WO2015174486A1 - Electricity-generating device - Google Patents

Electricity-generating device Download PDF

Info

Publication number
WO2015174486A1
WO2015174486A1 PCT/JP2015/063878 JP2015063878W WO2015174486A1 WO 2015174486 A1 WO2015174486 A1 WO 2015174486A1 JP 2015063878 W JP2015063878 W JP 2015063878W WO 2015174486 A1 WO2015174486 A1 WO 2015174486A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
electret
power generation
generation device
configuration
Prior art date
Application number
PCT/JP2015/063878
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 吉川
誠司 青柳
高橋 智一
昌人 鈴木
Original Assignee
ローム株式会社
学校法人 関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社, 学校法人 関西大学 filed Critical ローム株式会社
Publication of WO2015174486A1 publication Critical patent/WO2015174486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present invention is manufactured using a power generation device that performs power generation (energy conversion from kinetic energy (vibration energy) to electric energy) by changing the distance between a dielectric and an electret, particularly using MEMS [Micro Electromechanical System] technology.
  • the present invention relates to a vibration drive type capacitive power generator.
  • FIG. 46 is a schematic diagram showing a conventional example of a vibration power generator.
  • reference numeral 201 indicates an upper substrate
  • reference numeral 202 indicates a lower substrate
  • reference numeral 203 indicates an electret
  • reference numeral 204 indicates a counter electrode
  • reference numeral 205 indicates a base electrode
  • reference numeral 206 indicates a spring.
  • the upper substrate 201 is a movable body that is elastically supported so as to be displaceable in a biaxial plane direction (X direction, Y direction) with respect to the lower substrate 202.
  • the principle of operation of the vibration power generation apparatus having the above-described configuration is that the overlapping area of the electret 203 and the counter electrode 204 is changed by vibration in the biaxial plane direction (X direction, Y direction) while maintaining a predetermined gap distance.
  • a change in charge induced in the counter electrode 204 is extracted as a current (so-called electrostatic induction method).
  • Patent Document 1 and Non-Patent Documents 1 and 2 can be cited.
  • the above-described conventional vibration power generation apparatus has a ⁇ W order even if the generated power is large, and its application is limited.
  • the above-described conventional vibration power generation apparatus has a structure in which the electret 203 and the counter electrode 204 face each other, if the gap distance between the electret 203 and the counter electrode 204 is designed too small, the electret 203 and the counter electrode There is a possibility that electrostatic attraction works between the contact 204 and the two, or the injected charge of the electret 203 is discharged. For this reason, the gap distance between the electret 203 and the counter electrode 204 must be designed to be large to some extent. However, in order to increase the capacitance change due to vibration while increasing the gap distance, the electret 203 and the counter electrode 204 are also increased. As a result, a vicious circle has arisen in which the gap distance must be further increased. Due to such a vicious circle, it has been difficult for the above-described conventional vibration power generation apparatus to achieve miniaturization and narrowing of the apparatus while increasing the generated power.
  • an object of the present invention is to provide a small-sized and large-output power generator.
  • a power generation device has a dielectric serving as a movable mass and an electret that retains electric charge, and generates power by changing a distance between the dielectric and the electret.
  • the power generation apparatus is configured to further include an electret support member that elastically supports the electret (first configuration).
  • the electret support member may be configured to include a repulsion member having a predetermined restitution coefficient (second configuration).
  • the restitution coefficient may be 0.3 or more (third configuration).
  • the repulsion member may be formed of a gel or a high repulsion material having a higher restitution coefficient (fourth configuration).
  • the power generation device having any one of the first to fourth configurations may have a configuration (fifth configuration) further including magnets that repel each other so as to separate the dielectric and the electret.
  • the magnet may have a configuration (sixth configuration) in which the surface thereof is flush with the surfaces of the dielectric and the electret. .
  • the electret support member may be configured to include a spring member having a predetermined spring constant (seventh configuration).
  • the spring constant may be set to 0.5 to 50 N / mm (eighth configuration).
  • the power generation device having any one of the first to eighth configurations may further include a mass support member (9th configuration) that elastically supports the movable mass.
  • the power generation device having any one of the first to ninth configurations may have a configuration (tenth configuration) further including a package for storing the dielectric and the electret.
  • the vibration of the Z-axis component of the vibrator is picked up to generate electric power, fine patterning of the electret and the electrode is not required, and even when the dielectric and the electret come into contact, no discharge occurs. There is no need to avoid contact. Therefore, it becomes possible to provide a power generation device with a small size and a high output, which in turn can free the user from the annoyance of worrying about battery life.
  • Schematic diagram showing a first configuration example of the power generation device Equivalent circuit diagram of power generator Schematic diagram of measurement system Explanation of corona discharge device Table showing the relationship between variable resistance, output voltage and generated power Graph showing the relationship between variable resistance and output voltage Graph showing the relationship between variable resistance and generated power Oscilloscope waveform diagram at maximum power output Simulation waveform of output voltage Vm with respect to gap distance G
  • Comparison of power generation by electrical connection on the back side of dielectric Schematic diagram showing a second configuration example of the power generation device Schematic diagram showing a third configuration example of the power generation device Schematic diagram showing a first packaging example of a power generation device Schematic diagram showing a second packaging example of the power generation device Schematic diagram showing a third packaging example of the power generation device Schematic diagram showing a fourth packaging example of the power generation device Schematic diagram showing a fifth packaging example of the power generation device Schematic diagram showing a sixth packaging example of the power generation device Schematic diagram showing a seventh packaging example of the power generation device Schematic diagram showing an eighth packaging example of the power generation device
  • FIG. 1 is a schematic diagram (a cross-sectional view seen from the lateral direction) illustrating a first configuration example of the power generation device.
  • the power generation device 10 of the first configuration example includes a dielectric 11, an electret 12, a lower electrode 13, a resistor 14, an upper electrode 15, a substrate 16, and a gap layer 17.
  • the 1st state state in which the dielectric material 11 and the electret 12 were spaced apart
  • the 2nd state the electric generator 10 is shown in the lower stage of FIG. A state in which the dielectric 11 and the electret 12 are close to each other is depicted.
  • the upper end side of the paper surface is defined as the vertical upward direction, and the description is made on the assumption that the dielectric 11 vibrates in the vertical direction (vertical direction).
  • the vibration direction of 11 is not limited to this.
  • the dielectric 11 is a movable body whose relative position with respect to the electret 12 is changed by vibration applied to the power generation apparatus 10.
  • the lower surface of the dielectric 11 is opposed to the upper surface of the electret 12 with the gap layer 17 in between.
  • the dielectric 11 lead zirconate titanate (PZT), barium titanate (BTO), or the like can be used. This will be described later.
  • the dielectric 11 may be formed in a plate shape or a film shape.
  • the substrate itself may be formed of a dielectric, a dielectric film may be formed on the substrate by a thin film printing technique, or a plate-like dielectric formed in a separate process may be used. You may affix on a board
  • the electret 12 is a member that holds a charge semipermanently.
  • an organic electret in which a charge is held in a polymer compound such as Cytop [registered trademark] may be used, or a substrate such as silicon oxide (SiO 2 ) or silicon nitride (SiN) may be used.
  • the electret 12 is formed so as to cover the entire surface of the lower electrode 13. In this way, by adopting a configuration in which the lower electrode 13 is not exposed, it is possible to prevent the outflow of electric charge to the exposed lower electrode 13 when injecting electric charge to the electret 12, thereby increasing the efficiency of charge injection to the electret 12. It becomes possible.
  • the lower electrode 13 corresponds to a first electrode connected to the lower surface side of the electret 12 (the side not facing the dielectric 11).
  • the lower electrode 13 is connected to the ground terminal via the resistor 14.
  • the resistor 14 is a load for taking out a current flowing between the lower electrode 13 and the ground terminal as a voltage due to the vibration of the power generation device 10.
  • the upper electrode 15 corresponds to a second electrode connected to the upper surface of the dielectric 11 (the side not facing the electret 12).
  • the upper electrode 15 is directly connected to the ground terminal.
  • an aluminum electrode or the like can be used as the upper electrode 15, an aluminum electrode or the like can be used as the upper electrode 15, an aluminum electrode or the like can be used.
  • the substrate 16 is a plate-like member for supporting the electret 12 and the lower electrode 13.
  • a quartz substrate, a silicon wafer with an oxide film, or the like can be used as the substrate 16.
  • the gap layer 17 is a space sandwiched between the dielectric 11 and the electret 12.
  • the thickness of the air gap layer 17 (gap distance separating the dielectric 11 and the electret 12) varies depending on the displacement of the dielectric 11 due to vibration.
  • the gap layer 17 may be in a low vacuum state (a state that is not a high vacuum state or an ultra-high vacuum state), or air, an inert gas (such as N 2 ), or a gas that has a discharge preventing effect (for example, a main vacuum layer).
  • a gas containing SF 6 as a component may be filled.
  • the gap layer 17 When the gap layer 17 is in a low vacuum state, a deaeration process may be used, or a phenomenon in which gas is released from the gap layer 17 during some high-temperature treatment and naturally becomes a low vacuum state may be used. The reason why it is preferable not to place the gap layer 17 in a high vacuum state or an ultrahigh vacuum state is to avoid discharge of the electret 12.
  • “low vacuum state” means a state of atmospheric pressure to 10 ⁇ 1 Pa
  • high vacuum state means a state of 10 ⁇ 1 to 10 ⁇ 5 Pa
  • “Vacuum state” refers to a state of 10 ⁇ 5 or less.
  • the void layer 17 contains moisture, water molecules adhere to the surface of the electret 12 and the charge is easily released. Therefore, the moisture contained in the void layer 17 is sufficiently removed to reduce the humidity. It is desirable to keep it.
  • the power generation device 10 of the first configuration example includes at least a pair of dielectrics 11 and electrets 12, and is configured to generate power by changing the gap distance between the dielectrics 11 and the electrets 12. Yes.
  • the principle of power generation will be described.
  • the negative fixed charge held by the electret 12 in FIG. 1, white square marks.
  • the positive charge in the metal has a property as a positive charge due to a potential difference from the free electrons existing in the periphery as a result of the elimination of the free electrons from a certain position in the lower electrode 13 (metal).
  • negative polarization charges (depicted as symbols with a black circle plus a minus sign) are localized on the upper surface of the dielectric 11 due to internal polarization of the dielectric 11. Turn into. Therefore, on the upper surface of the upper electrode 15 (interface with the dielectric 11), a positive charge in the metal is induced by being attracted by the negative polarization charge described above. However, since the positive charge in the metal in the upper electrode 15 is supplied from the ground end, the potential of the upper electrode 15 remains 0V.
  • the second state of the power generation apparatus 10 is a state in which the electrostatic potential energy is lower than that in the first state (a stable state in which the distance between the positive charge and the negative charge is closer than in the first state). Therefore, if kinetic energy (vibration) is applied from the outside to cause the power generation device 10 to transition between the first state and the second state, the kinetic energy can be converted into electric energy.
  • the power generator 10 of the first configuration example is configured such that the upper electrode 15 is provided on the upper surface of the dielectric 11, and the upper electrode 15 is connected to the ground terminal.
  • FIG. 2 is an equivalent circuit diagram of the power generation apparatus 10.
  • symbol C1 has shown the electrostatic capacitance (fixed value) of the electret 12
  • symbol C2 has shown the electrostatic capacitance (fixed value) of the dielectric material 11
  • symbol C3 has shown the electrostatic capacitance (capacitance of the space
  • the symbol R indicates the resistance value (fixed value) of the resistor 14.
  • the electret 12 serving as a power source should be called a “constant charge source” that holds a constant charge Q.
  • the charge Q and the electrostatic capacitance C1 of the electret 12 are fixed values, and the series composite capacitance C4 of the dielectric 11 and the void layer 17 is the thickness of the void layer 17 (and thus the void layer 17 It is a variable value that changes according to the capacitance C3). Accordingly, when the series composite capacitance C4 changes according to the displacement of the dielectric 11 due to vibration, the ratio between the charge Q1 and the charge Q2 changes. In the power generation apparatus 10, the charge redistribution accompanying the change in capacity is taken out as a current.
  • a current i flowing in the circuit at a certain time t is given as a time derivative of the charge Q1.
  • f ′ a time derivative of a function f
  • the current i is expressed by the following equation (4) based on the above equation (3).
  • the series composite capacitance C4 of the gap layer 17 is expressed by the following equation (5) using the capacitance C2 of the dielectric 11 and the capacitance C3 of the gap layer 17.
  • C4 (C2 ⁇ 1 + C3 ⁇ 1 ) ⁇ 1 (5)
  • the capacitance C3 of the gap layer 17 also changes at the same time.
  • the gap distance between the dielectric 11 and the electret 12 in the initial state is X0
  • the dielectric 11 is oscillating simply at an amplitude A and an angular velocity ⁇
  • the differential C3 ′ is expressed by the following equations (7) and (8).
  • formula is a dielectric constant (8.85 * 10 ⁇ -12 > F / m) of a vacuum.
  • C3 ⁇ 0 ⁇ ⁇ r ⁇ S ⁇ ⁇ X0 + A ⁇ sin ( ⁇ ⁇ t) ⁇ ⁇ 1 (7)
  • C3 ′ ⁇ ⁇ 0 ⁇ ⁇ r ⁇ S ⁇ A ⁇ ⁇ ⁇ cos ( ⁇ ⁇ t) ⁇ ⁇ X0 + A ⁇ sin ( ⁇ ⁇ t) ⁇ ⁇ 2 (8)
  • the electric power P taken out from the resistor 14 is expressed by the following equation (10) using the average value I of the current i and the resistance value R of the resistor 14.
  • FIG. 8B shows the simulation value of the output voltage waveform based on the above equation (9).
  • the output waveform based on the formulation is not a sine wave but a theoretically distorted waveform from the sine wave (details will be described later).
  • the void layer 17 existing between the dielectric 11 and the electret 12 plays a useful role here.
  • the capacitance C3 of the gap layer 17 increases, that is, as the thickness (gap distance) of the gap layer 17 decreases, the amount of polarization charge in the dielectric 11 increases, and the amount of power generation increases accordingly.
  • the power generation apparatus 10 of the first configuration example has the dielectric 11 and the electret 12 facing each other, unlike the conventional configuration in which the electret and the counter electrode face each other (see FIG. 46). Therefore, even if the dielectric 11 and the electret 12 are brought close (or contacted), the electret 12 is not basically discharged.
  • the dielectric 11 and the electret 12 when power generation is performed in accordance with the change in the gap distance separating the dielectric 11 and the electret 12, the dielectric 11 and the electret 12 until the gap distance becomes zero at the minimum. Therefore, it is possible to obtain a very large power generation amount (mW order).
  • FIG. 3 is a schematic diagram of the measurement system used in the power generation experiment.
  • the measurement system X used in this power generation experiment includes a dielectric X1, an aluminum plate X2, an electromagnetic vibrator X3, a sample X4, an aluminum plate X5, a three-axis stage X6, a base X7, A coaxial cable X8, a coaxial cable X9, a shield case X10, a coaxial cable X11, a low-pass filter X12, a coaxial cable X13, and an oscilloscope X14 are included.
  • Dielectric X1 (corresponding to dielectric 11 in FIG. 1) has an upper surface facing the lower surface of sample X4, and a lower surface connected to aluminum plate X2.
  • PZT lead zirconate titanate
  • the dielectric plate X2 is connected to the upper surface of the aluminum plate X2 (corresponding to the upper electrode 15 in FIG. 1).
  • the aluminum plate X2 is directly connected to the ground terminal of the measurement system X.
  • the electromagnetic exciter X3 applies vertical vibration (frequency: 40 Hz) to the dielectric X1 connected to the upper surface of the aluminum plate X2.
  • a quartz substrate (thickness: 1.0 mm) on the upper surface side is connected to an aluminum plate X5, and an electret on the lower surface side ( (Thickness: 5.6 ⁇ m) is opposed to the upper surface of the dielectric X1.
  • Cytop [registered trademark] is used as the electret.
  • the electret is not patterned.
  • the lower electrode covered with the electret is subjected to comb-like patterning (width: 30 ⁇ m, pitch: 60 ⁇ m).
  • the lower electrode is connected to the first end of the coaxial cable X8.
  • Aluminum plate X5 supports sample X4.
  • the 3-axis stage X6 moves the sample X4 carried on the aluminum plate X5 in the 3-axis direction.
  • the base X7 supports the 3-axis stage X6.
  • the first end of the coaxial cable X8 is connected to the lower electrode of the sample X4, and the second end is connected to the first end of the coaxial cable X9.
  • the first end of the coaxial cable X9 is connected to the second end of the coaxial cable X8, and the second end is connected to the first connector X10a of the shield case X10.
  • Shield case X10 stores load resistances Rv and R (resistor 14 in FIG. 1 corresponds to a combined series resistance of Rv and R).
  • the main body of the shield case X10 is connected to the ground terminal of the measurement system X.
  • the first connector X10a of the shield case X10 is connected to the ground terminal of the measurement system X via load resistors Rv and R.
  • the sample X4 and the load resistors Rv and R are connected not by the lead wire but by the coaxial wire.
  • a connection node of the load resistors Rv and R is connected to the second connector X10b of the shield case X10 as a measurement node of the output voltage Vm.
  • the ground line of the second connector X10b is connected to the ground terminal of the measurement system X.
  • a resistance Rv (a resistance whose voltage is not measured at both ends) connected between the first connector X10a and the second connector X10b is a variable resistance (potentiometer).
  • a resistor R connected between X10b and the ground terminal (a resistance whose voltage is measured as the output voltage Vm) is a fixed resistor (100 k ⁇ ).
  • the coaxial cable X11 connects between the second connector X10b of the shield case X10 and the input end of the low-pass filter X12.
  • the low pass filter X12 removes noise superimposed on the output voltage Vm.
  • the cut-off frequency fc of the low-pass filter X12 is set to 200 Hz.
  • the coaxial cable X13 connects between the output end of the low-pass filter X12 and the input end of the oscilloscope X14.
  • the oscilloscope X14 displays the waveform of the output voltage Vm (electric signal temporal change) as a graph.
  • the vertical axis represents the voltage value and the horizontal axis represents the time.
  • the ground terminal of the oscilloscope X14 is connected to the ground terminal of the measurement system X.
  • step S1 charges are injected into the electret of the sample X4 using the corona discharge device Y shown in FIG. 4 under predetermined conditions (corona discharge voltage: 10 kV, 0.1 mA, grid voltage 1.5 kV).
  • reference numerals X41, X42, and X43 denote components (electret, lower electrode, and substrate) that form the sample X, respectively.
  • Reference numerals Y1 to Y4 denote components (grid, discharge electrode needle, grid power source, DC high-voltage power source) that form the corona discharge device Y, respectively.
  • step S2 the surface potential of the sample X4 is measured.
  • step S3 the sample X4 is connected to the measurement system X.
  • step S4 the dielectric X1 is vibrated by the electromagnetic vibrator X3.
  • step S5 the waveform of the output voltage Vm generated according to the approach / separation between the dielectric X1 and the sample X4 is observed with an oscilloscope.
  • steps S4 to S6 are repeated while changing the resistance value of the variable resistor Rv.
  • step S7 the generated power P of the power generator 10 is calculated based on the obtained output voltage Vm.
  • Vms T ⁇ 1 ⁇ ⁇ 0 T Vmdt (11)
  • VL Vms ⁇ (R + Rv) / R (12)
  • the generated power P can be calculated from the voltage VL using the following equation (13).
  • P VL 2 / (R + Rv) (13)
  • FIG. 5 is a table showing the relationship between the variable resistor Rv [M ⁇ ], the maximum amplitude Vpp [V] of the output voltage Vm, and the generated power Pm [ ⁇ W].
  • FIG. 6 is a graph showing the relationship between the variable resistor Rv [M ⁇ ] and the maximum amplitude Vpp [V] of the output voltage Vm.
  • FIG. 7 is a graph showing the relationship between the variable resistance Rv [M ⁇ ] and the generated power Pm [ ⁇ W].
  • FIG. 8A is an oscilloscope waveform diagram at the time of maximum power output.
  • the drive waveform of the vibration simulator is depicted in the upper part of FIG. 8A, and since the drive signal is a sine wave, it can be seen that the dielectric X4 installed in the electromagnetic exciter X3 performs a single vibration.
  • the output waveform of the output voltage Vm is depicted in the lower part of FIG. 8A.
  • the output waveform of the output voltage Vm has a different shape from the sine wave. However, this waveform is not a sine wave distorted by a disturbance element such as noise, but is a theoretically correct waveform. This will be explained in the next section.
  • FIG. 8B is a simulation waveform of the output voltage Vm with respect to the gap distance G.
  • the upper part of FIG. 8B depicts the gap distance between the sample X1 and the dielectric X4, and the lower part of FIG. 8B shows the measurement system theoretically calculated using the above equations (3) to (9).
  • the output voltage Vm of X is depicted.
  • the same numerical values as those of the sample X1, the dielectric X4, and the resistors R and Rv used in the measurement system X in the actual power generation experiment were input.
  • FIG. 9 is a comparison diagram of the amount of power generation according to the electrical connection state of the back surface of the dielectric X1. As shown in FIG. 9, the maximum amplitude Vpp of the output voltage Vm and the power generation when the aluminum plate X2 is connected to the ground terminal of the measurement system X (black bar graph) and when it is not connected (hatched bar graph). It was confirmed that there was a difference in both power Pm. This phenomenon will be described in detail with reference to the following second configuration example and third configuration example.
  • FIG. 10 is a schematic diagram illustrating a second configuration example of the power generation device.
  • the power generation device 10 of the second configuration example has substantially the same configuration as the first configuration example, and is characterized in that the upper electrode 15 provided on the upper surface side of the dielectric 11 is removed. That is, it can be said that the power generation device 10 of the second configuration example has a configuration in which no electrode is connected to the dielectric 11.
  • the power generation device 10 of the second configuration example is configured such that the entire movable portion including the dielectric 11 is in an electrically floating state (not connected to any potential point). I can say that.
  • the whole movable part including the dielectric 11 is good to hold
  • the electrostatic potential energy is high (unstable) in the second state (lower stage in FIG. 10) in which the dielectric 11 and the electret 12 are brought close to each other. Therefore, the amount of power generation is reduced compared to the first configuration example.
  • the power generation device 10 of the second configuration example it is not necessary to connect a wiring to the vibrating dielectric body 11, and therefore, it is more advantageous than the first configuration example in terms of ease of device fabrication and power generation operation stability. is there.
  • FIG. 11 is a schematic diagram illustrating a third configuration example of the power generation device.
  • the power generation device 10 of the third configuration example has substantially the same configuration as the first configuration example, and is characterized in that an electrically floating metal body 18 is formed on the upper surface side of the dielectric 11. Yes.
  • the metal body 18 is a metal member that is in an electrically floating state. Therefore, the power generation apparatus 10 of the third configuration example is common to the previous second configuration example in that the entire movable portion including the dielectric 11 is in an electrically floating state.
  • the metal body 18 may be plate-shaped or film-shaped.
  • the metal body 18 is not connected to the ground end, and therefore, a positive charge cannot be drawn from the ground end to the metal body 18.
  • the metal body 18 has a large number of free electrons (illustrated as a symbol in which a minus sign is added to a white circle in FIG. 11), the free electrons are present at the interface between the metal body 18 and the dielectric 11. By moving away from the ground, the same effect as when a positive charge is attracted to the metal body 18 from the ground end can be obtained.
  • the power generation apparatus 10 of the third configuration example can obtain a higher power generation amount than the second configuration example in which the upper electrode 15 is completely eliminated.
  • the above-described effect is hindered by the charge bias (potential difference) generated in the metal body 18. Therefore, the power generation device 10 of the third configuration example has a lower power generation amount than the first configuration example in which the upper electrode 15 is connected to the ground terminal.
  • the first configuration example> the third configuration example> the second configuration example has superiority and inferiority
  • the second configuration example Third configuration example> There is a superiority or inferiority of the first configuration example. Accordingly, it cannot be said that any one of the configurations of the power generation apparatus 10 is always the best, and any one of the first to third configuration examples should be adopted according to the application and required characteristics. Is desirable.
  • FIG. 12 is a schematic diagram (cross-sectional view seen from the lateral direction) illustrating a first packaging example of the power generation device.
  • the power generation device 20 of the first packaging example includes a substrate 21, a lower electrode 22, an electret 23, a dielectric 24 (a combination of a dielectric, an electrode, and a weight), a package 25, and an adhesive 26 and a wire 27.
  • a dielectric 24 a combination of a dielectric, an electrode, and a weight
  • the lower electrode 22 is formed on the upper surface of the substrate 21.
  • the electret 23 is formed so as to cover the lower electrode 22. However, one end of the lower electrode 22 is exposed from the electret 23 and extends to the end of the substrate 21, and is connected to the wire 27 at the end.
  • the wire 27 is connected to the ground terminal via a resistor (not shown).
  • the package 25 is a cover member (cylindrical, columnar, hemispherical, etc.) provided with an opening on one surface, and the opening is bonded to the substrate 21 and the adhesive 26 so as to accommodate the electret 23 and the dielectric 24 inside. Has been.
  • the package 25 may be made of resin such as resin or acrylic.
  • the dielectric 24 is accommodated so as to be displaceable (movable up and down) along the inner wall of the package 24 without being supported at all.
  • the dielectric 24 is in a state of being close to the electret 23 by electrostatic attraction (corresponding to the second state in the lower part of FIG. 1). Therefore, if the dielectric 24 is separated from the electret 23 by applying kinetic energy (vibration) from the outside, the kinetic energy can be converted into electric energy.
  • FIG. 13 is a schematic diagram showing a second packaging example of the power generation device.
  • the second packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 31 that supports the dielectric 24 in a suspended manner inside the package 25.
  • an elastic member 31 As the elastic member 31, a coil spring or a bellows spring (meander shape) may be used.
  • the kinetic energy for separating the dielectric 24 from the electret 23 can be lowered, so that it is possible to generate electric power with smaller vibrations. It is also possible to prevent contact between the top surface of the package 25 and the dielectric 24.
  • FIG. 14 is a schematic diagram showing a third packaging example of the power generation device.
  • the third packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 32 that supports both ends of the dielectric 24 inside the package 25.
  • As the elastic member 32 a coil spring or a bellows spring (a meander shape) may be used. With this configuration, it is possible to prevent contact between the inner surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
  • FIG. 15 is a schematic diagram showing a fourth packaging example of the power generation device.
  • the fourth packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 33 that repels the dielectric 24 on the top surface of the package 25.
  • a plate spring may be used as the elastic member 33. With such a configuration, it is possible to prevent contact between the top surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
  • FIG. 16 is a schematic diagram (cross-sectional view seen from above) showing a fifth packaging example of the power generation device.
  • the fifth packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 34 that supports vertical movement while suppressing horizontal movement of the dielectric 24 inside the package 25. is doing.
  • the dielectric 24 and the package 25 are formed so that a cross section when viewed from above is rectangular.
  • the elastic member 34 a combination of four leaf springs that cantilever-support the four side surfaces of the dielectric 24 from the support surfaces (inner side surfaces of the package 25) orthogonal to each other may be used. With this configuration, it is possible to prevent contact between the inner surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
  • FIG. 17 is a schematic diagram showing a sixth packaging example of the power generation device.
  • the sixth packaging example has substantially the same configuration as the first packaging example, and is characterized by having magnets 35a and 35b (magnetic springs) repelling the dielectric 24 and the package 25, respectively. With such a configuration, it is possible to prevent contact between the top surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
  • FIG. 18 is a schematic diagram showing a seventh packaging example of the power generation device.
  • the seventh packaging example has substantially the same configuration as the first packaging example, and is characterized by having magnets 36a and 36b (magnetic springs) repelling the dielectric 24 and the electret 23, respectively.
  • magnets 36a and 36b magnetic springs repelling the dielectric 24 and the electret 23, respectively.
  • FIG. 19 is a schematic diagram showing an eighth packaging example of the power generation device.
  • the eighth packaging example has substantially the same configuration as the first packaging example, and is characterized by having a stopper 37 protruding from the surface of the electret 23.
  • the stopper 37 may be provided on the surface of the dielectric 24.
  • the configurations individually described in the first to eighth packaging examples above can be arbitrarily combined. Further, in the configuration in which the spring is provided, it is desirable to design the spring constant so that the frequency of vibration applied to the power generation device 20 matches the resonance frequency unique to the spring. On the other hand, when the frequency of vibration applied to the power generation device 20 is indefinite, it is desirable to adopt a configuration in which no spring is provided or to use a soft spring (a spring having a small spring constant).
  • FIG. 20 is a schematic diagram (a top view and a cross-sectional view from the lateral direction) showing a first guide example of a dielectric.
  • the dielectric 24 and the package 25 are formed so that each outer edge or inner edge has a circular shape when the power generation device 20 is viewed in plan.
  • the dielectric 24 is accommodated in a form in which a ball member 38 (steel ball) is sandwiched between the inner wall of the package 25.
  • the ball members 38 are respectively provided at positions that divide the outer periphery of the dielectric 24 (the inner periphery of the package 25) into four equal parts when the power generation device 20 is viewed in plan.
  • vertical rail grooves 24 a are formed at the contact positions of the ball members 38.
  • a concave ball receiving portion 25 a is formed on the inner wall of the package 25 at the contact position of the ball member 38.
  • FIG. 21 is a schematic diagram (a top view and a cross-sectional view from the lateral direction) showing a second guide example of a dielectric. Similar to the first guide example, in the vibration device 20 of the second guide example, the dielectric 24 and the package 25 are formed so that each outer edge or inner edge has a circular shape when the power generation device 20 is viewed in plan. Yes.
  • the dielectric 24 is stored in a form in which a rail member 39 is in contact with the inner wall of the package 25.
  • the rail members 39 are respectively provided at positions that divide the outer periphery of the dielectric 24 (the inner periphery of the package 25) into four equal parts when the power generation device 20 is viewed in plan.
  • vertical rail grooves 25 b are formed at the contact positions of the rail members 39. With such a configuration, contact between the inner surface of the package 25 and the dielectric 24 can be prevented without inhibiting the vertical movement of the dielectric 24.
  • the rail member 39 may be integrally formed by processing the dielectric 24, or may be separately formed of a material having good slidability (fluorine resin or the like) different from the dielectric 24.
  • FIG. 22 is a schematic diagram (cross-sectional view from the lateral direction) showing a first application example of the ground ring.
  • the power generation device 40 of the first application example includes a dielectric 41, an electret 42, a lower electrode 43, a resistor 44, and a ground ring 45.
  • the ground ring 45 is a conductive member (for example, aluminum) formed so as to surround the electret 42 and the lower electrode 43 with a predetermined distance therebetween.
  • the ground ring 45 is directly connected to the ground end.
  • FIG. 23 is a schematic diagram (cross-sectional view from the lateral direction) showing a second application example of the ground ring.
  • the arrow in FIG. 23 has shown the electric force line.
  • the ground rings 45 are not necessarily formed so as to surround the electret 42 and the lower electrode 43, and the electrets 42 and the ground rings 45 may be alternately arranged adjacent to each other. .
  • the electric lines of force can be released from the negative charge of the dielectric 41 toward the positive charge of the ground ring 45 when horizontal polarization occurs in the dielectric 41. It is possible to suppress the repulsion between the negative charge of the body 41 and the negative charge of the electret 42, and thus it is possible to increase the power generation efficiency.
  • FIG. 24 is a schematic diagram showing a combination example of the shape of the dielectric and the shape of the lower electrode.
  • the power generation device 50 of this example includes a dielectric 51, an electret 52, a lower electrode 53, and a substrate 54.
  • the dielectric 51 may have a configuration in which the lower surface facing the electret 52 is flattened (see the left side in FIG. 24) or a configuration in which the lower surface is patterned (see the right side in FIG. 24).
  • the gap distance between the dielectric 51 and the electret 52 can be made uniform.
  • the lines of electric force are likely to gather at locations sharpened by patterning, so that it is possible to expect improvement in power generation efficiency depending on the optimization of patterning.
  • the lower electrode 53 may be formed in a planar shape (FIG. 25) without patterning, or may be formed in a comb-like shape (FIG. 26) or a spiral shape (FIG. 27) by patterning. Also good. However, in view of power generation efficiency, it is desirable to adopt the former configuration.
  • the combination of the shape of the dielectric 51 (with / without patterning) and the shape of the lower electrode (with / without patterning) is arbitrary.
  • FIG. 28 is a schematic diagram showing a first structure for realizing triaxialization.
  • the power generator 60 having the first structure includes a dielectric 61, an electret 62, and a lower electrode 63.
  • the dielectric 61 is formed with a plurality of convex portions 61a
  • the electret 62 is formed with a plurality of concave portions 62a into which the convex portions 61a are fitted with a predetermined gap.
  • the power generation device 60 has a similar structure in the depth direction of the paper surface.
  • the electrets 62 are disposed on both sides of the dielectric 61, respectively. With such a configuration, it is possible to further increase the power generation efficiency. Further, although not depicted in FIG. 28, further improvement in power generation efficiency can be expected if dielectrics 61 are provided in multiple stages and electrets 62 are arranged on both sides. Note that such a multilayer structure can naturally be applied to the above-described basic configuration (such as FIG. 1) that does not include the convex portions 61a and the concave portions 62a.
  • FIG. 29 is a schematic diagram showing a second structure for realizing triaxialization.
  • the electret 72 is formed on the inner wall of the sealed container, and the dielectric 71 is made into particles and enclosed inside the sealed container.
  • the lower electrode 73 is formed so as to surround the outer peripheral side of the electret 72, and is connected to the ground terminal via the resistor 74.
  • FIG. 30 is a schematic diagram showing a third structure for realizing triaxialization.
  • the electret 82 is formed on the inner wall of the sealed sphere, and the dielectric 81 is formed into a sphere and enclosed inside the sealed sphere.
  • the lower electrode 83 is formed so as to surround the outer peripheral side of the electret 82, and is connected to the ground terminal via the resistor 84.
  • FIG. 31 is a schematic diagram showing a fourth structure for realizing triaxialization.
  • the dielectric 91 is a sphere, and a plurality of electrets 92 are formed so as to surround the dielectric 91.
  • the lower electrode 93 is formed for each of the plurality of electrets 92 and is connected to the ground terminal via a resistor 94.
  • FIG. 32 is a graph showing the relationship between the relative dielectric constant of the dielectric and the amount of power generation.
  • the horizontal axis of FIG. 32 indicates the relative permittivity ⁇ r of the dielectric, and the vertical axis of FIG. 32 indicates the power generation amount P [%] (normalized by the power generation amount when the relative permittivity ⁇ r is infinite). ing.
  • This graph shows that the dielectric constant of the electret is 2, the film thickness of the electret is 5 ⁇ m, the amplitude of vibration of the dielectric is 20 ⁇ m, and the thickness of the void layer (air layer) when the dielectric is closest to the electret (gap)
  • the calculation results obtained using the above-described equations (3) to (9) under the assumption that the (distance) is 1 ⁇ m are shown.
  • each generated power in the figure is normalized with the amount of power generated when the relative dielectric constant ⁇ r of the dielectric is infinite as 100%.
  • the circle symbol, the square symbol, and the rhombus symbol in FIG. 32 indicate calculation results when the thicknesses of the dielectrics are 0.01 mm, 0.1 mm, and 1 mm, respectively.
  • the calculation result changes depending on the thickness of the dielectric.
  • 90% of the maximum power generation amount is obtained when the relative dielectric constant ⁇ r is about 30.
  • a relative dielectric constant ⁇ r of about 3000 is required to obtain 90% of the maximum power generation amount. Therefore, in order to increase the power generation amount, it is desirable to make the dielectric as thin as possible.
  • the dielectric has a thickness of 0.01 to 1.0 mm (more preferably 0.01 mm). It is appropriate to use a material that can obtain a power generation amount of 80% or more of the maximum power generation amount.
  • a dielectric having a thickness of 1 ⁇ m or less to several ⁇ m can be manufactured by sputtering or electron beam evaporation.
  • a dielectric having a thickness of 1 ⁇ m or less to several tens of ⁇ m can be produced by a hydrothermal synthesis method including a sol-gel method + spin coating + firing.
  • a dielectric having a thickness of several tens of ⁇ m or more can be produced by adjusting the thickness by molding powder such as firing + pressure molding + slicing, cutting, polishing, or the like.
  • ⁇ Dielectric material> The most promising material is barium titanate (BaTiO 3 , BTO).
  • the relative dielectric constant at the operating temperature (assuming about 0 to 100 ° C.) is about 1000, which satisfies the above conditions. Since it is relatively inexpensive and lead-free, its environmental impact is small, which is advantageous for commercialization.
  • the relative dielectric constant decreases in an environment of 120 ° C. or higher. Further, the relative dielectric constant also decreases when the operating frequency is 100 kHz or higher. However, since the assumed operating frequency is 1 to several hundreds of Hz, the above characteristics are not a drawback for this device. The only problem is that there is hysteresis in the dielectric characteristics because it is a ferroelectric.
  • PZT lead zirconate titanate
  • a material obtained by adding an alkaline earth metal such as potassium (K), calcium (Ca), or strontium (Sr) or a rare earth metal such as yttrium (Y) or neodymium (Nd) to barium titanate is also promising.
  • an alkaline earth metal such as potassium (K), calcium (Ca), or strontium (Sr) or a rare earth metal such as yttrium (Y) or neodymium (Nd)
  • the first effect is to lower the Curie temperature.
  • Ferroelectrics have a temperature that is a singular point called the Curie temperature, and the dielectric constant has a maximum value near this temperature. Therefore, the dielectric constant at the operating temperature can be made larger than that of pure barium titanate by setting the Curie temperature of the dielectric to be near the operating temperature of the power generation device.
  • the Curie temperature of the dielectric there is a drawback that a change in dielectric constant due to a temperature change becomes large, leading to instability of power generation efficiency.
  • the second effect is that the property changes from ferroelectricity to paraelectricity as the addition amount is increased.
  • a paraelectric material has a small change in dielectric constant due to a temperature change and has no hysteresis, so that stable power generation is expected. Since the dielectric constant is higher among paraelectric materials, it is possible to secure a certain amount of power generation.
  • Strontium titanate is obtained by replacing barium in barium titanate with strontium. Although it is a paraelectric material, it has an advantage of having a relative dielectric constant of about 300 and satisfying the above conditions. However, the dielectric constant is small compared to barium titanate. Further, strontium is a rare metal, and there is a disadvantage that the cost is increased.
  • lanthanum iron oxide LaFeO 3
  • potassium niobate KNbO 3
  • lanthanum titanate LaTiO 3
  • magnesium silicate MgSiO 3
  • zirconate titanate Barium Ba (Ti, Zr) O 3
  • iron lanthanum oxide (LaFeO 3 ) The feature of iron lanthanum oxide (LaFeO 3 ) is that the single dielectric layer has a relative dielectric constant of 1000 or more, and the high dielectric constant becomes tens of thousands or more at high temperatures.
  • iron lanthanum oxide (LaFeO 3 ) By adding a small amount of iron lanthanum oxide (LaFeO 3 ) to potassium niobate (KNbO 3 ), there is an effect of increasing the dielectric constant. For example, by adding 0.2% of iron lanthanum oxide (LaFeO 3 ), the relative dielectric constant of potassium niobate (KNbO 3 ) at room temperature increases from 500 to 1250.
  • the crystal structure of potassium niobate (KNbO 3 ) is a perovskite structure. Below -10 ° C, it is rhombohedral, orthorhombic at normal temperature, tetragonal at 225-435 ° C, and cubic at 435 ° C (Curie temperature).
  • Advantages include (1) a ferroelectric material that exhibits large piezoelectricity, (2) a ferroelectric material having a bismuth layer structure and a lead-free piezoelectric ceramic, and (3) easy polarization (150 ° C., 5 (4) having a dielectric constant (800 to 1000) equivalent to lead zirconate titanate (PZT), and (5) from room temperature to 200 It has a relative dielectric constant curve that is relatively flat up to about ° C.
  • PZT lead zirconate titanate
  • examples of the polymer ferroelectric include polylactic acid and polyureaic acid.
  • Polymer-based ferroelectrics are flexible and have a relatively high dielectric constant, and are expected to be applied to protective films on contact surfaces.
  • the relative dielectric constant of polylactic acid is about 22.
  • Polyureaic acid is an organic piezoelectric material and has a dielectric constant of 3.6 to 11.8.
  • relaxor ferroelectrics are listed.
  • Features common to relaxor ferroelectrics are (1) large piezoelectric effect, (2) very large dielectric constant and small temperature change, and (3) huge relative dielectric constant of several tens of thousands, (4 (1) having a broad dielectric constant peak and frequency dispersion, and (5) having a spontaneous polarization characteristic showing a slow change up to a high temperature.
  • a divalent ion enters the A site and a tetravalent charge on the B site on average.
  • Two types of ions are included: a type (A (B ′ 1/3 B ′′ 2/3 ) O 3 ) in which +2 and +5 valence ions enter at a ratio of 1: 2, and +3 and +5 valence ions.
  • a (B ′ 1/2 B ′′ 1/2 ) O 3 it can be broadly divided into types (A (B ′ 1/2 B ′′ 1/2 ) O 3 ) in which +2 and +6 valence ions are contained at a ratio of 1: 1.
  • Many relaxors are mixed with the ferroelectric PbTiO 3. Form crystals and cause interesting phenomena.
  • relaxor materials include (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 .xPbTiO 3 , (1-x) Pb (Zn 1/3 Nb 2/3 ) O 3 .xPbTiO 3 Or (1-x) Pb (In 1/2 Nb 1/2 ) O 3 .xPbTiO 3 .
  • the characteristics of the solid solution (PZN / xPT) of Pb (Zn 1/3 Nb 2/3 ) O 3 and PbTiO 3 are (1) ferroelectric and piezoelectric, and (2) PZN / 9PT.
  • the piezoelectric constant d33 is about 2500 pC / N.
  • the composition ratio of PZN and PT is just in the region called the morphotropic phase boundary (commonly called MPB) that divides trigonal and tetragonal crystals, and it has high piezoelectric effect by using various experimental methods from the viewpoint of decreasing symmetry in MPB. The cause is being sought.
  • MPB morphotropic phase boundary
  • a characteristic of (Ba, La) (Ti, Cr) O 3 is that it is a lead-free relaxor ferroelectric.
  • the exact composition is a composition of (Ba 1 ⁇ x La x ) (Ti 1 ⁇ x Cr x ) O 3 (where 0 ⁇ x ⁇ 1).
  • x 0.035
  • the relative dielectric constant becomes 2000, and the dielectric constant is stable near room temperature.
  • FIG. 33 is a schematic diagram illustrating a first modification of the power generation device described so far.
  • the power generation device 100 of the first modified example includes a movable mass 101, a spring member 102, a dielectric 103, an electret 104, a glass substrate 105, a repulsive member 106a, and a package 110.
  • the dielectric 103 And the electret 104 is a vibration type power generation device that generates power by changing.
  • the movable mass 101 is an integrated body of a dielectric 103 and a weight, and is housed inside the package 110 so as to be able to vibrate up and down.
  • the spring member 102 is an example of a mass support member that elastically supports the movable mass 101.
  • the configuration in which the movable mass 101 is supported at both ends by the inner side surface of the package 110 is illustrated, but the support form of the movable mass 101 is not limited to this.
  • the movable mass 101 is mounted from the ceiling of the package 110. It does not matter even if it is the structure which supports by suspension. In this way, by using the spring member 102 to elastically support the movable mass 101, the kinetic energy for separating the dielectric 103 from the electret 104 can be reduced, so that power generation can be performed with smaller vibrations. Can be performed.
  • a coil spring or a bellows spring (a meander shape) may be used.
  • the dielectric 103 becomes a movable body (a part of the movable mass 101) whose relative position with respect to the electret 104 is changed by vibration applied to the power generation apparatus 100.
  • the dielectric 103 as described above, lead zirconate titanate (PZT), barium titanate (BTO), or the like can be preferably used.
  • the electret 104 is a member that holds a charge semipermanently. As the electret 12, either an organic electret or an inorganic electret may be used.
  • the glass substrate 105 is a plate-like member for supporting the electret 104.
  • the repulsion member 106 a is an example of an electret support member that elastically supports the electret 104.
  • a repulsive member 106 a is inserted between the lower surface of the glass substrate 105 and the bottom surface of the package 110. Accordingly, the electret 104 is supported by the repulsive member 106 a on the lower surface side that does not face the dielectric 103.
  • the package 110 is a cover member (cylinder, column, hemisphere, etc.) that houses the movable mass 101, the spring member 102, the dielectric 103, the electret 104, the glass substrate 105, and the repulsion member 106a.
  • the package 110 may be made of resin such as resin or acrylic.
  • FIG. 34 is a correlation diagram between the restitution coefficient of the repulsion member 106a and the maximum power generation amount. This figure shows the results of a power generation test using a large device (see FIG. 3 above).
  • the material of the repelling member 106a is gel (0.53), nitrile rubber (0.42 to 0.52). Fluorine rubber (0.34 to 0.38) and low elastic rubber (0.33) were used (the coefficient of restitution in parentheses). Note that each of the above restitution coefficients is a value uniquely measured by the present inventors.
  • any one of the gel, nitrile rubber, fluororubber, and low-elastic rubber used in this experiment is selected as the material of the repulsion member 106a, it is desirable to select the gel having the largest restitution coefficient. I can say that. However, it is also possible to use a high repulsion material having a higher restitution coefficient than that of gel (for example, a high repulsion material used for a highly elastic rubber ball toy) in anticipation of further improvement in power generation.
  • FIG. 35 is a schematic diagram showing a second modification of the power generation device.
  • the second modified example is basically the same as the first modified example, and is characterized in that it further includes magnets 107 that repel each other so as to separate the dielectric 103 and the electret 104. Therefore, the same components as those in the first modification are denoted by the same reference numerals as those in FIG. 33, and redundant description is omitted. In the following, the characteristic parts of the second modification will be mainly described.
  • the amount of power generated by the power generation apparatus 100 increases as the surface potential of the electret 104 increases.
  • the higher the surface potential of the electret 104 the easier it is for the dielectric 103 and the electret 104 to stick due to electrostatic attraction, which increases the risk that the movable mass 101 will not vibrate.
  • the newly added magnet 107 repels each other so as to separate the dielectric 103 and the electret 104, so that the dielectric 103 and the electret 104 due to electrostatic attraction It is possible to prevent the sticking of the battery, and it is possible to expect a higher power generation amount.
  • the power supply device 100 of the second modified example has basically the same configuration as that shown in FIG. 18, but the magnet 107 is formed so that the surfaces thereof are flush with the surfaces of the dielectric 103 and the electret 104, respectively. ing. With such a configuration, the gap distance between the dielectric 103 and the electret 104 can be changed as much as possible, and the power generation amount can be increased.
  • FIG. 36 is a correlation diagram between the number of collisions between the dielectric 103 and the electret 104 and the maximum power generation amount of the power generation apparatus 100.
  • the rhombus marks indicate the behavior with magnets (second modification example in FIG. 35), and the triangular marks indicate the behavior without magnets (first modification example in FIG. 33).
  • FIG. 37 is a schematic diagram showing a third modification of the power generation device.
  • the third modified example is basically the same as the first modified example, and is characterized in that the electret 104 is supported using the spring member 106b instead of the repulsive member 106a. Therefore, the same components as those in the first modification are denoted by the same reference numerals as those in FIG. 33, and redundant descriptions are omitted. In the following, the characteristic portions of the third modification will be mainly described.
  • the spring member 106 b is an example of an electret support member that elastically supports the electret 104.
  • a spring member 106 b is formed so as to support both ends of the glass substrate 105 on the inner side surface of the package 110. Accordingly, the electret 104 is supported by the spring member 106b on the lower surface side that does not face the dielectric 103.
  • the support form by the spring member 106 b is not limited to this, and for example, the spring member 106 b may be inserted between the lower surface of the glass substrate 105 and the bottom surface of the package 110.
  • a coil spring or a bellows spring (a meander shape) may be used similarly to the spring member 102.
  • FIG. 38 and 39 are graphs showing changes in output voltage and instantaneous power over time, respectively.
  • the solid line of both figures has shown the behavior of the structure (3rd modification of FIG. 37) using the spring member 106b as an electret support member, and a broken line uses the repulsion member 106a (gel) as an electret support member.
  • the behavior of (first modification of FIG. 33) is shown.
  • FIG. 40 is a table showing measurement results of the power generation amount and the resistance value.
  • the contact time between the dielectric 103 and the electret 104 is shorter than when the repulsion member 106a (gel) is used, so the maximum value of the output voltage is Get higher.
  • FIG. 41 is a diagram showing a time change of the output voltage in the third modification.
  • the continuous line in FIG. 41 has shown the experimental result, and the broken line has shown the analysis result.
  • FIG. 42 is a diagram showing temporal changes in output voltage, mass displacement, and electret displacement in the third modification. 42 indicates the output voltage analysis result (corresponding to the broken line in FIG. 41), the broken line indicates the displacement of the movable mass 101 (dielectric 103), and the alternate long and short dash line indicates the displacement of the electret 104. Is shown.
  • the spring member 106b is well designed, when the movable mass 101 (dielectric 103) and the electret 104 approach each other, they can collide with each other multiple times, which is expected to contribute to an improvement in power generation. .
  • FIG. 43 is a correlation diagram between the spring constant of the spring member 106b and the power generation amount.
  • the spring constant of the spring member 106b may be 0.5 to 50 N / mm (more preferably 1.0 to 10 N / mm).
  • FIG. 44 is a correlation diagram between the acceleration of the movable mass 101 (dielectric 103) and the total amplitude.
  • the round mark in a figure has shown the behavior of the structure (The 3rd modification of FIG. 37) which used the spring member 106b as an electret support member, and the triangular mark used the repulsion member 106a (gel) as an electret support member
  • the behavior of the configuration is shown.
  • the spring member 106b can be regarded as a repulsion member 106a formed of a high repulsion material having a restitution coefficient larger than that of the gel, and therefore agrees with the experimental result shown in FIG.
  • FIG. 45 is a schematic diagram showing a fourth modification of the power generation device.
  • the fourth modification is a combination of the first to third modifications described so far, and includes both the repulsion member 106a and the spring member 106b as the electret support member, and also the dielectric 103 and the electret.
  • a magnet 107 is also provided for separating the magnet 104.
  • a predetermined displacement margin is provided between the two members so that the repulsive member 106a does not unnecessarily hinder the vibration of the spring member 106b. Therefore, the repulsion member 106a functions as a stopper that pushes back the spring member 106b when the acceleration is applied to the power generation apparatus 100 and the spring member 106b is displaced to a position where it contacts the repulsion member 106a.
  • the amount of power generation is improved by appropriately adjusting the spring constant of the spring member 102, the restitution coefficient of the repulsion member 106a, the spring constant of the spring member 106b, and the magnetic strength of the magnet 107. Can be achieved.
  • ⁇ Application> As a power source for various sensors and wireless devices (for example, ZigBee [registered trademark] 300 MHz band specific low-power wireless devices), a ubiquitous environment based on wireless sensors and wireless sensor networks is constructed by applying the above power generator. Can do. That is, since various types of sensors and wireless devices need no power supply wiring, it is possible to realize information linkage in the network by distributing each device.
  • various sensors and wireless devices for example, ZigBee [registered trademark] 300 MHz band specific low-power wireless devices
  • the usage scenes of the ubiquitous environment using the above power generator include, for example, the medical and health fields. (Health management and safety confirmation), structure monitoring (wire disconnection and bolt looseness monitoring), plant monitoring (equipment abnormality monitoring), logistics management (distribution status and quality monitoring), and the like.
  • an electric motor such as a motor vibrates at a power supply frequency (50 Hz or 60 Hz)
  • a power supply frequency 50 Hz or 60 Hz
  • the resonance condition of the spring system incorporated in the power generation device is adjusted to the above power supply frequency, a larger power generation amount is expected. It is conceivable to use the generated power as a power source for a data processing device or the like.
  • an application for generating power by attaching the above power generation device to a human body an application for generating power by mounting the above power generation device on a mobile device such as a mobile phone, and the like are also assumed.
  • the power generation device is a technology that can be suitably used as a power source used in various sensors and wireless devices (wireless sensor network, health monitoring, etc.).

