屋顶反射镜 30中的第一可移动反射镜 31和第一固定反射镜 32的具 体实施同理。 此外, 本发明还包括光学背板控制单元, 其中, 该光学背板控制 单元的实施与屋顶反射镜控制单元的实施同理。 光学背板控制单元, 用于根据 所述一个服务器和其他服务器的位置确定所述第二可移动反射镜的偏转角度, 向所述光学背板 40发送指示所述第二可移动反射镜的偏转角度的控制信号, 以使得光学背板 40根据所述控制信号调整所述第二可移动反射镜的偏转角 度,将所述一个服务器上的光电转换发射器发射的可见光信号反射到机拒内的 其他服务器中。 本实施例中的光学背板 40可以通过改变第二可移动反射镜的 偏转角度来改变机拒内部各个服务器之间的拓朴连接, 在结构上实现了可变, 而且可见光链路本身的功耗相比传统高速电通道要低很多。其中, 第二可移动 反射镜的尺寸较大, 本身具有更高的偏转速度和控制精度,在其满足偏转角度 和稳定度的前提下, 可以有效降低数据中心的通信系统的复杂度和造价。
由前述可知,所述第一可见光收发单元 11可向第二可见光收发单元 21发 射可见光信号, 使得第二可见光收发单元 21接收该可见光信号, 第一可见光 收发单元 11还可向屋顶反射镜 30发射可见光信号, 由屋顶反射镜 30将该可 见光信号反射到第二可见光收发单元 21。 也就是说, 第一机拒 10和第二机拒 20之间可构建至少两条可见光链路, 为了描述方便, 可将前者构建的信道描 述为水平信道, 将后者构建的信道描述为竖直信道。 需说明的是, 本发明实施 例可根据通信距离和信道是否空闲来选择釆用竖直信道或水平信道, 例如, 当 通信距离长时, 以竖直信道为优选, 若竖直信道繁忙, 则转为釆用水平信道, 当距离通信短时则与之相反。应当理解的是, 竖直信道和水平信道两者之间是 完全独立的信道, 相互不会产生干扰, 可以同时存在。
具体的,对第一可见光收发单元 11和第二可见光收发单元 21的具体描述 如下, 需说明的是, 全文中将可见光信号直接通过反射镜或透镜简称为直通, 以下不再赘述。
第一可见光收发单元 11可包括至少一个第一竖直空间收发机和至少一个 第一水平空间收发机, 第二可见光收发单元 21包括至少一个第二竖直空间收 发机和至少一个第二水平空间收发机。
其中, 所述第一水平空间收发机, 用于向所述第二水平空间收发机发射可 见光信号;
所述第二水平空间收发机,用于接收所述第一水平空间收发机发射的可见 光信号;
所述第一竖直空间收发机, 用于向所述屋顶反射镜发射可见光信号,使得 屋顶反射镜将该发射的可见光信号反射到所述第二竖直空间收发机;
所述第二竖直空间收发机, 用于接收所述屋顶反射镜反射的可见光信号。 具体的, 所述第一竖直空间收发机包括第一半反半透镜, 所述第一水平空 间收发机包括第三半反半透镜。
其中, 所述第一半反半透镜, 用于直通所述第一竖直空间收发机中的发射 机发射的可见光信号; 所述第三半反半透镜, 用于直通所述第一水平空间收发 机中的发射机发射的可见光信号。
需说明的是,所述第二水平空间收发机不只是用于接收所述第一水平空间 收发机发射的可见光信号,还可以用于转发所述第一水平空间收发机发射的可 见光信号到另一第二水平空间收发机。
具体的, 所述第二竖直空间收发机包括第二半反半透镜和第一全反射镜, 所述第二水平空间收发机包括第四半反半透镜、第二全反射镜、第一可变反射 镜和第一可变反射镜控制单元。
其中, 所述第二半反半透镜, 用于将所述屋顶反射镜反射的可见光信号反 射到第一全反射镜;
所述第一全反射镜,用于将所述第二半反半透镜反射的可见光信号反射到 所述第二竖直空间收发机中的接收机;
所述第四半反半透镜,用于将第一机拒发射的可见光信号反射到第一可变 反射镜;
所述第一可变反射镜控制单元,用于根据接收到的第一机拒发送的控制信 息控制所述第一可变反射镜的状态,所述控制信息携带第一机拒和第二机拒的 位置信息, 所述第一可变反射镜的状态包括: 全投射状态和全反射状态;
所述第一可变反射镜, 用于当所述第一可变反射镜处于全反射状态时,将 所述第四半反半透镜反射的可见光信号反射到第二水平空间收发机中的接收 机, 当所述第一可变反射镜处于全投射状态时, 直通所述第四半反半透镜反射 的可见光信号到第二全反射镜;
所述第二全反射镜,用于将所述第一可变反射镜直通的可见光信号反射到 另一第二水平空间收发机。
由前述可知, 每个机拒上的可见光收发单元均可以接收和发射可见光信 号,下面以一个可见光收发单元同时具有接收和发射可见光信号能力为例对该 可见光收发单元进行详细描述。其中, 该可见光收发单元 100包括竖直空间收 发机 101和水平空间收发机 102, 请参阅图 6, 图 6是竖直空间收发机的结构 示意图, 图 7是水平空间收发机的结构示意图。
