WO2015176250A1 - 用于探测海洋动力学参数的便携式高频地波雷达 - Google Patents

用于探测海洋动力学参数的便携式高频地波雷达 Download PDF

Info

Publication number
WO2015176250A1
WO2015176250A1 PCT/CN2014/077998 CN2014077998W WO2015176250A1 WO 2015176250 A1 WO2015176250 A1 WO 2015176250A1 CN 2014077998 W CN2014077998 W CN 2014077998W WO 2015176250 A1 WO2015176250 A1 WO 2015176250A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
antenna
input
receiver
signal
Prior art date
Application number
PCT/CN2014/077998
Other languages
English (en)
French (fr)
Inventor
徐新军
石振华
景玉山
吴世才
石新智
Original Assignee
武汉德威斯电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉德威斯电子技术有限公司 filed Critical 武汉德威斯电子技术有限公司
Priority to PCT/CN2014/077998 priority Critical patent/WO2015176250A1/zh
Publication of WO2015176250A1 publication Critical patent/WO2015176250A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the present invention relates to the field of radar detection technology, and more particularly to a portable high frequency ground wave radar for detecting ocean dynamic parameters such as wind, flow and wave fields of the ocean. Background technique
  • HF ground wave radar detects ocean state parameters or detects moving targets on the sea surface.
  • the receiving antenna uses a phased array antenna
  • the transmitting antenna uses a 3 yuan Yagi antenna or a logarithmic period antenna to control and process.
  • the computer uses a desktop industrial computer. This type of antenna is bulky and has a wide footprint. It is generally 300 meters - 1500 meters, which is easily damaged and consumes a lot of energy.
  • Another form is a compact transceiver antenna that uses a single pole and two mutually orthogonal loop antennas.
  • the control and processing computer uses an embedded industrial computer with low power consumption for the receiver and transmitter. Designed to use portable HF ground wave radar powered by solar and wind energy.
  • Figure 1 is a block diagram of a portable high frequency ground wave radar system with embedded control.
  • 2 is a schematic diagram of a phased array receiving antenna.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a portable high frequency ground wave radar for detecting kinetic parameters such as a wind field, a flow field and a wave field in an ocean that is easy to erect and easy to move, and the radar can overcome the array antenna radar Because of the high cost, large floor space, large radar target, easy to damage, it is not easy to find the ideal erection site; it is also designed to further improve the ability to resist lightning and typhoon.
  • a portable high frequency ground wave radar for detecting ocean dynamic parameters which is different in that it comprises a FRP fully sealed transmitting antenna, a fully sealed cross ring receiving antenna, and A low-energy transmitter connected to the transmitting antenna, a receiver connected to the cross-ring receiving antenna, and a wind-solar complementary power supply system, the receiver includes an embedded computer, and the wind-solar complementary power supply system is respectively connected to the transmitter and the receiver.
  • the transmitting antenna comprises a high-strength FRP shell, an antenna body that can be easily adjusted, a stainless steel sleeve that fixes a high-strength FRP shell, a flange that connects the stainless steel sleeve and the base, a sealing ring, and a cable connected by the transmitter.
  • Connector easy to erect bottom plate with seal ring, fully sealed antenna base, antenna mounting plate and adjustment lever with adjustable length.
  • the cross-ring receiving antenna body comprises a high-strength FRP shell, a cross-ring receiving antenna body, a monopole antenna connector, a loop antenna bracket, an aluminum alloy bottom plate with a sealing ring, an antenna body bracket and a connecting antenna output. Connector.
  • the low-energy transmitter has 4 input signals and one output signal; one of the four input signals is from the wind-solar complementary power supply system, the other two are the RF signal and the TP signal from the receiver, and one is from the receiver.
  • Embedded in The AGC control signal sent by the computer and the output signal are connected to the high-intensity and fully sealed transmitting antenna; the low-energy transmitter structure includes a gain control circuit, a linear parallel push-pull amplifying circuit, a filter circuit, and a low-energy control circuit.
  • the gain control circuit comprises two input ports, one of which is from the RF output RF sent by the system receiver, and the other input is from the AGC control signal sent by the embedded computer in the receiver, and the output port of the gain control circuit Connected to the input port of the linear parallel push-pull amplifier circuit.
  • the linear parallel push-pull amplifying circuit has five input ports and one output port, one from a 48V power input port, one from a signal input port of the AGC circuit, and three control ports A, B, and C respectively.
  • the low-energy control forms a circuit, and its output port is connected to the filter; the filter has an input port, an output port, the input port is from the circuit, and the output port is connected to the high-strength fully sealed transmitting antenna.
  • the low power control circuit has two input ports and three output ports, one of the two input ports is a 24V power port, and the other is a TP pulse signal generated by the receiver, and three output signals A.
  • B, C are used to connect the three points of A, B, C in the linear parallel push-pull amplifying circuit to control the power-on or power-off of each power amplifier component.
  • the receiver 4 has 4 input signals and 4 output signals, one of the four input signals is from the wind-solar complementary power supply system, the other three are from the receiving antenna, and the TB of the four output signals is sent to the receiving antenna, TP Send low energy transmitter;
  • Receiver 4 includes analog channel, digital channel, frequency synthesis, embedded computer;
  • analog channel has 4 inputs and 3 outputs, 3 of 4 inputs are from receive antenna 2, and one is from frequency synthesis
  • the digital channel has 4 inputs and 3 outputs, 3 of the 4 inputs are from the analog channel, one is from the frequency synthesis, the TP signal from the 3 outputs is sent to the TP input, the TB signal is sent to the analog channel, and the other output signal
  • the embedded computer is sent through the USB port; the embedded computer provides the AGC signal as the gain control signal of the low-energy transmitter to the AGC input of the gain control circuit, in addition to the display display.
  • the loop antenna body is placed in a fully sealed FRP shell, and the loop antenna bodies are disposed to be orthogonal to each other.
  • the low-energy transmitter comprises a three-stage pulse control circuit, wherein the third pulse control circuit comprises a resistor divider circuit and a pulse signal amplification module, and the resistor divider circuit divides the input pulse signal and sends the pulse signal to the pulse signal.
  • the amplifying module is amplified and then sent to the bias circuit of the third-stage linear amplifying circuit.
  • the gain control circuit of the low energy transmitter 3 is composed of three PIN tubes and their corresponding peripheral circuits, and the output end thereof is connected to the signal input end of the linear amplifying circuit.
  • the transmitting and receiving antenna of the invention adopts high-strength FRP as the outer casing of the antenna, adopts a fully sealed structure, and can resist typhoon, salt spray and moisture resistance when working at the seaside. , anti-fungal, anti-UV
  • the line, control and processing computer uses an embedded industrial computer.
  • the receiver and transmitter are designed with low power consumption and can be powered by solar and wind energy. Since the transceiver antenna adopts a monopole cross-ring structure, the construction cost of the antenna site is greatly saved.
  • the radar can work normally under extremely bad conditions, which is very important for the radar site built on the seashore. Since the length of the transmitting antenna can be adjusted, the VSWR of the antenna can be minimized for different ground conditions. Because the transceiver antenna is made of high-strength FRP and fully sealed design, it is more resistant to typhoon, salt spray, moisture, mold, UV and lightning. Due to the small size of the transmitting and receiving antennas, it provides a more convenient way to construct fixed radar stations and mobile radar stations by the sea. Due to the small size of the transceiver antenna, the radar target is reduced and the radar's invulnerability is improved. Due to the low energy consumption design of the embedded industrial computer and system, the system energy consumption is controlled within 300 watts, and solar energy and wind energy can be conveniently used to supply power, which greatly reduces the design cost of the radar. DRAWINGS
  • FIG. 1 is a block diagram of an embedded high-frequency ground wave radar system provided by the present invention
