WO2015174125A1 - Video signal processing device and video signal processing method - Google Patents

Video signal processing device and video signal processing method Download PDF

Info

Publication number
WO2015174125A1
WO2015174125A1 PCT/JP2015/056782 JP2015056782W WO2015174125A1 WO 2015174125 A1 WO2015174125 A1 WO 2015174125A1 JP 2015056782 W JP2015056782 W JP 2015056782W WO 2015174125 A1 WO2015174125 A1 WO 2015174125A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
pixel
gain
unit
deterioration
Prior art date
Application number
PCT/JP2015/056782
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 赤尾
西堀 一彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015174125A1 publication Critical patent/WO2015174125A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels

Definitions

  • This technology relates to a video signal processing device and a video signal processing method, and realizes a long life of the light emitting element and high visibility of display.
  • a liquid crystal display device is a display device that displays an image by providing a backlight and changing the arrangement of liquid crystal molecules by applying a voltage, thereby allowing light from the backlight to pass or block.
  • organic EL electroluminescence
  • the organic EL display device is a display device that displays an image using light emitted from the organic EL element.
  • the self-luminous display device does not require a backlight because the element emits light by itself, and the device can be configured thinner than a liquid crystal display device.
  • the organic EL display device is superior in moving image characteristics, viewing angle characteristics, color reproducibility, and the like as compared with a liquid crystal display device.
  • the organic EL element deteriorates in light emission characteristics when voltage is continuously applied, and the luminance decreases even when the same current is input.
  • a pixel having a high light emission frequency is in a state in which the light emission characteristic is deteriorated as compared with other pixels, and a so-called “burn-in” phenomenon may occur. Therefore, in the self-luminous display device, for example, as disclosed in Patent Document 1, the amount of current is controlled to correct the burn-in.
  • the first aspect of this technology is Accumulated degradation risk that calculates the degradation risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated degradation risk for each area.
  • a degree calculator A gain calculation unit that calculates a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel; And a correction unit that corrects a signal level of the video signal using the correction gain.
  • the cumulative deterioration risk calculation unit calculates, for example, a deterioration risk for each area obtained by dividing the entire display screen from the light emission amount for each pixel based on the video signal, and calculates the calculated deterioration risk for each area.
  • the cumulative deterioration risk is calculated by accumulating.
  • the cumulative block deterioration risk is calculated by accumulating the maximum deterioration risk of the pixels in the block for each region composed of one or a plurality of blocks. The cumulative block deterioration risk is accumulated to calculate the cumulative deterioration risk for each region.
  • the gain calculation unit calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel. For example, the gain calculation unit calculates the pixel degradation risk using the cumulative degradation risk of the region including the pixel for which the degradation risk is calculated and the cumulative degradation risk of the region adjacent to the region. Further, for example, the gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel.
  • a target gain map storage unit that stores a target gain map in which a target gain, which is an allowable luminance reduction amount of a light emitting element that emits light based on a video signal, is shown for each pixel position is provided.
  • a gain adjustment amount is calculated for each pixel in accordance with the deterioration risk, the luminance for each pixel, and the target gain.
  • the target gain map in the target gain map storage unit can be updated with a target gain map acquired from the outside.
  • the gain adjustment amount is calculated so that, for example, the degree of deterioration of the light emitting element that lowers the luminance of the pixel based on the target gain becomes a desired degree of deterioration.
  • the luminance is calculated so as to decrease at a desired speed in the pixels in the region where the light emitting element is likely to deteriorate based on the target gain.
  • a target gain map creating unit for creating a target gain map is provided, and in the target gain map creating unit, a cumulative light emission amount calculated for each pixel using a sample image according to a ratio of display time for each application, A target gain map is created based on the deterioration characteristics of the light emitting elements that emit light based on the video signal.
  • the sample image or deterioration characteristic can be updated to a sample image or deterioration characteristic acquired from the outside.
  • the target gain map creation unit calculates a target gain map for each application based on the accumulated light emission amount calculated for each pixel based on the application image and the deterioration characteristics of the light emitting element that emits light based on the video signal.
  • the gain calculation unit calculates the correction gain using the target gain map of the application that matches the application of the video signal.
  • the target gain map creation unit creates a target gain map based on the accumulated light emission amount calculated for each pixel using the video signal corrected by the correction unit and the deterioration characteristics of the light emitting elements that emit light based on the video signal. Is done.
  • the second aspect of this technology is The cumulative deterioration risk calculation unit calculates the deterioration risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated deterioration risk for each area.
  • a process of calculating the risk A gain calculation unit calculating a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculating a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel; And a step of correcting the signal level of the video signal using the correction gain in a correction unit.
  • the cumulative deterioration risk calculation unit calculates the deterioration risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates it for each area. The degree is calculated. Further, the gain calculation unit calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel. Further, the correction unit corrects the signal level of the video signal using the correction gain.
  • the signal level of the video signal is adjusted so that the luminance is lower in the high degradation risk region than in the low degradation risk region, so that the lifetime of the light emitting element and the high visibility of the display can be realized.
  • the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1 illustrates the configuration of the display device.
  • the display device 10 includes a control unit 11, a recording unit 12, a signal processing unit 20, an overcurrent detection unit 61, a data driver 62, a gamma circuit 63, and a panel 65.
  • the signal processing unit 20 includes an edge blurring unit 21, an I / F (interface) unit 22, a linear conversion unit 23, a pattern generation unit 24, a color temperature adjustment unit 25, a still image detection unit 26, a long-term color temperature correction unit 27, and light emission.
  • a time control unit 28 is included.
  • the signal processing unit 20 includes a signal level correction unit 30, a storage unit 40, an unevenness correction unit 51, a gamma conversion unit 52, a dither processing unit 53, a signal output unit 54, a long-term color temperature correction detection unit 55, and a gate pulse output unit. 56 and a gamma circuit control unit 57.
  • the display device 10 When the display device 10 receives the supply of the video signal, the display device 10 analyzes the video signal, and displays an image through the panel 65 by lighting pixels arranged in the panel 65 to be described later according to the analyzed content. To do.
  • the control unit 11 controls the signal processing unit 20 and exchanges signals with the I / F unit 22. In addition, the control unit 11 performs various signal processing on the signal received from the I / F unit 22.
  • the recording unit 12 stores information for controlling the signal processing unit 20 in the control unit 11.
  • the recording unit 12 it is preferable to use a memory that can store information without being erased even when the display device 10 is powered off.
  • the memory employed as the recording unit 12 it is desirable to use, for example, an EEPROM (Electronically-Erasable-and Programmable-Read-Only-Memory) that can be electrically rewritten.
  • the EEPROM is a non-volatile memory in which data can be written and erased while being mounted on a substrate, and is suitable for storing information of the display device 10 that changes every moment.
  • the signal processing unit 20 inputs a video signal and performs signal processing on the input video signal.
  • the signal processing unit 20 performs signal processing on the input video signal in each unit inside the signal processing unit 20.
  • the edge blurring unit 21 performs signal processing for blurring edges on the input video signal. Specifically, in order to prevent the image burn-in phenomenon on the panel 65, the edge blurring unit 21 suppresses the image burn-in phenomenon by performing a process of intentionally shifting the image to blur the edge.
  • the linear conversion unit 23 performs signal processing for converting a video signal whose output with respect to input has gamma characteristics so as to have linear characteristics from gamma characteristics. By performing signal processing so that the output with respect to the input has a linear characteristic in the linear conversion unit 23, various processes for the image displayed on the panel 65 are facilitated.
  • the pattern generation unit 24 generates a test pattern used in image processing inside the display device 10.
  • a test pattern used for image processing inside the display device 10 for example, there is a test pattern used for display inspection of the panel 65.
  • the color temperature adjustment unit 25 adjusts the color temperature of the image displayed on the panel 65 of the display device 10.
  • the display device 10 includes a color temperature adjusting unit for adjusting the color temperature, and an image displayed on the screen when the user operates the color temperature adjusting unit.
  • the color temperature of can be adjusted manually.
  • the long-term color temperature correction unit 27 corrects a secular change due to a difference in luminance-time characteristics (LT characteristics) of each color of R (red), G (green), and B (blue) of the organic EL element. Since the organic EL element has different LT characteristics for R, G, and B colors, the color balance is lost as the light emission time elapses. The color balance is corrected.
  • LT characteristics luminance-time characteristics
  • the light emission time control unit 28 calculates the duty ratio of a pulse when displaying an image on the panel 65, and controls the light emission time of the organic EL element.
  • the display device 10 displays an image by causing the organic EL element to emit light by applying a current to the organic EL element inside the panel 65 while the pulse indicates the light emission period.
  • the signal level correction unit 30 adjusts the luminance of the video displayed on the panel 65 by correcting the signal level of the video signal in order to realize a long life of the light emitting element and high visibility of the display.
  • the signal level correction unit 30 calculates the cumulative risk of deterioration by calculating the risk of deterioration for each region obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulating it for each region. Further, the signal level correction unit 30 calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel.
  • the signal level correction unit 30 corrects the signal level of the video signal using the correction gain so that the luminance of the video signal is lower in the high degradation risk region than in the low degradation risk region. Adjust the level. The configuration and operation of the signal level correction unit 30 will be described in detail later.
  • the long-term color temperature correction detection unit 55 detects information for correction by the long-term color temperature correction unit 27. Information detected by the long-term color temperature correction detection unit 55 is sent to the control unit 11 through the I / F unit 22 and recorded in the recording unit 12 through the control unit 11.
  • the unevenness correction unit 51 corrects unevenness of images and videos displayed on the panel 65.
  • the unevenness correction unit 51 corrects the horizontal stripes, vertical stripes, and spots on the entire screen of the panel 65 based on the level of the input signal and the coordinate position.
  • the gamma conversion unit 52 performs signal processing for converting the video signal converted to have linear characteristics by the linear conversion unit 23 so as to have gamma characteristics.
  • the signal processing performed in the gamma conversion unit 52 cancels the gamma characteristic of the panel 65 and converts the signal into a signal having linear characteristics so that the organic EL element in the panel 65 emits light according to the signal current. It is processing.
  • the dither processing unit 53 performs dithering on the signal converted by the gamma conversion unit 52. Dithering is to display a combination of displayable colors in order to express intermediate colors in an environment where the number of usable colors is small. By performing dithering in the dither processing unit 53, colors that cannot be originally displayed on the panel can be apparently created and expressed. To do.
  • the signal output unit 54 outputs the signal after the dithering is performed by the dither processing unit 53 to the data driver 62.
  • a signal passed from the signal output unit 54 to the data driver 62 is a signal including information on the light emission amounts of the R, G, and B colors, and a signal including light emission time information is transmitted from the gate pulse output unit 56 as a pulse signal. Output in the format.
  • the gate pulse output unit 56 outputs a pulse for controlling the light emission time of the panel 65.
  • the pulse output from the gate pulse output unit 56 is a pulse with a duty ratio calculated by the light emission time control unit 28.
  • the light emission time of each pixel on the panel 65 is determined by the pulse from the gate pulse output unit 56.
  • the gamma circuit control unit 57 gives a set value to the gamma circuit 63.
  • the setting value given by the gamma circuit control unit 57 is a reference voltage to be given to the ladder resistance of the D / A converter included in the data driver 62.
  • the storage unit 40 stores information used when the signal level correction unit 30 corrects the luminance.
  • the storage unit 40 stores, for example, information used at the end of the previous operation when the operation of the display device 10 is started or predetermined information used in the processing of the signal level correction unit 30.
  • EEPROM Electrically ⁇ Erasable and Programmable Read Only Memory
  • the storage unit 40 uses, for example, a memory whose contents are erased when the power is turned off, for example, SDRAM (Synchronous Dynamic Random Access Memory) when storing only information generated after the operation of the display device 10 is started. Is desirable.
  • storage part 40 may be comprised using EEPROM and SDRAM, and may use a memory properly according to the information to memorize
  • the overcurrent detection unit 61 detects the overcurrent and notifies the gate pulse output unit 56 when the overcurrent occurs due to a short circuit of the substrate or the like.
  • the overcurrent occurrence notification from the overcurrent detection unit 61 can prevent the overcurrent from being applied to the panel 65 when an overcurrent occurs.
  • the data driver 62 performs signal processing on the signal received from the signal output unit 54, and outputs a signal for displaying an image on the panel 65 to the panel 65.
  • the data driver 62 includes a D / A converter.
  • the D / A converter converts a digital signal into an analog signal and outputs the analog signal.
  • the gamma circuit 63 gives a reference voltage to the ladder resistance of the D / A converter included in the data driver 62.
  • the reference voltage to be applied to the ladder resistor is generated by the gamma circuit control unit 57 as described above.
  • the panel 65 receives an output signal from the data driver 62 and an output pulse from the gate pulse output unit 56, and causes an organic EL element, which is an example of a self-light-emitting element, to emit light according to the input signal and pulse. And still images.
  • the panel 65 has a flat surface for displaying an image.
  • An organic EL element is a self-luminous element that emits light when a voltage is applied, and the light emission amount is proportional to the voltage. Therefore, the IL characteristic (current emission amount characteristic) of the organic EL element also has a proportional relationship.
  • the panel 65 has a scanning line for selecting a pixel in a scanning cycle, a data line for supplying luminance information for driving the pixel, and a current amount controlled based on the luminance information to emit light according to the current amount.
  • Pixel circuits that emit light from the organic EL element, which is an element, are arranged in a matrix. Since the scanning lines, the data lines, and the pixel circuits are configured in this way, the display device 10 can display an image according to the video signal.
  • the linear conversion unit 23 converts the video signal to have linear characteristics, and then inputs the converted video signal to the pattern generation unit 24.
  • the pattern generation unit 24 and the linear conversion unit 23 It may be a configuration in which and are replaced.
  • the signal processing unit 20 of the display device 10 is not limited to the configuration illustrated in FIG. 1, and may have a configuration in which some functional blocks are omitted, and a configuration in which functional blocks having new functions are added. It may be.
  • FIG. 2 illustrates the configuration of the first embodiment, and the video signal processing device of the present technology is applied to the signal processing unit.
  • the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 307, and a multiplier 390.
  • the storage unit 40 includes a block risk storage unit 401 and an area risk storage unit 402. Note that the luminance calculation unit 301 to the area risk level update unit 306 in the first embodiment and the later-described embodiments correspond to a cumulative deterioration risk level calculation unit, and the multiplier 390 corresponds to a correction unit.
  • the luminance calculation unit 301 calculates the luminance from the video signal having the linear characteristic converted by the linear conversion unit 23.
  • the luminance calculation unit 301 outputs the calculated luminance to the light emission amount calculation unit 302 and the gain calculation unit 307.
  • the video signal is a three primary color signal (R, G, B), and ITU-R BT.
  • the luminance Y can be calculated based on the formula (1).
  • the light emission amount calculation unit 302 calculates the light emission amount of each pixel of the panel 65 per frame based on the luminance calculated by the luminance calculation unit 301 and the duty ratio of the pulse calculated by the light emission time control unit 28.
  • the organic EL element in the panel 65 has a linear (linear) relationship between the current and the light emission amount. Therefore, the light emission amount calculation unit 302 obtains a value obtained by multiplying the luminance Y calculated by the luminance calculation unit 301 by the duty ratio DR of the pulse calculated by the light emission time control unit 28 (obtained by luminance ⁇ duty ratio) for each pixel. Is the amount of light emission E per frame.
  • the light emission amount calculation unit 302 outputs the calculated light emission amount to the block risk degree calculation unit 303.
  • the block risk calculation unit 303 calculates the block deterioration risk based on the light emission amount calculated by the light emission amount calculation unit 302.
  • the block risk degree calculation unit 303 divides the entire display screen of the panel 65 into a plurality of blocks.
  • FIG. 3 shows an example of block division. For example, each block is divided into 4 ⁇ 8 blocks with the same block size. Note that the size of each block and the number of blocks are not limited to those shown in the figure. Thereafter, the block risk calculation unit 303 calculates the deterioration risk dgr from the light emission amount E of each pixel constituting the block for each block.
  • FIG. 1 shows an example of block division. For example, each block is divided into 4 ⁇ 8 blocks with the same block size. Note that the size of each block and the number of blocks are not limited to those shown in the figure.
  • the block risk calculation unit 303 calculates the deterioration risk dgr from the light emission amount E of each pixel constituting the block for each block.
  • the degradation risk level dgr is a value corresponding to the light emission amount E of the pixel, that is, a parameter related to the degradation of the light emission characteristic of the pixel.
  • the block risk degree calculation unit 303 selects the maximum value in the block from the deterioration risk degree dgr calculated for each pixel constituting the block, and sets the selected deterioration risk degree dgr as the block deterioration risk degree dgr_bf.
  • the block risk degree calculation unit 303 outputs the block deterioration risk degree dgr_bf calculated for each block to the block risk degree update unit 304.
  • the block risk update unit 304 updates the cumulative block deterioration risk using the block deterioration risk calculated by the block risk calculation unit 303 for each block.
  • the cumulative block deterioration risk is, for example, a cumulative value for each block of the block deterioration risk calculated for each frame.
  • the cumulative block deterioration risk is a cumulative value of the block deterioration risk from a predetermined timing, for example, the operation start of the display device 10, the first operation start every day, the first operation start after the display device 10 is obtained, and the like.
  • FIG. 5 is a diagram for explaining processing performed by the block risk update unit.
  • the block risk update unit 304 adds the block deterioration risk dgr_bf of the current frame calculated by the block risk calculation unit 303 to the already calculated cumulative block deterioration risk dgr_b, and adds the cumulative block deterioration risk dgr_b. Update. That is, the block risk update unit 304 updates the cumulative block deterioration risk dgr_b by performing the calculation of Expression (3). Note that dgr_b_max is a preset maximum cumulative block deterioration risk. Further, CLIP () in Expression (3) and Expressions described later is processing shown in Expression (4).
  • the block risk update unit 304 adds, for example, the cumulative block deterioration risk dgr_b stored in the block risk storage unit 401 of the storage unit 40 and the block deterioration risk dgr_bf of the current frame in units of blocks.
  • the block risk update unit 304 sets the addition result as a new cumulative block deterioration risk dgr_b.
  • the block risk update unit 304 adds the updated cumulative block deterioration risk dgr_b and the block deterioration risk dgr_bf of the next frame to obtain a new cumulative block deterioration risk dgr_b.
  • Such update of the accumulated block deterioration risk is performed in units of blocks, for example, every frame or every predetermined frame interval, and the updated accumulated block deterioration risk dgr_b is updated to the area risk calculation unit 305 and the block risk update unit 304. And output to the block risk storage unit 401.
  • the block risk update unit 304 stores the accumulated block deterioration risk in the block risk storage unit 401 at the end of the operation so that the cumulative block deterioration risk can be continuously updated from the end of the previous operation at the start of the next operation.
  • the accumulated block deterioration risk degree may be updated.
  • the coefficients Kd0 and Kd1 in the block risk calculation unit 303 are parameters that affect the increase or decrease in the cumulative block deterioration risk. That is, when the coefficient Kd0 is large, the cumulative block deterioration risk is reduced more quickly than when the coefficient Kd0 is small. When the coefficient Kd1 is small, the cumulative block deterioration risk increases gradually as compared with the case where the coefficient Kd1 is large. Therefore, it is possible to adjust the change in the cumulative block deterioration risk by the coefficients Kd0 and Kd1.
  • the area risk level calculation unit 305 divides the entire display screen into a plurality of areas. Each area is composed of one or a plurality of blocks.
  • FIG. 6 exemplifies area division, and shows, for example, a case where a 4 ⁇ 8 block is divided into 3 ⁇ 3 areas.
  • the area risk level calculation unit 305 performs area classification in consideration of the content displayed on the panel 65 and the like. For example, area division is performed so that a region where a predetermined image is displayed at a predetermined position, such as a menu display, and a region where a captured image, a content image, various information, and the like are displayed are divided.
  • the area risk level calculation unit 305 selects the maximum value in the area from the cumulative block deterioration risk level dgr_b calculated for the blocks constituting the area, and sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af. .
  • the area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
  • the area risk update unit 306 updates the accumulated area deterioration risk for each area using the area deterioration risk calculated by the area risk calculation unit 305.
  • the cumulative area deterioration risk is, for example, a cumulative value for each area of the area deterioration risk calculated for each frame.
  • the cumulative area deterioration risk is a cumulative value from a predetermined timing equal to the block deterioration risk.
  • FIG. 7 is a diagram for explaining processing performed in the area risk update unit.
  • the coefficient Kt (0 ⁇ Kt ⁇ 1) is a coefficient for stabilizing the time, and is set in advance to be changeable to or from a predetermined value.
  • the area risk update unit 306 multiplies the area deterioration risk dgr_af of the current frame calculated by the area risk calculation unit 305 by a coefficient (1-Kt) and the already calculated cumulative area deterioration risk dgr_a by a coefficient Kt. To do. Further, the area risk update unit 306 adds the area deterioration risk dgr_af multiplied by the coefficient (1 ⁇ Kt) to the cumulative area deterioration risk dgr_a multiplied by the coefficient Kt, and has already calculated the accumulated area deterioration. The risk level dgr_a is updated.
  • the area risk update unit 306 performs the calculation of Expression (5) and updates the accumulated area deterioration risk dgr_a.
  • the calculation of Expression (5) corresponds to an IIR filter. Note that when the coefficient Kt increases, the change in the cumulative area deterioration risk between frames decreases, and the time stability increases.
  • the area risk update unit 306 uses the cumulative area deterioration risk dgr_a, the area deterioration risk dgr_af of the current frame, and the coefficient Kt, for example, for each area, for example, stored in the area risk storage unit 402 of the storage unit 40.
  • a cumulative area deterioration risk dgr_a is calculated.
  • the area risk update unit 306 calculates a new accumulated area deterioration risk dgr_a using the updated accumulated area deterioration risk dgr_a, the area deterioration risk dgr_af of the next frame, and the coefficient Kt.
  • Such update of the accumulated area degradation risk is performed in units of areas, for example, every frame or every predetermined frame interval, and the updated accumulated area degradation risk dgr_a is output to the gain calculation unit 307 and the area risk storage unit 402. To do.
  • the area risk level update unit 306 stores the accumulated area deterioration risk level in the area risk level storage unit 402 at the end of the operation so that the cumulative area deterioration risk level can be continuously updated from the end of the previous operation at the start of the next operation.
  • the accumulated area deterioration risk may be updated.
  • the time stability is improved by increasing the frame interval for updating the cumulative deterioration risk.
  • the gain calculation unit 307 corrects the signal level of the video signal by the multiplier 390 based on the luminance output from the luminance calculation unit 301 and the accumulated area deterioration risk dgr_a output from the area risk update unit 306. Calculate the correction gain. Further, the gain calculation unit 307 performs blending of the cumulative area deterioration risk so that the boundary of the area becomes inconspicuous when brightness control is performed with the calculated correction gain, and the correction gain is based on the deterioration risk after blending. Is calculated for each pixel.
  • FIG. 8 is a diagram for explaining a method of calculating the deterioration risk for each pixel in the area.
  • FIG. 8 shows a case where the deterioration risk dgr_p of the pixel p in the area AR0 is calculated.
  • the gain calculation unit 307 determines the blend ratio Kr according to the distance from the boundary with the adjacent area.
  • FIG. 9 illustrates the relationship between the distance from the boundary with the adjacent area and the blend ratio.
  • FIG. 9 illustrates the relationship between the distance from the boundary with the area AR1 adjacent in the x direction and the blend ratio.
  • the gain calculation unit 307 sets the blend ratio to “0.5” when the distance from the boundary with the area AR1 adjacent in the F1 direction is “0”. Further, the blend ratio is set to “1” at the distance “ThD_f1”. The distance “ThD_f1” is set in advance based on the display size of the panel 65, the number of display pixels, and the like so that the blend processing range is not conspicuous.
  • the blend ratio Krf1 is obtained.
  • the gain calculation unit 307 blends based on the blend ratio Krf2 based on the distance Lf2 from the boundary with the area AR2 adjacent in the F2 direction and based on the distance Lf3 from the boundary with the area AR3 adjacent in the F3 direction.
  • the ratio Krf3 is determined. Note that the change in the blend ratio from the boundary to the distance “ThD_f1” is not limited to a linear function as shown in FIG. 9, but may be changed with other characteristics.
  • the gain calculation unit 307 calculates the deterioration risk corresponding to the pixel P based on the cumulative area deterioration risk of the adjacent area, the cumulative area deterioration risk of the area including the pixel P, and the determined blend ratio. Equation (6) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a1 of the area AR1 adjacent in the F1 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf1. It is an expression to do.
  • Expression (7) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a2 of the area AR2 adjacent in the F2 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf2. It is an expression to do.
  • Equation (8) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a3 of the area AR3 adjacent in the F3 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf3. It is an expression to do.
  • the gain calculation unit 307 has the highest risk of deterioration of the pixel P in the deterioration risks dgr_p1, dgr_p2, and dgr_p3 calculated based on the positional relationship with the adjacent areas, as shown in Expression (9).
  • dgr_p Since the degradation risk dgr_b is “0” or more as apparent from the equation (3), the degradation risk dgr_a is also “0” or more, so the degradation risk dgr_p of the pixel P is also “0” or more. Become.
  • the gain calculation unit 307 calculates the gain adjustment amount gainC based on the equation (10) in accordance with the degradation risk dgr_p calculated for each pixel.
  • FIG. 10 is a diagram showing the relationship between the deterioration risk and the gain adjustment amount.
  • the maximum gain value gain_max and the threshold values ThDgr0 and ThDgr1 are set in advance according to the characteristics of the panel 65 and the like.
  • the gain calculation unit 307 calculates a correction gain gain_p based on the equation (11) according to the calculated gain adjustment amount gainC.
  • FIG. 11 is a diagram illustrating the relationship between the input luminance and the correction gain.
  • the threshold value ThY is preset according to the characteristics of the panel 65 and the like.
  • the gain calculation unit 307 outputs a correction gain gain_p corresponding to the luminance of the pixel p to the multiplier 390.
  • the gain calculation unit 307 performs the same process for other pixels, and outputs a correction gain corresponding to the luminance of each pixel to the multiplier 390.
  • the multiplier 390 multiplies the video signal by the correction gain calculated by the gain calculation unit 307, corrects the signal level of the video signal, and outputs the corrected signal level.
  • the gain adjustment amount is calculated as shown in FIG. 10 based on the degree of deterioration risk calculated according to the input luminance
  • the correction gain is calculated as shown in FIG. 11 according to the input luminance. Therefore, as shown in FIG. 12 illustrating the relationship between the input luminance and the output luminance, when the input luminance Yin exceeds the threshold value ThY, the output luminance Yout is lower than the input luminance Yin according to the level of the input luminance Yin.
  • FIG. 13 is a flowchart showing the operation of the first embodiment.
  • the signal level correction unit 30 calculates the light emission amount.
  • the signal level correction unit 30 calculates the light emission amount by multiplying the luminance of the input video signal and the duty ratio, and proceeds to step ST2.
  • step ST2 the signal level correction unit 30 calculates the risk of block deterioration.
  • the signal level correction unit 30 divides the entire display screen of the panel 65 into a plurality of blocks, and performs a process of calculating the pixel burn-in deterioration risk based on the light emission amount in units of blocks.
  • FIG. 14 is a flowchart showing a block deterioration risk degree calculation process.
  • step ST11 the signal level correction unit 30 selects a pixel.
  • the signal level correction unit 30 selects a pixel to calculate the block deterioration risk and proceeds to step ST12.
  • step ST12 the signal level correction unit 30 calculates the block number to which the pixel belongs. Based on the pixel position of the pixel selected in step ST11, the signal level correction unit 30 calculates the block number to which the pixel belongs, and proceeds to step ST13.
  • step ST13 the signal level correction unit 30 calculates the deterioration risk from the light emission amount of the pixel.
  • the signal level correction unit 30 performs the calculation of the above equation (2), calculates the deterioration risk of the selected pixel based on the light emission amount, and proceeds to step ST14.
  • step ST14 the signal level correction unit 30 determines whether or not the maximum deterioration risk level of the block.
  • the signal level correction unit 30 determines whether the deterioration risk calculated in step ST13 is the maximum deterioration risk in the block having the block number to which the selected pixel belongs.
  • the signal level correction unit 30 proceeds to step ST15 when the degradation risk calculated in step ST13 is the maximum degradation risk, and proceeds to step ST16 when it is not the maximum degradation risk, that is, when it is smaller than the maximum degradation risk.
  • step ST15 the signal level correction unit 30 updates the maximum deterioration risk of the block.
  • the signal level correction unit 30 proceeds to step ST16 with the maximum risk of deterioration of the block as the risk of deterioration calculated in step ST13.
  • step ST16 the signal level correction unit 30 determines whether all the pixels have been selected. If the selection of all the pixels in the screen has not been completed, the signal level correction unit 30 returns to step ST11, selects a new pixel from the unselected pixels, and performs the above-described processing. Moreover, the signal level correction
  • FIG. 15 is a flowchart showing the cumulative block deterioration risk update process.
  • step ST21 the signal level correction unit 30 selects a block.
  • the signal level correction unit 30 selects a block whose degradation risk is to be updated, and proceeds to step ST22.
  • step ST22 the signal level correction unit 30 acquires the cumulative block deterioration risk.
  • the signal level correction unit 30 reads the cumulative block deterioration risk corresponding to the block selected in step ST21 from the block risk storage unit 401 of the storage unit 40, and proceeds to step ST23.
  • step ST23 the signal level correction unit 30 acquires the block deterioration risk level of the current frame.
  • the signal level correction unit 30 acquires the block deterioration risk calculated in the current frame for the block selected in step ST21, and proceeds to step ST24.
  • step ST24 the signal level correction unit 30 updates the cumulative block deterioration risk.
  • the signal level correction unit 30 adds the block deterioration risk of the current frame acquired in step ST23 to the cumulative block deterioration risk acquired in step ST22, thereby updating the cumulative block deterioration risk and proceeds to step ST25.
  • step ST25 the signal level correction unit 30 stores the updated cumulative block deterioration risk.
  • the signal level correction unit 30 stores the updated cumulative block deterioration risk obtained in step ST24 in the block risk storage unit 401 of the storage unit 40, for example, so that the stored cumulative block deterioration risk is stored. Update and proceed to step ST26.
  • step ST26 the signal level correction unit 30 determines whether all blocks have been selected. If the selection of all the blocks in the screen has not been completed, the signal level correction unit 30 returns to step ST21, selects a new block from the unselected blocks, and performs the above-described processing. In addition, when the selection of all the blocks in the screen is completed, the signal level correcting unit 30 ends the cumulative block deterioration risk update process.
  • the signal level correction unit 30 calculates the area deterioration risk.
  • the signal level correction unit 30 performs a process of dividing the entire display screen of the panel 65 into areas composed of one or a plurality of blocks and calculating the area deterioration risk based on the block deterioration risk for each area.
  • FIG. 16 is a flowchart showing the area deterioration risk calculation processing.
  • step ST31 the signal level correction unit 30 selects a block.
  • the signal level correction unit 30 selects a block to calculate the area deterioration risk and proceeds to step ST32.
  • step ST32 the signal level correction unit 30 calculates the area number to which the block belongs. Based on the block position of the block selected in step ST31, the signal level correction unit 30 calculates the number of the area to which the block belongs, and proceeds to step ST33.
  • step ST33 the signal level correction unit 30 acquires the cumulative block deterioration risk.
  • the signal level correction unit 30 acquires the updated cumulative block deterioration risk for the block selected in step ST31, and proceeds to step ST34.
  • step ST34 the signal level correction unit 30 determines whether or not the maximum degradation risk level of the area.
  • the signal level correction unit 30 determines whether or not the cumulative block deterioration risk acquired in step ST33 is the maximum deterioration risk in the area of the area number to which the selected block belongs.
  • the signal level correction unit 30 proceeds to step ST35 when the cumulative block deterioration risk acquired in step ST33 is the maximum deterioration risk, and proceeds to step ST36 when it is not the maximum deterioration risk, that is, when it is smaller than the maximum deterioration risk. move on.
  • step ST35 the signal level correction unit 30 updates the maximum deterioration risk of the area.
  • the signal level correction unit 30 proceeds to step ST36 with the maximum risk of deterioration of the area as the cumulative block deterioration risk acquired in step ST33.
  • step ST36 the signal level correction unit 30 determines whether all blocks have been selected. If the selection of all blocks in the screen has not been completed, the signal level correction unit 30 returns to step ST31, selects a new block from the unselected blocks, and performs the above-described processing. Moreover, the signal level correction
  • the signal level correction unit 30 updates the accumulated area deterioration risk.
  • the signal level correction unit 30 performs a process similar to the process for updating the cumulative block deterioration risk in FIG. 15 for each area, updates the cumulative area deterioration risk, and proceeds to step ST6.
  • step ST6 the signal level correction unit 30 calculates the deterioration risk for each pixel.
  • the signal level correction unit 30 performs the calculations of Expressions (5) to (8), calculates the deterioration risk for each pixel from the updated area deterioration risk for each area, and proceeds to step ST7.
  • step ST7 the signal level correction unit 30 calculates a correction gain for each pixel.
  • the signal level correction unit 30 calculates a correction gain for each pixel according to the deterioration risk calculated for each pixel.
  • FIG. 17 is a flowchart showing a correction gain calculation process.
  • step ST41 the signal level correction unit 30 selects a pixel.
  • the signal level correction unit 30 selects a pixel for calculating the correction gain, and proceeds to step ST42.
  • step ST42 the signal level correction unit 30 acquires the pixel deterioration risk level.
  • the signal level correction unit 30 acquires the deterioration risk for the pixel selected in step ST41 from the deterioration risk for each pixel calculated in step ST6, and proceeds to step ST43.
  • step ST43 the signal level correction unit 30 calculates a gain adjustment amount.
  • the signal level correction unit 30 calculates the above-described equation (9), calculates the gain adjustment amount according to the pixel deterioration risk level, and proceeds to step ST44.
  • step ST44 the signal level correction unit 30 calculates a correction gain.
  • the signal level correction unit 30 calculates the above-described equation (11), calculates a correction gain according to the luminance of the pixel selected in step ST41, and proceeds to step ST45.
  • step ST45 the signal level correction unit 30 determines whether all the pixels have been selected. If the selection of all the pixels in the screen has not been completed, the signal level correction unit 30 returns to step ST41 and performs a process of newly selecting a pixel from the unselected pixels and determining the gain. Moreover, the signal level correction
  • the signal level correction unit 30 corrects the signal level of the video signal.
  • the signal level correction unit 30 corrects the signal level of the video signal for each pixel with the calculated correction gain.
  • the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region.
  • a correction gain is calculated according to the calculated deterioration risk of each pixel and the luminance for each pixel. For this reason, a region not including a pixel having a high degree of deterioration has a lower risk of deterioration than a region including a pixel having a high degree of deterioration, and a pixel in a region not including a pixel having a high degree of deterioration includes a pixel having a high degree of deterioration. As in the case of the pixels in the area, the luminance is not lowered. Therefore, high visibility can be realized.
  • luminance control is performed according to the degree of deterioration risk, and for example, for a pixel with a large degree of deterioration, the amount of light emission is reduced to suppress deterioration, so that the life of the light emitting element can be extended.
  • the area is composed of one or a plurality of blocks, and the area deterioration risk is calculated using the cumulative block deterioration risk calculated for the blocks in the area. Therefore, for example, even when the area is large, the area deterioration risk can be calculated according to the deterioration risk for each display range of the block size.
  • FIG. 19 illustrates the configuration of the second embodiment of the present technology.
  • the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 308, and a multiplier 390.
  • the storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and a target gain map storage unit 403.
  • the luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
  • the light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. .
  • the light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
  • the block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
  • the block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305.
  • the block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
  • the area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. .
  • the area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af.
  • the area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
  • the area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
  • the gain calculation unit 308 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390.
  • the gain calculation unit 308 includes the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk update unit 306, and the target gain stored in the target gain map storage unit 403 of the storage unit 40.
  • a correction gain is calculated based on the map.
  • the multiplier 390 corrects and outputs the signal level of the video signal by multiplying the video signal by the correction gain calculated by the gain calculation unit 308.
  • the target gain map stored in the target gain map storage unit 403 of the storage unit 40 is created by the target gain map creation unit 70.
  • the target gain map creating unit 70 creates a target gain map in advance by offline processing.
  • the target gain map creation unit 70 may be provided in, for example, the signal processing unit 20 of the display device 10 or may be configured separately from the display device 10.
  • FIG. 20 illustrates the configuration of the target gain map creation unit.
  • the target gain map creation unit 70 includes a user profile storage unit 701, a sample image DB (database) 702, a calculation image DB (database) creation unit 703, and a calculation image DB (database) 704.
  • the target gain map creation unit 70 includes an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a light emitting element deterioration characteristic storage unit 767, a target gain.
  • a calculation unit 768 and a target gain integration unit 769 are provided. Note that the user profile storage unit 701 to the target gain calculation unit 768 correspond to a target gain calculation processing unit in the claims.
  • the user profile storage unit 701 stores information indicating what kind of application image display is being performed at what rate on the display device.
  • FIG. 21 illustrates a user profile when the display device is used in a smartphone.
  • the ratio of telephone display (Call) is 20%
  • the ratio of e-mail display (Email) is 20 modes
  • the ratio of browser display is 20%.
  • the ratio of the music playback display (Music) is 10% or the like.
  • the sample image DB 702 stores a large number of various sample images classified by use, such as user profile uses such as telephone display, e-mail display, browser display, and music playback display.
  • the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the linear characteristic sample image is stored in the sample image DB 702. Is done.
  • the calculation image DB creation unit 703 selects a sample image for each usage indicated by the user profile from the sample image DB 702 at a usage ratio in the user profile. .
  • the calculation image DB 704 stores sample images selected based on the user profile.
  • the image selection unit 761 randomly selects an image stored in the calculation image DB 704 and outputs the image to the luminance calculation unit 762.
  • the luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
  • the light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR.
  • the light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
  • the cumulative light emission amount update unit 765 adds the multiplication result of the coefficient Ktm and the light emission amount Emit_f calculated by the light emission amount calculation unit 764 to the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766 for each pixel. And output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result.
  • Expression (12) indicates processing performed by the cumulative light emission amount update unit 765.
  • the coefficient Ktm (> 0) is a unit time parameter.
  • the coefficient Ktm is a parameter for setting a simulation result using fewer sample images than a predetermined frame as a simulation result for a predetermined frame when it is difficult to prepare a sample image for a predetermined frame when performing a simulation for a predetermined frame. It is.
  • the cumulative light emission amount update unit 765 stores the light emission amount after addition in the cumulative light emission amount storage unit 766 as the updated cumulative light emission amount Emit.
  • FIG. 22 illustrates the relationship between the accumulated light emission amount and the luminance decrease amount, and the luminance decrease amount increases as the cumulative light emission amount increases.
  • the cumulative light emission amount that becomes the maximum allowable luminance decrease amount (allowable maximum luminance decrease amount) in the panel 65 is set as a target cumulative light emission amount Emit_target.
  • the target gain calculation unit 768 calculates the target gain gain_t0 based on Expression (13) so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target for each pixel.
  • the target gain gain_t0 is “1”.
  • the target gain gain_t0 becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target.
  • the target gain gain_t0 is small for pixels where the luminance is frequently increased in the usage state of the user, and the target gain gain_t0 is “1” for pixels where the frequency is often low.
  • the target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire display screen.
  • the target gain integration unit 769 integrates the target gain in units of blocks for which the risk of deterioration has been calculated by the block risk update unit 304 described above, and creates a target gain map indicating the target gain of each block on the entire display screen. May be. Thus, if the target gains are integrated, the data amount of the target gain map can be reduced.
  • the target gain integration unit 769 may create a target gain map indicating the target gain of each pixel for each pixel of the entire display screen.
  • the target gain integration unit 769 stores the created target gain map in the target gain map storage unit 403 of the storage unit 40.
  • the gain calculation unit 308 shown in FIG. 19 calculates a gain adjustment amount gainC for correcting the signal level of the video signal by the multiplier 390.
  • the gain calculation unit 308 stores, for each pixel, the luminance output from the luminance calculation unit 301, the accumulated area deterioration risk dgr_a output from the area risk update unit 306, and the target gain map storage unit 403 of the storage unit 40.
  • a gain adjustment amount gainC is calculated based on the target gain map.
  • FIG. 23 is a diagram showing the relationship between the deterioration risk and the gain adjustment amount.
  • the gain calculation unit 308 calculates a correction gain characteristic based on the calculated gain adjustment amount gainC, similarly to the gain calculation unit 307. Furthermore, the gain calculation unit 308 outputs the correction gain gain_p obtained according to the luminance of the pixel p based on the correction gain characteristic to the multiplier 390. The gain calculation unit 308 performs the same process on other pixels and outputs a correction gain corresponding to the luminance of each pixel to the multiplier 390. Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 308 and outputs the result.
  • the target gain gain_t becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target. Accordingly, as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target, the maximum gain (1-gain_t) approaches “1”, so that the cumulative light emission amount Emit is less than or equal to the target cumulative light emission amount Emit_target. Also, the minimum value of the correction gain can be reduced. That is, since it is possible to increase the decrease in luminance and reduce the accumulated light emission amount, it is possible to perform luminance control so that the accumulated light emission amount is equal to or less than the target accumulated light emission amount.
  • the target gain gain_t is “1”, and thus the gain adjustment amount gainC is “0”. That is, it is possible to prevent the luminance from being reduced for pixels whose cumulative light emission amount Emit has not reached the target cumulative light emission amount Emit_target.
  • the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment.
  • the correction gain is calculated using the target gain map.
  • FIG. 24 is a flowchart showing a target gain map creation operation.
  • the target gain map creation unit 70 creates a calculation image DB (database).
  • the target gain map creation unit 70 sets the usage ratio for each usage indicated by the user profile based on the user profile indicating what usage the image display is performed by the user on the display device. Select a sample image accordingly.
  • the target gain map creation unit 70 creates a calculation image DB made up of the selected sample images, and proceeds to step ST52.
  • step ST52 the target gain map creation unit 70 selects an image.
  • the target gain map creation unit 70 selects an image at random from the calculation image DB, and proceeds to step ST53.
  • step ST53 the target gain map creation unit 70 calculates the light emission amount.
  • the target gain map creation unit 70 calculates the light emission amount for each pixel based on the luminance and duty ratio of the selected image, and proceeds to step ST54.
  • step ST54 the target gain map creating unit 70 calculates the accumulated light emission amount.
  • the target gain map creation unit 70 accumulates the light emission amount calculated from the selected image every time the image is selected, calculates the accumulated light emission amount, and proceeds to step ST55.
  • step ST55 the target gain map creation unit 70 determines whether or not the accumulation for a predetermined number of images has been completed.
  • the target gain map creation unit 70 returns to step ST52 when the accumulated amount of light emission has not reached the predetermined number of images, and proceeds to step ST56 when the predetermined number of images has been reached.
  • step ST56 the target gain map creating unit 70 calculates target gains for all pixels.
  • the target gain map creating unit 70 calculates the target gain so that the cumulative light emission amount does not exceed the target cumulative light emission amount for each pixel, and the process proceeds to step ST57.
  • the target gain map creating unit 70 creates a target gain map.
  • the target gain map creating unit 70 creates a target gain map indicating the target gain for each pixel position using the target gain calculated for each pixel, and ends the process.
  • the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region.
  • a deterioration risk for each pixel is calculated.
  • a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain.
  • a correction gain is calculated according to the gain of the map. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display.
  • the correction gain is calculated according to the usage situation of the user, the extension of the life of the light emitting element and the realization of the high visibility of the display are optimized according to the usage situation of the user. It can be carried out.
  • the signal processing unit is configured similarly to the second embodiment shown in FIG. Further, in the third embodiment, a case will be described in which the luminance reduction speed adjustment is performed according to what ratio the display screen of the user uses on the display device 10 at what rate.
  • the gain calculation unit 308 of the signal processing unit 20 calculates a gain adjustment amount gainC for correcting the signal level of the video signal by the multiplier 390.
  • the gain calculation unit 308 is, for each pixel, based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk level update unit 306, and the target gain map in the target gain map storage unit 403.
  • the gain adjustment amount gainC is calculated.
  • FIG. 25 shows the relationship between the risk of deterioration and the amount of gain adjustment.
  • the gain calculation unit 308 sets thresholds ThDgr0c and ThDrg1c based on equations (14) and (15).
  • the coefficient gm0 is a parameter that adjusts the value of the deterioration risk at which gain adjustment is started
  • the coefficient gm1 is a parameter that adjusts the value of the deterioration risk that maximizes the gain adjustment amount.
  • the coefficients gm0 and gm1 are set in the relationship of Expression (16) so that the threshold ThDgr0c does not become larger than ThDrg1c.
  • the target gain gain_t becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target. Therefore, since the threshold values ThDgr0c and ThDrg1c are smaller than the threshold values ThDgr0 and ThDrg1, the luminance control is performed even if the deterioration risk is small. Further, by adjusting the coefficients gm0 and gm1, the relationship between the degree of risk of deterioration and the amount of adjustment of luminance can be set to a desired characteristic.
  • the gain calculation unit 308 adjusts the coefficients gm0 and gm1 and the threshold values ThDgr0 and ThDrg1, and calculates the gain adjustment amount gainC so as to reduce the luminance of the pixel from the region where the deterioration of the light emitting element is small based on the target gain.
  • the gain adjustment amount gainC can be calculated so that the luminance is quickly reduced in a pixel in a region where the light emitting element is likely to deteriorate based on the target gain.
  • the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region.
  • a deterioration risk for each pixel is calculated.
  • a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain.
  • a correction gain is calculated according to the gain of the map.
  • a gain adjustment amount corresponding to the degree of deterioration risk is calculated according to the usage status of the user. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display.
  • the correction gain is calculated according to the usage situation of the user, the lifetime of the light emitting element and the realization of the high visibility of the display are realized according to the usage situation of the user. Can be done optimally.
  • the gain adjustment amount according to the degree of deterioration risk can be calculated according to the usage situation of the user and the like, the life of the light emitting element and the realization of high visibility of the display can be realized by the user. It can be performed more optimally depending on the situation.
  • FIG. 26 illustrates the configuration of the fourth embodiment of the present technology.
  • the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 309, and a multiplier 390.
  • the storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and an application target gain map storage unit 404.
  • the luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
  • the light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. .
  • the light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
  • the block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
  • the block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305.
  • the block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
  • the area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. .
  • the area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af.
  • the area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
  • the area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
  • the gain calculation unit 308 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390.
  • the gain calculation unit 308 performs correction based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk update unit 306, and the application target gain map in the application target gain map storage unit 404. Calculate the gain.
  • Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 308 and outputs the result.
  • the application target gain map storage unit 404 of the storage unit 40 stores a target gain map selected according to an application that displays an image on the display device.
  • the target gain map is created by the application-specific target gain map creation unit 71.
  • the application-specific target gain map creation unit 71 creates a target gain map for each application in advance by offline processing and stores it in the application-specific target gain map storage unit 72.
  • the target gain map selection unit 73 acquires a target gain map corresponding to an application for displaying an image on the display device from the application-specific target gain map storage unit 72 and stores it in the application target gain map storage unit 404 of the storage unit 40.
  • the application-specific target gain map creation unit 71 may be provided, for example, in the signal processing unit 20 of the display device 10 or may be configured separately from the display device 10.
  • FIG. 27 shows the configuration of the application-specific target gain map creation unit.
  • the application-specific target gain map creation unit 71 includes an application-specific image DB (database) 705, an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, and a light emission.
  • An element deterioration characteristic storage unit 767, a target gain calculation unit 768, and a target gain integration unit 769 are provided.
  • the application-specific image DB 705 to the target gain calculation unit 768 correspond to a target gain calculation processing unit in claims.
  • the application-specific image DB 705 stores many sample images for each application.
  • the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the linear characteristic sample image is stored in the application-specific image DB 705.
  • the image selection unit 761 randomly selects an image stored in the application-specific image DB 705 and outputs the image to the luminance calculation unit 762 for each application.
  • the luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
  • the light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR.
  • the light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
  • the cumulative light emission amount updating unit 765 adds the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766 to the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel, and thereby the target gain calculation unit 768. Output to. In addition, the accumulated light amount update unit 765 stores the added light amount in the accumulated light amount storage unit 766 as the updated accumulated light amount Emit.
  • the target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount.
  • the target accumulated light emission amount is set based on the target luminance decrease amount and the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 767.
  • the target gain calculation unit 768 calculates the target gain gain_t0 based on the above equation (13) so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target for each pixel. To do.
  • the target gain calculation unit 768 outputs the calculated target gain gain_t0 to the target gain integration unit 769.
  • the target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates target gains in units of areas for which the risk of deterioration has been calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta of this area. . Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire display screen.
  • the target gain integration unit 769 integrates target gains in units of blocks for which the risk of deterioration has been calculated by the block risk update unit 304 described above, and generates a target gain map indicating the target gain gain_ta of each block on the entire display screen. You may create it. Thus, if the target gains are integrated, the data amount of the target gain map can be reduced. In addition, the target gain integration unit 769 may create a target gain map indicating the target gain gain_t0 of each pixel for each pixel of the entire display screen.
  • the luminance calculation unit 762 through the target gain integration unit 769 create the target gain map for each application by performing the above-described processing for each application, and store the target gain map in the application-specific target gain map storage unit 72 illustrated in FIG. .
  • the target gain map selection unit 73 acquires a target gain map corresponding to the application that is operating using the display device from the application-specific target gain map storage unit 72, and the application target gain map storage unit of the storage unit 40 Store in 404.
  • a gain calculation unit 309 shown in FIG. 26 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390.
  • the gain calculation unit 309 is, for each pixel, based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk output from the area risk level update unit 306, and the target gain map in the application target gain map storage unit 404.
  • the correction gain is calculated in the same manner as in the second or third embodiment described above.
  • the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment. Further, in the fourth embodiment, a target gain map corresponding to an application that is operated using the display device is used in the calculation of the correction gain for each pixel in step ST5.
  • FIG. 28 is a flowchart showing target gain map selection processing.
  • the target gain map selection unit 73 receives an application switching command.
  • the target gain map selection unit 73 receives the application switching command output from the control unit 11, and proceeds to step ST62.
  • step ST62 the target gain map selection unit 73 acquires the application name.
  • the target gain map selection unit 73 acquires the switched application name indicated by the received application switching command, and proceeds to step ST63.
  • step ST63 the target gain map selection unit 73 acquires a target gain map corresponding to the application name.
  • the target gain map selection unit 73 acquires the target gain map corresponding to the acquired application name from the application-specific target gain map storage unit 72, and proceeds to step ST64.
  • step ST64 the target gain map selection unit 73 outputs the target gain map.
  • the target gain map selection unit 73 stores the target gain map acquired from the application-specific target gain map storage unit 72 in the application target gain map storage unit 404 and ends the process.
  • the deterioration risk for each area calculated from the light emission amount of the pixels in the area is accumulated for each area, and based on the accumulated deterioration risk for each area.
  • a deterioration risk for each pixel is calculated.
  • the correction gain is calculated according to the deterioration risk for each pixel, the luminance for each pixel, and the gain of the target gain map corresponding to the application used by the user. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Furthermore, in the fourth embodiment, since the correction gain is calculated according to the application being used, it is possible to optimally achieve a long life of the light emitting element and high visibility of the display.
  • a fifth embodiment of the present technology will be described.
  • the signal level is adjusted according to the deterioration characteristics estimated by the deterioration acceleration test or the like. For this reason, if the estimated deterioration characteristic is different from the actual deterioration characteristic, the luminance control of the video signal cannot be accurately performed according to the deterioration characteristic of the panel 65.
  • time elapses since the sale of the device using the display device detailed deterioration characteristics become clear from the measured values of the characteristics of the panel 65 and the like. Therefore, in the fifth embodiment, a case will be described in which the display device acquires a target gain map via a network or the like so that the signal level can be corrected according to the clarified deterioration characteristic.
  • FIG. 29 illustrates the configuration of the fifth embodiment.
  • the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 310, and a multiplier 390.
  • the storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and a target gain map storage unit 405.
  • the luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
  • the light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. .
  • the light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
  • the block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
  • the block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305.
  • the block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
  • the area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. .
  • the area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af.
  • the area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
  • the area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
  • the gain calculation unit 310 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390. For each pixel, the gain calculation unit 310 is based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk output from the area risk level update unit 306, and the target gain map in the target gain map storage unit 405. Calculate the correction gain.
  • Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 310 and outputs the result.
  • the target gain map storage unit 405 of the storage unit 40 is connected to the network, acquires the target gain map created by the external target gain map creation unit via the network, and stores the target gain map. Update.
  • the target gain map acquired via the network may be a target gain map for each application as in the fourth embodiment.
  • the target gain map storage unit 405 notifies the user profile to the target gain map creation unit via the network, and the target gain created corresponding to the user profile as in the second and third embodiments. A map may be acquired.
  • FIG. 30 illustrates a configuration when the target gain map creation unit is mounted on the display device.
  • the target gain map creation unit 74 acquires an actual deterioration characteristic indicating the relationship between the accumulated light emission amount and the luminance reduction amount due to deterioration, and the target gain map is based on the acquired deterioration characteristic. And is stored in the target gain map storage unit 405. Further, the target gain map creation unit 74 acquires, for example, a sample image corresponding to the application via the network, and displays an image at a ratio of the use of the user profile for each application indicated by the user profile from the acquired sample image. The accumulated light emission amount may be calculated by selection. Furthermore, the target gain map creation unit 74 may acquire, for example, a user profile via a network.
  • FIG. 31 illustrates the configuration of the target gain map creation unit.
  • the target gain map creation unit 74 includes a user profile storage unit 701, a sample image DB 712, a calculation image DB (database) creation unit 703, and a calculation image DB (database) 704.
  • the target gain map creation unit 74 includes an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a target gain calculation unit 768, and a light emitting element deterioration characteristic.
  • a storage unit 777 and a target gain integration unit 769 are provided.
  • the user profile storage unit 701 stores information indicating what kind of application image display is being performed at what rate on the display device as a user profile.
  • the user profile storage unit 701 can be supplied with a user profile and updated from the external device via a network.
  • the sample image DB 712 stores sample images for each use of the user profile. In addition, for the sample image DB 712, it is possible to supply a sample image and update the sample image from an external device via a network. In the display device, since the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the sample image having the linear characteristic is stored in the sample image DB 712. Is done.
  • the calculation image DB creation unit 703 selects a sample image for each usage indicated by the user profile from the sample image DB 712 at a usage ratio in the user profile. .
  • the calculation image DB 704 stores sample images selected based on the user profile.
  • the image selection unit 761 randomly selects an image stored in the calculation image DB 704 and outputs the image to the luminance calculation unit 762.
  • the luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
  • the light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR.
  • the light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
  • the cumulative light emission amount update unit 765 multiplies the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel by the above-described coefficient Ktm and the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766. Are output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result.
  • the light emitting element deterioration characteristic storage unit 777 In the light emitting element deterioration characteristic storage unit 777, information related to the deterioration characteristic of the panel 65 is stored. In addition, the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 777 can be updated to a deterioration characteristic acquired from an external device via a network.
  • the target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount.
  • the target cumulative light emission amount is set based on the target luminance decrease amount and the deterioration characteristics stored in the light emitting element deterioration characteristic storage unit 777.
  • the target gain calculation unit 768 calculates the target gain gain_t0 so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target, and outputs the target gain gain_t0 to the target gain integration unit 769. To do.
  • the target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire screen.
  • the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment.
  • the correction gain is obtained by using the target gain map created based on the sample image, the user profile, and the deterioration characteristic acquired via the network or the like. Is calculated.
  • the target gain map, the sample image, the user profile, and the deterioration characteristics are not limited to being acquired via a network, but may be acquired via a recording medium or the like.
  • the risk of deterioration for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated risk of deterioration for each region.
  • a deterioration risk for each pixel is calculated.
  • a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain.
  • a correction gain is calculated according to the gain of the map.
  • the sample image, user profile, and deterioration characteristics used to create the target gain map can be easily updated to the optimum sample image, user profile, and highly accurate deterioration characteristics.
  • the correction gain can be calculated according to the use situation of the user, the actual deterioration characteristics of the panel, etc., it is possible to extend the life of the light emitting element and realize high visibility of the display by the user. It can be performed more optimally depending on the situation.
  • a sixth embodiment of the present technology will be described.
  • a target gain map creating unit is provided in the signal processing unit 20 and a target gain map is created by online processing in accordance with the driving state of the panel 65.
  • FIG. 32 illustrates the configuration of the target gain map creation unit in the sixth embodiment.
  • the target gain map creation unit 76 includes a luminance calculation unit 763, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a light emitting element deterioration characteristic storage unit 767, a target gain calculation unit 768, and a target gain integration. Part 769.
  • the luminance calculation unit 763 calculates the luminance Y from the video signal corrected by the signal level correction unit 30 in the same manner as the luminance calculation unit 762, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
  • the light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 763 and the panel drive duty ratio DR.
  • the light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
  • the cumulative light emission amount update unit 765 multiplies the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel by the above-described coefficient Ktm and the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766. Are output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result.
  • the light emitting element deterioration characteristic storage unit 767 In the light emitting element deterioration characteristic storage unit 767, information related to the deterioration characteristic of the panel 65 is stored.
  • the target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount.
  • the target accumulated light emission amount is set based on the target luminance decrease amount and the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 767.
  • the target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount.
  • the target cumulative light emission amount is set based on the target luminance decrease amount and the deterioration characteristics stored in the light emitting element deterioration characteristic storage unit 777.
  • the target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire screen.
  • the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment.
  • the correction gain is calculated using the target gain map created based on the video signal corrected by the signal level correction unit 30.
  • a target gain map is created according to the driving state of the panel 65. Therefore, the progress of the deterioration can be suppressed by further reducing the target gain for the pixel in which the panel 65 emits a large amount of light and the panel has been deteriorated. In addition, the visibility of the pixels in which the light emission amount of the panel 65 is small and the panel deterioration is small can be improved by increasing the target gain. Furthermore, in the sixth embodiment, for example, the light emission amount per day in the panel 65 may be controlled by performing the control on a daily basis. If a target gain map is created according to the driving state of the panel 65 from the first use of the display device, the correction gain can be calculated more accurately according to the deterioration state of the panel.
  • the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region.
  • a deterioration risk for each pixel is calculated.
  • a target gain map is created according to the driving state of the panel, and a correction gain is calculated according to the degree of deterioration risk for each pixel, the luminance for each pixel, and the gain of the target gain map. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display.
  • the correction gain can be calculated according to the panel usage status, the life of the light emitting element and the high visibility of the display can be optimally performed according to the panel usage status. .
  • the embodiments described above are not limited to being performed independently, and may be performed in combination.
  • the fourth embodiment may be performed in combination with at least one of the second to third embodiments.
  • the fifth embodiment may be performed in combination with at least one of the second to fourth embodiments.
  • the sixth embodiment may be performed by combining at least one of the second to fourth embodiments with the sixth embodiment. As described above, by combining a plurality of embodiments, it is possible to more reliably achieve a longer lifetime of the light-emitting element and a higher display visibility than before the combination.
  • the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
  • a program in which a processing sequence is recorded is installed and executed in a memory in a computer incorporated in dedicated hardware.
  • the program can be installed and executed on a general-purpose computer capable of executing various processes.
  • the program can be recorded in advance on a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory) as a recording medium.
  • the program is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto optical disc), a DVD (Digital Versatile Disc), a BD (Blu-Ray Disc (registered trademark)), a magnetic disk, or a semiconductor memory card. It can be stored (recorded) in a removable recording medium such as temporarily or permanently. Such a removable recording medium can be provided as so-called package software.
  • the program may be transferred from the download site to the computer wirelessly or by wire via a network such as a LAN (Local Area Network) or the Internet.
  • the computer can receive the program transferred in this way and install it on a recording medium such as a built-in hard disk.
  • the video signal processing apparatus may have the following configuration.
  • a video signal processing apparatus comprising: a correction unit that corrects a signal level of the video signal using the correction gain.
  • the cumulative deterioration risk calculating unit calculates a cumulative block deterioration risk by accumulating the maximum deterioration risk of the pixels in the block for each of the regions including one or a plurality of blocks.
  • the video signal processing device according to (1) wherein the maximum accumulated block deterioration risk is accumulated to obtain a cumulative deterioration risk for each region.
  • the gain calculation unit calculates the deterioration risk level of the pixel by using the cumulative deterioration risk level of the area including the pixel for calculating the deterioration risk level and the cumulative deterioration risk level of the area adjacent to the area.
  • the video signal processing device according to (1) or (2) to be calculated.
  • the gain calculation unit is configured so that each of the regions has a ratio according to a distance from a boundary between a region including the pixel for calculating the deterioration risk and an adjacent region to a pixel for calculating the deterioration risk.
  • the video signal processing apparatus according to (3), wherein the deterioration risk level of the pixel is calculated using the cumulative deterioration risk level.
  • the gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel ( The video signal processing device according to any one of 1) to (4).
  • a target gain map storage unit that stores a target gain map in which a target gain that sets a light emitting element that emits light based on the video signal as an allowable luminance reduction amount is indicated for each pixel position;
  • the video signal processing device according to any one of (1) to (5), wherein the gain calculation unit calculates a correction gain for each pixel based on the degradation risk for each pixel, the luminance for each pixel, and the target gain.
  • the target gain is set to the pixel position based on the cumulative light emission amount calculated for each pixel using the sample image according to the ratio of the display time for each application and the deterioration characteristics of the light emitting element that emits light based on the video signal.
  • the video signal processing device further comprising a target gain map creation unit configured to create a target gain map for each setting.
  • the target gain map creation unit A cumulative light emission amount for each pixel is calculated in accordance with the display time ratio for each application, and based on the cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and the cumulative light emission amount calculated for each pixel.
  • a target gain calculation processing unit for calculating a target gain for each pixel;
  • the video signal processing device according to (7), further including a target gain integration unit that integrates the target gain calculated for each pixel for each region and calculates the target gain for each region.
  • the video signal processing device (9) The video signal processing device according to (7), wherein the target gain map creation unit updates the sample image or the degradation characteristic to a sample image or degradation characteristic acquired from the outside. (10) The gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel and the target gain, and a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel.
  • the video signal processing device according to any one of (6) to (9).
  • the gain calculation unit calculates a gain adjustment amount based on the target gain so that a decrease in luminance becomes a desired speed in a pixel in a region where the light emitting element is likely to deteriorate (10) or (11) 2.
  • a video signal processing apparatus according to 1. (13)
  • the target gain map is set by setting the target gain for each pixel position based on the cumulative light emission amount calculated for each pixel based on the application image and the deterioration characteristics of the light emitting element that emits light based on the video signal.
  • the video signal processing device according to any one of (6) to (12), further including a target gain map creation unit to create.
  • the target gain map creation unit creates the target gain map for each application, The video signal processing apparatus according to (13), wherein the gain calculation unit calculates the correction gain for each pixel using a target gain map of an application that matches the application of the video signal.
  • the target gain map creation unit For each application, a cumulative light emission amount for each pixel is calculated based on the image of the application, and based on a cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and a cumulative light emission amount calculated for each pixel.
  • the risk of cumulative degradation is calculated by calculating the degradation risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulating it for each area.
  • the degree is calculated by the cumulative deterioration risk calculation unit.
  • the deterioration risk for each pixel is calculated from the cumulative deterioration risk for each region, and a correction gain is calculated for each pixel by the gain calculation unit based on the deterioration risk for each pixel and the luminance for each pixel. Further, the signal level of the video signal is corrected by the correction unit using the correction gain.
  • the signal level of the video signal is adjusted so that the luminance is lower in the high degradation risk region than in the low degradation risk region, so that the lifetime of the light emitting element and the high visibility of the display can be realized. . Therefore, it is suitable for portable communication terminals, information processing devices, video display devices, and the like using organic EL elements that are self-luminous elements.
  • Application target gain map storage unit 701 ...
  • Calculation image DB 705 ...
  • Luminance calculation unit 764 ...
  • Light emission amount calculation unit 765 ...
  • Cumulative light emission amount update unit 766 ...
  • Deterioration characteristic storage unit 768 ... Target gain calculation unit 769... Target gain integration unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

Cumulative degree of risk of degradation is calculated for each area by calculating and accumulating the degrees of risk of degradation for each area into which a displayed image is divided from the amount of light emitted by each pixel based on a video signal by a light emission calculation unit (302), a block degree of risk calculation unit (303), a block degree of risk updating unit (304), an area degree of risk calculation unit (305), and an area degree of risk updating unit (306). A gain calculation unit (307) calculates the degree of risk of degradation for each pixel from the cumulative degree of risk of degradation that has been calculated for each area and calculates correction gain for each pixel on the basis of the degree of risk of degradation for each pixel and brightness for each pixel. A multiplier (390) corrects the signal level of the video signal using a correction gain calculated by the gain calculation unit (307). The signal level for the video signal is adjusted such that the brightness for areas for which the degree of risk of degradation is high is lower than that for areas for which the degree of risk of degradation is low. Thus, increased life for light emitting elements and high visibility of the display can be achieved.