Abstract

This electricity-generating device (100) contains a dielectric body (103) and an electret (104). The dielectric body (103) constitutes part of a movable mass (101), and the electret (104) holds an electric charge. This electricity-generating device (100), which generates electricity via changes in the distance between the dielectric body (103) and the electret (104), also contains electret-supporting members (a repulsing member (106a) and spring members (106b)) that elastically support the electret (104).

Description

発電装置Power generator
 本発明は、誘電体とエレクトレットとの距離が変化することによって発電(運動エネルギー(振動エネルギー)から電気エネルギーへのエネルギー変換)を行う発電装置、特にMEMS[Micro Electromechanical System]技術を用いて製造される振動駆動型の容量性発電装置に関するものである。 The present invention is manufactured using a power generation device that performs power generation (energy conversion from kinetic energy (vibration energy) to electric energy) by changing the distance between a dielectric and an electret, particularly using MEMS [Micro Electromechanical System] technology. The present invention relates to a vibration drive type capacitive power generator.
 図46は、振動型発電装置の一従来例を示す模式図である。図46において、符号201は上部基板、符号202は下部基板、符号203はエレクトレット、符号204は対向電極、符号205はベース電極、符号206はバネを各々示している。なお、上部基板201は、下部基板202に対して2軸平面方向(X方向、Y方向)に変位自在に弾性支持された可動体である。 FIG. 46 is a schematic diagram showing a conventional example of a vibration power generator. 46, reference numeral 201 indicates an upper substrate, reference numeral 202 indicates a lower substrate, reference numeral 203 indicates an electret, reference numeral 204 indicates a counter electrode, reference numeral 205 indicates a base electrode, and reference numeral 206 indicates a spring. The upper substrate 201 is a movable body that is elastically supported so as to be displaceable in a biaxial plane direction (X direction, Y direction) with respect to the lower substrate 202.
 上記構成から成る振動型発電装置の動作原理は、所定のギャップ距離を維持しながらエレクトレット203と対向電極204との重なり面積を2軸平面方向(X方向、Y方向)の振動によって変化させることにより、対向電極204に誘導される電荷の変化分を電流として引き出すという方式(いわゆる静電誘導方式)であった。 The principle of operation of the vibration power generation apparatus having the above-described configuration is that the overlapping area of the electret 203 and the counter electrode 204 is changed by vibration in the biaxial plane direction (X direction, Y direction) while maintaining a predetermined gap distance. In this method, a change in charge induced in the counter electrode 204 is extracted as a current (so-called electrostatic induction method).
 なお、MEMS技術を用いて製造される振動型発電装置の関連技術としては、例えば、特許文献1や非特許文献1及び2を挙げることができる。 In addition, as a related technique of the vibration power generation apparatus manufactured using the MEMS technology, for example, Patent Document 1 and Non-Patent Documents 1 and 2 can be cited.
特開2007-312551公報JP 2007-31551 A
 しかしながら、上記従来の振動型発電装置では、その発電電力が大きくてもμWオーダであり、その用途が限定されていた。 However, the above-described conventional vibration power generation apparatus has a μW order even if the generated power is large, and its application is limited.
 また、上記従来の振動型発電装置は、エレクトレット203と対向電極204が互いに対面している構造であるため、エレクトレット203と対向電極204とのギャップ距離を小さく設計し過ぎると、エレクトレット203と対向電極204との間に静電引力が働いて両者が接触したり、或いは、エレクトレット203の注入電荷が放電されてしまうおそれがあった。そのため、エレクトレット203と対向電極204とのギャップ距離は、ある程度大きく設計しなければならないが、ギャップ距離を広げた上で、なおかつ、振動による容量変化を大きくするためには、エレクトレット203と対向電極204の面積を大きく設計する必要があり、その結果としてさらにギャップ距離を広げなければならないという悪循環が生じていた。このような悪循環から、上記従来の振動型発電装置では、発電電力を高めつつ装置の微細化や狭ギャップ化を実現することが困難であった。 Moreover, since the above-described conventional vibration power generation apparatus has a structure in which the electret 203 and the counter electrode 204 face each other, if the gap distance between the electret 203 and the counter electrode 204 is designed too small, the electret 203 and the counter electrode There is a possibility that electrostatic attraction works between the contact 204 and the two, or the injected charge of the electret 203 is discharged. For this reason, the gap distance between the electret 203 and the counter electrode 204 must be designed to be large to some extent. However, in order to increase the capacitance change due to vibration while increasing the gap distance, the electret 203 and the counter electrode 204 are also increased. As a result, a vicious circle has arisen in which the gap distance must be further increased. Due to such a vicious circle, it has been difficult for the above-described conventional vibration power generation apparatus to achieve miniaturization and narrowing of the apparatus while increasing the generated power.
 本発明は、上記の問題点に鑑み、小型大出力の発電装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a small-sized and large-output power generator.
 上記目的を達成すべく、本発明に係る発電装置は、可動マスとなる誘電体と、電荷を保持するエレクトレットと、を有し、前記誘電体と前記エレクトレットとの距離が変化することによって発電を行う発電装置であって、前記エレクトレットを弾性的に支持するエレクトレット支持部材をさらに有する構成(第1の構成)とされている。 In order to achieve the above object, a power generation device according to the present invention has a dielectric serving as a movable mass and an electret that retains electric charge, and generates power by changing a distance between the dielectric and the electret. The power generation apparatus is configured to further include an electret support member that elastically supports the electret (first configuration).
 なお、上記第1の構成から成る発電装置において、前記エレクトレット支持部材は、所定の反発係数を持つ反発部材を含む構成(第2の構成)にするとよい。 In the power generation device having the first configuration, the electret support member may be configured to include a repulsion member having a predetermined restitution coefficient (second configuration).
 また、上記第2の構成から成る発電装置において、前記反発係数は0.3以上である構成(第3の構成)にするとよい。 Further, in the power generation device having the second configuration described above, the restitution coefficient may be 0.3 or more (third configuration).
 また、上記第3の構成から成る発電装置において、前記反発部材は、ゲルまたはこれよりも反発係数の高い高反発材料によって形成された構成(第4の構成)にするとよい。 Further, in the power generation device having the third configuration, the repulsion member may be formed of a gel or a high repulsion material having a higher restitution coefficient (fourth configuration).
 また、上記第1~第4いずれかの構成から成る発電装置は、前記誘電体と前記エレクトレットとを離間させるように互いに反発し合う磁石をさらに有する構成(第5の構成)にするとよい。 Further, the power generation device having any one of the first to fourth configurations may have a configuration (fifth configuration) further including magnets that repel each other so as to separate the dielectric and the electret.
 また、上記第5の構成から成る発電装置において、前記磁石は、その表面が前記誘電体及び前記エレクトレットの表面とそれぞれ面一となるように形成されている構成(第6の構成)にするとよい。 In the power generation device having the fifth configuration, the magnet may have a configuration (sixth configuration) in which the surface thereof is flush with the surfaces of the dielectric and the electret. .
 また、上記第1~第6いずれかの構成から成る発電装置において、前記エレクトレット支持部材は、所定のばね定数を持つばね部材を含む構成(第7の構成)にするとよい。 Further, in the power generation device having any one of the first to sixth configurations, the electret support member may be configured to include a spring member having a predetermined spring constant (seventh configuration).
 また、上記第7の構成から成る発電装置において、前記ばね定数は0.5~50N/mmである構成(第8の構成)にするとよい。 Further, in the power generator having the seventh configuration, the spring constant may be set to 0.5 to 50 N / mm (eighth configuration).
 また、上記第1~第8いずれかの構成から成る発電装置は、前記可動マスを弾性的に支持するマス支持部材をさらに有する構成(第9の構成)にするとよい。 Further, the power generation device having any one of the first to eighth configurations may further include a mass support member (9th configuration) that elastically supports the movable mass.
 また、上記第1~第9いずれかの構成から成る発電装置は、前記誘電体と前記エレクトレットを収納するパッケージをさらに有する構成(第10の構成)にするとよい。 Further, the power generation device having any one of the first to ninth configurations may have a configuration (tenth configuration) further including a package for storing the dielectric and the electret.
 本発明によれば、振動子のZ軸成分の振動を拾って発電するため、エレクトレットや電極の微細パターニングが不要となる上、誘電体とエレクトレットが接触しても放電しないため、誘電体とエレクトレットとの接触を回避する必要もなくなる。従って、小型大出力の発電装置を提供することが可能となり、延いては、電池寿命を心配する煩わしさからユーザを解放することが可能となる。 According to the present invention, since the vibration of the Z-axis component of the vibrator is picked up to generate electric power, fine patterning of the electret and the electrode is not required, and even when the dielectric and the electret come into contact, no discharge occurs. There is no need to avoid contact. Therefore, it becomes possible to provide a power generation device with a small size and a high output, which in turn can free the user from the annoyance of worrying about battery life.
発電装置の第1構成例を示す模式図Schematic diagram showing a first configuration example of the power generation device 発電装置の等価回路図Equivalent circuit diagram of power generator 測定系の概略図Schematic diagram of measurement system コロナ放電装置の説明図Explanation of corona discharge device 可変抵抗と出力電圧及び発電電力との関係を示すテーブルTable showing the relationship between variable resistance, output voltage and generated power 可変抵抗と出力電圧との関係を示すグラフGraph showing the relationship between variable resistance and output voltage 可変抵抗と発電電力との関係を示すグラフGraph showing the relationship between variable resistance and generated power 最大電力出力時のオシロスコープ波形図Oscilloscope waveform diagram at maximum power output ギャップ距離Gに対する出力電圧Vmのシミュレーション波形Simulation waveform of output voltage Vm with respect to gap distance G 誘電体裏面の電気的接続状態による発電量の比較図Comparison of power generation by electrical connection on the back side of dielectric 発電装置の第2構成例を示す模式図Schematic diagram showing a second configuration example of the power generation device 発電装置の第3構成例を示す模式図Schematic diagram showing a third configuration example of the power generation device 発電装置の第1パッケージング例を示す模式図Schematic diagram showing a first packaging example of a power generation device 発電装置の第2パッケージング例を示す模式図Schematic diagram showing a second packaging example of the power generation device 発電装置の第3パッケージング例を示す模式図Schematic diagram showing a third packaging example of the power generation device 発電装置の第4パッケージング例を示す模式図Schematic diagram showing a fourth packaging example of the power generation device 発電装置の第5パッケージング例を示す模式図Schematic diagram showing a fifth packaging example of the power generation device 発電装置の第6パッケージング例を示す模式図Schematic diagram showing a sixth packaging example of the power generation device 発電装置の第7パッケージング例を示す模式図Schematic diagram showing a seventh packaging example of the power generation device 発電装置の第8パッケージング例を示す模式図Schematic diagram showing an eighth packaging example of the power generation device 誘電体の第1ガイド例を示す模式図Schematic diagram showing a first example of dielectric guide 誘電体の第2ガイド例を示す模式図Schematic diagram showing a second guide example of dielectric グランドリングの第1適用例を示す模式図Schematic diagram showing a first application example of a ground ring グランドリングの第2適用例を示す模式図Schematic diagram showing a second application example of the ground ring 誘電体の形状と下部電極の形状との組合わせ例を示す模式図Schematic diagram showing examples of combinations of dielectric shape and lower electrode shape 下部電極の第1形状例を示す模式図Schematic diagram showing a first shape example of the lower electrode 下部電極の第2形状例を示す模式図Schematic diagram showing a second shape example of the lower electrode 下部電極の第3形状例を示す模式図Schematic diagram showing a third shape example of the lower electrode 3軸化を実現するための第1構造を示す模式図Schematic diagram showing the first structure to achieve triaxialization 3軸化を実現するための第2構造を示す模式図Schematic diagram showing the second structure for realizing three axes 3軸化を実現するための第3構造を示す模式図Schematic diagram showing the third structure to achieve triaxialization 3軸化を実現するための第4構造を示す模式図Schematic diagram showing a fourth structure for realizing three axes 誘電体の比誘電率と発電量との関係を示すグラフA graph showing the relationship between the dielectric constant of a dielectric and the amount of power generated 発電装置の第1変形例を示す模式図The schematic diagram which shows the 1st modification of an electric power generating apparatus. 反発係数と最大発電量との相関図Correlation diagram between coefficient of restitution and maximum power generation 発電装置の第2変形例を示す模式図Schematic diagram showing a second modification of the power generation device 衝突回数と最大発電量との相関図(磁石あり/磁石なし)Correlation diagram between number of collisions and maximum power generation (with / without magnet) 発電装置の第3変形例を示す模式図Schematic diagram showing a third modification of the power generation device 出力電圧の時間変化を示す図(ばね/ゲル)Diagram showing time change of output voltage (spring / gel) 瞬時電力の時間変化を示す図(ばね/ゲル)Diagram showing time variation of instantaneous power (spring / gel) 発電量及び抵抗値の測定結果を示すテーブル(ばね/ゲル)Table (spring / gel) showing measurement results of power generation and resistance 出力電圧の時間変化を示す図(実験/解析)Diagram showing time variation of output voltage (experiment / analysis) 出力電圧、マス変位、及び、エレクトレット変位の時間変化を示す図The figure which shows the time change of output voltage, mass displacement, and electret displacement ばね定数と発電量との相関図Correlation diagram between spring constant and power generation 加速度と全振幅との相関図Correlation diagram between acceleration and total amplitude 発電装置の第4変形例を示す模式図The schematic diagram which shows the 4th modification of an electric power generating apparatus. 振動型発電装置の一従来例を示す模式図Schematic diagram showing a conventional example of a vibration power generator
<第1構成例>
 図1は、発電装置の第1構成例を示す模式図(横方向から見た断面図)である。第1構成例の発電装置10は、誘電体11と、エレクトレット12と、下部電極13と、抵抗14と、上部電極15と、基板16と、空隙層17とを有する。なお、図1の上段には、発電装置10の第1状態(誘電体11とエレクトレット12とが離間した状態)が描写されており、図1の下段には、発電装置10の第2状態(誘電体11とエレクトレット12とが接近した状態)が描写されている。
<First configuration example>
FIG. 1 is a schematic diagram (a cross-sectional view seen from the lateral direction) illustrating a first configuration example of the power generation device. The power generation device 10 of the first configuration example includes a dielectric 11, an electret 12, a lower electrode 13, a resistor 14, an upper electrode 15, a substrate 16, and a gap layer 17. In addition, the 1st state (state in which the dielectric material 11 and the electret 12 were spaced apart) of the electric power generating apparatus 10 is drawn on the upper stage of FIG. 1, and the 2nd state (the electric generator 10 is shown in the lower stage of FIG. A state in which the dielectric 11 and the electret 12 are close to each other is depicted.
 以下では、説明の便宜上、特に断りのない限り、紙面の上端側を鉛直上方向と定義し、誘電体11が上下方向(鉛直方向)に振動する構成を前提とした説明を行うが、誘電体11の振動方向はこれに限定されるものではなく、例えば、紙面を90度回転させることにより、誘電体が左右方向(水平方向)に振動する構成とすることも当然に可能である。 In the following, for convenience of explanation, unless otherwise specified, the upper end side of the paper surface is defined as the vertical upward direction, and the description is made on the assumption that the dielectric 11 vibrates in the vertical direction (vertical direction). The vibration direction of 11 is not limited to this. For example, it is naturally possible to adopt a configuration in which the dielectric vibrates in the left-right direction (horizontal direction) by rotating the paper surface by 90 degrees.
 誘電体11は、発電装置10に与えられる振動によってエレクトレット12に対する相対位置が変化する可動体である。誘電体11の下面は、空隙層17を挟んでエレクトレット12の上面と対向している。誘電体11としては、チタン酸ジルコン酸鉛(PZT)やチタン酸バリウム(BTO)などを用いることができる。これについては後述する。誘電体11は、板状に形成してもよいし膜状に形成してもよい。例えば、基板自体を誘電体で形成してもよいし、基板上に薄膜印刷技術で誘電体膜を形成してもよいし、或いは、別途の工程で形成しておいた板状の誘電体を基板上に貼り付けてもよい。 The dielectric 11 is a movable body whose relative position with respect to the electret 12 is changed by vibration applied to the power generation apparatus 10. The lower surface of the dielectric 11 is opposed to the upper surface of the electret 12 with the gap layer 17 in between. As the dielectric 11, lead zirconate titanate (PZT), barium titanate (BTO), or the like can be used. This will be described later. The dielectric 11 may be formed in a plate shape or a film shape. For example, the substrate itself may be formed of a dielectric, a dielectric film may be formed on the substrate by a thin film printing technique, or a plate-like dielectric formed in a separate process may be used. You may affix on a board | substrate.
 エレクトレット12は、電荷を半永久的に保持する部材である。エレクトレット12としては、サイトップ[登録商標]などの高分子化合物に電荷を保持させた有機エレクトレットを用いてもよいし、シリコン酸化物(SiO2)やシリコン窒化物(SiN)などの基材に電荷を保持させた無機エレクトレットを用いてもよい。エレクトレット12は、下部電極13の全面を被覆するように形成されている。このように、下部電極13を露出させない構成とすることにより、エレクトレット12への電荷注入に際して、露出した下部電極13への電荷流出を防止することができるので、エレクトレット12への電荷注入効率を高めることが可能となる。 The electret 12 is a member that holds a charge semipermanently. As the electret 12, an organic electret in which a charge is held in a polymer compound such as Cytop [registered trademark] may be used, or a substrate such as silicon oxide (SiO 2 ) or silicon nitride (SiN) may be used. You may use the inorganic electret which hold | maintained the electric charge. The electret 12 is formed so as to cover the entire surface of the lower electrode 13. In this way, by adopting a configuration in which the lower electrode 13 is not exposed, it is possible to prevent the outflow of electric charge to the exposed lower electrode 13 when injecting electric charge to the electret 12, thereby increasing the efficiency of charge injection to the electret 12. It becomes possible.
 下部電極13は、エレクトレット12の下面側(誘電体11と対向していない側)に接続された第1電極に相当する。下部電極13は、抵抗14を介して接地端に接続されている。下部電極13としては、アルミニウム電極などを用いることができる。 The lower electrode 13 corresponds to a first electrode connected to the lower surface side of the electret 12 (the side not facing the dielectric 11). The lower electrode 13 is connected to the ground terminal via the resistor 14. As the lower electrode 13, an aluminum electrode or the like can be used.
 抵抗14は、発電装置10の振動によって下部電極13と接地端との間に流れる電流を電圧として取り出すための負荷である。 The resistor 14 is a load for taking out a current flowing between the lower electrode 13 and the ground terminal as a voltage due to the vibration of the power generation device 10.
 上部電極15は、誘電体11の上面(エレクトレット12と対向していない側)に接続された第2電極に相当する。上部電極15は、接地端に直接接続されている。上部電極15としては、アルミニウム電極などを用いることができる。 The upper electrode 15 corresponds to a second electrode connected to the upper surface of the dielectric 11 (the side not facing the electret 12). The upper electrode 15 is directly connected to the ground terminal. As the upper electrode 15, an aluminum electrode or the like can be used.
 基板16は、エレクトレット12及び下部電極13を担持するための板状部材である。基板16としては、石英基板や酸化膜付きシリコンウェハなどを用いることができる。ただし、寄生容量抑制の観点から言えば、酸化膜付きシリコンウェハよりも石英基板などを用いる方が望ましい。 The substrate 16 is a plate-like member for supporting the electret 12 and the lower electrode 13. As the substrate 16, a quartz substrate, a silicon wafer with an oxide film, or the like can be used. However, from the viewpoint of suppressing parasitic capacitance, it is preferable to use a quartz substrate or the like rather than a silicon wafer with an oxide film.
 空隙層17は、誘電体11とエレクトレット12との間に挟まれた空間である。空隙層17の厚み(誘電体11とエレクトレット12を隔てるギャップ距離)は、振動に伴う誘電体11の変位によって変化する。空隙層17は、低真空状態(高真空状態や超高真空状態ではない状態)としてもよいし、若しくは、空気、不活性ガス(N2など)、或いは、放電防止効果のあるガス(例えば主成分としてSF6を含むガス)等を充填してもよい。空隙層17を低真空状態とする場合、脱気工程を用いてもよいし、或いは、何らかの高温処理時に空隙層17からガスが抜けて自然に低真空状態となる現象を利用してもよい。空隙層17を高真空状態や超高真空状態にしない方が好ましい理由は、エレクトレット12の放電を回避するためである。なお、本明細書中において、「低真空状態」とは大気圧~10-1Paの状態を指し、「高真空状態」とは10-1~10-5Paの状態を指し、「超高真空状態」とは10-5以下の状態を指すものとする。また、空隙層17に水分が含まれていると、エレクトレット12の表面に水分子が付着して電荷が抜けやすくなるので、空隙層17に含まれる水分は十分に除去して湿度の低い状態としておくことが望ましい。 The gap layer 17 is a space sandwiched between the dielectric 11 and the electret 12. The thickness of the air gap layer 17 (gap distance separating the dielectric 11 and the electret 12) varies depending on the displacement of the dielectric 11 due to vibration. The gap layer 17 may be in a low vacuum state (a state that is not a high vacuum state or an ultra-high vacuum state), or air, an inert gas (such as N 2 ), or a gas that has a discharge preventing effect (for example, a main vacuum layer). A gas containing SF 6 as a component may be filled. When the gap layer 17 is in a low vacuum state, a deaeration process may be used, or a phenomenon in which gas is released from the gap layer 17 during some high-temperature treatment and naturally becomes a low vacuum state may be used. The reason why it is preferable not to place the gap layer 17 in a high vacuum state or an ultrahigh vacuum state is to avoid discharge of the electret 12. In this specification, “low vacuum state” means a state of atmospheric pressure to 10 −1 Pa, “high vacuum state” means a state of 10 −1 to 10 −5 Pa, “Vacuum state” refers to a state of 10 −5 or less. In addition, if the void layer 17 contains moisture, water molecules adhere to the surface of the electret 12 and the charge is easily released. Therefore, the moisture contained in the void layer 17 is sufficiently removed to reduce the humidity. It is desirable to keep it.
 上記したように、第1構成例の発電装置10は、少なくとも一対の誘電体11とエレクトレット12を有し、誘電体11とエレクトレット12とのギャップ距離が変化することによって発電を行う構成とされている。以下では、その発電原理について説明する。 As described above, the power generation device 10 of the first configuration example includes at least a pair of dielectrics 11 and electrets 12, and is configured to generate power by changing the gap distance between the dielectrics 11 and the electrets 12. Yes. Hereinafter, the principle of power generation will be described.
 図1上段で示したように、発電装置10の第1状態(誘電体11とエレクトレット12とが離間した状態)では、エレクトレット12に保持された負の固定電荷(図1では、白色の四角印にマイナス符号を付したシンボルとして描写)に引き寄せられて、下部電極13の表面(エレクトレット12との界面)に金属内正電荷(図1では、白色の丸印にプラス符号を付したシンボルとして描写)が誘起される。この金属内正電荷は、下部電極13(金属)中のある箇所から自由電子が排除された結果、周囲に存在する自由電子との電位差により正電荷としての性質を帯びたものである。従って、上記の物理現象については、エレクトレット12に保持された負の固定電荷によって、下部電極13内の正電荷が引き寄せられると言うよりも、下部電極13内の自由電子が遠ざけられると言う方が正しい。なお、下部電極13内の金属内正電荷は接地端から供給される(下部電極13内の自由電子は接地端に移動する)ので、下部電極13の電位は0Vのままである。 As shown in the upper part of FIG. 1, in the first state of the power generation apparatus 10 (the state where the dielectric 11 and the electret 12 are separated), the negative fixed charge held by the electret 12 (in FIG. 1, white square marks). Drawn on the surface of the lower electrode 13 (interface with the electret 12) and drawn as a symbol with a plus sign on a white circle in FIG. ) Is induced. The positive charge in the metal has a property as a positive charge due to a potential difference from the free electrons existing in the periphery as a result of the elimination of the free electrons from a certain position in the lower electrode 13 (metal). Therefore, with respect to the physical phenomenon described above, it is better to say that the free electrons in the lower electrode 13 are moved away than the positive charges in the lower electrode 13 are attracted by the negative fixed charges held in the electret 12. correct. Note that the positive charge in the metal in the lower electrode 13 is supplied from the ground terminal (the free electrons in the lower electrode 13 move to the ground terminal), so the potential of the lower electrode 13 remains 0V.
 一方、図1下段で示したように、発電装置10が上記の第1状態から第2状態(誘電体11とエレクトレット12とが接近した状態)に遷移すると、エレクトレット12に保持された負の固定電荷によって誘電体11の内部が分極され、誘電体11の下面に正の分極電荷(図1では、黒色の丸印にプラス符号を付したシンボルとして描写)が局在化する。このとき、第1状態で生じていたエレクトレット12内の負電荷と下部電極13内の正電荷との対応関係(の一部)が解消される。この現象により、下部電極13内には一時的に余剰の正電荷が生じる。ただし、下部電極13は抵抗14を介して接地端に接続されているので、一時的に上昇した下部電極13の電位が0Vになるまで、下部電極13から接地端に向けた余剰の正電荷の移動(電流)が生じる。なお、図1の下段では、下部電極13から正電荷の一部が移動した後の状態が示されている。下部電極13から流出しなかった残りの電荷がQ1である。 On the other hand, as shown in the lower part of FIG. 1, when the power generation apparatus 10 transitions from the first state to the second state (the state in which the dielectric 11 and the electret 12 approach each other), the negative fixed held by the electret 12 The inside of the dielectric 11 is polarized by the charge, and a positive polarization charge (depicted as a symbol in which a plus sign is added to a black circle in FIG. 1) is localized on the lower surface of the dielectric 11. At this time, the correspondence relationship (a part) between the negative charge in the electret 12 and the positive charge in the lower electrode 13 that has occurred in the first state is eliminated. Due to this phenomenon, excessive positive charges are temporarily generated in the lower electrode 13. However, since the lower electrode 13 is connected to the ground terminal via the resistor 14, the excess positive charge from the lower electrode 13 toward the ground terminal until the potential of the temporarily raised lower electrode 13 becomes 0V. Movement (current) occurs. In the lower part of FIG. 1, a state after a part of the positive charge has moved from the lower electrode 13 is shown. The remaining charge that did not flow out from the lower electrode 13 is Q1.