请参阅图 6,图 6是竖直空间收发机的结构示意图。该竖直空间收发机 101 包括竖直空间接收机(RX, Receiver ), 竖直空间发射机(TX, transmitter ), 半反半透镜 1011和全反射镜 1012。由图 6可知,信道上入射的可见光信号(此 处为屋顶反射镜 30反射的可见光信号)经过反半透镜 1011反射后, 经过全反 射镜 1012进入到 RX, 而 TX发射的可见光信号则可以直接通过(全文中简称 为直通)半反半透镜 1011, 直接进入信道, 其中, 进入信道的该可见光信号 可以发射到屋顶反射镜 30。
容易理解的是, 在第一可见光收发单元 11上, 该半反半透镜 1011即为第 一半反半透镜, 在第二可见光收发单元 21上, 该半反半透镜 1011即为第二半 反半透镜, 全反射镜 1012为第一全反射镜。
请参阅图 7,图 7是水平空间收发机的结构示意图。该水平空间收发机 102 包括水平空间接收机 RX、 水平空间发射机 TX、 可变反射镜 1021、 半反半透 镜 1022和全反射镜 1023。
容易理解的是, 在第一可见光收发单元 11上, 该半反半透镜即为第三半 反半透镜,在第二可见光收发单元 21上, 该可变反射镜 1021即为第一可变反 射镜,半反半透镜 1022即为第四半反半透镜,全反射镜 1023为第二全反射镜。
优选地, 水平空间收发机 102可以包括: 两个可变反射镜 1021、 两个半 反半透镜 1022和两个全反射镜 1023 , 相应的, 该水平空间收发机 10包括两 个发射机 ΤΧ和两个接收机 RX。 如图 7所示, 这两个发射机 TX之间, 两个 接收机 RX之间, 两个可变反射镜 1021、 两个半反半透镜 1022和两个全反射 镜 1023之间分别相对于一对称轴对称布置,两个发射机 TX、两个接收机 RX、 两个可变反射镜 1021、 两个半反半透镜 1022和两个全反射镜 1023相互配合, 使得水平空间收发机 102能够双向收发,即可以向图 7中的左侧或右侧发射可 见光信号, 可以接收图 7中的左侧或右侧发射过来的可见光信号。
请参阅图 7, 在实际应用中, TX发射的可见光信号可直通左边和右边的 半反半透镜 1022进入信道, 从信道上入射的可见光信号 (此处为其他机拒上 的可见光收发单元发射的可见光信号, 例如第一机拒 10上的第一可见光收发 单元 11发射的可见光信号)则被半反半透镜 1022反射, 其中, 当水平空间收 发机用于接收可见光信号时, 第一可见光收发单元 11发射的可见光信号需要 被 RX接收, 可变反射镜 1021呈全反射状态, 将第一可见光收发单元 11发射 的可见光信号反射到 RX, 当水平空间收发机用于转发可见光信号时, 第一可 见光收发单元 11发射的可见光信号需要直通,可变反射镜 1021呈透明状态(即 全投射状态), 将第一可见光收发单元 11 发射的可见光信号直通到全反射镜 1023 ,由全反射镜 1023将第一可见光收发单元 11发射的可见光信号反射到信 道, 实现将可见光信号转发到另一水平空间收发机。
具体可参阅图 7, 图 7中标示了四条可见光链路, 分别用四条带箭头的线 表示。 这四条可见光链路分别如下:
第一条可见光链路为: TX-左边的半反半透镜 1022 -信道;
其中,水平空间发射机 TX发射的可见光信号经过左边的半反半透镜 1022 后, 直通左边的半反半透镜 1022进入信道。 其中, 进入信道的该可见光信号 可以发射到其他机拒, 以下各可见光链路中均与此同理, 不再赘述。
第二条可见光链路为: TX-右边的半反半透镜 1022 -信道;
其中,水平空间发射机 TX发射的可见光信号经过右边的半反半透镜 1022 后, 直通右边的半反半透镜 1022进入信道。
第三条可见光链路为: 右边的半反半透镜 1022—右边的可变反射镜 1021 →RX;
其中,其他机拒上的可见光收发单元发射的可见光信号经过右边的半反半 透镜 1022后,被反射到右边的可变反射镜 1021, 此时右边的可变反射镜 1021 处于全反射状态, 该发射的可见光信号被反射到 RX。
需说明的是,该第三条可见光链路还可以反向通信,即链路的通信顺序为: 左边的半反半透镜 -左边的第一可变反射镜RX, 该路径未在图 7中标示, 其具体实施同上, 此处不再赘述。
第四条可见光链路为: 左边的半反半透镜 1022—左边的可变反射镜 1021 ―左边的全反射镜 1023—右边的全反射镜 1023—右边的可变反射镜 1021—右 边的半反半透镜 1022→信道。
其中,其他机拒上的可见光收发单元发射的可见光信号经过左边的半反半 透镜 1022后,被反射到左边的可变反射镜 1021,若此时左边的可变反射镜 1021 处于全投射状态, 发射的可见光信号直通左边的可变反射镜 1021到达左边的 全反射镜 1023, 由左边的全反射镜 1023将该可见光信号反射到右边的全反射 镜 1023, 右边的全反射镜 1023将可见光信号反射到右边的可变反射镜 1021, 若此时右边的可变反射镜 1021处于全投射状态, 可见光信号直通右边的可变 反射镜 1021到达右边的半反半透镜 1022, 由右边的半反半透镜 1022将可见 光信号反射进入信道。 也就是说, 本发明中的可变反射镜 1021呈全透射状态时, 该水平空间收 发机可以将一个可见光收发单元发射的可见光信号直接转发给另一个可见光 收发单元, 即可以转发全可见光,使得可见光信号经过该可见光收发单元的水 平空间收发机时无需进行光电转换。 因此, 本发明无需通过光到电, 再到光的 中继转换过程来实现多跳方式连接, 不仅降低了功耗, 还提高了转发效率。