Description

映像信号処理装置と映像信号処理方法Video signal processing apparatus and video signal processing method
 この技術は、映像信号処理装置と映像信号処理方法に関し、発光素子の長寿命化および表示の高視認性を実現する。 This technology relates to a video signal processing device and a video signal processing method, and realizes a long life of the light emitting element and high visibility of display.
 平面で薄型の表示装置として、液晶を用いた液晶表示装置等が実用化されている。液晶表示装置は、バックライトを設け、電圧の印加によって液晶分子の配列を変化させることで、バックライトからの光を通過させたり遮断したりすることで画像を表示する表示装置である。 As a flat and thin display device, a liquid crystal display device using liquid crystal has been put into practical use. A liquid crystal display device is a display device that displays an image by providing a backlight and changing the arrangement of liquid crystal molecules by applying a voltage, thereby allowing light from the backlight to pass or block.
 また、近年においては、電圧を印加すると素子自体が発光する有機EL(エレクトロルミネッセンス)素子を用いた自発光型の表示装置が実用化されている。有機EL素子は、電界によってエネルギーを受けると、基底状態から励起状態へ変化し、励起状態から基底状態に戻るときに、差分のエネルギーを光として放出する。有機EL表示装置は、この有機EL素子が放出する光を用いて画像を表示する表示装置である。 In recent years, self-luminous display devices using organic EL (electroluminescence) elements that emit light when a voltage is applied have been put into practical use. When the organic EL element receives energy by an electric field, the organic EL element changes from a ground state to an excited state, and emits differential energy as light when returning from the excited state to the ground state. The organic EL display device is a display device that displays an image using light emitted from the organic EL element.
 自発光型表示装置は、素子が自ら発光するためバックライトが不要となり、液晶表示装置に比べて装置を薄く構成できる。また、有機EL表示装置は、液晶表示装置と比べて、動画特性、視野角特性、色再現性等が優れている。 The self-luminous display device does not require a backlight because the element emits light by itself, and the device can be configured thinner than a liquid crystal display device. In addition, the organic EL display device is superior in moving image characteristics, viewing angle characteristics, color reproducibility, and the like as compared with a liquid crystal display device.
 しかし、有機EL素子は、電圧を印加し続けると発光特性が劣化し、同じ電流を入力しても輝度が低下する。その結果、発光頻度の高い画素は、他の画素に比べて発光特性が劣化した状態となって、いわゆる「焼き付き」現象が生じる場合がある。したがって、自発光型表示装置では、例えば特許文献1で開示されているように、電流量を制御して焼き付きを補正することが行われる。 However, the organic EL element deteriorates in light emission characteristics when voltage is continuously applied, and the luminance decreases even when the same current is input. As a result, a pixel having a high light emission frequency is in a state in which the light emission characteristic is deteriorated as compared with other pixels, and a so-called “burn-in” phenomenon may occur. Therefore, in the self-luminous display device, for example, as disclosed in Patent Document 1, the amount of current is controlled to correct the burn-in.
国際公開第2008/149842号International Publication No. 2008/149842
 しかし、特許文献1に記載の方法では、劣化度合いの大きい画素に対応した輝度制御が、全画面に対して一律に行われている。このため、例えば表示画面の常に明るく表示されている部分の劣化を抑えるために輝度が低下されると、他の部分の輝度も一律に低下されて表示の視認性が損なわれてしまうおそれがある。 However, in the method described in Patent Document 1, luminance control corresponding to pixels with a high degree of deterioration is uniformly performed on the entire screen. For this reason, for example, if the luminance is lowered to suppress deterioration of a portion that is always brightly displayed on the display screen, the luminance of other portions may be lowered uniformly and the visibility of the display may be impaired. .
 そこで、本技術は、発光素子の長寿命化および表示の高視認性を実現できる映像信号処理装置と映像信号処理方法を提供することにある。 Therefore, it is an object of the present technology to provide a video signal processing apparatus and a video signal processing method capable of realizing a long lifetime of a light emitting element and high visibility of display.
 この技術の第1の側面は、
 映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出し、算出した前記劣化危険度を領域毎に累積することで累積劣化危険度を算出する累積劣化危険度算出部と、
 前記領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、前記画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインを画素毎に算出するゲイン算出部と、
 前記補正ゲインを用いて前記映像信号の信号レベルを補正する補正部と
を備える映像信号処理装置にある。
The first aspect of this technology is
Accumulated degradation risk that calculates the degradation risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated degradation risk for each area. A degree calculator,
A gain calculation unit that calculates a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel;
And a correction unit that corrects a signal level of the video signal using the correction gain.
 この技術において、累積劣化危険度算出部では、映像信号に基づく画素毎の発光量から、例えば表示画面全体を分割した領域毎の劣化危険度を算出して、算出した劣化危険度を領域毎に累積することで累積劣化危険度が算出される。例えば、累積劣化危険度算出部では、1または複数のブロックからなる領域毎に、ブロック内の画素の最大劣化危険度を累積することで、累積ブロック劣化危険度が算出されて、領域内の最大の累積ブロック劣化危険度を累積して領域毎の累積劣化危険度が算出される。 In this technique, the cumulative deterioration risk calculation unit calculates, for example, a deterioration risk for each area obtained by dividing the entire display screen from the light emission amount for each pixel based on the video signal, and calculates the calculated deterioration risk for each area. The cumulative deterioration risk is calculated by accumulating. For example, in the cumulative deterioration risk calculation unit, the cumulative block deterioration risk is calculated by accumulating the maximum deterioration risk of the pixels in the block for each region composed of one or a plurality of blocks. The cumulative block deterioration risk is accumulated to calculate the cumulative deterioration risk for each region.
 ゲイン算出部では、領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインが画素毎に算出される。例えば、ゲイン算出部では、劣化危険度を算出する画素が含まれる領域の累積劣化危険度と、この領域に隣接する領域の累積劣化危険度を用いて、画素の劣化危険度が算出される。また、例えば、ゲイン算出部では、画素毎の劣化危険度に応じて画素毎にゲイン調整量を算出して、画素毎のゲイン調整量と画素の輝度に基づいて補正ゲインが算出される。さらに、映像信号に基づいて発光する発光素子を許容可能な輝度低下量とする目標ゲインが、画素位置毎に示された目標ゲインマップを記憶した目標ゲインマップ記憶部が設けられて、画素毎の劣化危険度と画素毎の輝度と目標ゲインに応じて画素毎にゲイン調整量が算出される。目標ゲインマップ記憶部の目標ゲインマップは外部から取得した目標ゲインマップで更新可能とされている。ゲイン調整量は、例えば目標ゲインに基づき画素の輝度を低下させる前記発光素子の劣化度合いが所望の劣化度合いとなるように算出される。また、目標ゲインに基づき発光素子の劣化を生じやすい領域の画素で輝度の低下が所望の速度となるように算出される。 The gain calculation unit calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel. For example, the gain calculation unit calculates the pixel degradation risk using the cumulative degradation risk of the region including the pixel for which the degradation risk is calculated and the cumulative degradation risk of the region adjacent to the region. Further, for example, the gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel. Further, a target gain map storage unit that stores a target gain map in which a target gain, which is an allowable luminance reduction amount of a light emitting element that emits light based on a video signal, is shown for each pixel position is provided. A gain adjustment amount is calculated for each pixel in accordance with the deterioration risk, the luminance for each pixel, and the target gain. The target gain map in the target gain map storage unit can be updated with a target gain map acquired from the outside. The gain adjustment amount is calculated so that, for example, the degree of deterioration of the light emitting element that lowers the luminance of the pixel based on the target gain becomes a desired degree of deterioration. In addition, the luminance is calculated so as to decrease at a desired speed in the pixels in the region where the light emitting element is likely to deteriorate based on the target gain.
 また、目標ゲインマップを作成する目標ゲインマップ作成部が設けられて、目標ゲインマップ作成部では、用途別の表示時間の割合に応じてサンプル画像を用いて画素毎に算出した累積発光量と、映像信号に基づいて発光する発光素子の劣化特性に基づいて目標ゲインマップが作成される。サンプル画像または劣化特性は外部から取得したサンプル画像または劣化特性に更新可能とされている。また、目標ゲインマップ作成部では、アプリケーション毎に、アプリケーションの画像に基づいて画素毎に算出した累積発光量と、映像信号に基づいて発光する発光素子の劣化特性に基づいて目標ゲインマップが算出されて、ゲイン算出部は、映像信号のアプリケーションと一致するアプリケーションの目標ゲインマップを用いて補正ゲインが算出される。また、目標ゲインマップ作成部では、補正部で補正された映像信号を用いて画素毎に算出した累積発光量と、映像信号に基づいて発光する発光素子の劣化特性に基づいて目標ゲインマップが作成される。 In addition, a target gain map creating unit for creating a target gain map is provided, and in the target gain map creating unit, a cumulative light emission amount calculated for each pixel using a sample image according to a ratio of display time for each application, A target gain map is created based on the deterioration characteristics of the light emitting elements that emit light based on the video signal. The sample image or deterioration characteristic can be updated to a sample image or deterioration characteristic acquired from the outside. The target gain map creation unit calculates a target gain map for each application based on the accumulated light emission amount calculated for each pixel based on the application image and the deterioration characteristics of the light emitting element that emits light based on the video signal. Then, the gain calculation unit calculates the correction gain using the target gain map of the application that matches the application of the video signal. The target gain map creation unit creates a target gain map based on the accumulated light emission amount calculated for each pixel using the video signal corrected by the correction unit and the deterioration characteristics of the light emitting elements that emit light based on the video signal. Is done.
 この技術の第2の側面は、
 累積劣化危険度算出部で、映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出し、算出した前記劣化危険度を領域毎に累積することで累積劣化危険度を算出する工程と、
 ゲイン算出部で、前記領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインを画素毎に算出する工程と、
 補正部で前記補正ゲインを用いて前記映像信号の信号レベルを補正する工程と
を含む映像信号処理方法にある。
The second aspect of this technology is
The cumulative deterioration risk calculation unit calculates the deterioration risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated deterioration risk for each area. A process of calculating the risk,
A gain calculation unit calculating a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculating a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel;
And a step of correcting the signal level of the video signal using the correction gain in a correction unit.
 この技術によれば、累積劣化危険度算出部では、映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出して領域毎に累積することで累積劣化危険度が算出される。また、ゲイン算出部では、領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインが画素毎に算出される。さらに、補正部では、補正ゲインを用いて映像信号の信号レベルが補正される。このため、劣化危険度の高い領域では、劣化危険度の低い領域よりも輝度が低くなるように映像信号の信号レベルが調整されて、発光素子の長寿命化および表示の高視認性を実現できる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。 According to this technology, the cumulative deterioration risk calculation unit calculates the deterioration risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates it for each area. The degree is calculated. Further, the gain calculation unit calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel. Further, the correction unit corrects the signal level of the video signal using the correction gain. For this reason, the signal level of the video signal is adjusted so that the luminance is lower in the high degradation risk region than in the low degradation risk region, so that the lifetime of the light emitting element and the high visibility of the display can be realized. . Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
表示装置の構成を例示した図である。It is the figure which illustrated the structure of the display apparatus. 第1の実施の形態の構成を例示した図である。It is the figure which illustrated the composition of a 1st embodiment. ブロック区分を例示した図である。It is the figure which illustrated the block division. 発光量と劣化危険度の関係を示した図である。It is the figure which showed the relationship between the light-emission quantity and a degradation risk. ブロック危険度更新部で行われる処理を説明するための図である。It is a figure for demonstrating the process performed in a block risk update part. エリア区分を例示した図である。It is the figure which illustrated area division. エリア危険度更新部で行われる処理を説明するための図である。It is a figure for demonstrating the process performed in an area risk update part. エリア内における画素毎の劣化危険度の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the degradation risk degree for every pixel in an area. 隣接するエリアとの境界からの距離とブレンド比の関係を例示した図である。It is the figure which illustrated the relationship between the distance from the boundary with an adjacent area, and a blend ratio. 劣化危険度とゲイン調整量の関係を示した図である。It is the figure which showed the relationship between a degradation risk and a gain adjustment amount. 入力輝度と補正ゲインの関係を示した図である。It is the figure which showed the relationship between input luminance and correction | amendment gain. 入力輝度と出力輝度の関係を例示した図である。It is the figure which illustrated the relationship between input luminance and output luminance. 第1の実施の形態の動作を示したフローチャートである。It is the flowchart which showed operation | movement of 1st Embodiment. ブロック劣化危険度の算出処理を示したフローチャートである。It is the flowchart which showed the calculation process of block deterioration risk. 累積ブロック劣化危険度の更新処理を示したフローチャートである。It is the flowchart which showed the update process of accumulation block deterioration risk. エリア劣化危険度の算出処理を示したフローチャートである。It is the flowchart which showed the calculation process of area degradation risk. 補正ゲインの算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of correction | amendment gain. 画面構成を例示した図である。It is the figure which illustrated screen composition. 第2の実施の形態の構成を例示した図である。It is the figure which illustrated the composition of a 2nd embodiment. 目標ゲインマップ作成部の構成を例示した図である。It is the figure which illustrated the composition of the target gain map creation part. ユーザプロファイルを例示した図である。It is the figure which illustrated the user profile. 累積発光量と輝度低下量の関係を例示した図である。It is the figure which illustrated the relationship between the accumulated light emission amount and the luminance reduction amount. 劣化危険度とゲイン調整量の関係を示した図である。It is the figure which showed the relationship between a degradation risk and a gain adjustment amount. 目標ゲインマップの作成動作を示すフローチャートである。It is a flowchart which shows the preparation operation of a target gain map. 劣化危険度とゲイン調整量の関係を示した図である。It is the figure which showed the relationship between a degradation risk and a gain adjustment amount. 第4の実施の形態の構成を例示した図である。It is the figure which illustrated the composition of a 4th embodiment. アプリ別目標ゲインマップ作成部の構成を示している。The structure of the target gain map preparation part classified by application is shown. アプリ別目標ゲインマップの選択処理を示すフローチャートである。It is a flowchart which shows the selection process of the target gain map classified by application. 第5の実施の形態の構成を例示した図である。It is the figure which illustrated the structure of 5th Embodiment. 目標ゲインマップ作成部が表示装置に実装されている場合の構成を例示した図である。It is the figure which illustrated the structure in case the target gain map preparation part is mounted in the display apparatus. 目標ゲインマップ作成部の構成を例示した図である。It is the figure which illustrated the composition of the target gain map creation part. 第6の実施の形態における目標ゲインマップ作成部の構成を例示している。The structure of the target gain map preparation part in 6th Embodiment is illustrated.
 以下、本技術を実施するための形態について説明する。なお、説明は以下の順序で行う。
 1.表示装置について
 2.第1の実施の形態
 3.第2の実施の形態
 4.第3の実施の形態
 5.第4の実施の形態
 6.第5の実施の形態
 7.第6の実施の形態
 8.他の実施の形態
Hereinafter, embodiments for carrying out the present technology will be described. The description will be given in the following order.
1. 1. About display device 1. First embodiment 2. Second embodiment 3. Third embodiment 4. Fourth embodiment Fifth embodiment 6. Sixth embodiment Other embodiments
 <1.表示装置について>
 図1は表示装置の構成を例示している。表示装置10は、制御部11、記録部12、信号処理部20、過電流検出部61、データドライバ62、ガンマ回路63およびパネル65を含んで構成される。
<1. About display device>
FIG. 1 illustrates the configuration of the display device. The display device 10 includes a control unit 11, a recording unit 12, a signal processing unit 20, an overcurrent detection unit 61, a data driver 62, a gamma circuit 63, and a panel 65.
 信号処理部20は、エッジぼかし部21、I/F(インタフェース)部22、リニア変換部23、パターン生成部24、色温度調整部25、静止画検波部26、長期色温度補正部27、発光時間制御部28を含んで構成される。また、信号処理部20は、信号レベル補正部30、記憶部40、ムラ補正部51、ガンマ変換部52、ディザ処理部53、信号出力部54、長期色温度補正検波部55、ゲートパルス出力部56、およびガンマ回路制御部57を含んで構成される。 The signal processing unit 20 includes an edge blurring unit 21, an I / F (interface) unit 22, a linear conversion unit 23, a pattern generation unit 24, a color temperature adjustment unit 25, a still image detection unit 26, a long-term color temperature correction unit 27, and light emission. A time control unit 28 is included. The signal processing unit 20 includes a signal level correction unit 30, a storage unit 40, an unevenness correction unit 51, a gamma conversion unit 52, a dither processing unit 53, a signal output unit 54, a long-term color temperature correction detection unit 55, and a gate pulse output unit. 56 and a gamma circuit control unit 57.
 表示装置10は、映像信号の供給を受けると、その映像信号を分析して、分析した内容にしたがって、後述するパネル65の内部に配置される画素を点灯することで、パネル65を通じて画像を表示する。 When the display device 10 receives the supply of the video signal, the display device 10 analyzes the video signal, and displays an image through the panel 65 by lighting pixels arranged in the panel 65 to be described later according to the analyzed content. To do.
 制御部11は、信号処理部20の制御を行うものであり、I/F部22との間で信号の授受を行う。また、制御部11はI/F部22から受け取った信号に対して各種信号処理を行う。 The control unit 11 controls the signal processing unit 20 and exchanges signals with the I / F unit 22. In addition, the control unit 11 performs various signal processing on the signal received from the I / F unit 22.
 記録部12は、制御部11において信号処理部20を制御するための情報を格納する。記録部12としては、表示装置10の電源が切れている状態でも情報が消えずに格納することができるメモリを用いることが好ましい。記録部12として採用するメモリとして、例えば電気的に内容を書き換えることができるEEPROM(Electronically Erasable and Programmable Read Only Memory)を用いることが望ましい。EEPROMは基板に実装したままでデータの書き込みや消去を行うことができる不揮発性のメモリであり、刻一刻と変化する表示装置10の情報を格納するために好適なメモリである。 The recording unit 12 stores information for controlling the signal processing unit 20 in the control unit 11. As the recording unit 12, it is preferable to use a memory that can store information without being erased even when the display device 10 is powered off. As the memory employed as the recording unit 12, it is desirable to use, for example, an EEPROM (Electronically-Erasable-and Programmable-Read-Only-Memory) that can be electrically rewritten. The EEPROM is a non-volatile memory in which data can be written and erased while being mounted on a substrate, and is suitable for storing information of the display device 10 that changes every moment.
 信号処理部20は、映像信号を入力し、入力された映像信号に対して信号処理を施す。信号処理部20は、入力された映像信号に対する信号処理を、信号処理部20の内部の各部で行う。 The signal processing unit 20 inputs a video signal and performs signal processing on the input video signal. The signal processing unit 20 performs signal processing on the input video signal in each unit inside the signal processing unit 20.
 エッジぼかし部21は、入力された映像信号に対してエッジをぼかすための信号処理を行う。具体的には、エッジぼかし部21は、パネル65への画像の焼き付き現象を防ぐために、画像を意図的にずらす処理を行ってエッジをぼかすことで、画像の焼き付き現象を抑える。 The edge blurring unit 21 performs signal processing for blurring edges on the input video signal. Specifically, in order to prevent the image burn-in phenomenon on the panel 65, the edge blurring unit 21 suppresses the image burn-in phenomenon by performing a process of intentionally shifting the image to blur the edge.
 リニア変換部23は、入力に対する出力がガンマ特性を有する映像信号を、ガンマ特性からリニア特性を有するように変換する信号処理を行う。リニア変換部23で、入力に対する出力がリニア特性を有するように信号処理を行うことで、パネル65で表示する画像に対する様々な処理が容易になる。 The linear conversion unit 23 performs signal processing for converting a video signal whose output with respect to input has gamma characteristics so as to have linear characteristics from gamma characteristics. By performing signal processing so that the output with respect to the input has a linear characteristic in the linear conversion unit 23, various processes for the image displayed on the panel 65 are facilitated.
 パターン生成部24は、表示装置10の内部の画像処理で使用するテストバターンを生成する。表示装置10の内部の画像処理で使用するテストパターンとしては、例えばパネル65の表示検査に用いるテストパターンがある。 The pattern generation unit 24 generates a test pattern used in image processing inside the display device 10. As a test pattern used for image processing inside the display device 10, for example, there is a test pattern used for display inspection of the panel 65.
 色温度調整部25は、表示装置10のパネル65で表示する画像の色温度を調整する。図1には図示していないが、表示装置10には色温度を調整するための色温度調整手段を備えており、利用者が色温度調整手段を操作することで、画面に表示される画像の色温度を手動で調整することができる。 The color temperature adjustment unit 25 adjusts the color temperature of the image displayed on the panel 65 of the display device 10. Although not shown in FIG. 1, the display device 10 includes a color temperature adjusting unit for adjusting the color temperature, and an image displayed on the screen when the user operates the color temperature adjusting unit. The color temperature of can be adjusted manually.
 長期色温度補正部27は、有機EL素子のR(赤)、G(緑)、B(青)各色の輝度-時間特性(LT特性)が異なることによる経年変化を補正するものである。有機EL素子には、R、G、B各色のLT特性が異なるため、発光時間の経過に伴って色のバランスが崩れてくる。その色のバランスを補正するものである。 The long-term color temperature correction unit 27 corrects a secular change due to a difference in luminance-time characteristics (LT characteristics) of each color of R (red), G (green), and B (blue) of the organic EL element. Since the organic EL element has different LT characteristics for R, G, and B colors, the color balance is lost as the light emission time elapses. The color balance is corrected.
 発光時間制御部28は、画像をパネル65に表示する際のパルスのデューティ比を算出して、有機EL素子の発光時間を制御するものである。表示装置10は、パルスが発光期間を示す状態の間にパネル65内部の有機EL素子に対して電流を流すことで、有機EL素子を発光させて画像の表示を行う。 The light emission time control unit 28 calculates the duty ratio of a pulse when displaying an image on the panel 65, and controls the light emission time of the organic EL element. The display device 10 displays an image by causing the organic EL element to emit light by applying a current to the organic EL element inside the panel 65 while the pulse indicates the light emission period.
 信号レベル補正部30は、発光素子の長寿命化および表示の高視認性を実現するために映像信号の信号レベルを補正して、パネル65に表示する映像の輝度を調整する。信号レベル補正部30は、映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出して領域毎に累積することで累積劣化危険度を算出する。また、信号レベル補正部30は、領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインが画素毎に算出する。さらに、信号レベル補正部30は、補正ゲインを用いて映像信号の信号レベルを補正して、劣化危険度の高い領域では、劣化危険度の低い領域よりも輝度が低くなるように映像信号の信号レベルを調整する。信号レベル補正部30の構成および動作については後に詳述する。 The signal level correction unit 30 adjusts the luminance of the video displayed on the panel 65 by correcting the signal level of the video signal in order to realize a long life of the light emitting element and high visibility of the display. The signal level correction unit 30 calculates the cumulative risk of deterioration by calculating the risk of deterioration for each region obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulating it for each region. Further, the signal level correction unit 30 calculates the deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel. Further, the signal level correction unit 30 corrects the signal level of the video signal using the correction gain so that the luminance of the video signal is lower in the high degradation risk region than in the low degradation risk region. Adjust the level. The configuration and operation of the signal level correction unit 30 will be described in detail later.
 長期色温度補正検波部55は、長期色温度補正部27で補正するための情報を検知する。長期色温度補正検波部55で検知した情報は、I/F部22を通じて制御部11に送られ、制御部11を経由して記録部12に記録される。 The long-term color temperature correction detection unit 55 detects information for correction by the long-term color temperature correction unit 27. Information detected by the long-term color temperature correction detection unit 55 is sent to the control unit 11 through the I / F unit 22 and recorded in the recording unit 12 through the control unit 11.
 ムラ補正部51は、パネル65に表示される画像や映像のムラを補正する。ムラ補正部51において、パネル65の横筋、縦筋および画面全体の斑を、入力信号のレベルや座標位置を基準に補正を行う。 The unevenness correction unit 51 corrects unevenness of images and videos displayed on the panel 65. The unevenness correction unit 51 corrects the horizontal stripes, vertical stripes, and spots on the entire screen of the panel 65 based on the level of the input signal and the coordinate position.
 ガンマ変換部52は、リニア変換部23でリニア特性を有するように変換した映像信号に対して、ガンマ特性を有するように変換する信号処理を行う。ガンマ変換部52で行う信号処理は、パネル65が有するガンマ特性をキャンセルし、信号の電流に応じてパネル65の内部の有機EL素子が発光するようにリニア特性を有するような信号に変換する信号処理である。 The gamma conversion unit 52 performs signal processing for converting the video signal converted to have linear characteristics by the linear conversion unit 23 so as to have gamma characteristics. The signal processing performed in the gamma conversion unit 52 cancels the gamma characteristic of the panel 65 and converts the signal into a signal having linear characteristics so that the organic EL element in the panel 65 emits light according to the signal current. It is processing.
 ディザ処理部53は、ガンマ変換部52で、変換された信号に対してディザリングを施す。ディザリングは、使用可能な色数が少ない環境で中間色を表現するために、表示可能な色を組み合わせて表示することである。ディザ処理部53で、ディザリングを行うことで、本来パネル上では表示できない色を、見かけ上作り出して表現することができる。
する。
The dither processing unit 53 performs dithering on the signal converted by the gamma conversion unit 52. Dithering is to display a combination of displayable colors in order to express intermediate colors in an environment where the number of usable colors is small. By performing dithering in the dither processing unit 53, colors that cannot be originally displayed on the panel can be apparently created and expressed.
To do.
 信号出力部54は、ディザ処理部53で、ディザリングが施された後の信号をデータドライバ62に対して出力する。信号出力部54からデータドライバ62に渡される信号はR、G、B各色の発光量に関する情報が含まれた信号であり、発光時間の情報が含まれた信号はゲートパルス出力部56からパルスの形式で出力される。 The signal output unit 54 outputs the signal after the dithering is performed by the dither processing unit 53 to the data driver 62. A signal passed from the signal output unit 54 to the data driver 62 is a signal including information on the light emission amounts of the R, G, and B colors, and a signal including light emission time information is transmitted from the gate pulse output unit 56 as a pulse signal. Output in the format.
 ゲートパルス出力部56は、パネル65の発光時間を制御するパルスを出力する。ゲートパルス出力部56から出力されるパルスは、発光時間制御部28で算出したデューティ比によるパルスである。ゲートパルス出力部56からのパルスによって、パネル65での各画素の発光時間が決定される。 The gate pulse output unit 56 outputs a pulse for controlling the light emission time of the panel 65. The pulse output from the gate pulse output unit 56 is a pulse with a duty ratio calculated by the light emission time control unit 28. The light emission time of each pixel on the panel 65 is determined by the pulse from the gate pulse output unit 56.
 ガンマ回路制御部57は、ガンマ回路63に設定値を与える。ガンマ回路制御部57が与える設定値は、データドライバ62の内部に含まれるD/A変換器のラダー抵抗に与えるための基準電圧である。 The gamma circuit control unit 57 gives a set value to the gamma circuit 63. The setting value given by the gamma circuit control unit 57 is a reference voltage to be given to the ladder resistance of the D / A converter included in the data driver 62.
 記憶部40は、信号レベル補正部30で輝度を補正する際に用いる情報が記憶される。記憶部40は、例えば表示装置10の動作が開始されたときに前回の動作終了時に用いられている情報や、信号レベル補正部30の処理で用いる所定の情報を記憶する。この場合、記憶部40は、記録部12と同様に例えば電気的に内容を書き換えることができるEEPROM(Electronically Erasable and Programmable Read Only Memory)を用いることが望ましい。また、記憶部40は、例えば表示装置10の動作開始後に生成された情報のみを記憶する場合、電源が切れると内容が消去されるようなメモリ、例えばSDRAM(Synchronous Dynamic Random Access Memory)を用いることが望ましい。また、記憶部40は、EEPROMとSDRAMを用いて構成して、記憶する情報に応じてメモリを使い分けてもよい。 The storage unit 40 stores information used when the signal level correction unit 30 corrects the luminance. The storage unit 40 stores, for example, information used at the end of the previous operation when the operation of the display device 10 is started or predetermined information used in the processing of the signal level correction unit 30. In this case, it is desirable to use an EEPROM (Electronically と Erasable and Programmable Read Only Memory) that can be electrically rewritten, for example, as in the recording unit 12, similarly to the recording unit 12. The storage unit 40 uses, for example, a memory whose contents are erased when the power is turned off, for example, SDRAM (Synchronous Dynamic Random Access Memory) when storing only information generated after the operation of the display device 10 is started. Is desirable. Moreover, the memory | storage part 40 may be comprised using EEPROM and SDRAM, and may use a memory properly according to the information to memorize | store.
 過電流検出部61は、基板のショート等で過電流が生じた場合にその過電流を検出し、ゲートパルス出力部56に通知する。過電流検出部61からの過電流発生通知により、過電流が生じた場合にその過電流がパネル65に印加されるのを防ぐことができる。 The overcurrent detection unit 61 detects the overcurrent and notifies the gate pulse output unit 56 when the overcurrent occurs due to a short circuit of the substrate or the like. The overcurrent occurrence notification from the overcurrent detection unit 61 can prevent the overcurrent from being applied to the panel 65 when an overcurrent occurs.
 データドライバ62は、信号出力部54から受け取った信号に対して信号処理を行い、パネル65に対して、パネル65で画像を表示するための信号を出力する。データドライバ62には、図示しないが、D/A変換器が含まれており、D/A変換器はデジタル信号をアナログ信号に変換して出力する。 The data driver 62 performs signal processing on the signal received from the signal output unit 54, and outputs a signal for displaying an image on the panel 65 to the panel 65. Although not shown, the data driver 62 includes a D / A converter. The D / A converter converts a digital signal into an analog signal and outputs the analog signal.
 ガンマ回路63は、データドライバ62の内部に含まれるD/A変換器のラダー抵抗に基準電圧を与える。ラダー抵抗に与えるための基準電圧は、上述のようにガンマ回路制御部57で生成される。 The gamma circuit 63 gives a reference voltage to the ladder resistance of the D / A converter included in the data driver 62. The reference voltage to be applied to the ladder resistor is generated by the gamma circuit control unit 57 as described above.
 パネル65は、データドライバ62からの出力信号およびゲートパルス出力部56からの出力パルスを入力し、入力した信号およびパルスに応じて、自発光素子の一例である有機EL素子を発光させて動画像や静止画像を表示する。パネル65は、画像を表示する面の形状が平面である。有機EL素子は電圧を印加すると発光する自発光型の素子であり、その発光量は電圧に比例する。したがって、有機EL素子のIL特性(電流発光量特性)も比例関係を有することとなる。 The panel 65 receives an output signal from the data driver 62 and an output pulse from the gate pulse output unit 56, and causes an organic EL element, which is an example of a self-light-emitting element, to emit light according to the input signal and pulse. And still images. The panel 65 has a flat surface for displaying an image. An organic EL element is a self-luminous element that emits light when a voltage is applied, and the light emission amount is proportional to the voltage. Therefore, the IL characteristic (current emission amount characteristic) of the organic EL element also has a proportional relationship.
 パネル65には、図示せずも、走査周期で画素を選択する走査線、画素を駆動するための輝度情報を与えるデータ線、輝度情報に基づいて電流量を制御して電流量に応じて発光素子である有機EL素子を発光させる画素回路が、マトリクス状に配置されている。このように走査線、データ線および画素回路が構成されていることで、表示装置10は映像信号にしたがって画像を表示することができる。 Although not shown, the panel 65 has a scanning line for selecting a pixel in a scanning cycle, a data line for supplying luminance information for driving the pixel, and a current amount controlled based on the luminance information to emit light according to the current amount. Pixel circuits that emit light from the organic EL element, which is an element, are arranged in a matrix. Since the scanning lines, the data lines, and the pixel circuits are configured in this way, the display device 10 can display an image according to the video signal.
