WO2015174727A1 - 횡류터빈을 이용한 부유식 파력발전장치 - Google Patents

횡류터빈을 이용한 부유식 파력발전장치 Download PDF

Info

Publication number
WO2015174727A1
WO2015174727A1 PCT/KR2015/004769 KR2015004769W WO2015174727A1 WO 2015174727 A1 WO2015174727 A1 WO 2015174727A1 KR 2015004769 W KR2015004769 W KR 2015004769W WO 2015174727 A1 WO2015174727 A1 WO 2015174727A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
flow turbine
floating
turbine
fluid
Prior art date
Application number
PCT/KR2015/004769
Other languages
English (en)
French (fr)
Inventor
이영호
김창구
김병하
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2015174727A1 publication Critical patent/WO2015174727A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a floating wave power generation apparatus using a cross flow turbine, and more specifically, a floating wave power generation using a cross flow turbine capable of generating electricity by driving a turbine by using a lateral pitch generated by waves. Relates to a device.
  • the wave power generator a specific PTO such as a turbine or a hydraulic piston is driven by wave energy, and as a specific PTO is driven, a hydraulic motor connected thereto is driven to generate electric energy.
  • the wave power generator can be divided into fixed and floating according to the installation method.
  • fixed type it can be installed together with a breakwater to promote the utility of multi-use, and it is easy to transfer electric energy.
  • floating type it can be installed in a place with abundant energy reserve compared to the coast, which can achieve high power generation and can reduce the structure cost.
  • the vibration-type generator is to be installed on the shore, which has a problem that can not produce a large power because the use of the wave energy of the coast relatively weak rather than using the large wave energy of the ocean.
  • the present invention is to solve the above problems, the floating wave power generation apparatus using a cross-flow turbine according to the present invention, provides a floating wave power generation apparatus using a cross-flow turbine capable of generating a vibration-driven power generation with low turbine driving noise. Its purpose is to.
  • the floating wave power generation apparatus using a cross-flow turbine there is an object to provide a floating wave power generation apparatus using a cross-flow turbine that can produce a large power even when installed on the shore.
  • the space is provided inside, the exterior is provided with a flat hull shape of the front and rear, floating body floating on the sea;
  • a case provided on both sides of the floating body and spaced apart from each other, the case including a first case part and a second case part in which a fluid is received;
  • a fluid communication tube provided with a pipe extending from the side surfaces facing each other and communicating with the first case part and the second case part, wherein the fluid flows;
  • a cross flow turbine installed at an inner side of the fluid communication tube and rotating in accordance with the flow of the fluid through the fluid communication tube;
  • a generator provided inside the floating body and generating electricity by receiving power of the crossflow turbine;
  • an air communicating tube extending from the side surfaces of the first case portion and the second case portion facing each other and communicating with each other, wherein air flows with each other; It includes, the cross-flow turbine, the fluid floating on the sea and the fluid flowing through the fluid communication tube by the oscillation caused by the yaw motion rotates the
  • the fluid communication tube, the first communication tube portion extending in a direction facing the second case portion from the lower side of the first case portion, and wraps one side of the cross flow turbine from below to the upper side, and one side below the second case portion.
  • the first case portion and the second case portion including a second communication tube portion surrounding the other side of the cross-flow turbine from above to below.
  • a fixing cable member and an anchor member connected to the outer side of the float characterized in that it further comprises a fixing portion for fixing the float to the sea.
  • the generator is characterized in that it comprises an electrophoretic cable for moving the generated electricity to the outside of the floating body.
  • the crossflow turbine is characterized in that it is provided with 20 to 30 blades, 30 ° inlet angle and 90 ° exit angle.
  • the floating body is characterized in that the pitch angle of 10 ° to 15 ° is formed on the lower surface, amplifying the pitching according to the transverse yaw motion of the wave.
  • Floating wave power generation apparatus using a cross-flow turbine according to the present invention by the means for solving the above problems, there is an effect that the cross-flow turbine is driven after being immersed in a liquid fluid to block the noise.
  • the floating wave power generation apparatus using the crossflow turbine according to the present invention has the effect of amplifying the cross yaw motion by forming a pitch angle of 10 degrees on the lower surface of the floating body floating on the sea.