  • FIG. 2 is a schematic diagram of an 8-element phased array antenna provided by the present invention
  • FIG. 3 is a schematic diagram of a high-intensity transmitting antenna body provided by the present invention
  • 4 is a schematic diagram of a structure of a fully sealed receiving antenna body provided by the present invention
  • FIG. 5 is a block diagram of a low-energy transmitter circuit provided by the present invention
  • FIG. 6 is a circuit diagram of a low-energy transmitter AGC control circuit provided by the present invention
  • FIG. 8 is a schematic diagram of a low-energy transmitter control voltage forming circuit provided by the present invention
  • FIG. 9 is a schematic diagram of a low-energy transmitter control voltage forming circuit provided by the present invention
  • Fig. 11 is a block diagram of a solar energy, wind power generation system provided by the present invention. detailed description
  • the invention provides a portable high-frequency ground wave radar which can be used for detecting dynamic parameters such as wind field, flow field and wave field of the ocean, which is easy to erect and easy to move, and can overcome the array.
  • Antenna radars are difficult to find ideal erection sites because of their high cost, large floor space, large radar targets, and easy damage.
  • it is designed to further improve the ability to resist lightning, typhoon, salt spray, moisture, mold and UV in the harsh environment of the sea.
  • a transmitting antenna adopts a high-intensity antenna 1
  • a receiving antenna adopts a fully sealed cross-ring antenna 2
  • a transmitter adopts a power reduction design 3
  • a control and processing computer adopts an embedded
  • the industrial computer 4 can use solar energy and wind energy to supply power 5, as shown in Fig. 1.
  • the transmitting and receiving antennas include a high-strength, fully sealed FRP outer casing, and the transmitting antenna body is made of a 12 mm copper tube. The length can be adjusted according to different terrains to ensure the minimum standing wave ratio of the antenna, and the receiving antenna body is a completely sealed cross. Loop antenna.
  • the control and processing computer uses an embedded industrial computer.
  • a portable high frequency ground wave radar for detecting ocean dynamic parameters includes a FRP fully sealed transmitting antenna, a fully sealed cross ring receiving antenna 2, and a transmitting antenna 1 connected thereto.
  • the antenna 1 comprises a high-strength FRP housing. 1.
  • the antenna body 1 can be easily adjusted. 2.
  • the stainless steel sleeve 1 to 3 fixing the high-strength FRP shell, the flange and the sealing ring connecting the stainless steel sleeve and the base 1 4.
  • the cross-ring receiving antenna body 2 comprises a high-strength FRP shell 2-1, a cross-ring receiving antenna body 2-2, a monopole antenna connector 2-3, a loop antenna bracket 2-4, an aluminum with a sealing ring Gold bottom plate 2-5, antenna body bracket 2-6 and connector 2-7 connected to antenna output;
  • said low energy transmitter 3 has 4 input signals and one output signal; 4 input signals are all complementary from the wind and light Power supply system 5, the other two RF signals and TP signals from the receiver, and one AGC control signal from the embedded computer in the receiver, the output signal is connected to the high-intensity fully sealed transmitting antenna 1;
  • Low-energy transmitter The structure comprises a gain control circuit 3-1, a linear parallel push-pull amplification circuit 3-2, a filter circuit 3-3, a low-energy control circuit 3-4; the gain control circuit 3-1 comprises two input ports, one
  • Ports, three control ports A, B, and C are respectively from the low-energy control forming circuit, and its output port is connected to the filter 3-3;
  • the filter 3-3 has an input port, an output port, and the input port is from the circuit 3 - 2, the output port is connected to high-strength, fully sealed Transmitting antenna 1;
  • the low-power control circuit 3-4- has 2 input ports and three output ports, one of the two input ports is a 24V power port, and the other is a TP pulse signal generated from a receiver, 3
  • 3 Output signals A, B, C are used to connect three points of A, B, C in the linear parallel push-pull amplifier circuit 3-2 for controlling the power-on or power-off of each power amplifier component; 4 There are 4 input signals and 4 output signals.
  • Receiver 4 includes analog channel 4 -1, digital channel 4 -2, frequency synthesis 4 - 4 , embedded computer 4 - 3 ;
  • analog channel 4 - 1 has 4 inputs and 3 outputs, 4 inputs 3 from the receiving antenna 2, one from the frequency synthesis 4 - 4;
  • the digital channel 4 - 2 has 4 inputs and 3 outputs, 3 of the 4 inputs from the analog channel 4 -1, one from the frequency synthesis 4 - 4, the TP signal of the 3 output signals is sent to the low-energy control power of Figure 5.
  • the embedded computer 4-3 adds the processing result to the display screen display, and also provides an AGC signal as the gain control signal of the low energy transmitter to the AGC input end of the gain control circuit 3-1 of FIG.
  • the wind and solar complementary power supply system 5 includes wind turbine 5-1, fan control 5-2, photoelectric control 5-3, photovoltaic panel 5-4, battery 5-5, DC center 5-6, inverter 5-7 and DC load 5-8
  • the wind and solar hybrid power supply system 5 outputs two 220V AC power transmission radar transmitters and receivers; preferably, the loop antenna body 2-2 is placed in a fully sealed FRP case, and the loop antenna bodies are arranged to be orthogonal to each other;
  • the low-energy transmitter 3 includes a three-stage pulse control circuit, wherein the third pulse control circuit includes a resistor divider circuit and a pulse signal amplification module, and the resistor divider circuit divides the input pulse signal and sends the pulse to the pulse.
  • the signal amplifying module is amplified and then sent to a bias circuit of the third-stage linear amplifying circuit, wherein the gain control circuit of the low-energy transmitter 3 is composed of three PIN tubes and their corresponding peripheral circuits.
  • the transmitting and receiving antennas are shown in Figures 3 and 4.
  • the high-intensity transmitting antenna consists of an antenna radiator, a high-strength FRP housing, a sealing ring and a base.
  • the receiving loop antenna receiver is placed in a high-strength FRP housing in a hermetic structure.
  • the transmitting and receiving cables are connected to the transmitter and receiver through the base at the bottom.
  • FIG. 3 is a schematic view of the high-intensity transmitting antenna body of the present invention.
  • the high-strength FRP casing 1-1 in the figure is fully sealed for resistance to salt spray, moisture, mildew, and ultraviolet rays.
  • 1-2 in Fig. 3 is the radiator of the antenna, which is connected by a ⁇ 12 copper tube.
  • the 1-3 in the figure is a non-embroidered steel sleeve, which is connected with the FRP shell as a whole.
  • the lower part and the base are connected by a sealing ring. Its function is to make the antenna body and the base tightly connected as a whole.
  • the 1-4 in the figure is a sealing ring
  • the function of connecting and sealing the antenna body, 1-5 in the figure is the transmitting signal input cable connector, through which the output signal of the transmitter is connected with the antenna body, and 1-7 in the figure is a reinforced frame, 1- 6
  • the combination of 1-6 and 1-7 in the figure makes the whole antenna body a sealed body. Since 1-6 is a movable, it is very convenient to set up.
  • 1-8 in the figure is the mounting base of the antenna, which is tightly connected by bolts and the ground.
  • 1-9 in the figure is an adjustable portion of the antenna.
  • 4 is a schematic structural view of a fully sealed receiving antenna body provided by the present invention, wherein 2-1-1 is a high-strength FRP outer casing, and its function is to protect the inner ring antenna body, and 2-1 in the figure is a cross-ring receiving antenna. Body, because they are placed orthogonally, they combine with the 2-3 monopole antenna in the figure to form a directional antenna whose orientation function is 1, COS (e + ),
  • 4 sin( ⁇ + -) , 2-4 in the figure is the bracket of the loop antenna, which acts as a fixed loop antenna.
  • 2-5 in the figure is an aluminum alloy base plate, 4
  • FIG. 5 is a block diagram of a low power transmitter provided by the present invention, which includes an AGC circuit 3-1, a push circuit 3-2, a filter circuit 3-3, a low power circuit 3-4, and an antenna 3-5.
  • 3-1 has 2 inputs and 1 output, wherein the AGC input is connected to the gain control signal AGC output by the embedded computer, and the other input RF is connected to the RF output of the receiver.
  • the output of the circuit 3-1 is And the input of the linear amplifying circuit 3-2 is connected.
  • 3-2 in the figure has 4 inputs, one of which is connected to the output of 3- 1 in the figure, and the other 3 is connected to the low-power control circuit 3-4, which has an output, and the filter circuit 3-3