 なお、表示装置10は、リニア変換部23で、リニア特性を有するように映像信号を変換した後、変換後の映像信号をパターン生成部24に入力したが、パターン生成部24とリニア変換部23とを入れ替えた構成であってもよい。また、表示装置10の信号処理部20は、図1に示す構成に限らず、一部の機能ブロックが省略された構成であってもよく、新たな機能を有する機能ブロックが追加されている構成であってもよい。 In the display device 10, the linear conversion unit 23 converts the video signal to have linear characteristics, and then inputs the converted video signal to the pattern generation unit 24. However, the pattern generation unit 24 and the linear conversion unit 23 It may be a configuration in which and are replaced. In addition, the signal processing unit 20 of the display device 10 is not limited to the configuration illustrated in FIG. 1, and may have a configuration in which some functional blocks are omitted, and a configuration in which functional blocks having new functions are added. It may be.
 <2.第1の実施の形態>
 次に、本技術の第1の実施の形態について説明する。図2は、第1の実施の形態の構成を例示しており、本技術の映像信号処理装置が信号処理部に適用されている。
<2. First Embodiment>
Next, a first embodiment of the present technology will be described. FIG. 2 illustrates the configuration of the first embodiment, and the video signal processing device of the present technology is applied to the signal processing unit.
 第1の実施の形態において、信号処理部20における信号レベル補正部30は、輝度算出部301、発光量算出部302、ブロック危険度算出部303、ブロック危険度更新部304、エリア危険度算出部305、エリア危険度更新部306、ゲイン算出部307、乗算器390とを含んで構成される。また、記憶部40は、ブロック危険度記憶部401とエリア危険度記憶部402とを含んで構成される。なお、第1の実施の形態および後述する実施の形態における輝度算出部301乃至エリア危険度更新部306は請求項の累積劣化危険度算出部に相当し、乗算器390は補正部に相当する。 In the first embodiment, the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 307, and a multiplier 390. The storage unit 40 includes a block risk storage unit 401 and an area risk storage unit 402. Note that the luminance calculation unit 301 to the area risk level update unit 306 in the first embodiment and the later-described embodiments correspond to a cumulative deterioration risk level calculation unit, and the multiplier 390 corresponds to a correction unit.
 輝度算出部301は、リニア変換部23で変換されたリニア特性を有する映像信号から輝度を算出する。輝度算出部301は、算出した輝度を発光量算出部302とゲイン算出部307に出力する。例えば映像信号が三原色信号(R,G,B)であり、ITU-R BT.601の規定を用いた場合には、式(1)に基づき輝度Yを算出できる。 The luminance calculation unit 301 calculates the luminance from the video signal having the linear characteristic converted by the linear conversion unit 23. The luminance calculation unit 301 outputs the calculated luminance to the light emission amount calculation unit 302 and the gain calculation unit 307. For example, the video signal is a three primary color signal (R, G, B), and ITU-R BT. When the rule of 601 is used, the luminance Y can be calculated based on the formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 発光量算出部302は、輝度算出部301で算出した輝度と発光時間制御部28で算出したパルスのデューティ比に基づいて、1フレームあたりのパネル65の各画素の発光量を算出する。パネル65における有機EL素子は、電流と発光量との間にリニアな(線形な)関係を有している。したがって、発光量算出部302は、輝度算出部301で算出した輝度Yに発光時間制御部28で算出したパルスのデューティ比DRを乗じて得られる(輝度×デューティ比で得られる)値を各画素の1フレームあたりの発光量Eとする。発光量算出部302は、算出した発光量をブロック危険度算出部303に出力する。 The light emission amount calculation unit 302 calculates the light emission amount of each pixel of the panel 65 per frame based on the luminance calculated by the luminance calculation unit 301 and the duty ratio of the pulse calculated by the light emission time control unit 28. The organic EL element in the panel 65 has a linear (linear) relationship between the current and the light emission amount. Therefore, the light emission amount calculation unit 302 obtains a value obtained by multiplying the luminance Y calculated by the luminance calculation unit 301 by the duty ratio DR of the pulse calculated by the light emission time control unit 28 (obtained by luminance × duty ratio) for each pixel. Is the amount of light emission E per frame. The light emission amount calculation unit 302 outputs the calculated light emission amount to the block risk degree calculation unit 303.
 ブロック危険度算出部303は、発光量算出部302で算出した発光量に基づいて、ブロック劣化危険度を算出する。ブロック危険度算出部303は、パネル65の表示画面全体を複数のブロックに区分する。図3はブロック区分を例示しており、例えば各ブロックを等しいブロックサイズとして4×8のブロックに区分した場合を示している。なお、各ブロックのサイズやブロック数は図に示す場合に限られない。その後、ブロック危険度算出部303はブロック毎に、ブロックを構成する各画素について、画素の発光量Eから劣化危険度dgrを算出する。図4および式(2)は、発光量と劣化危険度の関係を示しており、劣化危険度dgrは画素の発光量Eに応じた値すなわち画素の発光特性の劣化に関したパラメータである。なお、図4および式(2)において、劣化危険度上限値dgr_maxと劣化危険度下限値dgr_min、劣化危険度dgr=0のときの発光量E0、係数Kd0(>0),Kd1(>0)は、パネル65の特性等に応じて予め設定されている。 The block risk calculation unit 303 calculates the block deterioration risk based on the light emission amount calculated by the light emission amount calculation unit 302. The block risk degree calculation unit 303 divides the entire display screen of the panel 65 into a plurality of blocks. FIG. 3 shows an example of block division. For example, each block is divided into 4 × 8 blocks with the same block size. Note that the size of each block and the number of blocks are not limited to those shown in the figure. Thereafter, the block risk calculation unit 303 calculates the deterioration risk dgr from the light emission amount E of each pixel constituting the block for each block. FIG. 4 and Expression (2) show the relationship between the light emission amount and the degradation risk level, and the degradation risk level dgr is a value corresponding to the light emission amount E of the pixel, that is, a parameter related to the degradation of the light emission characteristic of the pixel. In FIG. 4 and equation (2), the deterioration risk upper limit value dgr_max, the deterioration risk lower limit value dgr_min, the light emission amount E0 when the deterioration risk degree dgr = 0, the coefficients Kd0 (> 0), Kd1 (> 0) Are preset according to the characteristics of the panel 65 and the like.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ブロック危険度算出部303は、ブロックを構成する各画素について算出した劣化危険度dgrからブロック内における最大値を選択して、選択した劣化危険度dgrをブロック劣化危険度dgr_bfとする。ブロック危険度算出部303は、ブロック毎に算出したブロック劣化危険度dgr_bfをブロック危険度更新部304に出力する。 The block risk degree calculation unit 303 selects the maximum value in the block from the deterioration risk degree dgr calculated for each pixel constituting the block, and sets the selected deterioration risk degree dgr as the block deterioration risk degree dgr_bf. The block risk degree calculation unit 303 outputs the block deterioration risk degree dgr_bf calculated for each block to the block risk degree update unit 304.
 ブロック危険度更新部304は、ブロック毎に、ブロック危険度算出部303で算出されたブロック劣化危険度を用いて累積ブロック劣化危険度を更新する。累積ブロック劣化危険度は、例えばフレーム毎に算出されたブロック劣化危険度のブロック毎の累積値である。累積ブロック劣化危険度は、所定タイミング例えば表示装置10の動作開始、日毎の最初の動作開始、表示装置10の入手後の最初の動作開始等からのブロック劣化危険度の累積値である。 The block risk update unit 304 updates the cumulative block deterioration risk using the block deterioration risk calculated by the block risk calculation unit 303 for each block. The cumulative block deterioration risk is, for example, a cumulative value for each block of the block deterioration risk calculated for each frame. The cumulative block deterioration risk is a cumulative value of the block deterioration risk from a predetermined timing, for example, the operation start of the display device 10, the first operation start every day, the first operation start after the display device 10 is obtained, and the like.
 図5は、ブロック危険度更新部で行われる処理を説明するための図である。ブロック危険度更新部304は、ブロック危険度算出部303で算出された現フレームのブロック劣化危険度dgr_bfを既に算出されている累積ブロック劣化危険度dgr_bに加算して、累積ブロック劣化危険度dgr_bを更新する。すなわち、ブロック危険度更新部304は、式(3)の演算を行い累積ブロック劣化危険度dgr_bを更新する。なお、dgr_b_maxは予め設定した最大累積ブロック劣化危険度である。また、式(3)および後述する式におけるCLIP()は、式(4)に示す処理である。 FIG. 5 is a diagram for explaining processing performed by the block risk update unit. The block risk update unit 304 adds the block deterioration risk dgr_bf of the current frame calculated by the block risk calculation unit 303 to the already calculated cumulative block deterioration risk dgr_b, and adds the cumulative block deterioration risk dgr_b. Update. That is, the block risk update unit 304 updates the cumulative block deterioration risk dgr_b by performing the calculation of Expression (3). Note that dgr_b_max is a preset maximum cumulative block deterioration risk. Further, CLIP () in Expression (3) and Expressions described later is processing shown in Expression (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ブロック危険度更新部304は、ブロック単位で、例えば記憶部40のブロック危険度記憶部401に記憶されている累積ブロック劣化危険度dgr_bと現フレームのブロック劣化危険度dgr_bfを加算する。ブロック危険度更新部304は、加算結果を新たな累積ブロック劣化危険度dgr_bとする。また、ブロック危険度更新部304は、更新後の累積ブロック劣化危険度dgr_bと次のフレームのブロック劣化危険度dgr_bfを加算して新たな累積ブロック劣化危険度dgr_bとする。このような累積ブロック劣化危険度の更新をブロック単位で例えばフレーム毎または所定のフレーム間隔毎等に行い、更新後の累積ブロック劣化危険度dgr_bをエリア危険度算出部305とブロック危険度更新部304とブロック危険度記憶部401に出力する。なお、ブロック危険度更新部304は、次の動作開始時に前回の動作終了時から継続して累積ブロック劣化危険度の更新を行うことができるように、動作終了時にブロック危険度記憶部401に記憶されている累積ブロック劣化危険度の更新を行うようにしてもよい。 The block risk update unit 304 adds, for example, the cumulative block deterioration risk dgr_b stored in the block risk storage unit 401 of the storage unit 40 and the block deterioration risk dgr_bf of the current frame in units of blocks. The block risk update unit 304 sets the addition result as a new cumulative block deterioration risk dgr_b. Also, the block risk update unit 304 adds the updated cumulative block deterioration risk dgr_b and the block deterioration risk dgr_bf of the next frame to obtain a new cumulative block deterioration risk dgr_b. Such update of the accumulated block deterioration risk is performed in units of blocks, for example, every frame or every predetermined frame interval, and the updated accumulated block deterioration risk dgr_b is updated to the area risk calculation unit 305 and the block risk update unit 304. And output to the block risk storage unit 401. The block risk update unit 304 stores the accumulated block deterioration risk in the block risk storage unit 401 at the end of the operation so that the cumulative block deterioration risk can be continuously updated from the end of the previous operation at the start of the next operation. The accumulated block deterioration risk degree may be updated.
 ここで、ブロック危険度算出部303における係数Kd0,Kd1は、累積ブロック劣化危険度の増減に影響するパラメータである。すなわち係数Kd0が大きいと、係数Kd0が小さい場合に比べて、累積ブロック劣化危険度が速く減少する。係数Kd1が小さいと、係数Kd1が大きい場合に比べて、累積ブロック劣化危険度が緩やかに増加する。したがって、係数Kd0,Kd1によって累積ブロック劣化危険度の変化を調整することが可能となる。 Here, the coefficients Kd0 and Kd1 in the block risk calculation unit 303 are parameters that affect the increase or decrease in the cumulative block deterioration risk. That is, when the coefficient Kd0 is large, the cumulative block deterioration risk is reduced more quickly than when the coefficient Kd0 is small. When the coefficient Kd1 is small, the cumulative block deterioration risk increases gradually as compared with the case where the coefficient Kd1 is large. Therefore, it is possible to adjust the change in the cumulative block deterioration risk by the coefficients Kd0 and Kd1.
 エリア危険度算出部305は、表示画面全体を複数のエリアに区分する。また各エリアは1または複数のブロックで構成する。図6はエリア区分を例示しており、例えば4×8のブロックを3×3のエリアに区分した場合を示している。エリア危険度算出部305は、パネル65に表示されるコンテンツ等を考慮してエリア区分を行う。例えばメニュー表示等のように所定の画像が所定の位置に表示される領域と、撮像画像やコンテンツ画像、各種情報等が表示される領域を分けるようにエリア区分を行う。 The area risk level calculation unit 305 divides the entire display screen into a plurality of areas. Each area is composed of one or a plurality of blocks. FIG. 6 exemplifies area division, and shows, for example, a case where a 4 × 8 block is divided into 3 × 3 areas. The area risk level calculation unit 305 performs area classification in consideration of the content displayed on the panel 65 and the like. For example, area division is performed so that a region where a predetermined image is displayed at a predetermined position, such as a menu display, and a region where a captured image, a content image, various information, and the like are displayed are divided.
 エリア危険度算出部305は、エリアを構成するブロックで算出されている累積ブロック劣化危険度dgr_bからエリア内における最大値を選択して、選択した累積ブロック劣化危険度をエリア劣化危険度dgr_afとする。エリア危険度算出部305は、エリア毎に算出したエリア劣化危険度dgr_afをエリア危険度更新部306に出力する。 The area risk level calculation unit 305 selects the maximum value in the area from the cumulative block deterioration risk level dgr_b calculated for the blocks constituting the area, and sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af. . The area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
 エリア危険度更新部306は、エリア毎に、エリア危険度算出部305で算出されたエリア劣化危険度を用いて累積エリア劣化危険度を更新する。累積エリア劣化危険度は、例えばフレーム毎に算出されたエリア劣化危険度のエリア毎の累積値である。また、累積エリア劣化危険度は、ブロック劣化危険度と等しい所定タイミングからの累積値である。 The area risk update unit 306 updates the accumulated area deterioration risk for each area using the area deterioration risk calculated by the area risk calculation unit 305. The cumulative area deterioration risk is, for example, a cumulative value for each area of the area deterioration risk calculated for each frame. The cumulative area deterioration risk is a cumulative value from a predetermined timing equal to the block deterioration risk.
 また、累積エリア劣化危険度の更新では、累積エリア劣化危険度の更新について時間安定化を図るため、現フレームのエリア劣化危険度dgr_afと既に算出されている累積エリア劣化危険度dgr_aの割合を調整して加算する。図7は、エリア危険度更新部で行われる処理を説明するための図である。係数Kt(0≦Kt<1)は時間安定化を図るための係数であり、予め所定値にまたは所定値から変更可能に設定されている。エリア危険度更新部306は、エリア危険度算出部305で算出された現フレームのエリア劣化危険度dgr_afに係数(1-Kt)、既に算出されている累積エリア劣化危険度dgr_aに係数Ktを乗算する。さらに、エリア危険度更新部306は、係数(1-Kt)を乗算したエリア劣化危険度dgr_afを、係数Ktを乗算した累積エリア劣化危険度dgr_aに加算して、既に算出されている累積エリア劣化危険度dgr_aを更新する。すなわち、エリア危険度更新部306は、式(5)の演算を行い累積エリア劣化危険度dgr_aを更新する。なお、式(5)の演算はIIRフィルタに相当する。なお、係数Ktが大きくなると累積エリア劣化危険度のフレーム間の変化が少なくなり時間安定性が高くなる。 In addition, in the update of the cumulative area deterioration risk, in order to stabilize the time for the update of the cumulative area deterioration risk, the ratio between the area deterioration risk dgr_af of the current frame and the already calculated cumulative area deterioration risk dgr_a is adjusted. And add. FIG. 7 is a diagram for explaining processing performed in the area risk update unit. The coefficient Kt (0 ≦ Kt <1) is a coefficient for stabilizing the time, and is set in advance to be changeable to or from a predetermined value. The area risk update unit 306 multiplies the area deterioration risk dgr_af of the current frame calculated by the area risk calculation unit 305 by a coefficient (1-Kt) and the already calculated cumulative area deterioration risk dgr_a by a coefficient Kt. To do. Further, the area risk update unit 306 adds the area deterioration risk dgr_af multiplied by the coefficient (1−Kt) to the cumulative area deterioration risk dgr_a multiplied by the coefficient Kt, and has already calculated the accumulated area deterioration. The risk level dgr_a is updated. That is, the area risk update unit 306 performs the calculation of Expression (5) and updates the accumulated area deterioration risk dgr_a. Note that the calculation of Expression (5) corresponds to an IIR filter. Note that when the coefficient Kt increases, the change in the cumulative area deterioration risk between frames decreases, and the time stability increases.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 エリア危険度更新部306は、エリア単位で、例えば記憶部40のエリア危険度記憶部402に記憶された累積エリア劣化危険度dgr_aと現フレームのエリア劣化危険度dgr_afと係数Ktを用いて、新たな累積エリア劣化危険度dgr_aを算出する。また、エリア危険度更新部306は、更新後の累積エリア劣化危険度dgr_aと次のフレームのエリア劣化危険度dgr_afと係数Ktを用いて新たな累積エリア劣化危険度dgr_aを算出する。このような累積エリア劣化危険度の更新をエリア単位で例えばフレーム毎または所定のフレーム間隔毎等に行い、更新後の累積エリア劣化危険度dgr_aをゲイン算出部307とエリア危険度記憶部402に出力する。なお、エリア危険度更新部306は、次の動作開始時に前回の動作終了時から継続して累積エリア劣化危険度の更新を行うことができるように、動作終了時にエリア危険度記憶部402に記憶されている累積エリア劣化危険度の更新を行うようにしてもよい。また、累積劣化危険度の更新のフレーム間隔を長くすることで時間安定性が高くなる。 The area risk update unit 306 uses the cumulative area deterioration risk dgr_a, the area deterioration risk dgr_af of the current frame, and the coefficient Kt, for example, for each area, for example, stored in the area risk storage unit 402 of the storage unit 40. A cumulative area deterioration risk dgr_a is calculated. The area risk update unit 306 calculates a new accumulated area deterioration risk dgr_a using the updated accumulated area deterioration risk dgr_a, the area deterioration risk dgr_af of the next frame, and the coefficient Kt. Such update of the accumulated area degradation risk is performed in units of areas, for example, every frame or every predetermined frame interval, and the updated accumulated area degradation risk dgr_a is output to the gain calculation unit 307 and the area risk storage unit 402. To do. The area risk level update unit 306 stores the accumulated area deterioration risk level in the area risk level storage unit 402 at the end of the operation so that the cumulative area deterioration risk level can be continuously updated from the end of the previous operation at the start of the next operation. The accumulated area deterioration risk may be updated. In addition, the time stability is improved by increasing the frame interval for updating the cumulative deterioration risk.
 ゲイン算出部307は、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度dgr_aに基づき、乗算器390で映像信号の信号レベルを補正するための補正ゲインを算出する。また、ゲイン算出部307は、算出した補正ゲインで輝度制御を行った場合にエリアの境界が目立たなくなるように、累積エリア劣化危険度のブレンドを行い、ブレンド後の劣化危険度に基づいて補正ゲインを画素毎に算出する。 The gain calculation unit 307 corrects the signal level of the video signal by the multiplier 390 based on the luminance output from the luminance calculation unit 301 and the accumulated area deterioration risk dgr_a output from the area risk update unit 306. Calculate the correction gain. Further, the gain calculation unit 307 performs blending of the cumulative area deterioration risk so that the boundary of the area becomes inconspicuous when brightness control is performed with the calculated correction gain, and the correction gain is based on the deterioration risk after blending. Is calculated for each pixel.
 図8は、エリア内における画素毎の劣化危険度の算出方法を説明するための図である。なお、図8では、エリアAR0内の画素pの劣化危険度dgr_pを算出する場合を示している。 FIG. 8 is a diagram for explaining a method of calculating the deterioration risk for each pixel in the area. FIG. 8 shows a case where the deterioration risk dgr_p of the pixel p in the area AR0 is calculated.
 ゲイン算出部307は、隣接するエリアとの境界からの距離に応じてブレンド比Krを決定する。図9は、隣接するエリアとの境界からの距離とブレンド比の関係を例示している。なお、図9はx方向に隣接するエリアAR1との境界からの距離とブレンド比の関係を例示している。 The gain calculation unit 307 determines the blend ratio Kr according to the distance from the boundary with the adjacent area. FIG. 9 illustrates the relationship between the distance from the boundary with the adjacent area and the blend ratio. FIG. 9 illustrates the relationship between the distance from the boundary with the area AR1 adjacent in the x direction and the blend ratio.
 ゲイン算出部307は、図9に示すように、F1方向に隣接するエリアAR1との境界からの距離が「0」である場合、ブレンド比は「0.5」とする。また、距離「ThD_f1」でブレンド比を「1」とする。距離「ThD_f1」は、パネル65の表示サイズや表示画素数等に基づき、ブレンド処理範囲等が目立たないように予め設定されている。 As shown in FIG. 9, the gain calculation unit 307 sets the blend ratio to “0.5” when the distance from the boundary with the area AR1 adjacent in the F1 direction is “0”. Further, the blend ratio is set to “1” at the distance “ThD_f1”. The distance “ThD_f1” is set in advance based on the display size of the panel 65, the number of display pixels, and the like so that the blend processing range is not conspicuous.
 ここで、画素PがF1方向に隣接するエリアAR1との境界から距離Lf1である場合はブレンド比Krf1となる。ゲイン算出部307は、F1方向と同様に、F2方向に隣接するエリアAR2との境界からの距離Lf2に基づきブレンド比Krf2、およびF3方向に隣接するエリアAR3との境界からの距離Lf3に基づきブレンド比Krf3を決定する。なお、境界から距離「ThD_f1」までのブレンド比の変化は図9に示すように一次関数である場合に限らず他の特性で変化させてもよい。 Here, when the pixel P is a distance Lf1 from the boundary with the area AR1 adjacent in the F1 direction, the blend ratio Krf1 is obtained. Similarly to the F1 direction, the gain calculation unit 307 blends based on the blend ratio Krf2 based on the distance Lf2 from the boundary with the area AR2 adjacent in the F2 direction and based on the distance Lf3 from the boundary with the area AR3 adjacent in the F3 direction. The ratio Krf3 is determined. Note that the change in the blend ratio from the boundary to the distance “ThD_f1” is not limited to a linear function as shown in FIG. 9, but may be changed with other characteristics.
 次に、ゲイン算出部307は、隣接するエリアの累積エリア劣化危険度と画素Pを含むエリアの累積エリア劣化危険度および決定したブレンド比に基づき画素Pに対応する劣化危険度を算出する。式(6)は、F1方向に隣接するエリアAR1の累積エリア劣化危険度dgr_a1と画素Pを含むエリアAR0の累積エリア劣化危険度dgr_a0およびブレンド比Krf1に基づき画素Pに対応する劣化危険度を算出する式である。式(7)は、F2方向に隣接するエリアAR2の累積エリア劣化危険度dgr_a2と画素Pを含むエリアAR0の累積エリア劣化危険度dgr_a0およびブレンド比Krf2に基づき画素Pに対応する劣化危険度を算出する式である。式(8)は、F3方向に隣接するエリアAR3の累積エリア劣化危険度dgr_a3と画素Pを含むエリアAR0の累積エリア劣化危険度dgr_a0およびブレンド比Krf3に基づき画素Pに対応する劣化危険度を算出する式である。 Next, the gain calculation unit 307 calculates the deterioration risk corresponding to the pixel P based on the cumulative area deterioration risk of the adjacent area, the cumulative area deterioration risk of the area including the pixel P, and the determined blend ratio. Equation (6) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a1 of the area AR1 adjacent in the F1 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf1. It is an expression to do. Expression (7) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a2 of the area AR2 adjacent in the F2 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf2. It is an expression to do. Equation (8) calculates the degradation risk corresponding to the pixel P based on the cumulative area degradation risk dgr_a3 of the area AR3 adjacent in the F3 direction, the cumulative area degradation risk dgr_a0 of the area AR0 including the pixel P, and the blend ratio Krf3. It is an expression to do.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 さらに、ゲイン算出部307は、隣接するエリアとの位置関係に基づきそれぞれ算出した劣化危険度dgr_p1,dgr_p2,dgr_p3において、最も高い劣化危険度を式(9)に示すように画素Pの劣化危険度dgr_pとする。なお、劣化危険度dgr_bは、式(3)から明らかなように「0」以上であるから劣化危険度dgr_aも「0」以上になるので、画素Pの劣化危険度dgr_pも「0」以上となる。 Further, the gain calculation unit 307 has the highest risk of deterioration of the pixel P in the deterioration risks dgr_p1, dgr_p2, and dgr_p3 calculated based on the positional relationship with the adjacent areas, as shown in Expression (9). Let dgr_p. Since the degradation risk dgr_b is “0” or more as apparent from the equation (3), the degradation risk dgr_a is also “0” or more, so the degradation risk dgr_p of the pixel P is also “0” or more. Become.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ゲイン算出部307は、画素毎に算出した劣化危険度dgr_pに応じて、式(10)に基づきゲイン調整量gainCを算出する。なお、図10は、劣化危険度とゲイン調整量の関係を示した図である。また、ゲイン最大値gain_max、閾値ThDgr0,ThDgr1は、パネル65の特性等に応じて予め設定されている。 The gain calculation unit 307 calculates the gain adjustment amount gainC based on the equation (10) in accordance with the degradation risk dgr_p calculated for each pixel. FIG. 10 is a diagram showing the relationship between the deterioration risk and the gain adjustment amount. The maximum gain value gain_max and the threshold values ThDgr0 and ThDgr1 are set in advance according to the characteristics of the panel 65 and the like.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 次に、ゲイン算出部307は、算出したゲイン調整量gainCに応じて、式(11)に基づき補正ゲインgain_pを算出する。なお、図11は、入力輝度と補正ゲインの関係を示した図である。また、閾値ThYはパネル65の特性等に応じて予め設定されている。 Next, the gain calculation unit 307 calculates a correction gain gain_p based on the equation (11) according to the calculated gain adjustment amount gainC. FIG. 11 is a diagram illustrating the relationship between the input luminance and the correction gain. The threshold value ThY is preset according to the characteristics of the panel 65 and the like.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ゲイン算出部307は、画素pの輝度に応じた補正ゲインgain_pを乗算器390に出力する。また、ゲイン算出部307は、他の画素についても同様な処理を行い、各画素の輝度に応じた補正ゲインを乗算器390に出力する。 The gain calculation unit 307 outputs a correction gain gain_p corresponding to the luminance of the pixel p to the multiplier 390. The gain calculation unit 307 performs the same process for other pixels, and outputs a correction gain corresponding to the luminance of each pixel to the multiplier 390.
 乗算器390は、映像信号にゲイン算出部307で算出した補正ゲインを乗算して、映像信号の信号レベルを補正して出力する。ここで、入力輝度に応じて算出される劣化危険度に基づき図10に示すようにゲイン調整量が算出されて、入力輝度に応じて図11に示すように補正ゲインが算出される。したがって、入力輝度と出力輝度の関係を例示した図12のように、入力輝度Yinが閾値ThYを超えると出力輝度Youtは、入力輝度Yinのレベルに応じて入力輝度Yinよりも低下される。 The multiplier 390 multiplies the video signal by the correction gain calculated by the gain calculation unit 307, corrects the signal level of the video signal, and outputs the corrected signal level. Here, the gain adjustment amount is calculated as shown in FIG. 10 based on the degree of deterioration risk calculated according to the input luminance, and the correction gain is calculated as shown in FIG. 11 according to the input luminance. Therefore, as shown in FIG. 12 illustrating the relationship between the input luminance and the output luminance, when the input luminance Yin exceeds the threshold value ThY, the output luminance Yout is lower than the input luminance Yin according to the level of the input luminance Yin.
 図13は、第1の実施の形態の動作を示したフローチャートである。ステップST1で信号レベル補正部30は、発光量を算出する。信号レベル補正部30は、入力された映像信号の輝度とデューティ比を乗算することで発光量を算出してステップST2に進む。 FIG. 13 is a flowchart showing the operation of the first embodiment. In step ST1, the signal level correction unit 30 calculates the light emission amount. The signal level correction unit 30 calculates the light emission amount by multiplying the luminance of the input video signal and the duty ratio, and proceeds to step ST2.
 ステップST2で信号レベル補正部30は、ブロック劣化危険度を算出する。信号レベル補正部30は、パネル65の表示画面全体を複数のブロックに区分して、ブロック単位で、画素の焼き付きの劣化危険度を発光量に基づいて算出する処理を行う。図14は、ブロック劣化危険度の算出処理を示したフローチャートである。 In step ST2, the signal level correction unit 30 calculates the risk of block deterioration. The signal level correction unit 30 divides the entire display screen of the panel 65 into a plurality of blocks, and performs a process of calculating the pixel burn-in deterioration risk based on the light emission amount in units of blocks. FIG. 14 is a flowchart showing a block deterioration risk degree calculation process.
 ステップST11で信号レベル補正部30は画素を選択する。信号レベル補正部30は、ブロック劣化危険度を算出するため画素を選択してステップST12に進む。 In step ST11, the signal level correction unit 30 selects a pixel. The signal level correction unit 30 selects a pixel to calculate the block deterioration risk and proceeds to step ST12.
 ステップST12で信号レベル補正部30は、画素が属するブロック番号を算出する。信号レベル補正部30は、ステップST11で選択した画素の画素位置に基づき、当該画素が属するブロックの番号を算出してステップST13に進む。 In step ST12, the signal level correction unit 30 calculates the block number to which the pixel belongs. Based on the pixel position of the pixel selected in step ST11, the signal level correction unit 30 calculates the block number to which the pixel belongs, and proceeds to step ST13.
 ステップST13で信号レベル補正部30は画素の発光量から劣化危険度を算出する。信号レベル補正部30は、上述の式(2)の演算を行い、選択した画素の劣化危険度を発光量に基づいて算出してステップST14に進む。 In step ST13, the signal level correction unit 30 calculates the deterioration risk from the light emission amount of the pixel. The signal level correction unit 30 performs the calculation of the above equation (2), calculates the deterioration risk of the selected pixel based on the light emission amount, and proceeds to step ST14.
 ステップST14で信号レベル補正部30は、当該ブロックの最大劣化危険度であるか判別する。信号レベル補正部30は、選択した画素が属するブロック番号のブロックにおいて、ステップST13で算出した劣化危険度が最大劣化危険度であるか判別する。信号レベル補正部30は、ステップST13で算出した劣化危険度が最大劣化危険度となる場合はステップST15に進み、最大劣化危険度でない場合すなわち最大劣化危険度よりもち小さい場合はステップST16に進む。 In step ST14, the signal level correction unit 30 determines whether or not the maximum deterioration risk level of the block. The signal level correction unit 30 determines whether the deterioration risk calculated in step ST13 is the maximum deterioration risk in the block having the block number to which the selected pixel belongs. The signal level correction unit 30 proceeds to step ST15 when the degradation risk calculated in step ST13 is the maximum degradation risk, and proceeds to step ST16 when it is not the maximum degradation risk, that is, when it is smaller than the maximum degradation risk.
 ステップST15で信号レベル補正部30は、当該ブロックの最大劣化危険度を更新する。信号レベル補正部30は、当該ブロックの最大劣化危険度をステップST13で算出した劣化危険度としてステップST16に進む。 In step ST15, the signal level correction unit 30 updates the maximum deterioration risk of the block. The signal level correction unit 30 proceeds to step ST16 with the maximum risk of deterioration of the block as the risk of deterioration calculated in step ST13.
 ステップST16で信号レベル補正部30は、全画素を選択したか判別する。信号レベル補正部30は、画面内の全画素の選択が完了していない場合はステップST11に戻り、選択されていない画素から新たに画素を選択して上述の処理を行う。また、信号レベル補正部30は、画面内の全画素の選択が完了した場合は劣化危険度算出処理を終了する。 In step ST16, the signal level correction unit 30 determines whether all the pixels have been selected. If the selection of all the pixels in the screen has not been completed, the signal level correction unit 30 returns to step ST11, selects a new pixel from the unselected pixels, and performs the above-described processing. Moreover, the signal level correction | amendment part 30 complete | finishes a degradation risk degree calculation process, when selection of all the pixels in a screen is completed.
 図13に戻り、ステップST2でブロック劣化危険度の算出を行いステップST3に進むと、信号レベル補正部30は、累積ブロック劣化危険度を更新する。図15は累積ブロック劣化危険度の更新処理を示したフローチャートである。 Returning to FIG. 13, when the block deterioration risk is calculated in step ST2 and the process proceeds to step ST3, the signal level correction unit 30 updates the accumulated block deterioration risk. FIG. 15 is a flowchart showing the cumulative block deterioration risk update process.
 ステップST21で信号レベル補正部30はブロックを選択する。信号レベル補正部30は、劣化危険度を更新するブロックを選択してステップST22に進む。 In step ST21, the signal level correction unit 30 selects a block. The signal level correction unit 30 selects a block whose degradation risk is to be updated, and proceeds to step ST22.
 ステップST22で信号レベル補正部30は、累積ブロック劣化危険度を取得する。信号レベル補正部30は、例えば記憶部40のブロック危険度記憶部401から、ステップST21で選択したブロックに対応する累積ブロック劣化危険度を読み出してステップST23に進む。 In step ST22, the signal level correction unit 30 acquires the cumulative block deterioration risk. For example, the signal level correction unit 30 reads the cumulative block deterioration risk corresponding to the block selected in step ST21 from the block risk storage unit 401 of the storage unit 40, and proceeds to step ST23.
 ステップST23で信号レベル補正部30は、現フレームのブロック劣化危険度を取得する。信号レベル補正部30は、ステップST21で選択されたブロックに対する現フレームで算出したブロック劣化危険度を取得してステップST24に進む。 In step ST23, the signal level correction unit 30 acquires the block deterioration risk level of the current frame. The signal level correction unit 30 acquires the block deterioration risk calculated in the current frame for the block selected in step ST21, and proceeds to step ST24.
 ステップST24で信号レベル補正部30は、累積ブロック劣化危険度を更新する。信号レベル補正部30は、ステップST22で取得した累積ブロック劣化危険度にステップST23で取得した現フレームのブロック劣化危険度を加算することで、累積ブロック劣化危険度を更新してステップST25に進む。 In step ST24, the signal level correction unit 30 updates the cumulative block deterioration risk. The signal level correction unit 30 adds the block deterioration risk of the current frame acquired in step ST23 to the cumulative block deterioration risk acquired in step ST22, thereby updating the cumulative block deterioration risk and proceeds to step ST25.
 ステップST25で信号レベル補正部30は、更新後の累積ブロック劣化危険度を保存する。信号レベル補正部30は、ステップST24で得られた更新後の累積ブロック劣化危険度を例えば記憶部40のブロック危険度記憶部401に記憶させることで、既に記憶されている累積ブロック劣化危険度を更新してステップST26に進む。 In step ST25, the signal level correction unit 30 stores the updated cumulative block deterioration risk. The signal level correction unit 30 stores the updated cumulative block deterioration risk obtained in step ST24 in the block risk storage unit 401 of the storage unit 40, for example, so that the stored cumulative block deterioration risk is stored. Update and proceed to step ST26.
