WO2015174573A1 - Surface anchoring energy controllable liquid crystal display device, manufacturing method therefor and manufacturing device thereof - Google Patents

Surface anchoring energy controllable liquid crystal display device, manufacturing method therefor and manufacturing device thereof Download PDF

Info

Publication number
WO2015174573A1
WO2015174573A1 PCT/KR2014/005112 KR2014005112W WO2015174573A1 WO 2015174573 A1 WO2015174573 A1 WO 2015174573A1 KR 2014005112 W KR2014005112 W KR 2014005112W WO 2015174573 A1 WO2015174573 A1 WO 2015174573A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength band
liquid crystal
photo
alignment
irradiation
Prior art date
Application number
PCT/KR2014/005112
Other languages
French (fr)
Korean (ko)
Inventor
이기동
문병준
조정호
박기웅
백승민
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2015174573A1 publication Critical patent/WO2015174573A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal display device. Specifically, surface alignment is achieved by mixing a photo alignment agent and a reactive mesogen (RM) to induce a polymerization reaction of alignment and RM using only a UV wavelength to control surface fixation energy.
  • a liquid crystal display device capable of energy control, a method of manufacturing the same, and a manufacturing apparatus therefor.
  • a liquid crystal display includes a liquid crystal layer having regularly oriented molecules and a liquid crystal alignment film for aligning such liquid crystals is formed from a polymer material.
  • a liquid crystal alignment film is prepared by rubbing a process, ie, rubbing fibers such as nylon or rayon with a polymer film.
  • a method of orienting a mixture of polyimide (PI) and RM on a substrate and a method of stacking PI and RM, respectively, as shown in FIG. 2, are representative methods for increasing surface fixation energy.
  • the rubbing process is a method of inducing orientation by direct friction with cloth or fiber, and dust or static electricity are generated to cause loss of electro-optical properties of the liquid crystal display.
  • the present invention is to solve the problems of the liquid crystal display device of the prior art, by mixing a photo alignment agent (RM) (Reactive Mesogen) and induction of the orientation and polymerization of the RM only by UV wavelength surface fixed energy It is an object of the present invention to provide a liquid crystal display device capable of controlling surface fixed energy so as to be controlled, a method of manufacturing the same, and a manufacturing device therefor.
  • RM photo alignment agent
  • the present invention enables the formation of photo-alignment and polymer network by irradiating UV reacting to each material by using the UV alignment wavelengths of the photo-alignment agent and RM + photoinitiator do not overlap, thereby increasing the efficiency and reproducibility of the manufacturing process.
  • An object of the present invention is to provide a liquid crystal display device and a method of manufacturing the same, and a method for manufacturing the same, which can control the surface fixed energy to improve the operation characteristics of the device through a process.
  • the present invention enables the formation of optical alignment and polymer networks by selectively using UV light having only a specific wavelength band even when the reaction wavelength bands of materials overlap, thereby improving the efficiency and reproducibility of the manufacturing process, thereby improving the operation characteristics of the device.
  • An object of the present invention is to provide a liquid crystal display, a method of manufacturing the same, and a manufacturing apparatus for the same, capable of controlling the surface fixed energy so as to be improved.
  • the present invention can improve the efficiency and reproducibility of the manufacturing process by using a filter for UV wavelength separation even if the reaction wavelength bands of materials overlap, thereby improving the operational characteristics of the device in an easy process. It is an object of the present invention to provide a liquid crystal display device capable of controlling the surface fixed energy, a method of manufacturing the same, and a manufacturing device therefor.
  • a liquid crystal display device capable of controlling surface fixation energy is formed by mixing a photoalignment agent, a reactive mesogen (RM), and a photoinitiator on a first substrate, A first surface fixed energy control mixed layer in which photoalignment is performed and a polymer network is formed by UV irradiation in a second wavelength band to control surface fixation energy; a photoalignment agent, a reactive mesogen (RM), and a photoinitiator on a second substrate A second surface fixed energy control mixed layer having mixed and formed, photo-alignment by UV irradiation in a first wavelength band, and a polymer network being formed by UV irradiation in a second wavelength band to control surface fixed energy; And a liquid crystal layer positioned between the first substrate and the second substrate.
  • the first wavelength band is 300nm ⁇ 365nm
  • the second wavelength band is characterized in that 200nm ⁇ 254nm.
  • the UV irradiation of the first wavelength band for photo-alignment and the UV irradiation of the second wavelength band for forming the polymer network are equally irradiated with UV in the 250 nm to 450 nm wavelength band, and specified in the UV irradiation step of any one wavelength band. It is characterized by advancing in a state where a filter for passing or blocking UV in a wavelength band is laminated therebetween.
  • d is the cell gap
  • p is the pitch
  • Real twisted angle is the pitch
  • Liquid crystal alignment angle It is characterized by the torsion constant of the liquid crystal.
  • a method of manufacturing a liquid crystal display device capable of controlling surface fixed energy including: preparing a lower substrate and an upper substrate; preparing a photoalignment agent + reactive meogen (RM) + photoinitiator mixture; Coating the mixture on a substrate, and performing soft baking and hard baking to form an optical polyimide layer; irradiating UV in a first polarized wavelength band for photoalignment; Injecting and annealing; Irradiating the UV of the second wavelength band to form a polymer network; characterized in that it comprises a.
  • RM reactive meogen
  • photo-alignment agent + RM (Reactive Meogen) + photoinitiator mixture is characterized in that prepared in 95.7: 0.05: 4.2wt%.
  • the first wavelength band is 300nm to 365nm to which the photo-alignment agent reacts
  • the second wavelength band is 200nm to 254nm to which the reactive meogen (RM) + photoinitiator reacts.
  • the UV irradiation step of any one of the wavelength bands is performed in a state in which a filter for passing or blocking the UV of a specific wavelength band is laminated therebetween.
  • soft baking is performed for 2 minutes at a temperature of 100 °C
  • hard baking is characterized in that for 1 hour at a temperature of 180 °C.
  • a manufacturing apparatus of a liquid crystal display device capable of controlling surface fixation energy according to the present invention, including: a mixing treatment unit for manufacturing a photoalignment + reactive meogen (RM) + photoinitiator mixture; A baking treatment unit for performing soft baking and hard baking; an optical alignment UV irradiation unit for irradiating linearly polarized UV light of a first wavelength band in which only the optical alignment agent reacts; injecting liquid crystal by bonding the aligned substrate, and ordering the injected liquid crystal Liquid crystal injection and annealing annealing (annealing) to increase the ordering (polymer network forming UV irradiation unit for irradiating the UV of the second wavelength band to which the RM + photoinitiator reacts to form a polymer network; characterized in that it comprises a.
  • Such a liquid crystal display and a manufacturing method and a manufacturing apparatus therefor capable of controlling the surface fixed energy according to the present invention has the following effects.
  • surface alignment energy can be controlled by mixing photo alignment and reactive mesogen (RM) to induce alignment and polymerization of RM using only UV wavelength.
  • the response speed can be improved by increasing the weak surface fixation energy of the photo-alignment agent using RM, and thus it is applicable to various liquid crystal display devices requiring high transmittance and fast response speed.
  • 1 and 2 is a configuration diagram showing a method of orienting a mixture of Polyimide (PI) and RM of the prior art on a substrate and a method of stacking PI and RM, respectively
  • FIG 3 is a cross-sectional view of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
  • FIG. 6 is a block diagram showing a manufacturing process using UV selective irradiation of the liquid crystal display according to the present invention
  • FIG. 7 is a flowchart illustrating a manufacturing process of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
  • FIG. 8 is a cross-sectional view of a manufacturing process of a liquid crystal display capable of controlling surface fixed energy according to the present invention.
  • FIG. 9 is a configuration diagram of an apparatus for manufacturing a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
  • liquid crystal display capable of controlling surface fixed energy according to the present invention, a manufacturing method thereof, and a preferred embodiment of the manufacturing apparatus therefor will be described in detail.
  • liquid crystal display device and the method for manufacturing the surface-fixed energy control according to the present invention and the manufacturing apparatus therefor will be apparent from the detailed description of each embodiment below.
  • FIG 3 is a cross-sectional view of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
  • FIGS. 4 and 5 are configuration diagrams showing the reaction state according to the use of the UV filter
  • Figure 6 is a configuration diagram showing the manufacturing process using the UV selective irradiation of the liquid crystal display according to the present invention.
  • the present invention is to mix the photo alignment agent (RM) and reactive methogen (RM) to induce the polymerization reaction of the orientation and RM only by UV wavelength to control the surface fixation energy, UV reaction of the photo-alignment agent and RM + photoinitiator It is to perform photo-alignment and polymer formation by irradiating UV reacting to each material by using the overlapping wavelength range.
  • the present invention enables the simultaneous formation of a photonic alignment and a polymer network of RMs in one pixel using wavelength bands of different UVs.
  • the liquid crystal display device has a form having a pattern electrode as an example, but the structure and method for improving the surface fixation energy using the photoalignment agent and the RM mixture according to the present invention are not limited to any one specific liquid crystal mode, but the photoalignment agent Naturally, it can be applied to various liquid crystal modes according to the characteristics (horizontal photoalignment agent, vertical photoalignment agent).
  • a photo alignment agent, a reactive alignment agent (RM), and a photoinitiator are formed on the first substrate 60 having the pattern electrode 50.
  • the first surface fixed energy control mixed layer 40 and the second substrate 10 in which photo-alignment is performed by UV irradiation in one wavelength band, and a polymer network is formed by UV irradiation in a second wavelength band, thereby controlling surface fixed energy.
  • a second surface fixed energy control mixed layer 20 in which surface fixed energy is controlled, and a liquid crystal layer 30 positioned between the first substrate 60 and the second substrate 10 facing each other.
  • the first surface fixed energy control mixed layer 40 and the second surface fixed energy control mixed layer 20 are formed by separating the appropriate wavelength band and irradiating UV by using the photoaligning agent and the UV absorption wavelength band of the RM that are different from each other.
  • the surface fixing energy of) is increased to improve the response speed.
  • the wavelength band of the photo-alignment agent used in one embodiment of the present invention is 300nm, the photoinitiator is 200nm.
  • photo-alignment and polymer are separated by separating UV reaction wavelength band of photo-alignment agent and reactive mesogen (RM). Network formation is done within one pixel.
  • Such a wavelength band is given as an example, and is not limited to the above numerical values, and it is natural that the UV reaction wavelength band of the photoalignment agent and the RM + photoinitiator may be used in various ways depending on the material used.
  • 4 and 5 are configuration diagrams showing the reaction state according to the use of the UV filter.
  • UV filter that passes or blocks the UV of a specific wavelength band
  • photo-alignment is achieved by UV irradiation of the first wavelength band, UV of the second wavelength band It can be seen that the polymer network is formed by irradiation to control the surface fixation energy.
  • the optical alignment and the formation of the polymer network are described based on the material properties and the UV wavelength range.
  • the photo-alignment agent for irradiating UV of a high wavelength band and the RM + photoinitiator for irradiating UV of a somewhat lower wavelength band may be interchanged.
  • the polymer network is formed by the help of the photoinitiator instead of reacting with the UV itself. Therefore, when considering the reaction wavelength, the UV wavelength band is selected in consideration of the UV wavelength band of the photoinitiator.
  • the UV wavelength is distributed in a wide range (250 nm to 450 nm), it is possible to select the UV light having a specific wavelength band and perform photo-alignment and polymer formation even when the reaction wavelength bands of the materials overlap.
  • two different UV light sources with narrow wavelength bands are used to separate and irradiate the UV wavelength bands so that photo-alignment and formation of a polymer network can be carried out, or in the case of a UV light source with a broad wavelength band, Optical alignment and polymer network formation can be performed using a filter.
  • the use of the filter for UV wavelength separation is one example and is not limited to the use of the filter.
  • FIG. 6 is a block diagram illustrating a manufacturing process using UV selective irradiation of the liquid crystal display according to the present invention.
  • the linear UV polarizer and the long pass filter for UV linearly polarized light are placed on the mixed material layer formed on the lower substrate, and photo-alignment is performed by irradiating UV of 365nm.
  • UV of 254 nm is irradiated to increase surface fixation energy.
  • the manufacturing process of the liquid crystal display device capable of controlling the surface fixed energy according to the present invention is as follows.
  • FIG. 7 is a flowchart illustrating a process for manufacturing a surface fixed energy control device according to the present invention
  • FIG. 8 is a cross-sectional view illustrating a process for manufacturing a surface fixed energy control device according to the present invention.
  • liquid crystal display device having a pixel electrode line and a common electrode line has been described as an example.
  • the present invention can be applied to various liquid crystal modes depending on the characteristics of the photoalignment agent (horizontal photoalignment agent and vertical photoalignment agent).
  • a lower substrate and an upper substrate having a pixel electrode line and a common electrode line are prepared (S601), and a mixture of photo-alignment agent + Reactive Meogen (RM) + photoinitiator (95.7: 0.05: 4.2 wt%) is prepared (S602).
  • the prepared mixture is coated on a substrate and then soft baked for 2 minutes at a temperature of 100 ° C. (S603)
  • the irradiated UV light irradiates UV of the first wavelength band in which only the photoalignment agent reacts.
  • the process of irradiating UV by dividing the wavelength band may use the above-described filter or selectively use UV of the selected wavelength band according to the material properties.
  • an annealing process is performed at a temperature of 100 ° C. for 5 minutes (S607).
  • UV of the wavelength band where the RM + photoinitiator reacts is formed to form a polymer network.
  • the UV wavelength band, baking temperature, annealing temperature, and time to be irradiated in the liquid crystal display manufacturing process as described above are examples, and may be differently performed depending on the physical properties of the materials used and the pattern design form.
  • the manufacturing apparatus for manufacturing the liquid crystal display device capable of controlling the surface fixed energy according to the present invention will be described as follows.
  • FIG. 9 is a configuration diagram of an apparatus for manufacturing a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
  • the apparatus for manufacturing a liquid crystal display device is a photo-alignment UV irradiation unit and a polymer network formation UV irradiation unit in order to irradiate UV in different wavelength bands in order to proceed with the photo-alignment and polymer network formation by irradiating UV wavelength bands separately It is provided.
  • composition consists of a mixing treatment unit 80 for preparing a mixture of photo-alignment agent + reactive meogen (RM) + photoinitiator (95.7: 0.05: 4.2wt%) and the prepared mixture on a substrate, followed by 2 minutes at a temperature of 100 ° C.
  • Soft baking and the baking treatment unit 81 for hard baking (Hard baking) for 1 hour at a temperature of 180 °C, and the linearly polarized UV of the first wavelength band to react only the photo-alignment agent
  • annealing is performed at a temperature of 100 ° C.
  • the photo-alignment UV irradiation unit 82 and the polymer network forming UV irradiation unit 84 has been described as an example of the separation configuration, but may be configured integrally when the wavelength band is separated using a filter.
  • the twist angle of the liquid crystal is measured to calculate the surface fixed energy.
  • chiral dopant materials are generally mixed in the liquid crystal.
  • the liquid crystals with the force to turn up to 48 ° by the Chiral dopant are suppressed when the surface fixation energy in the cell increases,
  • the liquid crystal twist state can be maintained.
  • the surface fixation energy may be calculated by determining how much the twist angle is formed based on the 30 ° alignment direction of the liquid crystal molecules.
  • the surface fixation energy is calculated as in Equation 1.
  • Such a liquid crystal display device and a method for manufacturing the surface fixed energy control according to the present invention and a manufacturing apparatus therefor are mixed with a photo alignment agent (RM) and a reactive mesogen (RM) to perform a polymerization reaction of the alignment and RM only by UV wavelength
  • a photo alignment agent RM
  • a reactive mesogen RM
  • the liquid crystal display device and method for manufacturing the surface-fixed energy control according to the present invention, and a manufacturing method therefor are mixed with a photo alignment agent (RM) and a reactive mesogen (RM) to induce a polymerization reaction of the alignment and RM by only the UV wavelength It is to control the surface fixed energy.
  • a photo alignment agent RM
  • a reactive mesogen RM