  • the floating wave power generator using the cross flow turbine according to the present invention it is possible to prevent the corrosion by the fluid to drive the cross flow turbine has the effect of reducing the maintenance cost.
  • FIG. 1 is a cross-sectional view showing a floating wave power generation apparatus using a cross-flow turbine according to an embodiment of the present invention.
  • FIG. 2 is a view showing a fluid communication in accordance with an embodiment of the present invention.
  • FIG. 3 is a view showing a flywheel of a cross flow turbine according to an embodiment of the present invention.
  • FIG. 4 is a view showing the efficiency of the number of revolutions of the cross flow turbine that the flywheel varies depending on the weight by reducing the floating wave power generator using the cross flow turbine according to an embodiment of the present invention.
  • FIG. 5 is a view showing the efficiency of the cross flow turbine according to the pitch angle and flywheel weight by reducing the floating wave power generator using the cross flow turbine according to an embodiment of the present invention.
  • FIG. 6 is a view showing a blade of the cross flow turbine according to an embodiment of the present invention.
  • the floating wave power generation apparatus using a cross-flow turbine according to the present invention 100 the floating body 110, the case 120, the fluid 130, the fluid communication tube 140 It may be configured to include a cross flow turbine 150, the generator 160 and the air communication tube (170).
  • the present invention is to generate electricity by driving the cross-flow turbine 130 by using the fluid 130 inside the floating body to move to the left and right by the cross motion caused by the wave as a floating wave device 100 using a cross-flow turbine.
  • the floating body 110 is provided with a space therein, the exterior is provided in the form of a flat hull without the bow and stern of the ship in a flat hull, it can float on the sea.
  • the case 120 may be provided to be spaced apart from each other on both sides of the floating body 110, and include a first case part 121 and a second case part 122 to accommodate the fluid 130 therein. have.
  • the case 120 is provided with the first case part 121 and the second case part 122 so that two spaces separated from each other inside the floating body can be formed, and the first case part ( 121 and the second case part 122 form spaces spaced apart from each other in a direction facing each other.
  • the fluid 130 is provided inside the first case part 121 and the second case part 122, and rotates the cross flow turbine 150 while flowing the fluid communication tube 140 to be described below. Let's go.
  • the fluid 130 is provided in the first case part 121 and the second case part 122, and when the floating body 110 is shaken from side to side by the lateral movement of the wave, the fluid 130 flows to the first case portion 121 and the second case portion 122 through the fluid communication tube 140, wherein the cross flow turbine 150 is rotated by the fluid 130. Will be done.
  • the fluid 130 may use liquid oil, fresh water, or the like, which may block the noise of the crossflow turbine 150 and prevent corrosion.
  • the fluid communicating tube 140 may include a first communicating tube part 141 and a second communicating tube part 142.
  • the fluid communication tube 140 extends in a direction facing each other from the lower side of the first case part 121 and the second case part 122 to surround and communicate with the cross flow turbine 150.
  • the first communication tube 141 and the second communication tube 142 is provided, the first communication tube 141 is one side of the cross flow turbine 150 from below one side of the cross flow turbine 150 upward.
  • the second communication pipe part 142 surrounds the other side of the cross flow turbine 150 downward from the other side of the cross flow turbine 150, and the first case part 121 and the second case part 122. To communicate.
  • the fluid communication tube 140 is the first case portion 121 and the second case portion 122 to the fluid 130 inside the first case portion 121 and the second case portion 122. It is a passage that flows to either side.
  • the crossflow turbine 150 is installed on one side of the fluid communication tube 140 and rotates according to the flow of the fluid 130.
  • the inner surface of the floating body 110 is provided in a spaced space between the first case part 121 and the second case part 122.
  • the crossflow turbine 150 is to transmit power to the generator 160 to be described below.
  • the body portion 151 and the blade 152 of the cross flow turbine 150 is provided with 20 to 30 sheets, the inlet angle (b) of 30 ° and the exit angle (c) of 90 °.
  • the cross flow turbine 150 is provided including a flywheel 190, in which the flywheel 190 is installed on the output side of the crankshaft of the cross flow turbine serves to temporarily store and release energy.
  • the blade 152 of the cross flow turbine 150 is provided in a circular body portion 151
  • the blade 152 extending radially with respect to the center of the blade 152 extends one end of the blade 152 when an imaginary vertical line 90 ° is drawn at a portion extending from the body 151.