 ステップST26で信号レベル補正部30は、全ブロックを選択したか判別する。信号レベル補正部30は、画面内の全ブロックの選択が完了していない場合はステップST21に戻り、選択されていないブロックから新たにブロックを選択して上述の処理を行う。また、信号レベル補正部30は、画面内の全ブロックの選択が完了した場合は累積ブロック劣化危険度の更新処理を終了する。 In step ST26, the signal level correction unit 30 determines whether all blocks have been selected. If the selection of all the blocks in the screen has not been completed, the signal level correction unit 30 returns to step ST21, selects a new block from the unselected blocks, and performs the above-described processing. In addition, when the selection of all the blocks in the screen is completed, the signal level correcting unit 30 ends the cumulative block deterioration risk update process.
 図13に戻り、ステップST3で累積ブロック劣化危険度の更新を行いステップST4に進むと、信号レベル補正部30は、エリア劣化危険度を算出する。信号レベル補正部30は、パネル65の表示画面全体の1または複数のブロックからなるエリアに区分して、エリア単位で、エリア劣化危険度をブロック劣化危険度に基づいて算出する処理を行う。図16はエリア劣化危険度の算出処理を示したフローチャートである。 Returning to FIG. 13, when the cumulative block deterioration risk is updated in step ST3 and the process proceeds to step ST4, the signal level correction unit 30 calculates the area deterioration risk. The signal level correction unit 30 performs a process of dividing the entire display screen of the panel 65 into areas composed of one or a plurality of blocks and calculating the area deterioration risk based on the block deterioration risk for each area. FIG. 16 is a flowchart showing the area deterioration risk calculation processing.
 ステップST31で信号レベル補正部30はブロックを選択する。信号レベル補正部30は、エリア劣化危険度を算出するためブロックを選択してステップST32に進む。 In step ST31, the signal level correction unit 30 selects a block. The signal level correction unit 30 selects a block to calculate the area deterioration risk and proceeds to step ST32.
 ステップST32で信号レベル補正部30は、ブロックが属するエリア番号を算出する。信号レベル補正部30は、ステップST31で選択したブロックのブロック位置に基づき、当該ブロックが属するエリアの番号を算出してステップST33に進む。 In step ST32, the signal level correction unit 30 calculates the area number to which the block belongs. Based on the block position of the block selected in step ST31, the signal level correction unit 30 calculates the number of the area to which the block belongs, and proceeds to step ST33.
 ステップST33で信号レベル補正部30は累積ブロック劣化危険度を取得する。信号レベル補正部30は、ステップST31で選択されたブロックに対する更新後の累積ブロック劣化危険度を取得してステップST34に進む。 In step ST33, the signal level correction unit 30 acquires the cumulative block deterioration risk. The signal level correction unit 30 acquires the updated cumulative block deterioration risk for the block selected in step ST31, and proceeds to step ST34.
 ステップST34で信号レベル補正部30は、当該エリアの最大劣化危険度であるか判別する。信号レベル補正部30は、選択したブロックが属するエリア番号のエリアにおいて、ステップST33で取得した累積ブロック劣化危険度が最大劣化危険度となるか判別する。信号レベル補正部30は、ステップST33で取得した累積ブロック劣化危険度が最大劣化危険度となる場合はステップST35に進み、最大劣化危険度でない場合すなわちは最大劣化危険度よりも小さい場合ステップST36に進む。 In step ST34, the signal level correction unit 30 determines whether or not the maximum degradation risk level of the area. The signal level correction unit 30 determines whether or not the cumulative block deterioration risk acquired in step ST33 is the maximum deterioration risk in the area of the area number to which the selected block belongs. The signal level correction unit 30 proceeds to step ST35 when the cumulative block deterioration risk acquired in step ST33 is the maximum deterioration risk, and proceeds to step ST36 when it is not the maximum deterioration risk, that is, when it is smaller than the maximum deterioration risk. move on.
 ステップST35で信号レベル補正部30は、当該エリアの最大劣化危険度を更新する。信号レベル補正部30は、当該エリアの最大劣化危険度をステップST33で取得した累積ブロック劣化危険度としてステップST36に進む。 In step ST35, the signal level correction unit 30 updates the maximum deterioration risk of the area. The signal level correction unit 30 proceeds to step ST36 with the maximum risk of deterioration of the area as the cumulative block deterioration risk acquired in step ST33.
 ステップST36で信号レベル補正部30は、全ブロックを選択したか判別する。信号レベル補正部30は、画面内の全ブロックの選択が完了していない場合はステップST31に戻り、選択されていないブロックから新たにブロックを選択して上述の処理を行う。また、信号レベル補正部30は、画面内の全ブロックの選択が完了した場合はエリア劣化危険度算出処理を終了する。 In step ST36, the signal level correction unit 30 determines whether all blocks have been selected. If the selection of all blocks in the screen has not been completed, the signal level correction unit 30 returns to step ST31, selects a new block from the unselected blocks, and performs the above-described processing. Moreover, the signal level correction | amendment part 30 complete | finishes an area degradation risk degree calculation process, when selection of all the blocks in a screen is completed.
 図13に戻り、ステップST4でエリア劣化危険度の算出を行いステップST5に進むと、信号レベル補正部30は、累積エリア劣化危険度を更新する。信号レベル補正部30は、図15の累積ブロック劣化危険度の更新処理と同様な処理をエリア毎に行い、累積エリア劣化危険度を更新してステップST6に進む。 Returning to FIG. 13, when the area deterioration risk is calculated in step ST4 and the process proceeds to step ST5, the signal level correction unit 30 updates the accumulated area deterioration risk. The signal level correction unit 30 performs a process similar to the process for updating the cumulative block deterioration risk in FIG. 15 for each area, updates the cumulative area deterioration risk, and proceeds to step ST6.
 ステップST6で信号レベル補正部30は、画素毎の劣化危険度を算出する。信号レベル補正部30は、式(5)乃至(8)の演算を行い、エリア毎の更新エリア劣化危険度から画素毎に劣化危険度を算出してステップST7に進む。 In step ST6, the signal level correction unit 30 calculates the deterioration risk for each pixel. The signal level correction unit 30 performs the calculations of Expressions (5) to (8), calculates the deterioration risk for each pixel from the updated area deterioration risk for each area, and proceeds to step ST7.
 ステップST7で信号レベル補正部30は、画素毎に補正ゲインを算出する。信号レベル補正部30は、画素毎に算出した劣化危険度に応じて、補正ゲインを画素毎に算出する。図17は、補正ゲインの算出処理を示すフローチャートである。 In step ST7, the signal level correction unit 30 calculates a correction gain for each pixel. The signal level correction unit 30 calculates a correction gain for each pixel according to the deterioration risk calculated for each pixel. FIG. 17 is a flowchart showing a correction gain calculation process.
 ステップST41で信号レベル補正部30は画素を選択する。信号レベル補正部30は、補正ゲインを算出する画素を選択してステップST42に進む。 In step ST41, the signal level correction unit 30 selects a pixel. The signal level correction unit 30 selects a pixel for calculating the correction gain, and proceeds to step ST42.
 ステップST42で信号レベル補正部30は画素劣化危険度を取得する。信号レベル補正部30は、ステップST6で算出した画素毎の劣化危険度からステップST41で選択した画素に対する劣化危険度を画素劣化危険度として取得してステップST43に進む。 In step ST42, the signal level correction unit 30 acquires the pixel deterioration risk level. The signal level correction unit 30 acquires the deterioration risk for the pixel selected in step ST41 from the deterioration risk for each pixel calculated in step ST6, and proceeds to step ST43.
 ステップST43で信号レベル補正部30はゲイン調整量を算出する。信号レベル補正部30は、上述した式(9)の演算を行い、画素劣化危険度に応じたゲイン調整量を算出してステップST44に進む。 In step ST43, the signal level correction unit 30 calculates a gain adjustment amount. The signal level correction unit 30 calculates the above-described equation (9), calculates the gain adjustment amount according to the pixel deterioration risk level, and proceeds to step ST44.
 ステップST44で信号レベル補正部30は補正ゲインを算出する。信号レベル補正部30は、上述した式(11)の演算を行い、ステップST41で選択した画素の輝度に応じた補正ゲインを算出してステップST45に進む。 In step ST44, the signal level correction unit 30 calculates a correction gain. The signal level correction unit 30 calculates the above-described equation (11), calculates a correction gain according to the luminance of the pixel selected in step ST41, and proceeds to step ST45.
 ステップST45で信号レベル補正部30は、全画素を選択したか判別する。信号レベル補正部30は、画面内の全画素の選択が完了していない場合はステップST41に戻り、選択されていない画素から新たに画素を選択してゲインを決定する処理を行う。また、信号レベル補正部30は、画面内の全画素の選択が完了した場合は補正ゲイン算出処理を終了する。 In step ST45, the signal level correction unit 30 determines whether all the pixels have been selected. If the selection of all the pixels in the screen has not been completed, the signal level correction unit 30 returns to step ST41 and performs a process of newly selecting a pixel from the unselected pixels and determining the gain. Moreover, the signal level correction | amendment part 30 complete | finishes a correction gain calculation process, when selection of all the pixels in a screen is completed.
 図13に戻り、ステップST7で補正ゲインの算出を行いステップST8に進むと、信号レベル補正部30は映像信号の信号レベルを補正する。信号レベル補正部30は、算出した補正ゲインで映像信号の信号レベルを画素毎に補正する。 Returning to FIG. 13, when the correction gain is calculated in step ST7 and the process proceeds to step ST8, the signal level correction unit 30 corrects the signal level of the video signal. The signal level correction unit 30 corrects the signal level of the video signal for each pixel with the calculated correction gain.
 このような第1の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて算出された各画素の劣化危険度と画素毎の輝度に応じて補正ゲインが算出される。このため、劣化度合いの大きい画素を含まない領域は、劣化度合いの大きい画素を含む領域に比べて劣化危険度が少なく、劣化度合いの大きい画素を含まない領域の画素が劣化度合いの大きい画素を含む領域の画素と同様に輝度が低下されることがない。したがって、高視認性を実現できる。また、劣化危険度に応じて輝度制御が行われて、例えば劣化度合いが大きい画素に対しては発光量を少なくして劣化が抑制されるので、発光素子の長寿命化を実現できる。 According to the first embodiment, the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region. A correction gain is calculated according to the calculated deterioration risk of each pixel and the luminance for each pixel. For this reason, a region not including a pixel having a high degree of deterioration has a lower risk of deterioration than a region including a pixel having a high degree of deterioration, and a pixel in a region not including a pixel having a high degree of deterioration includes a pixel having a high degree of deterioration. As in the case of the pixels in the area, the luminance is not lowered. Therefore, high visibility can be realized. In addition, luminance control is performed according to the degree of deterioration risk, and for example, for a pixel with a large degree of deterioration, the amount of light emission is reduced to suppress deterioration, so that the life of the light emitting element can be extended.
 また、エリアは1または複数のブロックで構成されており、エリア内のブロックについて算出された累積ブロック劣化危険度を用いてエリア劣化危険度の算出が行われる。したがって、例えばエリアが広い場合でもブロックサイズの表示範囲毎の劣化危険度に応じてエリア劣化危険度を算出できる。 The area is composed of one or a plurality of blocks, and the area deterioration risk is calculated using the cumulative block deterioration risk calculated for the blocks in the area. Therefore, for example, even when the area is large, the area deterioration risk can be calculated according to the deterioration risk for each display range of the block size.
 <3.第2の実施の形態>
 次に、本技術の第2の実施の形態について説明する。近年、広く用いられるようになったスマートフォンやタブレット等の携帯通信端末では、使用用途に応じた画面構成が類似している。例えば、携帯通信端末では、図18に示すようにステータス状態等が表示される表示領域と、種々の情報やコンテンツの表示が行われる表示領域が区分けされている。そこで、第2の実施の形態では、ユーザがどのような用途の表示画面を表示装置10でどの程度の割合で利用しているかに応じて輝度制御を行うことで、発光素子の長寿命化および表示の高視認性を実現する場合について説明する。
<3. Second Embodiment>
Next, a second embodiment of the present technology will be described. In recent years, mobile communication terminals such as smartphones and tablets that have been widely used have similar screen configurations according to usage. For example, in a mobile communication terminal, as shown in FIG. 18, a display area in which a status state is displayed and a display area in which various information and contents are displayed are divided. Therefore, in the second embodiment, the luminance control is performed in accordance with the proportion of usage of the display screen used by the user on the display device 10, thereby extending the lifetime of the light emitting element. A case where high visibility of display is realized will be described.
 図19は、本技術の第2の実施の形態の構成を例示している。第2の実施の形態において、信号処理部20における信号レベル補正部30は、輝度算出部301、発光量算出部302、ブロック危険度算出部303、ブロック危険度更新部304、エリア危険度算出部305、エリア危険度更新部306、ゲイン算出部308、乗算器390とを含んで構成される。また、記憶部40は、ブロック危険度記憶部401、エリア危険度記憶部402および目標ゲインマップ記憶部403とを含んで構成される。 FIG. 19 illustrates the configuration of the second embodiment of the present technology. In the second embodiment, the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 308, and a multiplier 390. The storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and a target gain map storage unit 403.
 輝度算出部301は、リニア変換部23で変換されたリニア特性を有する映像信号から輝度Yを算出して、算出した輝度Yを発光量算出部302とゲイン算出部308に出力する。 The luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
 発光量算出部302は、輝度算出部301で算出した輝度Yと発光時間制御部28で算出したパルスのデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Eを算出する。発光量算出部302は、算出した発光量Eをブロック危険度算出部303に出力する。 The light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. . The light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
 ブロック危険度算出部303は、表示画面全体を複数のブロックに区分して、発光量算出部302で算出した発光量に基づきブロックを構成する画素毎に劣化危険度を算出する。また、ブロック危険度算出部303は、ブロック内の各画素の劣化危険度から最大値を選択して、選択した劣化危険度をブロック劣化危険度としてブロック危険度更新部304に出力する。 The block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
 ブロック危険度更新部304は、ブロック毎に、ブロック危険度算出部303で算出されたブロック劣化危険度を用いて累積ブロック劣化危険度を更新して、更新後の累積ブロック危険度をエリア危険度算出部305に出力する。また、ブロック危険度更新部304は、更新後の累積ブロック劣化危険度を記憶部40のブロック危険度記憶部401に記憶させて、ブロック劣化危険度が算出される毎に累積ブロック危険度を更新できるようにする。 The block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305. The block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
 エリア危険度算出部305は、表示画面全体を1または複数のブロックからなるエリアに区分して、エリアを構成するブロックで算出されている累積ブロック劣化危険度dgr_bからエリア内における最大値を選択する。エリア危険度算出部305は、選択した累積ブロック劣化危険度をエリア劣化危険度dgr_afとする。エリア危険度算出部305は、エリア毎に算出したエリア劣化危険度dgr_afをエリア危険度更新部306に出力する。 The area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. . The area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af. The area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
 エリア危険度更新部306は、エリア毎に、エリア危険度算出部305で算出されたエリア劣化危険度を用いて累積エリア劣化危険度を更新して、更新後の累積エリア危険度をゲイン算出部308に出力する。また、エリア危険度更新部306は、更新後の累積エリア劣化危険度を記憶部40のエリア危険度記憶部402に記憶させて、エリア劣化危険度が算出される毎に累積エリア危険度を更新できるようにする。 The area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
 ゲイン算出部308は、乗算器390で映像信号の信号レベルを補正するための補正ゲインを算出する。ゲイン算出部308は、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度dgr_aおよび記憶部40の目標ゲインマップ記憶部403に記憶された目標ゲインマップに基づき、補正ゲインを算出する。 The gain calculation unit 308 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390. The gain calculation unit 308 includes the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk update unit 306, and the target gain stored in the target gain map storage unit 403 of the storage unit 40. A correction gain is calculated based on the map.
 乗算器390は、映像信号にゲイン算出部308で算出した補正ゲインを乗算することにより、映像信号の信号レベルを補正して出力する。 The multiplier 390 corrects and outputs the signal level of the video signal by multiplying the video signal by the correction gain calculated by the gain calculation unit 308.
 記憶部40の目標ゲインマップ記憶部403に記憶された目標ゲインマップは、目標ゲインマップ作成部70で作成する。目標ゲインマップ作成部70は、目標ゲインマップを予めオフライン処理で作成する。なお、目標ゲインマップ作成部70は、表示装置10の例えば信号処理部20に設けられていてもよく、表示装置10と別個に設けられた構成としてもよい。 The target gain map stored in the target gain map storage unit 403 of the storage unit 40 is created by the target gain map creation unit 70. The target gain map creating unit 70 creates a target gain map in advance by offline processing. The target gain map creation unit 70 may be provided in, for example, the signal processing unit 20 of the display device 10 or may be configured separately from the display device 10.
 図20は目標ゲインマップ作成部の構成を例示している。目標ゲインマップ作成部70は、ユーザプロファイル記憶部701、サンプル画像DB(データベース)702、計算用画像DB(データベース)作成部703、計算用画像DB(データベース)704を備えている。また、目標ゲインマップ作成部70は、画像選択部761、輝度算出部762、発光量算出部764、累積発光量更新部765、累積発光量記憶部766、発光素子劣化特性記憶部767、目標ゲイン算出部768、目標ゲイン統合部769を備えている。なお、ユーザプロファイル記憶部701乃至目標ゲイン算出部768は、請求項の目標ゲイン算出処理部に相当する。 FIG. 20 illustrates the configuration of the target gain map creation unit. The target gain map creation unit 70 includes a user profile storage unit 701, a sample image DB (database) 702, a calculation image DB (database) creation unit 703, and a calculation image DB (database) 704. The target gain map creation unit 70 includes an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a light emitting element deterioration characteristic storage unit 767, a target gain. A calculation unit 768 and a target gain integration unit 769 are provided. Note that the user profile storage unit 701 to the target gain calculation unit 768 correspond to a target gain calculation processing unit in the claims.
 ユーザプロファイル記憶部701には、表示装置でどのような用途の画像表示がどのような割合で行われているかを示す情報が記憶されている。図21は、表示装置がスマートフォンに用いられている場合のユーザプロファイルを例示している。なお、図21では、所定期間(例えば1日の期間)において、電話表示(Call)の割合が20パーセント、電子メール表示(Email)の割合が20モード、ブラウザー表示(Browsing)の割合が20パーセント、音楽再生表示(Music)の割合が10パーセント等であることを示している。 The user profile storage unit 701 stores information indicating what kind of application image display is being performed at what rate on the display device. FIG. 21 illustrates a user profile when the display device is used in a smartphone. In FIG. 21, in a predetermined period (for example, a period of one day), the ratio of telephone display (Call) is 20%, the ratio of e-mail display (Email) is 20 modes, and the ratio of browser display (Browsing) is 20%. The ratio of the music playback display (Music) is 10% or the like.
 サンプル画像DB702には、ユーザプロファイルの用途、例えば電話表示や電子メール表示、ブラウザー表示、音楽再生表示等の種々のサンプル画像が用途毎に分類されて数多く記憶されている。なお、表示装置では上述のようにリニア変換部23でリニア特性に変換された映像信号に対して信号レベル補正部で補正が行われていることから、リニア特性のサンプル画像がサンプル画像DB702に記憶される。 The sample image DB 702 stores a large number of various sample images classified by use, such as user profile uses such as telephone display, e-mail display, browser display, and music playback display. In the display device, since the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the linear characteristic sample image is stored in the sample image DB 702. Is done.
 計算用画像DB作成部703は、ユーザプロファイル記憶部701に記憶されているユーザプロファイルに基づき、サンプル画像DB702からユーザプロファイルで示された用途毎に、ユーザプロファイルにおける用途の割合でサンプル画像を選択する。 Based on the user profile stored in the user profile storage unit 701, the calculation image DB creation unit 703 selects a sample image for each usage indicated by the user profile from the sample image DB 702 at a usage ratio in the user profile. .
 計算用画像DB704は、ユーザプロファイルに基づいて選択されたサンプル画像を記憶する。 The calculation image DB 704 stores sample images selected based on the user profile.
 画像選択部761は、計算用画像DB704に記憶されている画像をランダムに選択して輝度算出部762に出力する。 The image selection unit 761 randomly selects an image stored in the calculation image DB 704 and outputs the image to the luminance calculation unit 762.
 輝度算出部762は、画像選択部761で選択された画像の映像信号から輝度算出部301と同様にして輝度Yを算出して、算出した輝度Yを発光量算出部764に出力する。 The luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
 発光量算出部764は、輝度算出部762で算出した輝度Yとパネル駆動のデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Emit_fを算出する。発光量算出部764は、算出した発光量Emit_fを累積発光量更新部765に出力する。 The light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR. The light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
 累積発光量更新部765は、画素毎に、累積発光量記憶部766に記憶されている累積発光量Emitに、係数Ktmと発光量算出部764で算出された発光量Emit_fとの乗算結果を加算して目標ゲイン算出部768へ出力する。また、累積発光量更新部765は、加算結果で累積発光量記憶部766の累積発光量Emitを更新する。式(12)は、累積発光量更新部765で行う処理を示している。なお、式(12)において、係数Ktm(>0)は単位時間のパラメータである。例えば、係数Ktmは、所定フレーム分のシミュレーションを行う際に所定フレーム分のサンプル画像の用意が困難な場合、所定フレーム分より少ないサンプル画像を用いたシミュレーション結果を所定フレーム分のシミュレーション結果とするパラメータである。 The cumulative light emission amount update unit 765 adds the multiplication result of the coefficient Ktm and the light emission amount Emit_f calculated by the light emission amount calculation unit 764 to the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766 for each pixel. And output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result. Expression (12) indicates processing performed by the cumulative light emission amount update unit 765. In Equation (12), the coefficient Ktm (> 0) is a unit time parameter. For example, the coefficient Ktm is a parameter for setting a simulation result using fewer sample images than a predetermined frame as a simulation result for a predetermined frame when it is difficult to prepare a sample image for a predetermined frame when performing a simulation for a predetermined frame. It is.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、累積発光量更新部765は、加算後の発光量を更新後の累積発光量Emitとして、累積発光量記憶部766に記憶する。 Further, the cumulative light emission amount update unit 765 stores the light emission amount after addition in the cumulative light emission amount storage unit 766 as the updated cumulative light emission amount Emit.
 発光素子劣化特性記憶部767には、パネル65の劣化特性に関する情報が記憶されている。図22は、累積発光量と輝度低下量の関係を例示しており、累積発光量の増加に伴い輝度低下量が増加している。また、パネル65において許容可能な最大輝度低下量(許容最大輝度低下量)となる累積発光量を目標累積発光量Emit_targetとする。 In the light emitting element deterioration characteristic storage unit 767, information regarding the deterioration characteristic of the panel 65 is stored. FIG. 22 illustrates the relationship between the accumulated light emission amount and the luminance decrease amount, and the luminance decrease amount increases as the cumulative light emission amount increases. In addition, the cumulative light emission amount that becomes the maximum allowable luminance decrease amount (allowable maximum luminance decrease amount) in the panel 65 is set as a target cumulative light emission amount Emit_target.
 目標ゲイン算出部768は、画素毎に、累積発光量更新部765で更新された累積発光量Emitが目標累積発光量Emit_targetを超えないように、式(13)に基づき目標ゲインgain_t0を算出する。ここで、累積発光量Emitが目標累積発光量Emit_target以下である場合、目標ゲインgain_t0は「1」となる。また、累積発光量Emitが目標累積発光量Emit_targetを超える場合、目標ゲインgain_t0は、累積発光量Emitが目標累積発光量Emit_targetよりも大きくなるに伴い小さい値となる。すなわち、ユーザの利用状況において輝度が高くなる頻度が多い画素では目標ゲインgain_t0が小さくなり、輝度が低くなる頻度が多い画素では目標ゲインgain_t0が「1」となる。 The target gain calculation unit 768 calculates the target gain gain_t0 based on Expression (13) so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target for each pixel. Here, when the cumulative light emission amount Emit is equal to or less than the target cumulative light emission amount Emit_target, the target gain gain_t0 is “1”. When the cumulative light emission amount Emit exceeds the target cumulative light emission amount Emit_target, the target gain gain_t0 becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target. In other words, the target gain gain_t0 is small for pixels where the luminance is frequently increased in the usage state of the user, and the target gain gain_t0 is “1” for pixels where the frequency is often low.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 目標ゲイン統合部769は、画素毎に得られた目標ゲインを統合する。目標ゲイン統合部769は、例えば上述のエリア危険度更新部306で累積エリア劣化危険度を算出したエリア単位で目標ゲインの統合を行い、エリア内における最小の目標ゲインを、このエリアの目標ゲインgain_taとする。さらに、目標ゲイン統合部769は、エリア毎に目標ゲインgain_taを算出して、表示画面全体の各エリアの目標ゲインgain_taを示す目標ゲインマップを作成する。また、目標ゲイン統合部769は、上述のブロック危険度更新部304で劣化危険度を算出したブロック単位で目標ゲインの統合を行い、表示画面全体の各ブロックの目標ゲインを示す目標ゲインマップを作成してもよい。このように、目標ゲインの統合を行えば目標ゲインマップのデータ量を少なくできる。また、目標ゲイン統合部769は、表示画面全体の画素毎に各画素の目標ゲインを示した目標ゲインマップを作成してもよい。目標ゲイン統合部769は、作成した目標ゲインマップを記憶部40の目標ゲインマップ記憶部403に記憶させる。 The target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire display screen. In addition, the target gain integration unit 769 integrates the target gain in units of blocks for which the risk of deterioration has been calculated by the block risk update unit 304 described above, and creates a target gain map indicating the target gain of each block on the entire display screen. May be. Thus, if the target gains are integrated, the data amount of the target gain map can be reduced. The target gain integration unit 769 may create a target gain map indicating the target gain of each pixel for each pixel of the entire display screen. The target gain integration unit 769 stores the created target gain map in the target gain map storage unit 403 of the storage unit 40.
 図19に示すゲイン算出部308は、乗算器390で映像信号の信号レベルを補正するためのゲイン調整量gainCを算出する。ゲイン算出部308は、画素毎に、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度dgr_aおよび記憶部40の目標ゲインマップ記憶部403に記憶された目標ゲインマップに基づき、ゲイン調整量gainCを算出する。 The gain calculation unit 308 shown in FIG. 19 calculates a gain adjustment amount gainC for correcting the signal level of the video signal by the multiplier 390. The gain calculation unit 308 stores, for each pixel, the luminance output from the luminance calculation unit 301, the accumulated area deterioration risk dgr_a output from the area risk update unit 306, and the target gain map storage unit 403 of the storage unit 40. A gain adjustment amount gainC is calculated based on the target gain map.
 ゲイン算出部308は、第1の実施の形態におけるゲイン算出部307の最大ゲインgain_maxを、目標ゲインマップにおける対応する画素位置の目標ゲインgain_tを用いて算出した最大ゲイン(1-gain_t)に置き換える。また、ゲイン算出部308は、目標ゲインgain_tを用いて算出した最大ゲインgain_max=(1-gain_t)を用いてゲイン調整量gainCを算出する。すなわち、ゲイン算出部308は、目標ゲインgain_tに基づき発光素子の劣化を生じやすい領域の画素で輝度の下げ幅が大きくなるようにゲイン調整量を算出する。なお、図23は、劣化危険度とゲイン調整量の関係を示した図である。 The gain calculation unit 308 replaces the maximum gain gain_max of the gain calculation unit 307 in the first embodiment with the maximum gain (1-gain_t) calculated using the target gain gain_t of the corresponding pixel position in the target gain map. Also, the gain calculation unit 308 calculates the gain adjustment amount gainC using the maximum gain gain_max = (1−gain_t) calculated using the target gain gain_t. That is, the gain calculation unit 308 calculates the gain adjustment amount based on the target gain gain_t so that the decrease in luminance is large in the pixels in the region where the light emitting element is likely to deteriorate. FIG. 23 is a diagram showing the relationship between the deterioration risk and the gain adjustment amount.
 また、ゲイン算出部308は、ゲイン算出部307と同様に、算出したゲイン調整量gainCに基づいて補正ゲイン特性を算出する。さらに、ゲイン算出部308は、補正ゲイン特性に基づき画素pの輝度に応じて得られた補正ゲインgain_pを乗算器390に出力する。また、ゲイン算出部308は、他の画素についても同様な処理を行い、各画素の輝度に応じた補正ゲインを乗算器390に出力する。乗算器390は、映像信号にゲイン算出部308で算出した補正ゲインを乗算して出力する。 Also, the gain calculation unit 308 calculates a correction gain characteristic based on the calculated gain adjustment amount gainC, similarly to the gain calculation unit 307. Furthermore, the gain calculation unit 308 outputs the correction gain gain_p obtained according to the luminance of the pixel p based on the correction gain characteristic to the multiplier 390. The gain calculation unit 308 performs the same process on other pixels and outputs a correction gain corresponding to the luminance of each pixel to the multiplier 390. Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 308 and outputs the result.
 ここで、累積発光量Emitが目標累積発光量Emit_targetを超える場合、目標ゲインgain_tは、累積発光量Emitが目標累積発光量Emit_targetよりも大きくなるに伴い小さい値となる。したがって、累積発光量Emitが目標累積発光量Emit_targetよりも大きくなるに伴い、最大ゲイン(1-gain_t)は「1」に近づくことから、累積発光量Emitが目標累積発光量Emit_target以下である場合よりも補正ゲインの最小値を小さくできる。すなわち、輝度低下を大きくして累積発光量を少なくすることが可能となるので、累積発光量が目標累積発光量以下となるように輝度制御を行うことができる。また、累積発光量Emitが目標累積発光量Emit_target以下である場合、目標ゲインgain_tは「1」となることから、ゲイン調整量gainCは「0」となる。すなわち、累積発光量Emitが目標累積発光量Emit_targetに達していない画素に対して輝度を低下させる制御が行われることを防止できる。 Here, when the cumulative light emission amount Emit exceeds the target cumulative light emission amount Emit_target, the target gain gain_t becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target. Accordingly, as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target, the maximum gain (1-gain_t) approaches “1”, so that the cumulative light emission amount Emit is less than or equal to the target cumulative light emission amount Emit_target. Also, the minimum value of the correction gain can be reduced. That is, since it is possible to increase the decrease in luminance and reduce the accumulated light emission amount, it is possible to perform luminance control so that the accumulated light emission amount is equal to or less than the target accumulated light emission amount. Further, when the cumulative light emission amount Emit is equal to or less than the target cumulative light emission amount Emit_target, the target gain gain_t is “1”, and thus the gain adjustment amount gainC is “0”. That is, it is possible to prevent the luminance from being reduced for pixels whose cumulative light emission amount Emit has not reached the target cumulative light emission amount Emit_target.
 第2の実施の形態では、第1の実施の形態と同様に図13に示すフローチャートの動作を行う。また、第2の実施の形態では、ステップST5における画素毎の補正ゲインの算出において、目標ゲインマップを用いて補正ゲインを算出する。 In the second embodiment, the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment. In the second embodiment, in the calculation of the correction gain for each pixel in step ST5, the correction gain is calculated using the target gain map.
 図24は、目標ゲインマップの作成動作を示すフローチャートである。ステップST51で目標ゲインマップ作成部70は、計算用画像DB(データベース)を作成する。目標ゲインマップ作成部70は、ユーザが表示装置でどのような用途の画像表示をどのような割合で行っているかを示すユーザプロファイルに基づき、ユーザプロファイルで示された用途毎に、用途の割合に応じてサンプル画像を選択する。目標ゲインマップ作成部70は、選択したサンプル画像からなる計算用画像DBを作成してステップST52に進む。 FIG. 24 is a flowchart showing a target gain map creation operation. In step ST51, the target gain map creation unit 70 creates a calculation image DB (database). The target gain map creation unit 70 sets the usage ratio for each usage indicated by the user profile based on the user profile indicating what usage the image display is performed by the user on the display device. Select a sample image accordingly. The target gain map creation unit 70 creates a calculation image DB made up of the selected sample images, and proceeds to step ST52.
 ステップST52で目標ゲインマップ作成部70は、画像の選択を行う。目標ゲインマップ作成部70は、計算用画像DBからランダムに画像を選択してステップST53に進む。 In step ST52, the target gain map creation unit 70 selects an image. The target gain map creation unit 70 selects an image at random from the calculation image DB, and proceeds to step ST53.
 ステップST53で目標ゲインマップ作成部70は、発光量を算出する。目標ゲインマップ作成部70は、画素毎に、選択した画像の輝度とデューティ比に基づき発光量を算出してステップST54に進む。 In step ST53, the target gain map creation unit 70 calculates the light emission amount. The target gain map creation unit 70 calculates the light emission amount for each pixel based on the luminance and duty ratio of the selected image, and proceeds to step ST54.
 ステップST54で目標ゲインマップ作成部70は、累積発光量を算出する。目標ゲインマップ作成部70は、選択した画像から算出した発光量を、画像の選択毎に累積して、累積発光量を算出してステップST55に進む。 In step ST54, the target gain map creating unit 70 calculates the accumulated light emission amount. The target gain map creation unit 70 accumulates the light emission amount calculated from the selected image every time the image is selected, calculates the accumulated light emission amount, and proceeds to step ST55.
 ステップST55で目標ゲインマップ作成部70は、既定数画像分の蓄積終了であるか判別する。目標ゲインマップ作成部70は、発光量の蓄積が既定数の画像分に達していない場合はステップST52に戻り、既定数の画像分に達した場合はステップST56に進む。 In step ST55, the target gain map creation unit 70 determines whether or not the accumulation for a predetermined number of images has been completed. The target gain map creation unit 70 returns to step ST52 when the accumulated amount of light emission has not reached the predetermined number of images, and proceeds to step ST56 when the predetermined number of images has been reached.
 ステップST56で目標ゲインマップ作成部70は、全画素の目標ゲインを算出する。目標ゲインマップ作成部70は、画素毎に、累積発光量が目標累積発光量を超えないように目標ゲインを算出してステップST57に進む。 In step ST56, the target gain map creating unit 70 calculates target gains for all pixels. The target gain map creating unit 70 calculates the target gain so that the cumulative light emission amount does not exceed the target cumulative light emission amount for each pixel, and the process proceeds to step ST57.
 ステップST57で目標ゲインマップ作成部70は、目標ゲインマップを作成する。目標ゲインマップ作成部70は、画素毎に算出した目標ゲインを用いて、画素位置毎に目標ゲインを示した目標ゲインマップを作成して処理を終了する。 In step ST57, the target gain map creating unit 70 creates a target gain map. The target gain map creating unit 70 creates a target gain map indicating the target gain for each pixel position using the target gain calculated for each pixel, and ends the process.