 また、上記とは逆に、発電装置10が第2状態から第1状態に遷移したときには、接地端から下部電極13に向けた正電荷の移動(すなわち電流)が生じるので、この電流を電気エネルギーとして取り出すことができる。 Contrary to the above, when the power generation device 10 transitions from the second state to the first state, a positive charge movement (that is, current) from the ground end toward the lower electrode 13 occurs. Can be taken out as.
 なお、発電装置10の第2状態では、誘電体11の内部分極によって誘電体11の上面に負の分極電荷(図1では、黒色の丸印にマイナス符号を付したシンボルとして描写)が局在化する。従って、上部電極15の上面(誘電体11との界面)には、上記した負の分極電荷に引き寄せられて金属内正電荷が誘起される。ただし、上部電極15内の金属内正電荷は接地端から供給されるので、上部電極15の電位は0Vのままである。 In the second state of the power generation apparatus 10, negative polarization charges (depicted as symbols with a black circle plus a minus sign) are localized on the upper surface of the dielectric 11 due to internal polarization of the dielectric 11. Turn into. Therefore, on the upper surface of the upper electrode 15 (interface with the dielectric 11), a positive charge in the metal is induced by being attracted by the negative polarization charge described above. However, since the positive charge in the metal in the upper electrode 15 is supplied from the ground end, the potential of the upper electrode 15 remains 0V.
 電磁気学的に見ると、発電装置10の第2状態は、第1状態よりも静電ポテンシャルエネルギーが低い状態(第1状態よりも正電荷と負電荷との距離が近い安定状態)である。従って、外部から運動エネルギー(振動)を与えることにより、発電装置10を第1状態と第2状態との間で遷移させてやれば、運動エネルギーを電気エネルギーに変換することが可能となる。 From the electromagnetic viewpoint, the second state of the power generation apparatus 10 is a state in which the electrostatic potential energy is lower than that in the first state (a stable state in which the distance between the positive charge and the negative charge is closer than in the first state). Therefore, if kinetic energy (vibration) is applied from the outside to cause the power generation device 10 to transition between the first state and the second state, the kinetic energy can be converted into electric energy.
 特に、第1構成例の発電装置10は、誘電体11の上面に上部電極15が設けられると共に、この上部電極15が接地端に接続された構成とされている。このような構成とすることにより、発電装置10の第2状態において、上部電極15の内部に電位差を生じることがないので、第2状態のポテンシャルエネルギーを引き下げて、発電効率を高めることが可能となる。 In particular, the power generator 10 of the first configuration example is configured such that the upper electrode 15 is provided on the upper surface of the dielectric 11, and the upper electrode 15 is connected to the ground terminal. By adopting such a configuration, in the second state of the power generation apparatus 10, there is no potential difference in the upper electrode 15, so that the potential energy in the second state can be lowered to increase the power generation efficiency. Become.
<等価回路図>
 図2は、発電装置10の等価回路図である。なお、符号C1はエレクトレット12の静電容量(固定値)を示しており、符号C2は誘電体11の静電容量(固定値)を示しており、符号C3は空隙層17の静電容量(可変値)を示しており、符号C4は誘電体11と空隙層17の直列合成容量(C4=C2×C3/(C2+C3))を示している。また、符号Rは抵抗14の抵抗値(固定値)を示している。
<Equivalent circuit diagram>
FIG. 2 is an equivalent circuit diagram of the power generation apparatus 10. In addition, the code | symbol C1 has shown the electrostatic capacitance (fixed value) of the electret 12, the code | symbol C2 has shown the electrostatic capacitance (fixed value) of the dielectric material 11, and the code | symbol C3 has shown the electrostatic capacitance (capacitance of the space | gap layer 17 (fixed value). Variable C), and symbol C4 indicates a series combined capacitance of the dielectric 11 and the gap layer 17 (C4 = C2 × C3 / (C2 + C3)). The symbol R indicates the resistance value (fixed value) of the resistor 14.
 この等価回路において最も注目すべき点は、電源の役割を果たすエレクトレット12が一定の電荷Qを保持する「定電荷源」と呼称すべき存在であるということである。 The most notable point in this equivalent circuit is that the electret 12 serving as a power source should be called a “constant charge source” that holds a constant charge Q.
 発電装置10を第1状態(図1上段)から第2状態(図1下段)に遷移させると、誘電体11側にも電荷が分配される。一定の電荷に対して分配するコンデンサの静電容量が増加すればコンデンサの電位は低下する。現象としては、コンデンサに電荷を充電した後、電源から切り離して別のコンデンサと接続した場合に等しい。 When the power generation device 10 is changed from the first state (upper stage in FIG. 1) to the second state (lower stage in FIG. 1), electric charges are also distributed to the dielectric 11 side. If the capacitance of the capacitor that distributes to a certain charge increases, the potential of the capacitor decreases. The phenomenon is the same as when a capacitor is charged and then disconnected from the power source and connected to another capacitor.
 このとき、エレクトレット12と下部電極13との間のコンデンサに残存する電荷をQ1とし、誘電体11中の誘導電荷と対になる電荷をQ2とし、接点A-A’間の電位差をVとした場合、次の(1)式及び(2)式が成立する。
  Q=Q1+Q2 … (1)
  V=Q1/C1=Q2/C4 … (2)
At this time, the charge remaining in the capacitor between the electret 12 and the lower electrode 13 is Q1, the charge paired with the induced charge in the dielectric 11 is Q2, and the potential difference between the contacts AA ′ is V. In this case, the following equations (1) and (2) are established.
Q = Q1 + Q2 (1)
V = Q1 / C1 = Q2 / C4 (2)
 また、上記の(1)式及び(2)式により、電荷Q1は、次の(3)式で表される。
  Q1=Q×C1/(C1+C4) … (3)
Further, according to the above formulas (1) and (2), the charge Q1 is expressed by the following formula (3).
Q1 = Q × C1 / (C1 + C4) (3)
 (3)式において、エレクトレット12の電荷Q及び静電容量C1は固定値であり、誘電体11と空隙層17の直列合成容量C4は、空隙層17の厚み(延いては、空隙層17の静電容量C3)に応じて変化する可変値である。従って、振動に伴う誘電体11の変位に応じて直列合成容量C4が変化すると、電荷Q1と電荷Q2の割合が変化する。発電装置10では、この容量変化に伴う電荷の再分配が電流として取り出される。 In the equation (3), the charge Q and the electrostatic capacitance C1 of the electret 12 are fixed values, and the series composite capacitance C4 of the dielectric 11 and the void layer 17 is the thickness of the void layer 17 (and thus the void layer 17 It is a variable value that changes according to the capacitance C3). Accordingly, when the series composite capacitance C4 changes according to the displacement of the dielectric 11 due to vibration, the ratio between the charge Q1 and the charge Q2 changes. In the power generation apparatus 10, the charge redistribution accompanying the change in capacity is taken out as a current.
 以下、発電量について定式化する。ある時間tに回路中を流れる電流iは、電荷Q1の時間微分として与えられる。ある関数fの時間微分をf’と表記するとき、電流iは上記(3)式に基づいて次の(4)式で表される。
 i=Q1’={Q×C1×(C1+C4)-1)}’
      =Q×C1×{(C1+C4)-1}’
      =Q×C1×{-(C1+C4)-2}×C4’ … (4)
In the following, the amount of power generation is formulated. A current i flowing in the circuit at a certain time t is given as a time derivative of the charge Q1. When a time derivative of a function f is expressed as f ′, the current i is expressed by the following equation (4) based on the above equation (3).
i = Q1 ′ = {Q × C1 × (C1 + C4) −1 )} ′
= Q × C1 × {(C1 + C4) −1 } ′
= Q × C1 × {− (C1 + C4) −2 } × C4 ′ (4)
 また、空隙層17の直列合成容量C4は、誘電体11の静電容量C2と空隙層17の静電容量C3を用いて次の(5)式で表される。
 C4=(C2-1+C3-1-1 … (5)
Further, the series composite capacitance C4 of the gap layer 17 is expressed by the following equation (5) using the capacitance C2 of the dielectric 11 and the capacitance C3 of the gap layer 17.
C4 = (C2 −1 + C3 −1 ) −1 (5)
 上記(5)式より、直列合成容量C4の時間微分C4’は、次の(6)式で表される。
 C4’={(C2-1+C3-1-1}’
    ={(C3/C2+1)-2}×C3’ … (6)
From the above equation (5), the time differential C4 ′ of the series composite capacitor C4 is expressed by the following equation (6).
C4 ′ = {(C2 −1 + C3 −1 ) −1 } ′
= {(C3 / C2 + 1) −2 } × C3 ′ (6)
 誘電体11とエレクトレット12とのギャップ距離が時間的に変化するとき、同時に空隙層17の静電容量C3も変化する。ここで、初期状態における誘電体11とエレクトレット12とのギャップ距離をX0とし、さらに、誘電体11が振幅A、角速度ωで単振動している場合、空隙層17の容量C3、及び、その時間微分C3’は、次の(7)式及び(8)式で表される。なお、式中の符号ε0は、真空の誘電率(8.85×10-12F/m)である。
 C3=ε0×εr×S×{X0+A×sin(ω×t)}-1 … (7)
 C3’=-ε0×εr×S×A×ω×cos(ω×t)
          ×{X0+A×sin(ω×t)}-2 … (8)
When the gap distance between the dielectric 11 and the electret 12 changes with time, the capacitance C3 of the gap layer 17 also changes at the same time. Here, when the gap distance between the dielectric 11 and the electret 12 in the initial state is X0, and the dielectric 11 is oscillating simply at an amplitude A and an angular velocity ω, the capacitance C3 of the gap layer 17 and its time The differential C3 ′ is expressed by the following equations (7) and (8). In addition, the code | symbol (epsilon) 0 in a type | formula is a dielectric constant (8.85 * 10 < -12 > F / m) of a vacuum.
C3 = ε0 × εr × S × {X0 + A × sin (ω × t)} −1 (7)
C3 ′ = − ε0 × εr × S × A × ω × cos (ω × t)
× {X0 + A × sin (ω × t)} −2 (8)
 そして、電流iが流れることにより、発電装置10に設けられた抵抗14の両端から出力される電圧V2は、抵抗14の抵抗値Rを用いて次の(9)式で表される。
 V2=i×R … (9)
When the current i flows, the voltage V2 output from both ends of the resistor 14 provided in the power generation device 10 is expressed by the following equation (9) using the resistance value R of the resistor 14.
V2 = i × R (9)
 また、抵抗14より取り出される電力Pは、電流iの平均値I及び抵抗14の抵抗値Rを用いて次の(10)式で表される。なお、式中の符号Tは、誘電体11の振動周期であり、T=2×π/ωで与えられる。
 P=I2×R=T-1×∫0 T2dt×R … (10)
The electric power P taken out from the resistor 14 is expressed by the following equation (10) using the average value I of the current i and the resistance value R of the resistor 14. In addition, the code | symbol T in a type | formula is a vibration period of the dielectric material 11, and is given by T = 2 * (pi) / (omega).
P = I 2 × R = T −1 × ∫ 0 T i 2 dt × R (10)
 上記の(9)式に基づいた出力電圧波形のシミュレーション値を図8Bに示す。定式化に基づく出力波形は、正弦波ではなく理論的に正弦波から歪んだ波形となる(詳細については後述)。 FIG. 8B shows the simulation value of the output voltage waveform based on the above equation (9). The output waveform based on the formulation is not a sine wave but a theoretically distorted waveform from the sine wave (details will be described later).
 ここで有用な役割を果たすのが、誘電体11とエレクトレット12との間に存在する空隙層17である。この空隙層17の静電容量C3が大きくなるほど、すなわち、空隙層17の厚み(ギャップ距離)が小さくなるほど、誘電体11中の分極電荷量が大きくなり、それに応じて発電量も増大する。 The void layer 17 existing between the dielectric 11 and the electret 12 plays a useful role here. As the capacitance C3 of the gap layer 17 increases, that is, as the thickness (gap distance) of the gap layer 17 decreases, the amount of polarization charge in the dielectric 11 increases, and the amount of power generation increases accordingly.
 先にも述べたように、第1構成例の発電装置10は、エレクトレットと対向電極を互いに対面させた従来構成(図46を参照)と異なり、誘電体11とエレクトレット12を互いに対面させているので、誘電体11とエレクトレット12を接近(ないしは接触)させても、基本的にエレクトレット12の放電を生じることはない。 As described above, the power generation apparatus 10 of the first configuration example has the dielectric 11 and the electret 12 facing each other, unlike the conventional configuration in which the electret and the counter electrode face each other (see FIG. 46). Therefore, even if the dielectric 11 and the electret 12 are brought close (or contacted), the electret 12 is not basically discharged.
 従って、第1構成例の発電装置10であれば、誘電体11とエレクトレット12を隔てるギャップ距離の変化に応じて発電を行う際、そのギャップ距離が最小でゼロとなるまで誘電体11とエレクトレット12とを接近させることができるので、極めて大きな発電量(mWオーダー)を得ることが可能となる。 Therefore, in the power generation device 10 of the first configuration example, when power generation is performed in accordance with the change in the gap distance separating the dielectric 11 and the electret 12, the dielectric 11 and the electret 12 until the gap distance becomes zero at the minimum. Therefore, it is possible to obtain a very large power generation amount (mW order).
<発電実験>
[測定系]
 図3は、発電実験に用いた測定系の概略図である。今回の発電実験に用いられた測定系Xは、誘電体X1と、アルミ板X2と、電磁式加振機X3と、試料X4と、アルミ板X5と、3軸ステージX6と、土台X7と、同軸ケーブルX8と、同軸ケーブルX9と、シールドケースX10と、同軸ケーブルX11と、ローパスフィルタX12と、同軸ケーブルX13と、オシロスコープX14と、を含む。
<Power generation experiment>
[Measurement system]
FIG. 3 is a schematic diagram of the measurement system used in the power generation experiment. The measurement system X used in this power generation experiment includes a dielectric X1, an aluminum plate X2, an electromagnetic vibrator X3, a sample X4, an aluminum plate X5, a three-axis stage X6, a base X7, A coaxial cable X8, a coaxial cable X9, a shield case X10, a coaxial cable X11, a low-pass filter X12, a coaxial cable X13, and an oscilloscope X14 are included.
 誘電体X1(図1の誘電体11に相当)は、上面が試料X4の下面と対向されており、下面がアルミ板X2に接続されている。誘電体X1としては、チタン酸ジルコン酸鉛(PZT)が用いられている(本実験で使用したPZTの誘電率は2,600である)。 Dielectric X1 (corresponding to dielectric 11 in FIG. 1) has an upper surface facing the lower surface of sample X4, and a lower surface connected to aluminum plate X2. As the dielectric X1, lead zirconate titanate (PZT) is used (the dielectric constant of PZT used in this experiment is 2,600).
 アルミ板X2(図1の上部電極15に相当)は、その上面に誘電体X1が接続されている。アルミ板X2は、測定系Xの接地端に直接接続されている。 The dielectric plate X2 is connected to the upper surface of the aluminum plate X2 (corresponding to the upper electrode 15 in FIG. 1). The aluminum plate X2 is directly connected to the ground terminal of the measurement system X.
 電磁式加振機X3は、アルミ板X2の上面に接続された誘電体X1に対して上下方向の振動(周波数40Hz)を与える。 The electromagnetic exciter X3 applies vertical vibration (frequency: 40 Hz) to the dielectric X1 connected to the upper surface of the aluminum plate X2.
 試料X4(図1のエレクトレット12、下部電極13、及び、基板16に相当)は、上面側の石英基板(厚さ:1.0mm)がアルミ板X5に接続されており、下面側のエレクトレット(厚さ:5.6μm)が誘電体X1の上面と対向されている。エレクトレットとしては、サイトップ[登録商標]が用いられている。エレクトレットには、パターニングが施されていない。一方、エレクトレットに被覆された下部電極には、櫛歯アレイ状(幅:30μm、ピッチ:60μm)のパターニングが施されている。下部電極は、同軸ケーブルX8の第1端に接続されている。 In the sample X4 (equivalent to the electret 12, the lower electrode 13, and the substrate 16 in FIG. 1), a quartz substrate (thickness: 1.0 mm) on the upper surface side is connected to an aluminum plate X5, and an electret on the lower surface side ( (Thickness: 5.6 μm) is opposed to the upper surface of the dielectric X1. Cytop [registered trademark] is used as the electret. The electret is not patterned. On the other hand, the lower electrode covered with the electret is subjected to comb-like patterning (width: 30 μm, pitch: 60 μm). The lower electrode is connected to the first end of the coaxial cable X8.
 アルミ板X5は、試料X4を支持する。 Aluminum plate X5 supports sample X4.
 3軸ステージX6は、アルミ板X5に担持された試料X4を3軸方向に移動させる。 The 3-axis stage X6 moves the sample X4 carried on the aluminum plate X5 in the 3-axis direction.
 土台X7は、3軸ステージX6を支持する。 The base X7 supports the 3-axis stage X6.
 同軸ケーブルX8は、第1端が試料X4の下部電極と接続されており、第2端が同軸ケーブルX9の第1端に接続されている。 The first end of the coaxial cable X8 is connected to the lower electrode of the sample X4, and the second end is connected to the first end of the coaxial cable X9.
 同軸ケーブルX9は、第1端が同軸ケーブルX8の第2端に接続されており、第2端がシールドケースX10の第1コネクタX10aに接続されている。 The first end of the coaxial cable X9 is connected to the second end of the coaxial cable X8, and the second end is connected to the first connector X10a of the shield case X10.
 シールドケースX10は、ロード抵抗Rv、R(図1の抵抗14はRvとRの直列合成抵抗に相当)を格納する。シールドケースX10の本体は、測定系Xの接地端に接続されている。シールドケースX10の第1コネクタX10aは、ロード抵抗Rv、Rを介して測定系Xの接地端に接続されている。このように、測定系Xでは、試料X4とロード抵抗Rv、Rとの間がリード線ではなく、同軸線によって接続されている。ロード抵抗Rv、Rの接続ノードは、出力電圧Vmの計測ノードとしてシールドケースX10の第2コネクタX10bに接続されている。第2コネクタX10bのグランドラインは、測定系Xの接地端に接続されている。ロード抵抗Rv、Rのうち、第1コネクタX10aと第2コネクタX10bとの間に接続される抵抗Rv(その両端電圧が計測されない抵抗)は、可変抵抗(ポテンショメータ)とされており、第2コネクタX10bと接地端との間に接続される抵抗R(その両端電圧が出力電圧Vmとして計測される抵抗)は、固定抵抗(100kΩ)とされている。 Shield case X10 stores load resistances Rv and R (resistor 14 in FIG. 1 corresponds to a combined series resistance of Rv and R). The main body of the shield case X10 is connected to the ground terminal of the measurement system X. The first connector X10a of the shield case X10 is connected to the ground terminal of the measurement system X via load resistors Rv and R. As described above, in the measurement system X, the sample X4 and the load resistors Rv and R are connected not by the lead wire but by the coaxial wire. A connection node of the load resistors Rv and R is connected to the second connector X10b of the shield case X10 as a measurement node of the output voltage Vm. The ground line of the second connector X10b is connected to the ground terminal of the measurement system X. Of the load resistances Rv and R, a resistance Rv (a resistance whose voltage is not measured at both ends) connected between the first connector X10a and the second connector X10b is a variable resistance (potentiometer). A resistor R connected between X10b and the ground terminal (a resistance whose voltage is measured as the output voltage Vm) is a fixed resistor (100 kΩ).
 同軸ケーブルX11は、シールドケースX10の第2コネクタX10bとローパスフィルタX12の入力端との間を接続する。 The coaxial cable X11 connects between the second connector X10b of the shield case X10 and the input end of the low-pass filter X12.
 ローパスフィルタX12は、出力電圧Vmに重畳するノイズを除去する。ローパスフィルタX12のカットオフ周波数fcは、200Hzに設定されている。 The low pass filter X12 removes noise superimposed on the output voltage Vm. The cut-off frequency fc of the low-pass filter X12 is set to 200 Hz.
 同軸ケーブルX13は、ローパスフィルタX12の出力端とオシロスコープX14の入力端との間を接続する。 The coaxial cable X13 connects between the output end of the low-pass filter X12 and the input end of the oscilloscope X14.
 オシロスコープX14は、出力電圧Vmの波形(電気信号の時間的変化)をグラフとして表示する。オシロスコープX14に表示されるグラフでは、縦軸が電圧値となり、横軸が時間となる。オシロスコープX14のグラウンド端子は、測定系Xの接地端に接続されている。 The oscilloscope X14 displays the waveform of the output voltage Vm (electric signal temporal change) as a graph. In the graph displayed on the oscilloscope X14, the vertical axis represents the voltage value and the horizontal axis represents the time. The ground terminal of the oscilloscope X14 is connected to the ground terminal of the measurement system X.
[実験手順]
 測定系Xを用いた実験手順は次の通りである。ステップS1では、試料X4のエレクトレットに対して図4で示したコロナ放電装置Yを用いて所定の条件(コロナ放電電圧:10kV,0.1mA、グリッド電圧1.5kV)で電荷の注入を行う。なお、図4において、符号X41、X42、X43は、それぞれ、試料Xを形成する構成要素(エレクトレット、下部電極、基板)を示している。また、符号Y1~Y4は、それぞれ、コロナ放電装置Yを形成する構成要素(グリッド、放電電極針、グリッド用電源、直流高圧電源)を示している。ステップS2では、試料X4の表面電位を測定する。ステップS3では、測定系Xに試料X4を接続する。ステップS4では、誘電体X1を電磁式加振機X3によって振動させる。ステップS5では、誘電体X1と試料X4との接近/離間に応じて生じる出力電圧Vmの波形をオシロスコープで観察する。ステップS6では、可変抵抗Rvの抵抗値を変更しながらステップS4~ステップS6を繰り返す。ステップS7では、得られた出力電圧Vmに基づいて発電装置10の発電電力Pを算出する。
[Experimental procedure]
The experimental procedure using the measurement system X is as follows. In step S1, charges are injected into the electret of the sample X4 using the corona discharge device Y shown in FIG. 4 under predetermined conditions (corona discharge voltage: 10 kV, 0.1 mA, grid voltage 1.5 kV). In FIG. 4, reference numerals X41, X42, and X43 denote components (electret, lower electrode, and substrate) that form the sample X, respectively. Reference numerals Y1 to Y4 denote components (grid, discharge electrode needle, grid power source, DC high-voltage power source) that form the corona discharge device Y, respectively. In step S2, the surface potential of the sample X4 is measured. In step S3, the sample X4 is connected to the measurement system X. In step S4, the dielectric X1 is vibrated by the electromagnetic vibrator X3. In step S5, the waveform of the output voltage Vm generated according to the approach / separation between the dielectric X1 and the sample X4 is observed with an oscilloscope. In step S6, steps S4 to S6 are repeated while changing the resistance value of the variable resistor Rv. In step S7, the generated power P of the power generator 10 is calculated based on the obtained output voltage Vm.
 まず、出力電圧Vmの平均値Vmsを次の(11)により算出する。
 Vms=T-1×∫0 TVmdt … (11)
First, the average value Vms of the output voltage Vm is calculated by the following (11).
Vms = T −1 × ∫ 0 T Vmdt (11)
 ただし、出力電圧Vmの波形が正弦波に近い場合、出力電圧Vmの最大振幅Vpp(ピークトゥピーク値)を計測することで、Vms≒0.354×Vppという式により、平均値Vmsの概算値を求めることが可能である。 However, when the waveform of the output voltage Vm is close to a sine wave, by measuring the maximum amplitude Vpp (peak-to-peak value) of the output voltage Vm, an approximate value of the average value Vms is obtained by the equation Vms≈0.354 × Vpp. Can be obtained.
 次に、ロード抵抗(R+Rv)に発生する電圧VLを次の(12)式により算出する。
 VL=Vms×(R+Rv)/R … (12)
Next, the voltage VL generated in the load resistance (R + Rv) is calculated by the following equation (12).
VL = Vms × (R + Rv) / R (12)
 そして、次の(13)式を用いて電圧VLから発電電力Pを算出することができる。
 P=VL2/(R+Rv) … (13)
Then, the generated power P can be calculated from the voltage VL using the following equation (13).
P = VL 2 / (R + Rv) (13)
[実験結果]
 まず、試料X4の表面電位測定結果について説明する。ステップS1の電荷注入後における試料X4表面の平均電位は、約-525Vとなっていた。
[Experimental result]
First, the measurement result of the surface potential of the sample X4 will be described. The average potential on the surface of the sample X4 after the charge injection in step S1 was about −525V.
 次に、可変抵抗Rvの抵抗値を変化させながら実施された振動発電実験の結果について説明する。図5は、可変抵抗Rv[MΩ]と出力電圧Vmの最大振幅Vpp[V]及び発電電力Pm[μW]との関係を示すテーブルである。図6は、可変抵抗Rv[MΩ]と出力電圧Vmの最大振幅Vpp[V]との関係を示すグラフである。図7は、可変抵抗Rv[MΩ]と発電電力Pm[μW]との関係を示すグラフである。可変抵抗Rvが10MΩであるときに、発電電力Pmが最大値(975[μW]=0.97[mW])となることが確認された。このように、測定系Xを用いた振動発電実験では、極めて大きな発電量(mWオーダ)を得ることができた。 Next, the results of the vibration power generation experiment performed while changing the resistance value of the variable resistor Rv will be described. FIG. 5 is a table showing the relationship between the variable resistor Rv [MΩ], the maximum amplitude Vpp [V] of the output voltage Vm, and the generated power Pm [μW]. FIG. 6 is a graph showing the relationship between the variable resistor Rv [MΩ] and the maximum amplitude Vpp [V] of the output voltage Vm. FIG. 7 is a graph showing the relationship between the variable resistance Rv [MΩ] and the generated power Pm [μW]. When the variable resistance Rv was 10 MΩ, it was confirmed that the generated power Pm was the maximum value (975 [μW] = 0.97 [mW]). Thus, in the vibration power generation experiment using the measurement system X, an extremely large power generation amount (mW order) could be obtained.
 図8Aは、最大電力出力時のオシロスコープ波形図である。図8Aの上段には振動シミュレータの駆動波形が描写されており、駆動信号が正弦波であることから、電磁式加振機X3に設置された誘電体X4は単振動していることが分かる。一方、図8Aの下段には出力電圧Vmの出力波形が描写されている。この出力電圧Vmの出力波形は、正弦波とは異なる形状をしている。ただし、この波形はノイズ等の外乱要素により正弦波が歪んだものではなく、理論的に正しい波形である。このことを次項で説明する。 FIG. 8A is an oscilloscope waveform diagram at the time of maximum power output. The drive waveform of the vibration simulator is depicted in the upper part of FIG. 8A, and since the drive signal is a sine wave, it can be seen that the dielectric X4 installed in the electromagnetic exciter X3 performs a single vibration. On the other hand, the output waveform of the output voltage Vm is depicted in the lower part of FIG. 8A. The output waveform of the output voltage Vm has a different shape from the sine wave. However, this waveform is not a sine wave distorted by a disturbance element such as noise, but is a theoretically correct waveform. This will be explained in the next section.
 図8Bは、ギャップ距離Gに対する出力電圧Vmのシミュレーション波形である。図8Bの上段には試料X1と誘電体X4とのギャップ距離が描写されており、図8Bの下段には先出の(3)式から(9)式を用いて理論的に算出した測定系Xの出力電圧Vmが描写されている。計算に使用したパラメータには、実際の発電実験において測定系Xで用いた試料X1、誘電体X4、抵抗R及びRvの持つパラメータと同一の数値を入力した。ただし、試料X1と誘電体X4とのギャップ距離Gの初期値(すなわち(7)式中のX0)、及び、電磁式加振機X3が誘電体X4に与えた振動の振幅(すなわち(7)式中のA)については、正確な数値が測定できなかった。そこで、試料X1と誘電体X4とのギャップ距離Gが図8Bの上段に描写した波形のように変化したと仮定して演算を行った。図8Aと図8Bの波形は非常によく一致しており、測定された出力電圧Vmが提案する原理に基づいた発電の結果として出力されたことが証明されたと言える。 FIG. 8B is a simulation waveform of the output voltage Vm with respect to the gap distance G. The upper part of FIG. 8B depicts the gap distance between the sample X1 and the dielectric X4, and the lower part of FIG. 8B shows the measurement system theoretically calculated using the above equations (3) to (9). The output voltage Vm of X is depicted. As parameters used for the calculation, the same numerical values as those of the sample X1, the dielectric X4, and the resistors R and Rv used in the measurement system X in the actual power generation experiment were input. However, the initial value of the gap distance G between the sample X1 and the dielectric X4 (that is, X0 in the equation (7)) and the amplitude of the vibration applied to the dielectric X4 by the electromagnetic exciter X3 (that is, (7) For A) in the formula, an accurate numerical value could not be measured. Therefore, the calculation was performed on the assumption that the gap distance G between the sample X1 and the dielectric X4 changed like the waveform depicted in the upper part of FIG. 8B. The waveforms in FIG. 8A and FIG. 8B agree very well, and it can be said that it was proved that the measured output voltage Vm was output as a result of power generation based on the proposed principle.