  • the exit angle c of 90 degrees is formed, and the extended end of the blade 152 of the blade 152 when a virtual vertical line (90 °) is drawn on an imaginary horizontal line of one surface of the blade.
  • the extended end is formed with the inlet angle b of 30 °.
  • the cross flow turbine 150 is the blade 152 is the inlet angle (b) of 30 ° and the outlet angle (c) of 90 ° in order to receive a more smooth rotational force by the fluid 130 flowing To form.
  • the generator 160 is provided inside the floating body 110 and generates electricity by receiving power from the crossflow turbine 150.
  • the generator 160 may further include an electric movement cable part 112.
  • the electrophoretic cable part 112 serves to move the generated electricity to another place.
  • the floating wave power generator 100 using the cross-flow turbine can directly use the generated electricity at sea, the electrophoretic cable 112 serves to move the generated electricity to another place to be used. To do.
  • the generator 160 is the same as the configuration for generating electricity by receiving the power of the conventional turbine, which is considered to correspond to the general configuration and a detailed description thereof will be omitted.
  • the air communication tube 170 is provided as a tube extending from the side facing each other facing the first case portion 121 and the second case portion 122, the fluid is the first case portion 121 and the second The case part 122 flows to either side.
  • the air communication tube 170 is provided as a tube that can move the air to either of the first case portion 121 and the second case portion 122
  • the fluid 130 is the fluid communication tube
  • the air communicating tube 170 is provided as a tube communicating through each side of the first case portion 121 and the second case portion 122 facing each other, the first case portion 121 And the air in the second case part 122 may flow toward either the first case part 121 or the second case part 122, so that the fluid 130 is more actively activated.
  • the case part 121 and the second case part 122 serve to flow to either side.
  • the air can be moved to either of the first case part 121 and the second case part 122 by the air communicating tube 170, the flow of the fluid 130 can be made more active. Therefore, the cross flow turbine 150 will be able to more actively rotate.
  • the floating body 110 may further include a fixing part 180.
  • the fixing part 180 may include a fixing cable member 181 and an anchor member 182 connected to an external one side of the floating body 110.
  • the fixed cable member 181 may be provided as a cable connected to one side of the floating body 110, the anchor member 182 is connected to the cable and placed on the ground in the sea to the floating body 110 To prevent them from moving at sea.
  • the fixing unit 180 serves to fix the floating body 110 so as not to move to another place at sea.
  • the float 110 forms a pitch angle (a) of 10 ° to 15 ° on the lower surface, it is possible to further amplify the pitching by the lateral wave movement of the wave.
  • 3 and 4 illustrate the rotational efficiency of the cross flow turbine 150 using the floating wave power generator using the cross flow turbine of the present invention as a reduced model.
  • the efficiency of the crossflow turbine 150 decreases as the weight of the flywheel 190 increases, and when the period is 3s, the efficiency of the crossflow turbine 150 is As the weight of the flywheel 190 increases, it gradually rises.
  • the maximum width of the cycle 3s in accordance with the weight of the flywheel 190 is smaller than the width in which the cycle 2s falls, and the cycle 2s represents the maximum efficiency when the flywheel weight is 8 kg.
  • the experimental data of FIGS. 3 and 4 are made by making a model of a third size level of the floating wave power generator using the crossflow turbine of the present invention, and the floating wave power generator using the crossflow turbine according to the present invention.
  • the pitch angle (a) is formed of 10 ° to 15 °, the flywheel is preferably formed to 8 kg.
  • the cross-flow turbine 130 is driven after being immersed in the fluid 130 made of a liquid has an effect that can block the noise.
  • the floating wave power generator 100 using the cross-flow turbine according to the present invention by forming a pitch angle (a) of 10 ° to 15 ° on the lower surface of the floating body 110 floating on the sea to amplify the transverse yaw motion It can be effected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 횡류터빈을 이용한 부유식 파력발전장치에 관한 것으로, 보다 구체적으로 파도에 의해서 발생하는 횡요운동을 이용하여 터빈을 구동시켜 전기를 발전할 수 있는 횡류터빈을 이용한 부유식 파력발전장치에 관한 것이다. 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 내부에 공간이 마련되고, 외관은 전면 및 후면이 평평한 선체형태로 구비되어, 해상에 부유하는 부유체; 상기 부유체 내부의 양측에 서로 이격되게 마련되어, 내부에 유동체가 수용되는 제1 케이스부 및 제2 케이스부를 포함하는 케이스; 상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 하방에서 연장되어 연통되는 관으로 마련되어, 상기 유동체가 유동하는 유동체연통관; 상기 유동체연통관의 내부 일측에 설치되어, 상기 유동체연통관을 통한 상기 유동체의 유동에 따라 회전하는 횡류터빈; 상기 부유체 내부에 마련되고, 상기 횡류터빈의 동력을 전달 받아 전기를 발전하는 발전기; 및 상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 상방에서 연장되어 연통되는 관으로 마련되어, 공기가 서로 유동하는 공기연통관; 을 포함하고, 상기 횡류터빈은, 플라이휠;을 포함하여, 해상에 부유하여 횡요운동에 의한 흔들림에 의해 상기 유동체연통관을 유동하는 유동체가 상기 횡류터빈을 회전시키고, 상기 횡류터빈의 회전되는 동력에 의해서 상기 발전기는 전기를 발전하는 것을 특징으로 한다.