 このような第2の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて画素毎の劣化危険度が算出される。また、ユーザがどのような用途の表示画面を表示装置10でどの程度の割合で利用しているかに応じて目標ゲインマップが作成されて、画素毎の劣化危険度と画素毎の輝度および目標ゲインマップのゲインに応じて補正ゲインが算出される。このため、第1の実施の形態と同様に、発光素子の長寿命化および表示の高視認性を実現できる。さらに、第2の実施の形態では、ユーザの利用状況に応じて補正ゲインが算出されることから、発光素子の長寿命化および表示の高視認性の実現をユーザの利用状況に応じて最適に行うことができる。 According to the second embodiment as described above, the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region. A deterioration risk for each pixel is calculated. In addition, a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain. A correction gain is calculated according to the gain of the map. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Furthermore, in the second embodiment, since the correction gain is calculated according to the usage situation of the user, the extension of the life of the light emitting element and the realization of the high visibility of the display are optimized according to the usage situation of the user. It can be carried out.
 <4.第3の実施の形態>
 次に、本技術の第3の実施の形態について説明する。第3の実施の形態では、信号処理部を図19に示す第2の実施の形態と同様に構成する。また、第3の実施の形態では、ユーザがどのような用途の表示画面を表示装置10でどの程度の割合で利用しているかに応じて輝度低下速度調整を行う場合について説明する。
<4. Third Embodiment>
Next, a third embodiment of the present technology will be described. In the third embodiment, the signal processing unit is configured similarly to the second embodiment shown in FIG. Further, in the third embodiment, a case will be described in which the luminance reduction speed adjustment is performed according to what ratio the display screen of the user uses on the display device 10 at what rate.
 信号処理部20のゲイン算出部308は、乗算器390で映像信号の信号レベルを補正するためのゲイン調整量gainCを算出する。ゲイン算出部308は、画素毎に、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度dgr_aおよび目標ゲインマップ記憶部403の目標ゲインマップに基づき、ゲイン調整量gainCを算出する。 The gain calculation unit 308 of the signal processing unit 20 calculates a gain adjustment amount gainC for correcting the signal level of the video signal by the multiplier 390. The gain calculation unit 308 is, for each pixel, based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk level update unit 306, and the target gain map in the target gain map storage unit 403. The gain adjustment amount gainC is calculated.
 図25は、劣化危険度とゲイン調整量の関係を示した図である。ゲイン算出部308は、式(14)(15)に基づいて閾値ThDgr0c,ThDrg1cを設定する。なお、係数gm0はゲイン調整が開始される劣化危険度の値を調整するパラメータであり、係数gm1はゲイン調整量が最大となる劣化危険度の値を調整するパラメータである。また、係数gm0,gm1は、閾値ThDgr0cがThDrg1cよりも大きくならないように式(16)の関係に設定する。 FIG. 25 shows the relationship between the risk of deterioration and the amount of gain adjustment. The gain calculation unit 308 sets thresholds ThDgr0c and ThDrg1c based on equations (14) and (15). The coefficient gm0 is a parameter that adjusts the value of the deterioration risk at which gain adjustment is started, and the coefficient gm1 is a parameter that adjusts the value of the deterioration risk that maximizes the gain adjustment amount. Further, the coefficients gm0 and gm1 are set in the relationship of Expression (16) so that the threshold ThDgr0c does not become larger than ThDrg1c.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、累積発光量Emitが目標累積発光量Emit_targetを超える場合、目標ゲインgain_tは、累積発光量Emitが目標累積発光量Emit_targetよりも大きくなるに伴い小さい値となる。したがって、閾値ThDgr0c,ThDrg1cが閾値ThDgr0,ThDrg1よりも小さくなるので、劣化危険度が小さくとも輝度制御が行われるようになる。また、係数gm0,gm1を調整することで、劣化危険度と輝度の調整量の関係を所望の特性とすることも可能となる。例えば、ゲイン算出部308は、係数gm0,gm1や閾値ThDgr0,ThDrg1を調整して、目標ゲインに基づき発光素子の劣化が少ない領域から画素の輝度を下げるようにゲイン調整量gainCの算出を行うことや、目標ゲインに基づき発光素子の劣化を生じやすい領域の画素で輝度を速く下げるようにゲイン調整量gainCを算出することができる。 Here, when the cumulative light emission amount Emit exceeds the target cumulative light emission amount Emit_target, the target gain gain_t becomes a smaller value as the cumulative light emission amount Emit becomes larger than the target cumulative light emission amount Emit_target. Therefore, since the threshold values ThDgr0c and ThDrg1c are smaller than the threshold values ThDgr0 and ThDrg1, the luminance control is performed even if the deterioration risk is small. Further, by adjusting the coefficients gm0 and gm1, the relationship between the degree of risk of deterioration and the amount of adjustment of luminance can be set to a desired characteristic. For example, the gain calculation unit 308 adjusts the coefficients gm0 and gm1 and the threshold values ThDgr0 and ThDrg1, and calculates the gain adjustment amount gainC so as to reduce the luminance of the pixel from the region where the deterioration of the light emitting element is small based on the target gain. Alternatively, the gain adjustment amount gainC can be calculated so that the luminance is quickly reduced in a pixel in a region where the light emitting element is likely to deteriorate based on the target gain.
 このような第3の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて画素毎の劣化危険度が算出される。また、ユーザがどのような用途の表示画面を表示装置10でどの程度の割合で利用しているかに応じて目標ゲインマップが作成されて、画素毎の劣化危険度と画素毎の輝度および目標ゲインマップのゲインに応じて補正ゲインが算出される。さらに、劣化危険度に応じたゲイン調整量がユーザの利用状況等に応じて算出される。このため、第1の実施の形態と同様に、発光素子の長寿命化および表示の高視認性を実現できる。また、第2の実施の形態と同様に、ユーザの利用状況に応じて補正ゲインが算出されることから、発光素子の長寿命化および表示の高視認性の実現をユーザの利用状況に応じて最適に行うことができる。さらに、第3の実施の形態では、劣化危険度に応じたゲイン調整量をユーザの利用状況等に応じて算出できることから、発光素子の長寿命化および表示の高視認性の実現をユーザの利用状況に応じてさらに最適に行うことができる。 According to the third embodiment, the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region. A deterioration risk for each pixel is calculated. In addition, a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain. A correction gain is calculated according to the gain of the map. Furthermore, a gain adjustment amount corresponding to the degree of deterioration risk is calculated according to the usage status of the user. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Further, as in the second embodiment, since the correction gain is calculated according to the usage situation of the user, the lifetime of the light emitting element and the realization of the high visibility of the display are realized according to the usage situation of the user. Can be done optimally. Furthermore, in the third embodiment, since the gain adjustment amount according to the degree of deterioration risk can be calculated according to the usage situation of the user and the like, the life of the light emitting element and the realization of high visibility of the display can be realized by the user. It can be performed more optimally depending on the situation.
 <5.第4の実施の形態>
 次に、本技術の第4の実施の形態について説明する。第4の実施の形態では、表示装置で画像を表示するアプリケーションに応じて補正ゲインを算出する場合について説明する。図26は、本技術の第4の実施の形態の構成を例示している。
<5. Fourth Embodiment>
Next, a fourth embodiment of the present technology will be described. In the fourth embodiment, a case where a correction gain is calculated according to an application that displays an image on a display device will be described. FIG. 26 illustrates the configuration of the fourth embodiment of the present technology.
 第4の実施の形態において、信号処理部20における信号レベル補正部30は、輝度算出部301、発光量算出部302、ブロック危険度算出部303、ブロック危険度更新部304、エリア危険度算出部305、エリア危険度更新部306、ゲイン算出部309、乗算器390とを含んで構成される。また、記憶部40は、ブロック危険度記憶部401、エリア危険度記憶部402およびアプリ目標ゲインマップ記憶部404とを含んで構成される。 In the fourth embodiment, the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 309, and a multiplier 390. The storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and an application target gain map storage unit 404.
 輝度算出部301は、リニア変換部23で変換されたリニア特性を有する映像信号から輝度Yを算出して、算出した輝度Yを発光量算出部302とゲイン算出部308に出力する。 The luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
 発光量算出部302は、輝度算出部301で算出した輝度Yと発光時間制御部28で算出したパルスのデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Eを算出する。発光量算出部302は、算出した発光量Eをブロック危険度算出部303に出力する。 The light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. . The light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
 ブロック危険度算出部303は、表示画面全体を複数のブロックに区分して、発光量算出部302で算出した発光量に基づきブロックを構成する画素毎に劣化危険度を算出する。また、ブロック危険度算出部303は、ブロック内の各画素の劣化危険度から最大値を選択して、選択した劣化危険度をブロック劣化危険度としてブロック危険度更新部304に出力する。 The block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
 ブロック危険度更新部304は、ブロック毎に、ブロック危険度算出部303で算出されたブロック劣化危険度を用いて累積ブロック劣化危険度を更新して、更新後の累積ブロック危険度をエリア危険度算出部305に出力する。また、ブロック危険度更新部304は、更新後の累積ブロック劣化危険度を記憶部40のブロック危険度記憶部401に記憶させて、ブロック劣化危険度が算出される毎に累積ブロック危険度を更新できるようにする。 The block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305. The block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
 エリア危険度算出部305は、表示画面全体を1または複数のブロックからなるエリアに区分して、エリアを構成するブロックで算出されている累積ブロック劣化危険度dgr_bからエリア内における最大値を選択する。エリア危険度算出部305は、選択した累積ブロック劣化危険度をエリア劣化危険度dgr_afとする。エリア危険度算出部305は、エリア毎に算出したエリア劣化危険度dgr_afをエリア危険度更新部306に出力する。 The area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. . The area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af. The area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
 エリア危険度更新部306は、エリア毎に、エリア危険度算出部305で算出されたエリア劣化危険度を用いて累積エリア劣化危険度を更新して、更新後の累積エリア危険度をゲイン算出部308に出力する。また、エリア危険度更新部306は、更新後の累積エリア劣化危険度を記憶部40のエリア危険度記憶部402に記憶させて、エリア劣化危険度が算出される毎に累積エリア危険度を更新できるようにする。 The area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
 ゲイン算出部308は、乗算器390で映像信号の信号レベルを補正するための補正ゲインを算出する。ゲイン算出部308は、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度dgr_aおよびアプリ目標ゲインマップ記憶部404のアプリ目標ゲインマップに基づき、補正ゲインを算出する。 The gain calculation unit 308 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390. The gain calculation unit 308 performs correction based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk dgr_a output from the area risk update unit 306, and the application target gain map in the application target gain map storage unit 404. Calculate the gain.
 乗算器390は、映像信号にゲイン算出部308で算出した補正ゲインを乗算して出力する。 Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 308 and outputs the result.
 記憶部40のアプリ目標ゲインマップ記憶部404は、表示装置で画像を表示するアプリケーションに応じて選択された目標ゲインマップを記憶する。目標ゲインマップはアプリ別目標ゲインマップ作成部71で作成する。アプリ別目標ゲインマップ作成部71は、アプリケーション毎に目標ゲインマップを予めオフライン処理で作成してアプリ別目標ゲインマップ記憶部72に記憶させる。目標ゲインマップ選択部73は、表示装置で画像を表示するアプリケーションに対応した目標ゲインマップをアプリ別目標ゲインマップ記憶部72から取得して、記憶部40のアプリ目標ゲインマップ記憶部404に記憶する。なお、アプリ別目標ゲインマップ作成部71は、表示装置10の例えば信号処理部20に設けられていてもよく、表示装置10と別個に設けられた構成としてもよい。 The application target gain map storage unit 404 of the storage unit 40 stores a target gain map selected according to an application that displays an image on the display device. The target gain map is created by the application-specific target gain map creation unit 71. The application-specific target gain map creation unit 71 creates a target gain map for each application in advance by offline processing and stores it in the application-specific target gain map storage unit 72. The target gain map selection unit 73 acquires a target gain map corresponding to an application for displaying an image on the display device from the application-specific target gain map storage unit 72 and stores it in the application target gain map storage unit 404 of the storage unit 40. . The application-specific target gain map creation unit 71 may be provided, for example, in the signal processing unit 20 of the display device 10 or may be configured separately from the display device 10.
 図27はアプリ別目標ゲインマップ作成部の構成を示している。アプリ別目標ゲインマップ作成部71は、アプリ別画像DB(データベース)705、画像選択部761、輝度算出部762、発光量算出部764、累積発光量更新部765、累積発光量記憶部766、発光素子劣化特性記憶部767、目標ゲイン算出部768、目標ゲイン統合部769を備えている。なお、アプリ別画像DB705乃至目標ゲイン算出部768は請求項の目標ゲイン算出処理部に相当する。 FIG. 27 shows the configuration of the application-specific target gain map creation unit. The application-specific target gain map creation unit 71 includes an application-specific image DB (database) 705, an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, and a light emission. An element deterioration characteristic storage unit 767, a target gain calculation unit 768, and a target gain integration unit 769 are provided. The application-specific image DB 705 to the target gain calculation unit 768 correspond to a target gain calculation processing unit in claims.
 アプリ別画像DB705には、アプリケーション毎に数多くのサンプル画像が記憶されている。なお、表示装置では上述のようにリニア変換部23でリニア特性に変換された映像信号に対して信号レベル補正部で補正が行われていることから、リニア特性のサンプル画像がアプリ別画像DB705に記憶される。 The application-specific image DB 705 stores many sample images for each application. In the display device, since the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the linear characteristic sample image is stored in the application-specific image DB 705. Remembered.
 画像選択部761は、アプリケーション毎に、アプリ別画像DB705に記憶されている画像をランダムに選択して輝度算出部762に出力する。 The image selection unit 761 randomly selects an image stored in the application-specific image DB 705 and outputs the image to the luminance calculation unit 762 for each application.
 輝度算出部762は、画像選択部761で選択された画像の映像信号から輝度算出部301と同様にして輝度Yを算出して、算出した輝度Yを発光量算出部764に出力する。 The luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
 発光量算出部764は、輝度算出部762で算出した輝度Yとパネル駆動のデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Emit_fを算出する。発光量算出部764は、算出した発光量Emit_fを累積発光量更新部765に出力する。 The light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR. The light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
 累積発光量更新部765は、画素毎に、発光量算出部764で算出された発光量Emit_fに、累積発光量記憶部766に記憶されている累積発光量Emitを加算して目標ゲイン算出部768へ出力する。また、累積発光量更新部765は、加算後の発光量を更新後の累積発光量Emitとして、累積発光量記憶部766に記憶する。 The cumulative light emission amount updating unit 765 adds the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766 to the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel, and thereby the target gain calculation unit 768. Output to. In addition, the accumulated light amount update unit 765 stores the added light amount in the accumulated light amount storage unit 766 as the updated accumulated light amount Emit.
 発光素子劣化特性記憶部767には、パネル65の劣化特性に関する情報が記憶されている。目標ゲイン算出部768は、画素毎に、累積発光量と目標累積発光量に基づき目標ゲインを算出する。目標累積発光量は、目標輝度低下量と発光素子劣化特性記憶部767に記憶されている劣化特性に基づいて設定される。 In the light emitting element deterioration characteristic storage unit 767, information related to the deterioration characteristic of the panel 65 is stored. The target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount. The target accumulated light emission amount is set based on the target luminance decrease amount and the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 767.
 目標ゲイン算出部768は、画素毎に、累積発光量更新部765で更新された累積発光量Emitが目標累積発光量Emit_targetを超えないように、上述の式(13)に基づき目標ゲインgain_t0を算出する。目標ゲイン算出部768は、算出した目標ゲインgain_t0を目標ゲイン統合部769に出力する。 The target gain calculation unit 768 calculates the target gain gain_t0 based on the above equation (13) so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target for each pixel. To do. The target gain calculation unit 768 outputs the calculated target gain gain_t0 to the target gain integration unit 769.
 目標ゲイン統合部769は、画素毎に得られた目標ゲインを統合する。目標ゲイン統合部769は、例えば上述のエリア危険度更新部306で劣化危険度を算出したエリア単位で目標ゲインの統合を行い、エリア内における最小の目標ゲインを、このエリアの目標ゲインgain_taとする。さらに、目標ゲイン統合部769は、エリア毎に目標ゲインgain_taを算出して、表示画面全体の各エリアの目標ゲインgain_taを示す目標ゲインマップを作成する。また、目標ゲイン統合部769は、上述のブロック危険度更新部304で劣化危険度を算出したブロック単位で目標ゲインの統合を行い、表示画面全体の各ブロックの目標ゲインgain_taを示す目標ゲインマップを作成してもよい。このように、目標ゲインの統合を行えば目標ゲインマップのデータ量を少なくできる。また、目標ゲイン統合部769は、表示画面全体の画素毎に各画素の目標ゲインgain_t0を示した目標ゲインマップを作成してもよい。 The target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates target gains in units of areas for which the risk of deterioration has been calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta of this area. . Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire display screen. In addition, the target gain integration unit 769 integrates target gains in units of blocks for which the risk of deterioration has been calculated by the block risk update unit 304 described above, and generates a target gain map indicating the target gain gain_ta of each block on the entire display screen. You may create it. Thus, if the target gains are integrated, the data amount of the target gain map can be reduced. In addition, the target gain integration unit 769 may create a target gain map indicating the target gain gain_t0 of each pixel for each pixel of the entire display screen.
 輝度算出部762乃至目標ゲイン統合部769は、上述の処理をアプリケーション毎に行うことで、目標ゲインマップをアプリケーション毎に作成して図26に示すアプリ別目標ゲインマップ記憶部72に記憶させておく。 The luminance calculation unit 762 through the target gain integration unit 769 create the target gain map for each application by performing the above-described processing for each application, and store the target gain map in the application-specific target gain map storage unit 72 illustrated in FIG. .
 目標ゲインマップ選択部73は、表示装置を用いて動作が行われているアプリケーションに対応した目標ゲインマップをアプリ別目標ゲインマップ記憶部72から取得して、記憶部40のアプリ目標ゲインマップ記憶部404に記憶する。 The target gain map selection unit 73 acquires a target gain map corresponding to the application that is operating using the display device from the application-specific target gain map storage unit 72, and the application target gain map storage unit of the storage unit 40 Store in 404.
 図26に示すゲイン算出部309は、乗算器390で映像信号の信号レベルを補正するための補正ゲインを算出する。ゲイン算出部309は、画素毎に、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度およびアプリ目標ゲインマップ記憶部404の目標ゲインマップに基づき、上述の第2または第3の実施の形態と同様にして、補正ゲインを算出する。 A gain calculation unit 309 shown in FIG. 26 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390. The gain calculation unit 309 is, for each pixel, based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk output from the area risk level update unit 306, and the target gain map in the application target gain map storage unit 404. The correction gain is calculated in the same manner as in the second or third embodiment described above.
 第4の実施の形態では、第1の実施の形態と同様に図13に示すフローチャートの動作を行う。また、第4の実施の形態では、ステップST5における画素毎の補正ゲインの算出で、表示装置を用いて動作が行われているアプリケーションに対応した目標ゲインマップを用いる。 In the fourth embodiment, the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment. Further, in the fourth embodiment, a target gain map corresponding to an application that is operated using the display device is used in the calculation of the correction gain for each pixel in step ST5.
  図28は、目標ゲインマップの選択処理を示すフローチャートである。ステップST61で目標ゲインマップ選択部73はアプリ切替コマンドを受信する。目標ゲインマップ選択部73は、制御部11から出力されたアプリ切替コマンドを受信してステップST62に進む。 FIG. 28 is a flowchart showing target gain map selection processing. In step ST61, the target gain map selection unit 73 receives an application switching command. The target gain map selection unit 73 receives the application switching command output from the control unit 11, and proceeds to step ST62.
 ステップST62で目標ゲインマップ選択部73はアプリ名を取得する。目標ゲインマップ選択部73は、受信したアプリ切替コマンドによって示されている切替後のアプリ名を取得してステップST63に進む。 In step ST62, the target gain map selection unit 73 acquires the application name. The target gain map selection unit 73 acquires the switched application name indicated by the received application switching command, and proceeds to step ST63.
 ステップST63で目標ゲインマップ選択部73は、アプリ名に対応する目標ゲインマップを取得する。目標ゲインマップ選択部73は取得したアプリ名に対応する目標ゲインマップをアプリ別目標ゲインマップ記憶部72から取得してステップST64に進む。 In step ST63, the target gain map selection unit 73 acquires a target gain map corresponding to the application name. The target gain map selection unit 73 acquires the target gain map corresponding to the acquired application name from the application-specific target gain map storage unit 72, and proceeds to step ST64.
 ステップST64で目標ゲインマップ選択部73は目標ゲインマップを出力する。目標ゲインマップ選択部73は、アプリ別目標ゲインマップ記憶部72から取得した目標ゲインマップをアプリ目標ゲインマップ記憶部404に記憶させて処理を終了する。 In step ST64, the target gain map selection unit 73 outputs the target gain map. The target gain map selection unit 73 stores the target gain map acquired from the application-specific target gain map storage unit 72 in the application target gain map storage unit 404 and ends the process.
 このような第4の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて画素毎の劣化危険度が算出される。また、画素毎の劣化危険度と画素毎の輝度およびユーザが利用しているアプリケーションに応じた目標ゲインマップのゲインに応じて補正ゲインが算出される。このため、第1の実施の形態と同様に、発光素子の長寿命化および表示の高視認性を実現できる。さらに、第4の実施の形態では、利用しているアプリケーションに応じて補正ゲインが算出されることから、発光素子の長寿命化および表示の高視認性の実現を最適に行うことができる。 According to the fourth embodiment, the deterioration risk for each area calculated from the light emission amount of the pixels in the area is accumulated for each area, and based on the accumulated deterioration risk for each area. A deterioration risk for each pixel is calculated. Further, the correction gain is calculated according to the deterioration risk for each pixel, the luminance for each pixel, and the gain of the target gain map corresponding to the application used by the user. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Furthermore, in the fourth embodiment, since the correction gain is calculated according to the application being used, it is possible to optimally achieve a long life of the light emitting element and high visibility of the display.
 <6.第5の実施の形態>
 次に、本技術の第5の実施の形態について説明する。第5の実施の形態では、ネットワーク等を介して目標ゲインマップを取得する場合について説明する。長期間の使用実績のないパネル65を用いる場合、劣化加速試験等によって推定した劣化特性に応じて信号レベルの調整が行われる。このため、推定した劣化特性が実際の劣化特性と異なると、映像信号の輝度制御をパネル65の劣化特性に応じて精度よく行うことができない。また、表示装置を用いた機器の発売から時間が経過すると、パネル65の特性の実測値等から詳細な劣化特性が明らかとなる。したがって、第5の実施の形態では、明らかとなった劣化特性に応じて信号レベルの補正を行うことができるように、表示装置はネットワーク等を介して目標ゲインマップを取得する場合について説明する。
<6. Fifth embodiment>
Next, a fifth embodiment of the present technology will be described. In the fifth embodiment, a case where a target gain map is acquired via a network or the like will be described. When the panel 65 that has not been used for a long time is used, the signal level is adjusted according to the deterioration characteristics estimated by the deterioration acceleration test or the like. For this reason, if the estimated deterioration characteristic is different from the actual deterioration characteristic, the luminance control of the video signal cannot be accurately performed according to the deterioration characteristic of the panel 65. In addition, when time elapses since the sale of the device using the display device, detailed deterioration characteristics become clear from the measured values of the characteristics of the panel 65 and the like. Therefore, in the fifth embodiment, a case will be described in which the display device acquires a target gain map via a network or the like so that the signal level can be corrected according to the clarified deterioration characteristic.
 図29は、第5の実施の形態の構成を例示している。第5の実施の形態において、信号処理部20における信号レベル補正部30は、輝度算出部301、発光量算出部302、ブロック危険度算出部303、ブロック危険度更新部304、エリア危険度算出部305、エリア危険度更新部306、ゲイン算出部310、乗算器390とを含んで構成される。また、記憶部40は、ブロック危険度記憶部401、エリア危険度記憶部402および目標ゲインマップ記憶部405とを含んで構成される。 FIG. 29 illustrates the configuration of the fifth embodiment. In the fifth embodiment, the signal level correction unit 30 in the signal processing unit 20 includes a luminance calculation unit 301, a light emission amount calculation unit 302, a block risk level calculation unit 303, a block risk level update unit 304, and an area risk level calculation unit. 305, an area risk update unit 306, a gain calculation unit 310, and a multiplier 390. The storage unit 40 includes a block risk storage unit 401, an area risk storage unit 402, and a target gain map storage unit 405.
 輝度算出部301は、リニア変換部23で変換されたリニア特性を有する映像信号から輝度Yを算出して、算出した輝度Yを発光量算出部302とゲイン算出部308に出力する。 The luminance calculation unit 301 calculates the luminance Y from the video signal having the linear characteristic converted by the linear conversion unit 23, and outputs the calculated luminance Y to the light emission amount calculation unit 302 and the gain calculation unit 308.
 発光量算出部302は、輝度算出部301で算出した輝度Yと発光時間制御部28で算出したパルスのデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Eを算出する。発光量算出部302は、算出した発光量Eをブロック危険度算出部303に出力する。 The light emission amount calculation unit 302 calculates the light emission amount E of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 301 and the duty ratio DR of the pulse calculated by the light emission time control unit 28. . The light emission amount calculation unit 302 outputs the calculated light emission amount E to the block risk degree calculation unit 303.
 ブロック危険度算出部303は、表示画面全体を複数のブロックに区分して、発光量算出部302で算出した発光量に基づきブロックを構成する画素毎に劣化危険度を算出する。また、ブロック危険度算出部303は、ブロック内の各画素の劣化危険度から最大値を選択して、選択した劣化危険度をブロック劣化危険度としてブロック危険度更新部304に出力する。 The block risk degree calculation unit 303 divides the entire display screen into a plurality of blocks, and calculates a deterioration risk degree for each pixel constituting the block based on the light emission amount calculated by the light emission amount calculation unit 302. In addition, the block risk level calculation unit 303 selects the maximum value from the deterioration risk level of each pixel in the block, and outputs the selected deterioration risk level to the block risk level update unit 304 as the block deterioration risk level.
 ブロック危険度更新部304は、ブロック毎に、ブロック危険度算出部303で算出されたブロック劣化危険度を用いて累積ブロック劣化危険度を更新して、更新後の累積ブロック危険度をエリア危険度算出部305に出力する。また、ブロック危険度更新部304は、更新後の累積ブロック劣化危険度を記憶部40のブロック危険度記憶部401に記憶させて、ブロック劣化危険度が算出される毎に累積ブロック危険度を更新できるようにする。 The block risk update unit 304 updates the accumulated block deterioration risk by using the block deterioration risk calculated by the block risk calculation unit 303 for each block, and sets the updated cumulative block risk to the area risk level. It outputs to the calculation part 305. The block risk update unit 304 stores the updated cumulative block deterioration risk in the block risk storage unit 401 of the storage unit 40, and updates the cumulative block risk each time the block deterioration risk is calculated. It can be so.
 エリア危険度算出部305は、表示画面全体を1または複数のブロックからなるエリアに区分して、エリアを構成するブロックで算出されている累積ブロック劣化危険度dgr_bからエリア内における最大値を選択する。エリア危険度算出部305は、選択した累積ブロック劣化危険度をエリア劣化危険度dgr_afとする。エリア危険度算出部305は、エリア毎に算出したエリア劣化危険度dgr_afをエリア危険度更新部306に出力する。 The area risk level calculation unit 305 divides the entire display screen into areas composed of one or a plurality of blocks, and selects the maximum value in the area from the accumulated block deterioration risk level dgr_b calculated for the blocks constituting the area. . The area risk level calculation unit 305 sets the selected cumulative block deterioration risk level as the area deterioration risk level dgr_af. The area risk level calculation unit 305 outputs the area deterioration risk level dgr_af calculated for each area to the area risk level update unit 306.
 エリア危険度更新部306は、エリア毎に、エリア危険度算出部305で算出されたエリア劣化危険度を用いて累積エリア劣化危険度を更新して、更新後の累積エリア危険度をゲイン算出部308に出力する。また、エリア危険度更新部306は、更新後の累積エリア劣化危険度を記憶部40のエリア危険度記憶部402に記憶させて、エリア劣化危険度が算出される毎に累積エリア危険度を更新できるようにする。 The area risk update unit 306 updates the accumulated area deterioration risk using the area deterioration risk calculated by the area risk calculation unit 305 for each area, and the updated accumulated area risk is calculated as a gain calculation unit. Output to 308. Also, the area risk update unit 306 stores the updated accumulated area deterioration risk in the area risk degree storage unit 402 of the storage unit 40 and updates the accumulated area risk every time the area deterioration risk is calculated. It can be so.
 ゲイン算出部310は、乗算器390で映像信号の信号レベルを補正するための補正ゲインを算出する。ゲイン算出部310は、画素毎に、輝度算出部301から出力された輝度と、エリア危険度更新部306から出力された累積エリア劣化危険度および目標ゲインマップ記憶部405の目標ゲインマップに基づき、補正ゲインを算出する。 The gain calculation unit 310 calculates a correction gain for correcting the signal level of the video signal by the multiplier 390. For each pixel, the gain calculation unit 310 is based on the luminance output from the luminance calculation unit 301, the cumulative area deterioration risk output from the area risk level update unit 306, and the target gain map in the target gain map storage unit 405. Calculate the correction gain.
 乗算器390は、映像信号にゲイン算出部310で算出した補正ゲインを乗算して出力する。 Multiplier 390 multiplies the video signal by the correction gain calculated by gain calculation section 310 and outputs the result.
 記憶部40の目標ゲインマップ記憶部405は、ネットワークに接続されており、外部の目標ゲインマップ作成部で作成された目標ゲインマップを、ネットワークを介して取得して、記憶している目標ゲインマップを更新する。なお、ネットワークを介して取得される目標ゲインマップは、第4の実施の形態のようにアプリケーション毎の目標ゲインマップであってもよい。また、目標ゲインマップ記憶部405は、ネットワークを介してユーザプロファイルを目標ゲインマップ作成部に通知して、第2や第3の実施の形態のようにユーザプロファイルに対応して作成された目標ゲインマップを取得してもよい。 The target gain map storage unit 405 of the storage unit 40 is connected to the network, acquires the target gain map created by the external target gain map creation unit via the network, and stores the target gain map. Update. Note that the target gain map acquired via the network may be a target gain map for each application as in the fourth embodiment. The target gain map storage unit 405 notifies the user profile to the target gain map creation unit via the network, and the target gain created corresponding to the user profile as in the second and third embodiments. A map may be acquired.
 図30は、目標ゲインマップ作成部が表示装置に実装されている場合の構成を例示している。目標ゲインマップ作成部74はネットワークを介して例えば図22に示すように累積発光量と劣化による輝度低下量の関係を示す実際の劣化特性を取得して、取得した劣化特性に基づいて目標ゲインマップを作成して、目標ゲインマップ記憶部405に記憶させる。また、目標ゲインマップ作成部74は、ネットワークを介して例えば用途に応じたサンプル画像を取得して、取得したサンプル画像からユーザプロファイルで示された用途毎に、ユーザプロファイルの用途の割合で画像を選択して累積発光量の算出を行ってもよい。さらに、目標ゲインマップ作成部74は、ネットワークを介して例えばユーザプロファイルを取得してもよい。 FIG. 30 illustrates a configuration when the target gain map creation unit is mounted on the display device. For example, as shown in FIG. 22, the target gain map creation unit 74 acquires an actual deterioration characteristic indicating the relationship between the accumulated light emission amount and the luminance reduction amount due to deterioration, and the target gain map is based on the acquired deterioration characteristic. And is stored in the target gain map storage unit 405. Further, the target gain map creation unit 74 acquires, for example, a sample image corresponding to the application via the network, and displays an image at a ratio of the use of the user profile for each application indicated by the user profile from the acquired sample image. The accumulated light emission amount may be calculated by selection. Furthermore, the target gain map creation unit 74 may acquire, for example, a user profile via a network.
 図31は、目標ゲインマップ作成部の構成を例示している。目標ゲインマップ作成部74は、ユーザプロファイル記憶部701、サンプル画像DB712、計算用画像DB(データベース)作成部703、計算用画像DB(データベース)704を備えている。また、目標ゲインマップ作成部74は、画像選択部761、輝度算出部762、発光量算出部764、累積発光量更新部765、累積発光量記憶部766、目標ゲイン算出部768、発光素子劣化特性記憶部777、目標ゲイン統合部769を備えている。 FIG. 31 illustrates the configuration of the target gain map creation unit. The target gain map creation unit 74 includes a user profile storage unit 701, a sample image DB 712, a calculation image DB (database) creation unit 703, and a calculation image DB (database) 704. The target gain map creation unit 74 includes an image selection unit 761, a luminance calculation unit 762, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a target gain calculation unit 768, and a light emitting element deterioration characteristic. A storage unit 777 and a target gain integration unit 769 are provided.
 ユーザプロファイル記憶部701には、表示装置でどのような用途の画像表示がどのような割合で行われているかを示す情報がユーザプロファイルとして記憶されている。また、ユーザプロファイル記憶部701に対しては、ネットワークを介して外部機器からユーザプロファイルの供給およびユーザプロファイルの更新等が可能とされている。 The user profile storage unit 701 stores information indicating what kind of application image display is being performed at what rate on the display device as a user profile. The user profile storage unit 701 can be supplied with a user profile and updated from the external device via a network.
