WO2015174167A1 - Luminescent color control device, method and program, lighting system and lighting device and method - Google Patents

Luminescent color control device, method and program, lighting system and lighting device and method Download PDF

Info

Publication number
WO2015174167A1
WO2015174167A1 PCT/JP2015/060771 JP2015060771W WO2015174167A1 WO 2015174167 A1 WO2015174167 A1 WO 2015174167A1 JP 2015060771 W JP2015060771 W JP 2015060771W WO 2015174167 A1 WO2015174167 A1 WO 2015174167A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
unit
image
block
lights
Prior art date
Application number
PCT/JP2015/060771
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 野村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016519158A priority Critical patent/JP6512220B2/en
Publication of WO2015174167A1 publication Critical patent/WO2015174167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to an emission color control device, an emission color control method, an emission color control program, an illumination system, an illumination device, and an illumination method that are preferably used for so-called gradation illumination.
  • This gradation illumination can be realized by, for example, the illumination device disclosed in Patent Document 1.
  • the illuminating device disclosed in Patent Document 1 is an illuminating device including a light source composed of a light emitting diode or the like, and a plurality of light emitted from the light source is reproduced in order to reproduce a natural light environment within a viewing angle range.
  • An irradiation area is formed, and variable means for changing the size of at least one of the plurality of irradiation areas is provided.
  • the plurality of irradiation areas include an intermediate area that partially overlaps the intermediate area. The light of each said irradiation area
  • an image is generally displayed by a display device having a large number of pixels, such as a CRT (Cathode ray tube) display, a liquid crystal display, and a projector. Of course, it cannot be displayed.
  • a CRT Cathode ray tube
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an emission color control device, an emission color control method, an emission color control program, an illumination system, and an illumination that can express an image conceptually by gradation illumination.
  • An apparatus and illumination method is provided.
  • the illumination device emits a plurality of lights so that some of them overlap each other in the emission angle region Each color of the plurality of lights in is controlled.
  • image data representing the image is acquired, a plurality of regions are selected from the images represented by the image data, and the colors of the plurality of lights are determined based on the color information in the plurality of regions.
  • a signal representing the determined color is generated and output to the lighting device. Therefore, the light emission color control device, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method according to the present invention can conceptually express an image by gradation illumination.
  • FIG. 1 is a block diagram illustrating an electrical configuration of a lighting system according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the SP-side control processing unit in the illumination system of the embodiment.
  • Drawing 3 is a figure showing the appearance of the smart phone in the lighting system of an embodiment.
  • FIG. 4 is a circuit diagram illustrating an electrical configuration of the light source unit in the illumination system of the embodiment.
  • FIG. 5 is a perspective view illustrating an appearance of the lighting device in the lighting system according to the embodiment.
  • FIG. 6 is a cross-sectional view illustrating a structural configuration of a light source unit in the illumination system of the embodiment.
  • FIG. 7 is a plan view showing a configuration of an LED light source in the illumination system of the embodiment.
  • FIG. 8 is a three-dimensional diagram of hue, lightness, and saturation.
  • the illumination system LS in the embodiment includes an illumination device LD and a smartphone SP as an example of a light emission color control device.
  • the illumination device LD emits first and second lights of different colors such that a part of the first light and a part of the second light overlap each other in a radiation angle region.
  • the number of lights is not limited to two, but may be a plurality of light such as three or four.
  • Such an illuminating device LD emits so-called gradation illumination because a part of the first light and a part of the second light are emitted so as to overlap each other in a radiation angle region.
  • the light emission color control device is a device that controls the first color of the first light and the second color of the second light in the illumination device LD.
  • the emission color control device may be configured by a dedicated device, but in the present embodiment, when the emission color control program is installed in the smartphone by installing the emission color control program in a so-called smartphone that is a high-performance mobile phone. Will be described.
  • the smartphone SP includes a display unit OT, a smartphone side input unit (hereinafter abbreviated as “SP side input unit”) IN, and a smartphone side control processing unit (hereinafter referred to as “SP side input unit”). , Abbreviated as “SP side control processing unit”.)
  • PC smartphone side storage unit
  • SP side storage unit MY
  • telephone processing unit TL and smartphone side Bluetooth communication module
  • SP side control processing unit Abbreviated as “SP-side Bluetooth communication module.”
  • the SP-side input unit IN is a device that is connected to the SP-side control processing unit PC, receives an input of a predetermined instruction from the user, and inputs the instruction to the smartphone SP, for example, a switch.
  • the display unit OT is a device that is connected to the SP-side control processing unit PC and displays predetermined information, such as a liquid crystal display device or an organic EL display device. As shown in FIG. 3, a rectangular display surface of the display unit OT faces one main surface (front surface) of the housing HS, and an input operation unit IN is arranged on one end side (lower side) of the display surface. It is installed.
  • the display surface of the display unit OT is provided with a touch panel that receives an input by touching the display surface with a fingertip or a pen as another input device.
  • the input of the instruction that cannot be performed is realized by combining the information displayed on the touch panel and the display unit OT.
  • a plurality of images stored in the SP-side storage unit MY are displayed as so-called thumbnails on the display unit OT, and a display surface at a position where one of the displayed images is displayed is touched.
  • the image displayed at the position is input to the smartphone SP as an image to be conceptually expressed by the illumination device LD.
  • the touch panel may be of a known type such as a so-called capacitance type.
  • the telephone processing unit TL is a device that is connected to the SP-side control processing unit PC and implements a telephone function by performing communication using a so-called mobile phone network.
  • the SP-side Bluetooth communication module BM is an apparatus that is connected to the SP-side control processing unit PC and communicates with an external device (for example, the lighting device LD in the present embodiment) using a communication signal that conforms to the Bluetooth (registered trademark) communication standard. is there.
  • SP side control processing part PC controls operation
  • the SP-side control processing unit PC sets the first color of the first light and the second color of the second light in the lighting device LD as described later.
  • the SP-side control processing unit PC includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • the SP-side storage unit MY is connected to the SP-side control processing unit PC, and stores a variety of programs executed by the CPU as the SP-side control processing unit PC and data necessary for the execution (Read Only Memory). ) And EEPROM (Electrically Erasable Programmable Read Only Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and its peripheral circuits.
  • the SP-side storage unit MY may store an image that is conceptually expressed by the illumination device LD.
  • the SP-side control processing unit PC executes the emission color control program stored in the SP-side storage unit MY to functionally control the unit 61, the image acquisition unit 62, as shown in FIG.
  • An area selection unit 63, a color determination unit 64, and a signal generation unit 65 are configured.
  • the control unit 61 controls each unit of the smartphone SP according to the function of each unit.
  • the image acquisition unit 62 acquires image data representing an image.
  • the image acquisition unit 62 acquires image data, for example, by reading image data stored in advance in the SP-side storage unit MY. Further, for example, image data is acquired by photographing an object (subject) with an unillustrated imaging device (camera) mounted on the smartphone SP. Note that image data generated by the imaging device (not shown) may be stored in the SP-side storage unit MY.
  • the image acquisition unit 62 receives data from an external device (for example, another smartphone or an imaging device (camera)) by using the data communication function of the telephone processing unit TL or the communication function of the SP-side Bluetooth communication module BM. The image data is acquired.
  • the region selection unit 63 selects a plurality of regions from the image represented by the image data acquired by the image acquisition unit. More specifically, the region selection unit 63 includes, for example, an image sampling unit 631, an image quantization unit 632, and a selection unit 633 functionally.
  • the image sampling unit 631 samples the image by dividing the image represented by the image data acquired by the image acquisition unit 62 into a plurality of block regions in a predetermined shape.
  • the predetermined shape in the block area may be an arbitrary shape such as a circular shape and a polygonal shape, but the image can be divided without a gap.
  • the predetermined shape is the same shape and the same size. It has a rectangular shape.
  • the image quantization unit 632 obtains a representative color representing the color of the block region based on the color information in the block region in each of the plurality of block regions sampled by the image sampling unit 631. Each color of each of the plurality of block areas is quantized. For example, the image quantization unit 632 uses a predetermined statistical value of color information in the block area as the representative color.
  • the predetermined statistical value is preferably any one of an average value, a weighted average value, a median value, and a median value. Since the color is represented by, for example, hue, lightness, and saturation, in the calculation of the representative value, the predetermined statistical value is obtained for each of the hue, lightness, and saturation, and the representative color is obtained.
  • FIG. 8 shows a three-dimensional diagram of the hue, brightness, and saturation of the color. According to this, since the representative color is determined by the statistical value, the representative color of the block area can be determined more appropriately.
  • the selection unit 633 sets a plurality of block regions as the plurality of regions based on the representative colors quantized by the image quantization unit 632 from the plurality of block regions sampled by the image sampling unit 631. To choose.
  • Such a region selection unit 63 may take various modes, and may preferably be the following first to sixth modes.
  • the selection unit 633 includes the hue, brightness, and saturation of the representative color with respect to an adjacent block area among the plurality of block areas sampled by the image sampling unit 631.
  • the selection unit 633 has a predetermined range of hue difference, saturation difference, and brightness difference in the representative color from among a plurality of block regions sampled by the image sampling unit 631.
  • the block areas are selected and grouped into one group, and a plurality of groups are selected as the plurality of block areas from the group in which the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold. select.
  • the selection unit 633 has a predetermined range in which the hue difference, the saturation difference, and the brightness difference in the representative color are selected from a plurality of block regions sampled by the image sampling unit 631.
  • a group of block areas that are within the group and selected and grouped into one group, and the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold and the saturation or lightness is equal to or greater than a predetermined third threshold
  • a plurality of groups are selected as the plurality of block areas.
  • the selection unit 633 includes the hue, brightness, and saturation of the representative color for the adjacent block region from among the plurality of block regions sampled by the image sampling unit 631. At least one block area that is different from the first threshold by at least one is selected as at least one of the plurality of block areas, and is selected from the plurality of block areas sampled by the image sampling unit , Selecting block areas in which hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range and grouping them into one group, and the total area of the block areas belonging to the grouped group is a predetermined second threshold value At least one group is selected from the above groups as at least one of the plurality of block regions.
  • the selection unit 633 selects the plurality of block regions from among the partial regions in the image represented by the image data acquired by the image acquisition unit 62.
  • any one of the first to fourth aspects described above can be further employed.
  • the selection unit 633 selects a plurality of regions from the gradation regions that are gradations in the image represented by the image data acquired by the image acquisition unit 62.
  • any one of the first to fourth aspects described above can be further employed.
  • the color determination unit 64 determines first and second colors of first and second lights (to be described later) in the illumination device LD based on each color information in the plurality of regions selected by the region selection unit 63. More specifically, the color determination unit 64 determines the first and second colors of the first and second lights based on the representative colors in the plurality of block regions selected by the selection unit 633 of the region selection unit 63. To decide.
  • the signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and outputs the signals to the outside using a predetermined communication interface for output to the illumination device LD.
  • the predetermined communication interface is a device that transmits and receives signals in conformity with a predetermined communication standard.
  • the predetermined communication interface is an SP-side Bluetooth communication module MB.
  • the illumination device LD is abbreviated as a light source unit 1, an illumination control unit 2, and an illumination device side input unit (hereinafter, “LD side input unit”). ) 3 and a power supply unit 4.
  • the power supply unit 4 is connected to the external power supply 5, the light source unit 1, the illumination control unit 2, and the LD side input unit 3, and receives power supply from the external power supply 5 such as a commercial power supply.
  • This is a circuit that generates predetermined power for operating the control unit 2 and the LD side input unit 3.
  • the power supply unit 4 includes a rectifier circuit that rectifies commercial AC power fed from the external power supply 5 into DC power, and a smoothing circuit that smoothes the output of the rectifier circuit.
  • a voltage conversion circuit (converter) that converts the voltage values according to the operating voltages of the illumination control unit 2 and the LD side input unit 3 is provided.
  • the DC power generated by the power supply unit 4 is supplied to the light source unit 1, the illumination control unit 2, and the LD side input unit 3.
  • the LD side input unit 3 is connected to the illumination control unit 2 and is a circuit for inputting a predetermined instruction or the like to the illumination control unit 2 of the illumination device LD.
  • the LD-side input unit 3 includes, for example, a plurality of switch elements, and each switch element includes a power switch element for turning on / off the lighting device LD, and hue, brightness, and chroma when performing gradation illumination.
  • One or more adjustment switch elements or the like for adjusting each degree are included.
  • the light source unit 1 includes first and second LED light sources 10-1 and 10-2 that can emit light of a plurality of colors. A part of the first light emitted from the first LED light source 10-1 and the second LED The first light and the second light are emitted so that a part of the second light emitted from the light source 10-2 overlaps with each other in the radiation angle region. In such a light source unit 1, a part of the first light and a part of the second light are overlapped with each other in the radiation angle region, so that an intermediate color between the hue A and the hue B is obtained from the region of the hue A by the first light. It is possible to illuminate a surface to be illuminated such as a wall surface or a ceiling surface with gradation illumination that illuminates by changing the brightness and color continuously through the intermediate region and reaching the region of hue B by the second light.
  • the LED light source 10 includes a day white LED 11 that emits day white light, a light bulb color LED 12 that emits light bulb color light, and an RGB LED 13.
  • the LED light source 10 may be configured to include each of the daylight white LEDs 11, the light bulb color LEDs 12, and the RGB LEDs 13 one by one. However, in this embodiment, a plurality of daylight white LEDs 11 are used to perform gradation illumination over a wider radiation angle region. A plurality of light bulb color LEDs 12 and a plurality of RGB LEDs 13 are provided. As shown in FIG.
  • the plurality of daylight white LEDs 11, the plurality of light bulb color LEDs 12, and the plurality of RGB LEDs 13 are arranged along the one direction on a plate-like LED substrate 14 having a wiring pattern and extending in one direction. It is installed side by side.
  • the plurality of daylight white LEDs 11, the plurality of light bulb color LEDs 12 and the plurality of RGB LEDs 13 are arranged in parallel on the LED substrate 14, for example, with the daylight white LED 11, RGBLED 13, light bulb color LED 12 and RGBLED 13 as one set.
  • the lunch white LED 11 includes, for example, a B light LED element and a yellow phosphor that emits a complementary yellow color when excited by a part of the B light emitted from the B light LED.
  • daylight white light is emitted.
  • the daylight white LED 11 includes a violet LED element that emits near-ultraviolet light or violet light, a red phosphor that emits red, green, and blue when excited by part of the light emitted from the violet light LED, and green fluorescence. Body and blue phosphors, and adjusting them to adjust the color temperature to about 5000 K, thereby emitting daylight white light.
  • the daylight white LED 11 is supplied with DC power from the power supply unit 4, and the amount of daylight white light is adjusted by controlling a current value by a first current control circuit 23-1 to be described later of the illumination control unit 2.
  • LEDs having a higher color temperature instead of 5000K may be used.
  • the light bulb color LED 12 includes, for example, a B light LED element and a yellow phosphor, and adjusts the color temperature to about 3000K to radiate light bulb color light. .
  • the light bulb color LED 12 includes a purple LED element and red phosphor, green phosphor, and blue phosphor, and adjusts the color temperature to about 3000K by adjusting them to produce light bulb color light. It radiates. Direct current power is supplied to the light bulb color LED 12 from the power supply unit 4, and the light amount of the light bulb color light is adjusted by controlling a current value by a second current control circuit 23-2 described later of the illumination control unit 2.
  • a second current control circuit 23-2 described later of the illumination control unit 2.
  • an LED with a lower color temperature may be used instead of 3000K.
  • the RGBLED 13 includes, for example, an R light LED element, a G light LED element, and a B light LED element, and adjusts these to emit each color light. That is, the RGBLED 13 is an LED light source that can emit light of a plurality of colors. Direct current power is individually supplied from the power supply unit 4 to the R light LED element, the G light LED element, and the B light LED element of the RGBLED 13, and each current is supplied by a third current control circuit 23-3 described later of the illumination control unit 2. The amount of light of each color is adjusted by individual control of the value.
  • the light source unit 1 includes a main body 17 made of, for example, aluminum having a substantially prismatic shape elongated in one direction.
  • the main body 17 is formed with a recess 171 which is formed from one ridge line toward the inside and is elongated along the one direction.
  • the recess 171 branches into two in the middle from the one ridge line toward the inside, and includes two first and second recesses 171-1 and 171-2.
  • Both side surfaces of the first recess 171-1 are curved shapes that swell outward from the center of the first recess 171-1, and have a slight light scattering property within a range that does not hinder the desired gradation illumination.
  • the first LED substrate 14-1 may be disposed on the first bottom surface of the first LED substrate 14-1 via, for example, an aluminum heat sink 15-1.
  • the plurality of daylight white LEDs 11-1, the plurality of light bulb color LEDs 12-1, and the plurality of RGB LEDs 13-1 are arranged in parallel along the one direction. That is, the first LED light source 10-1 is disposed on the first bottom surface of the first recess 171-1.
  • both side surfaces of the second recess 171-2 are curved shapes that swell outward from the center of the second recess 171-2, and slightly light within a range that does not hinder desired gradation illumination.
  • the second LED substrate 14-2 may be disposed on the second bottom surface of the second LED substrate 14-2 via, for example, an aluminum heat sink 15-2.
  • the plurality of daylight white LEDs 11-2, the plurality of light bulb color LEDs 12-2, and the plurality of RGB LEDs 13-2 are arranged in parallel along the one direction. That is, the second LED light source 10-2 is disposed on the second bottom surface of the second recess 171-2.
  • the first LED light source 10-1 and the second LED light source 10-2 are arranged so that the first optical axis AX1 of the first LED light source 10-1 and the second optical axis AX2 of the second LED light source 10-2 intersect each other.
  • the first and second recesses 171-1 and 171-2 are disposed respectively.
  • the first bottom surface of the first recess 171-1 and the second bottom surface of the second recess 171-2 are formed so as to intersect each other at their extended surfaces.
  • the first optical axis AX1 of the first LED light source 10-1 is a radiation surface of each of the plurality of daylight white LEDs 11-1, the plurality of bulb-color LEDs 12-1 and the plurality of RGB LEDs 13-1 arranged in parallel along the one direction ( The first normal direction of the first plane formed by the light emitting surface.
  • the second optical axis AX1 of the second LED light source 10-2 is a radiation surface of each of the plurality of daylight white LEDs 11-2, the plurality of light bulb color LEDs 12-2, and the plurality of RGB LEDs 13-2 arranged in parallel along the one direction ( This is the second normal direction of the second plane formed by the light emitting surface.
  • the first optical axis AX1 and the second optical axis AX2 intersect each other, so that the light flux from the first LED light source 10-1 and the second LED light source 10 are located at the position of the cover member 16 that is the light emission window of the illumination device.
  • the area of the light emission window that can overlap the light flux from -2 can be reduced. That is, the entire lighting device can be configured compactly.
  • a part of the first light and a part of the second light overlap each other, and gradation illumination is realized on the irradiated surface.
  • Each point on the irradiated surface may be equidistant from the light source unit 1, and does not necessarily have to be equidistant from the light source unit 1, and the distance from the light source unit 1 may change.
  • a pair of grooves are formed along the one direction in the vicinity of the opening of the recess 171 in the main body 17, and each of the pair of grooves has a long, curved plate shape along the one direction. Both ends of the cover member 16 are fitted, and the opening of the recess 171 is closed by the cover member 16.
  • the cover member 16 is made of a material having translucency with respect to the first light emitted from the first LED light source 10-1 and the second light emitted from the second LED light source 10-2. Note that the cover member 16 may have a slight light scattering property within a range not hindering desired gradation illumination. Moreover, you may have fixed directivity.
  • the light source unit 1 may be configured to include only the RGBLED 13
  • the light source unit 1 may be configured to include only the RGBLED 13 by further including the daylight white LED 11 and the light bulb color LED 12 as in the present embodiment. Color rendering can be improved. Further, when the gradation illumination desired to be radiated by the lighting device LD includes a lot of day white components of the day white LED 11 or a lot of bulb color components of the bulb color LED 12, the lighting device LD of the present embodiment Color and brightness can be obtained more efficiently.
  • the illumination control unit 2 controls the first and second LED light sources 10-1 and 10-2 so as to emit the first and second lights in mutually different colors.
  • the illumination control unit 2 is abbreviated as, for example, a lighting device side control processing unit (hereinafter abbreviated as “LD side control processing unit”) 21 and a lighting device side storage unit (hereinafter referred to as “LD side storage unit”). ) 22, a current control unit 23, and a lighting device side Bluetooth communication module (hereinafter abbreviated as “LD side Bluetooth communication module”) 24.
  • the LD-side Bluetooth communication module 24 is an apparatus that is connected to the LD-side control processing unit 21 and communicates with an external device using a communication signal that conforms to the Bluetooth (registered trademark) communication standard.
  • the current control unit 23 is a day white LED 11-1, 11-2, light bulb color LED 12-1, 12-2 and RGB LED 13 in the first and second LED light sources 10-1, 10-2 according to the control of the LD side control processing unit 21.
  • -1 and 13-2 are circuits for controlling the respective currents flowing therethrough.
  • the current control unit 23 controls the first current control circuit 23-1 that controls the currents flowing in the daylight white LEDs 11-1 and 11-2 and the currents that flow in the light bulb color LEDs 12-1 and 12-2, respectively.
  • a second current control circuit 23-2 for controlling, and a third current control circuit 23-3 for controlling each current flowing in each of the RGB LEDs 13-1, 13-2 are provided.
  • Each of the first to third current control circuits 23-1 to 23-3 includes, for example, a variable current source controlled by the LD-side control processing unit 21.
  • the current control unit 23 may vary the current by PWM (Pulse Width Modulation) control.
  • the LD-side storage unit 22 is a circuit that is connected to the LD-side control processing unit 21 and stores various predetermined programs and various predetermined data executed by the CPU as the LD-side control processing unit 21.
  • the various predetermined programs include an illumination control program for performing gradation illumination based on a signal received from the smartphone SP via the SP-side Bluetooth communication module BM and the LD-side Bluetooth communication module 24.
  • the various predetermined data includes data necessary for executing the predetermined program, such as a signal received from the smartphone SP via the SP-side Bluetooth communication module BM and the LD-side Bluetooth communication module 24.
  • Such an LD-side storage unit 22 includes, for example, a ROM, an EEPROM, or the like.
  • the LD-side storage unit 22 includes a RAM serving as a so-called working memory for the CPU that stores data generated during execution of the predetermined program.
  • the LD-side control processing unit 21 controls the operation of the entire illumination device LD by controlling each unit of the illumination device LD according to the function of each unit.
  • the LD-side control processing unit 21 controls the first color of the first light and the second color of the second light in the lighting device LD according to the signal received from the smartphone SP in order to perform gradation illumination.
  • the LD side control processing unit 21 includes, for example, a CPU and its peripheral circuits.
  • FIG. 9 is a diagram for explaining a schematic operation of emission color control in the illumination system of the embodiment.
  • FIG. 10 is a diagram illustrating an example of gradation illumination by the illumination system of the embodiment.
  • FIG. 10A is an example of an image represented by image data
  • FIG. 10B is an example of gradation illumination formed by the illumination device LD of the embodiment based on the image shown in FIG. 10A.
  • FIG. 10C is another example of an image represented by image data
  • FIG. 10D is an example of gradation illumination formed by the illumination device LD of the embodiment based on the image shown in FIG. 10C.
  • FIG. 11 is a flowchart illustrating the operation of the smartphone in the lighting system of the embodiment.
  • FIG. 10A is an example of an image represented by image data
  • FIG. 10B is an example of gradation illumination formed by the illumination device LD of the embodiment based on the image shown in FIG. 10A.
  • FIG. 10C is another example of an image represented by image data
  • FIG. 12 is a flowchart illustrating the operation of the lighting device in the lighting system according to the embodiment.
  • FIG. 13 is a flowchart illustrating an image quantization operation in the illumination system of the embodiment.
  • FIG. 14 is a diagram for explaining the region selection and color determination operations of the first aspect in the illumination system of the embodiment.
  • FIG. 14A is a diagram for explaining the operation of image sampling
  • FIG. 14B is a diagram for explaining the operation of image quantization
  • FIG. 14C is a diagram for explaining the operation of region selection.
  • FIG. 14D is a diagram for explaining the color determination operation.
  • FIG. 15 is a diagram for explaining the region selection and color determination operations of the second aspect in the illumination system of the embodiment.
  • FIG. 16 is a diagram for explaining the region selection and color determination operations of the third aspect in the illumination system of the embodiment.
  • FIG. 17 is a diagram for explaining the region selection and color determination operations of the fourth aspect in the illumination system of the embodiment.
  • FIG. 18 is a diagram for explaining the region selection and color determination operations of the fifth aspect in the illumination system of the embodiment.
  • FIG. 19 is a diagram for explaining the region selection and color determination operations of the sixth aspect in the illumination system of the embodiment.
  • the image acquisition unit 62 of the SP-side control processing unit PC first converts image data representing an image into the imaging device or SP side that is not illustrated. Obtained from the storage unit MY or the like.
  • the region selection unit 63 of the SP-side control processing unit PC has at least two or more regions from the image represented by the image data acquired by the image acquisition unit 62. Select ARm. In the example shown in FIG. 9, two areas AR1 and AR2 are selected.
  • the color determination unit 64 of the SP-side control processing unit PC determines the first and second colors of the first and second lights based on the color information in the plurality of regions ARm selected by the region selection unit 63.
  • the first and second colors may be the colors themselves in the plurality of areas ARm selected by the area selection unit 63, for example, and based on the colors in the plurality of areas ARm selected by the area selection unit 63, for example. It can be a determined color.
  • the signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and outputs them to the outside using the SP-side Bluetooth communication module BM for output to the illumination device LD. To do.
  • the LD side control processing unit 21 controls the current so that the lighting device LD emits light in the first and second colors stored in the received signal.
  • the first and second LED light sources 10-1 and 10-2 are driven and controlled using the unit 23. By this drive control, the first and second LED light sources 10-1 and 10-2 emit light in the first and second colors and perform gradation illumination on a predetermined illuminated surface.
  • the illumination system LS, the light emission color control device (smartphone SP in the above example), the light emission color control method and the light emission color control program implemented therein select a plurality of areas ARn from the image.
  • the first color of the first light and the second color of the second light are determined based on each color information.
  • the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the illumination system LS, the light emission color control device, the light emission color control method and the light emission color control program mounted thereon can conceptually express the impression of the image by the illumination device LD for gradation illumination.
  • the illumination apparatus LD operates as described above with respect to the image of the morning coast where the morning sun rises from the horizon shown in FIG.
  • the illumination apparatus LD By radiating yellow light from the first LED light source 10-1 with yellow as the first color and light blue light from the second LED light source 10-2 with light as the second color, one end of the irradiated surface is It is illuminated with yellow light and the other end is illuminated with light blue light, and the illuminated surface is illuminated with gradation.
  • the lighting device LD can perform the first operation as shown in FIG. 10D.
  • one end of the irradiated surface is red light. Illuminate and illuminate the other end with yellow light, and illuminate the illuminated surface with gradation.
  • the image shown in FIG. 10A is conceptually expressed by the gradation illumination shown in FIG. 10B
  • the image shown in FIG. 10C is conceptually expressed by the gradation illumination shown in FIG. 10D.
  • the smartphone SP and the illumination device LD as an example of the emission color control device in the illumination system LS of the present embodiment operate as follows.
  • image data representing an image is acquired from the imaging device (not shown), the SP-side storage unit MY, and the like by the image acquisition unit 62 of the SP-side control processing unit PC.
  • image data is read from the SP-side storage unit MY (S11).
  • the image sampling unit 631 in the region selection unit 63 of the SP-side control processing unit PC divides the image represented by the image data acquired by the image acquisition unit 62 into a plurality of block regions ARn in a predetermined shape.
  • the image is sampled (S12).
  • an image is a rectangle having the same shape and the same size, and is divided into two vertical and horizontal directions orthogonal to each other, and is divided into a plurality of block areas ARn.
  • the size (size) of the block area ARn is appropriately set according to the size (size) of the image.
  • the size of the block area is set so that the image is divided into 90 block areas AR11 to AR910 arranged in a two-dimensional array.
  • each of the plurality of block areas ARn sampled by the image sampling section 631 by the image quantization section 632 in the area selection section 63 of the SP-side control processing section PC the color information in the block area ARn is converted into color information in the block area ARn. Based on this, a representative color representative of the color of the block area ARn is obtained, so that each color of the plurality of block areas ARn is quantized into a representative color (S13).
  • each block area ARn of the image shown in FIG. 14A is represented by one representative color as shown in FIG. 14B by image quantization.
  • FIG. 14B shows the middle of the image quantization process, and the colors of the block areas of 1 row 9 columns, 5 rows 3 columns, 5 rows 9 columns, 7 rows 4 columns and 7 rows 8 columns are image quantized and are representative. It is represented by one color.
  • a predetermined statistical value of color information in the block area ARn is used as the representative color.
  • the predetermined statistical value is preferably any one of an average value, a weighted average value, a median value, and a median value, and is a value appropriately selected from these.
  • the predetermined statistical value is an average value
  • an average value of the pixel values is obtained for all the pixels in the block area ARn, and the obtained average value is used as a representative value. More specifically, the average value of hue is obtained for all pixels in the block area ARn, the average value of lightness is obtained, the average value of saturation is obtained, and the obtained hue and lightness are obtained.
  • the color defined by each average value of the saturation is the representative color of the block area ARn.
  • a weighted average value of the pixel values is obtained for all the pixels in the block area ARn, and the obtained weighted average value is used as a representative value.
  • a weighted average value of hue is obtained, a weighted average value of lightness is obtained, a weighted average value of saturation is obtained, and these are obtained.
  • a color defined by each weighted average value of hue, lightness, and saturation is a representative color of the block area ARn.
  • the weight used in the weighted averaging may be appropriately set in advance for each value of hue, each value of brightness, and each value of saturation, and may be set according to an image of an actual block area. Good.
  • the hue frequency distribution is obtained for all the pixels in the block area ARn, and the weight of each value of the hue is set according to the frequency in the obtained hue frequency distribution.
  • a brightness frequency distribution is obtained for the pixels, and the weight of each value of the brightness is set according to the frequency in the obtained brightness frequency distribution, and for all the pixels in the block area ARn, A frequency distribution of degrees is obtained, and the weight of each value of saturation is set according to the frequency in the obtained frequency distribution of saturation.
  • the median value corresponds to the block region when the horizontal axis represents the pixel value divided for each predetermined range and the vertical axis represents the frequency for each division. This is the value of the most frequent segment of the frequency distribution for all pixels of ARn. More specifically, for example, the median value of the hue is the value of the most frequently classified section in the hue frequency distribution obtained by calculating the hue frequency distribution for all the pixels in the block area ARn.
  • the value of the division is, for example, the middle value of the division or the average value of the division in the same manner as described below.
  • the median value of lightness is a value of the most frequent section in the lightness frequency distribution obtained by calculating the lightness frequency distribution for all the pixels in the block area ARn.
  • the median value of saturation is the value of the most frequent section in the saturation frequency distribution obtained by calculating the saturation frequency distribution for all the pixels in the block area ARn.
  • the color defined by the median value of hue, the median value of lightness, and the median value of saturation is the representative color of the block area ARn.
  • the central value corresponds to the block region when the horizontal axis represents the pixel value divided for each predetermined range and the vertical axis represents the frequency for each division.