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a surface anchoring energy controllable liquid crystal display device capable of controlling surface anchoring energy by mixing a photo-alignment agent and reactive mesogen (RM) to induce alignment and polymerization of the RM only with a UV wavelength, a manufacturing method therefor and a manufacturing device thereof, the liquid crystal display device comprising: a first surface anchoring energy control mixing layer formed by mixing the photo-alignment agent, the RM and a photo initiator on a first substrate, achieving photo alignment by UV irradiation of a first wavelength band, and controlling surface anchoring energy by forming a polymer network by UV irradiation of a second wavelength band; a second surface anchoring energy control mixing layer formed by mixing the photo-alignment agent, the RM and the photo initiator on a second substrate, achieving photo alignment by UV irradiation of the first wavelength band, and controlling the surface anchoring energy by forming a polymer network by UV irradiation of the second wavelength band; and a liquid crystal layer located between the first substrate and the second substrate which face each other.

Description

표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치Liquid crystal display device capable of surface fixed energy control, manufacturing method thereof and manufacturing device therefor
본 발명은 액정표시장치에 관한 것으로, 구체적으로 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있도록 한 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device. Specifically, surface alignment is achieved by mixing a photo alignment agent and a reactive mesogen (RM) to induce a polymerization reaction of alignment and RM using only a UV wavelength to control surface fixation energy. A liquid crystal display device capable of energy control, a method of manufacturing the same, and a manufacturing apparatus therefor.
일반적으로 액정디스플레이는 일정하게 배향된 분자를 갖는 액정층을 포함하고 이와 같은 액정을 배향시키기 위한 액정 배향막은 중합체 물질로부터 형성된다. Generally, a liquid crystal display includes a liquid crystal layer having regularly oriented molecules and a liquid crystal alignment film for aligning such liquid crystals is formed from a polymer material.
상기 중합체 물질은 액정배향막을 형성하기 위해 투명 전극과 같은 기재상에 코팅되는 것으로, 일반적으로 액정배향막은 러빙 공정, 즉 나일론 또는 레이온과 같은 러빙 섬유를 중합체 막과 마찰시켜 제조할 수 있다.The polymer material is coated on a substrate such as a transparent electrode to form a liquid crystal alignment film. Generally, a liquid crystal alignment film may be prepared by rubbing a process, ie, rubbing fibers such as nylon or rayon with a polymer film.
이와 관련된 종래 기술을 살펴보면 액정표시패널의 응답속도를 개선하고자 Reactive Mesogen (RM)을 이용하여 표면고정에너지를 증가시키는 연구가 활발하다.Looking at the related art, researches to increase surface fix energy using Reactive Mesogen (RM) have been actively conducted to improve the response speed of LCD panels.
특히, 도 1에서와 같이, Polyimide(PI)와 RM의 혼합물을 기판위에 배향하는 방법과 도 2에서와 같이, PI와 RM을 각각 적층하는 방법은 표면고정에너지를 증가시키는 대표적인 방법이다.In particular, as shown in FIG. 1, a method of orienting a mixture of polyimide (PI) and RM on a substrate and a method of stacking PI and RM, respectively, as shown in FIG. 2, are representative methods for increasing surface fixation energy.
하지만, 두 방법은 배향처리 시, 러빙 공정을 이용해야하는 공통점이 있다. However, the two methods have in common that a rubbing process should be used for the alignment treatment.
러빙 공정은 천이나 섬유질로 직접적인 마찰로 배향을 유도하는 방식이며 먼지나 정전기가 발생하여 액정표시장치의 전기광학적 특성의 손실을 유발시킨다.The rubbing process is a method of inducing orientation by direct friction with cloth or fiber, and dust or static electricity are generated to cause loss of electro-optical properties of the liquid crystal display.
따라서, 액정배향의 전통적인 러빙 방법이 갖는 일부 주요한 단점 및 한계 때문에 실용적인 대체기술에 관한 관심이 증가 되고 있다.Thus, there is a growing interest in practical alternative techniques due to some major drawbacks and limitations of traditional rubbing methods of liquid crystal alignment.
최근에는 이러한 문제점을 보완하기 위해서 광배향법을 이용한 배향공정이 이루어지고 있다.Recently, in order to compensate for this problem, an alignment process using a photoalignment method has been performed.
따라서, 광배향제를 적용하여 표면고정에너지 개선을 위한 기술 개발이 요구되고 있다.Therefore, there is a demand for developing a technology for improving surface fixation energy by applying a photoalignment agent.
본 발명은 이와 같은 종래 기술의 액정표시장치의 문제를 해결하기 위한 것으로, 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있도록 한 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치를 제공하는데 그 목적이 있다.The present invention is to solve the problems of the liquid crystal display device of the prior art, by mixing a photo alignment agent (RM) (Reactive Mesogen) and induction of the orientation and polymerization of the RM only by UV wavelength surface fixed energy It is an object of the present invention to provide a liquid crystal display device capable of controlling surface fixed energy so as to be controlled, a method of manufacturing the same, and a manufacturing device therefor.
본 발명은 광배향제 및 RM+광개시제가 갖는 UV 반응파장의 범위가 겹치지 않는 것을 이용하여 각 재료에 반응하는 UV를 조사하여 광배향 및 고분자 네트워크 형성이 가능하도록 하여 제조 공정의 효율성,재현성을 높여 용이한 공정으로 소자의 동작 특성을 향상시킬 수 있도록 한 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치를 제공하는데 그 목적이 있다.The present invention enables the formation of photo-alignment and polymer network by irradiating UV reacting to each material by using the UV alignment wavelengths of the photo-alignment agent and RM + photoinitiator do not overlap, thereby increasing the efficiency and reproducibility of the manufacturing process. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display device and a method of manufacturing the same, and a method for manufacturing the same, which can control the surface fixed energy to improve the operation characteristics of the device through a process.
본 발명은 재료의 반응파장 대역이 겹치더라도 특정 파장 대역만을 가지는 UV light를 선택적으로 이용하여 광배향 및 고분자 네트워크 형성이 가능하도록 하여 제조 공정의 효율성,재현성을 높여 용이한 공정으로 소자의 동작 특성을 향상시킬 수 있도록 한 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치를 제공하는데 그 목적이 있다.The present invention enables the formation of optical alignment and polymer networks by selectively using UV light having only a specific wavelength band even when the reaction wavelength bands of materials overlap, thereby improving the efficiency and reproducibility of the manufacturing process, thereby improving the operation characteristics of the device. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display, a method of manufacturing the same, and a manufacturing apparatus for the same, capable of controlling the surface fixed energy so as to be improved.
본 발명은 재료의 반응파장 대역이 겹치더라도 UV 파장 분리를 위한 필터를 사용하여 광배향 및 고분자 네트워크 형성이 가능하도록 하여 제조 공정의 효율성,재현성을 높여 용이한 공정으로 소자의 동작 특성을 향상시킬 수 있도록 한 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치를 제공하는데 그 목적이 있다.The present invention can improve the efficiency and reproducibility of the manufacturing process by using a filter for UV wavelength separation even if the reaction wavelength bands of materials overlap, thereby improving the operational characteristics of the device in an easy process. It is an object of the present invention to provide a liquid crystal display device capable of controlling the surface fixed energy, a method of manufacturing the same, and a manufacturing device therefor.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