  • the inputs are connected.
  • 3-3 in the figure is a filter circuit, which has one input and one output.
  • the input is from 3-2 in the figure, and the output is connected to the 3-5 antenna circuit in the figure.
  • 3-4 in the figure is a low-energy control circuit, which has one input signal, three output signals, the input signal is from the TP pulse output of the radar receiver, and the output signals are respectively and three control points of the linear amplification circuit are pushed.
  • FIG. 6 is a schematic diagram of an AGC control circuit of a low-energy transmitter provided by the present invention.
  • the AGC circuit is composed of three PIN tubes D1-D3 and their corresponding auxiliary circuits, C5 is a filter capacitor, and C1, C2, C3, C4, etc. are coupling capacitors.
  • the RF pulse RF signal sent by the radar receiver passes through C l and is then connected to the input of the AGC circuit composed of D1-D3, and the AGC control voltage is controlled by the R1, R2, R3, R4 force ports to the IJ AGC circuit.
  • FIG. 7 is a schematic diagram of the low-energy transmitter and the amplification circuit provided by the present invention.
  • the linear amplifying circuit is a three-stage amplifying circuit composed of Ul, U2, U3, U4, U5, U6, U7, U8 and a three-stage control circuit, and the linear amplifying circuit is composed of three devices: GALI74, MRF136, and BLF278, and the third
  • the stage amplification U5, U6, U7, U8 is composed of a parallel circuit, which can In order to improve the output power of the circuit, the system is more stable.
  • the RF signal controlled by AGC is applied to pin 1 of U1 via C4, amplified by U1 and output from pin 3, Ll, R5 are the load of U1; U9, C20, C21, C22, L2 are its power supply circuit; U2 is The first-level control circuit, the signal is input from pin 3 after C6, the control signal is added to pin 4 of U2 through point A, and the controlled signal is output from pin 8; the power is input from pin 1, pin 5 and C9 and R6 are its match.
  • the circuit, C10, C23, C24, U10 is its power supply circuit
  • C8 is the filter circuit
  • C6 and C7 are the coupling circuits of its input and output signals.
  • T1 is an impedance matching circuit.
  • the controlled signal is applied to the input pin 1 of T1 through C7, and the output signal is applied to the input pin 1 of the second-stage linear amplifier U3, U4 via pin 3 and pin 5;
  • the foot is the U3, U4 bias power supply circuit input terminal, the bias power supply circuit has RP1, R7, C11. By adjusting RP1, the U3 and U4 bias voltage can be changed.
  • R8, R9, C12 are the input impedance matching circuits of U3 and U4.
  • the outputs of U3 and U4 are respectively taken out from their 3 pins and connected to pins 1 and 3 of the impedance matching circuit T2.
  • T2 is an impedance matching circuit.
  • the control signal is connected to the 2 pin of T2 through point B in the figure.
  • the 1 pin of T2 is connected to the 3 pin of U3.
  • the 3 pin of T2 is connected to the 3 pin of U4.
  • the 4 and 5 pins of T2 are connected.
  • U5, U6, U7, U8 are the third-stage linear amplifiers, which are the first-stage parallel push-pull amplifier circuits, U5, U6, parallel, U7, U8 are also connected in parallel, and then form the push-pull circuit, the input signal passes through T2.
  • Pin 5 is added to pin 1 of U5, U6, U7, U8.
  • the amplified signal is sent from pin 3 of U5, U6, U7, U8 to pin 1 and pin 3 of T3.
  • the control signal is from point C in the figure.
  • Add, after a temperature control switch T85 add to the midpoint of R10, R11, C14, C15 are filter capacitors, C16, C17 are matching capacitors, C18, C19, L3 are power supply circuits;
  • T3 is an impedance matching circuit, its input signal comes from the 3 pins of U5, U6, U7, U8, and the output signal is from 4.
  • the 5 feet are sent out, and the transmitting antenna is sent through the filter.
  • 8 is a circuit diagram of a low-energy transmitter filter provided by the present invention. Its function is to reduce the spurious signal output of the circuit. It is composed of a 7-section elliptic filter whose input JP3 is connected to JP2 of FIG. 7, and its output is Connected to the antenna. In the figure, L3, L4, L5 and P C25, C26, C27, C28, C29, C30, C31 form the corresponding resonant circuit, so that the harmonics of the system reach below -60dB.
  • FIG. 9 is a schematic diagram of a low-energy transmitter control voltage forming circuit provided by the present invention, the circuit is composed of three parts, respectively generating three control signals to three linearly amplified terminals, B, C; A voltage dividing circuit is connected to the control terminal A to control the turning on and off of the electronic switch U1. The second part of the signal is connected to the control through the control circuit. At point B, the power of U3 and U4 is controlled to be turned on and off. The third part of the signal is also connected to the control terminal C through a voltage dividing circuit to control the on and off of the bias voltages of U5, U6, U7, U8.
  • the first route R17, R18 is composed, the control signal TP is input through the JP5 connector, is divided by R17, R18 and sent to point A, and connected to point A of the linear amplifier via point A;
  • the second control circuit is Ull, U12 , U13, U14, R12, R13, R14, R15, signal TP pulse through the JP5 connector through R12 input to the base of Ull, so that Ull, U12, U13, U14 saturate conduction, generate a control signal and pass B
  • the point is provided to point B of the second-stage linear amplifying circuit;
  • the third route is composed of R16, RP2 R19, R20, R21, U15, D4, and the signal TP is input through the JP5 connector, and is divided by R16 and RP2 and sent to the U15 input terminal.
  • U15 is an operational amplifier
  • 2 feet is its other input, it is connected to the connection of R19, R20, 6 feet connected to the power supply, 5 feet are connected through D4 and pass C point Connect to point C of the linear amplifier of Figure 7.
  • 10 is a circuit block diagram of a low power consumption receiver provided by the present invention, which includes an analog channel 4-1, a digital channel 4-2, an embedded computer 4-3, and a frequency synthesizer 4-4.
  • the function of analog channel 4-1 is to change the received echo signal into a fixed high intermediate frequency of 21.4MHz. This is an internationally specified intermediate frequency. It can reduce the IF interference of the system. It has 4 input signals, 3 Output signals, corresponding to 3 independent receiving channels.
  • Three of the four input signals are from three outputs from the receiving antenna, the other is from one output of the frequency synthesizer, and the three output signals are non-linear FM signals of 21.4 MHz, which are sent to the following digital channels for sampling processing.
  • the function of digital channel 4-2 is to convert the analog signal into a digital signal, and perform an FFT processing on the signals of the three channels through a DSP chip. He has 4 input signals, 3 output signals, and 4 input signals. Three 31.4 MHz non-linear FM signals from analog channel 4-1 and the other 120 MHz high frequency signals from the frequency synthesizer.
  • control signals TP and TB which are respectively used as control signals of the system timing, wherein the TP signal is also sent to the transmitter as a control signal of the transmitter as shown in Fig. 5, and the other is a data signal, he passes
  • the USB interface is sent to the embedded computer.
  • the function of the embedded computer is to post-process the data sent by the digital channel.
  • the result of the radar detection is the dynamic parameter of the ocean surface, which is displayed through the display interface, and can also be through the public network or the private network. Send the results to the control center.
  • the embedded computer's input is the data from the digital channel, and the output is the final result and the control signal AGC signal.
  • FIG 11 is a block diagram of the solar and wind energy complementary power supply provided by the present invention, which includes wind power generation 5-1, wind control 5-2, photoelectric control 5-3, solar power 5-4, battery 5-5, DC center 5- 6, inverter 5-7, DC load 5-8.
  • Wind power generation 5-1 is actually two lkw wind turbines, which use the abundant wind resources of the sea to generate electricity. Its output is passed. After the wind controller 5-2 adjusts the wind speed, it has a relatively stable output to the DC center 5-6.
  • Photovoltaic panel 5-4 is actually solar photovoltaic power generation, which converts the solar light energy into electrical energy.
  • the functions of the DC center 5-6 are: 1 to convert the alternating current of the wind power into direct current, 2 to control the overcharge of the battery, 3 to release the excess power, and 4 to provide a stable DC voltage for the inverter 5-7.
  • the role of DC loads 5-8 is to consume excess power.
  • the function of the inverter 5-7 is to convert the DC voltage to an AC voltage of 220V to provide a stable AC power supply for the radar system.

