WO2015174670A1 - Force control actuator module for a hand exoskeleton structure, and a hand exoskeleton system using same - Google Patents

Force control actuator module for a hand exoskeleton structure, and a hand exoskeleton system using same Download PDF

Info

Publication number
WO2015174670A1
WO2015174670A1 PCT/KR2015/004411 KR2015004411W WO2015174670A1 WO 2015174670 A1 WO2015174670 A1 WO 2015174670A1 KR 2015004411 W KR2015004411 W KR 2015004411W WO 2015174670 A1 WO2015174670 A1 WO 2015174670A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
driver
hand exoskeleton
force control
hand
Prior art date
Application number
PCT/KR2015/004411
Other languages
French (fr)
Korean (ko)
Inventor
배준범
조인성
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Publication of WO2015174670A1 publication Critical patent/WO2015174670A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a force control driver module for a hand exoskeleton structure, in particular using a Series Elastic Actuator (SEA) mechanism, where the position of the finger link structure is measured by a potentiometer for the human side and the position of the actuator is a linear motor.
  • SEA Series Elastic Actuator
  • a force control driver module for a hand exoskeleton structure which is measured by a potentiometer embedded therein, and the transmitted force is controlled by a deflection of an elastic member such as a linear spring, thereby eliminating a separate force sensor.
  • exoskeleton system has been one of the areas of increasing interest for applications in rehabilitation or power increase, and active research is currently underway.
  • active research is currently underway.
  • interaction with virtual objects using exoskeleton interfaces has become one of the most promising applications of exoskeleton systems.
  • Many relevant studies attempting to achieve virtual reality, such as head mounted display (HMD) systems or tactile sensors, are also underway, which adds to the need for a hand wearable interaction system. .
  • HMD head mounted display
  • the present invention also began by proposing a compact driver module capable of accurately generating and controlling a predetermined force.
  • Small and force controllable actuator modules are essential in hand exoskeleton systems. Since the driver module largely determines the size and weight of the system and this has a great influence on the natural movements of the arms and fingers, the driver module should be as small and light as possible. In addition, when the user interacts with objects in the virtual world, the user understands the virtual environment and manipulates the objects based on the transmitted force information. Thus, force feedback from virtual objects is very important for hand exoskeleton systems. For force mode control, force sensors may be applied to the hand exoskeleton system, but conventional force sensors are very large and heavy, increasing the size and weight of the system.
  • the present invention is to provide a hand exoskeletal force control driver module that is compact enough to secure the natural movement of the hand and can accurately transfer a predetermined interaction force from the virtual object to the user. .
  • the force control driver module for a hand exoskeleton system comprises a first potentiometer configured to measure the position of the finger link structure; A second potentiometer configured to measure a position of the driver, the second potentiometer embedded in the driver; And an elastic member installed between the driver and the finger link structure, wherein the elastic member functions as a force sensor, and the force transmitted from the driver is measured by deflection of the elastic member. It is characterized by.
  • the elastic member is characterized in that the spring.
  • the spring is characterized in that it is designed based on the maximum grip force and the required actuator stroke.
  • the driver is selected from among the linearly movable drivers, for example, a linear motor, specifically a gear motor linearized by friction compensation. Can be.
  • This force control driver module may be configured to be installed per finger.
  • the force control driver for hand exoskeleton structure without the need for a separate force sensor, it is compact enough to ensure the natural movement of the hand and at the same time can accurately transfer a predetermined interaction force from the virtual object to the user Will create an effect.
  • FIG. 1 is a schematic diagram of a SEA mechanism applied to the present invention
  • FIG. 2 is a schematic diagram of a driver module according to an embodiment of the present invention.
  • FIG. 5 is an embodiment of the driver module manufactured by FIG.
  • FIG. 7 is a block diagram of a control algorithm according to an embodiment of the present invention.
  • FIG. 11 illustrates a hand exoskeleton device having a driver module according to an embodiment of the present invention, respectively.
  • the Series Elastic Actuator (SEA) mechanism is applied to the actuator module together with the electric motor to satisfy two requirements of compact size and force mode control.
  • the transmitted force is measured by the spring deflection between the driver and the human side.
  • the spring acts as a force sensor so that the size and weight of the driver module can be reduced.
  • the SEA mechanism is basically applied for compact design and accurate force mode control.
  • the force generated by the driver is transmitted via an elastic element, such as a spring, and the elastic element is installed between the human side and the driver.
  • the transmitted force is controlled by the spring deformation.
  • the SEA mechanism is as outlined in FIG. 1.
  • the transmission force, f is controlled by the following deformation of the spring.
  • the predetermined actuator position is the human joint movement and the given predetermined force Is determined as follows.
  • a predetermined driver position By controlling the motor position, a predetermined force can be generated accurately, so that the driver can interact with human motion by applying the appropriate interaction force according to Equation 1 above.
  • the SEA mechanism is applied to implement a force controllable driver module, a schematic of this driver module 10 is shown in FIG. 2.
  • the position of the finger linkage structure 20 (see FIG. 11) is measured by a first potentiometer 11 for the human side, the position of the driver being a second embedded in a linear motor 12 as an example thereof. It is measured by the potentiometer 13.
  • the transmitted force is controlled by the deformation of the linear spring 14 which is one example of the elastic means.
  • the hand exoskeleton system 100 Since the transmitted force is applied and measured using a linear spring deformation, the hand exoskeleton system 100 (see FIG. 11) does not require a separate force sensor. This mechanism results in a compact design of the driver module, and the sensitivity of the measuring force is easily controlled by the spring constant.
  • the linear spring plays a very important role in the force controllable actuator module according to the invention because the force is transmitted through the spring. Therefore, since the maximum force and sensitivity of the driver module are determined by the spring constant, the spring constant must be determined carefully.
  • the driver module must be able to generate a maximum grip force to apply any amount of interaction force from the virtual objects to the finger.
  • the grip force was experimentally measured by a Tekscan Grip sensor (Tekscan. Grip System. 2013. http://www.tekscan.com/.) As shown in FIG. Grip force measurements were performed by 7 participants (4 men, 3 women, age 24 ⁇ 4.3). They were asked to hold solid plastic cups of 6.4 cm diameter for 30 seconds, with each participant having five tests. Each finger average grip force was calculated for male and female participants and the experimental results are shown in FIG. 3 (b). The grip of the thumb was greatest for all participants, corresponding to about 8 N for men and about 6 N for women.
  • the linkage structure of the hand exoskeleton system has been designed by the inventors and the finger of such a system can be moved by a driver mounted on the back of the hand.
  • the simulation results also showed that the finger tip can be bent up to 80 degrees and hyper-extended to 30 degrees with a driver link motion of about 25 degrees.
  • a 25 degree rotational motion can be achieved by about 20 mm linear motion of the driver.
  • a linear motor with a stroke of about 20 mm is needed, which can make up to 20 mm deformation.
  • the spring constant required is about 0.3 to 0.4 N / mm.
  • the spring constant is calculated by
  • G is the modulus of rigidity
  • d is the diameter of the spring wire
  • D is the average diameter of the spring
  • n is the number of active coils.
  • the motor driver for controlling the linear motor is also compact enough and must be fitted to a small driver module.
  • the motor driver for the linear motor is designed manually as shown in FIG. Fig. 4A shows the circuit design for the driver, and Fig. 4B shows the motor driver actually manufactured.
  • the control input to the motor driver is converted to a PWM signal and a full H bridge circuit is applied for normal / reverse motion of the electric motor.
  • the size of the motor driver is 27 ⁇ 14 ⁇ 4 mm, which is small enough to be attached to the top of the linear motor.
  • the force controllable driver module has actually been manufactured.
  • a linear motor with 20 mm stroke, 9 N maximum force and 25 mm / sec speed was chosen as the main driver.
  • a linear spring designed by the variables in Table 1 was applied. Potentiometers for measuring finger motion were located on top of the driver module due to the limited space.
  • the motor driver was attached to the top of the motor and hidden by a manufactured cover to protect the electrical wires.
  • the structure in this embodiment is made of nylon using rapid prototyping technology, but it will be apparent to those skilled in the art that it is not necessarily limited to such materials and manufacturing techniques, so that within the same range Various alternatives are possible to achieve the action / effect of.
  • the size of the driver module is about 18 x 77 x 36 mm and the weight is about 30 g.
  • Electric motors are generally used with gear reducers to adjust power or speed ranges.
  • the gear reducer amplifies the output force, but this also increases the friction of the motor. If the gear ratio is so large that the geared motor is not back-drivable, friction must be properly compensated for natural human-robot interaction. Since friction in the motor corresponds to major nonlinearity, which hinders high control performance in position tracking, the force controllability of the actuator module of the present invention is drastically reduced without proper friction compensation.
  • a linear motor with a gear ratio of 30: 1 is used, and the friction of the motor cannot be ignored.
  • the friction model was experimentally identified. 6 shows experimentally secured control inputs at various speeds of the motor. Then, the friction is modeled by the following equation.
  • the linearized motor model by friction compensation was controlled by the PID controller. PID gains were tuned by experiment. 7 shows a control block diagram of the driver model.
  • the frequency response of the closed loop control system was experimentally obtained (see FIG. 8). As can be seen from the figure, the bandwidth frequency of the driver module is about 10 rad / sec. Considering the maximum speed of the linear motor, the experimental results indicate that the control algorithm guarantees the maximum performance of the motor.
  • the position tracking performance with the control algorithm according to the present invention has been experimentally verified.
  • 9 shows tracking performance with a 5 Hz frequency and sinusoidal trajectory of 5 mm size. Linear motors follow a given position well without a large tracking error.
  • the predetermined trajectory was set to the potentiometer signal on the human side and moved randomly.
  • Fig. 10 shows the results of experiments when the human side potentiometer moved arbitrarily. In any movement state, the tracking error is more irregular than in the case of a sinusoidal signal but it can be seen that the tracking error is less than 1 mm with a change of about 10 mm at a given position.
  • the driver module according to the invention is actually assembled to the hand exoskeleton structure.
  • the generated force is transmitted to the finger tip through the exoskeleton finger linkage structure 20.
  • the exoskeleton structure is configured to allow sufficient extension / flexion movement and three degrees of freedom for each finger for natural interaction with the hand.
  • 11 shows a 3D design of the hand exoskeleton system 100 with the assembled actuator module 10. Both driver modules were fitted for the experiment.
  • the force control performance was experimentally verified with the actual exoskeleton structure.
  • a predetermined force was set to a sinusoidal signal having a frequency of 0.5 Hz and a magnitude of 5 N. Fingers moved randomly.
  • the predetermined motor position was calculated in real time by the predetermined force and finger position. According to the result of the force generation performance in any finger movement, it was confirmed that even under this arbitrary movement of the finger, the force is generated as desired without significant error.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)