需说明的是, 为了更好的标示第四条可见光链路, 该路径在图 7中釆用一 条带箭头的虚线表示。 其中, 该第四条可见光链路还可以反向通信, 即链路的 通信顺序为: 右边的半反半透镜 1022→右边的可变反射镜 1021→右边的全反 射镜 1023→左边的全反射镜 1023→左边的可变反射镜 1021→左边的半反半透 镜 1022-信道, 该路径未在图 7中标示, 其具体实施同上, 此处不再赘述。
在实际应用中,可以选择上述四条可见光链路中的任一条链路来传输可见 光信号, 具体可根据第一机拒 10和第二机拒 20的位置信息来进行选择。应当 理解的是,数据中心的通信系统中的各个机拒的位置关系可以不规则排列, 也 可以是规则排列, 例如, 呈矩阵排列。 当各个机拒规则排列时, 一个机拒上的 可见光收发单元发射的可见光信号可以到达多个与其相邻或对角分布的其他 机拒上的可见光收发单元, 例如, 第一、 第二和第四条可见光链路。 当各个机 拒不规则排列时, 则可以通过调整可变反射镜 1021、 半反半透镜 1022和全反 射镜 1023的角度来构建不同的可见光连路。 也就是说, 本发明实施通过第一 机拒 10发送的控制信息可以获得第一机拒 10和第二机拒 20的位置信息, 无 论第二机拒 20位于哪一个方向上,第一机拒 10都可以将可见光信号发射到第 二机拒 20上。
下面将以一个具体应用例对本实施例中的可见光收发单元进行说明,请参 阅图 8, 图 8是可见光收发单元的一个结构示意图。 在该实施例中, 以可见光 收发单元 100包括四个竖直空间收发机 101和四个水平空间收发机 102为例进 行详细说明, 不构成对本发明的限定。
其中, 竖直空间收发机 101和水平空间收发机 102之间,各个水平空间收 发机 102之间以电信号链路连接, 其中, 图 8中以双箭头标示电信号链路。 在 一个可见光收发单元 100中,可见光信号可以通过该电信号链路在竖直空间收 发机 101和水平空间收发机 102之间,或各个水平空间收发机 102之间进行光 到电再到光的转换和传递过程。电信号链路的建立使得可见光信号通过其中一 个竖直空间收发机 101或水平空间收发机 102的光到电的转换后,可以经过该 电信号链路传输到另一个竖直空间收发机 101或水平空间收发机 102中,以便 组建更加灵活的可见光光链路, 减少传输通道阻塞的发生。
可见光收发单元 100中的竖直空间收发机 101和水平空间收发机 102使得可 见光信号能够在水平方向上进行通道变换, 或在竖直方向上进行通道变换,还 可以在水平方向与竖直方向之间进行通道变换。
例如, 在一个可见光收发单元 100中, 当可见光信号在当前传输通道被占 用时, 可以通过以下方式进行传输: 通过当前机拒或前一 ϋ机拒的可见光收发 单元内的电信号链路在水平空间上进行传输通道变换,以使得该可见光信号可 通过另一水平空间收发机 102来传输; 或者可以通过当前机拒的可见光收发单 元内的电信号链路在水平方向和竖直方向上进行传输通道变换,以使得该可见 优选地, 在一个可见光收发单元 100中, 可以在每个水平空间收发机 102 的两端各布置一个第二可变反射镜 103, 此外, 可以将这四个竖直空间收发机 101和四个水平空间收发机 102之间分别以一对称轴对称布置。 由于可见光收 发单元 100中的四个竖直空间收发机 101和四个水平空间收发机 102呈对称布 置, 第二可变反射镜 103可以和水平空间收发机 102内的可变反射镜 1021配 合,使得一个可见光收发单元 100中的水平空间收发机 102发射的可见光信号 可以到达另一可见光收发单元 100中的水平空间收发机 102。 例如, 一个可见 光收发单元中的水平空间收发机发射的可见光信号可以直通所述第二可变反 射镜 103到另一可见光收发单元中的水平空间收发机, 或者以 90度角通过所 述第二可变反射镜 103到另一可见光收发单元中水平空间收发机。
具体的, 图 8中标示了三条可见光链路, 分别是用三条带箭头的线表示。 例如, 分别可以如下:
第一条可见光链路为: 左边的第二可变反射镜 103 -信道;
其中, 一个可见光收发单元中的水平空间收发机 102发射的可见光信号 90度角通过所述第二可变反射镜 103进入信道, 到达另一可见光收发单元中 的水平空间收发机。 第二条可见光链路为: 左边的第二可变反射镜 103 -水平空间收发机 102 →右边的第二可变反射镜 103→信道;