Abstract

一种用于探测海洋的风场、流场和浪场等海洋动力学参数的便携式高频地波雷达,包括玻璃钢全密封的发射天线(1)、全密封的交叉环接收天线(2)、与发射天线(1)连接的低能耗发射机(3)、与交叉环接收天线(2)连接的接收机(4)、风光互补供电系统(5),接收机(4)含有嵌入式计算机,风光互补供电系统(5)与发射机(3)、接收机(4)分别连接。该便携式高频地波雷达克服了阵列天线雷达因为造价高、占地面积较大、雷达目标大、易于损毁、不容易找到理想的架设场地等问题,同时也能进一步提高抗雷击、抗台风的能力。

Description

用于探测海洋动力学参数的便携式高频地波雷达
技术领域
本发明涉及雷达探测技术领域,尤其涉及到用于探测海洋的风场,流场和浪场等海洋动力 学参数的便携式高频地波雷达。 背景技术
高频地波雷达探测海洋状态参数或探测海面上的移动目标, 目前有两种形式,一种是接收 天线采用相控阵列天线,发射天线采用 3元八木天线或对数周期天线,控制和处理计算机采用 台式工控机, 这种形式天线体积庞大, 占地面积宽, 一般是 300米—— 1500米不等, 容易受 到破坏, 同时能耗也大。另一种形式是一种采用紧凑式的收发天线, 使用一个单极子和两个相 互正交的环天线组合在一起,控制和处理计算机采用嵌入式工控机,接收机和发射机采用低能 耗设计,可以利用太阳能和风能供电的便携式高频地波雷达。图 1是嵌入式控制的便携式高频 地波雷达系统框图。 图 2是一种相控阵列接收天线示意图。 发明内容 本发明的目的是提供一种便于架设, 便于移动的, 用于探测海洋的例如风场, 流场和浪场 等动力学参数的便携式高频地波雷达,该雷达可以克服阵列天线雷达因为造价高、 占地面积较 大、 雷达的目标大, 易于损毁, 不容易找到理想的架设场地等问题; 同时也是为了进一步提高 抗雷击、 抗台风的能力而设计的。 为实现以上目的,本发明的技术方案为:用于探测海洋动力学参数的便携式高频地波雷达, 其不同之处在于: 它包括玻璃钢全密封发射天线、全密封的交叉环接收天线、与发射天线连接 的低能耗发射机、与交叉环接收天线连接接收机、风光互补供电系统, 接收机含有嵌入式计算 机, 风光互补供电系统与发射机、 接收机分别连接。 优选的, 所述发射天线包含高强度的玻璃钢外壳、可以方便调节的天线体、 固定高强度的 玻璃钢外壳的不锈钢套、连接不锈钢套和基座的法兰盘及密封圈、发射机连接的电缆接头、方 便架设的带密封圈的底板、 全密封的天线底座、 天线的安装底板和长度可以调节的调节杆。 优选的, 所述交叉环接收天线体包含高强度的玻璃钢外壳、交叉环接收天线体、单极子天 线连接头、 环天线支架、 带密封圈的铝合金底板、 天线体托架和连接天线输出的连接头。 优选的, 所述低能耗发射机有 4个输入信号, 一个输出信号; 4个输入信号的一路来自风 光互补供电系统, 另外 2路来自接收机的 RF信号和 TP信号, 还有一路来自接收机中的嵌入 式计算机送出的 AGC控制信号, 输出信号连接高强度全密封的发射天线; 低能耗发射机结构 包括增益控制电路、 线性并联推挽放大电路、 滤波器电路, 低能耗控制电路。 优选的,所述增益控制电路包含二个输入端口,其中一路来自系统接收机送出的射频输出 RF, 另一输入来自接收机中的嵌入式计算机送出的 AGC控制信号, 该增益控制电路的输出端 口与线性并联推挽放大电路的输入端口相联。 优选的, 所述线性并联推挽放大电路有 5个输入端口和 1个输出端口, 一个来自 48V的 电源输入口, 一个来自 AGC电路的信号输入口, 3个控制端口 A、 B、 C分别来自低能耗控制 形成电路, 它的输出端口连接滤波器; 滤波器有一个输入口, 一个输出口, 输入口来自电路, 输出口连接高强度全密封的发射天线。 优选的, 所述低能耗控制电路有 2个输入端口和三个输出端口, 2个输入端口中的一个是 24V的电源口, 另一个是来自接收机产生的 TP脉冲信号, 3个输出信号 A、 B、 C用于连接线 性并联推挽放大电路中的 A、 B、 C的 3个点, 用于控制各功率放大器件的加电或断电。 优选的,所述接收机 4有 4个输入信号和 4个输出信号, 四个输入信号中一路来自风光互 补供电系统,另外三路来自接收天线, 4个输出信号中的 TB送接收天线, TP送低能耗发射机; 接收机 4包含模拟通道、数字通道、 频率合成、 嵌入式计算机; 模拟通道有 4个输入和 3个输 出, 四个输入中的 3个来自接收天线 2,一个来自频率合成;数字通道有 4个输入和 3个输出, 4个输入中的 3个来自模拟通道, 一个来自频率合成, 3个输出中的 TP信号送 TP输入端, TB 信号送模拟通道, 另一个输出信号通过 USB口送嵌入式计算机; 嵌入式计算机将处理结果除 供显示屏显示用外, 还提供一路 AGC信号作为低能耗发射机的增益控制信号送增益控制电路 的 AGC输入端。 优选的, 所述环形天线体是放在全密封的玻璃钢壳里, 环形天线体设置为互相正交。 优选的,所述的低能耗发射机包括三级脉冲控制电路,其中第三脉冲控制电路包括电阻分 压电路、脉冲信号放大模块, 电阻分压电路将输入的脉冲信号分压后送至脉冲信号放大模块进 行放大后再送到第三级线性放大电路的偏压电路。 优选的, 所述的低能耗发射机 3中所述增益控制电路由 3个 PIN管及其相应的外围电路 构成, 其输出端和线性放大电路的信号输入端相联。 对比现有技术, 本发明的有益技术效果如下: 本发明发、收天线采用高强度的玻璃钢做天 线的外壳, 采用全密封结构, 使之在海边工作时能抗台风、 抗盐雾、 抗潮湿、 抗霉菌、 抗紫外 线, 控制和处理计算机采用嵌入式工控机, 接收机和发射机采用低能耗设计, 可以利用太阳能 和风能供电。 由于收发天线采用单极子交叉环结构, 大大节省了天线场地的建设费用。 由于收发天线采用高强度的玻璃钢做天线的外壳, 雷达在极端坏的条件下也能正常工作, 这一点对于建立在海边的雷达站点非常重要。 由于发射天线的长度可以调节, 对于不同的地面条件, 都可以把天线的驻波比调到最小。 由于收发天线采用了高强度的玻璃钢和全密封设计, 使之在海边工作时抗台风、 抗盐雾、 抗潮湿、 抗霉菌、 抗紫外线, 抗雷击的能力更强。 由于收发天线小, 为在海边建设固定雷达站 和移动雷达站提供了更为方便的途径。 由于收发天线小, 缩小了雷达的目标, 提高了雷达的抗毁性。 由于采用嵌入式工控机和系统的低能耗设计,系统能耗控制在 300瓦以内,可以方便地采 用太阳能、 风能互补供电, 从而大大降低了雷达的设计成本。 附图说明
图 1是本发明提供的嵌入式控制的便携式高频地波雷达系统框图; 图 2是本发明提供的 8单元相控阵列天线示意图; 图 3 是本发明提供的高强度发射天线体示意图; 图 4是本发明提供的全密封接收天线体结构示意图; 图 5是本发明提供的低能耗发射机电路框图; 图 6 是本发明提供的低能耗发射机 AGC控制电路图 ; 图 7是本发明提供的低能耗发射机并推放大电路图; 图 8是本发明提供的低能耗发射机滤波器电路图; 图 9是本发明提供的低能耗发射机控制电压形成电路的原理图; 图 10是本发明提供的低能耗接收系统和控制系统框图; 图 11是本发明提供的太阳能、 风能发电系统框图。 具体实施方式