  • the middle of the frequency with the smallest frequency (minimum value of the frequency distribution) in the frequency distribution for all pixels of ARn and the value with the highest frequency (maximum value of the frequency distribution) Is the value of More specifically, for example, the hue center value is obtained by calculating the hue frequency distribution for all the pixels in the block area ARn, and the minimum value and the frequency distribution of the frequency distribution section in the obtained hue frequency distribution are obtained. It is the middle value with the maximum value of the category.
  • the central value of the lightness is obtained by calculating the lightness frequency distribution for all the pixels in the block area ARn, and the center between the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated lightness frequency distribution.
  • the saturation central value is obtained by calculating the saturation frequency distribution for all pixels in the block area ARn, and the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated saturation frequency distribution. And the middle value.
  • a color defined by the central value of the hue, the central value of the brightness, and the central value of the saturation is the representative color of the block area ARn.
  • at least two or more block areas ARm are selected as the plurality of areas (S14). For example, from the block areas ARn of the image shown in FIG. 14A, block areas of 1 row 9 columns and 5 rows 6 columns are selected based on the representative colors of the block areas ARn.
  • the first and second lights 1 and A second color is determined (S15).
  • the first and second colors may be, for example, the colors themselves (for example, the representative colors themselves) in the plurality of areas ARm selected by the area selection unit 63.
  • the area selection unit The color determined based on the colors in the plurality of areas ARm selected in 63 (for example, the color determined based on the representative color, etc. (for example, maintaining the hue and brightness of the representative color as they are and the color of the representative color)
  • the color may be a color obtained by converting the degree into a saturation that is bright enough to be emitted by the lighting device LD).
  • the color data is converted by the color determination unit 64 of the SP-side control processing unit PC into hue, lightness, and saturation with RGB using well-known conversion formulas (S16).
  • the signal generator 65 generates signals representing the first and second colors determined by the color determiner 64 and subjected to color data conversion for output to the illumination device LD, and this signal is used for SP side Bluetooth communication. It is transmitted to the outside by the module BM (S17). In the operation illustrated in FIG. 11, the first and second colors determined by the color determination unit 64 and subjected to color data conversion are stored and stored in the SP-side storage unit MY.
  • the lighting device LD when the signal is received from the SP-side Bluetooth communication module MB by the LD-side Bluetooth communication module 24 (S21) in FIG. 12, the first and second colors stored in the received signal are received. (That is, the first and second colors determined and converted by the color determination unit 64) are stored and stored in the LD side storage unit 22 by the LD side control processing unit 21 (S25). Then, the LD-side control processing unit 21 performs the first and second colors stored in the received signal (that is, the first and second colors determined by the color determination unit 64 and subjected to color data conversion). A control signal is generated so that the first and second LED light sources 10-1 and 10-2 emit light, and the control signal is output to the current control unit 23 (S22).
  • the current control unit 23 responds to the control signal input from the LD-side control processing unit 21 by each of the first to third current control circuits, and the daylight white LEDs 11-1 and 11-2, the light bulb color LED 12- 1 and 12-2 and RGB LEDs 13-1 and 13-2 are respectively current controlled (S23), whereby the first and second LED light sources 10-1 and 10-2 emit light in the first and second colors ( S24). Accordingly, the illumination device LD performs gradation illumination on the surface to be illuminated.
  • Such an illumination system LS, a light emission color control device (smartphone SP in the above example), a light emission color control method and a light emission color control program mounted on the light system LS are converted into an image sample of an image that is the basis of gradation illumination. Since it is quantized, it can be deformed taking advantage of the characteristics of the image. Therefore, the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • the area selection unit 63 can take, for example, the first to sixth modes, and the area selection process of the process S14 can operate in the following first to sixth modes accordingly.
  • the region selection unit 63 in the case of the region selection unit 63 according to the first aspect described above, among the block regions ARn sampled by the image sampling unit 631 by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC.
  • at least two or more block areas ARm in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold value are selected as the plurality of areas.
  • the block area ARm is selected in descending order of the difference among hue, brightness, and saturation.
  • the first threshold value is set to an appropriate value for each of hue, brightness, and saturation. For example, with respect to an image in which the morning sun rises from the horizontal line shown in FIG.
  • FIG. 14C a block area AR19 in which the representative color is blue and the morning sun are shown.
  • the copied block area AR56 whose representative color is yellow is selected. Then, based on the blue and yellow colors of the block areas AR19 and AR56 selected as described above by the area selection section 63 by the color determination section 64 of the SP-side control processing section PC, as shown in FIG. And first and second colors of the second light are determined.
  • any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold or more from among the plurality of block areas ARn in the image.
  • the block area ARm is selected.
  • an illumination system LS an emission color control device (smartphone SP in the above example), an emission color control method and an emission color control program (hereinafter referred to as “illumination system etc.” in the description of each aspect). ”)
  • a block area ARm having a characteristic color is selected from the image. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC selects from among the plurality of block regions ARn sampled by the image sampling unit 631.
  • the block areas ARm in which the hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the grouped group is a predetermined number.
  • At least two or more groups GRm are selected as the plurality of block areas ARm from the group GRm having two or more thresholds. For example, the group GRm is selected in order of increasing area.
  • the second threshold value is set to an appropriate area.
  • Block areas AR12 to AR19, AR21 to AR210, AR32 to AR39 representing the sky and having a representative color of blue.
  • Block areas AR51 to AR510 which are grouped into the first group GR1, and whose representative color is yellow, are grouped into another second group GR2, and block areas AR62 to AR69, AR71 to which the representative color is amber.
  • AR710 and AR82 to AR89 are grouped into another third group GR3, and the first and third groups GR1 and GR3 are selected in order of increasing area.
  • the color determination unit 64 of the SP-side control processing unit PC converts the blue and amber systems of the first and third groups GR1, 3 selected as described above by the region selection unit 63 as shown in FIG. Based on the first and second colors of the first and second light are determined.
  • block areas ARm whose representative colors are within a predetermined range are selected from a plurality of block areas ARn in the image, and are grouped into one group GRn, and the grouped groups At least two or more groups GRm are selected as the plurality of block areas ARm from the group GRm in which the total area of the block areas ARm belonging to GRn is equal to or greater than a predetermined second threshold value. Therefore, in the illumination system LS or the like, a block area ARm (group GRm) having the same color within a certain range and distributed over a relatively wide range is selected from a plurality of block areas in the image. . Therefore, such an illumination system LS and the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • the block areas ARm in which the hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the grouped group is a predetermined number.
  • At least two or more groups GRm are selected as the plurality of block areas ARm from among the groups GRm that are two or more thresholds and whose saturation or lightness is not less than a predetermined third threshold.
  • the group GRm is selected in the order of increasing area and in order of increasing brightness and saturation (bright order, vivid order).
  • the lightness of the group GRm is, for example, the average value of the lightnesses in the representative colors of the block regions belonging to the group GRm.
  • the saturation of the group GRm is, for example, the representative color of the block regions belonging to the group GRm.
  • the third threshold value is set to an appropriate value for each of brightness and saturation. For example, with respect to the image shown in FIG. 14A, in this case, as shown in FIG. 16, there is one block area AR12 to AR19, AR21 to AR210, AR32 to AR39 representing the sky and having a blue representative color.
  • Block areas AR51 to AR510 which are grouped into the first group GR1, and whose representative color is yellow, are grouped into another second group GR2, and block areas AR62 to AR69, AR71 to which the representative color is amber.
  • AR710 and AR82 to AR89 are grouped into another third group GR3.
  • the first and second are arranged in order of increasing area and in order of increasing brightness and saturation (brightness order, vivid order). Groups GR1 and GR2 are selected.
  • the color determination unit 64 of the SP-side control processing unit PC converts the blue and yellow systems of the first and second groups GR1 and GR2 selected as described above by the region selection unit 63 as shown in FIG. Based on the first and second colors of the first and second light are determined.
  • the block areas ARm whose representative colors are within a predetermined range are selected from the plurality of block areas ARn in the image and are grouped into one group GRn, and the grouped groups From the group GRm in which the total area of the block areas ARm belonging to GRn is equal to or greater than a predetermined second threshold and the saturation or lightness is equal to or greater than a predetermined third threshold, the plurality of block areas ARm are at least two or more.
  • a plurality of groups GRm are selected. For this reason, in the illumination system LS or the like, among the plurality of block areas ARn in the image, the block areas that are the same color within a certain range and are distributed over a relatively wide range can be emitted by the illumination device LD. ARm (group GRm) is selected. Therefore, such an illumination system LS and the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC uses a plurality of block regions ARn sampled by the image sampling unit 631.
  • a block area ARm in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold is at least one of the at least two block areas ARm.
  • At least one block area ARm is selected as one, and the hue difference, saturation difference, and brightness difference in the representative color are within a predetermined range from among the plurality of block areas ARn sampled by the image sampling unit 631.
  • Block areas ARm are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the group GRn There from the group GRm is equal to or greater than a predetermined second threshold value, wherein the at least one block area ARm is selected as at least one other of the at least two or more of the plurality of block areas ARm.
  • the block area AR56 having the largest difference in hue, lightness, and saturation and whose representative color showing the sunrise is yellow is selected.
  • the block areas AR12 to AR19, AR21 to AR210, AR32 to AR39, which are representative of the sky and represent the sky, are grouped into one first group GR1, and the block area AR51 whose representative color is yellow AR510 are grouped into another one second group GR2, and block areas AR62 to AR69, AR71 to AR710, AR82 to AR89 whose representative colors are amber systems are grouped into another one third group GR3,
  • the first group GR1 having the largest area is selected.
  • First and second colors of the first and second light are determined.
  • one of the hue, lightness, and saturation of the representative color differs from the block area ARn adjacent to the adjacent block area ARn by a predetermined first threshold value or more.
  • At least one block area ARm is selected as at least one of the at least two or more block areas ARm, and the representative color has a predetermined range from the plurality of block areas ARn in the image.
  • Block areas ARm within the group GRm are selected and grouped into one group ARn, and the total area of the block areas ARm belonging to the grouped group GRn is at least 2 from the group GRm that is equal to or greater than a predetermined second threshold.
  • At least one group GRm as at least one of the plurality of block areas ARm. It is selected.
  • a block area ARm having a characteristic color is selected from the image, and the same color is selected within a certain range from the plurality of block areas ARn in the image.
  • a block area ARm (group GRm) distributed over a relatively wide range is selected. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • the plurality of block areas ARm are selected from the above.
  • This partial area may be determined by, for example, displaying an image on the display unit OT of the smartphone and designating the displayed image area on the touch panel by the user.
  • the upper half, the lower half, the right half, the left half, and the like may be set in advance. For example, for the image shown in FIG. 14A, in this case, as shown in FIG. 18, an area in which the sky is copied is designated by the user as the partial area PAR.
  • the at least two or more regions are selected by any one of the above-described first to fourth modes.
  • the second mode is selected according to the above-described second mode is shown, and the first group GR ⁇ b> 1 whose representative color is blue is copied and the second whose representative color is yellow.
  • the group GR2 is selected, and the first and second colors of the first and second lights are determined based on the blue and yellow colors of the selected first and second groups GR1 and GR2.
  • such an illumination system LS or the like selects the plurality of block areas ARm from among the partial areas in the image, so that the image can be deformed while paying attention to a specific area. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination. For example, when the partial area is designated by the user as described above, the illumination system LS or the like expresses the image more appropriately and conceptually according to the user's preference by the illumination device LD of gradation illumination. it can.
  • the gradation in the image represented by the image data acquired by the image acquisition unit 62 is obtained by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC.
  • a plurality of areas are selected from the gradation areas.
  • the gradation area in the image is determined, for example, for each block area ARn along one direction by determining whether the hue, brightness, and saturation of each representative color sequentially change within a certain range. Sought by.
  • each block area changing within the certain range forms a gradation area, while each block area not changing within the certain range does not form a gradation area. For example, with respect to the image shown in FIG.
  • an area in which the sky is captured is determined as the gradation area GAR.
  • region GAR is selected as said at least 2 or more area
  • the color determination unit 64 of the SP-side control processing unit PC as shown in FIG. 19, based on the blue color and the orange color in the regions at both ends selected as described above by the region selection unit 63.
  • First and second colors of the first and second light are determined. Note that the at least two or more of the plurality of regions may be selected for the gradation region GAR according to any of the first to fourth aspects described above.
  • such an illumination system LS or the like selects a plurality of areas from the gradation area GAR that is originally gradation in the image. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
  • FIG. 20 is a diagram for explaining an operation of determining a color by a designated color in the illumination system of the embodiment.
  • FIG. 21 is a diagram for explaining an operation of determining a color by color correction in the illumination system of the embodiment.
  • the SP-side control processing unit PC of the smartphone SP further includes a specified color receiving unit 66 that receives a specified color specified by the user, as indicated by a broken line in FIG.
  • the color determination unit 64 of the control processing unit PC selects the representative color in the plurality of block areas ARm selected by the selection unit 633 of the area selection unit 63 based on the specified color received by the specified color reception unit 66. It may be configured to determine the first and second colors of the first and second light.
  • the designated color receiving unit 66 displays, for example, a color sample composed of a plurality of representative colors arranged in a two-dimensional array on the display unit OT of the smartphone, and displays the representative color region of the displayed color sample on the touch panel.
  • the color specified by the user may be received, and for example, a color is assigned to each of the plurality of switches in the SP-side input unit IN (for example, R, G, B colors are assigned to the first to third switches). Allocation), the user's designated color may be received by a switch operation by the user. For example, when four block areas ARm are selected for the image shown in FIG. 14A by the area selection unit 63 of any of the first to sixth aspects described above as shown in FIG. The two colors close to the designated color designated by the user are selected and determined from the four representative colors in the four block areas ARm.
  • Such an illumination system LS, a light emission color control device (smart phone SP in the above example), a light emission color control method and a light emission color control program mounted thereon receive a color designation from the user, and the designation received this designation First and second colors of the first and second light are determined based on color. Therefore, the lighting system LS, the light emission color control device, the light emission color control method and the light emission color control program implemented therein are conceptually more appropriately imaged according to the user's preference by the illumination device LD for gradation illumination. Can express.
  • the SP-side control processing unit PC of the smartphone SP has a predetermined saturation or lightness in each of the first and second colors determined by the color determination unit 64, as indicated by a broken line in FIG.
  • a color correction unit that corrects the first and second colors determined by the color determination unit 64 so that the saturation or lightness not higher than the fourth threshold is not lower than the fifth threshold.
  • the signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and corrected by the color correction unit 67. , May be configured.
  • These fourth and fifth threshold values are appropriately set according to the color that can be emitted by the illumination device LD. For example, when the first and second groups GR1 and GR2 are selected for the image shown in FIG.
  • the color correction is performed so that the two representative colors in the two first and second groups GR1 and GR2 have a saturation or lightness equal to or lower than the fourth threshold value equal to or higher than the fifth threshold value.
  • the saturation or brightness is not more than a predetermined fourth threshold value.
  • the first and second colors determined by the color determination unit 64 are corrected so that the saturation or lightness not higher than the fourth threshold is not lower than the fifth threshold.
  • emission color control device, emission color control method and emission color control program mounted thereon the first and second colors determined by the color determination unit 64 are the fourth threshold value.
  • the SP-side control processing unit PC of the smartphone SP has a predetermined unpleasant color in the first and second colors determined by the color determination unit 64, as indicated by a broken line in FIG.
  • the signal generation unit 65 includes the first and second colors determined by the color determination unit 64 and the color conversion unit 68. May be configured to generate signals representing the first and second colors converted in step 1.
  • the unpleasant color and the pleasant color are defined by, for example, presenting various colors to a plurality of subjects and examining their impressions, and are set in the smartphone SP.
  • Such an illumination system LS, a light emission color control device (smartphone SP in the above example), a light emission color control method and a light emission color control program mounted thereon are the first and second colors determined by the color determination unit 64. Is a predetermined predetermined unpleasant color, the unpleasant color is converted to a predetermined predetermined pleasant color. Therefore, the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can conceptually express an image with a pleasant color by the illumination device LD of gradation illumination.
  • the emission color control device is mounted on the smartphone SP separate from the lighting device LD, but may be mounted on the lighting device LD and integrated with the lighting device LD.
  • each unit functionally configured in the SP-side control processing unit PC illustrated in FIG. 2 is functionally configured in the LD-side control processing unit 21 except for the signal generation unit 65.
  • the image conceptually expressed by gradation illumination is acquired via the LD side Bluetooth communication module 24 and stored in the LD side storage unit 22, for example. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained.
  • the light emission control device controls each color of the plurality of lights in the lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region.
  • An emission color control device that acquires image data representing an image; and an area selection unit that selects a plurality of areas from the image represented by the image data acquired by the image acquisition unit;
  • a color determination unit that determines each color of the plurality of lights based on color information in a plurality of regions selected by the region selection unit, and a color determination unit that outputs the color to the illumination device.
  • a signal generation unit for generating a signal representing the selected color.
  • Such a lighting device to be controlled by the light emission color control device emits a plurality of lights of different colors so that a part of the plurality of lights overlap each other in a radiation angle region, so that so-called gradation illumination can be performed.
  • the emission color control device selects a plurality of regions from the image, and determines each color of the plurality of lights based on each color information. Therefore, the emission color control device can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the light emission color control device can conceptually express an image by the illumination device of gradation illumination.
  • the region selection unit divides an image represented by the image data acquired by the image acquisition unit into a plurality of block regions in a predetermined shape, An image sampling unit that samples the image, and a representative color that represents the color of the block area based on color information in the block area in each of the plurality of block areas sampled by the image sampling unit By obtaining, an image quantization unit that quantizes each color of each of the plurality of block regions, and a plurality of block regions sampled by the image sampling unit are quantized by the image quantization unit.
  • a selection unit that selects a plurality of block regions as the plurality of regions based on the representative color, and the color determination unit includes a plurality of blocks selected by the selection unit of the region selection unit Determining a respective color of the plurality of light based on the respective representative colors in frequency.
  • the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the selection unit of the region selection unit performs the above-described block region on the adjacent block region from among the plurality of block regions sampled by the image sampling unit.
  • a block area in which any one of hue, brightness, and saturation of the representative color differs by a predetermined first threshold or more is selected as the plurality of block areas.
  • Such a light emission color control device includes a block in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area by a predetermined first threshold or more from among a plurality of block areas in the image. Select an area. For this reason, in the light emission color control device, a block region having a characteristic color is selected from the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the selection unit of the region selection unit may select a hue difference or a saturation of the representative color from among a plurality of block regions sampled by the image sampling unit. Select block areas whose brightness difference and brightness difference are within a predetermined range and group them into one group, and from the group where the total area of the block areas belonging to the collected group is equal to or greater than a predetermined second threshold, A plurality of groups are selected as a plurality of block areas.
  • Such a light emission color control device selects block areas in which the representative color is within a predetermined range from a plurality of block areas in the image, collects them into one group, and blocks areas belonging to the collected group A plurality of groups are selected as the plurality of block regions from the group whose total area is equal to or greater than a predetermined second threshold. For this reason, in the light emission color control device, a block region (group) having the same color within a certain range and distributed over a relatively wide range is selected from a plurality of block regions in the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the selection unit of the region selection unit may select a hue difference or a saturation of the representative color from among a plurality of block regions sampled by the image sampling unit.
  • Block areas having a degree difference and a brightness difference within a predetermined range are selected and grouped into one group, and the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold, and the saturation or brightness is
  • a plurality of groups are selected as the plurality of block regions from among groups that are equal to or greater than a predetermined third threshold value.
  • Such a light emission color control device selects block areas in which the representative color is within a predetermined range from a plurality of block areas in the image, collects them into one group, and blocks areas belonging to the collected group A plurality of groups are selected as the plurality of block regions from a group in which the total area is equal to or greater than a predetermined second threshold value and the saturation or lightness is equal to or greater than a predetermined third threshold value. For this reason, in the light emission color control device, block regions (groups) that can emit light by the illumination device and are distributed over a relatively wide range of the same color within a certain range from among a plurality of block regions in the image. ) Is selected. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the selection unit of the region selection unit performs the above-described block region on the adjacent block region from among the plurality of block regions sampled by the image sampling unit. Selecting at least one block area as a block area in which any one of hue, brightness and saturation of a representative color differs by a predetermined first threshold or more as at least one of the plurality of block areas; From among the plurality of block areas sampled in step 1, block areas whose hue difference, saturation difference, and brightness difference in the representative color are within a predetermined range are selected and grouped into one group. Select at least one group as at least one of the plurality of block regions from a group in which the total area of the block regions to which it belongs is equal to or greater than a predetermined second threshold That.
  • Such a light emission color control device includes a block in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area by a predetermined first threshold or more from among a plurality of block areas in the image. At least one region is selected as at least one of the plurality of block regions, and one block region having the representative color within a predetermined range is selected from the plurality of block regions in the image. The group is grouped, and at least one group is selected as at least one of the plurality of block regions from a group in which the total area of the block regions belonging to the group is not less than a predetermined second threshold.
  • the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the selection unit of the region selection unit includes the plurality of regions from among a partial region in an image represented by the image data acquired by the image acquisition unit. Select the block area.
  • Such an emission color control device selects the plurality of block areas from among the partial areas in the image, so that the image can be deformed by paying attention to a specific area. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination. Further, for example, when the partial area is designated by the user, the light emission color control device can conceptually express the image more appropriately according to the user's preference by the illumination device of gradation illumination.
  • the selection unit of the region selection unit is a gradation region that is a gradation in an image represented by the image data acquired by the image acquisition unit. A plurality of regions are selected from the above.
  • Such a light emission color control device selects a plurality of areas from gradation areas that are originally gradations in the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the above-described emission color control device further includes a specified color receiving unit that receives a specified color specified by a user, and the color determining unit is selected by the selecting unit of the region selecting unit Each color of the plurality of lights is determined based on the designated color received by the designated color receiving unit from the representative colors in the plurality of block areas.
  • Such a light emission color control device receives a color designation from the user, and determines each color of the plurality of lights based on the designated color that has received this designation. Therefore, the light emission color control device can more appropriately conceptually express an image according to the user's preference by the illumination device of gradation illumination.
  • the image quantization unit uses a predetermined statistical value of color information in the block area as the representative color.
  • the predetermined statistical value is any one of an average value, a weighted average value, a median value, and a median value.
  • the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
  • the median is the most frequent segment of the frequency distribution for all pixels of the image, where the horizontal axis is the pixel value segmented for each predetermined range and the vertical axis is the frequency for each segment. Value. More specifically, for example, the median value of the hue is a value of the most frequently classified section in the hue frequency distribution obtained by calculating the hue frequency distribution for all pixels of the image.
  • the median value of brightness is the value of the most frequently classified section in the brightness distribution of brightness obtained for all pixels of the image.
  • the median value of saturation is the value of the most frequent section in the saturation frequency distribution obtained by calculating the saturation frequency distribution for all pixels of the image.
  • the color defined by the median value of hue, the median value of lightness, and the median value of saturation is a representative color.
  • the central value is the value of the smallest segment with a frequency in the frequency distribution for all pixels of the image, where the horizontal axis is the pixel value segmented for each predetermined range and the vertical axis is the frequency for each segment It is the middle value between (the minimum value of the frequency distribution category) and the value of the maximum frequency category (the maximum value of the frequency distribution category).
  • the center value of the hue is obtained by calculating the frequency distribution of the hue for all pixels of the image, and is the middle of the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated frequency distribution of the hue.
  • the central value of the brightness is the value between the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated brightness distribution for all pixels of the image.
  • the central value of saturation is the center of the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated saturation frequency distribution for all pixels of the image. Is the value of The color defined by the central value of hue, the central value of lightness, and the central value of saturation is a representative color.
  • a color correction unit configured to correct the first and second colors determined by the color determination unit so that saturation or brightness below a threshold value is equal to or higher than a fifth threshold value; and the signal generation unit includes the color determination unit A signal representing the first and second colors determined by the color correction unit and the first and second colors corrected by the color correction unit is generated.
  • the color determination unit when the saturation or lightness is equal to or lower than a predetermined fourth threshold, the color determination unit is configured so that the saturation or lightness equal to or lower than the fourth threshold is equal to or higher than a fifth threshold.
  • the first and second colors determined in step 1 are corrected. For this reason, since the first and second colors determined by the color determination unit have a saturation or brightness that is less than or equal to the fourth threshold value, and cannot emit light by a lighting device with gradation illumination, the saturation that is less than or equal to the fourth threshold value Alternatively, by raising the brightness to the fifth threshold value or higher, light can be emitted by the illumination device with gradation illumination.
  • the color conversion unit converts the unpleasant color into a predetermined pleasant color.
  • the signal generation unit generates a signal representing the color determined by the color determination unit and converted by the color conversion unit.
  • Such a light emission color control device converts the unpleasant color into a predetermined predetermined pleasant color when the color determined by the color determination unit is a predetermined unpleasant color set in advance. Therefore, the light emission control device can conceptually express an image with a pleasant color by the illumination device of gradation illumination.
  • an emission color control method wherein each of the plurality of lights in the lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region.
  • An emission color control method for controlling a color an image acquisition step for acquiring image data representing an image, and a region for selecting a plurality of regions from an image represented by the image data acquired in the image acquisition step
  • a color determination step for determining each color of the plurality of lights based on each color information in a plurality of regions selected in the region selection step, and the color determination step for outputting to the illumination device.
  • a signal generation step of generating a signal representing each color of the plurality of lights determined in (1).
  • the emission color control program includes a plurality of lights having different colors, and each of the plurality of lights in the lighting device that emits the plurality of lights so that a part of the plurality of lights overlap each other in a radiation angle region.
  • An emission color control program for controlling a color wherein a computer acquires an image acquisition step of acquiring image data representing an image, and a plurality of regions from the image represented by the image data acquired in the image acquisition step A region selection step to select, a color determination step to determine each color of the plurality of lights based on each color information in a plurality of regions selected in the region selection step, and to output to the lighting device,
  • a light emission color control program for executing a signal generation step of generating a signal representing each color of a plurality of lights determined in a color determination step.
  • An illumination system includes a lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region, and the plurality of lights in the lighting device
  • a light emission color control device for controlling the respective colors, and the light emission color control device is any one of the above light emission color control devices.
  • An illumination device includes a plurality of light sources capable of emitting light of a plurality of colors, and a part of light emitted from a certain light source of the plurality of light sources and the plurality of light sources.
  • a light source unit that emits the plurality of lights so that a part of light emitted from another of the plurality of light sources overlaps each other in a radiation angle region, and the plurality of lights that emit different colors.
  • a control unit that controls a plurality of light sources; and an image acquisition unit that acquires image data representing an image, wherein the control unit includes a plurality of images represented by the image data acquired by the image acquisition unit.
  • a region selection unit for selecting a region, a color determination unit for determining each color of the plurality of lights based on each color information in the plurality of regions selected by the region selection unit, and the color determination unit The plurality of lights to emit the plurality of lights in color Controlling the and a light emission control unit.
  • a plurality of light sources capable of emitting light of a plurality of colors are respectively converted into a plurality of lights of different colors, and a part of each of the plurality of lights is mutually emitted in a radiation angle region.
  • An illumination method for emitting radiation in an overlapping manner an image acquisition step for acquiring image data representing an image, and a region selection for selecting a plurality of regions from an image represented by the image data acquired in the image acquisition step
  • Such an emission color control method, an emission color control program, an illumination system, an illumination device, and an illumination method select a plurality of areas from an image and change the colors of the plurality of lights based on the respective color information. decide. For this reason, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method can conceptually represent an image by a gradation illumination device.
  • a light emission color control device it is possible to provide a light emission color control device, a light emission color control method, a light emission color control program, a lighting system, a lighting device, and a lighting method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