 次に、誘電体X1の裏面におけるアルミ板X2の電気的接続と発電量との関係について説明する。アルミ板X2を測定系Xの接地端から切り離した状態で、先と同様の振動発電実験を行った。図9は、誘電体X1裏面の電気的接続状態による発電量の比較図である。図9で示したように、アルミ板X2を測定系Xの接地端に接続した場合(黒塗りの棒グラフ)と接続しない場合(ハッチング付きの棒グラフ)とでは、出力電圧Vmの最大振幅Vpp及び発電電力Pmの双方に差違を生じることが確認された。この現象について、次の第2構成例及び第3構成例を挙げながら詳細に説明する。 Next, the relationship between the electrical connection of the aluminum plate X2 on the back surface of the dielectric X1 and the power generation amount will be described. With the aluminum plate X2 separated from the grounding end of the measurement system X, the same vibration power generation experiment as that described above was performed. FIG. 9 is a comparison diagram of the amount of power generation according to the electrical connection state of the back surface of the dielectric X1. As shown in FIG. 9, the maximum amplitude Vpp of the output voltage Vm and the power generation when the aluminum plate X2 is connected to the ground terminal of the measurement system X (black bar graph) and when it is not connected (hatched bar graph). It was confirmed that there was a difference in both power Pm. This phenomenon will be described in detail with reference to the following second configuration example and third configuration example.
<第2構成例>
 図10は、発電装置の第2構成例を示す模式図である。第2構成例の発電装置10は、第1構成例とほぼ同様の構成であり、誘電体11の上面側に設けられていた上部電極15が取り除かれた点に特徴を有している。すなわち、第2構成例の発電装置10は、誘電体11に何ら電極が接続されていない構成である言える。別の見方をすれば、第2構成例の発電装置10は、誘電体11を含む可動部の全体が電気的にフローティング状態(何らかの電位点に接続されていない状態)とされた構成であるとも言える。なお、誘電体11を含む可動部の全体は、例えば絶縁体(絶縁性のバネなど)で保持するとよい。
<Second configuration example>
FIG. 10 is a schematic diagram illustrating a second configuration example of the power generation device. The power generation device 10 of the second configuration example has substantially the same configuration as the first configuration example, and is characterized in that the upper electrode 15 provided on the upper surface side of the dielectric 11 is removed. That is, it can be said that the power generation device 10 of the second configuration example has a configuration in which no electrode is connected to the dielectric 11. From another viewpoint, the power generation device 10 of the second configuration example is configured such that the entire movable portion including the dielectric 11 is in an electrically floating state (not connected to any potential point). I can say that. In addition, the whole movable part including the dielectric 11 is good to hold | maintain with an insulator (insulating spring etc.), for example.
 先述の第1構成例と異なり、第2構成例の発電装置10では、誘電体11とエレクトレット12とを接近させた第2状態(図10下段)において、静電ポテンシャルエネルギーが高い状態(不安定な状態)となるので、第1構成例と比べると発電量が低下する。しかし、第2構成例の発電装置10では、振動する誘電体11に配線を接続する必要がないので、デバイス作製の容易性や発電動作の安定性の点では、第1構成例よりも有利である。 Unlike the first configuration example described above, in the power generation device 10 of the second configuration example, the electrostatic potential energy is high (unstable) in the second state (lower stage in FIG. 10) in which the dielectric 11 and the electret 12 are brought close to each other. Therefore, the amount of power generation is reduced compared to the first configuration example. However, in the power generation device 10 of the second configuration example, it is not necessary to connect a wiring to the vibrating dielectric body 11, and therefore, it is more advantageous than the first configuration example in terms of ease of device fabrication and power generation operation stability. is there.
<第3構成例>
 図11は、発電装置の第3構成例を示す模式図である。第3構成例の発電装置10は、第1構成例とほぼ同様の構成であり、誘電体11の上面側に電気的にフローティング状態の金属体18が形成されている点に特徴を有している。金属体18は、何らかの電位点(接地端)に接続されることを意図した上部電極15とは異なり、電気的にフローティング状態とされた金属製の部材である。従って、第3構成例の発電装置10は、誘電体11を含む可動部の全体が電気的にフローティング状態とされた構成であるという点で、先の第2構成例と共通する。なお、金属体18は、板状であっても膜状であっても構わない。
<Third configuration example>
FIG. 11 is a schematic diagram illustrating a third configuration example of the power generation device. The power generation device 10 of the third configuration example has substantially the same configuration as the first configuration example, and is characterized in that an electrically floating metal body 18 is formed on the upper surface side of the dielectric 11. Yes. Unlike the upper electrode 15 intended to be connected to some potential point (grounding end), the metal body 18 is a metal member that is in an electrically floating state. Therefore, the power generation apparatus 10 of the third configuration example is common to the previous second configuration example in that the entire movable portion including the dielectric 11 is in an electrically floating state. The metal body 18 may be plate-shaped or film-shaped.
 第3構成例の発電装置10では、誘電体11とエレクトレット12とを接近させた第2状態(図11下段)において、誘電体11の内部分極によって誘電体11の上面に負の分極電荷が局在化する。従って、金属体18の下面(誘電体11との界面)には、上記した負の分極電荷に引き寄せられて金属内正電荷が誘起される。 In the power generation device 10 of the third configuration example, in the second state (lower stage in FIG. 11) in which the dielectric 11 and the electret 12 are brought close to each other, negative polarization charges are locally generated on the upper surface of the dielectric 11 due to internal polarization of the dielectric 11. It becomes natural. Therefore, on the lower surface of the metal body 18 (interface with the dielectric 11), the above-described negative polarization charge is attracted to induce a positive charge in the metal.
 先述の第1構成例と異なり、第3構成例の発電装置10では、金属体18が接地端に接続されていないので、接地端から金属体18に正電荷を引き寄せることはできない。しかしながら、金属体18には、多数の自由電子(図11では、白色の丸印にマイナス符号を付したシンボルとして描写)が存在するので、この自由電子が金属体18と誘電体11との界面から遠ざかることにより、接地端から金属体18に正電荷が引き寄せられたときと同様の効果が得られる。 Unlike the first configuration example described above, in the power generation device 10 of the third configuration example, the metal body 18 is not connected to the ground end, and therefore, a positive charge cannot be drawn from the ground end to the metal body 18. However, since the metal body 18 has a large number of free electrons (illustrated as a symbol in which a minus sign is added to a white circle in FIG. 11), the free electrons are present at the interface between the metal body 18 and the dielectric 11. By moving away from the ground, the same effect as when a positive charge is attracted to the metal body 18 from the ground end can be obtained.
 上記の効果により、第3構成例の発電装置10は、上部電極15を完全に排除した第2構成例よりも高い発電量を得ることが可能となる。ただし、第3構成例の発電装置10では、金属体18内部に生じる電荷の偏り(電位差)によって上記の効果が阻害される。従って、第3構成例の発電装置10は、上部電極15が接地端に接続された第1構成例と比べると発電量が低下する。しかし、第3構成例の発電装置10では、先述の第2構成例と同じく、振動する誘電体11に配線を接続する必要がないので、デバイス作製の容易性や発電動作の安定性の点では、第1構成例よりも有利である。 Due to the above effect, the power generation apparatus 10 of the third configuration example can obtain a higher power generation amount than the second configuration example in which the upper electrode 15 is completely eliminated. However, in the power generation device 10 of the third configuration example, the above-described effect is hindered by the charge bias (potential difference) generated in the metal body 18. Therefore, the power generation device 10 of the third configuration example has a lower power generation amount than the first configuration example in which the upper electrode 15 is connected to the ground terminal. However, in the power generation device 10 of the third configuration example, it is not necessary to connect a wiring to the vibrating dielectric body 11 as in the above-described second configuration example, so that in terms of ease of device fabrication and stability of power generation operation, This is more advantageous than the first configuration example.
 このように、発電量に関して見れば、第1構成例>第3構成例>第2構成例という優劣があり、また、デバイス作製の容易性や発電動作の安定性に関して見れば、第2構成例=第3構成例>第1構成例という優劣がある。従って、発電装置10の構成については、いずれか一つが常に最善であると言うことはできず、その用途や要求される特性に応じて、第1~第3構成例のいずれかを採用することが望ましい。 Thus, in terms of the amount of power generation, the first configuration example> the third configuration example> the second configuration example has superiority and inferiority, and in terms of the ease of device fabrication and the stability of the power generation operation, the second configuration example = Third configuration example> There is a superiority or inferiority of the first configuration example. Accordingly, it cannot be said that any one of the configurations of the power generation apparatus 10 is always the best, and any one of the first to third configuration examples should be adopted according to the application and required characteristics. Is desirable.
<パッケージング>
 図12は、発電装置の第1パッケージング例を示す模式図(横方向から見た断面図)である。第1パッケージング例の発電装置20は、基板21と、下部電極22と、エレクトレット23と、誘電体24(誘電体、電極、重錘が一体となったもの)と、パッケージ25と、接着剤26と、ワイヤ27と、を有する。なお、以下の説明において、誘電体24に接続される上部電極の有無は問わない。
<Packaging>
FIG. 12 is a schematic diagram (cross-sectional view seen from the lateral direction) illustrating a first packaging example of the power generation device. The power generation device 20 of the first packaging example includes a substrate 21, a lower electrode 22, an electret 23, a dielectric 24 (a combination of a dielectric, an electrode, and a weight), a package 25, and an adhesive 26 and a wire 27. In the following description, it does not matter whether there is an upper electrode connected to the dielectric 24.
 下部電極22は、基板21の上面に形成されている。エレクトレット23は、下部電極22を被覆するように形成されている。ただし、下部電極22の一端は、エレクトレット23から露出して基板21の端部まで延出されており、その端部においてワイヤ27と接続されている。ワイヤ27は、不図示の抵抗を介して接地端に接続されている。パッケージ25は、一面に開口部が設けられたカバー部材(円筒、柱筒、半球など)であり、内部にエレクトレット23と誘電体24を収納する形で開口部が基板21と接着剤26により接合されている。パッケージ25は、レジンやアクリルなどの樹脂製とすればよい。 The lower electrode 22 is formed on the upper surface of the substrate 21. The electret 23 is formed so as to cover the lower electrode 22. However, one end of the lower electrode 22 is exposed from the electret 23 and extends to the end of the substrate 21, and is connected to the wire 27 at the end. The wire 27 is connected to the ground terminal via a resistor (not shown). The package 25 is a cover member (cylindrical, columnar, hemispherical, etc.) provided with an opening on one surface, and the opening is bonded to the substrate 21 and the adhesive 26 so as to accommodate the electret 23 and the dielectric 24 inside. Has been. The package 25 may be made of resin such as resin or acrylic.
 第1パッケージング例の発電装置20において、誘電体24は、何ら支持されることなくパッケージ24の内壁に沿って変位自在(上下動自在)に収納されている。発電装置20が静止状態であるとき、誘電体24は静電引力によってエレクトレット23と接近した状態(図1下段の第2状態に相当)となる。従って、外部から運動エネルギー(振動)を与えることにより、誘電体24をエレクトレット23から離間させてやれば、運動エネルギーを電気エネルギーに変換することが可能となる。 In the power generation apparatus 20 of the first packaging example, the dielectric 24 is accommodated so as to be displaceable (movable up and down) along the inner wall of the package 24 without being supported at all. When the power generation device 20 is in a stationary state, the dielectric 24 is in a state of being close to the electret 23 by electrostatic attraction (corresponding to the second state in the lower part of FIG. 1). Therefore, if the dielectric 24 is separated from the electret 23 by applying kinetic energy (vibration) from the outside, the kinetic energy can be converted into electric energy.
 図13は、発電装置の第2パッケージング例を示す模式図である。第2パッケージング例は、第1パッケージング例とほぼ同様の構成であり、パッケージ25の内部で誘電体24を吊下支持する弾性部材31を有する点に特徴を有している。弾性部材31としては、コイルバネや蛇腹バネ(ミアンダ形状)を用いればよい。このような構成とすることにより、誘電体24をエレクトレット23から離間するための運動エネルギーを引き下げることができるので、より小さな振動によって発電を行うことが可能とある。また、パッケージ25の天面と誘電体24との接触を防止することも可能となる。 FIG. 13 is a schematic diagram showing a second packaging example of the power generation device. The second packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 31 that supports the dielectric 24 in a suspended manner inside the package 25. As the elastic member 31, a coil spring or a bellows spring (meander shape) may be used. By adopting such a configuration, the kinetic energy for separating the dielectric 24 from the electret 23 can be lowered, so that it is possible to generate electric power with smaller vibrations. It is also possible to prevent contact between the top surface of the package 25 and the dielectric 24.
 図14は、発電装置の第3パッケージング例を示す模式図である。第3パッケージング例は、第1パッケージング例とほぼ同様の構成であり、パッケージ25の内部で誘電体24を両端支持する弾性部材32を有する点に特徴を有している。弾性部材32としては、コイルバネや蛇腹バネ(ミアンダ形状)を用いればよい。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の内側面と誘電体24との接触を防止することが可能となる。 FIG. 14 is a schematic diagram showing a third packaging example of the power generation device. The third packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 32 that supports both ends of the dielectric 24 inside the package 25. As the elastic member 32, a coil spring or a bellows spring (a meander shape) may be used. With this configuration, it is possible to prevent contact between the inner surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
 図15は、発電装置の第4パッケージング例を示す模式図である。第4パッケージング例は、第1パッケージング例とほぼ同様の構成であり、パッケージ25の天面で誘電体24を反発する弾性部材33を有する点に特徴を有している。弾性部材33としては、板バネを用いればよい。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の天面と誘電体24との接触を防止することが可能となる。 FIG. 15 is a schematic diagram showing a fourth packaging example of the power generation device. The fourth packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 33 that repels the dielectric 24 on the top surface of the package 25. A plate spring may be used as the elastic member 33. With such a configuration, it is possible to prevent contact between the top surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
 図16は、発電装置の第5パッケージング例を示す模式図(上方向から見た断面図)である。第5パッケージング例は、第1パッケージング例とほぼ同様の構成であり、パッケージ25の内部で誘電体24の水平移動を抑制しつつ上下動を支持する弾性部材34を有する点に特徴を有している。第5パッケージング例の振動装置20において、誘電体24及びパッケージ25は、平面視したときの断面が矩形状となるように形成されている。弾性部材34としては、誘電体24の4側面を各々と直交する支持面(パッケージ25の内側面)から片持支持する4つの板バネを組み合わせたもの(いわゆる卍バネ)を用いればよい。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の内側面と誘電体24との接触を防止することが可能となる。 FIG. 16 is a schematic diagram (cross-sectional view seen from above) showing a fifth packaging example of the power generation device. The fifth packaging example has substantially the same configuration as the first packaging example, and is characterized in that it has an elastic member 34 that supports vertical movement while suppressing horizontal movement of the dielectric 24 inside the package 25. is doing. In the vibration device 20 of the fifth packaging example, the dielectric 24 and the package 25 are formed so that a cross section when viewed from above is rectangular. As the elastic member 34, a combination of four leaf springs that cantilever-support the four side surfaces of the dielectric 24 from the support surfaces (inner side surfaces of the package 25) orthogonal to each other may be used. With this configuration, it is possible to prevent contact between the inner surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
 図17は、発電装置の第6パッケージング例を示す模式図である。第6パッケージング例は、第1パッケージング例とほぼ同様の構成であり、誘電体24とパッケージ25に各々反発し合う磁石35a及び35b(磁力バネ)を有する点に特徴を有している。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の天面と誘電体24との接触を防止することが可能となる。 FIG. 17 is a schematic diagram showing a sixth packaging example of the power generation device. The sixth packaging example has substantially the same configuration as the first packaging example, and is characterized by having magnets 35a and 35b (magnetic springs) repelling the dielectric 24 and the package 25, respectively. With such a configuration, it is possible to prevent contact between the top surface of the package 25 and the dielectric 24 without hindering the vertical movement of the dielectric 24.
 図18は、発電装置の第7パッケージング例を示す模式図である。第7パッケージング例は、第1パッケージング例とほぼ同様の構成であり、誘電体24とエレクトレット23に各々反発し合う磁石36a及び36b(磁力バネ)を有する点に特徴を有している。このような構成とすることにより、誘電体24をエレクトレット23から離間するための運動エネルギーを引き下げることができるので、より小さな振動によって発電を行うことが可能とある。また、エレクトレット23と誘電体24との接触を防止することもできる。 FIG. 18 is a schematic diagram showing a seventh packaging example of the power generation device. The seventh packaging example has substantially the same configuration as the first packaging example, and is characterized by having magnets 36a and 36b (magnetic springs) repelling the dielectric 24 and the electret 23, respectively. By adopting such a configuration, the kinetic energy for separating the dielectric 24 from the electret 23 can be lowered, so that it is possible to generate electric power with smaller vibrations. Further, the contact between the electret 23 and the dielectric 24 can be prevented.
 図19は、発電装置の第8パッケージング例を示す模式図である。第8パッケージング例は、第1パッケージング例とほぼ同様の構成であり、エレクトレット23の表面から突起したストッパ37を有する点に特徴を有している。なお、ストッパ37は、誘電体24の表面に設けてもよい。このような構成とすることにより、誘電体24をエレクトレット23から離間するための運動エネルギーを引き下げることができるので、より小さな振動によって発電を行うことが可能とある。また、エレクトレット23と誘電体24との接触を防止することもできる。 FIG. 19 is a schematic diagram showing an eighth packaging example of the power generation device. The eighth packaging example has substantially the same configuration as the first packaging example, and is characterized by having a stopper 37 protruding from the surface of the electret 23. The stopper 37 may be provided on the surface of the dielectric 24. By adopting such a configuration, the kinetic energy for separating the dielectric 24 from the electret 23 can be lowered, so that it is possible to generate electric power with smaller vibrations. Further, the contact between the electret 23 and the dielectric 24 can be prevented.
 なお、上記の第1~第8パッケージング例で個別に説明した構成については、任意の組み合わせが可能である。また、バネを設けた構成では、発電装置20に与えられる振動の周波数がバネ固有の共振周波数と一致するように、バネ定数を設計することが望ましい。一方、発電装置20に与えられる振動の周波数が不定である場合には、バネを設けない構成を採用するか、柔らかいバネ(バネ定数の小さいバネ)を用いることが望ましい。 Note that the configurations individually described in the first to eighth packaging examples above can be arbitrarily combined. Further, in the configuration in which the spring is provided, it is desirable to design the spring constant so that the frequency of vibration applied to the power generation device 20 matches the resonance frequency unique to the spring. On the other hand, when the frequency of vibration applied to the power generation device 20 is indefinite, it is desirable to adopt a configuration in which no spring is provided or to use a soft spring (a spring having a small spring constant).
<誘電体のガイド機構>
 図20は、誘電体の第1ガイド例を示す模式図(上面図及び横方向からの断面図)である。第1ガイド例の振動装置20において、誘電体24及びパッケージ25は、発電装置20を平面視したときに、各々の外縁ないし内縁が円形状となるように形成されている。誘電体24は、パッケージ25の内壁との間にボール部材38(鋼球)を挟み込んだ形で収納されている。ボール部材38は、発電装置20を平面視したときに、誘電体24の外縁周(パッケージ25の内縁周)を4等分する位置に各々設けられている。誘電体24には、ボール部材38の当接位置にそれぞれ上下方向のレール溝24aが形成されている。一方、パッケージ25の内壁には、ボール部材38の当接位置にそれぞれ凹状の球受部25aが形成されている。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の内側面と誘電体24との接触を防止することができる。
<Dielectric guide mechanism>
FIG. 20 is a schematic diagram (a top view and a cross-sectional view from the lateral direction) showing a first guide example of a dielectric. In the vibration device 20 of the first guide example, the dielectric 24 and the package 25 are formed so that each outer edge or inner edge has a circular shape when the power generation device 20 is viewed in plan. The dielectric 24 is accommodated in a form in which a ball member 38 (steel ball) is sandwiched between the inner wall of the package 25. The ball members 38 are respectively provided at positions that divide the outer periphery of the dielectric 24 (the inner periphery of the package 25) into four equal parts when the power generation device 20 is viewed in plan. In the dielectric 24, vertical rail grooves 24 a are formed at the contact positions of the ball members 38. On the other hand, a concave ball receiving portion 25 a is formed on the inner wall of the package 25 at the contact position of the ball member 38. With such a configuration, contact between the inner surface of the package 25 and the dielectric 24 can be prevented without inhibiting the vertical movement of the dielectric 24.
 図21は、誘電体の第2ガイド例を示す模式図(上面図及び横方向からの断面図)である。第1ガイド例と同様、第2ガイド例の振動装置20において、誘電体24及びパッケージ25は、発電装置20を平面視したときに、各々の外縁ないし内縁が円形状となるように形成されている。誘電体24は、パッケージ25の内壁に対してレール部材39を当接させた形で収納されている。レール部材39は、発電装置20を平面視したときに、誘電体24の外縁周(パッケージ25の内縁周)を4等分する位置に各々設けられている。パッケージ25の内壁には、レール部材39の当接位置にそれぞれ上下方向のレール溝25bが形成されている。このような構成とすることにより、誘電体24の上下動を阻害することなく、パッケージ25の内側面と誘電体24との接触を防止することができる。なお、レール部材39は、誘電体24を加工して一体的に形成してもよいし、誘電体24とは異なる摺動性の良い素材(フッ素樹脂など)で別途形成してもよい。 FIG. 21 is a schematic diagram (a top view and a cross-sectional view from the lateral direction) showing a second guide example of a dielectric. Similar to the first guide example, in the vibration device 20 of the second guide example, the dielectric 24 and the package 25 are formed so that each outer edge or inner edge has a circular shape when the power generation device 20 is viewed in plan. Yes. The dielectric 24 is stored in a form in which a rail member 39 is in contact with the inner wall of the package 25. The rail members 39 are respectively provided at positions that divide the outer periphery of the dielectric 24 (the inner periphery of the package 25) into four equal parts when the power generation device 20 is viewed in plan. In the inner wall of the package 25, vertical rail grooves 25 b are formed at the contact positions of the rail members 39. With such a configuration, contact between the inner surface of the package 25 and the dielectric 24 can be prevented without inhibiting the vertical movement of the dielectric 24. The rail member 39 may be integrally formed by processing the dielectric 24, or may be separately formed of a material having good slidability (fluorine resin or the like) different from the dielectric 24.
<グランドリング>
 次に、誘電体側に電極を設けない構成(図10の第2構成例を参照)を採用する上で、有益となるグランドリングについて説明する。図22は、グランドリングの第1適用例を示す模式図(横方向からの断面図)である。なお、図中の矢印は電気力線を示している。第1適用例の発電装置40は、誘電体41と、エレクトレット42と、下部電極43と、抵抗44と、グランドリング45と、を有する。グランドリング45は、所定の距離を隔ててエレクトレット42と下部電極43の周囲を取り囲むように形成された導電部材(例えばアルミニウム)である。なお、グランドリング45は接地端に直接接続されている。
<Grand Ring>
Next, a description will be given of a ground ring that is beneficial in adopting a configuration in which no electrode is provided on the dielectric side (see the second configuration example in FIG. 10). FIG. 22 is a schematic diagram (cross-sectional view from the lateral direction) showing a first application example of the ground ring. In addition, the arrow in a figure has shown the electric force line. The power generation device 40 of the first application example includes a dielectric 41, an electret 42, a lower electrode 43, a resistor 44, and a ground ring 45. The ground ring 45 is a conductive member (for example, aluminum) formed so as to surround the electret 42 and the lower electrode 43 with a predetermined distance therebetween. The ground ring 45 is directly connected to the ground end.
 発電装置40において、誘電体41とエレクトレット42を接近させると、誘電体41の内部分極により誘電体41の上面に負の分極電荷が局在化する。ここで、第1適用例の発電装置40であれば、誘電体41の負電荷からグランドリング45の正電荷に向けて電気力線を逃がすことができるので、誘電体41の負電荷とエレクトレット42の負電荷との反発を抑制することが可能となり、延いては、発電効率を高めることが可能となる。 When the dielectric 41 and the electret 42 are brought close to each other in the power generation device 40, negative polarization charges are localized on the upper surface of the dielectric 41 due to internal polarization of the dielectric 41. Here, in the power generation device 40 of the first application example, the electric lines of force can be released from the negative charge of the dielectric 41 toward the positive charge of the ground ring 45, and thus the negative charge of the dielectric 41 and the electret 42. It is possible to suppress the repulsion with the negative charge, and it is possible to increase the power generation efficiency.