Description

횡류터빈을 이용한 부유식 파력발전장치
본 발명은 횡류터빈을 이용한 부유식 파력발전장치에 관한 것으로, 보다 구체적으로 파도에 의해서 발생하는 횡요운동(pitching)을 이용하여 터빈을 구동시켜 전기를 발전할 수 있는 횡류터빈을 이용한 부유식 파력발전장치에 관한 것이다.
일반적으로, 세계적으로 화석에너지의 생산은 지속되고 있지만 차후 화석에너지의 고갈을 대비하여 햇빛, 물, 지열, 생물유기체, 바람, 지열 등 지속가능한 발전을 가능하게 하는 미래에너지원을 연구 및 상용화 하고 있다. 특히 해양에너지의 자원량이 무한하고 대체에너지자원으로서의 가능성을 인정받고 있어, 파랑에너지는 좁은 국토면적을 가지고 있고 반도지역의 특징으로 인하여 우리나라 연안 해역에 대규모로 발전량을 생산할 수 있는 자원으로 각광을 받고 있다.
한편, 파력발전장치는, 파랑에너지에 의하여 터빈이나 유압피스톤과 같은 특정PTO(동력인출장치,Power Take Off)가 구동되고, 특정PTO가 구동됨에 따라 이와 연결된 유압원동기가 구동되어 전기에너지가 발생되는 방식을 취하고 있다. 그리고, 파력발전장치는, 설치방식에 따라 고정식과 부유식으로 나눌 수 있다. 고정식의 경우 방파제 등에 함께 설치하여 다용도의 활용성을 도모할 수 있으며, 전기에너지의 이송이 용이하다. 부유식의 경우 해안에 비하여 에너지 부존량이 풍부한 장소에 설치하여 높은 발전량을 도모할 수 있으며, 구조물 비용의 절감을 할 수 있다.
하지만, 파의 전통적 방식인 진동수주형 발전의 경우 진동수주형 발전기에 설치되는 상용화된 공기터빈의 구동소음은 주변지역에 거주할 수 없을 만큼 발생하는 문제점이 있다.
또한, 진동수주형 발전기는 해안가에 설치 되어야하는데, 이는 해양의 큰 파력에너지를 사용하지 못하고 상대적으로 약한 해안가의 파력에너지를 사용해야하기 때문에 큰 전력을 생산할 수 없는 문제점이 있다.
또한, 해수에 의하여 직접 구동되는 직접구동 되는 터빈의 경우 해수에 의하여 부식 및 해양 부착물 생성 등에 의해서 유지 보수비용이 지속적으로 들어가는 문제점이 있다.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 터빈구동 소음이 적은 진동수주형 발전을 할 수 있는 횡류터빈을 이용한 부유식 파력발전장치를 제공하는데 그 목적이 있다.
*또한, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 해안가에 설치하더라도 큰 전력을 생산할 수 있는 횡류터빈을 이용한 부유식 파력발전장치를 제공하는데 그 목적이 있다.
또한, 유지 보수비용이 적은 횡류터빈을 이용한 부유식 파력발전장치를 제공하는데 그 목적이 있다.
본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 내부에 공간이 마련되고, 외관은 전면 및 후면이 평평한 선체형태로 구비되어, 해상에 부유하는 부유체; 상기 부유체 내부의 양측에 서로 이격되게 마련되어, 내부에 유동체가 수용되는 제1 케이스부 및 제2 케이스부를 포함하는 케이스; 상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 하방에서 연장되어 연통되는 관으로 마련되어, 상기 유동체가 유동하는 유동체연통관; 상기 유동체연통관의 내부 일측에 설치되어, 상기 유동체연통관을 통한 상기 유동체의 유동에 따라 회전하는 횡류터빈; 상기 부유체 내부에 마련되고, 상기 횡류터빈의 동력을 전달 받아 전기를 발전하는 발전기; 및 상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 상방에서 연장되어 연통되는 관으로 마련되어, 공기가 서로 유동하는 공기연통관; 을 포함하고, 상기 횡류터빈은, 해상에 부유하여 횡요운동에 의한 흔들림에 의해 상기 유동체연통관을 유동하는 유동체가 상기 횡류터빈을 회전시키고, 상기 횡류터빈의 회전되는 동력에 의해서 상기 발전기는 전기를 발전하는 것을 특징으로 하며, 횡류터빈의 회전속도의 진폭을 줄이기 위하여 플라이 휠을 횡류터빈의 축에 설치한다.
또한, 상기 유동체연통관은, 상기 제1 케이스부 하방 일측에서 상기 제2 케이스부를 마주하는 방향으로 연장되고, 상기 횡류터빈 일측을 하방에서 상방으로 감싸는 제1 연통관부와, 상기 제2 케이스부 하방 일측에서 상기 제1 케이스부를 마주하는 방향으로 연장되고, 상기 횡류터빈 타측을 상방에서 하방으로 감싸는 제2 연통관부를 포함하여 상기 제1 케이스부 및 제2 케이스부를 연통시키는 것을 특징으로 한다.
또한, 상기 부유체의 외부 일측과 연결되는 고정케이블부재와 앵커부재를 포함하여, 상기 부유체를 해상에 고정시키는 고정부를 더 포함하는 것을 특징으로 한다.
또한, 상기 발전기는, 발전된 전기를 상기 부유체 외부로 이동시키는 전기이동케이블부를 포함하는 것을 특징으로 한다.
또한, 상기 횡류터빈은, 20 내지 30매의 블레이드, 30°의 입구각 및 90°의 출구각으로 구비되는 것을 특징으로 한다.
또한, 상기 부유체는, 하면에 10° 내지 15°의 피치각이 형성되어, 파도의 횡요운동에 따른 피칭을 증폭시킨 것을 특징으로 한다.
상기의 과제의 해결 수단에 의해서 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 횡류터빈이 액체로된 유동체에 침지된 후 구동되어 소음을 차단할 수 있는 효과가 있다.