이와 같은 목적을 달성하기 위한 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치는 제 1 기판상에 광배향제와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 1 표면고정에너지 제어 혼합층;제 2 기판상에 광배향제와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 2 표면고정에너지 제어 혼합층;서로 대향되는 제 1 기판과 제 2 기판 사이에 위치하는 액정층;을 포함하는 것을 특징으로 한다.In order to achieve the above object, a liquid crystal display device capable of controlling surface fixation energy according to the present invention is formed by mixing a photoalignment agent, a reactive mesogen (RM), and a photoinitiator on a first substrate, A first surface fixed energy control mixed layer in which photoalignment is performed and a polymer network is formed by UV irradiation in a second wavelength band to control surface fixation energy; a photoalignment agent, a reactive mesogen (RM), and a photoinitiator on a second substrate A second surface fixed energy control mixed layer having mixed and formed, photo-alignment by UV irradiation in a first wavelength band, and a polymer network being formed by UV irradiation in a second wavelength band to control surface fixed energy; And a liquid crystal layer positioned between the first substrate and the second substrate.
여기서, 상기 제 1 파장 대역은 300nm ~ 365nm이고, 제 2 파장 대역은 200nm ~ 254nm인 것을 특징으로 한다.Here, the first wavelength band is 300nm ~ 365nm, the second wavelength band is characterized in that 200nm ~ 254nm.
그리고 광배향을 위한 제 1 파장 대역의 UV 조사 및 고분자 네트워크 형성을 위한 제 2 파장 대역의 UV 조사를 250nm ~ 450nm 파장 대역의 UV를 동일하게 조사하고, 어느 하나의 파장 대역의 UV 조사 단계에서 특정 파장 대역의 UV를 통과 또는 차단시키는 필터를 사이에 적층한 상태에서 진행하는 것을 특징으로 한다.The UV irradiation of the first wavelength band for photo-alignment and the UV irradiation of the second wavelength band for forming the polymer network are equally irradiated with UV in the 250 nm to 450 nm wavelength band, and specified in the UV irradiation step of any one wavelength band. It is characterized by advancing in a state where a filter for passing or blocking UV in a wavelength band is laminated therebetween.
그리고 상기 표면 고정에너지는,
Figure PCTKR2014005112-appb-I000001
으로 계산되고,
And the surface fixation energy is
Figure PCTKR2014005112-appb-I000001
Calculated as
여기서, d는 셀 갭, p는 피치,
Figure PCTKR2014005112-appb-I000002
: 실제 꼬인 각,
Figure PCTKR2014005112-appb-I000003
: 액정정렬 각,
Figure PCTKR2014005112-appb-I000004
: 액정의 비틀림 상수인 것을 특징으로 한다.
Where d is the cell gap, p is the pitch,
Figure PCTKR2014005112-appb-I000002
: Real twisted angle,
Figure PCTKR2014005112-appb-I000003
: Liquid crystal alignment angle,
Figure PCTKR2014005112-appb-I000004
: It is characterized by the torsion constant of the liquid crystal.
다른 목적을 달성하기 위한 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법은 하부 기판 및 상부 기판을 준비하는 단계;광배향제+RM(Reactive Meogen)+광개시제 혼합물을 제조하는 단계;상기 혼합물을 기판위에 코팅하고, 소프트 베이킹 및 하드 베이킹을 실시하여 광 폴리이미드층을 형성하는 단계;광배향을 위한 선 편광 된 제 1 파장 대역의 UV를 조사하는 단계;배향된 기판을 합착하여 액정을 주입하고 어닐링 하는 단계;고분자네트워크 형성을 위하여 제 2 파장 대역의 UV를 조사하는 단계;를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a liquid crystal display device capable of controlling surface fixed energy, the method including: preparing a lower substrate and an upper substrate; preparing a photoalignment agent + reactive meogen (RM) + photoinitiator mixture; Coating the mixture on a substrate, and performing soft baking and hard baking to form an optical polyimide layer; irradiating UV in a first polarized wavelength band for photoalignment; Injecting and annealing; Irradiating the UV of the second wavelength band to form a polymer network; characterized in that it comprises a.
그리고 상기 광배향제+RM(Reactive Meogen)+광개시제 혼합물은 95.7:0.05:4.2wt%으로 제조되는 것을 특징으로 한다.And the photo-alignment agent + RM (Reactive Meogen) + photoinitiator mixture is characterized in that prepared in 95.7: 0.05: 4.2wt%.
그리고 상기 제 1 파장 대역은 광배향제가 반응하는 300nm ~ 365nm이고, 제 2 파장 대역은 RM(Reactive Meogen)+광개시제가 반응하는 200nm ~ 254nm인 것을 특징으로 한다.The first wavelength band is 300nm to 365nm to which the photo-alignment agent reacts, and the second wavelength band is 200nm to 254nm to which the reactive meogen (RM) + photoinitiator reacts.
그리고 제 1,2 파장 대역의 UV 조사시에 어느 하나의 파장 대역의 UV 조사 단계에서 특정 파장 대역의 UV를 통과 또는 차단시키는 필터를 사이에 적층한 상태에서 진행하는 것을 특징으로 한다.In the UV irradiation step of the first and second wavelength bands, the UV irradiation step of any one of the wavelength bands is performed in a state in which a filter for passing or blocking the UV of a specific wavelength band is laminated therebetween.
그리고 광 폴리이미드층을 형성하는 단계에서, 소프트 베이킹은 100℃의 온도에서 2분 동안 실시하고, 하드 베이킹은 180℃의 온도에서 1시간 동안 진행하는 것을 특징으로 한다.And in the step of forming the optical polyimide layer, soft baking is performed for 2 minutes at a temperature of 100 ℃, hard baking is characterized in that for 1 hour at a temperature of 180 ℃.
또 다른 목적을 달성하기 위한 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조 장치는 광배향제+RM(Reactive Meogen)+광개시제 혼합물을 제조하기 위한 혼합 처리부;상기 혼합물을 기판위에 코팅 한 후, 소프트 베이킹 및 하드 베이킹을 실시하는 베이킹 처리부;광배향제만 반응하는 제 1 파장 대역의 선 편광 된 UV를 조사하는 광배향 UV 조사부;배향된 기판을 합착하여 액정을 주입하고, 주입된 액정의 오더링(ordering)을 높이기 위해 어닐링(Annealing) 하는 액정 주입 및 어닐링부;고분자네트워크 형성을 위하여 RM+광개시제가 반응하는 제 2 파장 대역의 UV를 조사하는 고분자 네트워크 형성 UV 조사부;를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a manufacturing apparatus of a liquid crystal display device capable of controlling surface fixation energy according to the present invention, including: a mixing treatment unit for manufacturing a photoalignment + reactive meogen (RM) + photoinitiator mixture; A baking treatment unit for performing soft baking and hard baking; an optical alignment UV irradiation unit for irradiating linearly polarized UV light of a first wavelength band in which only the optical alignment agent reacts; injecting liquid crystal by bonding the aligned substrate, and ordering the injected liquid crystal Liquid crystal injection and annealing annealing (annealing) to increase the ordering (polymer network forming UV irradiation unit for irradiating the UV of the second wavelength band to which the RM + photoinitiator reacts to form a polymer network; characterized in that it comprises a.
이와 같은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치는 다음과 같은 효과를 갖는다.Such a liquid crystal display and a manufacturing method and a manufacturing apparatus therefor capable of controlling the surface fixed energy according to the present invention has the following effects.
첫째, 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있다.First, surface alignment energy can be controlled by mixing photo alignment and reactive mesogen (RM) to induce alignment and polymerization of RM using only UV wavelength.
둘째, UV 파장만으로 배향 및 RM의 중합반응을 유도하므로 러빙 공정에서 발생하는 먼지나 정전기발생으로 인한 문제를 해결할 수 있다.Second, since the UV wavelength alone induces the orientation and polymerization of the RM, problems caused by dust or static electricity generated in the rubbing process can be solved.
셋째, RM을 이용하여 광배향제의 약한 표면고정에너지를 증가시켜 응답속도를 개선할 수 있어 높은 투과율 및 빠른 응답속도를 필요로 하는 다양한 액정표시소자에 적용가능하다. Third, the response speed can be improved by increasing the weak surface fixation energy of the photo-alignment agent using RM, and thus it is applicable to various liquid crystal display devices requiring high transmittance and fast response speed.
넷째, 광배향제 및 RM+광개시제가 갖는 UV 반응파장의 범위가 겹치지 않는 것을 이용하여 각 재료에 반응하는 UV를 조사하여 광배향 및 고분자 네트워크 형성이 가능하도록 하다.Fourth, by using the UV range of the photo-alignment agent and the RM + photoinitiator does not overlap the range of the UV reaction to each material to enable the photo-alignment and polymer network formation.
다섯째, 특정 파장 대역의 UV light를 선택적으로 이용하거나, UV 파장 분리를 위한 필터를 사용하여 광배향 및 고분자 네트워크 형성이 가능하도록 하여 제조 공정의 효율성,재현성을 높여 용이한 공정으로 소자의 동작 특성을 향상시킬 수 있다.Fifth, by using UV light of specific wavelength band or by using filter for UV wavelength separation, it is possible to form photo-alignment and polymer network and improve the efficiency and reproducibility of manufacturing process. Can be improved.
도 1과 도 2는 종래 기술의 Polyimide(PI)와 RM의 혼합물을 기판위에 배향하는 방법과 PI와 RM을 각각 적층 하는 방법을 나타낸 구성도1 and 2 is a configuration diagram showing a method of orienting a mixture of Polyimide (PI) and RM of the prior art on a substrate and a method of stacking PI and RM, respectively
도 3은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 단면 구성도3 is a cross-sectional view of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
도 4와 도 5는 UV 필터의 사용 유무에 따른 반응 상태를 나타낸 구성도4 and 5 is a configuration diagram showing the reaction state according to the use of the UV filter