下面结合附图对本发明具体实施方式作进一步说明。本发明提供一种便于架设,便于移动 的, 能用于探测海洋的风场, 流场和浪场等动力学参数的便携式高频地波雷达, 可以克服阵列 天线雷达因为造价高、 占地面积较大、 雷达的目标大, 易于损毁, 不容易找到理想的架设场地 等问题。 同时也是为了进一步提高在海边这种条件较差的环境里抗雷击、抗台风、抗盐雾、抗 潮湿、 抗霉菌、 抗紫外线的能力而设计。 为实现以上目的, 本发明实施例的技术思路为: 发射天线采用高强度天线 1, 接收天线采 用全密封的交叉环天线 2, 发射机采用了降能耗设计 3, 控制和处理计算机采用嵌入式工控机 4, 可以利用太阳能和风能互补供电 5, 如图 1所示。 收发天线包括高强度的全密封的玻璃钢 做外壳, 发射天线体采用 12毫米的铜管, 其长度可以根据不同的地形而调整, 以保证天线的 驻波比最小, 接收天线体是全密封的交叉环天线。控制和处理计算机采用嵌入式工控机, 它体 积小, 重量轻, 功能强大, 能及时处理雷达的探测的结果, 可把他和雷达接收机装在一个 19 英寸 3个 U的机箱里。 接收机和发射机采用低能耗设计, 系统能耗控制在 300瓦以内, 在没 有市电的海岛上, 可以采用太阳能、 风能互补供电的方式供电。 参见图 1-图 11, 本发明实施例用于探测海洋动力学参数的便携式高频地波雷达, 它包括 玻璃钢全密封发射天线 1、全密封的交叉环接收天线 2、 与发射天线 1连接的低能耗发射机 3、 与交叉环接收天线 2连接接收机 4、 风光互补供电系统 5, 接收机 4含有嵌入式计算机, 风光 互补供电系统 5与发射机 3、 接收机 4分别连接; 所述发射天线 1包含高强度的玻璃钢外壳 1 一 1、可以方便调节的天线体 1一 2、 固定高强度的玻璃钢外壳的不锈钢套 1一 3、连接不锈钢套 和基座的法兰盘及密封圈 1一 4、 发射机连接的电缆接头 1一 5、 方便架设的带密封圈的底板 1 一 6、 全密封的天线底座 1一 7、 天线的安装底板 1一 8和长度可以调节的调节杆 1一 9; 所述交 叉环接收天线体 2包含高强度的玻璃钢外壳 2— 1、 交叉环接收天线体 2— 2、 单极子天线连接 头 2— 3、 环天线支架 2— 4、 带密封圈的铝合金底板 2— 5、 天线体托架 2— 6和连接天线输出 的连接头 2— 7; 所述低能耗发射机 3有 4个输入信号,一个输出信号; 4个输入信号的一路来 自风光互补供电系统 5, 另外 2路来自接收机的 RF信号和 TP信号, 还有一路来自接收机中 的嵌入式计算机送出的 AGC控制信号, 输出信号连接高强度全密封的发射天线 1 ; 低能耗发 射机结构包括增益控制电路 3— 1、 线性并联推挽放大电路 3— 2、 滤波器电路 3— 3, 低能耗控 制电路 3— 4; 所述增益控制电路 3— 1包含二个输入端口, 其中一路来自系统接收机送出的射 频输出 RF, 另一输入来自接收机中的嵌入式计算机送出的 AGC控制信号, 该增益控制电路 的输出端口与线性并联推挽放大电路 3— 2的输入端口相联;所述线性并联推挽放大电路 3— 2 有 5个输入端口和 1个输出端口,一个来自 48V的电源输入口, 一个来自 AGC电路的信号输 入口, 3个控制端口 A、 B、 C分别来自低能耗控制形成电路, 它的输出端口连接滤波器 3— 3 ; 滤波器 3— 3有一个输入口, 一个输出口, 输入口来自电路 3— 2, 输出口连接高强度全密封的 发射天线 1 ;所述低能耗控制电路 3— 4有 2个输入端口和三个输出端口, 2个输入端口中的一 个是 24V的电源口, 另一个是来自接收机产生的 TP脉冲信号, 3个输出信号 A、 B、 C用于 连接线性并联推挽放大电路 3— 2中的 A、 B、 C的 3个点, 用于控制各功率放大器件的加电 或断电;所述接收机 4有 4个输入信号和 4个输出信号, 四个输入信号中一路来自风光互补供 电系统 5, 另外三路来自接收天线, 4个输出信号中的 TB送接收天线, TP送低能耗发射机 3 -4; 接收机 4包含模拟通道 4一 1、 数字通道 4一 2、 频率合成 4一 4、 嵌入式计算机 4一 3 ; 模 拟通道 4一 1有 4个输入和 3个输出, 四个输入中的 3个来自接收天线 2,一个来自频率合成 4 -4; 数字通道 4一 2有 4个输入和 3个输出, 4个输入中的 3个来自模拟通道 4一 1, 一个来自 频率合成 4—4, 3个输出信号中的 TP信号送图 5的低能耗控制电路 3-4的 TP输入端, TB信 号送模拟通道 4一 1, 另一个输出信号通过 USB 口送嵌入式计算机 4一 3。 嵌入式计算机 4一 3 将处理结果除供显示屏显示用外, 还提供一路 AGC信号作为低能耗发射机的增益控制信号送 图 5的增益控制电路 3-1的 AGC输入端; 风光互补供电系统 5包括风力发电机 5— 1、 风机控 制 5— 2、 光电控制 5— 3、 光电板 5— 4、 蓄电池 5— 5、 直流中心 5— 6、 逆变器 5— 7和直流负 载 5— 8, 风光互补供电系统 5输出 2路 220V的交流电送雷达发射机和接收机; 优选的, 所述 环形天线体 2— 2是放在全密封的玻璃钢壳里, 环形天线体设置为互相正交; 优选的, 所述的 低能耗发射机 3包括三级脉冲控制电路,其中第三脉冲控制电路包括电阻分压电路、脉冲信号 放大模块,电阻分压电路将输入的脉冲信号分压后送至脉冲信号放大模块进行放大后再送到第 三级线性放大电路的偏压电路, 所述的低能耗发射机 3中所述增益控制电路由 3个 PIN管及 其相应的外围电路构成, 其输出端和线性放大电路的信号输入端相联。 发、 收天线如图 3和图 4所示, 高强度发射天线包括天线辐射体、 高强度的玻璃钢外壳、 密封环和基座组成。接收环天线接收体设置在全密封结构的高强度的玻璃钢外壳里,发射和接 收电缆通过底部的基座分别和发射机、 接收机相连, 发射机装在一个 3U的机箱内, 接收机和 嵌入式工控机也装在一个 3U的机箱内,接收机和发射机采用低能耗设计,系统能耗控制在 300 瓦以内, 在没有市电的海岛上, 可以采用太阳能、 风能互补供电的方式供电。 图 3是本发明中的高强度发射天线体示意图, 图中的高强度的玻璃钢外壳 1-1、 为了抗盐 雾、 抗潮湿、 抗霉菌、 抗紫外线, 玻璃钢外壳是全密封的。 图 3中的 1-2是天线的辐射体, 它由一根 Φ 12 的紫铜管连接而成。 图中的 1-3是不绣钢 管套, 它上面和玻璃钢外壳连成一个整体, 下面和机座通过密封圈连接, 它的作用是使天线体 和机座紧紧地连为一个整体, 可以抵抗 12-16级台风的吹摇, 图中的 1-4为一个密封圈, 起到 连接和密封天线体的作用, 图中的 1-5为发射信号输入电缆连接器, 通过它把发射机的输出信 号和天线体连接起来, 图中的 1-7为加固的机座, 1-6为方便架设的带密封圈的底板, 图中的 1-6和 1-7组合起来, 使整个天线体成为一个密封体, 由于 1-6是一个活动的因此架设起来非 常方便。 图中的 1-8是天线的安装底板, 它通过螺栓和大地紧紧连在一起。 图中的 1-9是天线 的可调节部位。 图 4是本发明提供的全密封接收天线体结构示意图, 图中的 2- 1是高强度的玻璃钢外壳, 它的作用是保护内部的环天线体, 图中的 2-1是交叉环接收天线体, 由于他们是正交放置, 他 和图中的 2-3 单极子天线组合后构成一个定向天线, 它的方向函数为 1 , COS(e + ),
4 sin(^ + -) , 图中的 2-4是环天线的支架, 起到固定环天线的作用。 图中的 2-5为铝合金底板, 4