또한, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 해상에 부유하는 부유체의 하면에 10°의 피치각을 형성하여 횡요운동을 증폭시킬 수 있는 효과가 있다.
또한, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는, 횡류터빈을 구동시키는 유동체에 의해서 부식을 방지할 수 있어 유지 보수비용을 절약할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 횡류터빈을 이용한 부유식 파력발전장치를 나타낸 단면도이다.
도 2는 본 발명의 실시예에 따른 유동체연통을 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 횡류터빈의 플라이휠을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 횡류터빈을 이용한 부유식 파력발전장치를 축소하여 플라이휠이 무게에 따라 달라지는 횡류터빈의 회전수의 효율을 나타낸 도면이다.
도 5는 본 발명의 실시예에 따른 횡류터빈을 이용한 부유식 파력발전장치를 축소하여 피치각 및 플라이휠 무게에 따른 횡류터빈의 효율을 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 횡류터빈의 블레이드를 나타낸 도면이다.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.
도 1 내지 6 에 도시된 바와 같이, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치는(100)은, 부유체(110), 케이스(120), 유동체(130), 유동체연통관(140), 횡류터빈(150), 발전기(160) 및 공기연통관(170)을 포함하여 구성될 수 있다.
본 발명은 횡류터빈을 이용한 부유식 파력장치(100)로 파도에 의한 횡요운동에 의해서 좌우로 움직이는 부유체 내부의 유동체(130)를 이용하여 횡류터빈(130)을 구동시켜 전기를 발전하게 된다.
상기 부유체(110)는 내부에 공간이 마련되고, 외관은 선박의 선수 및 선미가 없는 전면 및 후면이 평평한 선체형태로 구비되어, 해상에 부유할 수 있다.
상기 케이스(120)는 상기 부유체(110) 내부 양측에 서로 이격되게 마련되어, 내부에 유동체(130)를 수용하는 제1 케이스부(121) 및 제2 케이스부(122)를 포함하여 구비될 수 있다.
즉, 상기 케이스(120)는 상기 부유체 내부에서 각각 분리되는 2개의 공간이 형성될 수 있게 상기 제1 케이스부(121) 및 제2 케이스부(122)로 구비되어, 상기 제1 케이스부(121) 및 제2 케이스부(122)는 서로 마주하는 방향으로 이격된 공간을 형성하는 것이다.
한편, 상기 유동체(130)는 상기 제1 케이스부(121) 및 제2 케이스부(122) 내부에 마련되고, 아래에 기재될 상기 유동체연통관(140)을 유동하면서 상기 횡류터빈(150)을 회전시키게 된다.
즉, 상기 유동체(130)는 상기 제1 케이스부(121) 및 제2 케이스부(122) 내부에 구비되어, 파도의 횡요운동에 의해서 상기 부유체(110)가 좌우로 흔들리게 되면, 상기 유동체(130)는 상기 유동체연통관(140)을 통하여 상기 제1 케이스부(121) 및 제2 케이스부(122)로 유동하게 되는데 이때, 상기 유동체(130)에 의해서 상기 횡류터빈(150)이 회전을 하게 되는 것이다.
이때, 상기 유동체(130)는 액체로 된 오일 및 청수 등을 사용할 수 있는데, 이는 상기 횡류터빈(150)의 소음을 차단하고, 부식을 방지하는 효과를 나타낼 수 있다.
상기 유동체연통관(140)은 제1 연통관부(141) 및 제2 연통관부(142)를 포함하여 구비될 수 있다.
상기 유동체연통관(140)을 보다 상세히 설명하기 위해 상기 도 2를 참고하여 보다 상세히 아래에 기재한다.
상기 도 2를 참고하면 상기 유동체연통관(140)은 상기 제1 케이스부(121) 및 제2 케이스부(122) 하방 측면에서 서로 마주하는 방향으로 각각 연장되어 상기 횡류터빈(150)을 감싸며 연통되는 상기 제1 연통관부(141) 및 제2 연통관부(142)로 마련되고, 상기 제1 연통관부(141)는 상기 횡류터빈(150)의 일측 하방에서 상방으로 상기 횡류터빈(150)의 일측을 감싸고, 상기 제2 연통관부(142)는 상기 횡류터빈(150)의 타측 상방에서 하방으로 상기 횡류터빈(150)의 타측을 감싸며, 상기 제1 케이스부(121) 및 제2 케이스부(122)를 연통시키게 된다.
즉, 상기 유동체연통관(140)은 상기 제1 케이스부(121) 및 제2 케이스부(122) 내측에 있는 상기 유동체(130)를 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한 쪽으로 유동하는 통로가 되는 것이다.
상기 횡류터빈(150)은 상기 유동체연통관(140) 내부 일측에 설치되어, 상기 유동체(130)의 유동에 따라 회전한다.
상기 부유체(110) 내부 하면에 상기 제1 케이스부(121) 및 제2 케이스부(122) 사이의 이격된 공간에 구비된다. 상기 횡류터빈(150)은 아래에 기재될 상기 발전기(160)에 동력을 전달하게 된다.
이때, 상기 횡류터빈(150)의 몸체부(151), 블레이드(152)는 20 내지 30매로 구비되고, 30°의 입구각(b) 및 90°의 출구각(c)으로 구비된다. 그리고 상기 횡류터빈(150)은 플라이휠(190)을 포함하여 구비되는데, 이때, 상기 플라이휠(190)은 상기 횡류터빈의 크랭크축의 출력 측에 설치되어 에너지를 일시적으로 저장하였다가 방출하는 역할을 한다.