Abstract

The technical objective of the present invention is to provide a force control actuator module for a hand exoskeleton structure, the force control actuator module being compact so as to guarantee natural moving of a hand and at the same time being able to accurately transmit predetermined interactive force from a virtual object to a user. In order to obtain the technical objective, a force control actuator module for a hand exoskeleton system, according to the present invention, comprises: a first potentiometer for measuring the position of a finger linkage structure; a second potentiometer, for measuring the position of an actuator, equipped inside a linear motor; and a resilient member provided between the actuator and the finger linkage structure, wherein the resilient member functions as a force sensor, and the force transmitted from the actuator is measured by means of the deflection of the resilient member.

Description

손 외골격 구조를 위한 힘 제어 구동기 모듈 및 이를 이용한 손 외골격 시스템Force Control Driver Module for Hand Exoskeleton Structure and Hand Exoskeleton System
본 발명은 손 외골격 구조를 위한 힘 제어 구동기 모듈에 관한 것으로서, 특히 SEA(Series Elastic Actuator) 메커니즘을 이용하여, 손가락 링크 구조체의 위치는 인간 측을 위한 포텐셔미터에 의해 측정되고, 작동기의 위치는 선형 모터 내에 내장된 포텐셔미터에 의해 측정되며, 전달되는 힘은 선형 스프링과 같은 탄성부재의 변형(deflection)에 의해 제어됨에 의해, 별도의 힘 센서를 필요치 않는 것을 특징으로 하는 손 외골격 구조용 힘 제어 구동기 모듈에 관한 것이다. The present invention relates to a force control driver module for a hand exoskeleton structure, in particular using a Series Elastic Actuator (SEA) mechanism, where the position of the finger link structure is measured by a potentiometer for the human side and the position of the actuator is a linear motor. A force control driver module for a hand exoskeleton structure, which is measured by a potentiometer embedded therein, and the transmitted force is controlled by a deflection of an elastic member such as a linear spring, thereby eliminating a separate force sensor. will be.
외골격 시스템(exoskeleton system)은 재활 또는 파워 증대에서의 적용을 위하여 가장 관심이 증대되고 있는 분야 중 하나가 되어 왔으며, 이에 따라 현재 왕성한 연구가 진행 중에 있다. 외골격 시스템에 대한 연구 분야 중에서도, 외골격 인터페이스를 사용한 가상 물체와의 상호작용은 외골격 시스템의 가장 유망한 적용분야들 중 하나가 되었다. 헤드장착디스플레이(HMD) 시스템 또는 촉각 센서들과 같이 가상 현실을 달성하고자 하는 대다수 관련 연구들이 또한 왕성하게 수행되고 있으며, 이는 손 착용가능 상호작용 시스템(hand wearable interaction system)에 대한 필요성을 가중시키고 있다. The exoskeleton system has been one of the areas of increasing interest for applications in rehabilitation or power increase, and active research is currently underway. Among the areas of research on exoskeleton systems, interaction with virtual objects using exoskeleton interfaces has become one of the most promising applications of exoskeleton systems. Many relevant studies attempting to achieve virtual reality, such as head mounted display (HMD) systems or tactile sensors, are also underway, which adds to the need for a hand wearable interaction system. .
손은 촉각 피드백의 가장 풍부한 소스에 해당하기 때문에, 손에 대한 적절한 힘 피드백 없이는 가상 물체와의 정교한 상호작용은 현실적으로 불가능하다고 할 것이다. 가상 현실을 위한 착용가능 상호작용 시스템을 개발하기 위해서는, 이러한 시스템이 손의 자연스러운 움직임을 담보함과 동시에 소정의 상호작용 힘을 가상 물체로부터 사용자에게 정확하게 전달할 수 있어야만 한다. 이러한 필요성 하에서, 본 발명 또한 소정의 힘을 정확하게 생성하고 제어할 수 있는 컴팩트한 구동기 모듈을 제안하는 것에서부터 시작하였다. Since hands are the richest source of tactile feedback, sophisticated interactions with virtual objects would be impossible without realistic force feedback to the hands. In order to develop a wearable interaction system for virtual reality, such a system must be able to accurately transfer certain interaction forces from the virtual object to the user while ensuring natural hand movements. Under this need, the present invention also began by proposing a compact driver module capable of accurately generating and controlling a predetermined force.
소형의 그리고 힘 제어가능 구동기 모듈은 손 외골격 시스템에서 반드시 필요로 된다. 구동기 모듈은 시스템의 크기와 무게를 대부분 결정하고 이는 팔, 손가락의 자연스러운 움직임에 큰 영향을 미치기 때문에, 구동기 모듈은 가능한 한 작고 가벼워야만 한다. 또한, 사용자가 가상 세계 내의 물체들과 상호작용할 경우, 사용자가 가상의 주위환경을 이해하고 전달된 힘 정보에 기초하여 물체들을 조작한다. 따라서, 가상 물체들로부터의 힘 피드백은 손 외골격 시스템에 있어서 매우 중요하다. 힘 모드 제어를 위하여, 힘 센서가 손 외골격 시스템에 적용될 수도 있지만, 통상적인 힘 센서는 매우 크고 무거워서 시스템의 크기 및 무게를 증가시키게 된다. Small and force controllable actuator modules are essential in hand exoskeleton systems. Since the driver module largely determines the size and weight of the system and this has a great influence on the natural movements of the arms and fingers, the driver module should be as small and light as possible. In addition, when the user interacts with objects in the virtual world, the user understands the virtual environment and manipulates the objects based on the transmitted force information. Thus, force feedback from virtual objects is very important for hand exoskeleton systems. For force mode control, force sensors may be applied to the hand exoskeleton system, but conventional force sensors are very large and heavy, increasing the size and weight of the system.
이와 같이, 본 발명은 손의 자연스러운 움직임을 담보할 정도로 컴팩트함과 동시에 소정의 상호작용 힘을 가상 물체로부터 사용자에게 정확하게 전달할 수 있는 손 외골격 구조용 힘 제어 구동기 모듈을 제공하는 것을 그 기술적 과제로 하고 있다.Thus, the present invention is to provide a hand exoskeletal force control driver module that is compact enough to secure the natural movement of the hand and can accurately transfer a predetermined interaction force from the virtual object to the user. .