도 6은 본 발명에 따른 액정표시장치의 UV 선택적 조사를 이용한 제조 과정을 나타낸 구성도6 is a block diagram showing a manufacturing process using UV selective irradiation of the liquid crystal display according to the present invention
도 7은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 제조 공정 순서도7 is a flowchart illustrating a manufacturing process of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
도 8은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 제조 공정 단면도8 is a cross-sectional view of a manufacturing process of a liquid crystal display capable of controlling surface fixed energy according to the present invention.
도 9는 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조 장치의 구성도9 is a configuration diagram of an apparatus for manufacturing a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
이하, 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치의 바람직한 실시 예에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a liquid crystal display capable of controlling surface fixed energy according to the present invention, a manufacturing method thereof, and a preferred embodiment of the manufacturing apparatus therefor will be described in detail.
본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치의 특징 및 이점들은 이하에서의 각 실시 예에 대한 상세한 설명을 통해 명백해질 것이다.Features and advantages of the liquid crystal display device and the method for manufacturing the surface-fixed energy control according to the present invention and the manufacturing apparatus therefor will be apparent from the detailed description of each embodiment below.
도 3은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 단면 구성도이다.3 is a cross-sectional view of a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
그리고 도 4와 도 5는 UV 필터의 사용 유무에 따른 반응 상태를 나타낸 구성도이고, 도 6은 본 발명에 따른 액정표시장치의 UV 선택적 조사를 이용한 제조 과정을 나타낸 구성도이다.4 and 5 are configuration diagrams showing the reaction state according to the use of the UV filter, Figure 6 is a configuration diagram showing the manufacturing process using the UV selective irradiation of the liquid crystal display according to the present invention.
본 발명은 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있도록 한 것으로, 광배향제 및 RM+광개시제가 갖는 UV 반응파장의 범위가 겹치지 않는 것을 이용하여 각 재료에 반응하는 UV를 조사하여 광배향 및 고분자형성을 수행하는 것이다.The present invention is to mix the photo alignment agent (RM) and reactive methogen (RM) to induce the polymerization reaction of the orientation and RM only by UV wavelength to control the surface fixation energy, UV reaction of the photo-alignment agent and RM + photoinitiator It is to perform photo-alignment and polymer formation by irradiating UV reacting to each material by using the overlapping wavelength range.
본 발명은 다른 UV의 파장 대역을 이용하여 한 픽셀에서 광배향 및 RM의 고분자네트워크를 동시에 형성시킬 수 있도록 한 것이다.The present invention enables the simultaneous formation of a photonic alignment and a polymer network of RMs in one pixel using wavelength bands of different UVs.
이하의 설명에서 액정표시장치를 패턴 전극을 갖는 형태를 일 예로 설명하였으나, 본 발명에 따른 광배향제와 RM 혼합물을 이용한 표면 고정 에너지 개선 구조 및 방법은 어느 하나의 특정 액정 모드로 한정되지 않고 광배향제의 특성(수평광배향제, 수직광배향제)에 따라 다양한 액정 모드에 적용할 수 있음은 당연하다.In the following description, the liquid crystal display device has a form having a pattern electrode as an example, but the structure and method for improving the surface fixation energy using the photoalignment agent and the RM mixture according to the present invention are not limited to any one specific liquid crystal mode, but the photoalignment agent Naturally, it can be applied to various liquid crystal modes according to the characteristics (horizontal photoalignment agent, vertical photoalignment agent).
본 발명에 따른 액정표시장치는 도 3에서와 같이, 패턴 전극(50)을 갖는 제 1 기판(60)상에 광배향제(photo alignment)와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 1 표면고정에너지제어 혼합층(40)과, 제 2 기판(10)상에 광배향제(photo alignment)와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 2 표면고정에너지제어 혼합층(20)과, 서로 대향되는 제 1 기판(60)과 제 2 기판(10) 사이에 위치하는 액정층(30)을 포함한다.In the liquid crystal display according to the present invention, as shown in FIG. 3, a photo alignment agent, a reactive alignment agent (RM), and a photoinitiator are formed on the first substrate 60 having the pattern electrode 50. The first surface fixed energy control mixed layer 40 and the second substrate 10 in which photo-alignment is performed by UV irradiation in one wavelength band, and a polymer network is formed by UV irradiation in a second wavelength band, thereby controlling surface fixed energy. ) Is formed by mixing photo alignment agent, reactive mesogen (RM) and photoinitiator, photo alignment is achieved by UV irradiation in the first wavelength band, and polymer network is formed by UV irradiation in the second wavelength band. And a second surface fixed energy control mixed layer 20 in which surface fixed energy is controlled, and a liquid crystal layer 30 positioned between the first substrate 60 and the second substrate 10 facing each other.
본 발명은 광배향제와 RM의 UV 흡수 파장 대역이 서로 상이한 것을 이용하여 적절한 파장 대역을 분리시켜 UV 조사를 하는 것에 의해 제 1 표면고정에너지제어 혼합층(40) 및 제 2 표면고정에너지제어 혼합층(20)의 표면고정에너지를 증가시켜 응답속도를 개선할 수 있도록 한 것이다.According to the present invention, the first surface fixed energy control mixed layer 40 and the second surface fixed energy control mixed layer 20 are formed by separating the appropriate wavelength band and irradiating UV by using the photoaligning agent and the UV absorption wavelength band of the RM that are different from each other. The surface fixing energy of) is increased to improve the response speed.
본 발명의 일 실시 예에서 사용되는 광배향제의 파장 대역은 300nm이고, 광개시제는 200nm이다.The wavelength band of the photo-alignment agent used in one embodiment of the present invention is 300nm, the photoinitiator is 200nm.
따라서, 먼저 300nm의 UV exposure로 광배향을 유도하고, 200nm의 UV exposure를 통해 RM의 고분자네트워크를 형성시키는 것으로, 광배향제와 Reactive mesogen(RM)의 UV반응 파장 대역을 분리시켜, 광배향 및 고분자네트워크 형성을 한 픽셀 내에서 수행한다.Therefore, by inducing photo-alignment with UV exposure of 300nm and forming polymer network of RM through UV-exposure of 200nm, photo-alignment and polymer are separated by separating UV reaction wavelength band of photo-alignment agent and reactive mesogen (RM). Network formation is done within one pixel.
이와 같은 파장 대역은 일 예를 들은 것으로, 상기한 수치로 한정되는 것이 아니고 광배향제 및 RM + 광개시제의 UV 반응 파장 대역은 사용 재료에 따라 매우 다양하게 사용될 수 있음은 당연하다.Such a wavelength band is given as an example, and is not limited to the above numerical values, and it is natural that the UV reaction wavelength band of the photoalignment agent and the RM + photoinitiator may be used in various ways depending on the material used.
도 4와 도 5는 UV 필터의 사용 유무에 따른 반응 상태를 나타낸 구성도이다.4 and 5 are configuration diagrams showing the reaction state according to the use of the UV filter.
도 4는 UV 파장 대역의 구분없이 조사하는 경우를 나타낸 것으로, UV 광에 의해 광배향제 및 Reactive mesogen(RM)+광개시제 모두에서 강한 화학적 반응이 일어나 광배향 및 고분자네트워크 형성의 최적화가 어려운 것을 알 수 있다.4 shows a case of irradiating without UV wavelength band, it can be seen that it is difficult to optimize the alignment of the photo-alignment and the formation of the polymer network due to the strong chemical reaction occurs in both the photo-alignment agent and the reactive mesogen (RM) + photoinitiator by UV light have.
이에 비하여, 본 발명의 일 실시 예에서와 같이, 특정 파장 대역의 UV를 통과 또는 차단시키는 UV 필터를 사용하는 경우에는 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 것을 알 수 있다.On the other hand, when using a UV filter that passes or blocks the UV of a specific wavelength band, as in an embodiment of the present invention, photo-alignment is achieved by UV irradiation of the first wavelength band, UV of the second wavelength band It can be seen that the polymer network is formed by irradiation to control the surface fixation energy.
이와 같은 UV 파장 대역을 구분하여 조사하여 광배향과 고분자네트워크 형성을 진행하는 것을 재료의 물성 및 UV 파장 범위를 기준으로 설명하면 다음과 같다.When the UV wavelength band is classified and irradiated, the optical alignment and the formation of the polymer network are described based on the material properties and the UV wavelength range.