This luminescent color control device, method and program, lighting system and lighting device and method make it possible to conceptually represent an image by means of gradation lighting. A lighting device (LD) emits multiple lights such that a portion of these overlaps in a radial angle region, and this luminescent color control device controls the colors of each of multiple lights in the lighting device (LD), and is provided with an image acquisition unit (62) which acquires image data representing an image, a region selection unit (63) which selects multiple regions from the image represented in the image data, a color determination unit (64) which determines the colors of each of the lights on the basis of color information in each of the multiple regions, and a signal generating unit (65) which generates, for output to the lighting device (LD), a signal representing the colors determined by the color determination unit (64).

Description

発光色制御装置、該方法および該プログラム、照明システムならびに照明装置および該方法Luminescent color control device, method and program, illumination system, illumination device and method
 本発明は、いわゆるグラデーション照明に好適に利用される発光色制御装置、発光色制御方法および発光色制御プログラム、照明システムならびに照明装置および照明方法に関する。 The present invention relates to an emission color control device, an emission color control method, an emission color control program, an illumination system, an illumination device, and an illumination method that are preferably used for so-called gradation illumination.
 近年、明るさや色彩を連続的に変化させて放射角度領域を照明するグラデーション照明が注目されている。このグラデーション照明は、例えば、特許文献1に開示された照明装置によって実現できる。 In recent years, gradation lighting that illuminates the radiation angle region by continuously changing the brightness and color has attracted attention. This gradation illumination can be realized by, for example, the illumination device disclosed in Patent Document 1.
 この特許文献1に開示された照明装置は、発光ダイオード等からなる光源を備えた照明装置であって、該光源から出射した光を、視角範囲内にて、自然光環境を再現するために複数の照射領域を形成し、該複数の照射領域の少なくともいずれか一方の大きさを可変する可変手段を備え、上記複数の照射領域は、一部が重なり合った中間領域を備え、該中間領域は、該中間領域を形成する上記各照射領域の光が混合し、混合色を有してなるものである。 The illuminating device disclosed in Patent Document 1 is an illuminating device including a light source composed of a light emitting diode or the like, and a plurality of light emitted from the light source is reproduced in order to reproduce a natural light environment within a viewing angle range. An irradiation area is formed, and variable means for changing the size of at least one of the plurality of irradiation areas is provided. The plurality of irradiation areas include an intermediate area that partially overlaps the intermediate area. The light of each said irradiation area | region which forms an intermediate | middle area | region mixes, and has a mixed color.
 ところで、画像は、一般に、例えばCRT(Cathode ray tube)ディスプレイ、液晶ディスプレイおよびプロジェクター等の多数の画素を持つ表示装置によって表示されるが、画像を照明装置で表示しようとすると、照明装置は、画素を持たないので、当然に、表示できない。 By the way, an image is generally displayed by a display device having a large number of pixels, such as a CRT (Cathode ray tube) display, a liquid crystal display, and a projector. Of course, it cannot be displayed.
特開2010-157418号公報JP 2010-157418 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、画像をグラデーション照明によって概念的に表現できる発光色制御装置、発光色制御方法および発光色制御プログラム、照明システムならびに照明装置および照明方法を提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an emission color control device, an emission color control method, an emission color control program, an illumination system, and an illumination that can express an image conceptually by gradation illumination. An apparatus and illumination method is provided.
 本発明にかかる発光色制御装置、発光色制御方法および発光色制御プログラム、照明システムならびに照明装置および照明方法では、複数の光をそれらの一部が放射角度領域で互いに重なるように放射する照明装置における前記複数の光のそれぞれの色が制御される。この際に、画像を表す画像データが取得され、前記画像データで表される画像の中から複数の領域が選択され、前記複数の領域における各色情報に基づいて前記複数の光のそれぞれの色が決定され、この決定された色を表す信号が生成されて前記照明装置へ出力される。したがって、本発明にかかる発光色制御装置、発光色制御方法、発光色制御プログラム、照明システム、照明装置および照明方法は、画像をグラデーション照明によって概念的に表現できる。 In the emission color control device, emission color control method and emission color control program, illumination system, illumination device and illumination method according to the present invention, the illumination device emits a plurality of lights so that some of them overlap each other in the emission angle region Each color of the plurality of lights in is controlled. At this time, image data representing the image is acquired, a plurality of regions are selected from the images represented by the image data, and the colors of the plurality of lights are determined based on the color information in the plurality of regions. A signal representing the determined color is generated and output to the lighting device. Therefore, the light emission color control device, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method according to the present invention can conceptually express an image by gradation illumination.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態における照明システムの電気的な構成を示すブロック図である。It is a block diagram which shows the electric constitution of the illumination system in embodiment. 実施形態の照明システムにおけるSP側制御処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the SP side control process part in the illumination system of embodiment. 実施形態の照明システムにおけるスマートフォンの外観を示す図である。It is a figure which shows the external appearance of the smart phone in the illumination system of embodiment. 実施形態の照明システムにおける光源部の電気的な構成を示す回路図である。It is a circuit diagram which shows the electric constitution of the light source part in the illumination system of embodiment. 実施形態の照明システムにおける照明装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the illuminating device in the illumination system of embodiment. 実施形態の照明システムにおける光源部の構造的な構成を示す断面図である。It is sectional drawing which shows the structural structure of the light source part in the illumination system of embodiment. 実施形態の照明システムにおけるLED光源の構成を示す平面図である。It is a top view which shows the structure of the LED light source in the illumination system of embodiment. 色相、明度、彩度の立体図である。It is a three-dimensional diagram of hue, brightness, and saturation. 実施形態の照明システムにおける発光色制御の概略動作を説明するための図である。It is a figure for demonstrating schematic operation | movement of the luminescent color control in the illumination system of embodiment. 実施形態の照明システムによるグラデーション照明の一例を示す図である。It is a figure which shows an example of the gradation illumination by the illumination system of embodiment. 実施形態の照明システムにおけるスマートフォンの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the smart phone in the illumination system of embodiment. 実施形態の照明システムにおける照明装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the illuminating device in the illumination system of embodiment. 実施形態の照明システムにおける画像量子化の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the image quantization in the illumination system of embodiment. 実施形態の照明システムにおける第1態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 1st aspect in the illumination system of embodiment. 実施形態の照明システムにおける第2態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 2nd aspect in the illumination system of embodiment. 実施形態の照明システムにおける第3態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 3rd aspect in the illumination system of embodiment. 実施形態の照明システムにおける第4態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 4th aspect in the illumination system of embodiment. 実施形態の照明システムにおける第5態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 5th aspect in the illumination system of embodiment. 実施形態の照明システムにおける第6態様の領域選択および色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the area | region selection and color determination of the 6th aspect in the illumination system of embodiment. 実施形態の照明システムにおける指定色による色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the color determination by the designated color in the illumination system of embodiment. 実施形態の照明システムにおける色補正による色決定の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the color determination by the color correction in the illumination system of embodiment.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、実施形態における照明システムの電気的な構成を示すブロック図である。図2は、実施形態の照明システムにおけるSP側制御処理部の構成を示すブロック図である。図3は、実施形態の照明システムにおけるスマートフォンの外観を示す図である。図4は、実施形態の照明システムにおける光源部の電気的な構成を示す回路図である。図5は、実施形態の照明システムにおける照明装置の外観を示す斜視図である。図6は、実施形態の照明システムにおける光源部の構造的な構成を示す断面図である。図7は、実施形態の照明システムにおけるLED光源の構成を示す平面図である。図8は、色相、明度、彩度の立体図である。 FIG. 1 is a block diagram illustrating an electrical configuration of a lighting system according to an embodiment. FIG. 2 is a block diagram illustrating a configuration of the SP-side control processing unit in the illumination system of the embodiment. Drawing 3 is a figure showing the appearance of the smart phone in the lighting system of an embodiment. FIG. 4 is a circuit diagram illustrating an electrical configuration of the light source unit in the illumination system of the embodiment. FIG. 5 is a perspective view illustrating an appearance of the lighting device in the lighting system according to the embodiment. FIG. 6 is a cross-sectional view illustrating a structural configuration of a light source unit in the illumination system of the embodiment. FIG. 7 is a plan view showing a configuration of an LED light source in the illumination system of the embodiment. FIG. 8 is a three-dimensional diagram of hue, lightness, and saturation.
 実施形態における照明システムLSは、図1に示すように、照明装置LDと、発光色制御装置の一例としてのスマートフォンSPとを備える。照明装置LDは、互いに異なる色の第1および第2光を、前記第1光の一部と前記第2光の一部とが放射角度領域で互いに重なるように、放射するものである。なお、光は、2つに限らず、3つ、4つなどの複数であってよい。このような照明装置LDは、前記第1光の一部と前記第2光の一部とが放射角度領域で互いに重なるように放射するので、いわゆるグラデーション照明できる。前記発光色制御装置は、照明装置LDにおける前記第1光の第1色および前記第2光の第2色を制御する装置である。発光色制御装置は、専用の装置で構成されても良いが、本実施形態では、高機能携帯電話機であるいわゆるスマートフォンに発光色制御プログラムをインストールすることによって前記スマートフォンに実装されて構成された場合について説明する。 As shown in FIG. 1, the illumination system LS in the embodiment includes an illumination device LD and a smartphone SP as an example of a light emission color control device. The illumination device LD emits first and second lights of different colors such that a part of the first light and a part of the second light overlap each other in a radiation angle region. Note that the number of lights is not limited to two, but may be a plurality of light such as three or four. Such an illuminating device LD emits so-called gradation illumination because a part of the first light and a part of the second light are emitted so as to overlap each other in a radiation angle region. The light emission color control device is a device that controls the first color of the first light and the second color of the second light in the illumination device LD. The emission color control device may be configured by a dedicated device, but in the present embodiment, when the emission color control program is installed in the smartphone by installing the emission color control program in a so-called smartphone that is a high-performance mobile phone. Will be described.
 まず、発光色制御装置の一例としてのスマートフォンSPについて説明する。このスマートフォンSPは、例えば、図1ないし図3に示すように、表示部OTと、スマートフォン側入力部(以下、「SP側入力部」と略記する。)INと、スマートフォン側制御処理部(以下、「SP側制御処理部」と略記する。)PCと、スマートフォン側記憶部(以下、「SP側記憶部」と略記する。)MYと、電話処理部TLと、スマートフォン側ブルートゥース通信モジュール(以下、「SP側ブルートゥース通信モジュール」と略記する。)BMと、これら各部OT、IN、PC、MY、TL、BMを収納する薄い板状の筐体HSとを備える。 First, a smartphone SP as an example of a light emission color control device will be described. As shown in FIGS. 1 to 3, for example, the smartphone SP includes a display unit OT, a smartphone side input unit (hereinafter abbreviated as “SP side input unit”) IN, and a smartphone side control processing unit (hereinafter referred to as “SP side input unit”). , Abbreviated as “SP side control processing unit”.) PC, smartphone side storage unit (hereinafter abbreviated as “SP side storage unit”) MY, telephone processing unit TL, and smartphone side Bluetooth communication module (hereinafter referred to as “SP side control processing unit”). , Abbreviated as “SP-side Bluetooth communication module.”) BM and a thin plate-like casing HS that accommodates these parts OT, IN, PC, MY, TL, and BM.
 SP側入力部INは、SP側制御処理部PCに接続され、所定の指示の入力をユーザから受け付け、スマートフォンSPに前記指示を入力する装置であり、例えば、スイッチ等である。表示部OTは、SP側制御処理部PCに接続され、所定の情報を表示する装置であり、例えば、液晶表示装置や有機EL表示装置等である。筐体HSの一方主面(表面)には、図3に示すように、表示部OTにおける長方形の表示面が臨み、表示面の一方端側(下側)には、入力操作部INが配設されている。 The SP-side input unit IN is a device that is connected to the SP-side control processing unit PC, receives an input of a predetermined instruction from the user, and inputs the instruction to the smartphone SP, for example, a switch. The display unit OT is a device that is connected to the SP-side control processing unit PC and displays predetermined information, such as a liquid crystal display device or an organic EL display device. As shown in FIG. 3, a rectangular display surface of the display unit OT faces one main surface (front surface) of the housing HS, and an input operation unit IN is arranged on one end side (lower side) of the display surface. It is installed.
 そして、本実施形態では、表示部OTの表示面には、前記表示面に指先あるいはペンで触れることによって入力を受け付けるタッチパネルが入力装置の他の1つとして備えられ、SP側入力部INで入力することができない指示の入力が、タッチパネルと表示部OTに表示される情報とを合わせることによって実現されている。例えば、表示部OTには、SP側記憶部MYに記憶されている複数の画像がいわゆるサムネイルで表示され、これら表示された複数の画像のうちの1つを表示した位置の表示面を触れることで、当該位置に表示されている画像が照明装置LDによって概念的に表現したい画像としてスマートフォンSPに入力される。なお、前記タッチパネルは、いわゆる静電容量方式等の公知の方式のものであってよい。 In the present embodiment, the display surface of the display unit OT is provided with a touch panel that receives an input by touching the display surface with a fingertip or a pen as another input device. The input of the instruction that cannot be performed is realized by combining the information displayed on the touch panel and the display unit OT. For example, a plurality of images stored in the SP-side storage unit MY are displayed as so-called thumbnails on the display unit OT, and a display surface at a position where one of the displayed images is displayed is touched. Thus, the image displayed at the position is input to the smartphone SP as an image to be conceptually expressed by the illumination device LD. The touch panel may be of a known type such as a so-called capacitance type.
 電話処理部TLは、SP側制御処理部PCに接続され、いわゆる携帯電話網を用いて通信を行って電話機能を実現する装置である。 The telephone processing unit TL is a device that is connected to the SP-side control processing unit PC and implements a telephone function by performing communication using a so-called mobile phone network.
 SP側ブルートゥース通信モジュールBMは、SP側制御処理部PCに接続され、ブルートゥース(登録商標)の通信規格に準拠した通信信号で外部の機器(例えば本実施形態では照明装置LD)と通信する装置である。 The SP-side Bluetooth communication module BM is an apparatus that is connected to the SP-side control processing unit PC and communicates with an external device (for example, the lighting device LD in the present embodiment) using a communication signal that conforms to the Bluetooth (registered trademark) communication standard. is there.
 SP側制御処理部PCは、スマートフォンSPの各部を当該各部の機能に応じてそれぞれ制御することによってスマートフォンSP全体の動作を制御するものである。そして、SP側制御処理部PCは、照明装置LDにおける第1光の第1色および第2光の第2色を後述のように設定するものである。SP側制御処理部PCは、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。 SP side control processing part PC controls operation | movement of the smart phone SP whole by controlling each part of smart phone SP according to the function of the said each part, respectively. The SP-side control processing unit PC sets the first color of the first light and the second color of the second light in the lighting device LD as described later. The SP-side control processing unit PC includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
 SP側記憶部MYは、SP側制御処理部PCに接続され、SP側制御処理部PCとしてのCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えて構成される。SP側記憶部MYは、照明装置LDによって概念的に表現したい画像を記憶してよい。 The SP-side storage unit MY is connected to the SP-side control processing unit PC, and stores a variety of programs executed by the CPU as the SP-side control processing unit PC and data necessary for the execution (Read Only Memory). ) And EEPROM (Electrically Erasable Programmable Read Only Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and its peripheral circuits. The SP-side storage unit MY may store an image that is conceptually expressed by the illumination device LD.
 そして、SP側制御処理部PCには、SP側記憶部MYに記憶された発光色制御プログラムを実行することによって、図2に示すように、機能的に、制御部61、画像取得部62、領域選択部63、色決定部64および信号生成部65が構成される。 Then, the SP-side control processing unit PC executes the emission color control program stored in the SP-side storage unit MY to functionally control the unit 61, the image acquisition unit 62, as shown in FIG. An area selection unit 63, a color determination unit 64, and a signal generation unit 65 are configured.
 制御部61は、スマートフォンSPの各部を当該各部の機能に応じてそれぞれ制御するものである。 The control unit 61 controls each unit of the smartphone SP according to the function of each unit.
 画像取得部62は、画像を表す画像データを取得するものである。画像取得部62は、例えば、SP側記憶部MYに予め格納された画像データを読み込むことで、画像データを取得するものである。また例えば、スマートフォンSPに搭載された図略の撮像装置(カメラ)で物体(被写体)を撮影することで、画像データを取得するものである。なお、前記図略の撮像装置で生成された画像データは、SP側記憶部MYに格納されて良い。また例えば、画像取得部62は、例えば電話処理部TLのデータ通信機能やSP側ブルートゥース通信モジュールBMの通信機能で外部の機器(例えば他のスマートフォンや撮像装置(カメラ)等)から受信することで、画像データを取得するものである。 The image acquisition unit 62 acquires image data representing an image. The image acquisition unit 62 acquires image data, for example, by reading image data stored in advance in the SP-side storage unit MY. Further, for example, image data is acquired by photographing an object (subject) with an unillustrated imaging device (camera) mounted on the smartphone SP. Note that image data generated by the imaging device (not shown) may be stored in the SP-side storage unit MY. For example, the image acquisition unit 62 receives data from an external device (for example, another smartphone or an imaging device (camera)) by using the data communication function of the telephone processing unit TL or the communication function of the SP-side Bluetooth communication module BM. The image data is acquired.
 領域選択部63は、画像取得部で取得された画像データで表される画像の中から複数の領域を選択するものである。より具体的には、領域選択部63は、例えば、機能的に、画像標本化部631と、画像量子化部632と、選択部633とを備える。 The region selection unit 63 selects a plurality of regions from the image represented by the image data acquired by the image acquisition unit. More specifically, the region selection unit 63 includes, for example, an image sampling unit 631, an image quantization unit 632, and a selection unit 633 functionally.
 画像標本化部631は、画像取得部62で取得された画像データで表される画像を所定の形状で複数のブロック領域に分割することで、前記画像を標本化するものである。ブロック領域における前記所定の形状は、例えば円形形状および多角形形状等の任意の形状であって良いが、隙間無く前記画像を分割できることから、例えば、本実施形態では、互いに同一形状で同一サイズの矩形形状である。 The image sampling unit 631 samples the image by dividing the image represented by the image data acquired by the image acquisition unit 62 into a plurality of block regions in a predetermined shape. The predetermined shape in the block area may be an arbitrary shape such as a circular shape and a polygonal shape, but the image can be divided without a gap. For example, in the present embodiment, the predetermined shape is the same shape and the same size. It has a rectangular shape.
 画像量子化部632は、画像標本化部631で標本化された前記複数のブロック領域それぞれにおいて、当該ブロック領域における色情報に基づいて当該ブロック領域の色を代表する代表色を求めることで、前記複数のブロック領域それぞれの各色を量子化するものである。例えば、画像量子化部632は、当該ブロック領域における色情報の所定の統計値を前記代表色とする。この所定の統計値は、好ましくは、平均値、加重平均値、中央値および中心値のうちのいずれか1つである。色は、例えば色相、明度および彩度によって表されるので、代表値の算出では、色相、明度および彩度それぞれに対し、前記所定の統計値が求められ、代表色が求められる。なお、色の色相、明度および彩度の立体図が図8に示されている。これによれば、代表色が統計値で決定されるので、より適切にブロック領域の代表色が決定できる。 The image quantization unit 632 obtains a representative color representing the color of the block region based on the color information in the block region in each of the plurality of block regions sampled by the image sampling unit 631. Each color of each of the plurality of block areas is quantized. For example, the image quantization unit 632 uses a predetermined statistical value of color information in the block area as the representative color. The predetermined statistical value is preferably any one of an average value, a weighted average value, a median value, and a median value. Since the color is represented by, for example, hue, lightness, and saturation, in the calculation of the representative value, the predetermined statistical value is obtained for each of the hue, lightness, and saturation, and the representative color is obtained. FIG. 8 shows a three-dimensional diagram of the hue, brightness, and saturation of the color. According to this, since the representative color is determined by the statistical value, the representative color of the block area can be determined more appropriately.
 選択部633は、画像標本化部631で標本化された前記複数のブロック領域の中から、画像量子化部632で量子化された代表色に基づいて、複数のブロック領域を前記複数の領域として選択するものである。 The selection unit 633 sets a plurality of block regions as the plurality of regions based on the representative colors quantized by the image quantization unit 632 from the plurality of block regions sampled by the image sampling unit 631. To choose.
 このような領域選択部63は、種々の態様を採り得、好ましくは、次の第1ないし第6態様であってよい。 Such a region selection unit 63 may take various modes, and may preferably be the following first to sixth modes.
 第1態様の領域選択部63では、選択部633は、画像標本化部631で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域として選択する。 In the area selection unit 63 of the first aspect, the selection unit 633 includes the hue, brightness, and saturation of the representative color with respect to an adjacent block area among the plurality of block areas sampled by the image sampling unit 631. A block area in which any one of is different by a predetermined first threshold or more is selected as the plurality of block areas.
 第2態様の領域選択部63では、選択部633は、画像標本化部631で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。 In the region selection unit 63 of the second mode, the selection unit 633 has a predetermined range of hue difference, saturation difference, and brightness difference in the representative color from among a plurality of block regions sampled by the image sampling unit 631. The block areas are selected and grouped into one group, and a plurality of groups are selected as the plurality of block areas from the group in which the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold. select.
 第3態様の領域選択部63では、選択部633は、画像標本化部631で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であって彩度または明度が所定の第3閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。 In the region selection unit 63 of the third aspect, the selection unit 633 has a predetermined range in which the hue difference, the saturation difference, and the brightness difference in the representative color are selected from a plurality of block regions sampled by the image sampling unit 631. A group of block areas that are within the group and selected and grouped into one group, and the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold and the saturation or lightness is equal to or greater than a predetermined third threshold A plurality of groups are selected as the plurality of block areas.
 第4態様の領域選択部63では、選択部633は、画像標本化部631で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域の少なくとも1つとして少なくとも1つ選択し、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域の少なくとも1つとして少なくとも1つのグループを選択する。 In the region selection unit 63 of the fourth aspect, the selection unit 633 includes the hue, brightness, and saturation of the representative color for the adjacent block region from among the plurality of block regions sampled by the image sampling unit 631. At least one block area that is different from the first threshold by at least one is selected as at least one of the plurality of block areas, and is selected from the plurality of block areas sampled by the image sampling unit , Selecting block areas in which hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range and grouping them into one group, and the total area of the block areas belonging to the grouped group is a predetermined second threshold value At least one group is selected from the above groups as at least one of the plurality of block regions.
 第5態様の領域選択部63では、選択部633は、画像取得部62で取得された画像データで表される画像における一部領域の中から、前記複数のブロック領域を選択する。なお、この場合において、上述の第1ないし第4態様のいずれかの態様がさらに採り得る。 In the region selection unit 63 of the fifth aspect, the selection unit 633 selects the plurality of block regions from among the partial regions in the image represented by the image data acquired by the image acquisition unit 62. In this case, any one of the first to fourth aspects described above can be further employed.
 第6態様の領域選択部63では、選択部633は、画像取得部62で取得された画像データで表される画像におけるグラデーションとなっているグラデーション領域の中から複数の領域を選択する。なお、この場合において、上述の第1ないし第4態様のいずれかの態様がさらに採り得る。 In the region selection unit 63 of the sixth aspect, the selection unit 633 selects a plurality of regions from the gradation regions that are gradations in the image represented by the image data acquired by the image acquisition unit 62. In this case, any one of the first to fourth aspects described above can be further employed.
 色決定部64は、領域選択部63で選択された複数の領域における各色情報に基づいて照明装置LDにおける後述の第1および第2光の第1および第2色を決定するものである。より具体的には、色決定部64は、領域選択部63の選択部633で選択された複数のブロック領域における各代表色に基づいて前記第1および第2光の第1および第2色を決定するものである。 The color determination unit 64 determines first and second colors of first and second lights (to be described later) in the illumination device LD based on each color information in the plurality of regions selected by the region selection unit 63. More specifically, the color determination unit 64 determines the first and second colors of the first and second lights based on the representative colors in the plurality of block regions selected by the selection unit 633 of the region selection unit 63. To decide.
 信号生成部65は、照明装置LDへ出力するために、色決定部64で決定された第1および第2色を表す信号を生成し、所定の通信インターフェースを用いて外部へ送信するものである。前記所定の通信インターフェースは、所定の通信規格に準拠して信号を送受信する装置であり、一例として、本実施形態では、SP側ブルートゥース通信モジュールMBである。 The signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and outputs the signals to the outside using a predetermined communication interface for output to the illumination device LD. . The predetermined communication interface is a device that transmits and receives signals in conformity with a predetermined communication standard. As an example, in the present embodiment, the predetermined communication interface is an SP-side Bluetooth communication module MB.
 次に、照明装置LDについて説明する。この照明装置LDは、例えば、図1および図4ないし図7に示すように、光源部1と、照明制御部2と、照明装置側入力部(以下、「LD側入力部」と略記する。)3と、電源部4とを備える。 Next, the lighting device LD will be described. For example, as illustrated in FIGS. 1 and 4 to 7, the illumination device LD is abbreviated as a light source unit 1, an illumination control unit 2, and an illumination device side input unit (hereinafter, “LD side input unit”). ) 3 and a power supply unit 4.
 電源部4は、外部電源5、光源部1、照明制御部2およびLD側入力部3それぞれに接続され、商用電源等の外部電源5から電力の供給を受け、前記電力から光源部1、照明制御部2およびLD側入力部3を稼働するための所定の電力を生成する回路である。例えば、電源部4は、外部電源5から給電された商用交流電力を直流電力に整流する整流回路と、前記整流回路の出力を平滑する平滑回路とを備え、また必要に応じて、光源部1、照明制御部2およびLD側入力部3の各稼働電圧に応じた電圧値に変換する電圧変換回路(コンバータ)を備える。電源部4で生成された直流電力は、光源部1、照明制御部2およびLD側入力部3に供給される。 The power supply unit 4 is connected to the external power supply 5, the light source unit 1, the illumination control unit 2, and the LD side input unit 3, and receives power supply from the external power supply 5 such as a commercial power supply. This is a circuit that generates predetermined power for operating the control unit 2 and the LD side input unit 3. For example, the power supply unit 4 includes a rectifier circuit that rectifies commercial AC power fed from the external power supply 5 into DC power, and a smoothing circuit that smoothes the output of the rectifier circuit. A voltage conversion circuit (converter) that converts the voltage values according to the operating voltages of the illumination control unit 2 and the LD side input unit 3 is provided. The DC power generated by the power supply unit 4 is supplied to the light source unit 1, the illumination control unit 2, and the LD side input unit 3.
 LD側入力部3は、照明制御部2に接続され、照明装置LDの照明制御部2に所定の指示等を入力するための回路である。LD側入力部3は、例えば、複数のスイッチ素子を備えて構成され、各スイッチ素子には、照明装置LDのオンオフを行うための電源スイッチ素子や、グラデーション照明を行う際に色相、明度および彩度それぞれを調整するための1または複数の調整スイッチ素子等が含まれる。 The LD side input unit 3 is connected to the illumination control unit 2 and is a circuit for inputting a predetermined instruction or the like to the illumination control unit 2 of the illumination device LD. The LD-side input unit 3 includes, for example, a plurality of switch elements, and each switch element includes a power switch element for turning on / off the lighting device LD, and hue, brightness, and chroma when performing gradation illumination. One or more adjustment switch elements or the like for adjusting each degree are included.
 光源部1は、複数の色の光を放射可能な第1および第2LED光源10-1、10-2を有し、第1LED光源10-1から放射された第1光の一部と第2LED光源10-2から放射された第2光の一部とが放射角度領域で互いに重なるように前記第1および第2光を放射するものである。このような光源部1は、第1光の一部と第2光の一部とを放射角度領域で互いに重ねるので、第1光による色相Aの領域から、色相Aと色相Bとの中間色の中間領域を経て、第2光による色相Bの領域に至る、明るさや色彩を連続的に変化させて照明するグラデーション照明で例えば壁面や天井面等の被照明面を照明できる。 The light source unit 1 includes first and second LED light sources 10-1 and 10-2 that can emit light of a plurality of colors. A part of the first light emitted from the first LED light source 10-1 and the second LED The first light and the second light are emitted so that a part of the second light emitted from the light source 10-2 overlaps with each other in the radiation angle region. In such a light source unit 1, a part of the first light and a part of the second light are overlapped with each other in the radiation angle region, so that an intermediate color between the hue A and the hue B is obtained from the region of the hue A by the first light. It is possible to illuminate a surface to be illuminated such as a wall surface or a ceiling surface with gradation illumination that illuminates by changing the brightness and color continuously through the intermediate region and reaching the region of hue B by the second light.
 これら第1および第2LED光源10-1、10-2それぞれは、互いに同一の構成であるため、添え字を省略し、纏めて説明する。LED光源10は、昼白光を放射する昼白色LED11と、電球色光を放射する電球色LED12と、RGBLED13とを備える。LED光源10は、これら昼白色LED11、電球色LED12およびRGBLED13を1つずつ備えて構成されても良いが、より広い放射角度領域をグラデーション照明するために、本実施形態では、複数の昼白色LED11、複数の電球色LED12および複数のRGBLED13を備えている。これら複数の昼白色LED11、複数の電球色LED12および複数のRGBLED13は、図7に示すように、配線パターンを持つ一方向に長尺な板状のLED基板14上に、前記一方向に沿って並設される。これら複数の昼白色LED11、複数の電球色LED12および複数のRGBLED13は、例えば、昼白色LED11、RGBLED13、電球色LED12およびRGBLED13を一組として複数組がLED基板14上に並設されている。 Since each of the first and second LED light sources 10-1 and 10-2 has the same configuration, the subscripts are omitted and are described collectively. The LED light source 10 includes a day white LED 11 that emits day white light, a light bulb color LED 12 that emits light bulb color light, and an RGB LED 13. The LED light source 10 may be configured to include each of the daylight white LEDs 11, the light bulb color LEDs 12, and the RGB LEDs 13 one by one. However, in this embodiment, a plurality of daylight white LEDs 11 are used to perform gradation illumination over a wider radiation angle region. A plurality of light bulb color LEDs 12 and a plurality of RGB LEDs 13 are provided. As shown in FIG. 7, the plurality of daylight white LEDs 11, the plurality of light bulb color LEDs 12, and the plurality of RGB LEDs 13 are arranged along the one direction on a plate-like LED substrate 14 having a wiring pattern and extending in one direction. It is installed side by side. The plurality of daylight white LEDs 11, the plurality of light bulb color LEDs 12 and the plurality of RGB LEDs 13 are arranged in parallel on the LED substrate 14, for example, with the daylight white LED 11, RGBLED 13, light bulb color LED 12 and RGBLED 13 as one set.
 昼白色LED11は、例えば、B光LED素子と、前記B光LEDから放射されたB光の一部で励起され補色の黄色を放射する黄色蛍光体とを備え、これらを調整して色温度を約5000Kに調整することで昼白色光を放射するものである。また例えば、昼白色LED11は、近紫外光または紫光を発光する紫光LED素子と、前記紫光LEDから放射された光の一部で励起され赤色、緑色および青色をそれぞれ放射する赤色蛍光体、緑色蛍光体および青色蛍光体の各蛍光体とを備え、これらを調整して色温度を約5000Kに調整することで昼白色光を放射するものである。昼白色LED11には、電源部4から直流電力が供給され、照明制御部2の後述の第1電流制御回路23-1による電流値の制御によって昼白色光の光量が調整される。なお、白昼色の代わりに、5000Kではなく、より高い色温度のLEDが使用されても良い。 The lunch white LED 11 includes, for example, a B light LED element and a yellow phosphor that emits a complementary yellow color when excited by a part of the B light emitted from the B light LED. By adjusting to about 5000K, daylight white light is emitted. Further, for example, the daylight white LED 11 includes a violet LED element that emits near-ultraviolet light or violet light, a red phosphor that emits red, green, and blue when excited by part of the light emitted from the violet light LED, and green fluorescence. Body and blue phosphors, and adjusting them to adjust the color temperature to about 5000 K, thereby emitting daylight white light. The daylight white LED 11 is supplied with DC power from the power supply unit 4, and the amount of daylight white light is adjusted by controlling a current value by a first current control circuit 23-1 to be described later of the illumination control unit 2. Instead of the daylight color, LEDs having a higher color temperature instead of 5000K may be used.