상기 도 6를 바탕으로 상기 횡류터빈(150)의 몸체부(151) 및 블레이드(152)를 보다 상세히 설명하면, 상기 횡류터빈(150)의 블레이드(152)는 원형으로 구비되는 상기 몸체부(151)를 중심으로 하여 방사상으로 연장되고, 연장되는 상기 블레이드(152)는 상기 몸체부(151)와 연장되어 있는 부분에서 가상의 수직선(90°)을 그었을 때, 상기 블레이드(152)의 연장되는 일단은 90°의 상기 출구각(c)이 형성되고, 상기 블레이드(152)의 영장된 끝단은 상기 블레이드의 일면의 가상의 수평선에 가상의 수직선(90°)을 그었을 때, 상기 블레이드(152)의 연장된 끝단은 30°의 상기 입구각(b)이 형성된다.
즉, 상기 횡류터빈(150)은 유동하는 상기 유동체(130)에 의해 보다 원활한 회전력을 전달 받기 위해 상기 블레이드(152)는 30°의 상기 입구각(b) 및 90°의 상기 출구각(c)을 형성하는 것이다.
상기 발전기(160)는 상기 부유체(110) 내부에 마련되고, 상기 횡류터빈(150)의 동력을 전달 받아 전기를 발전한다.
그리고, 상기 발전기(160)는 전기이동케이블부(112)를 더 포함할 수 있다.
상기 전기이동케이블부(112)는 발전된 전기를 다른 장소로 이동시킬 수 있는 역할을 하게 된다.
즉, 상기 횡류터빈을 이용한 부유식 파력발전장치(100)는, 발전된 전기를 해상에서 바로 사용할 수 있는데, 상기 전기이동케이블부(112)는 발전된 전기를 다른 장소로 이동시켜 사용이 가능하게 하는 역할을 하는 것이다.
상기 발전기(160)는 종래의 터빈의 동력을 전달받아 전기를 발전하는 구성과 동일하여, 이는 일반적인 구성에 해당하는 것으로 사료되어 자세한 설명은 생략한다.
상기 공기연통관(170)은 상기 제1 케이스부(121) 및 제2 케이스부(122) 각각 마주하는 측면에서 연장되어 연통되는 관으로 마련되고, 유체가 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한 쪽으로 유동하게 된다.
이때, 상기 공기연통관(170)은 상기 제1 케이스부(121) 및 제2 케이스부(122)의 어느 한쪽으로 공기를 이동할 수 있는 관으로 구비되어 있어, 상기 유동체(130)가 상기 유동체연통관(140)을 통하여 상기 제1 케이스부(121) 및 제2 케이스부(122)를 유동할 때, 공기압력에 의해서 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한쪽으로 유동이 방해받는 것을 방지하게 된다.
즉, 상기 공기연통관(170)은 상기 제1 케이스부(121) 및 제2 케이스부(122)의 마주하는 각각의 일측을 관통하여 연통되는 관으로 마련되는 것으로, 상기 제1 케이스부(121) 및 제2 케이스부(122)에 있는 공기는 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한 쪽으로 유동이 가능하게 되어, 상기 유동체(130)가 보다 더 활발하게 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한쪽으로 유동되게 하는 역할을 하는 것이다.
따라서, 상기 공기연통관(170)에 의해서 상기 제1 케이스부(121) 및 제2 케이스부(122) 어느 한쪽으로 공기의 이동이 가능함에 따라 상기 유동체(130)의 유동을 보다 더 활발하게 할 수 있어, 상기 횡류터빈(150)을 보다 더 활발하게 회전시킬 수 있게 되는 것이다.
한편, 상기 부유체(110)는 고정부(180)를 더 포함하여 구비될 수 있다. 그리고, 상기 고정부(180)는 상기 부유체(110)의 외부 일측과 연결되는 고정케이블부재(181)와 앵커부재(182)를 포함하여 구비될 수 있다.
상기 고정케이블부재(181)는 상기 부유체(110) 외부 일측에 연결되는 케이블로 구비될 수 있고, 상기 앵커부재(182)는 상기 케이블과 연결되어 바다속 지반에 타설하여 상기 부유체(110)를 해상에서 이동하는 것을 방지한다.
즉, 상기 고정부(180)는 상기 부유체(110)를 해상에서 다른 장소로 이동하지 않게 고정하는 역할을 하는 것이다.
그리고, 상기 부유체(110)는 하면에 10° 내지 15°의 피치각(a)을 형성하여, 파도의 횡요운동에 의해 피칭을 보다 더 증폭시킬 수 있다.
상기 도 3 및 도 4는 본 발명인 횡류터빈을 이용한 부유식 파력발전장치를 축소모델로 하여 상기 횡류터빈(150)의 회전수 효율을 나타낸 것이다.
상기 도 3은 상기 플라이휠(190)의 무게에 따라 달라질 수 있는 상기 횡류터빈(150)의 회전수(RPM)의 효율을 나타낸 것으로, 상기 횡류터빈(150)의 회전수(40 - 50 RPM) 및 주기(T=2,3s)를 부하조건으로 상기 플라이휠(190)의 무게에 따라 실험한 데이터이다. 상기 도 3을 참고하면, 주기가 2s일 때, 상기 횡류터빈(150)의 효율은 상기 플라이휠(190)의 무게가 증가함에 따라 떨어지고, 주기가 3s일 때, 상기 횡류터빈(150)의 효율은 상기 플라이휠(190)의 무게가 증가함에 따라 점점 상승한다. 하지만 주기3s의 상기 플라이휠(190) 무게에 따른 상승폭이, 주기2s이 하락하는 폭보다 적고, 주기2s, 상기 플라이휠 무게 8kg일 때 최대효율을 나타내었다.