 サンプル画像DB712には、ユーザプロファイルの用途毎にサンプル画が記憶されている。また、サンプル画像DB712に対しては、ネットワークを介して外部機器からサンプル画像の供給およびサンプル画像の更新等が可能とされている。また、表示装置では上述のようにリニア変換部23でリニア特性に変換された映像信号に対して信号レベル補正部で補正が行われていることから、リニア特性のサンプル画像がサンプル画像DB712に記憶される。 The sample image DB 712 stores sample images for each use of the user profile. In addition, for the sample image DB 712, it is possible to supply a sample image and update the sample image from an external device via a network. In the display device, since the signal level correction unit corrects the video signal converted into the linear characteristic by the linear conversion unit 23 as described above, the sample image having the linear characteristic is stored in the sample image DB 712. Is done.
 計算用画像DB作成部703は、ユーザプロファイル記憶部701に記憶されているユーザプロファイルに基づき、サンプル画像DB712からユーザプロファイルで示された用途毎に、ユーザプロファイルにおける用途の割合でサンプル画像を選択する。 Based on the user profile stored in the user profile storage unit 701, the calculation image DB creation unit 703 selects a sample image for each usage indicated by the user profile from the sample image DB 712 at a usage ratio in the user profile. .
 計算用画像DB704は、ユーザプロファイルに基づいて選択されたサンプル画像を記憶する。 The calculation image DB 704 stores sample images selected based on the user profile.
 画像選択部761は、計算用画像DB704に記憶されている画像をランダムに選択して輝度算出部762に出力する。 The image selection unit 761 randomly selects an image stored in the calculation image DB 704 and outputs the image to the luminance calculation unit 762.
 輝度算出部762は、画像選択部761で選択された画像の映像信号から輝度算出部301と同様にして輝度Yを算出して、算出した輝度Yを発光量算出部764に出力する。 The luminance calculation unit 762 calculates the luminance Y from the video signal of the image selected by the image selection unit 761 in the same manner as the luminance calculation unit 301, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
 発光量算出部764は、輝度算出部762で算出した輝度Yとパネル駆動のデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Emit_fを算出する。発光量算出部764は、算出した発光量Emit_fを累積発光量更新部765に出力する。 The light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 762 and the panel drive duty ratio DR. The light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
 累積発光量更新部765は、画素毎に、発光量算出部764で算出された発光量Emit_fに、上述の係数Ktmと累積発光量記憶部766に記憶されている累積発光量Emitとの乗算結果を加算して目標ゲイン算出部768へ出力する。また、累積発光量更新部765は、加算結果で累積発光量記憶部766の累積発光量Emitを更新する。 The cumulative light emission amount update unit 765 multiplies the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel by the above-described coefficient Ktm and the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766. Are output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result.
 発光素子劣化特性記憶部777には、パネル65の劣化特性に関する情報が記憶されている。また、発光素子劣化特性記憶部777に記憶されている劣化特性は、ネットワークを介して外部機器から取得した劣化特性に更新可能とされている。 In the light emitting element deterioration characteristic storage unit 777, information related to the deterioration characteristic of the panel 65 is stored. In addition, the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 777 can be updated to a deterioration characteristic acquired from an external device via a network.
 目標ゲイン算出部768は、画素毎に、累積発光量と目標累積発光量に基づき目標ゲインを算出する。なお、目標累積発光量は、目標輝度低下量と発光素子劣化特性記憶部777に記憶されている劣化特性に基づいて設定される。 The target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount. The target cumulative light emission amount is set based on the target luminance decrease amount and the deterioration characteristics stored in the light emitting element deterioration characteristic storage unit 777.
 目標ゲイン算出部768は、画素毎に、累積発光量更新部765で更新された累積発光量Emitが目標累積発光量Emit_targetを超えないように目標ゲインgain_t0を算出して目標ゲイン統合部769に出力する。 For each pixel, the target gain calculation unit 768 calculates the target gain gain_t0 so that the cumulative light emission amount Emit updated by the cumulative light emission amount update unit 765 does not exceed the target cumulative light emission amount Emit_target, and outputs the target gain gain_t0 to the target gain integration unit 769. To do.
 目標ゲイン統合部769は、画素毎に得られた目標ゲインを統合する。目標ゲイン統合部769は、例えば上述のエリア危険度更新部306で累積エリア劣化危険度を算出したエリア単位で目標ゲインの統合を行い、エリア内における最小の目標ゲインを、このエリアの目標ゲインgain_taとする。さらに、目標ゲイン統合部769は、エリア毎に目標ゲインgain_taを算出して、全画面の各エリアの目標ゲインgain_taを示す目標ゲインマップを作成する。 The target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire screen.
 第5の実施の形態では、第1の実施の形態と同様に図13に示すフローチャートの動作を行う。また、第5の実施の形態では、ステップST7における画素毎の補正ゲインの算出において、ネットワーク等を介して取得したサンプル画像やユーザプロファイル,劣化特性に基づいて作成した目標ゲインマップを用いて補正ゲインを算出する。なお、目標ゲインマップやサンプル画像,ユーザプロファイルおよび劣化特性は、ネットワークを介して取得する場合に限らず、記録媒体等を介して取得してもよい。 In the fifth embodiment, the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment. In the fifth embodiment, in the calculation of the correction gain for each pixel in step ST7, the correction gain is obtained by using the target gain map created based on the sample image, the user profile, and the deterioration characteristic acquired via the network or the like. Is calculated. Note that the target gain map, the sample image, the user profile, and the deterioration characteristics are not limited to being acquired via a network, but may be acquired via a recording medium or the like.
 このように第5の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて画素毎の劣化危険度が算出される。また、ユーザがどのような用途の表示画面を表示装置10でどの程度の割合で利用しているかに応じて目標ゲインマップが作成されて、画素毎の劣化危険度と画素毎の輝度および目標ゲインマップのゲインに応じて補正ゲインが算出される。さらに、目標ゲインマップの作成に用いるサンプル画像やユーザプロファイル,劣化特性を容易に最適なサンプル画像やユーザプロファイルおよび精度の高い劣化特性に更新できる。このため、第1の実施の形態と同様に、発光素子の長寿命化および表示の高視認性を実現できる。さらに、第5の実施の形態では、ユーザの利用状況やパネルの実際の劣化特性等に応じて補正ゲインを算出できることから、発光素子の長寿命化および表示の高視認性の実現をユーザの利用状況に応じてさらに最適に行うことができる。 As described above, according to the fifth embodiment, the risk of deterioration for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated risk of deterioration for each region. A deterioration risk for each pixel is calculated. In addition, a target gain map is created according to what percentage of the display screen the user uses on the display device 10, and the degree of degradation risk for each pixel, the luminance for each pixel, and the target gain. A correction gain is calculated according to the gain of the map. Furthermore, the sample image, user profile, and deterioration characteristics used to create the target gain map can be easily updated to the optimum sample image, user profile, and highly accurate deterioration characteristics. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Furthermore, in the fifth embodiment, since the correction gain can be calculated according to the use situation of the user, the actual deterioration characteristics of the panel, etc., it is possible to extend the life of the light emitting element and realize high visibility of the display by the user. It can be performed more optimally depending on the situation.
 <7.第6の実施の形態>
 次に、本技術の第6の実施の形態について説明する。第6の実施の形態では、目標ゲインマップ作成部を信号処理部20に設けて、パネル65の駆動状況に応じて目標ゲインマップをオンライン処理で作成する場合について説明する。
<7. Sixth Embodiment>
Next, a sixth embodiment of the present technology will be described. In the sixth embodiment, a case will be described in which a target gain map creating unit is provided in the signal processing unit 20 and a target gain map is created by online processing in accordance with the driving state of the panel 65.
 図32は第6の実施の形態における目標ゲインマップ作成部の構成を例示している。目標ゲインマップ作成部76は、輝度算出部763、発光量算出部764、累積発光量更新部765、累積発光量記憶部766、発光素子劣化特性記憶部767、目標ゲイン算出部768、目標ゲイン統合部769を備えている。 FIG. 32 illustrates the configuration of the target gain map creation unit in the sixth embodiment. The target gain map creation unit 76 includes a luminance calculation unit 763, a light emission amount calculation unit 764, a cumulative light emission amount update unit 765, a cumulative light emission amount storage unit 766, a light emitting element deterioration characteristic storage unit 767, a target gain calculation unit 768, and a target gain integration. Part 769.
 輝度算出部763は、信号レベル補正部30で補正された映像信号から輝度算出部762と同様にして輝度Yを算出して、算出した輝度Yを発光量算出部764に出力する。 The luminance calculation unit 763 calculates the luminance Y from the video signal corrected by the signal level correction unit 30 in the same manner as the luminance calculation unit 762, and outputs the calculated luminance Y to the light emission amount calculation unit 764.
 発光量算出部764は、輝度算出部763で算出した輝度Yとパネル駆動のデューティ比DRに基づいて、1フレームあたりのパネル65の各画素の発光量Emit_fを算出する。発光量算出部764は、算出した発光量Emit_fを累積発光量更新部765に出力する。 The light emission amount calculation unit 764 calculates the light emission amount Emit_f of each pixel of the panel 65 per frame based on the luminance Y calculated by the luminance calculation unit 763 and the panel drive duty ratio DR. The light emission amount calculation unit 764 outputs the calculated light emission amount Emit_f to the cumulative light emission amount update unit 765.
 累積発光量更新部765は、画素毎に、発光量算出部764で算出された発光量Emit_fに、上述の係数Ktmと累積発光量記憶部766に記憶されている累積発光量Emitとの乗算結果を加算して目標ゲイン算出部768へ出力する。また、累積発光量更新部765は、加算結果で累積発光量記憶部766の累積発光量Emitを更新する。 The cumulative light emission amount update unit 765 multiplies the light emission amount Emit_f calculated by the light emission amount calculation unit 764 for each pixel by the above-described coefficient Ktm and the cumulative light emission amount Emit stored in the cumulative light emission amount storage unit 766. Are output to the target gain calculator 768. Further, the cumulative light emission amount update unit 765 updates the cumulative light emission amount Emit of the cumulative light emission amount storage unit 766 with the addition result.
 発光素子劣化特性記憶部767には、パネル65の劣化特性に関する情報が記憶されている。 In the light emitting element deterioration characteristic storage unit 767, information related to the deterioration characteristic of the panel 65 is stored.
 目標ゲイン算出部768は、画素毎に、累積発光量と目標累積発光量に基づき目標ゲインを算出する。目標累積発光量は、目標輝度低下量と発光素子劣化特性記憶部767に記憶されている劣化特性に基づいて設定される。 The target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount. The target accumulated light emission amount is set based on the target luminance decrease amount and the deterioration characteristic stored in the light emitting element deterioration characteristic storage unit 767.
 目標ゲイン算出部768は、画素毎に、累積発光量と目標累積発光量に基づき目標ゲインを算出する。なお、目標累積発光量は、目標輝度低下量と発光素子劣化特性記憶部777に記憶されている劣化特性に基づいて設定される。 The target gain calculation unit 768 calculates a target gain for each pixel based on the accumulated light emission amount and the target accumulated light emission amount. The target cumulative light emission amount is set based on the target luminance decrease amount and the deterioration characteristics stored in the light emitting element deterioration characteristic storage unit 777.
 目標ゲイン統合部769は、画素毎に得られた目標ゲインを統合する。目標ゲイン統合部769は、例えば上述のエリア危険度更新部306で累積エリア劣化危険度を算出したエリア単位で目標ゲインの統合を行い、エリア内における最小の目標ゲインを、このエリアの目標ゲインgain_taとする。さらに、目標ゲイン統合部769は、エリア毎に目標ゲインgain_taを算出して、全画面の各エリアの目標ゲインgain_taを示す目標ゲインマップを作成する。 The target gain integration unit 769 integrates the target gain obtained for each pixel. For example, the target gain integration unit 769 integrates the target gains for each area for which the cumulative area deterioration risk is calculated by the area risk update unit 306 described above, and sets the minimum target gain in the area as the target gain gain_ta for this area. And Further, the target gain integration unit 769 calculates a target gain gain_ta for each area, and creates a target gain map indicating the target gain gain_ta of each area of the entire screen.
 第6の実施の形態では、第1の実施の形態と同様に図13に示すフローチャートの動作を行う。また、第6の実施の形態では、ステップST7における画素毎の補正ゲインの算出において、信号レベル補正部30で補正された映像信号に基づいて作成した目標ゲインマップを用いて補正ゲインを算出する。 In the sixth embodiment, the operation of the flowchart shown in FIG. 13 is performed in the same manner as in the first embodiment. In the sixth embodiment, in the calculation of the correction gain for each pixel in step ST7, the correction gain is calculated using the target gain map created based on the video signal corrected by the signal level correction unit 30.
 このように第6の実施の形態では、パネル65の駆動状況に応じて目標ゲインマップを作成される。したがって、パネル65の発光量が多くパネルの劣化が進んでいるような画素については目標ゲインをさらに低下させることで、劣化の進行を抑えることができる。また、パネル65の発光量が少なくパネルの劣化が少ないような画素については目標ゲインを高めることで視認性を改善できる。さらに、第6の実施の形態では、例えば一日単位で制御を行いパネル65における一日あたりの発光量を制御してもよい。また、表示装置の最初の使用からのパネル65の駆動状況に応じて目標ゲインマップを作成すれば、さらにパネルの劣化状態に応じてより精度よく補正ゲインを算出できる。 Thus, in the sixth embodiment, a target gain map is created according to the driving state of the panel 65. Therefore, the progress of the deterioration can be suppressed by further reducing the target gain for the pixel in which the panel 65 emits a large amount of light and the panel has been deteriorated. In addition, the visibility of the pixels in which the light emission amount of the panel 65 is small and the panel deterioration is small can be improved by increasing the target gain. Furthermore, in the sixth embodiment, for example, the light emission amount per day in the panel 65 may be controlled by performing the control on a daily basis. If a target gain map is created according to the driving state of the panel 65 from the first use of the display device, the correction gain can be calculated more accurately according to the deterioration state of the panel.
 このように第6の実施の形態によれば、領域内の画素の発光量から算出された領域毎の劣化危険度が領域毎に累積されて、累積された領域毎の劣化危険度に基づいて画素毎の劣化危険度が算出される。また、パネルの駆動状態に応じて目標ゲインマップが作成されて、画素毎の劣化危険度と画素毎の輝度および目標ゲインマップのゲインに応じて補正ゲインが算出される。このため、第1の実施の形態と同様に、発光素子の長寿命化および表示の高視認性を実現できる。さらに、第6の実施の形態では、パネル利用状況に応じて補正ゲインを算出できることから、発光素子の長寿命化および表示の高視認性の実現をパネル利用状況に応じて最適に行うことができる。 Thus, according to the sixth embodiment, the degradation risk for each region calculated from the light emission amount of the pixels in the region is accumulated for each region, and based on the accumulated degradation risk for each region. A deterioration risk for each pixel is calculated. Further, a target gain map is created according to the driving state of the panel, and a correction gain is calculated according to the degree of deterioration risk for each pixel, the luminance for each pixel, and the gain of the target gain map. For this reason, as in the first embodiment, it is possible to realize a long life of the light emitting element and high visibility of display. Furthermore, in the sixth embodiment, since the correction gain can be calculated according to the panel usage status, the life of the light emitting element and the high visibility of the display can be optimally performed according to the panel usage status. .
 <8.他の実施の形態>
 上述の実施の形態は、独立して行われる場合に限らず、組み合わせて行うようにしてもよい。例えば第4の実施の形態に第2乃至第3の実施の形態の少なくともいずれかを組み合わせて行うようにしてもよい。また、第5の実施の形態に第2乃至第4の実施の形態の少なくともいずれかを組み合わせて行うようにしてもよい。または、第6の実施の形態に第2乃至第4の実施の形態の少なくともいずれかを組み合わせて行うようにしてもよい。このように、複数の実施の形態を組み合わせて行うようにすれば、組み合わせ前に比べて、発光素子の長寿命化および表示の高視認性の実現をより確実に行うことが可能となる。
<8. Other embodiments>
The embodiments described above are not limited to being performed independently, and may be performed in combination. For example, the fourth embodiment may be performed in combination with at least one of the second to third embodiments. Further, the fifth embodiment may be performed in combination with at least one of the second to fourth embodiments. Alternatively, the sixth embodiment may be performed by combining at least one of the second to fourth embodiments with the sixth embodiment. As described above, by combining a plurality of embodiments, it is possible to more reliably achieve a longer lifetime of the light-emitting element and a higher display visibility than before the combination.
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させる。または、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。 Further, the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both. When processing by software is executed, a program in which a processing sequence is recorded is installed and executed in a memory in a computer incorporated in dedicated hardware. Alternatively, the program can be installed and executed on a general-purpose computer capable of executing various processes.
 例えば、プログラムは記録媒体としてのハードディスクやSSD(Solid State Drive)、ROM(Read Only Memory)に予め記録しておくことができる。あるいは、プログラムはフレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、BD(Blu-Ray Disc(登録商標))、磁気ディスク、半導体メモリカード等のリムーバブル記録媒体に、一時的または永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。 For example, the program can be recorded in advance on a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory) as a recording medium. Alternatively, the program is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto optical disc), a DVD (Digital Versatile Disc), a BD (Blu-Ray Disc (registered trademark)), a magnetic disk, or a semiconductor memory card. It can be stored (recorded) in a removable recording medium such as temporarily or permanently. Such a removable recording medium can be provided as so-called package software.
 また、プログラムは、リムーバブル記録媒体からコンピュータにインストールする他、ダウンロードサイトからLAN(Local Area Network)やインターネット等のネットワークを介して、コンピュータに無線または有線で転送してもよい。コンピュータでは、そのようにして転送されてくるプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。 In addition to installing the program from the removable recording medium to the computer, the program may be transferred from the download site to the computer wirelessly or by wire via a network such as a LAN (Local Area Network) or the Internet. The computer can receive the program transferred in this way and install it on a recording medium such as a built-in hard disk.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、記載されていない付加的な効果があってもよい。また、本技術は、上述した技術の実施の形態に限定して解釈されるべきではない。この技術の実施の形態は、例示という形態で本技術を開示しており、本技術の要旨を逸脱しない範囲で当業者が実施の形態の修正や代用をなし得ることは自明である。すなわち、本技術の要旨を判断するためには、請求の範囲を参酌すべきである。 It should be noted that the effects described in this specification are merely examples and are not limited, and there may be additional effects that are not described. Further, the present technology should not be construed as being limited to the embodiments of the technology described above. The embodiments of this technology disclose the present technology in the form of examples, and it is obvious that those skilled in the art can make modifications and substitutions of the embodiments without departing from the gist of the present technology. In other words, the scope of the claims should be considered in order to determine the gist of the present technology.
 また、本技術の映像信号処理装置は以下のような構成も取ることができる。
 (1) 映像信号に基づく画素毎の発光量から表示画面の領域毎の劣化危険度を算出し、算出した前記劣化危険度を領域毎に累積することで累積劣化危険度を算出する累積劣化危険度算出部と、
 前記領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、前記画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインを画素毎に算出するゲイン算出部と、
 前記補正ゲインを用いて前記映像信号の信号レベルを補正する補正部と
を備える映像信号処理装置。
 (2) 前記累積劣化危険度算出部は、1または複数のブロックからなる前記領域毎に、前記ブロック内の画素の最大劣化危険度を累積して累積ブロック劣化危険度を算出して、領域内の最大の累積ブロック劣化危険度を累積して前記領域毎の累積劣化危険度とする(1)に記載の映像信号処理装置。
 (3) 前記ゲイン算出部は、前記劣化危険度を算出する画素が含まれる領域の累積劣化危険度と、この領域に隣接する領域の累積劣化危険度を用いて、前記画素の劣化危険度を算出する(1)または(2)に記載の映像信号処理装置。
 (4) 前記ゲイン算出部は、前記劣化危険度を算出する画素が含まれる領域と隣接する領域との境界から前記劣化危険度を算出する画素までの距離に応じた割合で、それぞれの前記領域の累積劣化危険度を用いて前記画素の劣化危険度を算出する(3)に記載の映像信号処理装置。
 (5) 前記ゲイン算出部は、前記画素毎の劣化危険度に応じて画素毎にゲイン調整量を算出して、前記画素毎のゲイン調整量と画素の輝度に基づいて補正ゲインを算出する(1)乃至(4)のいずれかに記載の映像信号処理装置。
 (6) 前記映像信号に基づいて発光する発光素子を許容可能な輝度低下量とする目標ゲインが、画素位置毎に示された目標ゲインマップを記憶する目標ゲインマップ記憶部をさらに備え、
 前記ゲイン算出部は、前記画素毎の劣化危険度と画素毎の輝度と前記目標ゲインに基づき補正ゲインを画素毎に算出する(1)乃至(5)のいずれかに記載の映像信号処理装置。
 (7) 用途別の表示時間の割合に応じてサンプル画像を用いて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインを画素位置毎に設定して目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える(6)に記載の映像信号処理装置。
 (8) 前記目標ゲインマップ作成部は、
 前記用途別の表示時間の割合に応じて画素毎の累積発光量を算出して、前記発光素子が許容可能な輝度低下量となる累積発光量と前記画素毎に算出した累積発光量に基づいて、画素毎に目標ゲインを算出する目標ゲイン算出処理部と、
 前記画素毎に算出された目標ゲインを領域毎に統合して領域毎に前記目標ゲインを算出する目標ゲイン統合部を有する(7)に記載の映像信号処理装置。
 (9) 前記目標ゲインマップ作成部は、前記サンプル画像または前記劣化特性を外部から取得したサンプル画像または劣化特性に更新する(7)に記載の映像信号処理装置。
 (10) 前記ゲイン算出部は、前記画素毎の劣化危険度と前記目標ゲインに応じて画素毎にゲイン調整量を算出して、前記画素毎のゲイン調整量と画素の輝度に基づいて補正ゲインを算出する(6)乃至(9)のいずれかに記載の映像信号処理装置。
 (11) 前記ゲイン算出部は、前記目標ゲインに基づき画素の輝度を低下させる前記発光素子の劣化度合いが所望の劣化度合いとなるようにゲイン調整量を算出する(10)に記載の映像信号処理装置。
 (12) 前記ゲイン算出部は、前記目標ゲインに基づき前記発光素子の劣化を生じやすい領域の画素で輝度の低下が所望の速度となるようにゲイン調整量を算出する(10)または(11)に記載の映像信号処理装置。
 (13) アプリケーションの画像に基づいて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインを画素位置毎に設定して目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える(6)乃至(12)のいずれかに記載の映像信号処理装置。
 (14) 前記目標ゲインマップ作成部は、アプリケーション毎に前記目標ゲインマップを作成して、
 前記ゲイン算出部は、前記映像信号のアプリケーションと一致するアプリケーションの目標ゲインマップを用いて前記補正ゲインを画素毎に算出する(13)に記載の映像信号処理装置。
 (15) 前記目標ゲインマップ作成部は、
 アプリケーション毎に、前記アプリケーションの画像に基づいて画素毎の累積発光量を算出して、前記発光素子が許容可能な輝度低下量となる累積発光量と前記画素毎に算出した累積発光量に基づいて、画素毎に目標ゲインを算出する目標ゲイン算出処理部と、
 前記画素毎に算出された目標ゲインを領域毎に統合して領域毎に目標ゲインを算出する目標ゲイン統合部を有する(13)または(14)に記載の映像信号処理装置。
 (16) 前記目標ゲインマップ記憶部は、前記目標ゲインマップを外部から取得した目標ゲインマップに更新する(7)または(13)のいずれかに記載の映像信号処理装置。
 (17) 前記補正部で補正された映像信号を用いて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える(6)に記載の映像信号処理装置。
In addition, the video signal processing apparatus according to the present technology may have the following configuration.
(1) Cumulative degradation risk for calculating the degradation risk level by calculating the degradation risk level for each area of the display screen from the light emission amount for each pixel based on the video signal, and accumulating the calculated degradation risk level for each area. A degree calculator,
A gain calculation unit that calculates a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel;
A video signal processing apparatus comprising: a correction unit that corrects a signal level of the video signal using the correction gain.
(2) The cumulative deterioration risk calculating unit calculates a cumulative block deterioration risk by accumulating the maximum deterioration risk of the pixels in the block for each of the regions including one or a plurality of blocks. (1). The video signal processing device according to (1), wherein the maximum accumulated block deterioration risk is accumulated to obtain a cumulative deterioration risk for each region.
(3) The gain calculation unit calculates the deterioration risk level of the pixel by using the cumulative deterioration risk level of the area including the pixel for calculating the deterioration risk level and the cumulative deterioration risk level of the area adjacent to the area. The video signal processing device according to (1) or (2) to be calculated.
(4) The gain calculation unit is configured so that each of the regions has a ratio according to a distance from a boundary between a region including the pixel for calculating the deterioration risk and an adjacent region to a pixel for calculating the deterioration risk. The video signal processing apparatus according to (3), wherein the deterioration risk level of the pixel is calculated using the cumulative deterioration risk level.
(5) The gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel ( The video signal processing device according to any one of 1) to (4).
(6) A target gain map storage unit that stores a target gain map in which a target gain that sets a light emitting element that emits light based on the video signal as an allowable luminance reduction amount is indicated for each pixel position;
The video signal processing device according to any one of (1) to (5), wherein the gain calculation unit calculates a correction gain for each pixel based on the degradation risk for each pixel, the luminance for each pixel, and the target gain.
(7) The target gain is set to the pixel position based on the cumulative light emission amount calculated for each pixel using the sample image according to the ratio of the display time for each application and the deterioration characteristics of the light emitting element that emits light based on the video signal. The video signal processing device according to (6), further comprising a target gain map creation unit configured to create a target gain map for each setting.
(8) The target gain map creation unit
A cumulative light emission amount for each pixel is calculated in accordance with the display time ratio for each application, and based on the cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and the cumulative light emission amount calculated for each pixel. A target gain calculation processing unit for calculating a target gain for each pixel;
The video signal processing device according to (7), further including a target gain integration unit that integrates the target gain calculated for each pixel for each region and calculates the target gain for each region.
(9) The video signal processing device according to (7), wherein the target gain map creation unit updates the sample image or the degradation characteristic to a sample image or degradation characteristic acquired from the outside.
(10) The gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel and the target gain, and a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel. The video signal processing device according to any one of (6) to (9).
(11) The video signal processing according to (10), wherein the gain calculation unit calculates a gain adjustment amount so that a deterioration degree of the light emitting element that lowers luminance of a pixel based on the target gain becomes a desired deterioration degree. apparatus.
(12) The gain calculation unit calculates a gain adjustment amount based on the target gain so that a decrease in luminance becomes a desired speed in a pixel in a region where the light emitting element is likely to deteriorate (10) or (11) 2. A video signal processing apparatus according to 1.
(13) The target gain map is set by setting the target gain for each pixel position based on the cumulative light emission amount calculated for each pixel based on the application image and the deterioration characteristics of the light emitting element that emits light based on the video signal. The video signal processing device according to any one of (6) to (12), further including a target gain map creation unit to create.
(14) The target gain map creation unit creates the target gain map for each application,
The video signal processing apparatus according to (13), wherein the gain calculation unit calculates the correction gain for each pixel using a target gain map of an application that matches the application of the video signal.
(15) The target gain map creation unit
For each application, a cumulative light emission amount for each pixel is calculated based on the image of the application, and based on a cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and a cumulative light emission amount calculated for each pixel. A target gain calculation processing unit for calculating a target gain for each pixel;
The video signal processing apparatus according to (13) or (14), further including a target gain integration unit that integrates the target gain calculated for each pixel for each region and calculates a target gain for each region.
(16) The video signal processing device according to any one of (7) and (13), wherein the target gain map storage unit updates the target gain map to a target gain map acquired from the outside.
(17) A target gain for creating the target gain map based on a cumulative light emission amount calculated for each pixel using the video signal corrected by the correction unit and a deterioration characteristic of a light emitting element that emits light based on the video signal. The video signal processing device according to (6), further including a map creation unit.
 この技術の映像信号処理装置と映像信号処理方法では、映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出して領域毎に累積することで累積劣化危険度が累積劣化危険度算出部で算出される。また、領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインが画素毎にゲイン算出部で算出される。さらに、補正ゲインを用いて映像信号の信号レベルが補正部で補正される。このため、劣化危険度の高い領域では、劣化危険度の低い領域よりも輝度が低くなるように映像信号の信号レベルが調整されて、発光素子の長寿命化および表示の高視認性を実現できる。したがって、自発光素子である有機EL素子等を用いた携帯通信端末や情報処理装置、映像表示装置等に適している。 In the video signal processing apparatus and the video signal processing method of this technology, the risk of cumulative degradation is calculated by calculating the degradation risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulating it for each area. The degree is calculated by the cumulative deterioration risk calculation unit. Also, the deterioration risk for each pixel is calculated from the cumulative deterioration risk for each region, and a correction gain is calculated for each pixel by the gain calculation unit based on the deterioration risk for each pixel and the luminance for each pixel. Further, the signal level of the video signal is corrected by the correction unit using the correction gain. For this reason, the signal level of the video signal is adjusted so that the luminance is lower in the high degradation risk region than in the low degradation risk region, so that the lifetime of the light emitting element and the high visibility of the display can be realized. . Therefore, it is suitable for portable communication terminals, information processing devices, video display devices, and the like using organic EL elements that are self-luminous elements.
  10・・・表示装置
  20・・・信号処理部
  30・・・信号レベル補正部
  40・・・記憶部
  65・・・パネル
  70,74,76・・・目標ゲインマップ作成部
  71・・・アプリ別目標ゲインマップ作成部
  72・・・アプリ別目標ゲインマップ記憶部
  73・・・目標ゲインマップ選択部
 301・・・輝度算出部
 302・・・発光量算出部
 303・・・ブロック危険度算出部
 304・・・ブロック危険度更新部
 305・・・エリア危険度算出部
 306・・・エリア危険度更新部
 307,308,309,310・・・ゲイン算出部
 390・・・乗算器
 401・・・ブロック危険度記憶部
 402・・・エリア危険度記憶部
 403,405・・・目標ゲインマップ記憶部
 404・・・アプリ目標ゲインマップ記憶部
 701・・・ユーザプロファイル記憶部
 702,712・・・サンプル画像DB
 703・・・計算用画像DB作成部
 704・・・計算用画像DB
 705・・・アプリ別画像DB
 761・・・画像選択部
 762,763・・・輝度算出部
 764・・・発光量算出部
 765・・・累積発光量更新部
 766・・・累積発光量記憶部
 767,777・・・発光素子劣化特性記憶部
 768・・・目標ゲイン算出部
 769・・・目標ゲイン統合部
DESCRIPTION OF SYMBOLS 10 ... Display apparatus 20 ... Signal processing part 30 ... Signal level correction | amendment part 40 ... Memory | storage part 65 ... Panel 70, 74, 76 ... Target gain map preparation part 71 ... Application Separate target gain map creation unit 72 ... Application specific target gain map storage unit 73 ... Target gain map selection unit 301 ... Luminance calculation unit 302 ... Light emission amount calculation unit 303 ... Block risk calculation unit 304 ... Block risk update unit 305 ... Area risk level calculation unit 306 ... Area risk level update unit 307, 308, 309, 310 ... Gain calculation unit 390 ... Multiplier 401 ... Block risk storage unit 402 ... Area risk storage unit 403, 405 ... Target gain map storage unit 404 ... Application target gain map storage unit 701 ... The profile storage unit 702, 712 ... sample image DB
703: Calculation image DB creation unit 704: Calculation image DB
705 ... Application-specific image DB
761... Image selection unit 762, 763 .. Luminance calculation unit 764... Light emission amount calculation unit 765... Cumulative light emission amount update unit 766... Cumulative light emission amount storage unit 767,777. Deterioration characteristic storage unit 768... Target gain calculation unit 769... Target gain integration unit