재료의 물성 측면에서, 제조에 사용되는 광배향제 및 RM+광개시제가 가지는 UV 반응 파장의 범위가 겹치지 않을 경우에는 각 재료의 반응하는 UV를 조사하여 광배향 및 고분자네트워크 형성을 수행하는 것이 가능하다.In terms of the physical properties of the material, when the range of UV reaction wavelengths of the photo-alignment agent and RM + photoinitiator used for manufacturing do not overlap, it is possible to perform photo-alignment and polymer network formation by irradiating the reacting UV of each material.
본 발명의 일 실시 예에서는 높은 파장대역의 UV를 조사하는 광배향제와 다소 낮은 파장대역의 UV를 조사하는 RM+광개시제로 되어있지만, 두 재료의 파장대역을 서로 바꿔서 수행하는 것도 가능하다.In one embodiment of the present invention, although the photo-alignment agent for irradiating UV of a high wavelength band and the RM + photoinitiator for irradiating UV of a somewhat lower wavelength band, the wavelength bands of the two materials may be interchanged.
여기서, RM의 경우에는 스스로 UV에 의해 반응하는 것이 아니라 광개시제의 도움을 얻어서 고분자 네트워크를 형성하므로 반응파장을 고려할 때, 광개시제의 UV 파장 대역을 고려하여 UV 파장 대역을 선택하여 조사한다.Here, in the case of RM, the polymer network is formed by the help of the photoinitiator instead of reacting with the UV itself. Therefore, when considering the reaction wavelength, the UV wavelength band is selected in consideration of the UV wavelength band of the photoinitiator.
UV 파장의 범위 측면에서는 UV 파장은 넓은 범위로(250nm ~ 450nm) 분포되어 있으므로 특정 파장 대역만을 가지는 UV light을 선택하여 재료의 반응파장 대역이 겹치더라도 광배향 및 고분자형성 수행 가능하다.In terms of the UV wavelength range, since the UV wavelength is distributed in a wide range (250 nm to 450 nm), it is possible to select the UV light having a specific wavelength band and perform photo-alignment and polymer formation even when the reaction wavelength bands of the materials overlap.
예를 들어, 좁은 파장 대역을 가지는 각기 다른 2개의 UV광원을 이용하여 UV 파장 대역을 구분하여 조사하여 광배향과 고분자네트워크 형성을 진행하거나, 넓은 파장 대역의 UV 광원일 경우, UV 파장 분리를 위해 필터를 이용하여 광배향과 고분자네트워크 형성을 진행할 수 있다.For example, two different UV light sources with narrow wavelength bands are used to separate and irradiate the UV wavelength bands so that photo-alignment and formation of a polymer network can be carried out, or in the case of a UV light source with a broad wavelength band, Optical alignment and polymer network formation can be performed using a filter.
여기서, UV 파장 분리를 위한 필터의 사용은 일 예를 들은 것으로 필터 사용으로 제한되지 않는다.Here, the use of the filter for UV wavelength separation is one example and is not limited to the use of the filter.
필터의 사용뿐만 아니라, 다른 형태 및 방법을 사용하여 UV 파장 분리를 할 수 있음은 당연하다.As well as the use of filters, other forms and methods can be used to achieve UV wavelength separation.
도 6은 본 발명에 따른 액정표시장치의 UV 선택적 조사를 이용한 제조 과정을 나타낸 구성도이다.6 is a block diagram illustrating a manufacturing process using UV selective irradiation of the liquid crystal display according to the present invention.
UV 선택적 조사를 이용한 제조를 위하여, 기판상에 광배향제 및 RM+광개시제가 혼합된 물질층을 스핀 코팅하고, 180℃의 온도에서 1시간 30분 동안 베이킹 공정을 진행한다.For manufacturing using UV selective irradiation, spin coating the material layer mixed with the photo-alignment agent and the RM + photoinitiator on the substrate, and the baking process for 1 hour 30 minutes at a temperature of 180 ℃.
그리고 하부 기판상에 형성된 혼합 물질층상에 UV 선편광을 위한 Linear UV polarizer 및 Long Pass 필터를 위치시키고 365nm의 UV를 조사하여 광배향을 한다.Then, the linear UV polarizer and the long pass filter for UV linearly polarized light are placed on the mixed material layer formed on the lower substrate, and photo-alignment is performed by irradiating UV of 365nm.
이어, 하부 기판과 상부 기판을 서로 대향되도록 합착하고, 액정을 주입한 후 254nm의 UV를 조사하여 표면고정에너지를 증가시킨다.Subsequently, the lower substrate and the upper substrate are bonded to each other, and after the liquid crystal is injected, UV of 254 nm is irradiated to increase surface fixation energy.
이와 같은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조 공정은 다음과 같다.The manufacturing process of the liquid crystal display device capable of controlling the surface fixed energy according to the present invention is as follows.
도 7은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 제조 공정 순서도이고, 도 8은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 제조 공정 단면도이다.7 is a flowchart illustrating a process for manufacturing a surface fixed energy control device according to the present invention, and FIG. 8 is a cross-sectional view illustrating a process for manufacturing a surface fixed energy control device according to the present invention.
이하의 설명에서 액정표시장치를 화소 전극 라인과 공통 전극 라인을 갖는 형태를 일 예로 설명하였으나, 본 발명에 따른 광배향제와 RM 혼합물을 이용한 표면 고정 에너지 개선 구조 및 방법은 어느 하나의 특정 액정 모드로 한정되지 않고 광배향제의 특성(수평광배향제, 수직광배향제)에 따라 다양한 액정 모드에 적용할 수 있음은 당연하다.In the following description, a liquid crystal display device having a pixel electrode line and a common electrode line has been described as an example. Naturally, the present invention can be applied to various liquid crystal modes depending on the characteristics of the photoalignment agent (horizontal photoalignment agent and vertical photoalignment agent).
화소 전극 라인과 공통 전극 라인을 갖는 하부 기판 및 상부 기판을 준비하고(S601), 광배향제+Reactive Meogen(RM)+광개시제(95.7:0.05:4.2wt%) 혼합물을 제조한다.(S602)A lower substrate and an upper substrate having a pixel electrode line and a common electrode line are prepared (S601), and a mixture of photo-alignment agent + Reactive Meogen (RM) + photoinitiator (95.7: 0.05: 4.2 wt%) is prepared (S602).
이어, 준비된 혼합물을 기판위에 Coating 한 후, 100℃의 온도에서 2분 동안 소프트 베이킹(Soft baking)을 실시한다.(S603)Subsequently, the prepared mixture is coated on a substrate and then soft baked for 2 minutes at a temperature of 100 ° C. (S603)
그리고 180℃의 온도에서 1시간 동안 하드 베이킹(Hard baking)을 실시하여 광 폴리이미드층(Polyimidization 형성)을 형성한다.(S604)And hard baking (Hard baking) for 1 hour at a temperature of 180 ℃ to form an optical polyimide layer (polyimidization formation) (S604).
이어, 광배향을 위한 선 편광 된 UV를 조사한다.(S605)Subsequently, the linearly polarized UV for photoalignment is irradiated. (S605)
여기서, 조사되는 UV 광은 광배향제만 반응하는 제 1 파장 대역의 UV를 조사한다.Here, the irradiated UV light irradiates UV of the first wavelength band in which only the photoalignment agent reacts.
이와 같이 파장 대역을 구분하여 UV를 조사하는 과정은 상기한 필터를 사용하거나, 재료의 물성에 따라 선택된 파장 대역의 UV를 선택적으로 사용할 수 있다.As described above, the process of irradiating UV by dividing the wavelength band may use the above-described filter or selectively use UV of the selected wavelength band according to the material properties.
그리고 배향된 2장의 기판을 합착하고, 액정을 주입하고(S606), 주입된 액정의 오더링(ordering)을 높이기 위해, 100℃의 온도에서 5분 동안 어닐링(Annealing) 과정을 수행한다.(S607)In order to bond the two oriented substrates, inject the liquid crystal (S606), and to increase the ordering of the injected liquid crystal, an annealing process is performed at a temperature of 100 ° C. for 5 minutes (S607).
이어, 고분자네트워크 형성을 위하여 RM+광개시제가 반응하는 파장 대역의 UV를 조사한다.(S608)Subsequently, UV of the wavelength band where the RM + photoinitiator reacts is formed to form a polymer network.
이와 같은 액정표시장치 제조 공정에서의 조사되는 UV 파장 대역 및 베이킹 온도, 어닐링 온도 및 시간은 일 예를 나타낸 것으로, 사용되는 재료의 물성 및 패턴 설계 형태에 따라 다르게 진행될 수 있음은 당연하다.The UV wavelength band, baking temperature, annealing temperature, and time to be irradiated in the liquid crystal display manufacturing process as described above are examples, and may be differently performed depending on the physical properties of the materials used and the pattern design form.
이와 같은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조를 위한 제조 장치에 관하여 설명하면 다음과 같다.The manufacturing apparatus for manufacturing the liquid crystal display device capable of controlling the surface fixed energy according to the present invention will be described as follows.
도 9는 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치의 제조 장치의 구성도이다.9 is a configuration diagram of an apparatus for manufacturing a liquid crystal display device capable of controlling surface fixed energy according to the present invention.