상기 도 4는 상기 피치각 (a) 및 상기 플라이휠(190) 무게에 따른 횡류터빈(150)의 RPM을 측정한 것으로, 상기 도 4에 타나낸 것과 같이 주기(T= a)s2, b)s3) 및 상기 피치각(a)(4°, 6°, 8°, 10°)에 대한 효율곡선을 살펴보면, T= 2s의 최대 효율 47%는 N=40RPM, 상기 피치각(a) = 10°일 때 얻어지고, T=3s의 최대효율 44%는 상기 피치각 = 4°, N=30RPM일 때 나타났다. 효율곡선은 T=2s일 때와 T=3s일 때, 반대되는 특성을 보여주는데 주기가 2s의 상기 횡류터빈(150)의 성능곡선은 상기 피치각(a)도가 증가할수록 효율이 상승하고, 주기가 3s의 성능곡선은 상기 피치각(a)도가 줄어들수록 효율이 하락하는 특성을 나타내었다.
상기 도 3 및 4의 실험 데이터는 본 발명의 횡류터빈을 이용한 부유식 파력발전장치의 3분의1 크기수준의 모델을 제작하여 실험 한 것으로, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치의 상기 피치각(a)은 10° 내지 15°로 형성하고, 상기 플라이휠은 8kg으로 형성하는 것이 바람직하다.
본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치(100)는, 상기 횡류터빈(130)이 액체로된 상기 유동체(130)에 침지된 후 구동되어 소음을 차단할 수 있는 효과가 있다.
또한, 본 발명에 따른 횡류터빈을 이용한 부유식 파력발전장치(100)는, 해상에 부유하는 부유체(110)의 하면에 10° 내지 15°의 피치각(a)을 형성하여 횡요운동을 증폭시킬 수 있는 효과가 있다.
또한, 상기 횡류터빈(130)을 구동시키는 상기 유동체(130)에 의해서 부식을 방지할 수 있어 유지 보수비용을 절약할 수 있는 효과가 있다.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. 내부에 공간이 마련되고, 외관은 전면 및 후면이 평평한 선체형태로 구비되어, 해상에 부유하는 부유체;
    상기 부유체 내부의 양측에 서로 이격되게 마련되어, 내부에 유동체가 수용되는 제1 케이스부 및 제2 케이스부를 포함하는 케이스;
    상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 하방에서 연장되어 연통되는 관으로 마련되어, 상기 유동체가 유동하는 유동체연통관;
    상기 유동체연통관의 내부 일측에 설치되어, 상기 유동체연통관을 통한 상기 유동체의 유동에 따라 회전하는 횡류터빈;
    상기 부유체 내부에 마련되고, 상기 횡류터빈의 동력을 전달 받아 전기를 발전하는 발전기; 및
    상기 제1 케이스부 및 제2 케이스부의 서로 마주하는 측면 상방에서 연장되어 연통되는 관으로 마련되어, 공기가 서로 유동하는 공기연통관;
    을 포함하고,
    상기 횡류터빈은,
    출력 측에 설치되어 에너지를 저장하여 다시 방출하는 플라이휠;
    을 포함하여,
    해상에 부유하여 횡요운동에 의한 흔들림에 의해 상기 유동체연통관을 유동하는 유동체가 상기 횡류터빈을 회전시키고, 상기 횡류터빈의 회전되는 동력에 의해서 상기 발전기는 전기를 발전하는 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
  2. 제1항에 있어서,
    상기 유동체연통관은,
    상기 제1 케이스부 하방 일측에서 상기 제2 케이스부를 마주하는 방향으로 연장되고, 상기 횡류터빈 일측을 하방에서 상방으로 감싸는 제1 연통관부와,
    상기 제2 케이스부 하방 일측에서 상기 제1 케이스부를 마주하는 방향으로 연장되고, 상기 횡류터빈 타측을 상방에서 하방으로 감싸는 제2 연통관부를 포함하여 상기 제1 케이스부 및 제2 케이스부를 연통시키는 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
  3. 제1항에 있어서,
    상기 부유체의 외부 일측과 연결되는 고정케이블부재와 앵커부재를 포함하여, 상기 부유체를 해상에 고정시키는 고정부를 더 포함하는 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
  4. 제1항에 있어서,
    상기 발전기는,
    발전된 전기를 상기 부유체 외부로 이동시키는 전기이동케이블부를 포함하는 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
  5. 제1항에 있어서,
    상기 횡류터빈은,
    20 내지 30 매의 블레이드, 30°의 입구각 및 90°의 출구각으로 구비되는 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
  6. 제1항에 있어서,
    상기 부유체는,
    하면에 10° 내지 15°의 피치각이 형성되어, 파도의 횡요운동에 따른 피칭을 증폭시킨 것을 특징으로 하는 횡류터빈을 이용한 부유식 파력발전장치.
PCT/KR2015/004769 2014-05-12 2015-05-12 횡류터빈을 이용한 부유식 파력발전장치 WO2015174727A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140056463A KR101492768B1 (ko) 2014-05-12 2014-05-12 횡류터빈을 이용한 부유식 파력발전장치
KR10-2014-0056463 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174727A1 true WO2015174727A1 (ko) 2015-11-19