 電球色LED12も、昼白色LED11と同様に、例えば、B光LED素子と、黄色蛍光体とを備え、これらを調整して色温度を約3000Kに調整することで電球色光を放射するものである。また例えば、電球色LED12は、紫光LED素子と、赤色蛍光体、緑色蛍光体および青色蛍光体の各蛍光体とを備え、これらを調整して色温度を約3000Kに調整することで電球色光を放射するものである。電球色LED12には、電源部4から直流電力が供給され、照明制御部2の後述の第2電流制御回路23-2による電流値の制御によって電球色光の光量が調整される。なお、電球色の代わりに、3000Kではなく、より低い色温度のLEDが使用されても良い。 Similarly to the daylight white LED 11, the light bulb color LED 12 includes, for example, a B light LED element and a yellow phosphor, and adjusts the color temperature to about 3000K to radiate light bulb color light. . Further, for example, the light bulb color LED 12 includes a purple LED element and red phosphor, green phosphor, and blue phosphor, and adjusts the color temperature to about 3000K by adjusting them to produce light bulb color light. It radiates. Direct current power is supplied to the light bulb color LED 12 from the power supply unit 4, and the light amount of the light bulb color light is adjusted by controlling a current value by a second current control circuit 23-2 described later of the illumination control unit 2. Instead of the light bulb color, an LED with a lower color temperature may be used instead of 3000K.
 RGBLED13は、例えば、R光LED素子と、G光LED素子と、B光LED素子とを備え、これらを調整して各色光を放射するものである。すなわち、RGBLED13は、複数の色の光を放射可能なLED光源である。RGBLED13のR光LED素子、G光LED素子およびB光LED素子には、電源部4から個別に直流電力がそれぞれ供給され、照明制御部2の後述の第3電流制御回路23-3による各電流値の個別の制御によって各色光の光量が調整される。 The RGBLED 13 includes, for example, an R light LED element, a G light LED element, and a B light LED element, and adjusts these to emit each color light. That is, the RGBLED 13 is an LED light source that can emit light of a plurality of colors. Direct current power is individually supplied from the power supply unit 4 to the R light LED element, the G light LED element, and the B light LED element of the RGBLED 13, and each current is supplied by a third current control circuit 23-3 described later of the illumination control unit 2. The amount of light of each color is adjusted by individual control of the value.
 このような光源部1の一構造例について、より具体的に説明すると、図6に示すように、光源部1は、一方向に長尺な略角柱形状の例えばアルミニウム製の本体17を備える。本体17には、一稜線から内部に向けて形成された、前記一方向に沿って長尺な凹所171が形成されている。凹所171は、前記一稜線から内部に向かう方向の途中で2つに分岐しており、2個の第1および第2凹所171-1、171-2を備える。第1凹所171-1の両側面は、それぞれ、第1凹所171-1の中央から外側に向けて膨らむ曲面形状であり、所望のグラデーション照明を阻害しない範囲で、若干、光散乱性を有していても良く、その第1底面には、例えばアルミニウム製の放熱板15-1を介して第1LED基板14-1が配設されている。第1LED基板14-1上には、上述した複数の昼白色LED11-1、複数の電球色LED12-1および複数のRGBLED13-1が前記一方向に沿って並設されている。すなわち、第1凹所171-1の第1底面には、第1LED光源10-1が配設されている。同様に、第2凹所171-2の両側面は、それぞれ、第2凹所171-2の中央から外側に向けて膨らむ曲面形状であり、所望のグラデーション照明を阻害しない範囲で、若干、光散乱性を有していても良く、その第2底面には、例えばアルミニウム製の放熱板15-2を介して第2LED基板14-2が配設されている。第2LED基板14-2上には、上述した複数の昼白色LED11-2、複数の電球色LED12-2および複数のRGBLED13-2が前記一方向に沿って並設されている。すなわち、第2凹所171-2の第2底面には、第2LED光源10-2が配設されている。これら第1LED光源10-1と第2LED光源10-2とは、第1LED光源10-1の第1光軸AX1と第2LED光源10-2の第2光軸AX2とが互いに交差するように、第1および第2凹所171-1、171-2それぞれに配置されている。例えば、第1凹所171-1の第1底面と第2凹所171-2の第2底面とは、それらの各延長面で互いに交差するように、形成されている。第1LED光源10-1の第1光軸AX1は、前記一方向に沿って並設された複数の昼白色LED11-1、複数の電球色LED12-1および複数のRGBLED13-1の各放射面(発光面)によって形成された第1平面の第1法線方向である。第2LED光源10-2の第2光軸AX1は、前記一方向に沿って並設された複数の昼白色LED11-2、複数の電球色LED12-2および複数のRGBLED13-2の各放射面(発光面)によって形成された第2平面の第2法線方向である。このように第1光軸AX1と第2光軸AX2とを互いに交差させることで、照明装置の発光窓であるカバー部材16の位置で、第1LED光源10-1からの光束と第2LED光源10-2からの光束とを重ねることができる発光窓を小面積化できる。すなわち、照明装置全体をコンパクトに構成できる。そして、光源部1から所定の距離だけ離れた放射角度領域では、第1光の一部と第2光の一部とが互いに重なり、被照射面でグラデーション照明が実現される。なお、被照射面上の各点は、光源部1から等距離であっても良く、また光源部1から必ずしも等距離である必要はなく光源部1から距離が変化しても良い。そして、本体17における凹所171の開口近傍には、前記一方向に沿って一対の溝が形成されており、これら一対の溝それぞれに、前記一方向に沿って長尺な湾曲した板状のカバー部材16の両端部が嵌め込まれ、凹所171の開口がカバー部材16によって閉塞されている。カバー部材16は、第1LED光源10-1から放射される第1光および第2LED光源10-2から放射される第2光に対し、透光性を有する材料で形成されている。なお、カバー部材16は、所望のグラデーション照明を阻害しない範囲で、若干、光散乱性を有していても良い。また、一定の指向性を有しても良い。 More specifically, one structural example of such a light source unit 1 will be described. As shown in FIG. 6, the light source unit 1 includes a main body 17 made of, for example, aluminum having a substantially prismatic shape elongated in one direction. The main body 17 is formed with a recess 171 which is formed from one ridge line toward the inside and is elongated along the one direction. The recess 171 branches into two in the middle from the one ridge line toward the inside, and includes two first and second recesses 171-1 and 171-2. Both side surfaces of the first recess 171-1 are curved shapes that swell outward from the center of the first recess 171-1, and have a slight light scattering property within a range that does not hinder the desired gradation illumination. The first LED substrate 14-1 may be disposed on the first bottom surface of the first LED substrate 14-1 via, for example, an aluminum heat sink 15-1. On the first LED substrate 14-1, the plurality of daylight white LEDs 11-1, the plurality of light bulb color LEDs 12-1, and the plurality of RGB LEDs 13-1 are arranged in parallel along the one direction. That is, the first LED light source 10-1 is disposed on the first bottom surface of the first recess 171-1. Similarly, both side surfaces of the second recess 171-2 are curved shapes that swell outward from the center of the second recess 171-2, and slightly light within a range that does not hinder desired gradation illumination. The second LED substrate 14-2 may be disposed on the second bottom surface of the second LED substrate 14-2 via, for example, an aluminum heat sink 15-2. On the second LED board 14-2, the plurality of daylight white LEDs 11-2, the plurality of light bulb color LEDs 12-2, and the plurality of RGB LEDs 13-2 are arranged in parallel along the one direction. That is, the second LED light source 10-2 is disposed on the second bottom surface of the second recess 171-2. The first LED light source 10-1 and the second LED light source 10-2 are arranged so that the first optical axis AX1 of the first LED light source 10-1 and the second optical axis AX2 of the second LED light source 10-2 intersect each other. The first and second recesses 171-1 and 171-2 are disposed respectively. For example, the first bottom surface of the first recess 171-1 and the second bottom surface of the second recess 171-2 are formed so as to intersect each other at their extended surfaces. The first optical axis AX1 of the first LED light source 10-1 is a radiation surface of each of the plurality of daylight white LEDs 11-1, the plurality of bulb-color LEDs 12-1 and the plurality of RGB LEDs 13-1 arranged in parallel along the one direction ( The first normal direction of the first plane formed by the light emitting surface. The second optical axis AX1 of the second LED light source 10-2 is a radiation surface of each of the plurality of daylight white LEDs 11-2, the plurality of light bulb color LEDs 12-2, and the plurality of RGB LEDs 13-2 arranged in parallel along the one direction ( This is the second normal direction of the second plane formed by the light emitting surface. In this way, the first optical axis AX1 and the second optical axis AX2 intersect each other, so that the light flux from the first LED light source 10-1 and the second LED light source 10 are located at the position of the cover member 16 that is the light emission window of the illumination device. The area of the light emission window that can overlap the light flux from -2 can be reduced. That is, the entire lighting device can be configured compactly. In a radiation angle region that is separated from the light source unit 1 by a predetermined distance, a part of the first light and a part of the second light overlap each other, and gradation illumination is realized on the irradiated surface. Each point on the irradiated surface may be equidistant from the light source unit 1, and does not necessarily have to be equidistant from the light source unit 1, and the distance from the light source unit 1 may change. A pair of grooves are formed along the one direction in the vicinity of the opening of the recess 171 in the main body 17, and each of the pair of grooves has a long, curved plate shape along the one direction. Both ends of the cover member 16 are fitted, and the opening of the recess 171 is closed by the cover member 16. The cover member 16 is made of a material having translucency with respect to the first light emitted from the first LED light source 10-1 and the second light emitted from the second LED light source 10-2. Note that the cover member 16 may have a slight light scattering property within a range not hindering desired gradation illumination. Moreover, you may have fixed directivity.
 なお、光源部1は、RGBLED13のみを備えて構成されても良いが、本実施形態のように、昼白色LED11や電球色LED12をさらに備えることで、RGBLED13のみを備えて構成される場合に較べて、演色性を向上できる。また、照明装置LDによって放射させたいグラデーション照明に、昼白色LED11の昼白色の成分を多く含む場合や、電球色LED12の電球色の成分を多く含む場合に、本実施形態の照明装置LDは、より効率よく色と明るさを得ることができる。 Although the light source unit 1 may be configured to include only the RGBLED 13, the light source unit 1 may be configured to include only the RGBLED 13 by further including the daylight white LED 11 and the light bulb color LED 12 as in the present embodiment. Color rendering can be improved. Further, when the gradation illumination desired to be radiated by the lighting device LD includes a lot of day white components of the day white LED 11 or a lot of bulb color components of the bulb color LED 12, the lighting device LD of the present embodiment Color and brightness can be obtained more efficiently.
 照明制御部2は、互いに異なる色で第1および第2光を放射するように第1および第2LED光源10-1、10-2を制御するものである。照明制御部2は、例えば、照明装置側制御処理部(以下、「LD側制御処理部」と略記する。)21と、照明装置側記憶部(以下、「LD側記憶部」と略記する。)22と、電流制御部23と、照明装置側ブルートゥース通信モジュール(以下、「LD側ブルートゥース通信モジュール」と略記する。)24とを備える。 The illumination control unit 2 controls the first and second LED light sources 10-1 and 10-2 so as to emit the first and second lights in mutually different colors. The illumination control unit 2 is abbreviated as, for example, a lighting device side control processing unit (hereinafter abbreviated as “LD side control processing unit”) 21 and a lighting device side storage unit (hereinafter referred to as “LD side storage unit”). ) 22, a current control unit 23, and a lighting device side Bluetooth communication module (hereinafter abbreviated as “LD side Bluetooth communication module”) 24.
 LD側ブルートゥース通信モジュール24は、LD側制御処理部21に接続され、ブルートゥース(登録商標)の通信規格に準拠した通信信号で外部の機器と通信する装置である。 The LD-side Bluetooth communication module 24 is an apparatus that is connected to the LD-side control processing unit 21 and communicates with an external device using a communication signal that conforms to the Bluetooth (registered trademark) communication standard.
 電流制御部23は、LD側制御処理部21の制御に従って第1および第2LED光源10-1、10-2における昼白色LED11-1、11-2、電球色LED12-1、12-2およびRGBLED13-1、13-2それぞれに流れる各電流を制御する回路である。電流制御部23は、例えば、昼白色LED11-1、11-2それぞれに流れる各電流を制御する第1電流制御回路23-1と、電球色LED12-1、12-2それぞれに流れる各電流を制御する第2電流制御回路23-2と、RGBLED13-1、13-2それぞれに流れる各電流を制御する第3電流制御回路23-3とを備える。これら第1ないし第3電流制御回路23-1~23-3それぞれは、例えば、LD側制御処理部21によって制御される可変電流源等を備えて構成される。電流制御部23は、PWM(Pulse Width Modulation)制御によって電流を可変しても良い。 The current control unit 23 is a day white LED 11-1, 11-2, light bulb color LED 12-1, 12-2 and RGB LED 13 in the first and second LED light sources 10-1, 10-2 according to the control of the LD side control processing unit 21. -1 and 13-2 are circuits for controlling the respective currents flowing therethrough. For example, the current control unit 23 controls the first current control circuit 23-1 that controls the currents flowing in the daylight white LEDs 11-1 and 11-2 and the currents that flow in the light bulb color LEDs 12-1 and 12-2, respectively. A second current control circuit 23-2 for controlling, and a third current control circuit 23-3 for controlling each current flowing in each of the RGB LEDs 13-1, 13-2 are provided. Each of the first to third current control circuits 23-1 to 23-3 includes, for example, a variable current source controlled by the LD-side control processing unit 21. The current control unit 23 may vary the current by PWM (Pulse Width Modulation) control.
 LD側記憶部22は、LD側制御処理部21に接続され、LD側制御処理部21としてのCPUによって実行される各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、SP側ブルートゥース通信モジュールBMおよびLD側ブルートゥース通信モジュール24を介してスマートフォンSPから受信した信号に基づいてグラデーション照明するための照明制御プログラム等が含まれる。前記各種の所定のデータには、SP側ブルートゥース通信モジュールBMおよびLD側ブルートゥース通信モジュール24を介してスマートフォンSPから受信した信号等の、前記所定のプログラムの実行に必要なデータ等が含まれる。このようなLD側記憶部22は、例えばROMやEEPROM等を備える。そして、LD側記憶部22は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる前記CPUのワーキングメモリとなるRAM等を含む。 The LD-side storage unit 22 is a circuit that is connected to the LD-side control processing unit 21 and stores various predetermined programs and various predetermined data executed by the CPU as the LD-side control processing unit 21. Examples of the various predetermined programs include an illumination control program for performing gradation illumination based on a signal received from the smartphone SP via the SP-side Bluetooth communication module BM and the LD-side Bluetooth communication module 24. The various predetermined data includes data necessary for executing the predetermined program, such as a signal received from the smartphone SP via the SP-side Bluetooth communication module BM and the LD-side Bluetooth communication module 24. Such an LD-side storage unit 22 includes, for example, a ROM, an EEPROM, or the like. The LD-side storage unit 22 includes a RAM serving as a so-called working memory for the CPU that stores data generated during execution of the predetermined program.
 LD側制御処理部21は、照明装置LDの各部を当該各部の機能に応じてそれぞれ制御することによって照明装置LD全体の動作を制御するものである。そして、LD側制御処理部21は、グラデーション照明するために、スマートフォンSPから受信した信号に応じて照明装置LDにおける第1光の第1色および第2光の第2色を制御するものである。LD側制御処理部21は、例えば、CPUおよびその周辺回路を備えて構成される。 The LD-side control processing unit 21 controls the operation of the entire illumination device LD by controlling each unit of the illumination device LD according to the function of each unit. The LD-side control processing unit 21 controls the first color of the first light and the second color of the second light in the lighting device LD according to the signal received from the smartphone SP in order to perform gradation illumination. . The LD side control processing unit 21 includes, for example, a CPU and its peripheral circuits.
 次に、本実施形態の動作について説明する。図9は、実施形態の照明システムにおける発光色制御の概略動作を説明するための図である。図10は、実施形態の照明システムによるグラデーション照明の一例を示す図である。図10Aは、画像データによって表される画像の一例であり、図10Bは、図10Aに示す画像に基づいて実施形態の照明装置LDによって形成されたグラデーション照明の一例である。図10Cは、画像データによって表される画像の他の一例であり、図10Dは、図10Cに示す画像に基づいて実施形態の照明装置LDによって形成されたグラデーション照明の一例である。図11は、実施形態の照明システムにおけるスマートフォンの動作を示すフローチャートである。図12は、実施形態の照明システムにおける照明装置の動作を示すフローチャートである。図13は、実施形態の照明システムにおける画像量子化の動作を示すフローチャートである。図14は、実施形態の照明システムにおける第1態様の領域選択および色決定の動作を説明するための図である。図14Aは、画像標本化の動作を説明するための図であり、図14(B)は、画像量子化の動作を説明するための図であり、図14Cは、領域選択の動作を説明するための図であり、そして、図14Dは、色決定の動作を説明するための図である。図15は、実施形態の照明システムにおける第2態様の領域選択および色決定の動作を説明するための図である。図16は、実施形態の照明システムにおける第3態様の領域選択および色決定の動作を説明するための図である。図17は、実施形態の照明システムにおける第4態様の領域選択および色決定の動作を説明するための図である。図18は、実施形態の照明システムにおける第5態様の領域選択および色決定の動作を説明するための図である。図19は、実施形態の照明システムにおける第6態様の領域選択および色決定の動作を説明するための図である。 Next, the operation of this embodiment will be described. FIG. 9 is a diagram for explaining a schematic operation of emission color control in the illumination system of the embodiment. FIG. 10 is a diagram illustrating an example of gradation illumination by the illumination system of the embodiment. FIG. 10A is an example of an image represented by image data, and FIG. 10B is an example of gradation illumination formed by the illumination device LD of the embodiment based on the image shown in FIG. 10A. FIG. 10C is another example of an image represented by image data, and FIG. 10D is an example of gradation illumination formed by the illumination device LD of the embodiment based on the image shown in FIG. 10C. FIG. 11 is a flowchart illustrating the operation of the smartphone in the lighting system of the embodiment. FIG. 12 is a flowchart illustrating the operation of the lighting device in the lighting system according to the embodiment. FIG. 13 is a flowchart illustrating an image quantization operation in the illumination system of the embodiment. FIG. 14 is a diagram for explaining the region selection and color determination operations of the first aspect in the illumination system of the embodiment. FIG. 14A is a diagram for explaining the operation of image sampling, FIG. 14B is a diagram for explaining the operation of image quantization, and FIG. 14C is a diagram for explaining the operation of region selection. FIG. 14D is a diagram for explaining the color determination operation. FIG. 15 is a diagram for explaining the region selection and color determination operations of the second aspect in the illumination system of the embodiment. FIG. 16 is a diagram for explaining the region selection and color determination operations of the third aspect in the illumination system of the embodiment. FIG. 17 is a diagram for explaining the region selection and color determination operations of the fourth aspect in the illumination system of the embodiment. FIG. 18 is a diagram for explaining the region selection and color determination operations of the fifth aspect in the illumination system of the embodiment. FIG. 19 is a diagram for explaining the region selection and color determination operations of the sixth aspect in the illumination system of the embodiment.
 本実施形態の照明システムLSにおける発光色制御装置の一例であるスマートフォンSPでは、SP側制御処理部PCの画像取得部62は、まず、画像を表す画像データを前記図略の撮像装置やSP側記憶部MY等から取得する。次に、SP側制御処理部PCの領域選択部63は、図9に示すように、画像取得部62で取得された画像データで表される画像の中から、少なくとも2個以上の複数の領域ARmを選択する。図9に示す例では、2個の領域AR1、AR2が選択されている。次に、SP側制御処理部PCの色決定部64は、領域選択部63で選択された複数の領域ARmにおける各色情報に基づいて前記第1および第2光の第1および第2色を決定する。第1および第2色は、例えば、領域選択部63で選択された複数の領域ARmにおける色そのものであって良く、また例えば、領域選択部63で選択された複数の領域ARmにおける色に基づいて決定された色であって良い。そして、信号生成部65は、照明装置LDへ出力するために、色決定部64で決定された第1および第2色を表す信号を生成し、SP側ブルートゥース通信モジュールBMを用いて外部へ送信する。 In the smartphone SP that is an example of the light emission color control device in the illumination system LS of the present embodiment, the image acquisition unit 62 of the SP-side control processing unit PC first converts image data representing an image into the imaging device or SP side that is not illustrated. Obtained from the storage unit MY or the like. Next, the region selection unit 63 of the SP-side control processing unit PC, as shown in FIG. 9, has at least two or more regions from the image represented by the image data acquired by the image acquisition unit 62. Select ARm. In the example shown in FIG. 9, two areas AR1 and AR2 are selected. Next, the color determination unit 64 of the SP-side control processing unit PC determines the first and second colors of the first and second lights based on the color information in the plurality of regions ARm selected by the region selection unit 63. To do. The first and second colors may be the colors themselves in the plurality of areas ARm selected by the area selection unit 63, for example, and based on the colors in the plurality of areas ARm selected by the area selection unit 63, for example. It can be a determined color. Then, the signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and outputs them to the outside using the SP-side Bluetooth communication module BM for output to the illumination device LD. To do.
 そして、この信号をLD側ブルートゥース通信モジュール24で受信すると、照明装置LDでは、この受信した信号に格納された第1および第2色で発光するように、LD側制御処理部21は、電流制御部23を用いて第1および第2LED光源10-1、10-2それぞれを駆動制御する。この駆動制御によって第1および第2LED光源10-1、10-2は、第1および第2色で発光し、所定の被照明面をグラデーション照明する。 When this signal is received by the LD side Bluetooth communication module 24, the LD side control processing unit 21 controls the current so that the lighting device LD emits light in the first and second colors stored in the received signal. The first and second LED light sources 10-1 and 10-2 are driven and controlled using the unit 23. By this drive control, the first and second LED light sources 10-1 and 10-2 emit light in the first and second colors and perform gradation illumination on a predetermined illuminated surface.
 したがって、本実施形態における照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラムは、画像の中から複数の領域ARnを選択し、それらの各色情報に基づいて前記第1光の第1色および前記第2光の第2色を決定する。このため、上記照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の基となる画像を簡略化することでデフォルメできる。したがって、上記照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の照明装置LDによって画像の印象を概念的に表現できる。 Therefore, the illumination system LS, the light emission color control device (smartphone SP in the above example), the light emission color control method and the light emission color control program implemented therein select a plurality of areas ARn from the image. The first color of the first light and the second color of the second light are determined based on each color information. For this reason, the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the illumination system LS, the light emission color control device, the light emission color control method and the light emission color control program mounted thereon can conceptually express the impression of the image by the illumination device LD for gradation illumination.
 例えば、図10Aに示す、水平線から朝日が昇る明け方の海岸を写した画像に対し、本実施形態の照明システムLSが上述のように動作することによって、照明装置LDは、図10Bに示すように、前記第1色を黄色として第1LED光源10-1から黄色光を放射するとともに前記第2色を水色として第2LED光源10-2から水色光を放射することで、被照射面の一方端を黄色光で照明するとともにその他方端を水色光で照明し、被照射面をグラデーション照明する。また例えば、図10Cに示す、夕暮れ時の風景を写した画像に対し、本実施形態の照明システムLSが上述のように動作することによって、照明装置LDは、図10Dに示すように、前記第1色を赤色として第1LED光源10-1から赤色光を放射するとともに前記第2色を黄色として第2LED光源10-2から黄色光を放射することで、被照射面の一方端を赤色光で照明するとともにその他方端を黄色光で照明し、被照射面をグラデーション照明する。このように図10Aに示す画像は、図10Bに示すグラデーション照明で概念的に表現され、図10Cに示す画像は、図10Dに示すグラデーション照明で概念的に表現される。 For example, the illumination apparatus LD operates as described above with respect to the image of the morning coast where the morning sun rises from the horizon shown in FIG. By radiating yellow light from the first LED light source 10-1 with yellow as the first color and light blue light from the second LED light source 10-2 with light as the second color, one end of the irradiated surface is It is illuminated with yellow light and the other end is illuminated with light blue light, and the illuminated surface is illuminated with gradation. Further, for example, when the lighting system LS of the present embodiment operates as described above with respect to an image showing a sunset scene as shown in FIG. 10C, the lighting device LD can perform the first operation as shown in FIG. 10D. By radiating red light from the first LED light source 10-1 with red as one color and radiating yellow light from the second LED light source 10-2 with yellow as the second color, one end of the irradiated surface is red light. Illuminate and illuminate the other end with yellow light, and illuminate the illuminated surface with gradation. Thus, the image shown in FIG. 10A is conceptually expressed by the gradation illumination shown in FIG. 10B, and the image shown in FIG. 10C is conceptually expressed by the gradation illumination shown in FIG. 10D.
 より具体的には、本実施形態の照明システムLSにおける発光色制御装置の一例としてのスマートフォンSPおよび照明装置LDは、次のように動作する。 More specifically, the smartphone SP and the illumination device LD as an example of the emission color control device in the illumination system LS of the present embodiment operate as follows.
 図11において、スマートフォンSPでは、まず、SP側制御処理部PCの画像取得部62によって、画像を表す画像データが前記図略の撮像装置やSP側記憶部MY等から取得される。例えば、SP側記憶部MYから画像データが読み込まれる(S11)。 In FIG. 11, in the smartphone SP, first, image data representing an image is acquired from the imaging device (not shown), the SP-side storage unit MY, and the like by the image acquisition unit 62 of the SP-side control processing unit PC. For example, image data is read from the SP-side storage unit MY (S11).
 次に、SP側制御処理部PCの領域選択部63における画像標本化部631によって、画像取得部62で取得された画像データで表される画像が所定の形状で複数のブロック領域ARnに分割されることで、前記画像が標本化される(S12)。例えば、図14Aに示すように、画像が、互いに同一形状で同一サイズの長方形で、互いに直交する縦方向および横方向の2方向に分割されて、複数のブロック領域ARnに分割される。ブロック領域ARnの大きさ(サイズ)は、前記画像の大きさ(サイズ)に応じて適宜に設定される。図14Aに示す例では、画像が2次元アレイ状に配列された90個のブロック領域AR11~AR910で分割されるように、ブロック領域の大きさが設定されている。 Next, the image sampling unit 631 in the region selection unit 63 of the SP-side control processing unit PC divides the image represented by the image data acquired by the image acquisition unit 62 into a plurality of block regions ARn in a predetermined shape. Thus, the image is sampled (S12). For example, as shown in FIG. 14A, an image is a rectangle having the same shape and the same size, and is divided into two vertical and horizontal directions orthogonal to each other, and is divided into a plurality of block areas ARn. The size (size) of the block area ARn is appropriately set according to the size (size) of the image. In the example shown in FIG. 14A, the size of the block area is set so that the image is divided into 90 block areas AR11 to AR910 arranged in a two-dimensional array.
 次に、SP側制御処理部PCの領域選択部63における画像量子化部632によって、画像標本化部631で標本化された前記複数のブロック領域ARnそれぞれに対し、当該ブロック領域ARnにおける色情報に基づいて当該ブロック領域ARnの色を代表する代表色が求められることで、前記複数のブロック領域ARnそれぞれの各色が代表色に量子化される(S13)。例えば、図14Aに示す画像の各ブロック領域ARnは、画像量子化によって、図14Bに示すように、代表色1色で表される。図14Bは、画像量子化の処理途中を示し、1行9列、5行3列、5行9列、7行4列および7行8列の各ブロック領域の色が画像量子化されて代表色1色で表されている。 Next, for each of the plurality of block areas ARn sampled by the image sampling section 631 by the image quantization section 632 in the area selection section 63 of the SP-side control processing section PC, the color information in the block area ARn is converted into color information in the block area ARn. Based on this, a representative color representative of the color of the block area ARn is obtained, so that each color of the plurality of block areas ARn is quantized into a representative color (S13). For example, each block area ARn of the image shown in FIG. 14A is represented by one representative color as shown in FIG. 14B by image quantization. FIG. 14B shows the middle of the image quantization process, and the colors of the block areas of 1 row 9 columns, 5 rows 3 columns, 5 rows 9 columns, 7 rows 4 columns and 7 rows 8 columns are image quantized and are representative. It is represented by one color.
 このような画像量子化では、当該ブロック領域ARnにおける色情報の所定の統計値が前記代表色とされる。この所定の統計値は、好ましくは、平均値、加重平均値、中央値および中心値のうちのいずれか1つであり、これらの中から適宜に選択された値である。 In such image quantization, a predetermined statistical value of color information in the block area ARn is used as the representative color. The predetermined statistical value is preferably any one of an average value, a weighted average value, a median value, and a median value, and is a value appropriately selected from these.
 例えば、前記所定の統計値が平均値である場合、当該ブロック領域ARnの全画素に対し、その画素値の平均値が求められ、この求められた平均値が代表値とされる。より具体的には、当該ブロック領域ARnの全画素に対し、色相の平均値が求められ、明度の平均値が求められ、彩度の平均値が求められ、そして、これら求められた色相、明度および彩度の各平均値によって定義される色が当該ブロック領域ARnの代表色となる。 For example, when the predetermined statistical value is an average value, an average value of the pixel values is obtained for all the pixels in the block area ARn, and the obtained average value is used as a representative value. More specifically, the average value of hue is obtained for all pixels in the block area ARn, the average value of lightness is obtained, the average value of saturation is obtained, and the obtained hue and lightness are obtained. The color defined by each average value of the saturation is the representative color of the block area ARn.
 より具体的には、図13に示すように、まず、当該ブロック領域ARnにおいて、各色ドット(各画素の各色)の色情報(R(赤色)の値、G(緑色)の値、B(青色)の値)が認識され(S31)、次に、各色ドットをRGB表色系から色度・明るさデータに変換される(S32)。次に、全色ドットの色度・明るさデータの各平均値が算出される(S33)。そして、この求められた色度の平均値、明るさの平均値の各データがRGB表色系に戻され(S34)、このRGB表色系の色が当該ブロック領域ARnの代表色とされる(S35)。 More specifically, as shown in FIG. 13, first, in the block area ARn, color information (R (red) value, G (green) value, B (blue) value of each color of each pixel) )) Is recognized (S31), and then each color dot is converted from the RGB color system to chromaticity / brightness data (S32). Next, average values of chromaticity / brightness data of all color dots are calculated (S33). Then, each data of the obtained average value of chromaticity and average value of brightness is returned to the RGB color system (S34), and the color of this RGB color system is set as the representative color of the block area ARn. (S35).
 また例えば、前記所定の統計値が加重平均値である場合、当該ブロック領域ARnの全画素に対し、その画素値の加重平均値が求められ、この求められた加重平均値が代表値とされる。より具体的には、当該ブロック領域ARnの全画素に対し、色相の加重平均値が求められ、明度の加重平均値が求められ、彩度の加重平均値が求められ、そして、これら求められた色相、明度および彩度の各加重平均値によって定義される色が当該ブロック領域ARnの代表色となる。前記加重平均する際に用いられる重みは、色相の各値、明度の各値および彩度の各値に対し予め適宜に設定されてよく、また、実際のブロック領域の画像に応じて設定されてよい。例えば、当該ブロック領域ARnの全画素を対象に、色相の度数分布が求められ、色相の各値の重みは、この求めた色相の度数分布における頻度に応じて設定され、当該ブロック領域ARnの全画素を対象に、明度の度数分布が求められ、明度の各値の重みは、この求めた明度の度数分布における頻度に応じて設定され、そして、当該ブロック領域ARnの全画素を対象に、彩度の度数分布が求められ、彩度の各値の重みは、この求めた彩度の度数分布における頻度に応じて設定される。 Further, for example, when the predetermined statistical value is a weighted average value, a weighted average value of the pixel values is obtained for all the pixels in the block area ARn, and the obtained weighted average value is used as a representative value. . More specifically, for all the pixels in the block area ARn, a weighted average value of hue is obtained, a weighted average value of lightness is obtained, a weighted average value of saturation is obtained, and these are obtained. A color defined by each weighted average value of hue, lightness, and saturation is a representative color of the block area ARn. The weight used in the weighted averaging may be appropriately set in advance for each value of hue, each value of brightness, and each value of saturation, and may be set according to an image of an actual block area. Good. For example, the hue frequency distribution is obtained for all the pixels in the block area ARn, and the weight of each value of the hue is set according to the frequency in the obtained hue frequency distribution. A brightness frequency distribution is obtained for the pixels, and the weight of each value of the brightness is set according to the frequency in the obtained brightness frequency distribution, and for all the pixels in the block area ARn, A frequency distribution of degrees is obtained, and the weight of each value of saturation is set according to the frequency in the obtained frequency distribution of saturation.
 また例えば、前記所定の統計値が中央値である場合、この中央値は、所定の範囲ごとに区分した画素値を横軸とするとともに各区分ごとの頻度を縦軸とした場合、当該ブロック領域ARnの全画素を対象とした度数分布の最も頻度の多い区分の値である。より具体的には、例えば、色相の中央値は、当該ブロック領域ARnの全画素を対象に、色相の度数分布を求め、この求めた色相の度数分布における最も頻度の多い区分の値である。前記区分の値は、以下の同様に、例えば区分の真ん中の値あるいは区分の平均値等である。明度の中央値は、当該ブロック領域ARnの全画素を対象に、明度の度数分布を求め、この求めた明度の度数分布における最も頻度の多い区分の値である。彩度の中央値は、当該ブロック領域ARnの全画素を対象に、彩度の度数分布を求め、この求めた彩度の度数分布における最も頻度の多い区分の値である。そして、これら色相の中央値、明度の中央値および彩度の中央値によって定義される色が当該ブロック領域ARnの代表色となる。 Further, for example, when the predetermined statistical value is a median value, the median value corresponds to the block region when the horizontal axis represents the pixel value divided for each predetermined range and the vertical axis represents the frequency for each division. This is the value of the most frequent segment of the frequency distribution for all pixels of ARn. More specifically, for example, the median value of the hue is the value of the most frequently classified section in the hue frequency distribution obtained by calculating the hue frequency distribution for all the pixels in the block area ARn. The value of the division is, for example, the middle value of the division or the average value of the division in the same manner as described below. The median value of lightness is a value of the most frequent section in the lightness frequency distribution obtained by calculating the lightness frequency distribution for all the pixels in the block area ARn. The median value of saturation is the value of the most frequent section in the saturation frequency distribution obtained by calculating the saturation frequency distribution for all the pixels in the block area ARn. The color defined by the median value of hue, the median value of lightness, and the median value of saturation is the representative color of the block area ARn.
 また例えば、前記所定の統計値が中心値である場合、この中心値は、所定の範囲ごとに区分した画素値を横軸とするとともに各区分ごとの頻度を縦軸とした場合、当該ブロック領域ARnの全画素を対象とした度数分布における頻度の有る最小の区分の値(度数分布の区分の最小値)と、頻度のある最大の区分の値(度数分布の区分の最大値)との真ん中の値である。より具体的には、例えば、色相の中心値は、当該ブロック領域ARnの全画素を対象に、色相の度数分布を求め、この求めた色相の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。明度の中心値は、当該ブロック領域ARnの全画素を対象に、明度の度数分布を求め、この求めた明度の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。彩度の中心値は、当該ブロック領域ARnの全画素を対象に、彩度の度数分布を求め、この求めた彩度の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。そして、これら色相の中心値、明度の中心値および彩度の中心値によって定義される色が当該ブロック領域ARnの代表色となる。 Further, for example, when the predetermined statistical value is a central value, the central value corresponds to the block region when the horizontal axis represents the pixel value divided for each predetermined range and the vertical axis represents the frequency for each division. The middle of the frequency with the smallest frequency (minimum value of the frequency distribution) in the frequency distribution for all pixels of ARn and the value with the highest frequency (maximum value of the frequency distribution) Is the value of More specifically, for example, the hue center value is obtained by calculating the hue frequency distribution for all the pixels in the block area ARn, and the minimum value and the frequency distribution of the frequency distribution section in the obtained hue frequency distribution are obtained. It is the middle value with the maximum value of the category. The central value of the lightness is obtained by calculating the lightness frequency distribution for all the pixels in the block area ARn, and the center between the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated lightness frequency distribution. Is the value of The saturation central value is obtained by calculating the saturation frequency distribution for all pixels in the block area ARn, and the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated saturation frequency distribution. And the middle value. A color defined by the central value of the hue, the central value of the brightness, and the central value of the saturation is the representative color of the block area ARn.