它和图中的 2- 1构成一个全密封的整体,图中的 2-6为一个托架,他和接收天线的支杆相连接, 图中的 2-7为电缆连接头, 它把接收天线收到的信号送到接收机的输入端。 图 5是本发明提供的低能耗发射机的框图, 它包括 AGC电路 3- 1、 并推电路 3-2、 滤波器 电路 3-3、 低能耗电路 3-4、 天线 3-5。 图中的 3- 1有 2个输入, 1个输出, 其中 AGC输入与嵌 入式计算机输出的增益控制信号 AGC相连, 另一个输入 RF与接收机输出的 RF相连, 该电 路 3- 1的输出与并推线性放大电路 3-2的输入相连。 图中的 3-2有 4个输入, 其中一路和图中 的 3- 1的输出相连,另外 3路和低能耗控制电路 3-4相连,他有一个输出,它和滤波器电路 3-3 的输入相连。 图中的 3-3为滤波器电路, 它有 1个输入, 1个输出, 输入来自图中的 3-2, 输 出和图中的 3-5天线电路相连。 图中的 3-4为低能耗控制电路, 它有 1个输入信号, 3个输出 信号, 输入信号来自雷达接收机的 TP脉冲输出, 输出信号分别和并推线性放大电路的三个控 制点 A点、 B点、 和 C点相连。 图中的 3-5为天线, 也就是和图 3中的 1-5相连。 图 6是本发明提供的低能耗发射机 AGC控制电路图, AGC电路由 3个 PIN管 D1-D3及 其相应的附属电路构成, C5为滤波电容, C l、 C2、 C3、 C4 等为耦合电容, 雷达接收机送过 来的射频脉冲 RF信号经过 C l, 然后连接到由 D1-D3组成的 AGC电路的输入端, 而 AGC控 制电压通过 Rl、 R2 、 R3、 R4力口至 IJ AGC电路的控制输入端; 当控制电压变化时, 3个二级 管的电阻跟着变化, 从而使 RF信号输出也跟着变化, 以达到增益控制的目的; 图 7是本发明提供的低能耗发射机并推放大电路图, 该线性放大电路由 Ul、 U2、 U3、 U4、U5、U6、 U7、 U8组成的三级放大电路以及三级控制电路, 该线性放大电路由 GALI74、 MRF136、 BLF278三种器件构成, 第 3级放大 U5、 U6、 U7、 U8采用并推电路构成, 它可 以提高电路的输出功率, 使系统更加稳定。 通过 AGC控制的 RF信号经 C4后加到 U1的 1脚, 经 U1放大后从 3脚输出, Ll、 R5 是 U1的负载; U9、 C20、 C21、 C22、 L2是它的供电电路; U2是一级控制电路, 信号经 C6 后从 3脚输入, 控制信号通过 A点加到 U2的 4脚, 受控信号从 8脚输出; 电源从 1脚输入, 5脚及 C9和 R6是它的匹配电路, C10、 C23、 C24、 U10是它的供电电路, C8是滤波电路, C6、 C7是它的输入和输出信号的耦合电路。
T1是一个阻抗匹配电路, 受控信号通过 C7加到 T1的输入端 1脚, 而其输出信号经 3脚 5脚后加到加到第二级线性放大器 U3,U4的输入端 1脚; 4脚是 U3、 U4偏压供电电路输入端, 偏压供电电路有 RP1,R7,C11组成, 通过调节 RP1可以改变 U3、 U4偏压的大小。
R8、 R9、 C12是 U3、 U4的输入阻抗匹配电路, U3、 U4的输出分别从他们的 3脚引出, 接到阻抗匹配电路 T2的 1脚和 3脚,
T2是一个阻抗匹配电路, 控制信号通过图中的 B点连接到 T2的 2脚, T2的 1脚接 U3 的 3脚, T2的 3脚接 U4的 3脚, T2的 4, 5脚接第三级线性放大电路 U5、 U6、 U7、 U8、 的输入端 1脚;
U5、 U6、 U7、 U8是第三级线性放大器,它是一级并联推挽放大电路, U5、 U6、 并联, U7、 U8也并联, 然后再组成推挽电路, 输入信号通过 T2的 4、 5脚加到 U5、 U6、 U7、 U8 的 1脚, 放大后的信号分别从 U5、 U6、 U7、 U8的 3脚输出送到 T3的 1脚和 3脚, 控制信 号从图中的 C点加入, 经过一个温控开关 T85后加到 R10、 R11的中点, C14、 C15是滤波电 容, C16、 C17是匹配电容, C18、 C19、 L3是供电电路;
T3是一个阻抗匹配电路, 它的输入信号来自 U5、 U6、 U7、 U8的 3脚,输出的信号从 4、
5脚送出, 通过滤波器后再送发射天线。 图 8是本发明提供的低能耗发射机滤波器电路图, 它的功能是降低电路的杂散信号输出, 它由 7节椭圆滤波器组成, 它的输入 JP3和图 7的 JP2相连, 他的输出和天线相连。 图中的 L3、 L4、 L5禾 P C25、 C26、 C27、 C28、 C29、 C30、 C31组成相应的谐振电路, 使系统的谐波 达到 -60dB以下。 图 9是本发明提供的低能耗发射机控制电压形成电路的原理图,该电路由三部分组成,分 别产生 3路控制信号送到线性放大的 3个控制端 、 B、 C; 第一部分信号通过一个分压电路 后连接到控制端 A点,控制电子开关 U1的接通和断开。第二部分信号通过控制电路连接到控 制端 B点, 控制 U3、 U4的电源接通和断开。 第三部分信号也是通过一个分压电路连接到控 制端 C点, 控制 U5、 U6、 U7、 U8的偏压的接通和断开。 第一路由 R17、 R18组成, 控制信号 TP通过 JP5连接头输入, 经 R17、 R18分压后送到 A点, 并经 A点连接到线性放大器的 A点; 第二路控制电路由 Ull、 U12、 U13、 U14 、 R12、 R13、 R14、 R15组成, 信号 TP脉冲 通过 JP5连接头经 R12输入到 Ull的基极, 从而使 Ull、 U12、 U13、 U14饱和导通, 产生一 个控制信号并通过 B点提供给第二级线性放大电路的 B点; 第三路由 R16、 RP2 R19、 R20、 R21、 U15、 D4组成, 信号 TP通过 JP5连接头输入, 经 R16、 RP2分压后送到 U15输入端 3脚, 通过 U15进行放大, U15是一个运算放大器, 2脚是 它的另一个输入端, 它接在 R19、 R20、 的连接处, 6脚接电源, 5脚通过 D4接输出并经 C 点连接到图 7线性放大器的 C点。 图 10是本发明提供的低能耗接收机的电路框图, 它包括模拟通道 4-1, 数字通道 4-2, 嵌 入式计算机 4-3和频率合成器 4-4。 模拟通道 4-1的作用是把收到的回波信号变为一个固定的 高中频 21.4MHz, 这是一个国际上规定中频, 选它可以减少系统的中频干扰, 他有 4个输入 信号, 3个输出信号, 对应于 3个独立的接收通道。 4个输入信号中的 3个来自 3个来自接收 天线的输出, 另一个信号来自频率合成器的一路输出, 3个输出信号为 21.4MHz的非线性调 频信号,送到后面的数字通道进行采样处理。数字通道 4-2的功能是把模拟信号变为数字信号, 并通过一块 DSP芯片对 3个通道的信号进行一次 FFT处理, 他有 4个输入信号, 3个输出信 号, 4个输入信号中的 3个来自模拟通道 4-1的 3个 21.4MHz的非线性调频信号, 另一个来自 频率合成器产生的 120MHz的高频信号。 3个输出信号中有 2路控制信号 TP和 TB,分别作为 系统时序的控制信号, 其中 TP信号还有送到发射机去作为发射机的控制信号见图 5, 另一路 是数据信号, 他通过 USB接口送到嵌入式计算机。 嵌入式计算机的功能是对数字通道送来的 数据进行后处理,通过一定的算法得出雷达探测的结果即海洋表面的动力学参数,并通过显示 界面显示出来, 也可以通过公网、专网把结果送到控制中心。嵌入式计算机他的输入是数字通 道来的数据, 输出的是最后的结果和控制信号 AGC信号。 