이러한 기술적 과제를 달성하기 위하여, 본 발명에 의한 손 외골격 시스템용 힘 제어 구동기 모듈은, 손가락 링크 구조체의 위치를 측정하도록 구성된 제1 포텐셔미터; 구동기의 위치를 측정하도록 구성되며, 상기 구동기 내에 내장된 제2 포텐셔미터; 및 상기 구동기와 상기 손가락 링크 구조체 사이에 설치되는 탄성부재를 포함하여 이루어지고, 상기 탄성부재는 힘 센서로서의 기능을 하여, 상기 구동기로부터 전달된 힘은 상기 탄성부재의 변형(deflection)에 의해 측정되는 것을 특징으로 한다. In order to achieve this technical problem, the force control driver module for a hand exoskeleton system according to the present invention comprises a first potentiometer configured to measure the position of the finger link structure; A second potentiometer configured to measure a position of the driver, the second potentiometer embedded in the driver; And an elastic member installed between the driver and the finger link structure, wherein the elastic member functions as a force sensor, and the force transmitted from the driver is measured by deflection of the elastic member. It is characterized by.
상기 탄성부재는 스프링인 것을 특징으로 한다. The elastic member is characterized in that the spring.
그리고, 상기 스프링은 최대 그립력과 요구되는 구동기 스트로크에 기초하여 설계되는 것을 특징으로 한다. And, the spring is characterized in that it is designed based on the maximum grip force and the required actuator stroke.
바람직하게는, 상기 힘 제어 구동기 모듈의 제어를 위하여, 상기 구동기는 선형으로 움직일 수 있는 구동기들 중 선택된 것으로서, 일 예로 선형 모터를 들 수 있으며 구체적으로 마찰 보상에 의하여 선형화된 기어 모터(gear motor)일 수 있다. Preferably, for the control of the force control driver module, the driver is selected from among the linearly movable drivers, for example, a linear motor, specifically a gear motor linearized by friction compensation. Can be.
이러한 힘 제어 구동기 모듈은 손가락 하나당 설치되도록 구성될 수 있다. This force control driver module may be configured to be installed per finger.
한편, 또 다른 본 발명에 의한 손 외골격 시스템은, 손가락 링크 구조체, 및 On the other hand, another hand exoskeleton system according to the present invention, the finger link structure, and
상기 손가락 링크 구조체와 상호작용하도록 손가락 하나당 설치된 앞서 설명된 힘 제어 구동기 모듈을 포함하여 이루어진다. And a previously described force control driver module installed per finger to interact with the finger link structure.
이러한 본 발명에 따른 손 외골격 구조용 힘 제어 구동기에 의하면, 별도의 힘 센서에 대한 필요없이, 손의 자연스러운 움직임을 담보할 정도로 컴팩트함과 동시에 소정의 상호작용 힘을 가상 물체로부터 사용자에게 정확하게 전달할 수 있는 효과를 창출하게 된다. According to the force control driver for hand exoskeleton structure according to the present invention, without the need for a separate force sensor, it is compact enough to ensure the natural movement of the hand and at the same time can accurately transfer a predetermined interaction force from the virtual object to the user Will create an effect.
도 1은 본 발명에 적용되는 SEA 메커니즘의 개략도,1 is a schematic diagram of a SEA mechanism applied to the present invention,
도 2는 본 발명의 일 실시예에 따른 구동기 모듈의 설계도,2 is a schematic diagram of a driver module according to an embodiment of the present invention;
도 3은 그립력(grip force)에 관한 실험결과,3 is an experimental result of the grip force (grip force),
도 4는 본 발명의 일 실시예에 따른 소형 모터 드라이버,4 is a small motor driver according to an embodiment of the present invention;
도 5는 도 2에 의해 제조된 구동기 모듈의 실시예,5 is an embodiment of the driver module manufactured by FIG.
도 6은 마찰 실험결과(friction identification),6 shows friction identification,
도 7은 본 발명의 일 실시예에 따른 제어 알고리즘의 블럭도,7 is a block diagram of a control algorithm according to an embodiment of the present invention;
도 8은 폐루프 제어시스템의 주파수 응답,8 is a frequency response of a closed loop control system,
도 9는 본 발명의 일 실시예에 따른 소정의 사인파 궤적에 대한 위치 추적,9 is a position tracking for a predetermined sinusoidal trajectory according to an embodiment of the present invention,
도 10은 본 발명의 일 실시예에 따른 소정의 임의 궤적에 대한 위치 추적, 및10 is a position tracking for any arbitrary trajectory in accordance with an embodiment of the present invention, and
도 11은 본 발명의 일 실시예에 따른 구동기 모듈을 구비한 손 외골격 장치를 각각 나타낸다. 11 illustrates a hand exoskeleton device having a driver module according to an embodiment of the present invention, respectively.
(주요 도면부호)(Major drawing)
100 손 외골격 시스템100 hand exoskeleton system
10 힘 제어 구동기 모듈 11 제1 포텐셔미터(인간측용)10 Force control driver module 11 First potentiometer for human side
12 선형 모터(구동기) 13 제2 포텐셔미터(구동기측용)12 Linear Motor (Driver) 13 Second Potentiometer (For Driver Side)
14 탄성부재(스프링)14 Elastic member (spring)
20 손가락 링크 구조체20 finger link structure
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명에서는 전기 모터와 함께 SEA(Series Elastic Actuator) 메커니즘이 구동기 모듈에 적용되어 컴팩트한 크기 및 힘 모드 제어라는 두 가지 요건을 만족시키고자 하였다. SEA 메커니즘에서, 전달된 힘은 구동기와 인간 측 사이의 스프링 변형(deflection)에 의해 측정된다. 스프링은 힘 센서로서 작동하고 이에 따라 구동기 모듈의 크기와 무게가 감소될 수 있다. 구동기 위치를 조정함에 의하여, 전달된 힘은 정확하게 제어된다. In the present invention, the Series Elastic Actuator (SEA) mechanism is applied to the actuator module together with the electric motor to satisfy two requirements of compact size and force mode control. In the SEA mechanism, the transmitted force is measured by the spring deflection between the driver and the human side. The spring acts as a force sensor so that the size and weight of the driver module can be reduced. By adjusting the actuator position, the transmitted force is precisely controlled.
Series Elastic Actuator(SEA) 메커니즘Series Elastic Actuator (SEA) Mechanism