본 발명에 따른 액정표시장치의 제조 장치는 UV 파장 대역을 구분하여 조사하여 광배향과 고분자네트워크 형성을 진행하기 위하여, 서로 다른 파장 대역의 UV를 조사하기 위하여 광배향 UV 조사부 및 고분자 네트워크 형성 UV 조사부를 구비한다.The apparatus for manufacturing a liquid crystal display device according to the present invention is a photo-alignment UV irradiation unit and a polymer network formation UV irradiation unit in order to irradiate UV in different wavelength bands in order to proceed with the photo-alignment and polymer network formation by irradiating UV wavelength bands separately It is provided.
그 구성은 광배향제+Reactive Meogen(RM)+광개시제(95.7:0.05:4.2wt%) 혼합물을 제조하기 위한 혼합 처리부(80)와, 준비된 혼합물을 기판위에 코팅 한 후, 100℃의 온도에서 2분 동안 소프트 베이킹(Soft baking)을 실시하고, 180℃의 온도에서 1시간 동안 하드 베이킹(Hard baking)을 실시하는 베이킹 처리부(81)와, 광배향제만 반응하는 제 1 파장 대역의 선 편광 된 UV를 조사하는 광배향 UV 조사부(82)와, 배향된 2장의 기판을 합착하고, 액정을 주입하고, 주입된 액정의 오더링(ordering)을 높이기 위해, 100℃의 온도에서 5분 동안 어닐링(Annealing) 하는 액정 주입 및 어닐링부(83)와, 고분자네트워크 형성을 위하여 RM+광개시제가 반응하는 제 2 파장 대역의 UV를 조사하는 고분자 네트워크 형성 UV 조사부(84)를 포함한다.Its composition consists of a mixing treatment unit 80 for preparing a mixture of photo-alignment agent + reactive meogen (RM) + photoinitiator (95.7: 0.05: 4.2wt%) and the prepared mixture on a substrate, followed by 2 minutes at a temperature of 100 ° C. Soft baking, and the baking treatment unit 81 for hard baking (Hard baking) for 1 hour at a temperature of 180 ℃, and the linearly polarized UV of the first wavelength band to react only the photo-alignment agent In order to bond the photo-alignment UV irradiation unit 82 to be irradiated with the two oriented substrates, inject the liquid crystal, and increase the ordering of the injected liquid crystal, annealing is performed at a temperature of 100 ° C. for 5 minutes. The liquid crystal injection and annealing unit 83 and the polymer network forming UV irradiation unit 84 for irradiating the UV of the second wavelength band to which the RM + photoinitiator reacts to form the polymer network.
여기서, 광배향 UV 조사부(82) 및 고분자 네트워크 형성 UV 조사부(84)는 분리 구성하는 것을 일 예로 설명하였으나, 필터를 사용하여 파장 대역을 구분하는 경우에는 일체로 구성할 수도 있다.Here, the photo-alignment UV irradiation unit 82 and the polymer network forming UV irradiation unit 84 has been described as an example of the separation configuration, but may be configured integrally when the wavelength band is separated using a filter.
이와 같은 구성 및 제조 공정을 이용하여 제조된 본 발명에 따른 액정표시장치의 표면고정에너지 제어 및 증가 특성은 다음과 같다.Surface fixed energy control and increase characteristics of the liquid crystal display according to the present invention manufactured using such a configuration and manufacturing process are as follows.
표면고정에너지 제어 및 증가 특성을 알기 위하여 표면 고정에너지를 계산하기 위하여 액정의 꼬임(twist)각을 측정하여 결과를 도출한다.In order to calculate the surface fixed energy control and increase characteristics, the twist angle of the liquid crystal is measured to calculate the surface fixed energy.
액정이 꼬이는 힘을 강하게 하기 위해서 일반적으로 액정 내 카이럴 도팬트(Chiral dopant)물질을 혼합하는데, 카이럴 도팬트 혼합 시 액정의 꼬임각을 셀갭(d)/피치(p)로 설명할 수 있으며, 예를 들어, d/p=1인 경우 해당 셀 갭에서의 꼬임각은 360°이다.In order to strengthen the twisting force of the liquid crystal, chiral dopant materials are generally mixed in the liquid crystal. The twist angle of the liquid crystal when the chiral dopant is mixed can be described as a cell gap (d) / pitch (p). For example, when d / p = 1, the twist angle in the cell gap is 360 °.
본 발명에서의 측정에서는 셀갭(d)=3.2, 피치(p)=24인 d/p가 0.13 상태에서 측정하였으며, 이때 꼬임각은 48°이다.In the measurement in the present invention, d / p having a cell gap (d) = 3.2 and a pitch (p) = 24 was measured in a 0.13 state, and the twist angle was 48 °.
제작된 셀의 상하판 액정 배향각을 30°로 적용하였음으로, Chiral dopant에 의해 48°까지 돌아가려는 힘을 가진 액정들이 셀 내 표면 고정에너지가 높아지면 꼬이려는 힘이 억제되어, 30°부근으로 액정꼬임 상태가 유지될 수 있다.By applying the top and bottom liquid crystal alignment angles of the fabricated cells at 30 °, the liquid crystals with the force to turn up to 48 ° by the Chiral dopant are suppressed when the surface fixation energy in the cell increases, The liquid crystal twist state can be maintained.
즉, 액정분자들의 정렬방향이 30°를 기준으로 얼마나 트위스트 각이 형성 되었는지를 파악하여 표면 고정에너지를 계산할 수 있다.That is, the surface fixation energy may be calculated by determining how much the twist angle is formed based on the 30 ° alignment direction of the liquid crystal molecules.
표면 고정에너지를 계산은 수학식 1에서와 같다.The surface fixation energy is calculated as in Equation 1.
수학식 1
Figure PCTKR2014005112-appb-M000001
Equation 1
Figure PCTKR2014005112-appb-M000001
여기서,
Figure PCTKR2014005112-appb-I000005
: 실제 꼬인 각 (=측정 된 Twist angle),
Figure PCTKR2014005112-appb-I000006
: 액정정렬 각 (=초기 배향각, 30°),
Figure PCTKR2014005112-appb-I000007
: 액정의 비틀림 상수(사용된 액정의 고유물성, 6 * 10-12)이다.
here,
Figure PCTKR2014005112-appb-I000005
: Actual twist angle (= measured Twist angle),
Figure PCTKR2014005112-appb-I000006
: Liquid crystal alignment angle (= initial alignment angle, 30 °),
Figure PCTKR2014005112-appb-I000007
: Torsional constant of the liquid crystal (intrinsic physical properties of the liquid crystal used, 6 * 10 -12 ).
표 1
Rubbing method(Polyimid=PI) Photo-Alignment method (Photo-PI) Proposed Photo-alignment method (RM + Photo PI) Before UV Proposed Photo-alignment method (RM + Photo PI) After UV
Twist Angle 31.5 deg. 41 deg. 36 deg. 31.75 deg.
Anchoring energy 2.06x10-5 J/m2 1.13x10-6 J/m2 3.78x10-6 J/m2 1.79x10-5 J/m2
Table 1
Rubbing method (Polyimid = PI) Photo-Alignment method (Photo-PI) Proposed Photo-alignment method (RM + Photo PI) Before UV Proposed Photo-alignment method (RM + Photo PI) After UV
Twist angle 31.5 deg. 41 deg. 36 deg. 31.75 deg.
Anchoring energy 2.06x10 -5 J / m 2 1.13x10 -6 J / m 2 3.78 x 10 -6 J / m 2 1.79 x 10 -5 J / m 2
표 1에서 보면, RM을 혼합한 광배향제를 이용하여 본 발명에 따른 제조 공정을 적용하는 경우에는 기존 광배향법에 비교하여 약 16배가량의 높은 표면 고정에너지를 갖도록 할 수 있음을 확인할 수 있다.From Table 1, it can be seen that when applying the manufacturing process according to the present invention using a photo-alignment agent mixed with RM can have a high surface fixation energy of about 16 times compared to the conventional photo-alignment method. .
이와 같은 본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치는 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있도록 한 것으로, 광배향제 및 RM+광개시제가 갖는 UV 반응파장의 범위가 겹치지 않는 것을 이용하여 각 재료에 반응하는 UV를 조사하여 광배향 및 고분자형성을 수행하는 것이다.Such a liquid crystal display device and a method for manufacturing the surface fixed energy control according to the present invention and a manufacturing apparatus therefor are mixed with a photo alignment agent (RM) and a reactive mesogen (RM) to perform a polymerization reaction of the alignment and RM only by UV wavelength By controlling the surface fixed energy by induction, it is to perform the photo-alignment and polymer formation by irradiating the UV reacting to each material using a range of UV reaction wavelengths of the photo-alignment agent and RM + photoinitiator do not overlap.
이상에서의 설명에서와 같이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명이 구현되어 있음을 이해할 수 있을 것이다.It will be understood that the present invention is implemented in a modified form without departing from the essential features of the present invention as described above.
그러므로 명시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the described embodiments should be considered in descriptive sense only and not for purposes of limitation, and the scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope are included in the present invention. It should be interpreted.
본 발명에 따른 표면고정에너지 제어가 가능한 액정표시장치 및 그 제조 방법 그리고 이를 위한 제조 장치는 광배향제(photo alignment)와 RM(Reactive Mesogen)을 혼합하여 UV 파장만으로 배향 및 RM의 중합반응을 유도하여 표면고정에너지를 제어할 수 있도록 한 것이다.The liquid crystal display device and method for manufacturing the surface-fixed energy control according to the present invention, and a manufacturing method therefor are mixed with a photo alignment agent (RM) and a reactive mesogen (RM) to induce a polymerization reaction of the alignment and RM by only the UV wavelength It is to control the surface fixed energy.