AGC信号再送到发射机的 AGC输 入端, 见图 5和图 6。 图 11是本发明提供的太阳能和风能互补供电的框图,它包括风能发电 5-1,风力控制 5-2, 光电控制 5-3, 太阳能发电 5-4, 蓄电池 5-5, 直流中心 5-6, 逆变器 5-7, 直流负载 5-8。 风能 发电 5-1实为 2台 lkw的风力发电机, 它利用海边丰富的风力资源进行发电, 它的输出经过 风力控制器 5-2后调整风速, 使之有一个较稳定的输出送直流中心 5-6。 光伏板 5-4实为太阳 能光伏发电, 它把太阳的光能转变为电能, 他经过光电控制 5-3 后把直流电能送往直流中心 5-6。 直流中心 5-6的作用是: 1把风电的交流电变为直流电, 2控制对蓄电池的过充, 3多余 电能的释放, 4为逆变器 5-7提供稳定的直流电压。 直流负载 5-8的作用是消耗多余的电量。 逆变器 5-7的作用是把直流电压转变为 220V的交流电压, 为雷达系统提供稳定的交流电源。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体 实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思 的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 用于探测海洋动力学参数的便携式高频地波雷达, 其特征在于: 它包括玻璃钢全 密封发射天线 (1)、 全密封的交叉环接收天线 (2)、 与发射天线 (1)连接的低能耗发射机 (3)、 与交叉环接收天线 (2)连接接收机 (4)、 风光互补供电系统 (5), 接收机 (4)含有嵌入式计算 机, 风光互补供电系统 (5) 与发射机 (3)、 接收机 (4)分别连接。
2、 按权利要求 1所述的便携式高频地波雷达, 其特征在于: 所述发射天线 (1 ) 包含 高强度的玻璃钢外壳 (1一 1 )、 可以方便调节的天线体 (1一 2)、 固定高强度的玻璃钢外壳 的不锈钢套 (1一 3 )、 连接不锈钢套和基座的法兰盘及密封圈 (1一 4)、 发射机连接的电缆 接头 (1一 5 )、 方便架设的带密封圈的底板 (1一 6)、 全密封的天线底座 (1一 7)、 天线的 安装底板 (1一 8) 和长度可以调节的调节杆 (1一 9)。
3、 按权利要求 1 所述的便携式高频地波雷达, 其特征在于: 所述交叉环接收天线体 (2) 包含高强度的玻璃钢外壳 (2— 1 )、 交叉环接收天线体 (2— 2)、 单极子天线连接头 (2— 3 )、 环天线支架 (2— 4)、 带密封圈的铝合金底板 (2— 5 )、 天线体托架 (2— 6) 和 连接天线输出的连接头 (2— 7)。
4、 按权利要求 1所述的便携式高频地波雷达, 其特征在于: 所述低能耗发射机 (3 ) 有 4个输入信号, 一个输出信号; 4个输入信号的一路来自风光互补供电系统 (5), 另外 2路来自接收机的 RF信号和 TP信号,还有一路来自接收机中的嵌入式计算机送出的 AGC 控制信号, 输出信号连接高强度全密封的发射天线 (1 ); 低能耗发射机结构包括增益控制 电路 (3— 1 )、 线性并联推挽放大电路 (3— 2)、 滤波器电路 (3— 3 ), 低能耗控制电路 (3 一 4)。
5、 按权利要求 4所述的便携式高频地波雷达, 其特征在于: 所述增益控制电路 (3— 1 ) 包含二个输入端口, 其中一路来自系统接收机送出的射频输出 RF, 另一输入来自接收 机中的嵌入式计算机送出的 AGC控制信号, 该增益控制电路的输出端口与线性并联推挽 放大电路 (3— 2) 的输入端口相联。
6、 按权利要求 5所述的便携式高频地波雷达, 其特征在于: 所述线性并联推挽放大 电路 (3— 2) 有 5个输入端口和 1个输出端口, 一个来自 48V的电源输入口, 一个来自 AGC电路的信号输入口, 3个控制端口 A、 B、 C分别来自低能耗控制形成电路, 它的输 出端口连接滤波器 (3— 3 ); 滤波器 (3— 3 ) 有一个输入口, 一个输出口, 输入口来自电 路 (3— 2), 输出口连接高强度全密封的发射天线 (1 )。
7、 按权利要求 4所述的便携式高频地波雷达, 其特征在于: 所述低能耗控制电路 (3 一 4) 有 2个输入端口和三个输出端口, 2个输入端口中的一个是 24V的电源口, 另一个 是来自接收机产生的 TP脉冲信号, 3个输出信号 A、 B、 C用于连接线性并联推挽放大电 路 (3— 2) 中的 A、 B、 C的 3个点, 用于控制各功率放大器件的加电或断电。
8、 按权利要求 4所述的便携式高频地波雷达, 其特征在于: 所述接收机 (4)有 4个输 入信号和 4个输出信号, 四个输入信号中一路来自风光互补供电系统 (5), 另外三路来自 接收天线, 4个输出信号中的 TB送接收天线, TP送低能耗发射机 (3— 4); 接收机 (4)包 含模拟通道 (4一 1 )、 数字通道 (4一 2)、 频率合成 (4一 4)、 嵌入式计算机 (4一 3 ); 模拟 通道 (4一 1 ) 有 4个输入和 3个输出, 四个输入中的 3个来自接收天线 (2), 一个来自频 率合成 (4一 4); 数字通道(4一 2)有 4个输入和 3个输出, 4个输入中的 3个来自模拟通 道 (4—1 ), 一个来自频率合成 (4—4), 3个输出中的 TP信号送 TP输入端, TB信号送 模拟通道 (4一 1 ), 另一个输出信号通过 USB 口送嵌入式计算机 (4一 3 ); 嵌入式计算机
(4-3 ) 将处理结果除供显示屏显示用外, 还提供一路 AGC信号作为低能耗发射机的增 益控制信号送增益控制电路 (3-1 ) 的 AGC输入端。
9、 按权利要求 1所述的便携式高频地波雷达, 其特征在于: 风光互补供电系统 (5) 包括风力发电机 (5— 1 )、 风机控制 (5— 2)、 光电控制 (5— 3 )、 光电板 (5— 4)、 蓄电池
(5— 5)、 直流中心 (5— 6)、 逆变器(5— 7)和直流负载(5— 8), 风光互补供电系统(5) 输出 2路 220V的交流电送雷达发射机和接收机。
10、按权利要求 3所述的便携式高频地波雷达, 其特征在于: 所述环形天线体(2— 2) 是放在全密封的玻璃钢壳里, 环形天线体设置为互相正交。
11、 按权利要求 1所述的便携式高频地波雷达, 其特征在于: 所述的低能耗发射机 (3) 包括三级脉冲控制电路, 其中第三脉冲控制电路包括电阻分压电路、 脉冲信号放大模块, 电阻分压电路将输入的脉冲信号分压后送至脉冲信号放大模块进行放大后再送到第三级 线性放大电路的偏压电路。
PCT/CN2014/077998 2014-05-21 2014-05-21 用于探测海洋动力学参数的便携式高频地波雷达 WO2015176250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077998 WO2015176250A1 (zh) 2014-05-21 2014-05-21 用于探测海洋动力学参数的便携式高频地波雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077998 WO2015176250A1 (zh) 2014-05-21 2014-05-21 用于探测海洋动力学参数的便携式高频地波雷达