 次に、SP側制御処理部PCの領域選択部63における選択部633によって、画像標本化部631で標本化された複数のブロック領域ARnの中から、画像量子化部632で量子化された代表色に基づいて、少なくとも2個以上の複数のブロック領域ARmが前記複数の領域として選択される(S14)。例えば、図14Aに示す画像の各ブロック領域ARnから、各ブロック領域ARnの各代表色に基づいて、1行9列および5行6列のブロック領域が選択されている。 Next, the representative quantized by the image quantization unit 632 out of the plurality of block regions ARn sampled by the image sampling unit 631 by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC. Based on the color, at least two or more block areas ARm are selected as the plurality of areas (S14). For example, from the block areas ARn of the image shown in FIG. 14A, block areas of 1 row 9 columns and 5 rows 6 columns are selected based on the representative colors of the block areas ARn.
 なお、この処理S14の領域選択処理における、より具体的な各態様については、後述する。 It should be noted that more specific aspects of the area selection process in step S14 will be described later.
 次に、SP側制御処理部PCの色決定部64によって、領域選択部63で上述のように選択された複数の領域ARmにおける各色情報に基づいて、前記第1および第2光の第1および第2色が決定される(S15)。第1および第2色は、例えば、領域選択部63で選択された複数の領域ARmにおける色そのもの(例えば代表色そのもの等)であって良く、また例えば、図14Dに示すように、領域選択部63で選択された複数の領域ARmにおける色に基づいて決定された色(例えば代表色に基づいて決定された色等(例えば前記代表色の色相および明度をそのままに維持するとともに前記代表色の彩度を照明装置LDで発光可能な程度に鮮やかな彩度に変換した色等)であって良い。 Next, based on the color information in the plurality of areas ARm selected as described above by the area selecting section 63 by the color determining section 64 of the SP-side control processing section PC, the first and second lights 1 and A second color is determined (S15). The first and second colors may be, for example, the colors themselves (for example, the representative colors themselves) in the plurality of areas ARm selected by the area selection unit 63. For example, as shown in FIG. 14D, the area selection unit The color determined based on the colors in the plurality of areas ARm selected in 63 (for example, the color determined based on the representative color, etc. (for example, maintaining the hue and brightness of the representative color as they are and the color of the representative color) The color may be a color obtained by converting the degree into a saturation that is bright enough to be emitted by the lighting device LD).
 次に、SP側制御処理部PCの色決定部64によって、色相、明度および彩度がRGBへ周知の変換式によって色データが変換される(S16)。 Next, the color data is converted by the color determination unit 64 of the SP-side control processing unit PC into hue, lightness, and saturation with RGB using well-known conversion formulas (S16).
 そして、信号生成部65によって、照明装置LDへ出力するために、色決定部64で決定され色データ変換された第1および第2色を表す信号が生成され、この信号は、SP側ブルートゥース通信モジュールBMによって、外部へ送信される(S17)。そして、図11に示す動作では、色決定部64で決定され色データ変換された第1および第2色は、SP側記憶部MYに記憶され、保存される。 The signal generator 65 generates signals representing the first and second colors determined by the color determiner 64 and subjected to color data conversion for output to the illumination device LD, and this signal is used for SP side Bluetooth communication. It is transmitted to the outside by the module BM (S17). In the operation illustrated in FIG. 11, the first and second colors determined by the color determination unit 64 and subjected to color data conversion are stored and stored in the SP-side storage unit MY.
 一方、照明装置LDでは、図12において、SP側ブルートゥース通信モジュールMBから前記信号をLD側ブルートゥース通信モジュール24で受信すると(S21)、この受信した前記信号に格納されている第1および第2色(すなわち、色決定部64で決定され色データ変換された第1および第2色)が、LD側制御処理部21によってLD側記憶部22に記憶され、保存される(S25)。そして、LD側制御処理部21は、この受信した前記信号に格納されている第1および第2色(すなわち、色決定部64で決定され色データ変換された第1および第2色)で第1および第2LED光源10-1、10-2が発光するように、制御信号を生成し、この制御信号を電流制御部23へ出力する(S22)。 On the other hand, in the lighting device LD, when the signal is received from the SP-side Bluetooth communication module MB by the LD-side Bluetooth communication module 24 (S21) in FIG. 12, the first and second colors stored in the received signal are received. (That is, the first and second colors determined and converted by the color determination unit 64) are stored and stored in the LD side storage unit 22 by the LD side control processing unit 21 (S25). Then, the LD-side control processing unit 21 performs the first and second colors stored in the received signal (that is, the first and second colors determined by the color determination unit 64 and subjected to color data conversion). A control signal is generated so that the first and second LED light sources 10-1 and 10-2 emit light, and the control signal is output to the current control unit 23 (S22).
 次に、電流制御部23は、LD側制御処理部21から入力された制御信号に応じて、第1ないし第3電流制御回路それぞれで、昼白色LED11-1、11-2、電球色LED12-1、12-2およびRGBLED13-1、13-2それぞれを電流制御し(S23)、これによって第1および第2LED光源10-1、10-2は、前記第1および第2色で発光する(S24)。これによって照明装置LDは、被照明面をグラデーション照明する。 Next, the current control unit 23 responds to the control signal input from the LD-side control processing unit 21 by each of the first to third current control circuits, and the daylight white LEDs 11-1 and 11-2, the light bulb color LED 12- 1 and 12-2 and RGB LEDs 13-1 and 13-2 are respectively current controlled (S23), whereby the first and second LED light sources 10-1 and 10-2 emit light in the first and second colors ( S24). Accordingly, the illumination device LD performs gradation illumination on the surface to be illuminated.
 このような照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の基となる画像を、画像標本化して画像量子化するので、前記画像の特徴を活かしてデフォルメできる。したがって、上記照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 Such an illumination system LS, a light emission color control device (smartphone SP in the above example), a light emission color control method and a light emission color control program mounted on the light system LS are converted into an image sample of an image that is the basis of gradation illumination. Since it is quantized, it can be deformed taking advantage of the characteristics of the image. Therefore, the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 次に、上述の処理S14の領域選択処理の各態様について説明する。上述したように、領域選択部63は、例えば、第1ないし第6態様を採り得、これに応じて処理S14の領域選択処理は、次の第1ないし第6態様で動作し得る。 Next, each aspect of the area selection process in the above-described process S14 will be described. As described above, the area selection unit 63 can take, for example, the first to sixth modes, and the area selection process of the process S14 can operate in the following first to sixth modes accordingly.
 まず、上述の第1態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像標本化部631で標本化された複数のブロック領域ARnの中から、隣接するブロック領域ARnに対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域ARmが、少なくとも2個以上、前記複数の領域として選択される。例えば、色相、明度および彩度の中でその差異の大きい順にブロック領域ARmが選択される。前記第1閾値は、色相、明度および彩度それぞれに対し、適宜な値に設定される。例えば、図14Aに示す水平線から朝日が昇る明け方の海岸を写した画像に対し、この場合では、図14Cに示すように、空を写した、代表色が青色であるブロック領域AR19と、朝日を写した、代表色が黄色であるブロック領域AR56が選択される。そして、SP側制御処理部PCの色決定部64によって、図14Dに示すように、領域選択部63で上述のように選択されたブロック領域AR19、AR56の青色および黄色に基づいて、前記第1および第2光の第1および第2色が決定される。 First, in the case of the region selection unit 63 according to the first aspect described above, among the block regions ARn sampled by the image sampling unit 631 by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC. Thus, at least two or more block areas ARm in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold value are selected as the plurality of areas. . For example, the block area ARm is selected in descending order of the difference among hue, brightness, and saturation. The first threshold value is set to an appropriate value for each of hue, brightness, and saturation. For example, with respect to an image in which the morning sun rises from the horizontal line shown in FIG. 14A, in this case, as shown in FIG. 14C, a block area AR19 in which the representative color is blue and the morning sun are shown. The copied block area AR56 whose representative color is yellow is selected. Then, based on the blue and yellow colors of the block areas AR19 and AR56 selected as described above by the area selection section 63 by the color determination section 64 of the SP-side control processing section PC, as shown in FIG. And first and second colors of the second light are determined.
 この第1態様によれば、前記画像における複数のブロック領域ARnの中から、隣接するブロック領域ARnに対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域ARmが選択される。このため、このような照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラム(以下、各態様の説明では、「照明システム等」と略記する。)では、画像の中から、特徴的な色のブロック領域ARmが選択される。したがって、上記照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 According to the first aspect, any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold or more from among the plurality of block areas ARn in the image. The block area ARm is selected. For this reason, such an illumination system LS, an emission color control device (smartphone SP in the above example), an emission color control method and an emission color control program (hereinafter referred to as “illumination system etc.” in the description of each aspect). ”), A block area ARm having a characteristic color is selected from the image. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 上述の第2態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像標本化部631で標本化された複数のブロック領域ARnの中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域ARmを選択して1つのグループGRnに纏め、前記纏めたグループに属するブロック領域ARmの総面積が所定の第2閾値以上であるグループGRmの中から、前記複数のブロック領域ARmとして、少なくとも2個以上の複数のグループGRmが選択される。例えば、その面積が広い順にグループGRmが選択される。前記第2閾値は、適宜な面積に設定される。例えば、図14Aに示す前記画像に対し、この場合では、図15に示すように、空を写した、代表色が青色系であるブロック領域AR12~AR19、AR21~AR210、AR32~AR39が1つの第1グループGR1に纏められ、代表色が黄色系であるブロック領域AR51~AR510が他の1つの第2グループGR2に纏められ、そして、代表色が紺色系であるブロック領域AR62~AR69、AR71~AR710、AR82~AR89が他の1つの第3グループGR3に纏められ、その面積が広い順に第1および第3グループGR1、3が選択される。そして、SP側制御処理部PCの色決定部64によって、図15に示すように、領域選択部63で上述のように選択された第1および第3グループGR1、3の青色系および紺色系に基づいて、前記第1および第2光の第1および第2色が決定される。 In the case of the region selection unit 63 of the second mode described above, the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC selects from among the plurality of block regions ARn sampled by the image sampling unit 631. The block areas ARm in which the hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the grouped group is a predetermined number. At least two or more groups GRm are selected as the plurality of block areas ARm from the group GRm having two or more thresholds. For example, the group GRm is selected in order of increasing area. The second threshold value is set to an appropriate area. For example, for the image shown in FIG. 14A, in this case, as shown in FIG. 15, there is one block area AR12 to AR19, AR21 to AR210, AR32 to AR39 representing the sky and having a representative color of blue. Block areas AR51 to AR510, which are grouped into the first group GR1, and whose representative color is yellow, are grouped into another second group GR2, and block areas AR62 to AR69, AR71 to which the representative color is amber. AR710 and AR82 to AR89 are grouped into another third group GR3, and the first and third groups GR1 and GR3 are selected in order of increasing area. Then, the color determination unit 64 of the SP-side control processing unit PC converts the blue and amber systems of the first and third groups GR1, 3 selected as described above by the region selection unit 63 as shown in FIG. Based on the first and second colors of the first and second light are determined.
 この第2態様によれば、前記画像における複数のブロック領域ARnの中から、前記代表色が所定の範囲内であるブロック領域ARmが選択されて1つのグループGRnに纏められ、前記纏められたグループGRnに属するブロック領域ARmの総面積が所定の第2閾値以上であるグループGRmの中から、前記複数のブロック領域ARmとして少なくとも2個以上の複数のグループGRmが選択される。このため、上記照明システムLS等では、前記画像における複数のブロック領域の中から、一定の範囲内で同色であって比較的広い範囲に亘って分布するブロック領域ARm(グループGRm)が選択される。したがって、このような照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 According to the second aspect, block areas ARm whose representative colors are within a predetermined range are selected from a plurality of block areas ARn in the image, and are grouped into one group GRn, and the grouped groups At least two or more groups GRm are selected as the plurality of block areas ARm from the group GRm in which the total area of the block areas ARm belonging to GRn is equal to or greater than a predetermined second threshold value. Therefore, in the illumination system LS or the like, a block area ARm (group GRm) having the same color within a certain range and distributed over a relatively wide range is selected from a plurality of block areas in the image. . Therefore, such an illumination system LS and the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 上述の第3態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像標本化部631で標本化された複数のブロック領域ARnの中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域ARmを選択して1つのグループGRnに纏め、前記纏めたグループに属するブロック領域ARmの総面積が所定の第2閾値以上であるグループGRmであって彩度または明度が所定の第3閾値以上であるグループの中から、前記複数のブロック領域ARmとして、少なくとも2個以上の複数のグループGRmが選択される。例えば、その面積が広い順に、そして、明度および彩度の中で大きい順(明るい順、鮮やかな順)に、グループGRmが選択される。グループGRmの明度は、例えば、当該グループGRmに属する各ブロック領域の各代表色における各明度の平均値とされ、グループGRmの彩度は、例えば、当該グループGRmに属する各ブロック領域の各代表色における各彩度の平均値とされる。前記第3閾値は、明度および彩度それぞれに対し、適宜な値に設定される。例えば、図14Aに示す前記画像に対し、この場合では、図16に示すように、空を写した、代表色が青色系であるブロック領域AR12~AR19、AR21~AR210、AR32~AR39が1つの第1グループGR1に纏められ、代表色が黄色系であるブロック領域AR51~AR510が他の1つの第2グループGR2に纏められ、そして、代表色が紺色系であるブロック領域AR62~AR69、AR71~AR710、AR82~AR89が他の1つの第3グループGR3に纏められ、その面積が広い順に、そして、明度および彩度の中で大きい順(明るい順、鮮やかな順)に、第1および第2グループGR1、2が選択される。そして、SP側制御処理部PCの色決定部64によって、図16に示すように、領域選択部63で上述のように選択された第1および第2グループGR1、2の青色系および黄色系に基づいて、前記第1および第2光の第1および第2色が決定される。 In the case of the region selection unit 63 of the third aspect described above, from the plurality of block regions ARn sampled by the image sampling unit 631 by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC, The block areas ARm in which the hue difference, saturation difference, and brightness difference in the representative colors are within a predetermined range are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the grouped group is a predetermined number. At least two or more groups GRm are selected as the plurality of block areas ARm from among the groups GRm that are two or more thresholds and whose saturation or lightness is not less than a predetermined third threshold. For example, the group GRm is selected in the order of increasing area and in order of increasing brightness and saturation (bright order, vivid order). The lightness of the group GRm is, for example, the average value of the lightnesses in the representative colors of the block regions belonging to the group GRm. The saturation of the group GRm is, for example, the representative color of the block regions belonging to the group GRm. The average value of each saturation at. The third threshold value is set to an appropriate value for each of brightness and saturation. For example, with respect to the image shown in FIG. 14A, in this case, as shown in FIG. 16, there is one block area AR12 to AR19, AR21 to AR210, AR32 to AR39 representing the sky and having a blue representative color. Block areas AR51 to AR510, which are grouped into the first group GR1, and whose representative color is yellow, are grouped into another second group GR2, and block areas AR62 to AR69, AR71 to which the representative color is amber. AR710 and AR82 to AR89 are grouped into another third group GR3. The first and second are arranged in order of increasing area and in order of increasing brightness and saturation (brightness order, vivid order). Groups GR1 and GR2 are selected. Then, the color determination unit 64 of the SP-side control processing unit PC converts the blue and yellow systems of the first and second groups GR1 and GR2 selected as described above by the region selection unit 63 as shown in FIG. Based on the first and second colors of the first and second light are determined.
 この第3態様によれば、前記画像における複数のブロック領域ARnの中から、前記代表色が所定の範囲内であるブロック領域ARmが選択されて1つのグループGRnに纏められ、前記纏められたグループGRnに属するブロック領域ARmの総面積が所定の第2閾値以上であって彩度または明度が所定の第3閾値以上であるグループGRmの中から、前記複数のブロック領域ARmとして少なくとも2個以上の複数のグループGRmが選択される。このため、上記照明システムLS等では、前記画像における複数のブロック領域ARnの中から、一定の範囲内で同色であって比較的広い範囲に亘って分布する、照明装置LDで発光可能なブロック領域ARm(グループGRm)が選択される。したがって、このような照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 According to the third aspect, the block areas ARm whose representative colors are within a predetermined range are selected from the plurality of block areas ARn in the image and are grouped into one group GRn, and the grouped groups From the group GRm in which the total area of the block areas ARm belonging to GRn is equal to or greater than a predetermined second threshold and the saturation or lightness is equal to or greater than a predetermined third threshold, the plurality of block areas ARm are at least two or more. A plurality of groups GRm are selected. For this reason, in the illumination system LS or the like, among the plurality of block areas ARn in the image, the block areas that are the same color within a certain range and are distributed over a relatively wide range can be emitted by the illumination device LD. ARm (group GRm) is selected. Therefore, such an illumination system LS and the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 上述の第4態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像標本化部631で標本化された複数のブロック領域ARnの中から、隣接するブロック領域ARnに対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域ARmが、前記少なくとも2個以上の複数のブロック領域ARmのうちの少なくとも1つとして少なくとも1つのブロック領域ARmが選択され、画像標本化部631で標本化された複数のブロック領域ARnの中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域ARmを選択して1つのグループGRnに纏め、前記纏めたグループGRnに属するブロック領域ARmの総面積が所定の第2閾値以上であるグループGRmの中から、前記少なくとも2個以上の複数のブロック領域ARmのうちの少なくとも他の1つとして少なくとも1つのブロック領域ARmが選択される。図14Aに示す前記画像に対し、この場合では、図17に示すように、色相、明度および彩度の中でその差異が最も大きい、朝日を写した代表色が黄色であるブロック領域AR56が選択され、そして、空を写した、代表色が青色系であるブロック領域AR12~AR19、AR21~AR210、AR32~AR39が1つの第1グループGR1に纏められ、代表色が黄色系であるブロック領域AR51~AR510が他の1つの第2グループGR2に纏められ、そして、代表色が紺色系であるブロック領域AR62~AR69、AR71~AR710、AR82~AR89が他の1つの第3グループGR3に纏められ、その面積が最も広い第1グループGR1が選択される。そして、SP側制御処理部PCの色決定部64によって、図17に示すように、領域選択部63で上述のように選択されたブロック領域AR56および第1グループGR1の黄色および青色系に基づいて、前記第1および第2光の第1および第2色が決定される。 In the case of the region selection unit 63 of the above-described fourth aspect, the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC uses a plurality of block regions ARn sampled by the image sampling unit 631. A block area ARm in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area ARn by a predetermined first threshold is at least one of the at least two block areas ARm. At least one block area ARm is selected as one, and the hue difference, saturation difference, and brightness difference in the representative color are within a predetermined range from among the plurality of block areas ARn sampled by the image sampling unit 631. Block areas ARm are selected and grouped into one group GRn, and the total area of the block areas ARm belonging to the group GRn There from the group GRm is equal to or greater than a predetermined second threshold value, wherein the at least one block area ARm is selected as at least one other of the at least two or more of the plurality of block areas ARm. For the image shown in FIG. 14A, in this case, as shown in FIG. 17, the block area AR56 having the largest difference in hue, lightness, and saturation and whose representative color showing the sunrise is yellow is selected. Then, the block areas AR12 to AR19, AR21 to AR210, AR32 to AR39, which are representative of the sky and represent the sky, are grouped into one first group GR1, and the block area AR51 whose representative color is yellow AR510 are grouped into another one second group GR2, and block areas AR62 to AR69, AR71 to AR710, AR82 to AR89 whose representative colors are amber systems are grouped into another one third group GR3, The first group GR1 having the largest area is selected. Then, based on the yellow and blue colors of the block area AR56 and the first group GR1 selected as described above by the area selection section 63 by the color determination section 64 of the SP-side control processing section PC as shown in FIG. , First and second colors of the first and second light are determined.
 この第4態様によれば、前記画像における複数のブロック領域ARnの中から、隣接するブロック領域ARnに対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域ARmが、前記少なくとも2個以上の複数のブロック領域ARmのうちの少なくとも1つとして少なくとも1つ選択され、そして、前記画像における複数のブロック領域ARnの中から、前記代表色が所定の範囲内であるブロック領域ARmが選択されて1つのグループARnに纏められ、前記纏められたグループGRnに属するブロック領域ARmの総面積が所定の第2閾値以上であるグループGRmの中から、前記少なくとも2個以上の複数のブロック領域ARmのうちの少なくとも1つとして少なくとも1つグループGRmが選択される。このため、上記照明システムLS等では、画像の中から、特徴的な色のブロック領域ARmが選択されるとともに、前記画像における複数のブロック領域ARnの中から、一定の範囲内で同色であって比較的広い範囲に亘って分布するブロック領域ARm(グループGRm)が選択される。したがって、上記照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 According to the fourth aspect, one of the hue, lightness, and saturation of the representative color differs from the block area ARn adjacent to the adjacent block area ARn by a predetermined first threshold value or more. At least one block area ARm is selected as at least one of the at least two or more block areas ARm, and the representative color has a predetermined range from the plurality of block areas ARn in the image. Block areas ARm within the group GRm are selected and grouped into one group ARn, and the total area of the block areas ARm belonging to the grouped group GRn is at least 2 from the group GRm that is equal to or greater than a predetermined second threshold. At least one group GRm as at least one of the plurality of block areas ARm. It is selected. Therefore, in the illumination system LS and the like, a block area ARm having a characteristic color is selected from the image, and the same color is selected within a certain range from the plurality of block areas ARn in the image. A block area ARm (group GRm) distributed over a relatively wide range is selected. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 上述の第5態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像取得部62で取得された画像データで表される画像における一部領域の中から、前記複数のブロック領域ARmが選択される。この一部領域は、例えば、スマートフォンの表示部OTに画像を表示し、この表示された画像の領域をタッチパネルでユーザが指定することによって決定されて良く、また例えば、この一部領域は、画像の上半分、下半分、右半分および左半分等のように予め設定されたものであって良い。例えば、図14Aに示す前記画像に対し、この場合では、図18に示すように、空を写した領域が前記一部領域PARとしてユーザによって指定される。そして、この指定された一部領域PARに対し、これら上述の第1ないし第4態様のいずれかによって前記少なくとも2個以上の複数の領域が選択される。図18に示す例では、上述の第2態様によって選択される場合が示されており、空を写した、代表色が青色系である第1グループGR1と、代表色が黄色系である第2グループGR2とが選択され、これら選択された第1および第2グループGR1、2の青色系および黄色系に基づいて、前記第1および第2光の第1および第2色が決定される。 In the case of the region selection unit 63 of the fifth aspect described above, a partial region in the image represented by the image data acquired by the image acquisition unit 62 by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC. The plurality of block areas ARm are selected from the above. This partial area may be determined by, for example, displaying an image on the display unit OT of the smartphone and designating the displayed image area on the touch panel by the user. The upper half, the lower half, the right half, the left half, and the like may be set in advance. For example, for the image shown in FIG. 14A, in this case, as shown in FIG. 18, an area in which the sky is copied is designated by the user as the partial area PAR. Then, for the designated partial region PAR, the at least two or more regions are selected by any one of the above-described first to fourth modes. In the example shown in FIG. 18, a case where the second mode is selected according to the above-described second mode is shown, and the first group GR <b> 1 whose representative color is blue is copied and the second whose representative color is yellow. The group GR2 is selected, and the first and second colors of the first and second lights are determined based on the blue and yellow colors of the selected first and second groups GR1 and GR2.
 この第5態様によれば、このような照明システムLS等は、前記画像における一部領域の中から前記複数のブロック領域ARmを選択するので、特定の領域に着目して前記画像をデフォルメできる。したがって、上記照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。また例えば、前記一部領域が上述のようにユーザによって指定される場合では、上記照明システムLS等は、グラデーション照明の照明装置LDによって、ユーザの好みに合わせて画像をより適切に概念的に表現できる。 According to the fifth aspect, such an illumination system LS or the like selects the plurality of block areas ARm from among the partial areas in the image, so that the image can be deformed while paying attention to a specific area. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination. For example, when the partial area is designated by the user as described above, the illumination system LS or the like expresses the image more appropriately and conceptually according to the user's preference by the illumination device LD of gradation illumination. it can.
 上述の第6態様の領域選択部63の場合では、SP側制御処理部PCの領域選択部63における選択部633によって、画像取得部62で取得された画像データで表される画像におけるグラデーションとなっているグラデーション領域の中から複数の領域が選択される。画像中のグラデーション領域は、例えば、一方向に沿った各ブロック領域ARnに対し、その各代表色における色相、明度および彩度が順次に一定の範囲内で変化しているか否かを判定することによって求められる。前記判定の結果、前記一定の範囲内で変化している各ブロック領域は、グラデーション領域を形成し、一方、前記一定の範囲内で変化していない各ブロック領域は、グラデーション領域を形成しない。例えば、図14Aに示す前記画像に対し、この場合では、図19に示すように、空を写した領域がグラデーション領域GARとして判定される。そして、このグラデーション領域GARの両端部の領域が前記少なくとも2個以上の複数の領域として選択される。そして、SP側制御処理部PCの色決定部64によって、図19に示すように、領域選択部63で上述のように選択された両端部の領域における青色系および橙色系に基づいて、前記第1および第2光の第1および第2色が決定される。なお、このグラデーション領域GARに対し、これら上述の第1ないし第4態様のいずれかによって前記少なくとも2個以上の複数の領域が選択されてもよい。 In the case of the region selection unit 63 of the sixth aspect described above, the gradation in the image represented by the image data acquired by the image acquisition unit 62 is obtained by the selection unit 633 in the region selection unit 63 of the SP-side control processing unit PC. A plurality of areas are selected from the gradation areas. The gradation area in the image is determined, for example, for each block area ARn along one direction by determining whether the hue, brightness, and saturation of each representative color sequentially change within a certain range. Sought by. As a result of the determination, each block area changing within the certain range forms a gradation area, while each block area not changing within the certain range does not form a gradation area. For example, with respect to the image shown in FIG. 14A, in this case, as shown in FIG. 19, an area in which the sky is captured is determined as the gradation area GAR. And the area | region of the both ends of this gradation area | region GAR is selected as said at least 2 or more area | region. Then, the color determination unit 64 of the SP-side control processing unit PC, as shown in FIG. 19, based on the blue color and the orange color in the regions at both ends selected as described above by the region selection unit 63. First and second colors of the first and second light are determined. Note that the at least two or more of the plurality of regions may be selected for the gradation region GAR according to any of the first to fourth aspects described above.
 この第6態様によれば、このような照明システムLS等は、前記画像における元々グラデーションとなっているグラデーション領域GARの中から複数の領域を選択する。したがって、上記照明システムLS等は、グラデーション照明の照明装置LDによって画像をより適切に概念的に表現できる。 According to the sixth aspect, such an illumination system LS or the like selects a plurality of areas from the gradation area GAR that is originally gradation in the image. Therefore, the illumination system LS or the like can more appropriately conceptually express an image by the illumination device LD for gradation illumination.
 図20は、実施形態の照明システムにおける指定色による色決定の動作を説明するための図である。図21は、実施形態の照明システムにおける色補正による色決定の動作を説明するための図である。 FIG. 20 is a diagram for explaining an operation of determining a color by a designated color in the illumination system of the embodiment. FIG. 21 is a diagram for explaining an operation of determining a color by color correction in the illumination system of the embodiment.
 なお、上述の実施形態において、スマートフォンSPのSP側制御処理部PCは、図2に破線で示すように、ユーザが指定した指定色を受け付ける指定色受付部66をさらに機能的に備え、SP側制御処理部PCの色決定部64は、領域選択部63の選択部633で選択された複数のブロック領域ARmにおける各代表色の中から、指定色受付部66で受け付けた指定色に基づいて前記第1および第2光の第1および第2色を決定するように構成されても良い。指定色受付部66は、例えば、2次元アレイ状に配列された複数の代表色から成る色見本をスマートフォンの表示部OTに表示し、この表示された色見本の代表色の領域をタッチパネルでユーザによって指定されることで、ユーザの指定色を受け付けて良く、また例えば、SP側入力部INにおける複数のスイッチそれぞれに色を割り付け(例えば第1ないし第3スイッチにR、G、Bの各色を割り付け)、ユーザによってスイッチ操作されることで、ユーザの指定色を受け付けて良い。例えば、図14Aに示す前記画像に対し、上述の第1ないし第6態様のいずれかの領域選択部63によって、図20に示すように、4つのブロック領域ARmが選択されると、この場合では、この4つのブロック領域ARmにおける4つの代表色の中からユーザによって指定された指定色に近い2色が選択されて決定される。 In the above-described embodiment, the SP-side control processing unit PC of the smartphone SP further includes a specified color receiving unit 66 that receives a specified color specified by the user, as indicated by a broken line in FIG. The color determination unit 64 of the control processing unit PC selects the representative color in the plurality of block areas ARm selected by the selection unit 633 of the area selection unit 63 based on the specified color received by the specified color reception unit 66. It may be configured to determine the first and second colors of the first and second light. The designated color receiving unit 66 displays, for example, a color sample composed of a plurality of representative colors arranged in a two-dimensional array on the display unit OT of the smartphone, and displays the representative color region of the displayed color sample on the touch panel. The color specified by the user may be received, and for example, a color is assigned to each of the plurality of switches in the SP-side input unit IN (for example, R, G, B colors are assigned to the first to third switches). Allocation), the user's designated color may be received by a switch operation by the user. For example, when four block areas ARm are selected for the image shown in FIG. 14A by the area selection unit 63 of any of the first to sixth aspects described above as shown in FIG. The two colors close to the designated color designated by the user are selected and determined from the four representative colors in the four block areas ARm.
 このような照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラムは、ユーザから色の指定を受け、この指定を受けた指定色に基づいて前記第1および第2光の第1および第2色を決定する。したがって、上記照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の照明装置LDによって、ユーザの好みに合わせて画像をより適切に概念的に表現できる。 Such an illumination system LS, a light emission color control device (smart phone SP in the above example), a light emission color control method and a light emission color control program mounted thereon receive a color designation from the user, and the designation received this designation First and second colors of the first and second light are determined based on color. Therefore, the lighting system LS, the light emission color control device, the light emission color control method and the light emission color control program implemented therein are conceptually more appropriately imaged according to the user's preference by the illumination device LD for gradation illumination. Can express.
 また、上述の実施形態において、スマートフォンSPのSP側制御処理部PCは、図2に破線で示すように、色決定部64で決定された第1および第2色それぞれにおける彩度または明度が所定の第4閾値以下である場合に、前記第4閾値以下の彩度または明度が第5閾値以上となるように、色決定部64で決定された第1および第2色を補正する色補正部67をさらに備え、信号生成部65は、色決定部64で決定された第1および第2色であって色補正部67で補正された第1および第2色を表す信号を生成するように、構成されても良い。これら第4および第5閾値は、照明装置LDによって発光可能な色に応じて適宜に設定される。例えば、図14Aに示す前記画像に対し、上述の第1ないし第6態様のいずれかの領域選択部63によって、図21に示すように、第1および第2グループGR1、GR2が選択されると、この場合では、この2つの第1および第2グループGR1、GR2における2つの代表色が第4閾値以下の彩度または明度が第5閾値以上となるように色補正される。 In the above-described embodiment, the SP-side control processing unit PC of the smartphone SP has a predetermined saturation or lightness in each of the first and second colors determined by the color determination unit 64, as indicated by a broken line in FIG. A color correction unit that corrects the first and second colors determined by the color determination unit 64 so that the saturation or lightness not higher than the fourth threshold is not lower than the fifth threshold. 67, and the signal generation unit 65 generates signals representing the first and second colors determined by the color determination unit 64 and corrected by the color correction unit 67. , May be configured. These fourth and fifth threshold values are appropriately set according to the color that can be emitted by the illumination device LD. For example, when the first and second groups GR1 and GR2 are selected for the image shown in FIG. 14A by the region selection unit 63 of any of the first to sixth modes described above, as shown in FIG. In this case, the color correction is performed so that the two representative colors in the two first and second groups GR1 and GR2 have a saturation or lightness equal to or lower than the fourth threshold value equal to or higher than the fifth threshold value.