정확한 힘 느낌을 손가락으로 적용하기 위해서는, 힘 모드 제어(force mode control)가 요구되며, 이는 실시간 힘 측정을 필요로 한다. 하지만, 통상적인 힘 센서는 그 크기와 무게로 인해 손 외골격 시스템에 적당하지 않다. 따라서, 본 발명에 따른 손 외골격 시스템에서는 컴팩트한 디자인과 정확한 힘 모드 제어를 위해 SEA 메커니즘이 기본적으로 적용된다. In order to apply the correct force feeling with a finger, force mode control is required, which requires real time force measurement. However, conventional force sensors are not suitable for hand exoskeleton systems because of their size and weight. Therefore, in the hand exoskeleton system according to the present invention, the SEA mechanism is basically applied for compact design and accurate force mode control.
이러한 메커니즘에서는, 구동기에 의해 생성된 힘이 탄성 요소, 가령 스프링을 경유하여 전달되고 탄성 요소는 인간 측과 구동기 사이에 설치된다. 전달된 힘은 스프링 변형에 의해 제어된다. SEA 메커니즘은 도 1에 개괄적으로 도시된 바와 같다. 전달 힘, f는 다음과 같은 스프링의 변형에 의해 제어된다.In this mechanism, the force generated by the driver is transmitted via an elastic element, such as a spring, and the elastic element is installed between the human side and the driver. The transmitted force is controlled by the spring deformation. The SEA mechanism is as outlined in FIG. 1. The transmission force, f, is controlled by the following deformation of the spring.
Figure PCTKR2015004411-appb-M000001
Figure PCTKR2015004411-appb-M000001
여기서 k는 스프링 상수이고,
Figure PCTKR2015004411-appb-I000001
Figure PCTKR2015004411-appb-I000002
는 구동기와 인간 측의 위치를 각각 나타낸다. 소정의 구동기 위치는 인간 조인트 움직임과 주어진 소정의 힘
Figure PCTKR2015004411-appb-I000003
에 의해 다음과 같이 결정된다.
Where k is a spring constant,
Figure PCTKR2015004411-appb-I000001
And
Figure PCTKR2015004411-appb-I000002
Indicates the positions of the driver and the human side, respectively. The predetermined actuator position is the human joint movement and the given predetermined force
Figure PCTKR2015004411-appb-I000003
Is determined as follows.
Figure PCTKR2015004411-appb-M000002
Figure PCTKR2015004411-appb-M000002
여기서,
Figure PCTKR2015004411-appb-I000004
는 소정의 구동기 위치를 나타낸다. 모터 위치를 제어함에 의해, 소정의 힘은 정확하게 생성될 수 있으며, 이에 따라 구동기는 위 수학식 1에 의한 적절한 상호작용 힘을 인가함에 의하여 인간 모션과 상호작용할 수 있다.
here,
Figure PCTKR2015004411-appb-I000004
Denotes a predetermined driver position. By controlling the motor position, a predetermined force can be generated accurately, so that the driver can interact with human motion by applying the appropriate interaction force according to Equation 1 above.
본 발명에 의한 손 외골격 시스템에서는, SEA 메커니즘이 힘 제어가능 구동기 모듈을 구현하도록 적용되며, 이러한 구동기 모듈(10)의 개략도가 도 2에 도시되어 있다. In the hand exoskeleton system according to the present invention, the SEA mechanism is applied to implement a force controllable driver module, a schematic of this driver module 10 is shown in FIG. 2.
손가락 링크 구조체(20; 도 11 참조)의 위치는 인간 측을 위한 제1 포텐셔미터(potentiometer; 11)에 의해 측정되며, 구동기의 위치는 그 일 예로 들 수 있는 선형 모터(12)에 내장된 제2 포텐셔미터(13)에 의해 측정된다. 전달된 힘은 탄성수단의 일 예인 선형 스프링(14)의 변형에 의해 제어된다. The position of the finger linkage structure 20 (see FIG. 11) is measured by a first potentiometer 11 for the human side, the position of the driver being a second embedded in a linear motor 12 as an example thereof. It is measured by the potentiometer 13. The transmitted force is controlled by the deformation of the linear spring 14 which is one example of the elastic means.
전달된 힘은 선형 스프링 변형을 사용하여 적용, 측정되기 때문에, 손 외골격 시스템(100; 도 11 참조)은 별도의 힘 센서를 필요로 하지 않는다. 이러한 메커니즘은 결과적으로 구동기 모듈의 디자인을 컴팩트하게 하고, 측정 힘의 민감도는 스프링 상수에 의해 쉽게 조절된다. Since the transmitted force is applied and measured using a linear spring deformation, the hand exoskeleton system 100 (see FIG. 11) does not require a separate force sensor. This mechanism results in a compact design of the driver module, and the sensitivity of the measuring force is easily controlled by the spring constant.
선형 스프링의 설계Design of Linear Springs
선형 스프링은 본 발명에 따른 힘 제어가능 구동기 모듈에 있어서 매우 중요한 역할을 하는데, 이는 힘이 스프링을 통하여 전달되기 때문이다. 따라서, 최대 힘 및 구동기 모듈의 민감도가 스프링 상수에 의해 결정되기 때문에, 스프링 상수는 신중하게 결정되어야 한다. The linear spring plays a very important role in the force controllable actuator module according to the invention because the force is transmitted through the spring. Therefore, since the maximum force and sensitivity of the driver module are determined by the spring constant, the spring constant must be determined carefully.
구동기 모듈은 가상 물체들로부터 손가락으로 임의의 양의 상호작용 힘을 인가하도록 최대 그립력(grip force)을 생성할 수 있어야만 한다. 그립력은 도 3 (a)에 도시된 바와 같이, Tekscan Grip sensor(Tekscan. Grip System. 2013. http://www.tekscan.com/.)에 의해 실험적으로 측정되었다. 7인의 참가자(4인 남성, 3인 여성, 연령 24±4.3)에 의해 그립력 측정이 수행되었다. 이들은 30초 동안 6.4 ㎝ 직경 크기의 중실형 플라스틱 컵을 파지하도록 요청받았으며, 각각의 참가자는 5번의 테스트를 가졌다. 각각의 손가락 평균 그립력이 남성, 여성 참가자들에 대해 계산되었으며, 그 실험 결과는 도 3 (b)에 나타난 바와 같다. 모든 참가자들에 대해서 엄지의 그립력이 가장 크고, 이는 남성의 경우 약 8 N, 여성의 경우 약 6 N에 해당하였다. The driver module must be able to generate a maximum grip force to apply any amount of interaction force from the virtual objects to the finger. The grip force was experimentally measured by a Tekscan Grip sensor (Tekscan. Grip System. 2013. http://www.tekscan.com/.) As shown in FIG. Grip force measurements were performed by 7 participants (4 men, 3 women, age 24 ± 4.3). They were asked to hold solid plastic cups of 6.4 cm diameter for 30 seconds, with each participant having five tests. Each finger average grip force was calculated for male and female participants and the experimental results are shown in FIG. 3 (b). The grip of the thumb was greatest for all participants, corresponding to about 8 N for men and about 6 N for women.