Family

ID=52593379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004769 WO2015174727A1 (ko) 2014-05-12 2015-05-12 횡류터빈을 이용한 부유식 파력발전장치

Country Status (2)

Country Link
KR (1) KR101492768B1 (ko)
WO (1) WO2015174727A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038940A (zh) * 2017-05-08 2017-08-11 哈尔滨工程大学 一种二维度波浪能发电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150846B1 (en) 2015-09-29 2018-12-26 Arrecife Energy Systems S.L. Device for converting kinetic energy of a flow from waves, wind or water currents into mechanical energy of rotation
KR101946390B1 (ko) * 2018-01-17 2019-02-11 송승관 웨이브 서지 컨버팅 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990080153A (ko) * 1998-04-14 1999-11-05 김형벽 수차식 파력발전장치 및 방법
KR20080008053A (ko) * 2006-07-19 2008-01-23 케니스 성균 최 유수로부터 에너지를 얻기 위한 부유전력발전장치
KR20120062039A (ko) * 2010-10-25 2012-06-14 한국해양연구원 부유식 조류발전장치 및 그 시공방법
KR20130103027A (ko) * 2012-03-09 2013-09-23 삼성중공업 주식회사 파력발전장치
KR101377281B1 (ko) * 2012-09-28 2014-03-27 한국전력공사 횡류터빈을 이용한 가변 수주진동형 파력 발전장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990080153A (ko) * 1998-04-14 1999-11-05 김형벽 수차식 파력발전장치 및 방법
KR20080008053A (ko) * 2006-07-19 2008-01-23 케니스 성균 최 유수로부터 에너지를 얻기 위한 부유전력발전장치
KR20120062039A (ko) * 2010-10-25 2012-06-14 한국해양연구원 부유식 조류발전장치 및 그 시공방법
KR20130103027A (ko) * 2012-03-09 2013-09-23 삼성중공업 주식회사 파력발전장치
KR101377281B1 (ko) * 2012-09-28 2014-03-27 한국전력공사 횡류터빈을 이용한 가변 수주진동형 파력 발전장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038940A (zh) * 2017-05-08 2017-08-11 哈尔滨工程大学 一种二维度波浪能发电装置

Also Published As

Publication number Publication date
KR101492768B1 (ko) 2015-02-12

Similar Documents

Publication Publication Date Title
CN111042978B (zh) 一种漂浮式风能-波浪能联合发电装置及其控制方法
CN109026542A (zh) 漂浮式风能-波浪能联合发电系统
WO2019169742A1 (zh) 一种用于深海养殖的浮式防波提和风能集成系统
CN204357630U (zh) 一种桩基立轴直驱式潮流能发电装置
CN104265550B (zh) 一种漂浮式波浪能发电系统
CN107288807A (zh) 具有振荡抑制板的多浮筏波浪能发电装置
CN101363416B (zh) 帆船式水上风力发电机
WO2014171629A1 (ko) 공기부양식 소수력 발전장치
KR20150072491A (ko) 진동 수주형 파력 발전 장치
CN201730729U (zh) 重锤式波浪发电设备
WO2015174727A1 (ko) 횡류터빈을 이용한 부유식 파력발전장치
CN104405568A (zh) 一种水平运动的浮子式直驱波浪能装置
CN103835274A (zh) 一种结合漂浮式防波堤和港口栈桥的波浪发电装置
CN201416515Y (zh) 海上风力发电装置
CN104265554A (zh) 一种浮子式直驱波浪能装置
WO2012053769A2 (ko) 파랑발전기
CN112855418B (zh) 一种阵列卷索式双浮体波浪能发电装置
CN102644542A (zh) 潮汐发电设备
CN104018980A (zh) 一种利用多个浮体的桩式波浪能俘获装置
CN105065187A (zh) 一种海岛用浮子式波浪能发电装置
CN109340030B (zh) 一种悬挂摆板式浮体消浪发电装置及其使用方法
CN104389725A (zh) 一种利用气轮机的多浮子式波浪能装置
CN104389722A (zh) 一种利用齿轮箱的伞形波浪能发电装置
CN104329209A (zh) 一种垂向运动的点吸收式波浪能装置
CN202250580U (zh) 一种垂直轴水流发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793133

Country of ref document: EP

Kind code of ref document: A1