Claims (18)

  1.  映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出し、算出した前記劣化危険度を領域毎に累積することで累積劣化危険度を算出する累積劣化危険度算出部と、
     前記領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、前記画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインを画素毎に算出するゲイン算出部と、
     前記補正ゲインを用いて前記映像信号の信号レベルを補正する補正部と
    を備える映像信号処理装置。
    Accumulated degradation risk that calculates the degradation risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated degradation risk for each area. A degree calculator,
    A gain calculation unit that calculates a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculates a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel;
    A video signal processing apparatus comprising: a correction unit that corrects a signal level of the video signal using the correction gain.
  2.  前記累積劣化危険度算出部は、1または複数のブロックからなる前記領域毎に、前記ブロック内の画素の最大劣化危険度を累積して累積ブロック劣化危険度を算出して、領域内の最大の累積ブロック劣化危険度を累積して前記領域毎の累積劣化危険度とする
    請求項1記載の映像信号処理装置。
    The cumulative deterioration risk calculating unit calculates a cumulative block deterioration risk by accumulating the maximum deterioration risk of the pixels in the block for each of the regions including one or a plurality of blocks, and calculating the maximum deterioration risk in the region. 2. The video signal processing apparatus according to claim 1, wherein the cumulative block deterioration risk is accumulated to obtain a cumulative deterioration risk for each region.
  3.  前記ゲイン算出部は、前記劣化危険度を算出する画素が含まれる領域の累積劣化危険度と、この領域に隣接する領域の累積劣化危険度を用いて、前記画素の劣化危険度を算出する
    請求項1記載の映像信号処理装置。
    The gain calculation unit calculates the deterioration risk of the pixel by using a cumulative deterioration risk of an area including a pixel for calculating the deterioration risk and a cumulative deterioration risk of an area adjacent to the area. Item 2. The video signal processing device according to Item 1.
  4.  前記ゲイン算出部は、前記劣化危険度を算出する画素が含まれる領域と隣接する領域との境界から前記劣化危険度を算出する画素までの距離に応じた割合で、それぞれの前記領域の累積劣化危険度を用いて前記画素の劣化危険度を算出する
    請求項3記載の映像信号処理装置。
    The gain calculating unit is configured to reduce the cumulative deterioration of each of the regions at a ratio according to a distance from a boundary between a region including the pixel for calculating the deterioration risk and an adjacent region to a pixel for calculating the deterioration risk. The video signal processing apparatus according to claim 3, wherein a risk of deterioration of the pixel is calculated using a risk.
  5.  前記ゲイン算出部は、前記画素毎の劣化危険度に応じて画素毎にゲイン調整量を算出して、前記画素毎のゲイン調整量と画素の輝度に基づいて補正ゲインを算出する
    請求項1記載の映像信号処理装置。
    The gain calculation unit calculates a gain adjustment amount for each pixel in accordance with a risk of deterioration for each pixel, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel. Video signal processing device.
  6.  前記映像信号に基づいて発光する発光素子を許容可能な輝度低下量とする目標ゲインが、画素位置毎に示された目標ゲインマップを記憶する目標ゲインマップ記憶部をさらに備え、
     前記ゲイン算出部は、前記画素毎の劣化危険度と画素毎の輝度と前記目標ゲインに基づき補正ゲインを画素毎に算出する
    請求項1記載の映像信号処理装置。
    A target gain map storage unit that stores a target gain map in which a target gain, which is an allowable luminance reduction amount of a light emitting element that emits light based on the video signal, is indicated for each pixel position;
    The video signal processing apparatus according to claim 1, wherein the gain calculation unit calculates a correction gain for each pixel based on the deterioration risk for each pixel, the luminance for each pixel, and the target gain.
  7.  用途別の表示時間の割合に応じてサンプル画像を用いて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインを画素位置毎に設定して目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える
    請求項6記載の映像信号処理装置。
    The target gain is set for each pixel position based on the cumulative light emission amount calculated for each pixel using the sample image according to the display time ratio for each application and the deterioration characteristics of the light emitting element that emits light based on the video signal. The video signal processing apparatus according to claim 6, further comprising a target gain map creating unit that creates a target gain map.
  8.  前記目標ゲインマップ作成部は、
     前記用途別の表示時間の割合に応じて画素毎の累積発光量を算出して、前記発光素子が許容可能な輝度低下量となる累積発光量と前記画素毎に算出した累積発光量に基づいて、画素毎に目標ゲインを算出する目標ゲイン算出処理部と、
     前記画素毎に算出された目標ゲインを領域毎に統合して領域毎に前記目標ゲインを算出する目標ゲイン統合部を有する
    請求項7記載の映像信号処理装置。
    The target gain map creation unit
    A cumulative light emission amount for each pixel is calculated in accordance with the display time ratio for each application, and based on the cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and the cumulative light emission amount calculated for each pixel. A target gain calculation processing unit for calculating a target gain for each pixel;
    The video signal processing apparatus according to claim 7, further comprising a target gain integration unit that integrates the target gain calculated for each pixel for each region and calculates the target gain for each region.
  9.  前記目標ゲインマップ作成部は、前記サンプル画像または前記劣化特性を外部から取得したサンプル画像または劣化特性に更新する
    請求項7記載の映像信号処理装置。
    The video signal processing device according to claim 7, wherein the target gain map creation unit updates the sample image or the deterioration characteristic to a sample image or deterioration characteristic acquired from the outside.
  10.  前記ゲイン算出部は、前記画素毎の劣化危険度と前記目標ゲインに応じて画素毎にゲイン調整量を算出して、前記画素毎のゲイン調整量と画素の輝度に基づいて補正ゲインを算出する
    請求項6記載の映像信号処理装置。
    The gain calculation unit calculates a gain adjustment amount for each pixel according to the degree of deterioration risk for each pixel and the target gain, and calculates a correction gain based on the gain adjustment amount for each pixel and the luminance of the pixel. The video signal processing apparatus according to claim 6.
  11.  前記ゲイン算出部は、前記目標ゲインに基づき画素の輝度を低下させる前記発光素子の劣化度合いが所望の劣化度合いとなるようにゲイン調整量を算出する
    請求項10記載の映像信号処理装置。
    The video signal processing apparatus according to claim 10, wherein the gain calculation unit calculates a gain adjustment amount so that a deterioration degree of the light emitting element that lowers a luminance of a pixel based on the target gain becomes a desired deterioration degree.
  12.  前記ゲイン算出部は、前記目標ゲインに基づき前記発光素子の劣化を生じやすい領域の画素で輝度の低下が所望の速度となるようにゲイン調整量を算出する
    請求項10記載の映像信号処理装置。
    The video signal processing apparatus according to claim 10, wherein the gain calculation unit calculates a gain adjustment amount based on the target gain so that a decrease in luminance becomes a desired speed in a pixel in a region where the light emitting element is likely to deteriorate.
  13.  アプリケーションの画像に基づいて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインを画素位置毎に設定して目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える
    請求項6記載の映像信号処理装置。
    A target gain map is created by setting the target gain for each pixel position based on the accumulated light emission amount calculated for each pixel based on the image of the application and the deterioration characteristics of the light emitting element that emits light based on the video signal. The video signal processing apparatus according to claim 6, further comprising a gain map creation unit.
  14.  前記目標ゲインマップ作成部は、アプリケーション毎に前記目標ゲインマップを作成して、
     前記ゲイン算出部は、前記映像信号のアプリケーションと一致するアプリケーションの目標ゲインマップを用いて前記補正ゲインを画素毎に算出する
    請求項13記載の映像信号処理装置。
    The target gain map creating unit creates the target gain map for each application,
    The video signal processing apparatus according to claim 13, wherein the gain calculation unit calculates the correction gain for each pixel using a target gain map of an application that matches the application of the video signal.
  15.  前記目標ゲインマップ作成部は、
     アプリケーション毎に、前記アプリケーションの画像に基づいて画素毎の累積発光量を算出して、前記発光素子が許容可能な輝度低下量となる累積発光量と前記画素毎に算出した累積発光量に基づいて、画素毎に目標ゲインを算出する目標ゲイン算出処理部と、
     前記画素毎に算出された目標ゲインを領域毎に統合して領域毎に目標ゲインを算出する目標ゲイン統合部を有する
    請求項13記載の映像信号処理装置。
    The target gain map creation unit
    For each application, a cumulative light emission amount for each pixel is calculated based on the image of the application, and based on a cumulative light emission amount that is an allowable luminance reduction amount for the light emitting element and a cumulative light emission amount calculated for each pixel. A target gain calculation processing unit for calculating a target gain for each pixel;
    The video signal processing apparatus according to claim 13, further comprising a target gain integration unit that integrates the target gain calculated for each pixel for each region and calculates a target gain for each region.
  16.  前記目標ゲインマップ記憶部は、前記目標ゲインマップを外部から取得した目標ゲインマップに更新する
    請求項6記載の映像信号処理装置。
    The video signal processing apparatus according to claim 6, wherein the target gain map storage unit updates the target gain map to a target gain map acquired from the outside.
  17.  前記補正部で補正された映像信号を用いて画素毎に算出した累積発光量と、前記映像信号に基づいて発光する発光素子の劣化特性に基づいて前記目標ゲインマップを作成する目標ゲインマップ作成部をさらに備える
    請求項6記載の映像信号処理装置。
    A target gain map creation unit that creates the target gain map based on the accumulated light emission amount calculated for each pixel using the video signal corrected by the correction unit and the deterioration characteristics of the light emitting element that emits light based on the video signal. The video signal processing apparatus according to claim 6, further comprising:
  18.  累積劣化危険度算出部で、映像信号に基づく画素毎の発光量から、表示画面を分割した領域毎の劣化危険度を算出し、算出した前記劣化危険度を領域毎に累積することで累積劣化危険度を算出する工程と、
     ゲイン算出部で、前記領域毎の累積劣化危険度から画素毎の劣化危険度を算出して、画素毎の劣化危険度と画素毎の輝度に基づき補正ゲインを画素毎に算出する工程と、
     補正部で前記補正ゲインを用いて前記映像信号の信号レベルを補正する工程と
    を含む映像信号処理方法。
    The cumulative deterioration risk calculation unit calculates the deterioration risk for each area obtained by dividing the display screen from the light emission amount for each pixel based on the video signal, and accumulates the calculated deterioration risk for each area. A process of calculating the risk,
    A gain calculation unit calculating a deterioration risk for each pixel from the cumulative deterioration risk for each region, and calculating a correction gain for each pixel based on the deterioration risk for each pixel and the luminance for each pixel;
    Correcting a signal level of the video signal using the correction gain in a correction unit.
PCT/JP2015/056782 2014-05-15 2015-03-09 Video signal processing device and video signal processing method WO2015174125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-101458 2014-05-15
JP2014101458 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015174125A1 true WO2015174125A1 (en) 2015-11-19