손 외골격 시스템의 링크 구조체가 본 발명자들에 의해 설계되었으며 이러한 시스템의 손가락은 손등에 설치된 구동기에 의해 움직여질 수 있다. 또한, 시뮬레이션 결과는, 손가락 팁이 약 25도의 구동기 링크 모션과 함께 80도까지 굴곡가능하고 30도까지 초과-신장(hyper-extended)될 수 있음을 나타내었다. 도 2에 도시된 외골격 구조체 및 구동기 모듈로, 25도 회전 모션이 구동기의 약 20 ㎜ 선형 모션에 의해 달성될 수 있음이 검증되었다. 따라서, 약 20 ㎜의 스트로크를 갖는 선형 모터가 필요하고, 이는 최대 20 ㎜ 변형을 만들 수 있다. 최대 힘 및 변형을 고려하면, 요구되는 스프링 상수는 약 0.3 내지 0.4 N/㎜이다. The linkage structure of the hand exoskeleton system has been designed by the inventors and the finger of such a system can be moved by a driver mounted on the back of the hand. The simulation results also showed that the finger tip can be bent up to 80 degrees and hyper-extended to 30 degrees with a driver link motion of about 25 degrees. With the exoskeleton structure and driver module shown in FIG. 2, it has been verified that a 25 degree rotational motion can be achieved by about 20 mm linear motion of the driver. Thus, a linear motor with a stroke of about 20 mm is needed, which can make up to 20 mm deformation. Considering the maximum force and deformation, the spring constant required is about 0.3 to 0.4 N / mm.
스프링 상수는 다음 식에 의해 계산된다. The spring constant is calculated by
Figure PCTKR2015004411-appb-M000003
Figure PCTKR2015004411-appb-M000003
여기서, G는 강성도 모듈(modulus of rigidity), d는 스프링 와이어의 직경, D는 스프링의 평균 직경, 그리고 n은 액티브 코일의 수를 나타낸다. 링크 구조체와 선형 모터의 크기를 고려하면, 설계 변수는 스프링 상수를 0.434 N/㎜를 만들도록 결정되었다. 스프링 설계를 위한 결정된 변수들은 아래 표 1에 표시된 바와 같다. Where G is the modulus of rigidity, d is the diameter of the spring wire, D is the average diameter of the spring, and n is the number of active coils. Considering the size of the link structure and the linear motor, the design variable was determined to make the spring constant 0.434 N / mm. The determined parameters for the spring design are shown in Table 1 below.
Figure PCTKR2015004411-appb-T000001
Figure PCTKR2015004411-appb-T000001
모터 드라이버의 설계Motor driver design
선형 모터를 제어하기 위한 모터 드라이버 또한 충분히 컴팩트해서 작은 구동기 모듈에 피팅되어야만 한다. 선형 모터용 모터 드라이버는 도 4에 도시된 바와 같이 매뉴얼로 설계되었다. 도 4 (a)는 구동기용 회로 설계를 나타내고, 도 4 (b)는 실제 제조된 모터 드라이버를 나타낸다. 모터 드라이버로의 제어 입력은 PWM 신호로 전환되고 풀 H 브릿지 회로가 전기 모터의 정상/리버스 모션을 위해 적용된다. 모터 드라이버의 크기는 27×14×4 ㎜이며, 이는 선형 모터의 상부에 부착되기에 충분히 작은 크기에 해당한다. The motor driver for controlling the linear motor is also compact enough and must be fitted to a small driver module. The motor driver for the linear motor is designed manually as shown in FIG. Fig. 4A shows the circuit design for the driver, and Fig. 4B shows the motor driver actually manufactured. The control input to the motor driver is converted to a PWM signal and a full H bridge circuit is applied for normal / reverse motion of the electric motor. The size of the motor driver is 27 × 14 × 4 mm, which is small enough to be attached to the top of the linear motor.
구동기 모듈의 제조Manufacturing of Driver Modules
도 5에 도시된 바와 같이 힘 제어가능 구동기 모듈이 실제로 제조되었다. 요구되는 힘과 스트로크 범위를 만족시키기 위하여, 20 ㎜ 스트로크, 9 N 최대 힘 및 25 ㎜/sec 스피드를 갖는 선형 모터가 메인 구동기로 선택되었다. 표 1의 변수들에 의해 설계된 선형 스프링이 적용되었다. 손가락 모션을 측정하기 위한 포텐셔미터는 제한된 공간으로 인하여 구동기 모듈의 상부에 위치되었다. 모터 드라이버는 모터의 상부에 부착되었으며 전기 선들을 보호하기 위한 제조된 커버에 의해 숨겨졌다. 본 실시예에서의 구조체는 나일론 재질로 급속 프로토타입 기술(rapid prototyping technology)을 사용하여 제조되었지만, 반드시 이러한 재질과 제조기술에 한정되어야만 하는 것은 아님은 당업자에게 자명하다고 할 것이므로, 균등한 범위 내에서의 작용/효과를 달성하기 위한 다양한 대체가 가능하다. 구동기 모듈의 크기는 약 18×77×36 ㎜이며, 그 무게는 약 30 g이다. As shown in FIG. 5, the force controllable driver module has actually been manufactured. In order to meet the required force and stroke range, a linear motor with 20 mm stroke, 9 N maximum force and 25 mm / sec speed was chosen as the main driver. A linear spring designed by the variables in Table 1 was applied. Potentiometers for measuring finger motion were located on top of the driver module due to the limited space. The motor driver was attached to the top of the motor and hidden by a manufactured cover to protect the electrical wires. The structure in this embodiment is made of nylon using rapid prototyping technology, but it will be apparent to those skilled in the art that it is not necessarily limited to such materials and manufacturing techniques, so that within the same range Various alternatives are possible to achieve the action / effect of. The size of the driver module is about 18 x 77 x 36 mm and the weight is about 30 g.
구동기 모듈의 제어Control of Driver Module
전기 모터는 일반적으로 힘 또는 속도 범위를 조정하기 위하여 기어 감속기와 함께 사용된다. 기어 감속기는 출력 힘을 증폭하지만, 이는 또한 모터의 마찰을 증대시킨다. 만약 기어 비가 매우 커서 기어된 모터가 역-구동가능(back-drivable)하지 않게 되면, 마찰이 자연스러운 인간-로봇 상호작용을 위해 적절히 보상되어야만 한다. 모터에 있어서의 마찰은 주요 비선형성 - 이는 위치 추적에 있어서 고 제어 성능을 방해함 - 에 해당하기 때문에, 본 발명의 구동기 모듈의 힘 제어가능 능력은 적절한 마찰 보상 없이는 급격하게 감소된다. Electric motors are generally used with gear reducers to adjust power or speed ranges. The gear reducer amplifies the output force, but this also increases the friction of the motor. If the gear ratio is so large that the geared motor is not back-drivable, friction must be properly compensated for natural human-robot interaction. Since friction in the motor corresponds to major nonlinearity, which hinders high control performance in position tracking, the force controllability of the actuator module of the present invention is drastically reduced without proper friction compensation.