 このような照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラムは、前記彩度または明度が所定の第4閾値以下である場合に、前記第4閾値以下の彩度または明度が第5閾値以上となるように、色決定部64で決定された第1および第2色を補正する。このため、このような照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムでは、色決定部64で決定された第1および第2色が前記第4閾値以下の彩度または明度であるため、グラデーション照明の照明装置LDによって発光できない場合、前記第4閾値以下の彩度または明度が第5閾値以上に引き上げることで、グラデーション照明の照明装置LDによって発光できるようになる。 In such an illumination system LS, a light emission color control device (smartphone SP in the above example), a light emission color control method and a light emission color control program mounted thereon, the saturation or brightness is not more than a predetermined fourth threshold value. In this case, the first and second colors determined by the color determination unit 64 are corrected so that the saturation or lightness not higher than the fourth threshold is not lower than the fifth threshold. For this reason, in such an illumination system LS, emission color control device, emission color control method and emission color control program mounted thereon, the first and second colors determined by the color determination unit 64 are the fourth threshold value. When the illumination device LD for gradation illumination cannot emit light because of the following saturation or lightness, the illumination device LD for gradation illumination can emit light by raising the saturation or brightness below the fourth threshold to the fifth threshold or more. It becomes like this.
 また、上述の実施形態において、スマートフォンSPのSP側制御処理部PCは、図2に破線で示すように、色決定部64で決定された第1および第2色が所定の不快な色である場合に、前記不快な色を所定の快い色に変換する色変換部68をさらに備え、信号生成部65は、色決定部64で決定された第1および第2色であって色変換部68で変換された第1および第2色を表す信号を生成するように、構成されても良い。前記不快な色および快い色は、例えば複数の被験者に様々な色を提示し、その感想を調査することで規定され、スマートフォンSPに設定される。 In the above-described embodiment, the SP-side control processing unit PC of the smartphone SP has a predetermined unpleasant color in the first and second colors determined by the color determination unit 64, as indicated by a broken line in FIG. A color conversion unit 68 that converts the unpleasant color into a predetermined pleasant color, and the signal generation unit 65 includes the first and second colors determined by the color determination unit 64 and the color conversion unit 68. May be configured to generate signals representing the first and second colors converted in step 1. The unpleasant color and the pleasant color are defined by, for example, presenting various colors to a plurality of subjects and examining their impressions, and are set in the smartphone SP.
 このような照明システムLS、発光色制御装置(上述の例ではスマートフォンSP)、これに実装された発光色制御方法および発光色制御プログラムは、色決定部64で決定された第1および第2色が予め設定された所定の不快な色である場合に、前記不快な色を予め設定された所定の快い色に変換する。したがって、上記照明システムLS、発光色制御装置、これに実装された発光色制御方法および発光色制御プログラムは、グラデーション照明の照明装置LDによって、画像を快い色で概念的に表現できる。 Such an illumination system LS, a light emission color control device (smartphone SP in the above example), a light emission color control method and a light emission color control program mounted thereon are the first and second colors determined by the color determination unit 64. Is a predetermined predetermined unpleasant color, the unpleasant color is converted to a predetermined predetermined pleasant color. Therefore, the illumination system LS, the emission color control device, the emission color control method and the emission color control program mounted thereon can conceptually express an image with a pleasant color by the illumination device LD of gradation illumination.
 また、上述の実施形態では、発光色制御装置は、照明装置LDとは別体のスマートフォンSPに実装されたが、照明装置LDに実装され、照明装置LDと一体であっても良い。このような場合では、図2に示すSP側制御処理部PCに機能的に構成された各部は、信号生成部65を除き、LD側制御処理部21に機能的に構成される。そして、グラデーション照明で概念的に表現される画像は、例えば、LD側ブルートゥース通信モジュール24を介して取得され、LD側記憶部22に記憶される。このような構成によっても上述の実施形態と同様な作用効果を奏する。 In the above-described embodiment, the emission color control device is mounted on the smartphone SP separate from the lighting device LD, but may be mounted on the lighting device LD and integrated with the lighting device LD. In such a case, each unit functionally configured in the SP-side control processing unit PC illustrated in FIG. 2 is functionally configured in the LD-side control processing unit 21 except for the signal generation unit 65. The image conceptually expressed by gradation illumination is acquired via the LD side Bluetooth communication module 24 and stored in the LD side storage unit 22, for example. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる発光制御装置は、互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御装置であって、画像を表す画像データを取得する画像取得部と、前記画像取得部で取得された画像データで表される画像の中から複数の領域を選択する領域選択部と、前記領域選択部で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定部と、前記照明装置へ出力するために、前記色決定部で決定された色を表す信号を生成する信号生成部とを備える。 The light emission control device according to one aspect controls each color of the plurality of lights in the lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region. An emission color control device that acquires image data representing an image; and an area selection unit that selects a plurality of areas from the image represented by the image data acquired by the image acquisition unit; A color determination unit that determines each color of the plurality of lights based on color information in a plurality of regions selected by the region selection unit, and a color determination unit that outputs the color to the illumination device. And a signal generation unit for generating a signal representing the selected color.
 このような発光色制御装置の制御対象となる照明装置は、互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射するので、いわゆるグラデーション照明できる。そして、上記発光色制御装置は、画像の中から複数の領域を選択し、それらの各色情報に基づいて前記複数の光のそれぞれの色を決定する。このため、上記発光色制御装置は、グラデーション照明の基となる画像を簡略化することでデフォルメできる。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像を概念的に表現できる。 Such a lighting device to be controlled by the light emission color control device emits a plurality of lights of different colors so that a part of the plurality of lights overlap each other in a radiation angle region, so that so-called gradation illumination can be performed. . The emission color control device selects a plurality of regions from the image, and determines each color of the plurality of lights based on each color information. Therefore, the emission color control device can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the light emission color control device can conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、上述の発光色制御装置において、前記領域選択部は、前記画像取得部で取得された画像データで表される画像を所定の形状で複数のブロック領域に分割することで、前記画像を標本化する画像標本化部と、前記画像標本化部で標本化された前記複数のブロック領域それぞれにおいて、当該ブロック領域における色情報に基づいて当該ブロック領域の色を代表する代表色を求めることで、前記複数のブロック領域それぞれの各色を量子化する画像量子化部と、前記画像標本化部で標本化された前記複数のブロック領域の中から、前記画像量子化部で量子化された代表色に基づいて、複数のブロック領域を前記複数の領域として選択する選択部とを備え、前記色決定部は、前記領域選択部の選択部で選択された複数のブロック領域における各代表色に基づいて前記複数の光のそれぞれの色を決定する。 In another aspect, in the above-described light emission color control device, the region selection unit divides an image represented by the image data acquired by the image acquisition unit into a plurality of block regions in a predetermined shape, An image sampling unit that samples the image, and a representative color that represents the color of the block area based on color information in the block area in each of the plurality of block areas sampled by the image sampling unit By obtaining, an image quantization unit that quantizes each color of each of the plurality of block regions, and a plurality of block regions sampled by the image sampling unit are quantized by the image quantization unit. A selection unit that selects a plurality of block regions as the plurality of regions based on the representative color, and the color determination unit includes a plurality of blocks selected by the selection unit of the region selection unit Determining a respective color of the plurality of light based on the respective representative colors in frequency.
 このような発光色制御装置は、グラデーション照明の基となる画像を、画像標本化して画像量子化するので、前記画像の特徴を活かしてデフォルメできる。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Since such an emission color control device converts an image that is the basis of gradation illumination into an image sample and quantizes the image, it can be deformed taking advantage of the characteristics of the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像標本化部で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域として選択する。 In another aspect, in the above-described light emission color control device, the selection unit of the region selection unit performs the above-described block region on the adjacent block region from among the plurality of block regions sampled by the image sampling unit. A block area in which any one of hue, brightness, and saturation of the representative color differs by a predetermined first threshold or more is selected as the plurality of block areas.
 このような発光色制御装置は、前記画像における複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、選択する。このため、上記発光色制御装置では、画像の中から、特徴的な色のブロック領域が選択される。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Such a light emission color control device includes a block in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area by a predetermined first threshold or more from among a plurality of block areas in the image. Select an area. For this reason, in the light emission color control device, a block region having a characteristic color is selected from the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。 In another aspect, in the above-described light emission color control device, the selection unit of the region selection unit may select a hue difference or a saturation of the representative color from among a plurality of block regions sampled by the image sampling unit. Select block areas whose brightness difference and brightness difference are within a predetermined range and group them into one group, and from the group where the total area of the block areas belonging to the collected group is equal to or greater than a predetermined second threshold, A plurality of groups are selected as a plurality of block areas.
 このような発光色制御装置は、前記画像における複数のブロック領域の中から、前記代表色が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。このため、上記発光色制御装置では、前記画像における複数のブロック領域の中から、一定の範囲内で同色であって比較的広い範囲に亘って分布するブロック領域(グループ)が選択される。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Such a light emission color control device selects block areas in which the representative color is within a predetermined range from a plurality of block areas in the image, collects them into one group, and blocks areas belonging to the collected group A plurality of groups are selected as the plurality of block regions from the group whose total area is equal to or greater than a predetermined second threshold. For this reason, in the light emission color control device, a block region (group) having the same color within a certain range and distributed over a relatively wide range is selected from a plurality of block regions in the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であって彩度または明度が所定の第3閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。 In another aspect, in the above-described light emission color control device, the selection unit of the region selection unit may select a hue difference or a saturation of the representative color from among a plurality of block regions sampled by the image sampling unit. Block areas having a degree difference and a brightness difference within a predetermined range are selected and grouped into one group, and the total area of the block areas belonging to the group is equal to or greater than a predetermined second threshold, and the saturation or brightness is A plurality of groups are selected as the plurality of block regions from among groups that are equal to or greater than a predetermined third threshold value.
 このような発光色制御装置は、前記画像における複数のブロック領域の中から、前記代表色が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であって彩度または明度が所定の第3閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択する。このため、上記発光色制御装置では、前記画像における複数のブロック領域の中から、一定の範囲内で同色であって比較的広い範囲に亘って分布する、照明装置で発光可能なブロック領域(グループ)が選択される。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Such a light emission color control device selects block areas in which the representative color is within a predetermined range from a plurality of block areas in the image, collects them into one group, and blocks areas belonging to the collected group A plurality of groups are selected as the plurality of block regions from a group in which the total area is equal to or greater than a predetermined second threshold value and the saturation or lightness is equal to or greater than a predetermined third threshold value. For this reason, in the light emission color control device, block regions (groups) that can emit light by the illumination device and are distributed over a relatively wide range of the same color within a certain range from among a plurality of block regions in the image. ) Is selected. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像標本化部で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域の少なくとも1つとして少なくとも1つのブロック領域を選択し、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域の少なくとも1つとして少なくとも1つのグループを選択する。 In another aspect, in the above-described light emission color control device, the selection unit of the region selection unit performs the above-described block region on the adjacent block region from among the plurality of block regions sampled by the image sampling unit. Selecting at least one block area as a block area in which any one of hue, brightness and saturation of a representative color differs by a predetermined first threshold or more as at least one of the plurality of block areas; From among the plurality of block areas sampled in step 1, block areas whose hue difference, saturation difference, and brightness difference in the representative color are within a predetermined range are selected and grouped into one group. Select at least one group as at least one of the plurality of block regions from a group in which the total area of the block regions to which it belongs is equal to or greater than a predetermined second threshold That.
 このような発光色制御装置は、前記画像における複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域の少なくとも1つとして少なくとも1つ選択し、そして、前記画像における複数のブロック領域の中から、前記代表色が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域の少なくとも1つとして少なくとも1つグループを選択する。このため、上記発光色制御装置では、画像の中から、特徴的な色のブロック領域が選択されるとともに、前記画像における複数のブロック領域の中から、一定の範囲内で同色であって比較的広い範囲に亘って分布するブロック領域(グループ)が選択される。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Such a light emission color control device includes a block in which any one of the hue, brightness, and saturation of the representative color differs from the adjacent block area by a predetermined first threshold or more from among a plurality of block areas in the image. At least one region is selected as at least one of the plurality of block regions, and one block region having the representative color within a predetermined range is selected from the plurality of block regions in the image. The group is grouped, and at least one group is selected as at least one of the plurality of block regions from a group in which the total area of the block regions belonging to the group is not less than a predetermined second threshold. For this reason, in the light emission color control device, a block region having a characteristic color is selected from the image, and the same color within a certain range and relatively selected from the plurality of block regions in the image. Block areas (groups) distributed over a wide range are selected. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 他の一態様では、これら上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像取得部で取得された画像データで表される画像における一部領域の中から、前記複数のブロック領域を選択する。 In another aspect, in the above-described light emission color control devices, the selection unit of the region selection unit includes the plurality of regions from among a partial region in an image represented by the image data acquired by the image acquisition unit. Select the block area.
 このような発光色制御装置は、前記画像における一部領域の中から前記複数のブロック領域を選択するので、特定の領域に着目して前記画像をデフォルメできる。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。また例えば、前記一部領域がユーザによって指定される場合では、上記発光色制御装置は、グラデーション照明の照明装置によって、ユーザの好みに合わせて画像をより適切に概念的に表現できる。 Such an emission color control device selects the plurality of block areas from among the partial areas in the image, so that the image can be deformed by paying attention to a specific area. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination. Further, for example, when the partial area is designated by the user, the light emission color control device can conceptually express the image more appropriately according to the user's preference by the illumination device of gradation illumination.
 他の一態様では、これら上述の発光色制御装置において、前記領域選択部の前記選択部は、前記画像取得部で取得された画像データで表される画像におけるグラデーションとなっているグラデーション領域の中から複数の領域を選択することを特徴とする。 In another aspect, in the above-described emission color control device, the selection unit of the region selection unit is a gradation region that is a gradation in an image represented by the image data acquired by the image acquisition unit. A plurality of regions are selected from the above.
 このような発光色制御装置は、前記画像における元々グラデーションとなっているグラデーション領域の中から複数の領域を選択する。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Such a light emission color control device selects a plurality of areas from gradation areas that are originally gradations in the image. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 また、他の一態様では、これら上述の発光色制御装置において、ユーザが指定した指定色を受け付ける指定色受付部をさらに備え、前記色決定部は、前記領域選択部の選択部で選択された複数のブロック領域における各代表色の中から、前記指定色受付部で受け付けた指定色に基づいて前記複数の光のそれぞれの色を決定する。 In another aspect, the above-described emission color control device further includes a specified color receiving unit that receives a specified color specified by a user, and the color determining unit is selected by the selecting unit of the region selecting unit Each color of the plurality of lights is determined based on the designated color received by the designated color receiving unit from the representative colors in the plurality of block areas.
 このような発光色制御装置は、ユーザから色の指定を受け、この指定を受けた指定色に基づいて前記複数の光のそれぞれの色を決定する。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって、ユーザの好みに合わせて画像をより適切に概念的に表現できる。 Such a light emission color control device receives a color designation from the user, and determines each color of the plurality of lights based on the designated color that has received this designation. Therefore, the light emission color control device can more appropriately conceptually express an image according to the user's preference by the illumination device of gradation illumination.
 他の一態様では、これら上述の発光色制御装置において、前記画像量子化部は、当該ブロック領域における色情報の所定の統計値を前記代表色とする。そして、好ましくは、前記所定の統計値は、平均値、加重平均値、中央値および中心値のうちのいずれか1つである。 In another aspect, in the above-described emission color control device, the image quantization unit uses a predetermined statistical value of color information in the block area as the representative color. Preferably, the predetermined statistical value is any one of an average value, a weighted average value, a median value, and a median value.
 このような発光色制御装置は、代表色を統計値で決定するので、より適切にブロック領域の代表色を決定できる。したがって、上記発光色制御装置は、グラデーション照明の照明装置によって画像をより適切に概念的に表現できる。 Since such a light emission color control device determines a representative color by a statistical value, the representative color of the block area can be determined more appropriately. Therefore, the luminescent color control device can more appropriately conceptually express an image by the illumination device of gradation illumination.
 なお、中央値は、所定の範囲ごとに区分した画素値を横軸とするとともに各区分ごとの頻度を縦軸とした場合、画像の全画素を対象とした度数分布の最も頻度の多い区分の値である。より具体的には、例えば、色相の中央値は、画像の全画素を対象に、色相の度数分布を求め、この求めた色相の度数分布における最も頻度の多い区分の値である。明度の中央値は、画像の全画素を対象に、明度の度数分布を求め、この求めた明度の度数分布における最も頻度の多い区分の値である。彩度の中央値は、画像の全画素を対象に、彩度の度数分布を求め、この求めた彩度の度数分布における最も頻度の多い区分の値である。そして、これら色相の中央値、明度の中央値および彩度の中央値によって定義される色が代表色となる。 The median is the most frequent segment of the frequency distribution for all pixels of the image, where the horizontal axis is the pixel value segmented for each predetermined range and the vertical axis is the frequency for each segment. Value. More specifically, for example, the median value of the hue is a value of the most frequently classified section in the hue frequency distribution obtained by calculating the hue frequency distribution for all pixels of the image. The median value of brightness is the value of the most frequently classified section in the brightness distribution of brightness obtained for all pixels of the image. The median value of saturation is the value of the most frequent section in the saturation frequency distribution obtained by calculating the saturation frequency distribution for all pixels of the image. The color defined by the median value of hue, the median value of lightness, and the median value of saturation is a representative color.
 中心値は、所定の範囲ごとに区分した画素値を横軸とするとともに各区分ごとの頻度を縦軸とした場合、画像の全画素を対象とした度数分布における頻度の有る最小の区分の値(度数分布の区分の最小値)と、頻度のある最大の区分の値(度数分布の区分の最大値)との真ん中の値である。例えば、色相の中心値は、画像の全画素を対象に、色相の度数分布を求め、この求めた色相の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。明度の中心値は、画像の全画素を対象に、明度の度数分布を求め、この求めた明度の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。彩度の中心値は、画像の全画素を対象に、彩度の度数分布を求め、この求めた彩度の度数分布における度数分布の区分の最小値と度数分布の区分の最大値との真ん中の値である。そして、これら色相の中心値、明度の中心値および彩度の中心値によって定義される色が代表色となる。 The central value is the value of the smallest segment with a frequency in the frequency distribution for all pixels of the image, where the horizontal axis is the pixel value segmented for each predetermined range and the vertical axis is the frequency for each segment It is the middle value between (the minimum value of the frequency distribution category) and the value of the maximum frequency category (the maximum value of the frequency distribution category). For example, the center value of the hue is obtained by calculating the frequency distribution of the hue for all pixels of the image, and is the middle of the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated frequency distribution of the hue. Value. The central value of the brightness is the value between the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated brightness distribution for all pixels of the image. is there. The central value of saturation is the center of the minimum value of the frequency distribution section and the maximum value of the frequency distribution section in the calculated saturation frequency distribution for all pixels of the image. Is the value of The color defined by the central value of hue, the central value of lightness, and the central value of saturation is a representative color.
 他の一態様では、これら上述の発光色制御装置において、前記色決定部で決定された第1および第2色それぞれにおける彩度または明度が所定の第4閾値以下である場合に、前記第4閾値以下の彩度または明度が第5閾値以上となるように、前記色決定部で決定された第1および第2色を補正する色補正部をさらに備え、前記信号生成部は、前記色決定部で決定された第1および第2色であって前記色補正部で補正された第1および第2色を表す信号を生成する。 In another aspect, in the above-described light emission color control device, when the saturation or brightness of each of the first and second colors determined by the color determination unit is equal to or less than a predetermined fourth threshold, A color correction unit configured to correct the first and second colors determined by the color determination unit so that saturation or brightness below a threshold value is equal to or higher than a fifth threshold value; and the signal generation unit includes the color determination unit A signal representing the first and second colors determined by the color correction unit and the first and second colors corrected by the color correction unit is generated.
 このような発光色制御装置は、前記彩度または明度が所定の第4閾値以下である場合に、前記第4閾値以下の彩度または明度が第5閾値以上となるように、前記色決定部で決定された第1および第2色を補正する。このため、前記色決定部で決定された第1および第2色が前記第4閾値以下の彩度または明度であるため、グラデーション照明の照明装置によって発光できない場合、前記第4閾値以下の彩度または明度が第5閾値以上に引き上げることで、グラデーション照明の照明装置によって発光できるようになる。 In such a light emission color control device, when the saturation or lightness is equal to or lower than a predetermined fourth threshold, the color determination unit is configured so that the saturation or lightness equal to or lower than the fourth threshold is equal to or higher than a fifth threshold. The first and second colors determined in step 1 are corrected. For this reason, since the first and second colors determined by the color determination unit have a saturation or brightness that is less than or equal to the fourth threshold value, and cannot emit light by a lighting device with gradation illumination, the saturation that is less than or equal to the fourth threshold value Alternatively, by raising the brightness to the fifth threshold value or higher, light can be emitted by the illumination device with gradation illumination.
 他の一態様では、これら上述の発光色制御装置において、前記色決定部で決定された色が所定の不快な色である場合に、前記不快な色を所定の快い色に変換する色変換部をさらに備え、前記信号生成部は、前記色決定部で決定された色であって前記色変換部で変換された色を表す信号を生成する。 In another aspect, in the above-described light emission color control device, when the color determined by the color determination unit is a predetermined unpleasant color, the color conversion unit converts the unpleasant color into a predetermined pleasant color. The signal generation unit generates a signal representing the color determined by the color determination unit and converted by the color conversion unit.
 このような発光色制御装置は、前記色決定部で決定された色が予め設定された所定の不快な色である場合に、前記不快な色を予め設定された所定の快い色に変換する。したがって、上記発光制御装置は、グラデーション照明の照明装置によって、画像を快い色で概念的に表現できる。 Such a light emission color control device converts the unpleasant color into a predetermined predetermined pleasant color when the color determined by the color determination unit is a predetermined unpleasant color set in advance. Therefore, the light emission control device can conceptually express an image with a pleasant color by the illumination device of gradation illumination.
 他の一態様にかかる発光色制御方法は、互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御方法であって、画像を表す画像データを取得する画像取得工程と、前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、前記照明装置へ出力するために、前記色決定工程で決定された複数の光のそれぞれの色を表す信号を生成する信号生成工程とを備える。 According to another aspect of the present invention, there is provided an emission color control method, wherein each of the plurality of lights in the lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region. An emission color control method for controlling a color, an image acquisition step for acquiring image data representing an image, and a region for selecting a plurality of regions from an image represented by the image data acquired in the image acquisition step A color determination step for determining each color of the plurality of lights based on each color information in a plurality of regions selected in the region selection step, and the color determination step for outputting to the illumination device. A signal generation step of generating a signal representing each color of the plurality of lights determined in (1).
 他の一態様にかかる発光色制御プログラムは、互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御プログラムであって、コンピュータに、画像を表す画像データを取得する画像取得工程と、前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、前記照明装置へ出力するために、前記色決定工程で決定された複数の光のそれぞれの色を表す信号を生成する信号生成工程とを、実行させるための発光色制御プログラムである。 The emission color control program according to another aspect includes a plurality of lights having different colors, and each of the plurality of lights in the lighting device that emits the plurality of lights so that a part of the plurality of lights overlap each other in a radiation angle region. An emission color control program for controlling a color, wherein a computer acquires an image acquisition step of acquiring image data representing an image, and a plurality of regions from the image represented by the image data acquired in the image acquisition step A region selection step to select, a color determination step to determine each color of the plurality of lights based on each color information in a plurality of regions selected in the region selection step, and to output to the lighting device, A light emission color control program for executing a signal generation step of generating a signal representing each color of a plurality of lights determined in a color determination step.
 他の一態様にかかる照明システムは、互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置と、前記照明装置における前記複数の光のそれぞれの色を制御する発光色制御装置とを備え、前記発光色制御装置は、これら上述のいずれかの発光色制御装置である。 An illumination system according to another aspect includes a lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region, and the plurality of lights in the lighting device A light emission color control device for controlling the respective colors, and the light emission color control device is any one of the above light emission color control devices.
 他の一態様にかかる照明装置は、複数の色の光を放射可能な複数の光源を有し、前記複数の光源のうちの或る光源から放射される光の一部と前記複数の光源のうちの別の複数の光源から放射される光の一部とが放射角度領域で互いに重なるように前記複数の光を放射する光源部と、互いに異なる色で前記複数の光を放射するように前記複数の光源を制御する制御部と、画像を表す画像データを取得する画像取得部とを備え、前記制御部は、前記画像取得部で取得された画像データで表される画像の中から複数の領域を選択する領域選択部と、前記領域選択部で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定部と、前記色決定部で決定された色で前記複数の光を放射するように前記複数の光源を制御する発光制御部とを備える。 An illumination device according to another aspect includes a plurality of light sources capable of emitting light of a plurality of colors, and a part of light emitted from a certain light source of the plurality of light sources and the plurality of light sources. A light source unit that emits the plurality of lights so that a part of light emitted from another of the plurality of light sources overlaps each other in a radiation angle region, and the plurality of lights that emit different colors. A control unit that controls a plurality of light sources; and an image acquisition unit that acquires image data representing an image, wherein the control unit includes a plurality of images represented by the image data acquired by the image acquisition unit. A region selection unit for selecting a region, a color determination unit for determining each color of the plurality of lights based on each color information in the plurality of regions selected by the region selection unit, and the color determination unit The plurality of lights to emit the plurality of lights in color Controlling the and a light emission control unit.
 他の一態様にかかる照明方法は、複数の色の光を放射可能な複数の光源それぞれを、互いに異なる色の複数の光であって前記複数の光のそれぞれの一部を放射角度領域で互いに重なるように放射させる照明方法であって、画像を表す画像データを取得する画像取得工程と、前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、前記色決定部で決定された色で前記第1および第2光を放射するように前記複数の光源を制御する発光制御工程とを備える。 In another aspect of the illumination method, a plurality of light sources capable of emitting light of a plurality of colors are respectively converted into a plurality of lights of different colors, and a part of each of the plurality of lights is mutually emitted in a radiation angle region. An illumination method for emitting radiation in an overlapping manner, an image acquisition step for acquiring image data representing an image, and a region selection for selecting a plurality of regions from an image represented by the image data acquired in the image acquisition step A color determination step of determining each color of the plurality of lights based on each color information in a plurality of regions selected in the region selection step, and the first and the colors determined by the color determination unit A light emission control step of controlling the plurality of light sources so as to emit second light.
 このような発光色制御方法、発光色制御プログラム、照明システム、照明装置および照明方法は、画像の中から複数の領域を選択し、それらの各色情報に基づいて前記複数の光のそれぞれの色を決定する。このため、上記発光色制御方法、発光色制御プログラム、照明システム、照明装置および照明方法は、グラデーション照明の基となる画像を簡略化することでデフォルメできる。したがって、上記発光色制御方法、発光色制御プログラム、照明システム、照明装置および照明方法は、グラデーション照明の照明装置によって画像を概念的に表現できる。 Such an emission color control method, an emission color control program, an illumination system, an illumination device, and an illumination method select a plurality of areas from an image and change the colors of the plurality of lights based on the respective color information. decide. For this reason, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method can be deformed by simplifying the image that is the basis of the gradation illumination. Therefore, the light emission color control method, the light emission color control program, the illumination system, the illumination device, and the illumination method can conceptually represent an image by a gradation illumination device.
 この出願は、2014年5月13日に出願された日本国特許出願特願2014-99469を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2014-99469 filed on May 13, 2014, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、発光色制御装置、発光色制御方法および発光色制御プログラム、照明システムならびに照明装置および照明方法を提供できる。 According to the present invention, it is possible to provide a light emission color control device, a light emission color control method, a light emission color control program, a lighting system, a lighting device, and a lighting method.