 図23は、グランドリングの第2適用例を示す模式図(横方向からの断面図)である。なお、図23中の矢印は電気力線を示している。本図で示したように、グランドリング45は、必ずしもエレクトレット42と下部電極43の周囲を取り囲むように形成する必要はなく、エレクトレット42とグランドリング45を互いに隣接させて交互に配置してもよい。このような構成であれば、誘電体41内部で水平方向の分極が生じたときに、誘電体41の負電荷からグランドリング45の正電荷に向けて電気力線を逃がすことができるので、誘電体41の負電荷とエレクトレット42の負電荷との反発を抑制することが可能となり、延いては、発電効率を高めることが可能となる。 FIG. 23 is a schematic diagram (cross-sectional view from the lateral direction) showing a second application example of the ground ring. In addition, the arrow in FIG. 23 has shown the electric force line. As shown in this figure, the ground rings 45 are not necessarily formed so as to surround the electret 42 and the lower electrode 43, and the electrets 42 and the ground rings 45 may be alternately arranged adjacent to each other. . With such a configuration, the electric lines of force can be released from the negative charge of the dielectric 41 toward the positive charge of the ground ring 45 when horizontal polarization occurs in the dielectric 41. It is possible to suppress the repulsion between the negative charge of the body 41 and the negative charge of the electret 42, and thus it is possible to increase the power generation efficiency.
<誘電体及び下部電極の形状>
 図24は、誘電体の形状と下部電極の形状との組合わせ例を示す模式図である。本例の発電装置50は、誘電体51と、エレクトレット52と、下部電極53と、基板54と、を有する。
<Shapes of dielectric and lower electrode>
FIG. 24 is a schematic diagram showing a combination example of the shape of the dielectric and the shape of the lower electrode. The power generation device 50 of this example includes a dielectric 51, an electret 52, a lower electrode 53, and a substrate 54.
 誘電体51は、エレクトレット52と対向する下面が平坦化された構成(図24の左側を参照)としてもよいし、下面がパターニングされた構成(図24の右側を参照)としてもよい。前者の構成では、誘電体51とエレクトレット52とのギャップ距離を均一化することができる。後者の構成では、パターニングにより先鋭化された箇所に電気力線が集まりやすくなるので、パターニングの最適化によっては発電効率の向上が期待できる。 The dielectric 51 may have a configuration in which the lower surface facing the electret 52 is flattened (see the left side in FIG. 24) or a configuration in which the lower surface is patterned (see the right side in FIG. 24). In the former configuration, the gap distance between the dielectric 51 and the electret 52 can be made uniform. In the latter configuration, the lines of electric force are likely to gather at locations sharpened by patterning, so that it is possible to expect improvement in power generation efficiency depending on the optimization of patterning.
 また、下部電極53は、パターニングを施すことなく面状(図25)に形成してもよいし、或いは、パターニングを施して櫛歯状(図26)や渦巻き状(図27)に形成してもよい。ただし、発電効率を鑑みれば、前者の構成を採用することが望ましい。 Further, the lower electrode 53 may be formed in a planar shape (FIG. 25) without patterning, or may be formed in a comb-like shape (FIG. 26) or a spiral shape (FIG. 27) by patterning. Also good. However, in view of power generation efficiency, it is desirable to adopt the former configuration.
 なお、誘電体51の形状(パターニングあり/なし)と下部電極の形状(パターニングあり/なし)の組み合わせについては任意である。 The combination of the shape of the dielectric 51 (with / without patterning) and the shape of the lower electrode (with / without patterning) is arbitrary.
<3軸化>
 図28は、3軸化を実現するための第1構造を示す模式図である。第1構造の発電装置60は、誘電体61と、エレクトレット62と、下部電極63と、を有する。誘電体61には、凸部61aが複数形成されており、エレクトレット62には、所定の隙間を設けて凸部61aが嵌合される凹部62aが複数形成されている。また、図28では描写されていないが、発電装置60は、紙面の奥行方向にも同様の構造を有する。このような構造を採用することにより、誘電体61が紙面の上下方向に振動する場合であっても、誘電体61が紙面の左右方向に振動する場合であっても、或いは、誘電体61が紙面の奥行方向に振動する場合であっても、誘電体61とエレクトレット62とのギャップ距離が変化するので、効率よく発電を行うことが可能となる。
<Three axes>
FIG. 28 is a schematic diagram showing a first structure for realizing triaxialization. The power generator 60 having the first structure includes a dielectric 61, an electret 62, and a lower electrode 63. The dielectric 61 is formed with a plurality of convex portions 61a, and the electret 62 is formed with a plurality of concave portions 62a into which the convex portions 61a are fitted with a predetermined gap. Although not depicted in FIG. 28, the power generation device 60 has a similar structure in the depth direction of the paper surface. By adopting such a structure, even when the dielectric 61 vibrates in the vertical direction of the paper, even when the dielectric 61 vibrates in the horizontal direction of the paper, Even in the case of vibrating in the depth direction of the paper, the gap distance between the dielectric 61 and the electret 62 changes, so that it is possible to efficiently generate power.
 また、第1構造の発電装置60において、エレクトレット62は、誘電体61の両側にそれぞれ配置されている。このような構成とすることにより、発電効率をさらに高めることが可能となる。また、図28では描写されていないが、誘電体61を多段に重ねて設けておき、各々の両面にエレクトレット62を配置する構成とすれば、さらなる発電効率の向上が期待できる。なお、このような多層構造は、凸部61aや凹部62aを備えていない先述の基本構成(図1など)にも当然に適用することが可能である。 Further, in the power generator 60 having the first structure, the electrets 62 are disposed on both sides of the dielectric 61, respectively. With such a configuration, it is possible to further increase the power generation efficiency. Further, although not depicted in FIG. 28, further improvement in power generation efficiency can be expected if dielectrics 61 are provided in multiple stages and electrets 62 are arranged on both sides. Note that such a multilayer structure can naturally be applied to the above-described basic configuration (such as FIG. 1) that does not include the convex portions 61a and the concave portions 62a.
 図29は、3軸化を実現するための第2構造を示す模式図である。第2構造の発電装置70において、エレクトレット72は密閉容器の内壁に形成されており、誘電体71は粒子化されて密閉容器の内側に封入されている。下部電極73は、エレクトレット72の外周側を取り囲むように形成されており、抵抗74を介して接地端に接続されている。このような構造を採用することにより、発電装置70に対していかなる方向の振動が与えられた場合であっても、誘電体71とエレクトレット72とのギャップ距離が変化するので、効率よく発電を行うことが可能となる。 FIG. 29 is a schematic diagram showing a second structure for realizing triaxialization. In the power generator 70 having the second structure, the electret 72 is formed on the inner wall of the sealed container, and the dielectric 71 is made into particles and enclosed inside the sealed container. The lower electrode 73 is formed so as to surround the outer peripheral side of the electret 72, and is connected to the ground terminal via the resistor 74. By adopting such a structure, the gap distance between the dielectric 71 and the electret 72 changes even when vibration is applied to the power generation apparatus 70 in any direction, so that power generation is performed efficiently. It becomes possible.
 図30は、3軸化を実現するための第3構造を示す模式図である。第3構造の発電装置80において、エレクトレット82は密閉球体の内壁に形成されており、誘電体81は球体化されて密閉球体の内側に封入されている。下部電極83は、エレクトレット82の外周側を取り囲むように形成されており、抵抗84を介して接地端に接続されている。このような構造を採用することにより、発電装置80に対していかなる方向の振動が与えられた場合であっても、誘電体81とエレクトレット82とのギャップ距離が変化するので、効率よく発電を行うことが可能となる。 FIG. 30 is a schematic diagram showing a third structure for realizing triaxialization. In the power generator 80 having the third structure, the electret 82 is formed on the inner wall of the sealed sphere, and the dielectric 81 is formed into a sphere and enclosed inside the sealed sphere. The lower electrode 83 is formed so as to surround the outer peripheral side of the electret 82, and is connected to the ground terminal via the resistor 84. By adopting such a structure, the gap distance between the dielectric 81 and the electret 82 changes regardless of the direction of vibration applied to the power generation device 80, so that power generation is performed efficiently. It becomes possible.
 図31は、3軸化を実現するための第4構造を示す模式図である。第4構造の発電装置90において、誘電体91は球体とされており、エレクトレット92は誘電体91を取り囲むように複数形成されている。下部電極93は、複数のエレクトレット92毎に形成されており、抵抗94を介して接地端に接続されている。このような構造を採用することにより、発電装置90に対していかなる方向の振動が与えられた場合であっても、誘電体91とエレクトレット92とのギャップ距離が変化するので、効率よく発電を行うことが可能となる。 FIG. 31 is a schematic diagram showing a fourth structure for realizing triaxialization. In the power generation device 90 having the fourth structure, the dielectric 91 is a sphere, and a plurality of electrets 92 are formed so as to surround the dielectric 91. The lower electrode 93 is formed for each of the plurality of electrets 92 and is connected to the ground terminal via a resistor 94. By adopting such a structure, the gap distance between the dielectric 91 and the electret 92 changes even when vibration is applied to the power generation device 90 in any direction. It becomes possible.
<誘電体の比誘電率と発電量>
 図32は、誘電体の比誘電率と発電量との関係を示すグラフである。図32の横軸は誘電体の比誘電率εrを示しており、図32の縦軸は発電量P[%](比誘電率εrが無限大である場合の発電量で規格化)を示している。なお、本グラフは、エレクトレットの比誘電率が2、エレクトレットの膜厚が5μm、誘電体の振動の振幅が20μm、誘電体がエレクトレットに最接近したときの空隙層(空気層)の厚み(ギャップ距離)が1μm、という仮定条件の下で、先出の(3)式~(9)式を用いて得られた演算結果を示すものである。ただし、図中の各発電電力は、誘電体の比誘電率εrが無限大である場合の発電量を100%として規格化している。また、図32の丸シンボル、四角シンボル、及び、菱形シンボルは、それぞれ、誘電体の厚みが0.01mm、0.1mm、及び、1mmであるときの演算結果を示している。
<Relative permittivity of dielectric and power generation>
FIG. 32 is a graph showing the relationship between the relative dielectric constant of the dielectric and the amount of power generation. The horizontal axis of FIG. 32 indicates the relative permittivity εr of the dielectric, and the vertical axis of FIG. 32 indicates the power generation amount P [%] (normalized by the power generation amount when the relative permittivity εr is infinite). ing. This graph shows that the dielectric constant of the electret is 2, the film thickness of the electret is 5 μm, the amplitude of vibration of the dielectric is 20 μm, and the thickness of the void layer (air layer) when the dielectric is closest to the electret (gap) The calculation results obtained using the above-described equations (3) to (9) under the assumption that the (distance) is 1 μm are shown. However, each generated power in the figure is normalized with the amount of power generated when the relative dielectric constant εr of the dielectric is infinite as 100%. In addition, the circle symbol, the square symbol, and the rhombus symbol in FIG. 32 indicate calculation results when the thicknesses of the dielectrics are 0.01 mm, 0.1 mm, and 1 mm, respectively.
 図32から分かるように、誘電体の厚みによって演算結果が変化する。誘電体の厚みが0.01mmのときは、比誘電率εrが約30のときに最大発電量の90%が得られる。一方、誘電体の厚みが1mmのときには、最大発電量の90%を得るために約3000の比誘電率εrが必要である。従って、発電量を高めるためには誘電体をできる限り薄くすることが望ましい。 32. As can be seen from FIG. 32, the calculation result changes depending on the thickness of the dielectric. When the thickness of the dielectric is 0.01 mm, 90% of the maximum power generation amount is obtained when the relative dielectric constant εr is about 30. On the other hand, when the thickness of the dielectric is 1 mm, a relative dielectric constant εr of about 3000 is required to obtain 90% of the maximum power generation amount. Therefore, in order to increase the power generation amount, it is desirable to make the dielectric as thin as possible.
 ただし、誘電体を薄くし過ぎるとエレクトレットと接触したときにエレクトレット内の電荷を放電させてしまう恐れがある。従って、発電量の増大と放電の防止の双方を鑑みれば、例えば、厚みが0.1mmであり、比誘電率εrが300以上の誘電体を使用することが適当であると考えられる。ただし、ここでの厚みと比誘電率の数値は一例であり、それ以外の値でも構わない。電荷の保持特性、発電量、装置サイズ、及び、製造コストなどを総合的に鑑みると、実用的な設計範囲として、誘電体は、厚みが0.01~1.0mm(より好ましくは0.01~0.1mm)であり、かつ、最大発電量の80%以上の発電量を得ることのできる素材を用いることが妥当である。 However, if the dielectric is made too thin, there is a risk of discharging the charge in the electret when it comes into contact with the electret. Therefore, in view of both the increase in the amount of power generation and prevention of discharge, it is considered appropriate to use a dielectric having a thickness of 0.1 mm and a relative dielectric constant εr of 300 or more, for example. However, the numerical values of the thickness and the relative dielectric constant here are examples, and other values may be used. Considering comprehensively the charge retention characteristics, power generation amount, device size, manufacturing cost, etc., as a practical design range, the dielectric has a thickness of 0.01 to 1.0 mm (more preferably 0.01 mm). It is appropriate to use a material that can obtain a power generation amount of 80% or more of the maximum power generation amount.
 誘電体の作製方法については、誘電体の厚みに応じて種々の手法を採用することが可能である。例えば、厚み1μm以下~数μmの誘電体については、スパッタ法や電子ビーム蒸着法によって作製することができる。また、厚み1μm以下~数十μmの誘電体については、ゾルゲル法を含む水熱合成合成法+スピンコート+焼成により作製することができる。また、厚み数十μm以上の誘電体については、粉体の焼成+加圧成型等の成型+スライス、カット、研磨などによる厚み調整によって作製することができる。 As a method for manufacturing the dielectric, various methods can be employed depending on the thickness of the dielectric. For example, a dielectric having a thickness of 1 μm or less to several μm can be manufactured by sputtering or electron beam evaporation. A dielectric having a thickness of 1 μm or less to several tens of μm can be produced by a hydrothermal synthesis method including a sol-gel method + spin coating + firing. In addition, a dielectric having a thickness of several tens of μm or more can be produced by adjusting the thickness by molding powder such as firing + pressure molding + slicing, cutting, polishing, or the like.
<誘電体の材料>
 最も有望である材料は、チタン酸バリウム(BaTiO3,BTO)である。使用温度(0~100℃程度を想定)における比誘電率は約1000であり、上記の条件を満たしている。比較的安価でかつ非鉛であるため環境負荷も小さいので、製品化の際にも有利である。120℃以上の環境下では比誘電率が落ちる。また、動作周波数が100kHz以上の場合もやはり比誘電率が低下する。ただし、想定する動作周波数は1~数百Hzなので、本デバイスに関して上記特徴は欠点にならない。唯一の問題は強誘電体である為に、誘電特性にヒステリシスがある点である。
<Dielectric material>
The most promising material is barium titanate (BaTiO 3 , BTO). The relative dielectric constant at the operating temperature (assuming about 0 to 100 ° C.) is about 1000, which satisfies the above conditions. Since it is relatively inexpensive and lead-free, its environmental impact is small, which is advantageous for commercialization. The relative dielectric constant decreases in an environment of 120 ° C. or higher. Further, the relative dielectric constant also decreases when the operating frequency is 100 kHz or higher. However, since the assumed operating frequency is 1 to several hundreds of Hz, the above characteristics are not a drawback for this device. The only problem is that there is hysteresis in the dielectric characteristics because it is a ferroelectric.
 次に有望である材料は、チタン酸ジルコン酸鉛(PZT)である。比誘電率が非常に大きい(2000~3000)ので、発電量を出来るだけ大きくしたい場合に有効である。ただし、比較的高価であることや鉛を含んでいるため環境負荷が高いことが欠点である。また、チタン酸バリウムと同様に強誘電体であるので、特性にヒステリシスを持つ点にも留意が必要である。 The next promising material is lead zirconate titanate (PZT). Since the relative dielectric constant is very large (2000 to 3000), it is effective when it is desired to increase the power generation amount as much as possible. However, the disadvantage is that it is relatively expensive and contains a high environmental load because it contains lead. In addition, since it is a ferroelectric material like barium titanate, it should be noted that it has hysteresis in characteristics.
 さらに、チタン酸バリウム中にカリウム(K)、カルシウム(Ca)、ストロンチウム(Sr)などのアルカリ土類金属や、イットリウム(Y)、ネオジム(Nd)などの希土類金属を添加したものも有望である.一般に、これらの添加により、チタン酸バリウムの比誘電率は低下するが、以下の様な効果が期待される。 Further, a material obtained by adding an alkaline earth metal such as potassium (K), calcium (Ca), or strontium (Sr) or a rare earth metal such as yttrium (Y) or neodymium (Nd) to barium titanate is also promising. . In general, the addition of these lowers the relative permittivity of barium titanate, but the following effects are expected.
 第1の効果は、キュリー温度を下げる点である。強誘電体にはキュリー温度と呼ばれる特異点となる温度があり、この温度付近で誘電率が極大値を持つ。従って、誘電体のキュリー温度を発電デバイスの使用温度付近に設定することで、動作温度における比誘電率を純粋なチタン酸バリウムよりも大きくすることができる。ただし、温度変化による誘電率の変化が大きくなり、発電効率の不安定化に繋がる欠点がある。 The first effect is to lower the Curie temperature. Ferroelectrics have a temperature that is a singular point called the Curie temperature, and the dielectric constant has a maximum value near this temperature. Therefore, the dielectric constant at the operating temperature can be made larger than that of pure barium titanate by setting the Curie temperature of the dielectric to be near the operating temperature of the power generation device. However, there is a drawback that a change in dielectric constant due to a temperature change becomes large, leading to instability of power generation efficiency.
 第2の効果は、添加量を大きくしていくと性質が強誘電性から常誘電性に変化する点である。常誘電体は温度変化による誘電率の変化が小さく、ヒステリシスも持たないので、安定した発電が得られることが期待される。常誘電体の中では誘電率が高い方なので、発電量もある程度確保できる。 The second effect is that the property changes from ferroelectricity to paraelectricity as the addition amount is increased. A paraelectric material has a small change in dielectric constant due to a temperature change and has no hysteresis, so that stable power generation is expected. Since the dielectric constant is higher among paraelectric materials, it is possible to secure a certain amount of power generation.
 次に、チタン酸ストロンチウムが挙げられる。チタン酸ストロンチウムはチタン酸バリウムのバリウムがストロンチウムに置き換わったものである。常誘電体であるが、比誘電率が約300あり、上記の条件を満たすことが利点である。ただし,やはりチタン酸バリウムと比較すると誘電率が小さい。また、ストロンチウムがレアメタルであり、コストが高くなるという欠点がある。 Next, strontium titanate is mentioned. Strontium titanate is obtained by replacing barium in barium titanate with strontium. Although it is a paraelectric material, it has an advantage of having a relative dielectric constant of about 300 and satisfying the above conditions. However, the dielectric constant is small compared to barium titanate. Further, strontium is a rare metal, and there is a disadvantage that the cost is increased.
 次に、非鉛圧電性高誘電体として、酸化鉄ランタン(LaFeO3)、ニオブ酸カリウム(KNbO3)、チタン酸ランタン(LaTiO3)、ケイ酸マグネシウム(MgSiO3)、及び、チタン酸ジルコン酸バリウム(Ba(Ti,Zr)O3)が挙げられる。 Next, as lead-free piezoelectric high dielectrics, lanthanum iron oxide (LaFeO 3 ), potassium niobate (KNbO 3 ), lanthanum titanate (LaTiO 3 ), magnesium silicate (MgSiO 3 ), and zirconate titanate Barium (Ba (Ti, Zr) O 3 ) may be mentioned.
 酸化鉄ランタン(LaFeO3)の特徴は、単結晶層において比誘電率が1000以上であり、高温では比誘電率が数万以上になる点である。酸化鉄ランタン(LaFeO3)をニオブ酸カリウム(KNbO3)に微量添加することにより、誘電率を引き上げる効果がある。例えば、酸化鉄ランタン(LaFeO3)を0.2%添加することにより、室温におけるニオブ酸カリウム(KNbO3)の比誘電率が500から1250へ上昇する。 The feature of iron lanthanum oxide (LaFeO 3 ) is that the single dielectric layer has a relative dielectric constant of 1000 or more, and the high dielectric constant becomes tens of thousands or more at high temperatures. By adding a small amount of iron lanthanum oxide (LaFeO 3 ) to potassium niobate (KNbO 3 ), there is an effect of increasing the dielectric constant. For example, by adding 0.2% of iron lanthanum oxide (LaFeO 3 ), the relative dielectric constant of potassium niobate (KNbO 3 ) at room temperature increases from 500 to 1250.
 ニオブ酸カリウム(KNbO3)の結晶構造は、ペロブスカイト構造である。-10℃以下では菱面体晶となり、常温では斜方晶となり、225~435℃では正方晶となり、435℃(キュリー温度)以上では立方晶となる。利点としては、(1)強誘電体であり大きな圧電性を示すこと、(2)ビスマス層状構造の強誘電体であり非鉛圧電セラミックスであること、(3)分極しやすい(150℃、5~6kV/mm以下での分極が可能)こと、(4)チタン酸ジルコン酸鉛(PZT)と同等の比誘電率(800~1000)を有していること、及び、(5)室温から200℃ 程度まで比較的フラットな比誘電率曲線を有することが挙げられる。逆に欠点としては、(1)セラミックスとして焼結しにくいこと、(2)未反応の酸化カリウムが残留すると、その潮解性のために耐湿性が悪化すること、及び、(3)レアメタルであるニオブを主成分とするため、コストが高いことが挙げられる。 The crystal structure of potassium niobate (KNbO 3 ) is a perovskite structure. Below -10 ° C, it is rhombohedral, orthorhombic at normal temperature, tetragonal at 225-435 ° C, and cubic at 435 ° C (Curie temperature). Advantages include (1) a ferroelectric material that exhibits large piezoelectricity, (2) a ferroelectric material having a bismuth layer structure and a lead-free piezoelectric ceramic, and (3) easy polarization (150 ° C., 5 (4) having a dielectric constant (800 to 1000) equivalent to lead zirconate titanate (PZT), and (5) from room temperature to 200 It has a relative dielectric constant curve that is relatively flat up to about ° C. Conversely, as disadvantages, (1) difficult to sinter as ceramics, (2) when unreacted potassium oxide remains, moisture resistance deteriorates due to its deliquescence, and (3) rare metal. Since niobium is the main component, the cost is high.
 チタン酸ジルコン酸バリウム(Ba(Ti,Zr)O3)は、キュリー温度を120℃よりも低くすることができる。Ti:Zr=8:2において、キュリー温度は40℃であり、比誘電率は4000である。 Barium zirconate titanate (Ba (Ti, Zr) O 3 ) can have a Curie temperature lower than 120 ° C. In Ti: Zr = 8: 2, the Curie temperature is 40 ° C. and the relative dielectric constant is 4000.
 次に、ポリマー系強誘電体として、ポリ乳酸やポリ尿素酸が挙げられる。ポリマー系強誘電体は、柔軟であり、誘電率が比較的高いので、接触面における保護膜などへの応用が期待される。ポリ乳酸の比誘電率は約22である。ポリ尿素酸は有機圧電材料であり、比誘電率は3.6~11.8である。 Next, examples of the polymer ferroelectric include polylactic acid and polyureaic acid. Polymer-based ferroelectrics are flexible and have a relatively high dielectric constant, and are expected to be applied to protective films on contact surfaces. The relative dielectric constant of polylactic acid is about 22. Polyureaic acid is an organic piezoelectric material and has a dielectric constant of 3.6 to 11.8.
 次に、リラクサー強誘電体が挙げられる。リラクサー強誘電体に共通の特徴としては、(1)圧電効果が大きい、(2)誘電率が非常に大きく温度変化も小さい、(3)数万に及ぶ巨大な比誘電率を有する、(4)ブロードな誘電率のピークと周波数分散を有する、及び、(5)高温まで緩慢な変化を示す自発分極特性を有することが挙げられる。 Next, relaxor ferroelectrics are listed. Features common to relaxor ferroelectrics are (1) large piezoelectric effect, (2) very large dielectric constant and small temperature change, and (3) huge relative dielectric constant of several tens of thousands, (4 (1) having a broad dielectric constant peak and frequency dispersion, and (5) having a spontaneous polarization characteristic showing a slow change up to a high temperature.
 リラクサー強誘電体の多くは、A(B’,B”)O3の複合ペロブスカイト型化合物構造を有する。Aサイトには2価のイオンが入り、Bサイトには平均して4価の電荷を持つ2種類のイオンが入る。+2価と+5価のイオンが1:2の割合で入るタイプ(A(B’1/3B”2/3)O3)と、+3価と+5価のイオンあるいは+2価と+6価のイオンが1:1 の割合で入るタイプ(A(B’1/2B”1/2)O3)に大きく分けられる。 多くのリラクサーが強誘電体PbTiO3と混晶を形成し、興味深い現象を引き起こす。 Many relaxor ferroelectrics have a complex perovskite type compound structure of A (B ′, B ″) O 3. A divalent ion enters the A site and a tetravalent charge on the B site on average. Two types of ions are included: a type (A (B ′ 1/3 B ″ 2/3 ) O 3 ) in which +2 and +5 valence ions enter at a ratio of 1: 2, and +3 and +5 valence ions. Alternatively, it can be broadly divided into types (A (B ′ 1/2 B ″ 1/2 ) O 3 ) in which +2 and +6 valence ions are contained at a ratio of 1: 1. Many relaxors are mixed with the ferroelectric PbTiO 3. Form crystals and cause interesting phenomena.
 リラクサー材料の例としては、(1-x)Pb(Mg1/3Nb2/3)O3・xPbTiO3、(1-x)Pb(Zn1/3Nb2/3)O3・xPbTiO3、ないしは、(1-x)Pb(In1/2Nb1/2)O3・xPbTiO3を挙げることができる。 Examples of relaxor materials include (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 .xPbTiO 3 , (1-x) Pb (Zn 1/3 Nb 2/3 ) O 3 .xPbTiO 3 Or (1-x) Pb (In 1/2 Nb 1/2 ) O 3 .xPbTiO 3 .
 Pb(Zn1/3Nb2/3)O3とPbTiO3の固溶体(PZN/xPT)の特徴としては、(1)強誘電体かつ圧電体である、及び、(2)PZN/9PTの場合に圧電定数d33が約2500pC/Nであることが挙げられる。PZNとPTの組成比がちょうど三方晶と正方晶を分けるモルフォトロピック相境界(通称MPB)と呼ばれる領域にあり、MPB での対称性の低下という観点から様々な実験手法を用いて高い圧電効果の起因が探られている。 The characteristics of the solid solution (PZN / xPT) of Pb (Zn 1/3 Nb 2/3 ) O 3 and PbTiO 3 are (1) ferroelectric and piezoelectric, and (2) PZN / 9PT. The piezoelectric constant d33 is about 2500 pC / N. The composition ratio of PZN and PT is just in the region called the morphotropic phase boundary (commonly called MPB) that divides trigonal and tetragonal crystals, and it has high piezoelectric effect by using various experimental methods from the viewpoint of decreasing symmetry in MPB. The cause is being sought.
 (Ba,La)(Ti,Cr)O3の特徴としては、非鉛系のリラクサー強誘電体であることが挙げられる。正確な組成は、(Ba1-xLax)(Ti1-xCrx)O3(ただし0≦x<1)という組成になる。x=0.035で比誘電率2000となり、室温付近で安定した誘電率を示す。 A characteristic of (Ba, La) (Ti, Cr) O 3 is that it is a lead-free relaxor ferroelectric. The exact composition is a composition of (Ba 1−x La x ) (Ti 1−x Cr x ) O 3 (where 0 ≦ x <1). When x = 0.035, the relative dielectric constant becomes 2000, and the dielectric constant is stable near room temperature.
<発電量を向上するための変形例>
 図33は、これまでに説明してきた発電装置の第1変形例を示す模式図である。第1変形例の発電装置100は、可動マス101と、ばね部材102と、誘電体103と、エレクトレット104と、ガラス基板105と、反発部材106aと、パッケージ110と、を有し、誘電体103とエレクトレット104との距離が変化することによって発電を行う振動型発電装置である。
<Modification for improving power generation>
FIG. 33 is a schematic diagram illustrating a first modification of the power generation device described so far. The power generation device 100 of the first modified example includes a movable mass 101, a spring member 102, a dielectric 103, an electret 104, a glass substrate 105, a repulsive member 106a, and a package 110. The dielectric 103 And the electret 104 is a vibration type power generation device that generates power by changing.
 可動マス101は、誘電体103と重錘が一体となったものであり、パッケージ110の内部で上下振動が可能なように収納されている。 The movable mass 101 is an integrated body of a dielectric 103 and a weight, and is housed inside the package 110 so as to be able to vibrate up and down.