본 발명에 의한 구동기 모듈에서는, 기어 비 30:1의 선형 모터가 사용되었으며, 모터의 마찰은 무시할 수가 없다. 모터의 마찰을 보상하기 위하여, 마찰 모델은 실험적으로 규명되었다. 도 6은 모터의 다양한 속도에서의 제어 입력들을 실험적으로 확보한 것을 나타낸다. 그러면, 마찰은 다음 식에 의해 모델링된다. In the driver module according to the present invention, a linear motor with a gear ratio of 30: 1 is used, and the friction of the motor cannot be ignored. In order to compensate for the friction of the motor, the friction model was experimentally identified. 6 shows experimentally secured control inputs at various speeds of the motor. Then, the friction is modeled by the following equation.
Figure PCTKR2015004411-appb-M000004
Figure PCTKR2015004411-appb-M000004
여기서,
Figure PCTKR2015004411-appb-I000005
는 구동기의 속도를 나타낸다. 식 4에서의 각 항목은 바이어스, Coulomb 마찰, 및 선형 댐핑을 각각 나타낸다. 커브 피팅에 의해, 마찰 모델에서의 변수들은 a=0.05, b=0.2 및 c=0.003475로 각각 특정되었다.
here,
Figure PCTKR2015004411-appb-I000005
Represents the speed of the driver. Each item in equation 4 represents bias, coulomb friction, and linear damping, respectively. By curve fitting, the variables in the friction model were specified as a = 0.05, b = 0.2 and c = 0.003475, respectively.
마찰 보상에 의한 선형화된 모터 모델은 PID 제어기에 의해 제어되었다. PID 게인은 실험에 의해 튜닝되었다. 도 7은 구동기 모델의 제어 블록 다이아그램을 나타낸다. The linearized motor model by friction compensation was controlled by the PID controller. PID gains were tuned by experiment. 7 shows a control block diagram of the driver model.
폐루프 제어 시스템의 주파수 응답이 실험적으로 확보되었다(도 8 참조). 동 도면으로부터 확인되는 바와 같이, 구동기 모듈의 밴드폭 주파수는 약 10 rad/sec이다. 선형 모터의 최대 속도를 고려하면, 실험 결과치들은 제어 알고리즘이 모터의 최대 성능을 담보하고 있음을 나타낸다. The frequency response of the closed loop control system was experimentally obtained (see FIG. 8). As can be seen from the figure, the bandwidth frequency of the driver module is about 10 rad / sec. Considering the maximum speed of the linear motor, the experimental results indicate that the control algorithm guarantees the maximum performance of the motor.
본 발명에 의한 제어 알고리즘을 갖는 위치 추적 성능이 실험적으로 검증되었다. 도 9는 5 Hz 주파수와 5 ㎜ 크기의 사인파 궤적(sinusoidal trajectory)을 갖는 추적 성능을 나타낸다. 선형 모터는 소정의 위치를 큰 추적 오차없이 잘 추종하고 있다. 임의의 궤적에 대한 추적 성능을 테스트하기 위하여, 소정의 궤적이 인간 측의 포텐셔미터 신호로 설정되었으며 임의적으로 이동하였다. 도 10은 인간 측 포텐셔미터가 임의로 이동하였을 경우의 실험 결과를 나타낸다. 임의의 이동 상태에서, 추적 오차는 사인파 신호의 경우에 비해 더 불규칙하지만 추적 오차는 소정의 위치에서 약 10 ㎜ 변화를 갖는 1 ㎜ 미만임을 알 수 있다. The position tracking performance with the control algorithm according to the present invention has been experimentally verified. 9 shows tracking performance with a 5 Hz frequency and sinusoidal trajectory of 5 mm size. Linear motors follow a given position well without a large tracking error. To test the tracking performance for any trajectory, the predetermined trajectory was set to the potentiometer signal on the human side and moved randomly. Fig. 10 shows the results of experiments when the human side potentiometer moved arbitrarily. In any movement state, the tracking error is more irregular than in the case of a sinusoidal signal but it can be seen that the tracking error is less than 1 mm with a change of about 10 mm at a given position.
성능 검증Performance Verification
본 발명에 의한 구동기 모듈은 실제로 손 외골격 구조체에 조립되었다. 이러한 설계에서, 생성된 힘은 외골격용 손가락 링크 구조체(20)를 통해 손가락 팁으로 전달된다. 또한, 외골격 구조체는 손과의 자연스러운 상호작용을 위해 각 손가락에 충분한 연장/굴곡 움직임과 3 자유도가 가능하도록 구성되었다. 도 11은 조립된 구동기 모듈(10)과 함께 손 외골격 시스템(100)의 3D 설계를 나타낸다. 두 구동기 모듈들은 실험을 위해 장착되었다. The driver module according to the invention is actually assembled to the hand exoskeleton structure. In this design, the generated force is transmitted to the finger tip through the exoskeleton finger linkage structure 20. In addition, the exoskeleton structure is configured to allow sufficient extension / flexion movement and three degrees of freedom for each finger for natural interaction with the hand. 11 shows a 3D design of the hand exoskeleton system 100 with the assembled actuator module 10. Both driver modules were fitted for the experiment.
실제 외골격 구조체로 힘 제어 성능이 실험적으로 검증되었다. 이 실험에서는, 소정의 힘이 0.5 Hz의 주파수와 5 N의 크기를 갖는 사인파 신호로 설정되었다. 손가락은 임의로 움직였다. 수학식 2를 사용함에 의하여 소정의 모터 위치가 소정의 힘 및 손가락 위치에 의해 실시간으로 계산되었다. 임의의 손가락 움직임에서의 힘 생성 성능에 대한 결과치에 의하면, 이러한 손가락의 임의의 움직임 하에서도, 힘은 큰 오차 없이 원하는 대로 생성됨을 확인할 수 있었다. The force control performance was experimentally verified with the actual exoskeleton structure. In this experiment, a predetermined force was set to a sinusoidal signal having a frequency of 0.5 Hz and a magnitude of 5 N. Fingers moved randomly. By using Equation 2, the predetermined motor position was calculated in real time by the predetermined force and finger position. According to the result of the force generation performance in any finger movement, it was confirmed that even under this arbitrary movement of the finger, the force is generated as desired without significant error.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다. As described above, in the detailed description of the present invention, specific embodiments have been described, but various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (6)