Claims (10)

  1. 제 1 기판상에 광배향제와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 1 표면고정에너지 제어 혼합층;A photoalignment agent, a reactive mesogen (RM), and a photoinitiator are formed on the first substrate, and photoalignment is performed by UV irradiation in a first wavelength band, and a polymer network is formed by UV irradiation in a second wavelength band. A first surface fixed energy control mixed layer in which fixed energy is controlled;
    제 2 기판상에 광배향제와 RM(Reactive Mesogen),광개시제가 혼합되어 형성되고, 제 1 파장 대역의 UV 조사에 의해 광배향이 이루어지고, 제 2 파장 대역의 UV 조사에 의해 고분자 네트워크가 형성되어 표면고정에너지가 제어되는 제 2 표면고정에너지 제어 혼합층;A photoalignment agent, a reactive mesogen (RM), and a photoinitiator are formed on the second substrate, and photoalignment is performed by UV irradiation in a first wavelength band, and a polymer network is formed by UV irradiation in a second wavelength band. A second surface fixed energy control mixed layer in which fixed energy is controlled;
    서로 대향되는 제 1 기판과 제 2 기판 사이에 위치하는 액정층;을 포함하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치.And a liquid crystal layer positioned between the first substrate and the second substrate, which face each other.
  2. 제 1 항에 있어서, 상기 제 1 파장 대역은 300nm ~ 365nm이고, 제 2 파장 대역은 200nm ~ 254nm인 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치.The liquid crystal display device according to claim 1, wherein the first wavelength band is 300 nm to 365 nm and the second wavelength band is 200 nm to 254 nm.
  3. 제 1 항에 있어서, 광배향을 위한 제 1 파장 대역의 UV 조사 및 고분자 네트워크 형성을 위한 제 2 파장 대역의 UV 조사를 250nm ~ 450nm 파장 대역의 UV를 동일하게 조사하고, 어느 하나의 파장 대역의 UV 조사 단계에서 특정 파장 대역의 UV를 통과 또는 차단시키는 필터를 사이에 적층한 상태에서 진행하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치.The method of claim 1, wherein the UV irradiation of the first wavelength band for photo-alignment and the UV irradiation of the second wavelength band for forming the polymer network are irradiated with UV in the wavelength range of 250 nm to 450 nm. A liquid crystal display capable of controlling surface fixation energy, characterized in that the UV irradiation step is carried out in a state in which a filter for passing or blocking UV of a specific wavelength band is laminated therebetween.
  4. 제 1 항에 있어서, 상기 표면 고정에너지는,The method of claim 1, wherein the surface fixing energy,
    Figure PCTKR2014005112-appb-I000008
    으로 계산되고,
    Figure PCTKR2014005112-appb-I000008
    Calculated as
    여기서, d는 셀 갭, p는 피치,
    Figure PCTKR2014005112-appb-I000009
    : 실제 꼬인 각,
    Figure PCTKR2014005112-appb-I000010
    : 액정정렬 각,
    Figure PCTKR2014005112-appb-I000011
    : 액정의 비틀림 상수인 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치.
    Where d is the cell gap, p is the pitch,
    Figure PCTKR2014005112-appb-I000009
    : Real twisted angle,
    Figure PCTKR2014005112-appb-I000010
    : Liquid crystal alignment angle,
    Figure PCTKR2014005112-appb-I000011
    : A liquid crystal display capable of surface fixed energy control, characterized by a torsional constant of liquid crystal.
  5. 하부 기판 및 상부 기판을 준비하는 단계;Preparing a lower substrate and an upper substrate;
    광배향제+RM(Reactive Meogen)+광개시제 혼합물을 제조하는 단계;Preparing a photoalignment + reactive meogen (RM) + photoinitiator mixture;
    상기 혼합물을 기판위에 코팅하고, 소프트 베이킹 및 하드 베이킹을 실시하여 광 폴리이미드층을 형성하는 단계;Coating the mixture on a substrate, and performing soft baking and hard baking to form an optical polyimide layer;
    광배향을 위한 선 편광 된 제 1 파장 대역의 UV를 조사하는 단계;Irradiating UV of the first polarized wavelength band for photoalignment;
    배향된 기판을 합착하여 액정을 주입하고 어닐링 하는 단계;Bonding the oriented substrates to inject and anneal liquid crystals;
    고분자네트워크 형성을 위하여 제 2 파장 대역의 UV를 조사하는 단계;를 포함하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법.And irradiating UV light in a second wavelength band to form a polymer network.
  6. 제 5 항에 있어서, 상기 광배향제+RM(Reactive Meogen)+광개시제 혼합물은 95.7:0.05:4.2wt%으로 제조되는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법.The method of claim 5, wherein the photo-alignment + reactive meogen (RM) + photoinitiator mixture is prepared at 95.7: 0.05: 4.2 wt%.
  7. 제 5 항에 있어서, 상기 제 1 파장 대역은 광배향제가 반응하는 300nm ~ 365nm이고, 제 2 파장 대역은 RM(Reactive Meogen)+광개시제가 반응하는 200nm ~ 254nm인 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법.6. The surface fixed energy control of claim 5, wherein the first wavelength band is 300 nm to 365 nm to which the photo-alignment agent reacts, and the second wavelength band is 200 nm to 254 nm to which the reactive meogen (RM) + photoinitiator reacts. Method of manufacturing a liquid crystal display device possible.
  8. 제 5 항에 있어서, 제 1,2 파장 대역의 UV 조사시에 어느 하나의 파장 대역의 UV 조사 단계에서 특정 파장 대역의 UV를 통과 또는 차단시키는 필터를 사이에 적층한 상태에서 진행하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법.The method according to claim 5, wherein the UV irradiation in any of the first and second wavelength bands is performed in a state in which a filter for passing or blocking UV in a specific wavelength band is laminated in the UV irradiation step of any one of the wavelength bands. Method of manufacturing a liquid crystal display device capable of controlling the surface fixed energy.
  9. 제 5 항에 있어서, 광 폴리이미드층을 형성하는 단계에서,The method of claim 5, wherein in the step of forming the photo polyimide layer,
    소프트 베이킹은 100℃의 온도에서 2분 동안 실시하고, 하드 베이킹은 180℃의 온도에서 1시간 동안 진행하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 방법.Soft baking is carried out for 2 minutes at a temperature of 100 ℃, hard baking is carried out for 1 hour at a temperature of 180 ℃, manufacturing method of a liquid crystal display device capable of controlling the surface fixed energy.
  10. 광배향제+RM(Reactive Meogen)+광개시제 혼합물을 제조하기 위한 혼합 처리부;Mixing treatment unit for preparing a photo-alignment agent + RM (Reactive Meogen) + photoinitiator mixture;
    상기 혼합물을 기판위에 코팅 한 후, 소프트 베이킹 및 하드 베이킹을 실시하는 베이킹 처리부;A baking treatment unit which performs soft baking and hard baking after coating the mixture on a substrate;
    광배향제만 반응하는 제 1 파장 대역의 선 편광 된 UV를 조사하는 광배향 UV 조사부;Photo-alignment UV irradiation unit for irradiating the linearly polarized UV of the first wavelength band to react only the photo-alignment agent;
    배향된 기판을 합착하여 액정을 주입하고, 주입된 액정의 오더링(ordering)을 높이기 위해 어닐링(Annealing) 하는 액정 주입 및 어닐링부;A liquid crystal injection and annealing unit for injecting liquid crystals by bonding the oriented substrates and annealing to increase the ordering of the injected liquid crystals;
    고분자네트워크 형성을 위하여 RM+광개시제가 반응하는 제 2 파장 대역의 UV를 조사하는 고분자 네트워크 형성 UV 조사부;를 포함하는 것을 특징으로 하는 표면고정에너지 제어가 가능한 액정표시장치의 제조 장치.And a polymer network forming UV irradiation unit for irradiating UV in a second wavelength band in which the RM + photoinitiator reacts to form a polymer network.
PCT/KR2014/005112 2014-05-14 2014-06-11 Surface anchoring energy controllable liquid crystal display device, manufacturing method therefor and manufacturing device thereof WO2015174573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0057869 2014-05-14
KR1020140057869A KR101666550B1 (en) 2014-05-14 2014-05-14 with controllable surface anchoring energy and Method for fabricating and Manufacturing device for