其中,一个可见光收发单元中的水平空间收发机 102发射的可见光信号直 通左边的第二可变反射镜 103, 到达水平空间收发机 102, 到达水平空间收发 机 102后,可参照上述在水平空间收发机 102中的第四条可见光链路进行可见 光的传输(可一并参照图 7 ), 该可见光信号进入信道后到达该水平空间收发 机 102另一边, 即右边的第二可变反射镜 103, 可见光信号直通该右边的第二 可变反射镜 103进入信道, 到达另一可见光收发单元中的水平空间收发机, 即 为直通所述第二可变反射镜 103到另一可见光收发单元中的水平空间收发机。
第三条可见光链路为: 左边的第二可变反射镜 103—水平空间收发机 102
→右边的第二可变反射镜 103 -下边的第二可变反射镜 103 -信道。
其中, 一个水平空间收发机 102发射的可见光信号直通第二可变反射镜 103, 到达水平空间收发机 102, 到达水平空间收发机 102后, 可参照上述在 水平空间收发机 102中的第四条可见光链路进行可见光的传输(可一并参照图 7 ), 该可见光信号进入信道后到达该水平空间收发机 102另一边, 即右边的第 二可变反射镜 103, 并将可见光信号反射到下边的第二可变反射镜 103, 直通 该下边的第二可变反射镜 103进入信道,到达另一可见光收发单元中的水平空 间收发机, 即为 90度角通过所述第二可变反射镜 103到另一可见光收发单元 中水平空间收发机。
其中, 第二可变反射镜 103的具体实施与第一可变反射镜的实施例同理, 具体可参见上述实施例, 此处不再赘述。
在实际应用中,可以选择上述三条可见光链路中的任一条链路来传输可见 光信号, 具体可根据第一机拒 10和第二机拒 20的位置信息来进行选择。应当 理解的是,数据中心的通信系统中的各个机拒的位置关系可以不规则排列, 也 可以是规则排列, 例如, 呈矩阵排列。 当各个机拒规则排列时, 一个机拒上的 可见光收发单元发射的可见光信号可以到达多个与其相邻或对角分布的其他 机拒上的可见光收发单元, 例如, 第一、 第二和第三条可见光链路。 当各个机 拒不规则排列时, 则可以通过调整第二可变反射镜 103和水平空间收发机 102 中的各部件 (例如: 可变反射镜 1021、 半反半透镜 1022和全反射镜 1023 )的 角度来构建不同的可见光连路。 也就是说, 本发明实施通过第一机拒 10发送 的控制信息可以获得第一机拒 10和第二机拒 20的位置信息, 无论第二机拒 20位于哪一个方向上, 第一机拒 10都可以将可见光信号发射到第二机拒 20 上。
进一步地,为了增加可见光收发单元 100在水平方向上传输的多方向性和 降低传输通道阻塞率, 可将可见光收发单元 100进行 3D多层堆叠, 具体的堆 叠单元层的数量在本发明中不做具体限定。
具体可参阅图 9, 图 9是以该可见光收发单元的另一个结构示意图, 图 9 中以该可见光收发单元包括两层堆叠为例进行说明, 不构成对本发明的限定。 该可见光收发单元 100可包括第一可见光收发单元层 1001和第二可见光收发 单元层 1002, 每个可见光收发单元层均可以包括竖直空间收发机和水平空间 收发机, 可一并参阅图 6、 7和 8, 竖直空间收发机和水平空间收发机的具体 实施可参见上述实施例, 此处不再赘述。
该堆叠的可见光收发单元可以在不同单元层上实现不同的传输方向,从而 使整个可见光收发单元在水平空间上有多个传输方向,更方便于构建各个机拒 之间的水平方向互连。 此外, 不同单元层之间可通过电信号链路连接, 不同单 元层之间通过电信号链路连接后,可见光信号能够跨单元层并在不同方向上进 行转发, 进一步降低了传输通道的阻塞率。
由上可知, 本发明实施例釆用可见光信号进行传输, 可见光信号的频语有 更宽的带宽, 传输效率更高, 更可以减少无线辐射的损害, 各个机拒之间可通 过机拒上的可见光收发单元形成可见光无线链路进行通信,或者通过屋顶反射 镜将可见光信号反射形成可见光无线链路进行通信,通过各个机拒上的可见光 收发单元可实现在相邻机拒间或对角机拒间形成直连的可见光无线链路,无需 进行光电转换, 降低了功耗, 提高了传输和转发效率。
为便于更好的实施本发明实施例提供的数据中心的通信系统,本发明实施 例还提供一种基于上述数据中心的通信系统的数据中心的通信方法。其中名词 的含义与上述数据中心的通信系统中相同,具体实现细节可以参考系统实施例 中的说明。
本发明为了描述方便, 以屋顶反射镜控制单元为例进行详细描述, 其中, 该数据中心的通信方法应用在上述数据中心的通信系统上,该数据中心的通信 系统可包括至少两个机拒和位于所述机拒上的可见光收发单元, 其中,每个机 拒上均设有接收和发射可见光信号能力的可见光收发单元, 为了描述方便, 具 体可以以第一机拒上的第一可见光收发单元具有发射可见光信号能力,第二机 拒上的第二可见光收发单元具有接收可见光信号能力为例进行详细说明, 其 中, 请参阅图 10, 图 10是本发明实施提供的数据中心的通信方法的流程示意 图, 该方法可包括:
步骤 S101、 接收第一机拒发送的控制信息, 所述控制信息携带第一机拒 和第二机拒的位置信息;
步骤 S102、 根据所述控制信息生成用于控制屋顶反射镜的控制信号; 步骤 S103、 将所述控制信号发送给所述屋顶反射镜, 使得屋顶反射镜根 据所述控制信号,将第一机拒上的第一可见光收发单元发射的可见光信号反射 到第二机拒上的第二可见光收发单元。
进一步地, 步骤 S102和 S103, 具体可包括:
步骤 A、根据第一机拒发送的控制信息,确定所述屋顶反射镜的偏转角度; 步骤 B、 生成控制信号, 所述控制信号携带所述屋顶反射镜的偏转角度; 步骤 C、 向所述屋顶反射镜发送所述控制信号, 使得屋顶反射镜根据所述 控制信号,将第一机拒上的第一可见光收发单元发射的可见光信号反射到第二 机拒上的第二可见光收发单元。
在某些实施方式中, 若屋顶反射镜包括可移动反射镜和固定反射镜, 则控 制信号可携带可移动反射镜的偏转角度,屋顶反射镜接收到该控制信号控制可 移动反射镜的偏转角度。
需说明的是,上述所指的偏转角度包括 X轴和 Y轴两个方向的偏转角度。 进一步地,屋顶反射镜控制单元上可预先存有一个映射表, 该映射表包括第一 机拒的位置信息、第二机拒的位置信息和所述屋顶反射镜的偏转角度的映射关 系, 那么, 步骤 A具体可包括:
根据所述控制信息, 查找预先存有的映射表, 所述映射表包括第一机拒的 位置信息、第二机拒的位置信息和所述屋顶反射镜的偏转角度的映射关系; 根 据所述映射表确定所述屋顶反射镜的偏转角度。 需说明的是,本发明实施例的具体实施可参见上述实施例,此处不再赘述。 在上述实施例中,对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种数据中心的通信系统和通信方法进行了详细 施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域 的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有 改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种数据中心的通信系统, 其特征在于, 包括:
至少两个机拒, 所述至少两个机拒中包括第一机拒和第二机拒;
至少两个可见光收发单元, 其中, 所述第一机拒和所述第二机拒均分别设 有一个所述可见光收发单元;
所述第一机拒上的第一可见光收发单元,用于向所述第二机拒上的第二可 见光收发单元发射可见光信号;
所述第二机拒上的第二可见光收发单元,用于接收所述第一可见光收发单 元发射的可见光信号。
2、根据权利要求 1所述的通信系统, 其特征在于, 所述通信系统还包括: 屋顶反射镜和屋顶反射镜控制单元;
所述第一可见光收发单元,还用于向所述屋顶反射镜发射可见光信号,使 得屋顶反射镜将该发射的可见光信号反射到所述第二可见光收发单元;
所述第二可见光收发单元, 还用于接收所述屋顶反射镜反射的可见光信 号;
所述屋顶反射镜控制单元,用于根据接收到的所述第一机拒发送的控制信 息生成用于控制所述屋顶反射镜的控制信号并发送给所述屋顶反射镜,所述控 制信息携带第一机拒和第二机拒的位置信息;
所述屋顶反射镜, 用于根据所述控制信号,将第一机拒上的第一可见光收 发单元发射的可见光信号反射到第二机拒上的第二可见光收发单元。
3、 根据权利要求 2所述的通信系统, 其特征在于,
所述屋顶反射镜控制单元,用于根据所述控制信息确定所述屋顶反射镜的 偏转角度, 向所述屋顶反射镜发送指示所述屋顶反射镜的偏转角度的控制信 号;
所述屋顶反射镜, 用于根据所述控制信号调整所述屋顶反射镜的偏转角 度,将第一机拒上的第一可见光收发单元发射的可见光信号反射到第二机拒上 的第二可见光收发单元。
4、 根据权利要求 2或 3所述的通信系统, 其特征在于,
所述第一可见光收发单元包括至少一个第一竖直空间收发机和至少一个 第一水平空间收发机,所述第二可见光收发单元包括至少一个第二竖直空间收 发机和至少一个第二水平空间收发机;
所述第一水平空间收发机,用于向所述第二水平空间收发机发射可见光信 号;
所述第二水平空间收发机,用于接收所述第一水平空间收发机发射的可见 光信号;
所述第一竖直空间收发机, 用于向所述屋顶反射镜发射可见光信号,使得 所述屋顶反射镜将该发射的可见光信号反射到所述第二竖直空间收发机; 所述第二竖直空间收发机, 用于接收所述屋顶反射镜反射的可见光信号。
5、 根据权利要求 4所述的通信系统, 其特征在于, 还包括:
所述第一竖直空间收发机和第一水平空间收发机之间釆用电信号链路连 接,所述至少一个第一水平空间收发机中的各个所述第一水平空间收发机之间 釆用电信号链路连接;
所述第二竖直空间收发机和第二水平空间收发机之间釆用电信号链路连 接,所述至少一个第二水平空间收发机中的各个所述第二水平空间收发机之间 釆用电信号链路连接。