 ばね部材102は、可動マス101を弾性的に支持するマス支持部材の一例である。本図では、パッケージ110の内側面で可動マス101を両端支持する構成を例示したが、可動マス101の支持形態はこれに限定されるものではなく、例えば、パッケージ110の天井から可動マス101を吊下支持する構成としても構わない。このように、ばね部材102を用いて可動マス101を弾性的に支持する構成とすることにより、誘電体103をエレクトレット104から離間するための運動エネルギーを引き下げることができるので、より小さな振動によって発電を行うことが可能となる。ばね部材102としては、コイルバネや蛇腹バネ(ミアンダ形状)を用いればよい。 The spring member 102 is an example of a mass support member that elastically supports the movable mass 101. In this figure, the configuration in which the movable mass 101 is supported at both ends by the inner side surface of the package 110 is illustrated, but the support form of the movable mass 101 is not limited to this. For example, the movable mass 101 is mounted from the ceiling of the package 110. It does not matter even if it is the structure which supports by suspension. In this way, by using the spring member 102 to elastically support the movable mass 101, the kinetic energy for separating the dielectric 103 from the electret 104 can be reduced, so that power generation can be performed with smaller vibrations. Can be performed. As the spring member 102, a coil spring or a bellows spring (a meander shape) may be used.
 誘電体103は、発電装置100に与えられる振動によってエレクトレット104に対する相対位置が変化する可動体(可動マス101の一部)となる。なお、誘電体103としては、先にも述べたように、チタン酸ジルコン酸鉛(PZT)やチタン酸バリウム(BTO)などを好適に用いることができる。 The dielectric 103 becomes a movable body (a part of the movable mass 101) whose relative position with respect to the electret 104 is changed by vibration applied to the power generation apparatus 100. As the dielectric 103, as described above, lead zirconate titanate (PZT), barium titanate (BTO), or the like can be preferably used.
 エレクトレット104は、電荷を半永久的に保持する部材である。エレクトレット12としては、有機エレクトレット及び無機エレクトレットのいずれを用いても構わない。 The electret 104 is a member that holds a charge semipermanently. As the electret 12, either an organic electret or an inorganic electret may be used.
 ガラス基板105は、エレクトレット104を担持するための板状部材である。 The glass substrate 105 is a plate-like member for supporting the electret 104.
 反発部材106aは、エレクトレット104を弾性的に支持するエレクトレット支持部材の一例である。本図では、ガラス基板105の下面とパッケージ110の底面との間に反発部材106aが挿入されている。従って、エレクトレット104は、誘電体103と対向しない下面側で反発部材106aに支持された形となる。 The repulsion member 106 a is an example of an electret support member that elastically supports the electret 104. In this figure, a repulsive member 106 a is inserted between the lower surface of the glass substrate 105 and the bottom surface of the package 110. Accordingly, the electret 104 is supported by the repulsive member 106 a on the lower surface side that does not face the dielectric 103.
 パッケージ110は、可動マス101、ばね部材102、誘電体103、エレクトレット104、ガラス基板105、及び、反発部材106aを収納するカバー部材(円筒、柱筒、半球など)である。パッケージ110は、例えば、レジンやアクリルなどの樹脂製とすればよい。 The package 110 is a cover member (cylinder, column, hemisphere, etc.) that houses the movable mass 101, the spring member 102, the dielectric 103, the electret 104, the glass substrate 105, and the repulsion member 106a. The package 110 may be made of resin such as resin or acrylic.
 図34は、反発部材106aの反発係数と最大発電量との相関図である。本図は大型デバイス(先出の図3を参照)を用いた発電試験の結果であり、反発部材106aの材料としては、ゲル(0.53)、ニトリルゴム(0.42~0.52)、フッ素ゴム(0.34~0.38)、及び、低弾性ゴム(0.33)を用いた(括弧内は反発係数)。なお、上記の反発係数は、いずれも本願発明者らが独自に計測した値である。 FIG. 34 is a correlation diagram between the restitution coefficient of the repulsion member 106a and the maximum power generation amount. This figure shows the results of a power generation test using a large device (see FIG. 3 above). The material of the repelling member 106a is gel (0.53), nitrile rubber (0.42 to 0.52). Fluorine rubber (0.34 to 0.38) and low elastic rubber (0.33) were used (the coefficient of restitution in parentheses). Note that each of the above restitution coefficients is a value uniquely measured by the present inventors.
 本図で示したように、エレクトレット104を支持する反発部材106aの反発係数が高いほど、可動マス101のエネルギ損失が少なくなり、延いては、最大発電量が大きくなることが分かる。 As shown in this figure, it can be seen that the higher the coefficient of restitution of the repelling member 106a that supports the electret 104, the less the energy loss of the movable mass 101 and the larger the maximum power generation amount.
 なお、今回の実験で用いたゲル、ニトリルゴム、フッ素ゴム、及び、低弾性ゴムのいずれかを反発部材106aの材料として選択するのであれば、最も反発係数の大きいゲルを選択することが望ましいと言える。ただし、さらなる発電量の向上を見込んで、ゲルよりも反発係数の高い高反発材料(例えば、高弾性ゴムボール玩具に用いられる高反発材料)を用いることも可能である。 If any one of the gel, nitrile rubber, fluororubber, and low-elastic rubber used in this experiment is selected as the material of the repulsion member 106a, it is desirable to select the gel having the largest restitution coefficient. I can say that. However, it is also possible to use a high repulsion material having a higher restitution coefficient than that of gel (for example, a high repulsion material used for a highly elastic rubber ball toy) in anticipation of further improvement in power generation.
 図35は、発電装置の第2変形例を示す模式図である。第2変形例は、先の第1変形例と基本的に同様の構成であり、誘電体103とエレクトレット104とを離間させるように互いに反発し合う磁石107をさらに有する点に特徴がある。そこで、第1変形例と同様の構成要素については、図33と同一の符号を付すことで重複した説明を割愛し、以下では、第2変形例の特徴部分について重点的な説明を行う。 FIG. 35 is a schematic diagram showing a second modification of the power generation device. The second modified example is basically the same as the first modified example, and is characterized in that it further includes magnets 107 that repel each other so as to separate the dielectric 103 and the electret 104. Therefore, the same components as those in the first modification are denoted by the same reference numerals as those in FIG. 33, and redundant description is omitted. In the following, the characteristic parts of the second modification will be mainly described.
 発電装置100の発電量は、エレクトレット104の表面電位が高いほど大きくなる。しかしながら、エレクトレット104の表面電位が高いほど、静電引力によって誘電体103とエレクトレット104が貼り付きやすくなるので、可動マス101が振動しなくなるおそれが高くなる。 The amount of power generated by the power generation apparatus 100 increases as the surface potential of the electret 104 increases. However, the higher the surface potential of the electret 104, the easier it is for the dielectric 103 and the electret 104 to stick due to electrostatic attraction, which increases the risk that the movable mass 101 will not vibrate.
 一方、第2変形例の発電装置100において、新たに追加された磁石107は、誘電体103とエレクトレット104とを離間させるように互いに反発し合うので、静電引力による誘電体103とエレクトレット104との貼り付きを防止することが可能となり、延いては、より高い発電量を見込むことが可能となる。 On the other hand, in the power generation device 100 of the second modified example, the newly added magnet 107 repels each other so as to separate the dielectric 103 and the electret 104, so that the dielectric 103 and the electret 104 due to electrostatic attraction It is possible to prevent the sticking of the battery, and it is possible to expect a higher power generation amount.
 なお、第2変形例の電源装置100は、基本的に図18とも同様の構成であるが、磁石107は、その表面が誘電体103及びエレクトレット104の表面とそれぞれ面一となるように形成されている。このような構成とすることにより、誘電体103とエレクトレット104との間のギャップ距離をできる限り大きく変化させることが可能となり、延いては、発電量を増大することが可能となる。 The power supply device 100 of the second modified example has basically the same configuration as that shown in FIG. 18, but the magnet 107 is formed so that the surfaces thereof are flush with the surfaces of the dielectric 103 and the electret 104, respectively. ing. With such a configuration, the gap distance between the dielectric 103 and the electret 104 can be changed as much as possible, and the power generation amount can be increased.
 図36は、誘電体103とエレクトレット104との衝突回数と、発電装置100の最大発電量との相関図である。なお、菱形マークは磁石あり(図35の第2変形例)の挙動を示しており、三角マークは磁石なし(図33の第1変形例)の挙動を示している。 FIG. 36 is a correlation diagram between the number of collisions between the dielectric 103 and the electret 104 and the maximum power generation amount of the power generation apparatus 100. The rhombus marks indicate the behavior with magnets (second modification example in FIG. 35), and the triangular marks indicate the behavior without magnets (first modification example in FIG. 33).
 約50万回までの衝突では、磁石107の有無により最大発電量に差違が生じている。すなわち、磁石なしでは、誘電体103とエレクトレット104との貼り付きが生じるので高い発電量を得られなくなるが、磁石ありでは、誘電体103とエレクトレット104との貼り付きを防止することができるので、より高い発電量を得ることが可能となる。 In the collision up to about 500,000 times, there is a difference in the maximum power generation due to the presence or absence of the magnet 107. That is, without the magnet, the dielectric 103 and the electret 104 are stuck together, so that a high power generation amount cannot be obtained, but without the magnet, the dielectric 103 and the electret 104 can be prevented from sticking. A higher power generation amount can be obtained.
 ただし、衝突回数が10万回を超えた辺りから、磁石107の有無による発電量の差違が小さくなり始め、衝突回数が50万回を超える範囲では、磁石107があってもなくても最大発電量には殆ど変わりがなくなる。その原因としては、ばね部材102に金属疲労を生じている可能性が考えられる。従って、ばね部材102の設計を工夫すれば、最大発電量の低下を改善することが可能であると考えられる。 However, when the number of collisions exceeds 100,000, the difference in the amount of power generation due to the presence or absence of the magnet 107 starts to decrease, and in the range where the number of collisions exceeds 500,000, the maximum power generation is possible with or without the magnet 107. The amount is almost unchanged. As the cause, there is a possibility that metal fatigue is caused in the spring member 102. Therefore, if the design of the spring member 102 is devised, it is considered possible to improve the decrease in the maximum power generation amount.
 図37は、発電装置の第3変形例を示す模式図である。第3変形例は、先の第1変形例と基本的に同様の構成であり、反発部材106aではなく、ばね部材106bを用いてエレクトレット104を支持している点に特徴がある。そこで、第1変形例と同様の構成要素については、図33と同一の符号を付すことで重複した説明を割愛し、以下では、第3変形例の特徴部分について重点的な説明を行う。 FIG. 37 is a schematic diagram showing a third modification of the power generation device. The third modified example is basically the same as the first modified example, and is characterized in that the electret 104 is supported using the spring member 106b instead of the repulsive member 106a. Therefore, the same components as those in the first modification are denoted by the same reference numerals as those in FIG. 33, and redundant descriptions are omitted. In the following, the characteristic portions of the third modification will be mainly described.
 ばね部材106bは、エレクトレット104を弾性的に支持するエレクトレット支持部材の一例である。本図では、パッケージ110の内側面でガラス基板105を両端支持するように、ばね部材106bが形成されている。従って、エレクトレット104は、誘電体103と対向しない下面側でばね部材106bに支持された形となる。ただし、ばね部材106bによる支持形態はこれに限定されるものではなく、例えば、ガラス基板105の下面とパッケージ110の底面との間に、ばね部材106bを挿入しても構わない。なお、ばね部材106bとしては、ばね部材102と同様、コイルバネや蛇腹バネ(ミアンダ形状)を用いればよい。 The spring member 106 b is an example of an electret support member that elastically supports the electret 104. In this figure, a spring member 106 b is formed so as to support both ends of the glass substrate 105 on the inner side surface of the package 110. Accordingly, the electret 104 is supported by the spring member 106b on the lower surface side that does not face the dielectric 103. However, the support form by the spring member 106 b is not limited to this, and for example, the spring member 106 b may be inserted between the lower surface of the glass substrate 105 and the bottom surface of the package 110. As the spring member 106b, a coil spring or a bellows spring (a meander shape) may be used similarly to the spring member 102.
 図38及び図39は、それぞれ、出力電圧及び瞬時電力の時間変化を示す図である。なお、両図の実線はエレクトレット支持部材としてばね部材106bを用いた構成(図37の第3変形例)の挙動を示しており、破線はエレクトレット支持部材として反発部材106a(ゲル)を用いた構成(図33の第1変形例)の挙動を示している。また、図40は発電量及び抵抗値の測定結果を示すテーブルである。 38 and 39 are graphs showing changes in output voltage and instantaneous power over time, respectively. In addition, the solid line of both figures has shown the behavior of the structure (3rd modification of FIG. 37) using the spring member 106b as an electret support member, and a broken line uses the repulsion member 106a (gel) as an electret support member. The behavior of (first modification of FIG. 33) is shown. FIG. 40 is a table showing measurement results of the power generation amount and the resistance value.
 各図から分かるように、エレクトレット支持部材としてばね部材106bを用いれば、反発部材106a(ゲル)を用いるよりも、誘電体103とエレクトレット104との接触時間が短くなるので、出力電圧の最大値が高くなる。また、エレクトレット支持部材としてバネ部材106bを用いれば、反発部材106a(ゲル)を用いるよりも、出力電圧の周期が短くなる(周波数が高くなる)ので、発電量が最大となる抵抗値が低くなる(R=1/2πfC)。以上のことから、エレクトレット支持部材としてばね部材106bを用いれば、発電装置100の発電量を向上することが可能となる(P=V2/R)。 As can be seen from each figure, when the spring member 106b is used as the electret support member, the contact time between the dielectric 103 and the electret 104 is shorter than when the repulsion member 106a (gel) is used, so the maximum value of the output voltage is Get higher. Further, if the spring member 106b is used as the electret support member, the output voltage cycle becomes shorter (frequency becomes higher) than when the repulsion member 106a (gel) is used, so that the resistance value that maximizes the amount of power generation becomes lower. (R = 1 / 2πfC). From the above, if the spring member 106b is used as the electret support member, the power generation amount of the power generation apparatus 100 can be improved (P = V 2 / R).
 図41は、第3変形例における出力電圧の時間変化を示す図である。なお、図41中の実線は実験結果を示しており、破線は解析結果を示している。また、図42は、第3変形例における出力電圧、マス変位、及び、エレクトレット変位の時間変化を示す図である。なお、図42中の実線は出力電圧の解析結果(図41の破線に相当)を示しており、破線は可動マス101(誘電体103)の変位を示しており、一点鎖線はエレクトレット104の変位を示している。 FIG. 41 is a diagram showing a time change of the output voltage in the third modification. In addition, the continuous line in FIG. 41 has shown the experimental result, and the broken line has shown the analysis result. FIG. 42 is a diagram showing temporal changes in output voltage, mass displacement, and electret displacement in the third modification. 42 indicates the output voltage analysis result (corresponding to the broken line in FIG. 41), the broken line indicates the displacement of the movable mass 101 (dielectric 103), and the alternate long and short dash line indicates the displacement of the electret 104. Is shown.
 ばね部材106bをうまく設計すれば、可動マス101(誘電体103)とエレクトレット104が一度近づいたときに、両者の衝突を複数回起こすこともできるので、発電量の向上に寄与することが見込まれる。 If the spring member 106b is well designed, when the movable mass 101 (dielectric 103) and the electret 104 approach each other, they can collide with each other multiple times, which is expected to contribute to an improvement in power generation. .
 図43は、ばね部材106bのばね定数と発電量との相関図である。ばね定数を変えながら発電試験を行った結果、ばね部材106bのばね定数を適切に調整することにより、発電量を向上し得ることが判明した。本図からは、ばね部材106bのばね定数を0.5~50N/mm(より望ましくは、1.0~10N/mm)とすればよいことが分かる。 FIG. 43 is a correlation diagram between the spring constant of the spring member 106b and the power generation amount. As a result of conducting a power generation test while changing the spring constant, it has been found that the amount of power generation can be improved by appropriately adjusting the spring constant of the spring member 106b. From this figure, it can be seen that the spring constant of the spring member 106b may be 0.5 to 50 N / mm (more preferably 1.0 to 10 N / mm).
 図44は、可動マス101(誘電体103)の加速度と全振幅との相関図である。なお図中の丸マークはエレクトレット支持部材としてばね部材106bを用いた構成(図37の第3変形例)の挙動を示しており、三角マークはエレクトレット支持部材として反発部材106a(ゲル)を用いた構成(図33の第1変形例)の挙動を示している。 FIG. 44 is a correlation diagram between the acceleration of the movable mass 101 (dielectric 103) and the total amplitude. In addition, the round mark in a figure has shown the behavior of the structure (The 3rd modification of FIG. 37) which used the spring member 106b as an electret support member, and the triangular mark used the repulsion member 106a (gel) as an electret support member The behavior of the configuration (first modification of FIG. 33) is shown.
 本図で示したように、エレクトレット104をばね部材106bで支持する構成では、エレクトレット104を反発部材106a(ゲル)で支持する構成よりも、可動マス101(誘電体103)の全振幅が大きくなる。これを鑑みると、ばね部材106bは、ゲルよりも反発係数の大きい高反発材料で形成された反発部材106aと看做すことができるので、先の図34で示した実験結果とも合致する。 As shown in the figure, in the configuration in which the electret 104 is supported by the spring member 106b, the total amplitude of the movable mass 101 (dielectric 103) is larger than the configuration in which the electret 104 is supported by the repelling member 106a (gel). . In view of this, the spring member 106b can be regarded as a repulsion member 106a formed of a high repulsion material having a restitution coefficient larger than that of the gel, and therefore agrees with the experimental result shown in FIG.
 図45は、発電装置の第4変形例を示す模式図である。第4変形例は、これまでに説明した第1変形例~第3変形例を組み合わせたものであり、エレクトレット支持部材として反発部材106aとばね部材106bの双方を含むほかに、誘電体103とエレクトレット104とを離間させるための磁石107も備えている。 FIG. 45 is a schematic diagram showing a fourth modification of the power generation device. The fourth modification is a combination of the first to third modifications described so far, and includes both the repulsion member 106a and the spring member 106b as the electret support member, and also the dielectric 103 and the electret. A magnet 107 is also provided for separating the magnet 104.
 なお、第4変形例では、反発部材106aがばね部材106bの振動を不必要に妨げてしまわないように、両部材間に所定の変位しろが設けられている。従って、反発部材106aは、発電装置100に高い加速度が加わって、ばね部材106bが反発部材106aに接触する位置まで変位したときに、これを押し戻すストッパとして機能する。 In the fourth modification, a predetermined displacement margin is provided between the two members so that the repulsive member 106a does not unnecessarily hinder the vibration of the spring member 106b. Therefore, the repulsion member 106a functions as a stopper that pushes back the spring member 106b when the acceleration is applied to the power generation apparatus 100 and the spring member 106b is displaced to a position where it contacts the repulsion member 106a.
 第4変形例の発電装置100においても、ばね部材102のばね定数、反発部材106aの反発係数、ばね部材106bのばね定数、及び、磁石107の磁力強度を適宜調整することにより、発電量の向上を図ることが可能である。 Also in the power generation device 100 of the fourth modification, the amount of power generation is improved by appropriately adjusting the spring constant of the spring member 102, the restitution coefficient of the repulsion member 106a, the spring constant of the spring member 106b, and the magnetic strength of the magnet 107. Can be achieved.
<アプリケーション>
 各種センサや無線機器(例えば、ZigBee[登録商標]・300MHz帯特定小電力無線機器)用の電源として、上記の発電装置を適用することにより、無線センサや無線センサネットワークによるユビキタス環境を構築することができる。すなわち、各種のセンサや無線装置の電源配線が不要となるので、各々の機器を分散配置して、ネットワーク内での情報連携を実現することが可能となる。
<Application>
As a power source for various sensors and wireless devices (for example, ZigBee [registered trademark] 300 MHz band specific low-power wireless devices), a ubiquitous environment based on wireless sensors and wireless sensor networks is constructed by applying the above power generator. Can do. That is, since various types of sensors and wireless devices need no power supply wiring, it is possible to realize information linkage in the network by distributing each device.
 なお、一部で実用化されているタイヤ空気圧モニタリングシステム(TPMS[Tire  Pressure Monitoring System])への応用のほか、上記の発電装置を用いたユビキタス環境の使用シーンとしては、例えば、医療・健康分野(健康管理や安否確認)、構造物監視(ワイヤ断線やボルト緩みの監視)、プラント監視(設備異常の監視)、並びに、物流管理(流通状態や品質の監視)などを挙げることができる。また、モータ等の電動機は電源周波数(50Hzまたは60Hz)で振動するので、発電装置に組み込まれたばね系の共振条件を上記の電源周波数に合わせれば、さらに大きな発電量が期待されることから、この発電電力をデータ処理装置等の電源として使用することが考えられる。さらに、上記の発電装置を人体に取り付けて発電するアプリケーションや、上記の発電装置を携帯電話等のモバイル機器に搭載して発電するアプリケーションなども想定される。 In addition to the application to the tire pressure monitoring system (TPMS [Tire Pressure Monitoring System]) that has been put into practical use in some cases, the usage scenes of the ubiquitous environment using the above power generator include, for example, the medical and health fields. (Health management and safety confirmation), structure monitoring (wire disconnection and bolt looseness monitoring), plant monitoring (equipment abnormality monitoring), logistics management (distribution status and quality monitoring), and the like. In addition, since an electric motor such as a motor vibrates at a power supply frequency (50 Hz or 60 Hz), if the resonance condition of the spring system incorporated in the power generation device is adjusted to the above power supply frequency, a larger power generation amount is expected. It is conceivable to use the generated power as a power source for a data processing device or the like. Furthermore, an application for generating power by attaching the above power generation device to a human body, an application for generating power by mounting the above power generation device on a mobile device such as a mobile phone, and the like are also assumed.
<その他の変形例>
 なお、本発明の構成は、上記実施形態ないし変形例のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
<Other variations>
It should be noted that the configuration of the present invention can be variously modified within the scope of the gist of the invention in addition to the above-described embodiment or modification. That is, the above-described embodiment is an example in all respects and should not be considered as limiting, and the technical scope of the present invention is not the description of the above-described embodiment, but the claims. It should be understood that all modifications that come within the meaning and range of equivalents of the claims are included.
 本発明に係る発電装置は、各種センサや無線機器(無線センサネットワークやヘルスモニタリングなど)に用いられる電源として、好適に利用可能な技術である。 The power generation device according to the present invention is a technology that can be suitably used as a power source used in various sensors and wireless devices (wireless sensor network, health monitoring, etc.).
   10  発電装置
   11  誘電体
   12  エレクトレット
   13  下部電極
   14  抵抗
   15  上部電極
   16  基板
   17  空隙層
   18  金属体
   20  発電装置
   21  基板
   22  下部電極
   23  エレクトレット
   24  誘電体(誘電体、電極、重錘が一体となったもの)
   24a  レール溝
   25  パッケージ
   25a  球受部
   25b  レール溝
   26  接着剤
   27  ワイヤ
   31~34  弾性部材
   35a、35b、36a、36b  磁石
   37  ストッパ
   38  ボール部材
   39  レール部材
   40  発電装置
   41  誘電体
   42  エレクトレット
   43  下部電極
   44  抵抗
   45  グランドリング
   50  発電装置
   51  誘電体
   52  エレクトレット
   53  下部電極
   54  基板
   60  発電装置
   61  誘電体
   61a  凸部
   62  エレクトレット
   62a  凹部
   63  下部電極
   70、80、90  発電装置
   71、81、91  誘電体
   72、82、92  エレクトレット
   73、83、93  下部電極
   74、84、94  抵抗
   100  発電装置
   101  可動マス
   102  ばね部材(マス支持部材)
   103  誘電体
   104  エレクトレット
   105  ガラス基板
   106a  反発部材(エレクトレット支持部材)
   106b  ばね部材(エレクトレット支持部材)
   107  磁石
   110  パッケージ
   X1  誘電体
   X2  アルミ板
   X3  電磁式加振機
   X4  試料
   X41  エレクトレット
   X42  下部電極
   X43  基板
   X5  アルミ板
   X6  3軸ステージ
   X7  土台
   X8  同軸ケーブル
   X9  同軸ケーブル
   X10  シールドケース
   X10a  第1コネクタ
   X10b  第2コネクタ
   X11  同軸ケーブル
   X12  ローパスフィルタ
   X13  同軸ケーブル
   X14  オシロスコープ
   Rv、R  ロード抵抗
   Y  コロナ放電装置
   Y1  グリッド
   Y2  放電電極針
   Y3  グリッド用電源
   Y4  直流高圧電源
DESCRIPTION OF SYMBOLS 10 Power generation device 11 Dielectric 12 Electret 13 Lower electrode 14 Resistance 15 Upper electrode 16 Substrate 17 Gap layer 18 Metal body 20 Power generation device 21 Substrate 22 Lower electrode 23 Electret 24 Dielectric (dielectric, electrode, weight integrated) thing)
24a Rail groove 25 Package 25a Ball receiving portion 25b Rail groove 26 Adhesive 27 Wire 31-34 Elastic member 35a, 35b, 36a, 36b Magnet 37 Stopper 38 Ball member 39 Rail member 40 Power generator 41 Dielectric 42 Electret 43 Lower electrode 44 Resistance 45 Ground ring 50 Power generation device 51 Dielectric 52 Electret 53 Lower electrode 54 Substrate 60 Power generation device 61 Dielectric 61a Protrusion 62 Electret 62a Recess 63 Lower electrode 70, 80, 90 Power generation devices 71, 81, 91 Dielectric 72, 82 , 92 Electret 73, 83, 93 Lower electrode 74, 84, 94 Resistance 100 Power generation device 101 Movable mass 102 Spring member (mass support Wood)
103 dielectric 104 electret 105 glass substrate 106a repulsion member (electret support member)
106b Spring member (electret support member)
107 Magnet 110 Package X1 Dielectric X2 Aluminum Plate X3 Electromagnetic Exciter X4 Sample X41 Electret X42 Lower Electrode X43 Substrate X5 Aluminum Plate X6 Triaxial Stage X7 Base X8 Coaxial Cable X9 Coaxial Cable X10 Shield Case X10b First Connector X10b Connector X11 Coaxial cable X12 Low pass filter X13 Coaxial cable X14 Oscilloscope Rv, R Load resistance Y Corona discharge device Y1 Grid Y2 Discharge electrode needle Y3 Grid power supply Y4 DC high voltage power supply