Claims (17)

  1.  互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御装置であって、
     画像を表す画像データを取得する画像取得部と、
     前記画像取得部で取得された画像データで表される画像の中から複数の領域を選択する領域選択部と、
     前記領域選択部で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定部と、
     前記照明装置へ出力するために、前記色決定部で決定された色を表す信号を生成する信号生成部とを備えること
     を特徴とする発光色制御装置。
    A light emission color control device that controls each color of the plurality of lights in an illumination device that emits a plurality of lights of different colors such that a part of the plurality of lights overlaps each other in a radiation angle region,
    An image acquisition unit for acquiring image data representing an image;
    An area selection unit that selects a plurality of areas from the image represented by the image data acquired by the image acquisition unit;
    A color determination unit that determines each color of the plurality of lights based on each color information in the plurality of regions selected by the region selection unit;
    An emission color control device comprising: a signal generation unit configured to generate a signal representing a color determined by the color determination unit in order to output to the illumination device.
  2.  前記領域選択部は、
     前記画像取得部で取得された画像データで表される画像を所定の形状で複数のブロック領域に分割することで、前記画像を標本化する画像標本化部と、
     前記画像標本化部で標本化された前記複数のブロック領域それぞれにおいて、当該ブロック領域における色情報に基づいて当該ブロック領域の色を代表する代表色を求めることで、前記複数のブロック領域それぞれの各色を量子化する画像量子化部と、
     前記画像標本化部で標本化された前記複数のブロック領域の中から、前記画像量子化部で量子化された代表色に基づいて、複数のブロック領域を前記複数の領域として選択する選択部とを備え、
     前記色決定部は、前記領域選択部の選択部で選択された複数のブロック領域における各代表色に基づいて前記複数の光のそれぞれの色を決定すること
     を特徴とする請求項1に記載の発光色制御装置。
    The region selection unit
    An image sampling unit that samples the image by dividing the image represented by the image data acquired by the image acquisition unit into a plurality of block regions in a predetermined shape;
    In each of the plurality of block regions sampled by the image sampling unit, each color of each of the plurality of block regions is obtained by obtaining a representative color representing the color of the block region based on color information in the block region. An image quantization unit that quantizes
    A selection unit that selects a plurality of block regions as the plurality of regions based on a representative color quantized by the image quantization unit from the plurality of block regions sampled by the image sampling unit; With
    The said color determination part determines each color of these several light based on each representative color in the several block area | region selected by the selection part of the said area | region selection part. Emission color control device.
  3.  前記領域選択部の前記選択部は、前記画像標本化部で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域として選択すること
     を特徴とする請求項2に記載の発光色制御装置。
    The selection unit of the region selection unit is any one of hue, brightness, and saturation of the representative color with respect to an adjacent block region from among the plurality of block regions sampled by the image sampling unit. 3. The emission color control device according to claim 2, wherein block areas different from each other by a predetermined first threshold or more are selected as the plurality of block areas.
  4.  前記領域選択部の前記選択部は、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択すること
     を特徴とする請求項2に記載の発光色制御装置。
    The selection unit of the region selection unit includes a block region in which a hue difference, a saturation difference, and a brightness difference in the representative color are within a predetermined range from among a plurality of block regions sampled by the image sampling unit. And grouping them into one group, and selecting a plurality of groups as the plurality of block regions from a group in which the total area of the block regions belonging to the grouped group is equal to or greater than a predetermined second threshold value. The luminescent color control device according to claim 2.
  5.  前記領域選択部の前記選択部は、前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であって彩度または明度が所定の第3閾値以上であるグループの中から、前記複数のブロック領域として複数のグループを選択すること
     を特徴とする請求項2に記載の発光色制御装置。
    The selection unit of the region selection unit includes a block region in which a hue difference, a saturation difference, and a brightness difference in the representative color are within a predetermined range from among a plurality of block regions sampled by the image sampling unit. Are selected and grouped into one group, and the total area of the block regions belonging to the grouped group is equal to or greater than a predetermined second threshold and the saturation or lightness is equal to or greater than a predetermined third threshold, The light emission color control device according to claim 2, wherein a plurality of groups are selected as a plurality of block regions.
  6.  前記領域選択部の前記選択部は、
     前記画像標本化部で標本化された前記複数のブロック領域の中から、隣接するブロック領域に対し前記代表色の色相、明度および彩度の中のいずれかが所定の第1閾値以上異なるブロック領域を、前記複数のブロック領域の少なくとも1つとして少なくとも1つのブロック領域を選択し、
     前記画像標本化部で標本化された複数のブロック領域の中から、前記代表色における色相差、彩度差および明度差が所定の範囲内であるブロック領域を選択して1つのグループに纏め、前記纏めたグループに属するブロック領域の総面積が所定の第2閾値以上であるグループの中から、前記複数のブロック領域の少なくとも1つとして少なくとも1つのグループを選択すること
     を特徴とする請求項2に記載の発光色制御装置。
    The selection unit of the region selection unit is:
    Among the plurality of block areas sampled by the image sampling unit, a block area in which any one of hue, brightness, and saturation of the representative color differs from a neighboring block area by a predetermined first threshold or more Selecting at least one block area as at least one of the plurality of block areas,
    From among a plurality of block areas sampled by the image sampling unit, block areas having a hue difference, saturation difference, and brightness difference in the representative color are selected and grouped into one group, The at least one group is selected as at least one of the plurality of block regions from a group in which a total area of the block regions belonging to the group is equal to or greater than a predetermined second threshold value. The luminescent color control device described in 1.
  7.  前記領域選択部の前記選択部は、前記画像取得部で取得された画像データで表される画像における一部領域の中から、前記複数のブロック領域を選択すること
     を特徴とする請求項2ないし請求項6のいずれか1項に記載の発光色制御装置。
    The selection unit of the region selection unit selects the plurality of block regions from partial regions in an image represented by the image data acquired by the image acquisition unit. The light emission color control apparatus of any one of Claim 6.
  8.  前記領域選択部の前記選択部は、前記画像取得部で取得された画像データで表される画像におけるグラデーションとなっているグラデーション領域の中から複数の領域を選択すること
     を特徴とする請求項1ないし請求項7のいずれか1項に記載の発光色制御装置。
    The selection unit of the region selection unit selects a plurality of regions from gradation regions that are gradations in an image represented by the image data acquired by the image acquisition unit. The luminescent color control device according to any one of claims 7 to 9.
  9.  ユーザが指定した指定色を受け付ける指定色受付部をさらに備え、
     前記色決定部は、前記領域選択部の選択部で選択された複数のブロック領域における各代表色の中から、前記指定色受付部で受け付けた指定色に基づいて前記複数の光のそれぞれの色を決定すること
     を特徴とする請求項2ないし請求項8のいずれか1項に記載の発光色制御装置。
    A designated color receiving unit for receiving a designated color designated by the user;
    The color determination unit is configured to select each color of the plurality of lights based on the designated color received by the designated color reception unit from among the representative colors in the plurality of block regions selected by the selection unit of the region selection unit. The emission color control device according to any one of claims 2 to 8, wherein:
  10.  前記画像量子化部は、当該ブロック領域における色情報の所定の統計値を前記代表色とすること
     を特徴とする請求項2ないし請求項9のいずれか1項に記載の発光色制御装置。
    The emission color control device according to any one of claims 2 to 9, wherein the image quantization unit uses a predetermined statistical value of color information in the block region as the representative color.
  11.  前記色決定部で決定された第1および第2色それぞれにおける彩度または明度が所定の第4閾値以下である場合に、前記第4閾値以下の彩度または明度が第5閾値以上となるように、前記色決定部で決定された第1および第2色を補正する色補正部をさらに備え、
     前記信号生成部は、前記色決定部で決定された第1および第2色であって前記色補正部で補正された第1および第2色を表す信号を生成すること
     を特徴とする請求項1ないし請求項10のいずれか1項に記載の発光色制御装置。
    When the saturation or brightness of each of the first and second colors determined by the color determination unit is not more than a predetermined fourth threshold value, the saturation or brightness not more than the fourth threshold value is not less than the fifth threshold value. A color correction unit that corrects the first and second colors determined by the color determination unit,
    The said signal generation part produces | generates the signal showing the 1st and 2nd color determined by the said color determination part, Comprising: The 1st and 2nd color correct | amended by the said color correction part. The emission color control device according to any one of claims 1 to 10.
  12.  前記色決定部で決定された色が所定の不快な色である場合に、前記不快な色を所定の快い色に変換する色変換部をさらに備え、
     前記信号生成部は、前記色決定部で決定された色であって前記色変換部で変換された色を表す信号を生成すること
     を特徴とする請求項1ないし請求項11のいずれか1項に記載の発光色制御装置。
    When the color determined by the color determination unit is a predetermined unpleasant color, further comprising a color conversion unit that converts the unpleasant color into a predetermined pleasant color,
    12. The signal generation unit according to claim 1, wherein the signal generation unit generates a signal representing the color determined by the color determination unit and converted by the color conversion unit. The luminescent color control device described in 1.
  13.  互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御方法であって、
     画像を表す画像データを取得する画像取得工程と、
     前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、
     前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、
     前記照明装置へ出力するために、前記色決定工程で決定された複数の光のそれぞれの色を表す信号を生成する信号生成工程とを備えること
     を特徴とする発光色制御方法。
    A light emission color control method for controlling each color of the plurality of lights in an illumination device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region,
    An image acquisition step of acquiring image data representing an image;
    A region selection step of selecting a plurality of regions from the image represented by the image data acquired in the image acquisition step;
    A color determination step of determining each color of the plurality of lights based on each color information in the plurality of regions selected in the region selection step;
    And a signal generation step of generating a signal representing each color of the plurality of lights determined in the color determination step for output to the lighting device.
  14.  互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置における前記複数の光のそれぞれの色を制御する発光色制御プログラムであって、
     コンピュータに、
     画像を表す画像データを取得する画像取得工程と、
     前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、
     前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、
     前記照明装置へ出力するために、前記色決定工程で決定された複数の光のそれぞれの色を表す信号を生成する信号生成工程とを、
     実行させるための発光色制御プログラム。
    A light emission color control program for controlling each color of the plurality of lights in an illuminating device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region,
    On the computer,
    An image acquisition step of acquiring image data representing an image;
    A region selection step of selecting a plurality of regions from the image represented by the image data acquired in the image acquisition step;
    A color determination step of determining each color of the plurality of lights based on each color information in the plurality of regions selected in the region selection step;
    A signal generation step of generating a signal representing each color of the plurality of lights determined in the color determination step in order to output to the lighting device;
    An emission color control program for execution.
  15.  互いに異なる色の複数の光を、前記複数の光の一部が放射角度領域で互いに重なるように、放射する照明装置と、
     前記照明装置における前記複数の光のそれぞれの色を制御する発光色制御装置とを備え、
     前記発光色制御装置は、請求項1ないし請求項12のいずれか1項に記載の発光色制御装置であること
     を特徴とする照明システム。
    A lighting device that emits a plurality of lights of different colors such that a part of the plurality of lights overlap each other in a radiation angle region;
    An emission color control device that controls each color of the plurality of lights in the illumination device;
    The illumination system according to any one of claims 1 to 12, wherein the emission color control device is the emission color control device.
  16.  複数の色の光を放射可能な複数の光源を有し、前記複数の光源のうちの或る光源から放射される光の一部と前記複数の光源のうちの別の光源から放射される光の一部とが放射角度領域で互いに重なるように前記複数の光を放射する光源部と、
     互いに異なる色で前記複数の光を放射するように前記複数の光源を制御する制御部と、
     画像を表す画像データを取得する画像取得部とを備え、
     前記制御部は、
     前記画像取得部で取得された画像データで表される画像の中から複数の領域を選択する領域選択部と、
     前記領域選択部で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定部と、
     前記色決定部で決定された色で前記複数の光を放射するように前記複数の光源を制御する発光制御部とを備えること
     を特徴とする照明装置。
    A plurality of light sources capable of emitting light of a plurality of colors, a part of light emitted from a certain light source of the plurality of light sources, and light emitted from another light source of the plurality of light sources A light source unit that emits the plurality of lights such that a part of the light source overlaps with each other in a radiation angle region;
    A control unit that controls the plurality of light sources to emit the plurality of lights in different colors;
    An image acquisition unit that acquires image data representing an image,
    The controller is
    An area selection unit that selects a plurality of areas from the image represented by the image data acquired by the image acquisition unit;
    A color determination unit that determines each color of the plurality of lights based on each color information in the plurality of regions selected by the region selection unit;
    An illumination device comprising: a light emission control unit that controls the plurality of light sources so as to emit the plurality of lights with the colors determined by the color determination unit.
  17.  複数の色の光を放射可能な複数の複数の光源それぞれを、互いに異なる色の複数の光であって前記複数の光のそれぞれの一部を放射角度領域で互いに重なるように放射させる照明方法であって、
     画像を表す画像データを取得する画像取得工程と、
     前記画像取得工程で取得された画像データで表される画像の中から複数の領域を選択する領域選択工程と、
     前記領域選択工程で選択された複数の領域における各色情報に基づいて前記複数の光のそれぞれの色を決定する色決定工程と、
     前記色決定部で決定された色で前記第1および第2光を放射するように前記複数の光源を制御する発光制御工程とを備えること
     を特徴とする照明方法。
    An illumination method in which a plurality of light sources capable of emitting a plurality of colors of light are radiated so that a plurality of light of different colors and a part of each of the plurality of lights overlap each other in a radiation angle region There,
    An image acquisition step of acquiring image data representing an image;
    A region selection step of selecting a plurality of regions from the image represented by the image data acquired in the image acquisition step;
    A color determination step of determining each color of the plurality of lights based on each color information in the plurality of regions selected in the region selection step;
    And a light emission control step of controlling the plurality of light sources so as to emit the first and second lights with the color determined by the color determination unit.
PCT/JP2015/060771 2014-05-13 2015-04-06 Luminescent color control device, method and program, lighting system and lighting device and method WO2015174167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016519158A JP6512220B2 (en) 2014-05-13 2015-04-06 Luminescent color control device, method and program therefor, illumination system and illumination device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-099469 2014-05-13
JP2014099469 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015174167A1 true WO2015174167A1 (en) 2015-11-19