6、 根据权利要求 4所述的通信系统, 其特征在于, 还包括:
所述第一竖直空间收发机包括: 第一半反半透镜;
所述第一水平空间收发机包括: 第三半反半透镜;
所述第一半反半透镜,用于直通所述第一竖直空间收发机中的发射机发射 的可见光信号;
所述第三半反半透镜,用于直通所述第一水平空间收发机中的发射机发射 的可见光信号。
7、 根据权利要求 4所述的通信系统, 其特征在于, 还包括:
所述第二竖直空间收发机包括: 第二半反半透镜和第一全反射镜; 所述第二水平空间收发机包括: 第四半反半透镜、 第一可变反射镜、 第二 全反射镜和第一可变反射镜控制单元;
其中, 所述第二水平空间收发机,还用于转发所述第一水平空间收发机发 射的可见光信号到另一第二水平空间收发机; 所述第二半反半透镜,用于将所述屋顶反射镜反射的可见光信号反射到所 述第一全反射镜;
所述第一全反射镜,用于将所述第二半反半透镜反射的可见光信号反射到 所述第二竖直空间收发机中的接收机;
所述第四半反半透镜,用于将第一可见光收发单元发射的可见光信号反射 到所述第一可变反射镜;
所述第一可变反射镜控制单元,用于根据接收到的第一机拒发送的控制信 息控制所述第一可变反射镜的状态,所述控制信息携带第一机拒和第二机拒的 位置信息, 所述第一可变反射镜的状态包括: 全投射状态和全反射状态; 所述第一可变反射镜, 用于当所述第一可变反射镜处于全反射状态时,将 所述第四半反半透镜反射的可见光信号反射到第二水平空间收发机中的接收 机, 当所述第一可变反射镜处于全投射状态时, 直通所述第四半反半透镜反射 的可见光信号到所述第二全反射镜;
所述第二全反射镜,用于将所述第一可变反射镜直通的可见光信号反射到 所述另一第二水平空间收发机。
8、 根据权利要求 7所述的通信系统, 其特征在于, 还包括: 第二可变反 射镜;
每个所述第一水平空间收发机或第二水平空间收发机的两端各设有一个 所述第二可变反射镜,用于将所述第一水平空间收发机发射的可见光信号直通 或反射到第二水平空间收发机,或者将所述第二水平空间收发机转发的可见光 信号直通或反射到另一第二水平空间收发机。
9、 根据权利要求 2-8任一所述的通信系统, 其特征在于,
所述屋顶反射镜包括: 第一可移动反射镜;
所述屋顶反射镜控制单元,用于根据所述控制信息确定所述第一可移动反 射镜的偏转角度,向所述屋顶反射镜发送指示所述第一可移动反射镜的偏转角 度的控制信号,以使得所述屋顶反射镜根据所述控制信号调整所述第一可移动 反射镜的偏转角度。
10、 根据权利要求 1-9任一所述的通信系统, 每个所述机拒均包括多个服 务器, 其特征在于, 该通信系统还包括: 光学背板,用于将机拒内的一个服务器上的光电转换器发射的可见光信号 反射到机拒内的其他服务器中,形成所述机拒内的各个服务器之间的可见光无 线链路。
11、 根据权利要求 10所述的通信系统, 其特征在于,
所述通信系统还包括: 光学背板控制单元;
其中, 所述光学背板包括: 第二可移动反射镜;
所述光学背板控制单元,用于根据所述一个服务器和其他服务器的位置确 定所述第二可移动反射镜的偏转角度,向所述光学背板发送指示所述第二可移 动反射镜的偏转角度的控制信号,以使得光学背板根据所述控制信号调整所述 第二可移动反射镜的偏转角度,将所述一个服务器上的光电转换发射器发射的 可见光信号反射到机拒内的其他服务器中。
12、 一种数据中心的通信方法, 其特征在于, 包括:
接收第一机拒发送的控制信息,所述控制信息携带第一机拒和第二机拒的 位置信息;
根据所述控制信息生成用于控制屋顶反射镜的控制信号,并将所述控制信 号发送给所述屋顶反射镜,使得屋顶反射镜根据所述控制信号,将第一机拒上 的第一可见光收发单元发射的可见光信号反射到第二机拒上的第二可见光收 发单元。
13、 根据权利要求 12所述的通信方法, 其特征在于, 所述根据所述控制 信息生成用于控制所述屋顶反射镜的控制信号,并将所述控制信号发送给屋顶 反射镜, 包括:
根据所述控制信息确定所述屋顶反射镜的偏转角度;
生成控制信号, 所述控制信号携带所述屋顶反射镜的偏转角度; 向所述屋顶反射镜发送所述控制信号。
14、 根据权利要求 13所述的通信方法, 其特征在于, 所述根据所述控制 信息确定所述屋顶反射镜的偏转角度, 包括:
根据所述控制信息, 查找预先存有的映射表, 所述映射表包括第一机拒的 位置信息、 第二机拒的位置信息和所述屋顶反射镜的偏转角度的映射关系; 根据所述映射表确定所述屋顶反射镜的偏转角度。
PCT/CN2014/078303 2014-05-23 2014-05-23 一种数据中心的通信系统和通信方法 WO2015176314A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480036818.7A CN105359432B (zh) 2014-05-23 2014-05-23 一种数据中心的通信系统和通信方法