Publications (1)

Publication Number Publication Date
WO2015176250A1 true WO2015176250A1 (zh) 2015-11-26

Family

ID=54553205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077998 WO2015176250A1 (zh) 2014-05-21 2014-05-21 用于探测海洋动力学参数的便携式高频地波雷达

Country Status (1)

Country Link
WO (1) WO2015176250A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109116A (zh) * 2019-05-29 2019-08-09 国家卫星海洋应用中心 一种海洋表面流场值的确定方法、确定装置、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172255A (en) * 1977-08-08 1979-10-23 The United States Of America As Represented By The Secretary Of The Interior HF coastal current mapping radar system
CN1719279A (zh) * 2005-08-03 2006-01-11 武汉大学 用雷达电波探测江河湖泊表面流速的方法及其雷达系统
CN2762154Y (zh) * 2004-12-13 2006-03-01 武汉大学 高频地波雷达数字相干接收机
CN201408843Y (zh) * 2009-05-19 2010-02-17 武汉大学 便携式高频探海雷达的紧凑接收天线
CN101813767A (zh) * 2010-04-01 2010-08-25 武汉德威斯电子技术有限公司 一种用于雷达发射机的固态功率放大装置
CN102331571A (zh) * 2011-09-09 2012-01-25 武汉德威斯电子技术有限公司 地波雷达工作模式自动切换装置
CN102437593A (zh) * 2010-09-29 2012-05-02 刘艺洋 一种小型风光互补独立供电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172255A (en) * 1977-08-08 1979-10-23 The United States Of America As Represented By The Secretary Of The Interior HF coastal current mapping radar system
CN2762154Y (zh) * 2004-12-13 2006-03-01 武汉大学 高频地波雷达数字相干接收机
CN1719279A (zh) * 2005-08-03 2006-01-11 武汉大学 用雷达电波探测江河湖泊表面流速的方法及其雷达系统
CN201408843Y (zh) * 2009-05-19 2010-02-17 武汉大学 便携式高频探海雷达的紧凑接收天线
CN101813767A (zh) * 2010-04-01 2010-08-25 武汉德威斯电子技术有限公司 一种用于雷达发射机的固态功率放大装置
CN102437593A (zh) * 2010-09-29 2012-05-02 刘艺洋 一种小型风光互补独立供电系统
CN102331571A (zh) * 2011-09-09 2012-01-25 武汉德威斯电子技术有限公司 地波雷达工作模式自动切换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, HAO ET AL.: "Sea states observation with a portable HFSWR during the 16th Asian Games Sailing Competition", CHINESE JOURNAL OF RADIO SCIENCE, vol. 27, no. 2, 30 April 2012 (2012-04-30), pages 293 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109116A (zh) * 2019-05-29 2019-08-09 国家卫星海洋应用中心 一种海洋表面流场值的确定方法、确定装置、设备和介质

Similar Documents

Publication Publication Date Title
Rajaram et al. An improved optimization technique for energy harvesting system with grid connected power for green house management
CN101571413A (zh) 基于加速度传感器的输电线路舞动在线监测系统
CN102820804A (zh) 噪声发电装置
CN106842267A (zh) 一种低功耗室内外定位无缝切换方法及系统
WO2015176250A1 (zh) 用于探测海洋动力学参数的便携式高频地波雷达
CN207570630U (zh) 基于lora的窨井水位监测终端
CN106404063A (zh) 一种水利工程用环境监测装置
CN101922247A (zh) 多功能太阳能野营房
Meng et al. Design and implementation of Apple Orchard Monitoring System based on wireless sensor network
CN207424242U (zh) 一种应用于自动门的24g多普勒雷达
CN105064722A (zh) 一种多功能太阳能休息娱乐凉亭
CN208780352U (zh) 电力设备温度接收装置
CN103812431A (zh) 一种太阳能帆板和天线的综合一体化系统
CN204721104U (zh) 一种利用微波的充电系统
CN103901434B (zh) 一种无线探鱼器
CN206422217U (zh) 频率可重构耦合馈电环形天线
CN107656133A (zh) 一种无线充电系统发射端谐振电流检测方法及装置
CN105577220A (zh) 用于探测海洋动力学参数的便携式海洋探测仪
CN204944664U (zh) 一种基于ZigBee技术的噪音采集装置
CN206193232U (zh) 一种航空无线电干扰信号测向系统
CN107643518A (zh) 一种小型化的毫米波雷达系统
CN204928131U (zh) 用于柱上带无功调度功能的电力有源滤波装置
CN204728429U (zh) 雷达扫描式男性小便池自动冲洗装置
CN101123407A (zh) 多能源供电系统
CN204859076U (zh) 一种水面浸泡式太阳能模板组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14892308

Country of ref document: EP

Kind code of ref document: A1