Family

ID=54479711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060771 WO2015174167A1 (en) 2014-05-13 2015-04-06 Luminescent color control device, method and program, lighting system and lighting device and method

Country Status (2)

Country Link
JP (1) JP6512220B2 (en)
WO (1) WO2015174167A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248462A (en) * 2002-02-22 2003-09-05 Fujitsu Ltd Device and method for image display
JP2007227679A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light-emitting device
JP2012177770A (en) * 2011-02-25 2012-09-13 Canon Inc Image display device and control method thereof
WO2012157553A1 (en) * 2011-05-18 2012-11-22 シャープ株式会社 Image display device and image display method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134491A (en) * 1997-10-31 1999-05-21 Victor Co Of Japan Ltd Image processor and its method
KR20140026978A (en) * 2012-08-24 2014-03-06 삼성전자주식회사 Electronic device that display using image included in content and displaying method of electronic device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248462A (en) * 2002-02-22 2003-09-05 Fujitsu Ltd Device and method for image display
JP2007227679A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light-emitting device
JP2012177770A (en) * 2011-02-25 2012-09-13 Canon Inc Image display device and control method thereof
WO2012157553A1 (en) * 2011-05-18 2012-11-22 シャープ株式会社 Image display device and image display method

Also Published As

Publication number Publication date
JPWO2015174167A1 (en) 2017-04-20
JP6512220B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
Khan et al. LED lighting: Technology and perception
US7878681B2 (en) Illumination device
ES2392195T3 (en) Method to control a lighting system based on a target light distribution
KR101011662B1 (en) Colour control for led-based luminaire
US20110241552A1 (en) Method for maximizing the performance of a luminaire
JP2012506614A (en) Color generation using multiple light source types
US20170085768A1 (en) An image capturing system, a kit for an image capturing system, a mobile phone, use of an image capturing system and a method of configuring a color matched light source
US10555395B1 (en) Selecting parameters in a color-tuning application
WO2011036612A1 (en) Color control of lighting system
CN115720727B (en) Control design for perceptually uniform color adjustment
JP6112406B2 (en) Lighting device
WO2015174167A1 (en) Luminescent color control device, method and program, lighting system and lighting device and method
CN113711694A (en) Hybrid driving scheme for RGB color adjustment
JP2015133220A (en) Control device and lighting system
US10912171B1 (en) Control design for perceptually uniform color tuning
US11363689B2 (en) Method for generating light spectra and corresponding device
US10172210B2 (en) Systems and methods for generating drive conditions to maintain perceived colors over changes in reference luminance
US20220248512A1 (en) A control device for lighting apparatus, corresponding lighting apparatus, method of operation and computer program product
JP2024065097A (en) Lighting control system, terminal device, lighting control method and program
WO2020263826A1 (en) Dim-to-warm led circuit
CN117395826A (en) Multi-primary-color light mixing method and system
KR20110021204A (en) Lighting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792164

Country of ref document: EP

Kind code of ref document: A1