Publications (1)

Publication Number Publication Date
WO2015174573A1 true WO2015174573A1 (en) 2015-11-19

Family

ID=54480101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005112 WO2015174573A1 (en) 2014-05-14 2014-06-11 Surface anchoring energy controllable liquid crystal display device, manufacturing method therefor and manufacturing device thereof

Country Status (2)

Country Link
KR (1) KR101666550B1 (en)
WO (1) WO2015174573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220267A (en) * 2022-08-01 2022-10-21 南京大学 Liquid crystal injection porous smooth surface construction method and microfluidic application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136029A (en) 2016-05-30 2017-12-11 삼성디스플레이 주식회사 Liquid crystal display and manufacturing method thereof
KR102590072B1 (en) * 2016-07-29 2023-10-16 롤릭 테크놀로지스 아게 Method for creating alignment on top of liquid crystal polymer material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100084823A (en) * 2009-01-19 2010-07-28 삼성전자주식회사 Liquid crystal display device, method of manufacturing the same and alignment layer composition
US20110178200A1 (en) * 2008-01-11 2011-07-21 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive mesogenic compounds and mixtures
KR20140024222A (en) * 2012-08-20 2014-02-28 주식회사 엘지화학 Liquid crystal alignment layer and liquid crystal cell comprising the same
KR20140027888A (en) * 2012-08-27 2014-03-07 주식회사 엘지화학 Photo-alignment copolymer, optical anistropic film and its preparation method
KR101372932B1 (en) * 2013-04-30 2014-03-12 한국생산기술연구원 PHOTO-ALIGNMENT APPARATUS USING PULSE ?c?

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414983B2 (en) 2006-09-02 2013-04-09 MERCK Patent Gesellschaft mit beschränkter Haftung Particle beam process for the alignment of reactive mesogens
KR101337319B1 (en) * 2006-10-04 2013-12-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR20090007518A (en) * 2007-07-14 2009-01-19 엘지디스플레이 주식회사 Measuring method of azimuthal anchoring energy for lcd
KR101480996B1 (en) 2012-04-24 2015-01-14 한국생산기술연구원 Chalcone light alignment material comprising imide group

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178200A1 (en) * 2008-01-11 2011-07-21 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive mesogenic compounds and mixtures
KR20100084823A (en) * 2009-01-19 2010-07-28 삼성전자주식회사 Liquid crystal display device, method of manufacturing the same and alignment layer composition
KR20140024222A (en) * 2012-08-20 2014-02-28 주식회사 엘지화학 Liquid crystal alignment layer and liquid crystal cell comprising the same
KR20140027888A (en) * 2012-08-27 2014-03-07 주식회사 엘지화학 Photo-alignment copolymer, optical anistropic film and its preparation method
KR101372932B1 (en) * 2013-04-30 2014-03-12 한국생산기술연구원 PHOTO-ALIGNMENT APPARATUS USING PULSE ?c?

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220267A (en) * 2022-08-01 2022-10-21 南京大学 Liquid crystal injection porous smooth surface construction method and microfluidic application thereof
CN115220267B (en) * 2022-08-01 2023-07-25 南京大学 Construction method of liquid crystal injection porous smooth surface and microfluidic application thereof

Also Published As

Publication number Publication date
KR20150130801A (en) 2015-11-24
KR101666550B1 (en) 2016-10-14

Similar Documents

Publication Publication Date Title
JP5894567B2 (en) Manufacturing method of liquid crystal display device
JP4052307B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5529426B2 (en) Liquid crystal aligning agent and method for producing liquid crystal aligning film formed therefrom
JP5874590B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, polymer and compound
WO2015174573A1 (en) Surface anchoring energy controllable liquid crystal display device, manufacturing method therefor and manufacturing device thereof
CN101812304A (en) Liquid crystal aligning agent, liquid crystal display device and manufacture method thereof
CN1716052B (en) Liquid crystal orientation agent for ink jet coating
WO2013174029A1 (en) Liquid crystal panel and liquid crystal alignment method therefor
KR102250570B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
WO2013115628A1 (en) Liquid crystal composition
JP2014098887A (en) Liquid crystal alignment agent
WO2012144874A2 (en) Liquid crystal composition
WO2018021837A1 (en) Transmittance-variable film, method for manufacturing same, and use thereof
JP2013101206A (en) Liquid crystal display device
JP2015106156A (en) Liquid crystal aligning agent, liquid crystal orientation membrane, and liquid crystal display
KR20140123424A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element and method of manufacturing the same
CN104099106B (en) Liquid Crystal Aligning Agent And Forming Method Thereof, Liquid Crystal Alignment Film And Forming Method Thereof, Phase Difference Film And Manufacturing Method Thereof, And Liquid Crystal Display Device And Manufacturing Method Thereof
WO2013085315A1 (en) Liquid crystal cell
CN102533281B (en) Liquid crystal aligning agent, liquid crystal alignment film, method for forming the liquid crystal alignment film, and liquid crystal display device
WO2017121015A1 (en) Liquid crystal display panel structure and method for manufacturing same
WO2015190711A1 (en) Liquid crystal alignment layer, liquid crystal display element using same, and method for manufacturing same
JPH11249142A (en) Liquid crystal display device
CN113512194A (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal element
WO2018080089A1 (en) Variable transmittance film
CN105385456B (en) Liquid crystal aligning agent, liquid crystal alignment film and method for producing same, liquid crystal display element, and retardation film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891774

Country of ref document: EP

Kind code of ref document: A1