PCT/CN2014/078303 WO2015176314A1 (zh) 2014-05-23 2014-05-23 一种数据中心的通信系统和通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078303 WO2015176314A1 (zh) 2014-05-23 2014-05-23 一种数据中心的通信系统和通信方法

Publications (1)

Publication Number Publication Date
WO2015176314A1 true WO2015176314A1 (zh) 2015-11-26

Family

ID=54553262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078303 WO2015176314A1 (zh) 2014-05-23 2014-05-23 一种数据中心的通信系统和通信方法

Country Status (2)

Country Link
CN (1) CN105359432B (zh)
WO (1) WO2015176314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547132A (zh) * 2017-05-31 2018-01-05 新华三技术有限公司 一种板卡及分布式设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726879B (zh) * 2021-08-30 2023-10-24 河南大学 一种基于vlc链路的混合数据中心网络系统vhcn
CN116015452B (zh) * 2023-03-24 2023-06-30 南昌大学 一种透射反射联合的多ris可见光通信方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181614A1 (en) * 2007-01-29 2008-07-31 Jong-Hoon Ann Method and apparatus for correcting color imbalance of visible light in wavelength division parallel visible light communications
CN102324974A (zh) * 2011-07-08 2012-01-18 北京邮电大学 一种基于ocdma技术的可见光通信系统及其装置
CN102610115A (zh) * 2012-03-09 2012-07-25 郭丰亮 基于led可见光通信的智能交通系统
CN102624453A (zh) * 2012-02-27 2012-08-01 郭丰亮 基于led可见光的机舱网络系统
CN102904639A (zh) * 2012-11-05 2013-01-30 北京半导体照明科技促进中心 可见光通信系统及其发射装置和接收装置
CN103179517A (zh) * 2013-02-01 2013-06-26 清华大学 一种数据中心的无线组播方法
CN103338073A (zh) * 2013-06-06 2013-10-02 南京邮电大学 一种利用可见光实现网络接入的通信模块及系统
CN103488967A (zh) * 2013-10-14 2014-01-01 张祖锋 一种基于可见光或红外定位的机柜管理系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667855B2 (en) * 2008-02-29 2010-02-23 International Business Machines Corporation Providing position information to computing equipment installed in racks of a datacenter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181614A1 (en) * 2007-01-29 2008-07-31 Jong-Hoon Ann Method and apparatus for correcting color imbalance of visible light in wavelength division parallel visible light communications
CN102324974A (zh) * 2011-07-08 2012-01-18 北京邮电大学 一种基于ocdma技术的可见光通信系统及其装置
CN102624453A (zh) * 2012-02-27 2012-08-01 郭丰亮 基于led可见光的机舱网络系统
CN102610115A (zh) * 2012-03-09 2012-07-25 郭丰亮 基于led可见光通信的智能交通系统