Claims (10)

  1.  可動マスとなる誘電体と、電荷を保持するエレクトレットと、を有し、前記誘電体と前記エレクトレットとの距離が変化することによって発電を行う発電装置であって、
     前記エレクトレットを弾性的に支持するエレクトレット支持部材をさらに有することを特徴とする発電装置。
    A power generation device that includes a dielectric serving as a movable mass, and an electret that holds electric charge, and generates power by changing a distance between the dielectric and the electret,
    The power generator further comprising an electret support member that elastically supports the electret.
  2.  前記エレクトレット支持部材は、所定の反発係数を持つ反発部材を含むことを特徴とする請求項1に記載の発電装置。 The power generation apparatus according to claim 1, wherein the electret support member includes a repulsion member having a predetermined restitution coefficient.
  3.  前記反発係数は0.3以上であることを特徴とする請求項2に記載の発電装置。 The power generation device according to claim 2, wherein the coefficient of restitution is 0.3 or more.
  4.  前記反発部材は、ゲルまたはこれよりも反発係数の高い高反発材料によって形成されていることを特徴とする請求項3に記載の発電装置。 The power generation device according to claim 3, wherein the repulsion member is formed of gel or a high repulsion material having a higher restitution coefficient.
  5.  前記誘電体と前記エレクトレットとを離間させるように互いに反発し合う磁石をさらに有することを特徴とする請求項1~請求項4のいずれか一項に記載の発電装置。 The power generator according to any one of claims 1 to 4, further comprising magnets that repel each other so as to separate the dielectric and the electret.
  6.  前記磁石は、その表面が前記誘電体及び前記エレクトレットの表面とそれぞれ面一となるように形成されていることを特徴とする請求項5に記載の発電装置。 The power generator according to claim 5, wherein the magnet is formed so that a surface thereof is flush with a surface of the dielectric and the electret.
  7.  前記エレクトレット支持部材は、所定のばね定数を持つばね部材を含むことを特徴とする請求項1~請求項6のいずれか一項に記載の発電装置。 The power generation apparatus according to any one of claims 1 to 6, wherein the electret support member includes a spring member having a predetermined spring constant.
  8.  前記ばね定数は0.5~50N/mmであることを特徴とする請求項7に記載の発電装置。 The power generator according to claim 7, wherein the spring constant is 0.5 to 50 N / mm.
  9.  前記可動マスを弾性的に支持するマス支持部材をさらに有することを特徴とする請求項1~請求項8のいずれか一項に記載の発電装置。 The power generator according to any one of claims 1 to 8, further comprising a mass support member that elastically supports the movable mass.
  10.  前記誘電体と前記エレクトレットを収納するパッケージをさらに有することを特徴とする請求項1~請求項9のいずれか一項に記載の発電装置。 The power generator according to any one of claims 1 to 9, further comprising a package for housing the dielectric and the electret.
PCT/JP2015/063878 2014-05-16 2015-05-14 Electricity-generating device WO2015174486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-102132 2014-05-16
JP2014102132A JP6320843B2 (en) 2014-05-16 2014-05-16 Power generator