  1. 손 외골격 시스템을 위한 힘 제어 구동기 모듈(10)로서, As a force control driver module 10 for a hand exoskeleton system,
    손가락 링크 구조체(20)의 위치를 측정하도록 구성된 제1 포텐셔미터(11);A first potentiometer 11 configured to measure the position of the finger link structure 20;
    구동기의 위치를 측정하도록 구성되며, 상기 구동기(12) 내에 내장된 제2 포텐셔미터(13); 및A second potentiometer (13) configured to measure the position of the driver and embedded in the driver (12); And
    상기 구동기와 상기 손가락 링크 구조체 사이에 설치되는 탄성부재(14)An elastic member 14 installed between the driver and the finger link structure
    를 포함하여 이루어지고, It is made, including
    상기 탄성부재는 힘 센서로서의 기능을 하여, 상기 구동기로부터 전달된 힘은 상기 탄성부재의 변형(deflection)에 의해 측정되는 것을 특징으로 힘 제어 구동기 모듈.And the elastic member functions as a force sensor, so that the force transmitted from the driver is measured by the deflection of the elastic member.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄성부재는 스프링인 것을 특징으로 하는 힘 제어 구동기 모듈.The elastic member is a force control driver module, characterized in that the spring.
  3. 제2항에 있어서, The method of claim 2,
    상기 스프링은 최대 그립력과 요구되는 구동기 스트로크에 기초하여 설계되는 것을 특징으로 하는 힘 제어 구동기 모듈.And the spring is designed based on the maximum grip force and the required actuator stroke.
  4. 제1항에 있어서, The method of claim 1,
    상기 힘 제어 구동기 모듈의 제어를 위하여, 상기 구동기는 선형으로 움직일 수 있는 구동기들 중 선택된 것을 특징으로 하는 힘 제어 구동기 모듈.And for the control of the force control driver module, the driver is selected from among linearly movable drivers.
  5. 제1항에 있어서,The method of claim 1,
    상기 힘 제어 구동기 모듈은 손가락 하나당 설치되도록 구성되는 것을 특징으로 하는 힘 제어 구동기 모듈.And the force control driver module is configured to be installed per finger.
  6. 손 외골격 시스템(100)으로서, As the hand exoskeleton system 100,
    손가락 링크 구조체(20); 및 Finger link structure 20; And
    상기 손가락 링크 구조체와 상호작용하도록 손가락 하나당 설치된 제1항 내지 제5항 중 어느 한 항에 기재된 힘 제어 구동기 모듈(10)The force control driver module 10 according to any one of claims 1 to 5 installed per finger to interact with the finger link structure.
    을 포함하여 이루어지는 손 외골격 시스템.Hand exoskeleton system comprising a.
PCT/KR2015/004411 2014-05-12 2015-04-30 Force control actuator module for a hand exoskeleton structure, and a hand exoskeleton system using same WO2015174670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140056534A KR101682949B1 (en) 2014-05-12 2014-05-12 A force-controllable actuator module for a wearable hand exoskeleton and a hand exoskeleton system using the module
KR10-2014-0056534 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174670A1 true WO2015174670A1 (en) 2015-11-19