CN102904639A (zh) * 2012-11-05 2013-01-30 北京半导体照明科技促进中心 可见光通信系统及其发射装置和接收装置
CN103179517A (zh) * 2013-02-01 2013-06-26 清华大学 一种数据中心的无线组播方法
CN103338073A (zh) * 2013-06-06 2013-10-02 南京邮电大学 一种利用可见光实现网络接入的通信模块及系统
CN103488967A (zh) * 2013-10-14 2014-01-01 张祖锋 一种基于可见光或红外定位的机柜管理系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547132A (zh) * 2017-05-31 2018-01-05 新华三技术有限公司 一种板卡及分布式设备
CN107547132B (zh) * 2017-05-31 2020-12-11 新华三技术有限公司 一种板卡及分布式设备

Also Published As

Publication number Publication date
CN105359432B (zh) 2018-05-04
CN105359432A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
EP3427411B1 (en) Modular, wireless optical antenna
Hamedazimi et al. Patch panels in the sky: A case for free-space optics in data centers
IL146722A (en) Communication protocol for a data unit especially in wireless network topology networks
CN107040946B (zh) 一种基于lifi通信技术的转换方法及其系统
CN104185961A (zh) 高速自由空间光通信
Mushfique et al. A software-defined multi-element VLC architecture
WO2015176314A1 (zh) 一种数据中心的通信系统和通信方法
KR100876725B1 (ko) 가시광 통신을 이용한 무선 랜 시스템에서 통신 링크 연결방법
JP2011514759A (ja) ミリ波wpanにおける干渉を回避しチャネル効率を高めるメカニズム
CN111447012A (zh) 自组网编队飞机群激光全向通信光学系统及其通信方法
CN102215067A (zh) 端口自协商方法和装置
WO2015172381A1 (zh) 柜式服务器及基于所述柜式服务器的数据中心
JP2003069507A (ja) 空間分割多重/空間分割多元接続ワイヤレス光通信システム
CN104009941A (zh) 一种基于阵列波导光栅的数据中心机架内部网络结构
CN102710496B (zh) 用于多个服务器间的数据传输系统、数据接口装置及数据传输方法
CN104135448A (zh) 包含多类型以太网传输接口的交换机
Umamaheswaran et al. Reducing power consumption of datacenter networks with 60ghz wireless server-to-server links
CN105743580A (zh) 一种基于多个阵列波导光栅的数据中心内部网络互连结构
CN110855369A (zh) 用于小型移动电子设备的外接便携无线光通信组件及方法
Mamun et al. An energy-efficient, wireless top-of-rack to top-of-rack datacenter network using 60GHz links
CN109729444A (zh) Onu设备,pon-can总线架构,机器人系统
Hamza Recent advances in the design of optical wireless data center networks
CN112995804B (zh) 一种光交换方法、装置及系统
TW201836217A (zh) 雙通道小型化可插拔模組、外殼和通訊系統
CN108809430B (zh) 空间多节点激光自组网通信系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036818.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892458

Country of ref document: EP

Kind code of ref document: A1