Publications (1)

Publication Number Publication Date
WO2015174486A1 true WO2015174486A1 (en) 2015-11-19

Family

ID=54480023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063878 WO2015174486A1 (en) 2014-05-16 2015-05-14 Electricity-generating device

Country Status (2)

Country Link
JP (1) JP6320843B2 (en)
WO (1) WO2015174486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111161A1 (en) * 2015-12-24 2017-06-29 ダイハツ工業株式会社 Power generation material, power generation element, and power generation system
CN114285320A (en) * 2021-12-22 2022-04-05 北京纳米能源与系统研究所 Energy conversion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102578823B1 (en) * 2016-05-10 2023-09-15 삼성전자주식회사 Triboelectric generator
JP7217507B2 (en) * 2017-11-27 2023-02-03 学校法人立命館 power generator, energy harvesting device
WO2021234984A1 (en) * 2020-05-18 2021-11-25 株式会社村田製作所 Power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081397A1 (en) * 2001-10-26 2003-05-01 Potter Michael D. Electrostatic based power source and methods thereof
JP2012200132A (en) * 2011-03-09 2012-10-18 Casio Comput Co Ltd Power generator and electronic device
JP2013055724A (en) * 2011-09-01 2013-03-21 Kansai Univ Power generator
WO2014148371A1 (en) * 2013-03-19 2014-09-25 国立大学法人東北大学 Static induction-type vibration power generation device and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188080A (en) * 2012-03-09 2013-09-19 Panasonic Corp Vibration generator
JP2013198314A (en) * 2012-03-21 2013-09-30 Panasonic Corp Vibration power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081397A1 (en) * 2001-10-26 2003-05-01 Potter Michael D. Electrostatic based power source and methods thereof
JP2012200132A (en) * 2011-03-09 2012-10-18 Casio Comput Co Ltd Power generator and electronic device
JP2013055724A (en) * 2011-09-01 2013-03-21 Kansai Univ Power generator
WO2014148371A1 (en) * 2013-03-19 2014-09-25 国立大学法人東北大学 Static induction-type vibration power generation device and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111161A1 (en) * 2015-12-24 2017-06-29 ダイハツ工業株式会社 Power generation material, power generation element, and power generation system
JP2017117910A (en) * 2015-12-24 2017-06-29 ダイハツ工業株式会社 Power-generating material, power-generating element and power-generating system
CN114285320A (en) * 2021-12-22 2022-04-05 北京纳米能源与系统研究所 Energy conversion device

Also Published As

Publication number Publication date
JP6320843B2 (en) 2018-05-09
JP2015220836A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP5945102B2 (en) Power generator
WO2015174486A1 (en) Electricity-generating device
Todaro et al. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook
JP5395589B2 (en) Power generator
Bowen et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications
Li et al. Recent progress on piezoelectric energy harvesting: structures and materials
Crovetto et al. An electret-based energy harvesting device with a wafer-level fabrication process
Schlaak et al. Novel multilayer electrostatic solid state actuators with elastic dielectric
Liu et al. Significantly enhanced energy-harvesting performance and superior fatigue-resistant behavior in [001] c-textured BaTiO3-based lead-free piezoceramics
KR20130069132A (en) Energy harvesting device and manufacturing of the same
KR20180079203A (en) Inertial haptic actuators having a cantilevered beam and a smart material
Godard et al. 1-mW vibration energy harvester based on a cantilever with printed polymer multilayers
Gao et al. A modified barbell-shaped PNN-PZT-PIN piezoelectric ceramic energy harvester
WO2017070187A1 (en) Micro electromechanical system (mems) energy harvester with residual stress induced instability
EP2932592B1 (en) Generator unit for energy harvesting with a single force input point
Wen et al. Inverse flexoelectret effect: bending dielectrics by a uniform electric field
US11041896B2 (en) Piezoelectric property measuring apparatus for liquid or viscous material
Wang et al. Two-step regulation strategy improving stress transfer and poling efficiency boosts piezoelectric performance of 0–3 piezocomposites
JP6108137B2 (en) Power generator
Jagtap et al. Geometry optimization of a MEMS-based energy harvesting device
Patel et al. Enhanced energy harvesting using multilayer piezoelectric ceramics
Tao et al. A three-dimensional electrostatic/electret micro power generator for low acceleration and low frequency vibration energy harvesting
Crovetto et al. MEMS fabricated energy harvesting device with 2D resonant structure
Feng et al. All-polymer soft-X-ray-charged piezoelectret with embedded PEDOT electrode
Kim et al. Increasing Energy-harvesting ability of piezoelectric unimorph cantilevers using Spring Supports

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792347

Country of ref document: EP

Kind code of ref document: A1