Family

ID=54479672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056782 WO2015174125A1 (en) 2014-05-15 2015-03-09 Video signal processing device and video signal processing method

Country Status (1)

Country Link
WO (1) WO2015174125A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139782A (en) * 2008-12-11 2010-06-24 Sony Corp Display device, method for driving the display device, and program
JP2014026003A (en) * 2012-07-24 2014-02-06 Sony Corp Display device, image processor, and image processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139782A (en) * 2008-12-11 2010-06-24 Sony Corp Display device, method for driving the display device, and program
JP2014026003A (en) * 2012-07-24 2014-02-06 Sony Corp Display device, image processor, and image processing method

Similar Documents

Publication Publication Date Title
CN106875921B (en) Brightness controlling device and display device including it
KR101964458B1 (en) Organic Light Emitting Display And Compensation Method Of Degradation Thereof
US8144085B2 (en) Display device, control method and computer program for display device
TWI395180B (en) Display device, video signal processing method, and program
KR102083299B1 (en) Display device and luminance control method thereof
WO2010067739A1 (en) Display device, and method and program for driving display device
KR102083297B1 (en) Display device and luminance control method thereof
JP2014122997A (en) Display device, image processing device, display method, and electronic apparatus
US11107403B2 (en) Current limiting circuit, display device, and current limiting method
CN110648628B (en) Display processing method, display processing device and electronic equipment
JP5371630B2 (en) Display device
TWI694432B (en) Display device
JP2006284972A (en) Printing phenomenon compensation method, self-luminous emission system, printing phenomenon compensating system, and program
JP2007292900A (en) Display device
JPWO2019138543A1 (en) Display device
JP2010015008A (en) Video signal processing apparatus, video signal processing method, program and display device
JP2011013340A (en) Light-emitting element display device and display method
WO2021235415A1 (en) Display device and current-limiting method
JP2010002770A (en) Video signal processing apparatus, video signal processing method, program, and display device
WO2015174125A1 (en) Video signal processing device and video signal processing method
CN110867161A (en) Display compensation method, display compensation device, display panel and storage medium
JP5328429B2 (en) Self-luminous display device and self-luminous display method
JP2015219307A (en) Video signal processor and video signal processing method
JP6478688B2 (en) Image processing apparatus and image processing method
JP2018031946A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15792784

Country of ref document: EP

Kind code of ref document: A1