Family

ID=54480167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004411 WO2015174670A1 (en) 2014-05-12 2015-04-30 Force control actuator module for a hand exoskeleton structure, and a hand exoskeleton system using same

Country Status (2)

Country Link
KR (1) KR101682949B1 (en)
WO (1) WO2015174670A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108261311A (en) * 2016-12-30 2018-07-10 富伯生医科技股份有限公司 Wearable finger rehabilitating device
EP3357473A3 (en) * 2016-12-30 2018-11-07 Rehabotics Medical Technology Corporation Wearable finger rehabilitation apparatus
CN109199784A (en) * 2017-07-04 2019-01-15 中国科学院沈阳自动化研究所 A kind of the hand rehabilitation equipment and its feedback control circuit of flexible drive
WO2019061566A1 (en) * 2017-09-29 2019-04-04 富准精密电子(鹤壁)有限公司 Holding device and mechanical arm having same
CN110871450A (en) * 2019-11-28 2020-03-10 季华实验室 Dexterous finger mechanism, manipulator and control method
CN112656637A (en) * 2019-10-15 2021-04-16 深圳市迈步机器人科技有限公司 Hand rehabilitation device and control method thereof
CN107813333B (en) * 2017-09-05 2021-04-27 芜湖瑞思机器人有限公司 Food grabbing mechanism for high-speed parallel robot
CN113183168A (en) * 2021-04-22 2021-07-30 常州工学院 Clamping mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849477B1 (en) * 2016-11-30 2018-04-18 한국로봇융합연구원 Robot for hand rehabilitation
KR101989274B1 (en) * 2018-03-16 2019-09-30 이권우 Arm support mechanism
KR102482596B1 (en) * 2021-03-18 2022-12-30 성균관대학교산학협력단 Locking mechanism for soft linear actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362733B1 (en) * 1999-09-21 2002-11-29 최혁렬 Semi-direct drive hand exoskeleton
KR100447907B1 (en) * 2001-12-07 2004-09-13 한국과학기술연구원 Force feedback device using hydraulic cylinder
JP2004326417A (en) * 2003-04-24 2004-11-18 Institute Of Physical & Chemical Research Direct-acting actuator unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362733B1 (en) * 1999-09-21 2002-11-29 최혁렬 Semi-direct drive hand exoskeleton
KR100447907B1 (en) * 2001-12-07 2004-09-13 한국과학기술연구원 Force feedback device using hydraulic cylinder
JP2004326417A (en) * 2003-04-24 2004-11-18 Institute Of Physical & Chemical Research Direct-acting actuator unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108261311A (en) * 2016-12-30 2018-07-10 富伯生医科技股份有限公司 Wearable finger rehabilitating device
EP3357473A3 (en) * 2016-12-30 2018-11-07 Rehabotics Medical Technology Corporation Wearable finger rehabilitation apparatus
CN108261311B (en) * 2016-12-30 2020-02-04 富伯生医科技股份有限公司 Wearable finger rehabilitation device
CN109199784A (en) * 2017-07-04 2019-01-15 中国科学院沈阳自动化研究所 A kind of the hand rehabilitation equipment and its feedback control circuit of flexible drive
CN109199784B (en) * 2017-07-04 2024-03-26 中国科学院沈阳自动化研究所 Flexibly-driven hand rehabilitation equipment and feedback control circuit thereof
CN107813333B (en) * 2017-09-05 2021-04-27 芜湖瑞思机器人有限公司 Food grabbing mechanism for high-speed parallel robot
WO2019061566A1 (en) * 2017-09-29 2019-04-04 富准精密电子(鹤壁)有限公司 Holding device and mechanical arm having same
CN112656637A (en) * 2019-10-15 2021-04-16 深圳市迈步机器人科技有限公司 Hand rehabilitation device and control method thereof
CN110871450A (en) * 2019-11-28 2020-03-10 季华实验室 Dexterous finger mechanism, manipulator and control method
CN113183168A (en) * 2021-04-22 2021-07-30 常州工学院 Clamping mechanism

Also Published As

Publication number Publication date
KR20150129921A (en) 2015-11-23
KR101682949B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2015174670A1 (en) Force control actuator module for a hand exoskeleton structure, and a hand exoskeleton system using same
Gupta et al. Design of a haptic arm exoskeleton for training and rehabilitation
US6042555A (en) Force-feedback interface device for the hand
EP0981423B1 (en) Force-feedback interface device for the hand
Zollo et al. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications
US20200282302A9 (en) Exo Tendon Motion Capture Glove Device with Haptic Grip Response
US6059506A (en) Force feedback and texture simulating interface device
Park et al. A dual-cable hand exoskeleton system for virtual reality
Tachi et al. Telesar vi: Telexistence surrogate anthropomorphic robot vi
Tachi et al. Evaluation experiments of a teleexistence manipulation system
Solazzi et al. Design of a cutaneous fingertip display for improving haptic exploration of virtual objects
Lanini et al. Teleoperation of two six-degree-of-freedom arm rehabilitation exoskeletons
Sledd et al. Performance enhancement of a haptic arm exoskeleton
WO2001018617A1 (en) Remote mechanical mirroring using controlled stiffness and actuators (memica)
Najdovski et al. Design, development, and evaluation of a pinch–grasp haptic interface
WO2010091857A1 (en) Method to control a robot device and robot device
Pabon et al. A data-glove with vibro-tactile stimulators for virtual social interaction and rehabilitation
Najdovski et al. Extending haptic device capability for 3D virtual grasping
Wang et al. Multiple rehabilitation motion control for hand with an exoskeleton
Gosselin Guidelines for the design of multi-finger haptic interfaces for the hand
Wang et al. Active and passive control algorithm for an exoskeleton with bowden cable transmission for hand rehabilitation
Cattin et al. Design and development of a novel robotic platform for neuro-robotics applications: the NEURobotics ARM (NEURARM)
Jo et al. Kinematic analysis of a hand exoskeleton structure
Hirzinger et al. DLR’s multisensory articulated hand
Ziegler Haptic displays: how can we feel virtual environments?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793287

Country of ref document: EP

Kind code of ref document: A1